A Hybrid Cloud Computing Service for Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.
2016-12-01
Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.
Introducing the Cloud in an Introductory IT Course
ERIC Educational Resources Information Center
Woods, David M.
2018-01-01
Cloud computing is a rapidly emerging topic, but should it be included in an introductory IT course? The magnitude of cloud computing use, especially cloud infrastructure, along with students' limited knowledge of the topic support adding cloud content to the IT curriculum. There are several arguments that support including cloud computing in an…
Cloud computing basics for librarians.
Hoy, Matthew B
2012-01-01
"Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC
76 FR 13984 - Cloud Computing Forum & Workshop III
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... public workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop III to be held on April 7... provide information on the NIST strategic and tactical Cloud Computing program, including progress on the...
Cloud Based Applications and Platforms (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodt-Giles, D.
2014-05-15
Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.
'Cloud computing' and clinical trials: report from an ECRIN workshop.
Ohmann, Christian; Canham, Steve; Danielyan, Edgar; Robertshaw, Steve; Legré, Yannick; Clivio, Luca; Demotes, Jacques
2015-07-29
Growing use of cloud computing in clinical trials prompted the European Clinical Research Infrastructures Network, a European non-profit organisation established to support multinational clinical research, to organise a one-day workshop on the topic to clarify potential benefits and risks. The issues that arose in that workshop are summarised and include the following: the nature of cloud computing and the cloud computing industry; the risks in using cloud computing services now; the lack of explicit guidance on this subject, both generally and with reference to clinical trials; and some possible ways of reducing risks. There was particular interest in developing and using a European 'community cloud' specifically for academic clinical trial data. It was recognised that the day-long workshop was only the start of an ongoing process. Future discussion needs to include clarification of trial-specific regulatory requirements for cloud computing and involve representatives from the relevant regulatory bodies.
Cloud Fingerprinting: Using Clock Skews To Determine Co Location Of Virtual Machines
2016-09-01
DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Cloud computing has quickly revolutionized computing practices of organizations, to include the Department of... Cloud computing has quickly revolutionized computing practices of organizations, to in- clude the Department of Defense. However, security concerns...vi Table of Contents 1 Introduction 1 1.1 Proliferation of Cloud Computing . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement
Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing
NASA Astrophysics Data System (ADS)
Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.
2012-12-01
Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.
Future Naval Use of COTS Networking Infrastructure
2009-07-01
user to benefit from Google’s vast databases and computational resources. Obviously, the ability to harness the full power of the Cloud could be... Computing Impact Findings Action Items Take-Aways Appendices: Pages 54-68 A. Terms of Reference Document B. Sample Definitions of Cloud ...and definition of Cloud Computing . While Cloud Computing is developing in many variations – including Infrastructure as a Service (IaaS), Platform as
Evaluating the Influence of the Client Behavior in Cloud Computing.
Souza Pardo, Mário Henrique; Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José
2016-01-01
This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system.
Evaluating the Influence of the Client Behavior in Cloud Computing
Centurion, Adriana Molina; Franco Eustáquio, Paulo Sérgio; Carlucci Santana, Regina Helena; Bruschi, Sarita Mazzini; Santana, Marcos José
2016-01-01
This paper proposes a novel approach for the implementation of simulation scenarios, providing a client entity for cloud computing systems. The client entity allows the creation of scenarios in which the client behavior has an influence on the simulation, making the results more realistic. The proposed client entity is based on several characteristics that affect the performance of a cloud computing system, including different modes of submission and their behavior when the waiting time between requests (think time) is considered. The proposed characterization of the client enables the sending of either individual requests or group of Web services to scenarios where the workload takes the form of bursts. The client entity is included in the CloudSim, a framework for modelling and simulation of cloud computing. Experimental results show the influence of the client behavior on the performance of the services executed in a cloud computing system. PMID:27441559
Volunteered Cloud Computing for Disaster Management
NASA Astrophysics Data System (ADS)
Evans, J. D.; Hao, W.; Chettri, S. R.
2014-12-01
Disaster management relies increasingly on interpreting earth observations and running numerical models; which require significant computing capacity - usually on short notice and at irregular intervals. Peak computing demand during event detection, hazard assessment, or incident response may exceed agency budgets; however some of it can be met through volunteered computing, which distributes subtasks to participating computers via the Internet. This approach has enabled large projects in mathematics, basic science, and climate research to harness the slack computing capacity of thousands of desktop computers. This capacity is likely to diminish as desktops give way to battery-powered mobile devices (laptops, smartphones, tablets) in the consumer market; but as cloud computing becomes commonplace, it may offer significant slack capacity -- if its users are given an easy, trustworthy mechanism for participating. Such a "volunteered cloud computing" mechanism would also offer several advantages over traditional volunteered computing: tasks distributed within a cloud have fewer bandwidth limitations; granular billing mechanisms allow small slices of "interstitial" computing at no marginal cost; and virtual storage volumes allow in-depth, reversible machine reconfiguration. Volunteered cloud computing is especially suitable for "embarrassingly parallel" tasks, including ones requiring large data volumes: examples in disaster management include near-real-time image interpretation, pattern / trend detection, or large model ensembles. In the context of a major disaster, we estimate that cloud users (if suitably informed) might volunteer hundreds to thousands of CPU cores across a large provider such as Amazon Web Services. To explore this potential, we are building a volunteered cloud computing platform and targeting it to a disaster management context. Using a lightweight, fault-tolerant network protocol, this platform helps cloud users join parallel computing projects; automates reconfiguration of their virtual machines; ensures accountability for donated computing; and optimizes the use of "interstitial" computing. Initial applications include fire detection from multispectral satellite imagery and flood risk mapping through hydrological simulations.
NASA Astrophysics Data System (ADS)
Marinos, Alexandros; Briscoe, Gerard
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
Evaluating open-source cloud computing solutions for geosciences
NASA Astrophysics Data System (ADS)
Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong
2013-09-01
Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.
Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for bothmore » academia and government, including configuration options, hardware issues, challenges, and solutions.« less
Proposal for a Security Management in Cloud Computing for Health Care
Dzombeta, Srdan; Brandis, Knud
2014-01-01
Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources. PMID:24701137
Proposal for a security management in cloud computing for health care.
Haufe, Knut; Dzombeta, Srdan; Brandis, Knud
2014-01-01
Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources.
Evaluating the Usage of Cloud-Based Collaboration Services through Teamwork
ERIC Educational Resources Information Center
Qin, Li; Hsu, Jeffrey; Stern, Mel
2016-01-01
With the proliferation of cloud computing for both organizational and educational use, cloud-based collaboration services are transforming how people work in teams. The authors investigated the determinants of the usage of cloud-based collaboration services including teamwork quality, computer self-efficacy, and prior experience, as well as its…
ASSURED CLOUD COMPUTING UNIVERSITY CENTER OFEXCELLENCE (ACC UCOE)
2018-01-18
average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed...infrastructure security -Design of algorithms and techniques for real- time assuredness in cloud computing -Map-reduce task assignment with data locality...46 DESIGN OF ALGORITHMS AND TECHNIQUES FOR REAL- TIME ASSUREDNESS IN CLOUD COMPUTING
The application of cloud computing to scientific workflows: a study of cost and performance.
Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S
2013-01-28
The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.
A Simple Technique for Securing Data at Rest Stored in a Computing Cloud
NASA Astrophysics Data System (ADS)
Sedayao, Jeff; Su, Steven; Ma, Xiaohao; Jiang, Minghao; Miao, Kai
"Cloud Computing" offers many potential benefits, including cost savings, the ability to deploy applications and services quickly, and the ease of scaling those application and services once they are deployed. A key barrier for enterprise adoption is the confidentiality of data stored on Cloud Computing Infrastructure. Our simple technique implemented with Open Source software solves this problem by using public key encryption to render stored data at rest unreadable by unauthorized personnel, including system administrators of the cloud computing service on which the data is stored. We validate our approach on a network measurement system implemented on PlanetLab. We then use it on a service where confidentiality is critical - a scanning application that validates external firewall implementations.
Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.
A high performance scientific cloud computing environment for materials simulations
NASA Astrophysics Data System (ADS)
Jorissen, K.; Vila, F. D.; Rehr, J. J.
2012-09-01
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
Now and Next-Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Computing
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed “cloud computing”) has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows. PMID:23248640
Identification of Program Signatures from Cloud Computing System Telemetry Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Nicole M.; Greaves, Mark T.; Smith, William P.
Malicious cloud computing activity can take many forms, including running unauthorized programs in a virtual environment. Detection of these malicious activities while preserving the privacy of the user is an important research challenge. Prior work has shown the potential viability of using cloud service billing metrics as a mechanism for proxy identification of malicious programs. Previously this novel detection method has been evaluated in a synthetic and isolated computational environment. In this paper we demonstrate the ability of billing metrics to identify programs, in an active cloud computing environment, including multiple virtual machines running on the same hypervisor. The openmore » source cloud computing platform OpenStack, is used for private cloud management at Pacific Northwest National Laboratory. OpenStack provides a billing tool (Ceilometer) to collect system telemetry measurements. We identify four different programs running on four virtual machines under the same cloud user account. Programs were identified with up to 95% accuracy. This accuracy is dependent on the distinctiveness of telemetry measurements for the specific programs we tested. Future work will examine the scalability of this approach for a larger selection of programs to better understand the uniqueness needed to identify a program. Additionally, future work should address the separation of signatures when multiple programs are running on the same virtual machine.« less
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
ERIC Educational Resources Information Center
Chebrolu, Shankar Babu
2010-01-01
Against the backdrop of new economic realities, one of the larger forces that is affecting businesses worldwide is cloud computing, whose benefits include agility, time to market, time to capability, reduced cost, renewed focus on the core and strategic partnership with the business. Cloud computing can potentially transform a majority of the…
Bigdata Driven Cloud Security: A Survey
NASA Astrophysics Data System (ADS)
Raja, K.; Hanifa, Sabibullah Mohamed
2017-08-01
Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.
Cloud computing for comparative genomics
2010-01-01
Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems. PMID:20482786
Cloud computing for comparative genomics.
Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J
2010-05-18
Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.
NASA Astrophysics Data System (ADS)
Furht, Borko
In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.
2011-01-01
Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105
Yang, Shu; Qiu, Yuyan; Shi, Bo
2016-09-01
This paper explores the methods of building the internet of things of a regional ECG monitoring, focused on the implementation of ECG monitoring center based on cloud computing platform. It analyzes implementation principles of automatic identifi cation in the types of arrhythmia. It also studies the system architecture and key techniques of cloud computing platform, including server load balancing technology, reliable storage of massive smalfi les and the implications of quick search function.
CloudMan as a platform for tool, data, and analysis distribution.
Afgan, Enis; Chapman, Brad; Taylor, James
2012-11-27
Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions.
GATECloud.net: a platform for large-scale, open-source text processing on the cloud.
Tablan, Valentin; Roberts, Ian; Cunningham, Hamish; Bontcheva, Kalina
2013-01-28
Cloud computing is increasingly being regarded as a key enabler of the 'democratization of science', because on-demand, highly scalable cloud computing facilities enable researchers anywhere to carry out data-intensive experiments. In the context of natural language processing (NLP), algorithms tend to be complex, which makes their parallelization and deployment on cloud platforms a non-trivial task. This study presents a new, unique, cloud-based platform for large-scale NLP research--GATECloud. net. It enables researchers to carry out data-intensive NLP experiments by harnessing the vast, on-demand compute power of the Amazon cloud. Important infrastructural issues are dealt with by the platform, completely transparently for the researcher: load balancing, efficient data upload and storage, deployment on the virtual machines, security and fault tolerance. We also include a cost-benefit analysis and usage evaluation.
2010-05-01
Figure 2: Cloud Computing Deployment Models 13 Figure 3: NIST Essential Characteristics 14 Figure 4: NASA Nebula Container 37...Access Computing Environment (RACE) program, the National Aeronautics and Space Administration’s (NASA) Nebula program, and the Department of...computing programs: the DOD’s RACE program; NASA’s Nebula program; and Department of Transportation’s CARS program, including lessons learned related
A service brokering and recommendation mechanism for better selecting cloud services.
Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan
2014-01-01
Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI).
A Secure Alignment Algorithm for Mapping Short Reads to Human Genome.
Zhao, Yongan; Wang, Xiaofeng; Tang, Haixu
2018-05-09
The elastic and inexpensive computing resources such as clouds have been recognized as a useful solution to analyzing massive human genomic data (e.g., acquired by using next-generation sequencers) in biomedical researches. However, outsourcing human genome computation to public or commercial clouds was hindered due to privacy concerns: even a small number of human genome sequences contain sufficient information for identifying the donor of the genomic data. This issue cannot be directly addressed by existing security and cryptographic techniques (such as homomorphic encryption), because they are too heavyweight to carry out practical genome computation tasks on massive data. In this article, we present a secure algorithm to accomplish the read mapping, one of the most basic tasks in human genomic data analysis based on a hybrid cloud computing model. Comparing with the existing approaches, our algorithm delegates most computation to the public cloud, while only performing encryption and decryption on the private cloud, and thus makes the maximum use of the computing resource of the public cloud. Furthermore, our algorithm reports similar results as the nonsecure read mapping algorithms, including the alignment between reads and the reference genome, which can be directly used in the downstream analysis such as the inference of genomic variations. We implemented the algorithm in C++ and Python on a hybrid cloud system, in which the public cloud uses an Apache Spark system.
Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.
Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R
2015-01-01
With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.
Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing
Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.
2015-01-01
With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746
A proposed study of multiple scattering through clouds up to 1 THz
NASA Technical Reports Server (NTRS)
Gerace, G. C.; Smith, E. K.
1992-01-01
A rigorous computation of the electromagnetic field scattered from an atmospheric liquid water cloud is proposed. The recent development of a fast recursive algorithm (Chew algorithm) for computing the fields scattered from numerous scatterers now makes a rigorous computation feasible. A method is presented for adapting this algorithm to a general case where there are an extremely large number of scatterers. It is also proposed to extend a new binary PAM channel coding technique (El-Khamy coding) to multiple levels with non-square pulse shapes. The Chew algorithm can be used to compute the transfer function of a cloud channel. Then the transfer function can be used to design an optimum El-Khamy code. In principle, these concepts can be applied directly to the realistic case of a time-varying cloud (adaptive channel coding and adaptive equalization). A brief review is included of some preliminary work on cloud dispersive effects on digital communication signals and on cloud liquid water spectra and correlations.
Capabilities and Advantages of Cloud Computing in the Implementation of Electronic Health Record.
Ahmadi, Maryam; Aslani, Nasim
2018-01-01
With regard to the high cost of the Electronic Health Record (EHR), in recent years the use of new technologies, in particular cloud computing, has increased. The purpose of this study was to review systematically the studies conducted in the field of cloud computing. The present study was a systematic review conducted in 2017. Search was performed in the Scopus, Web of Sciences, IEEE, Pub Med and Google Scholar databases by combination keywords. From the 431 article that selected at the first, after applying the inclusion and exclusion criteria, 27 articles were selected for surveyed. Data gathering was done by a self-made check list and was analyzed by content analysis method. The finding of this study showed that cloud computing is a very widespread technology. It includes domains such as cost, security and privacy, scalability, mutual performance and interoperability, implementation platform and independence of Cloud Computing, ability to search and exploration, reducing errors and improving the quality, structure, flexibility and sharing ability. It will be effective for electronic health record. According to the findings of the present study, higher capabilities of cloud computing are useful in implementing EHR in a variety of contexts. It also provides wide opportunities for managers, analysts and providers of health information systems. Considering the advantages and domains of cloud computing in the establishment of HER, it is recommended to use this technology.
Capabilities and Advantages of Cloud Computing in the Implementation of Electronic Health Record
Ahmadi, Maryam; Aslani, Nasim
2018-01-01
Background: With regard to the high cost of the Electronic Health Record (EHR), in recent years the use of new technologies, in particular cloud computing, has increased. The purpose of this study was to review systematically the studies conducted in the field of cloud computing. Methods: The present study was a systematic review conducted in 2017. Search was performed in the Scopus, Web of Sciences, IEEE, Pub Med and Google Scholar databases by combination keywords. From the 431 article that selected at the first, after applying the inclusion and exclusion criteria, 27 articles were selected for surveyed. Data gathering was done by a self-made check list and was analyzed by content analysis method. Results: The finding of this study showed that cloud computing is a very widespread technology. It includes domains such as cost, security and privacy, scalability, mutual performance and interoperability, implementation platform and independence of Cloud Computing, ability to search and exploration, reducing errors and improving the quality, structure, flexibility and sharing ability. It will be effective for electronic health record. Conclusion: According to the findings of the present study, higher capabilities of cloud computing are useful in implementing EHR in a variety of contexts. It also provides wide opportunities for managers, analysts and providers of health information systems. Considering the advantages and domains of cloud computing in the establishment of HER, it is recommended to use this technology. PMID:29719309
CloudMan as a platform for tool, data, and analysis distribution
2012-01-01
Background Cloud computing provides an infrastructure that facilitates large scale computational analysis in a scalable, democratized fashion, However, in this context it is difficult to ensure sharing of an analysis environment and associated data in a scalable and precisely reproducible way. Results CloudMan (usecloudman.org) enables individual researchers to easily deploy, customize, and share their entire cloud analysis environment, including data, tools, and configurations. Conclusions With the enabled customization and sharing of instances, CloudMan can be used as a platform for collaboration. The presented solution improves accessibility of cloud resources, tools, and data to the level of an individual researcher and contributes toward reproducibility and transparency of research solutions. PMID:23181507
USGEO DMWG Cloud Computing Recommendations
NASA Astrophysics Data System (ADS)
de la Beaujardiere, J.; McInerney, M.; Frame, M. T.; Summers, C.
2017-12-01
The US Group on Earth Observations (USGEO) Data Management Working Group (DMWG) has been developing Cloud Computing Recommendations for Earth Observations. This inter-agency report is currently in draft form; DMWG hopes to have released the report as a public Request for Information (RFI) by the time of AGU. The recommendations are geared toward organizations that have already decided to use the Cloud for some of their activities (i.e., the focus is not on "why you should use the Cloud," but rather "If you plan to use the Cloud, consider these suggestions.") The report comprises Introductory Material, including Definitions, Potential Cloud Benefits, and Potential Cloud Disadvantages, followed by Recommendations in several areas: Assessing When to Use the Cloud, Transferring Data to the Cloud, Data and Metadata Contents, Developing Applications in the Cloud, Cost Minimization, Security Considerations, Monitoring and Metrics, Agency Support, and Earth Observations-specific recommendations. This talk will summarize the recommendations and invite comment on the RFI.
Cloud GIS Based Watershed Management
NASA Astrophysics Data System (ADS)
Bediroğlu, G.; Colak, H. E.
2017-11-01
In this study, we generated a Cloud GIS based watershed management system with using Cloud Computing architecture. Cloud GIS is used as SAAS (Software as a Service) and DAAS (Data as a Service). We applied GIS analysis on cloud in terms of testing SAAS and deployed GIS datasets on cloud in terms of DAAS. We used Hybrid cloud computing model in manner of using ready web based mapping services hosted on cloud (World Topology, Satellite Imageries). We uploaded to system after creating geodatabases including Hydrology (Rivers, Lakes), Soil Maps, Climate Maps, Rain Maps, Geology and Land Use. Watershed of study area has been determined on cloud using ready-hosted topology maps. After uploading all the datasets to systems, we have applied various GIS analysis and queries. Results shown that Cloud GIS technology brings velocity and efficiency for watershed management studies. Besides this, system can be easily implemented for similar land analysis and management studies.
Design and Development of ChemInfoCloud: An Integrated Cloud Enabled Platform for Virtual Screening.
Karthikeyan, Muthukumarasamy; Pandit, Deepak; Bhavasar, Arvind; Vyas, Renu
2015-01-01
The power of cloud computing and distributed computing has been harnessed to handle vast and heterogeneous data required to be processed in any virtual screening protocol. A cloud computing platorm ChemInfoCloud was built and integrated with several chemoinformatics and bioinformatics tools. The robust engine performs the core chemoinformatics tasks of lead generation, lead optimisation and property prediction in a fast and efficient manner. It has also been provided with some of the bioinformatics functionalities including sequence alignment, active site pose prediction and protein ligand docking. Text mining, NMR chemical shift (1H, 13C) prediction and reaction fingerprint generation modules for efficient lead discovery are also implemented in this platform. We have developed an integrated problem solving cloud environment for virtual screening studies that also provides workflow management, better usability and interaction with end users using container based virtualization, OpenVz.
Cloud computing for genomic data analysis and collaboration.
Langmead, Ben; Nellore, Abhinav
2018-04-01
Next-generation sequencing has made major strides in the past decade. Studies based on large sequencing data sets are growing in number, and public archives for raw sequencing data have been doubling in size every 18 months. Leveraging these data requires researchers to use large-scale computational resources. Cloud computing, a model whereby users rent computers and storage from large data centres, is a solution that is gaining traction in genomics research. Here, we describe how cloud computing is used in genomics for research and large-scale collaborations, and argue that its elasticity, reproducibility and privacy features make it ideally suited for the large-scale reanalysis of publicly available archived data, including privacy-protected data.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services
Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan
2014-01-01
Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI). PMID:25170937
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community.
Krampis, Konstantinos; Booth, Tim; Chapman, Brad; Tiwari, Bela; Bicak, Mesude; Field, Dawn; Nelson, Karen E
2012-03-19
A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them.
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community
2012-01-01
Background A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Results Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Conclusions Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them. PMID:22429538
Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B
2018-02-07
This position paper summarizes the development and the present status of Department of Defense (DoD) and other government policies and guidances regarding cloud computing services. Due to the heterogeneous and growing biomedical big datasets, cloud computing services offer an opportunity to mitigate the associated storage and analysis requirements. Having on-demand network access to a shared pool of flexible computing resources creates a consolidated system that should reduce potential duplications of effort in military biomedical research. Interactive, online literature searches were performed with Google, at the Defense Technical Information Center, and at two National Institutes of Health research portfolio information sites. References cited within some of the collected documents also served as literature resources. We gathered, selected, and reviewed DoD and other government cloud computing policies and guidances published from 2009 to 2017. These policies were intended to consolidate computer resources within the government and reduce costs by decreasing the number of federal data centers and by migrating electronic data to cloud systems. Initial White House Office of Management and Budget information technology guidelines were developed for cloud usage, followed by policies and other documents from the DoD, the Defense Health Agency, and the Armed Services. Security standards from the National Institute of Standards and Technology, the Government Services Administration, the DoD, and the Army were also developed. Government Services Administration and DoD Inspectors General monitored cloud usage by the DoD. A 2016 Government Accountability Office report characterized cloud computing as being economical, flexible and fast. A congressionally mandated independent study reported that the DoD was active in offering a wide selection of commercial cloud services in addition to its milCloud system. Our findings from the Department of Health and Human Services indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.
2010-04-29
Cloud Computing The answer, my friend, is blowing in the wind. The answer is blowing in the wind. 1Bingue ‐ Cook Cloud Computing STSC 2010... Cloud Computing STSC 2010 Objectives • Define the cloud • Risks of cloud computing f l d i• Essence o c ou comput ng • Deployed clouds in DoD 3Bingue...Cook Cloud Computing STSC 2010 Definitions of Cloud Computing Cloud computing is a model for enabling b d d ku
Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing
NASA Astrophysics Data System (ADS)
Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim
2011-03-01
Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.
Dynamic partitioning as a way to exploit new computing paradigms: the cloud use case.
NASA Astrophysics Data System (ADS)
Ciaschini, Vincenzo; Dal Pra, Stefano; dell'Agnello, Luca
2015-12-01
The WLCG community and many groups in the HEP community have based their computing strategy on the Grid paradigm, which proved successful and still ensures its goals. However, Grid technology has not spread much over other communities; in the commercial world, the cloud paradigm is the emerging way to provide computing services. WLCG experiments aim to achieve integration of their existing current computing model with cloud deployments and take advantage of the so-called opportunistic resources (including HPC facilities) which are usually not Grid compliant. One missing feature in the most common cloud frameworks, is the concept of job scheduler, which plays a key role in a traditional computing centre, by enabling a fairshare based access at the resources to the experiments in a scenario where demand greatly outstrips availability. At CNAF we are investigating the possibility to access the Tier-1 computing resources as an OpenStack based cloud service. The system, exploiting the dynamic partitioning mechanism already being used to enable Multicore computing, allowed us to avoid a static splitting of the computing resources in the Tier-1 farm, while permitting a share friendly approach. The hosts in a dynamically partitioned farm may be moved to or from the partition, according to suitable policies for request and release of computing resources. Nodes being requested in the partition switch their role and become available to play a different one. In the cloud use case hosts may switch from acting as Worker Node in the Batch system farm to cloud compute node member, made available to tenants. In this paper we describe the dynamic partitioning concept, its implementation and integration with our current batch system, LSF.
An Overview of Cloud Computing in Distributed Systems
NASA Astrophysics Data System (ADS)
Divakarla, Usha; Kumari, Geetha
2010-11-01
Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.
Analysis on the security of cloud computing
NASA Astrophysics Data System (ADS)
He, Zhonglin; He, Yuhua
2011-02-01
Cloud computing is a new technology, which is the fusion of computer technology and Internet development. It will lead the revolution of IT and information field. However, in cloud computing data and application software is stored at large data centers, and the management of data and service is not completely trustable, resulting in safety problems, which is the difficult point to improve the quality of cloud service. This paper briefly introduces the concept of cloud computing. Considering the characteristics of cloud computing, it constructs the security architecture of cloud computing. At the same time, with an eye toward the security threats cloud computing faces, several corresponding strategies are provided from the aspect of cloud computing users and service providers.
Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh
2014-03-01
As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.
The EPOS Vision for the Open Science Cloud
NASA Astrophysics Data System (ADS)
Jeffery, Keith; Harrison, Matt; Cocco, Massimo
2016-04-01
Cloud computing offers dynamic elastic scalability for data processing on demand. For much research activity, demand for computing is uneven over time and so CLOUD computing offers both cost-effectiveness and capacity advantages. However, as reported repeatedly by the EC Cloud Expert Group, there are barriers to the uptake of Cloud Computing: (1) security and privacy; (2) interoperability (avoidance of lock-in); (3) lack of appropriate systems development environments for application programmers to characterise their applications to allow CLOUD middleware to optimize their deployment and execution. From CERN, the Helix-Nebula group has proposed the architecture for the European Open Science Cloud. They are discussing with other e-Infrastructure groups such as EGI (GRIDs), EUDAT (data curation), AARC (network authentication and authorisation) and also with the EIROFORUM group of 'international treaty' RIs (Research Infrastructures) and the ESFRI (European Strategic Forum for Research Infrastructures) RIs including EPOS. Many of these RIs are either e-RIs (electronic-RIs) or have an e-RI interface for access and use. The EPOS architecture is centred on a portal: ICS (Integrated Core Services). The architectural design already allows for access to e-RIs (which may include any or all of data, software, users and resources such as computers or instruments). Those within any one domain (subject area) of EPOS are considered within the TCS (Thematic Core Services). Those outside, or available across multiple domains of EPOS, are ICS-d (Integrated Core Services-Distributed) since the intention is that they will be used by any or all of the TCS via the ICS. Another such service type is CES (Computational Earth Science); effectively an ICS-d specializing in high performance computation, analytics, simulation or visualization offered by a TCS for others to use. Already discussions are underway between EPOS and EGI, EUDAT, AARC and Helix-Nebula for those offerings to be considered as ICS-ds by EPOS.. Provision of access to ICS-Ds from ICS-C concerns several aspects: (a) Technical : it may be more or less difficult to connect and pass from ICS-C to the ICS-d/ CES the 'package' (probably a virtual machine) of data and software; (b) Security/privacy : including passing personal information e.g. related to AAAI (Authentication, authorization, accounting Infrastructure); (c) financial and legal : such as payment, licence conditions; Appropriate interfaces from ICS-C to ICS-d are being designed to accommodate these aspects. The Open Science Cloud is timely because it provides a framework to discuss governance and sustainability for computational resource provision as well as an effective interpretation of federated approach to HPC(High Performance Computing) -HTC (High Throughput Computing). It will be a unique opportunity to share and adopt procurement policies to provide access to computational resources for RIs. The current state of discussions and expected roadmap for the EPOS-Open Science Cloud relationship are presented.
Signal and image processing algorithm performance in a virtual and elastic computing environment
NASA Astrophysics Data System (ADS)
Bennett, Kelly W.; Robertson, James
2013-05-01
The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.
Future of Department of Defense Cloud Computing Amid Cultural Confusion
2013-03-01
enterprise cloud - computing environment and transition to a public cloud service provider. Services have started the development of individual cloud - computing environments...endorsing cloud computing . It addresses related issues in matters of service culture changes and how strategic leaders will dictate the future of cloud ...through data center consolidation and individual Service provided cloud computing .
DESPIC: Detecting Early Signatures of Persuasion in Information Cascades
2015-08-27
over NoSQL Databases, Proceedings of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014). 26-MAY-14, . : , P...over NoSQL Databases. Proceedings of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014). Chicago, IL, USA...distributed NoSQL databases including HBase and Riak, we finalized the requirements of the optimal computational architecture to support our framework
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D. T.; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Background Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. Results We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. Conclusions CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/. PMID:24897343
The role of dedicated data computing centers in the age of cloud computing
NASA Astrophysics Data System (ADS)
Caramarcu, Costin; Hollowell, Christopher; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr
2017-10-01
Brookhaven National Laboratory (BNL) anticipates significant growth in scientific programs with large computing and data storage needs in the near future and has recently reorganized support for scientific computing to meet these needs. A key component is the enhanced role of the RHIC-ATLAS Computing Facility (RACF) in support of high-throughput and high-performance computing (HTC and HPC) at BNL. This presentation discusses the evolving role of the RACF at BNL, in light of its growing portfolio of responsibilities and its increasing integration with cloud (academic and for-profit) computing activities. We also discuss BNL’s plan to build a new computing center to support the new responsibilities of the RACF and present a summary of the cost benefit analysis done, including the types of computing activities that benefit most from a local data center vs. cloud computing. This analysis is partly based on an updated cost comparison of Amazon EC2 computing services and the RACF, which was originally conducted in 2012.
Speeding Up Geophysical Research Using Docker Containers Within Multi-Cloud Environment.
NASA Astrophysics Data System (ADS)
Synytsky, R.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.; Starovoit, Y. O.
2016-12-01
How useful are the geophysical observations in a scope of minimizing losses from natural disasters today? Does it help to decrease number of human victims during tsunami and earthquake? Unfortunately it's still at early stage these days. It's a big goal and achievement to make such observations more useful by improving early warning and prediction systems with the help of cloud computing. Cloud computing technologies have proved the ability to speed up application development in many areas for 10 years already. Cloud unlocks new opportunities for geoscientists by providing access to modern data processing tools and algorithms including real-time high-performance computing, big data processing, artificial intelligence and others. Emerging lightweight cloud technologies, such as Docker containers, are gaining wide traction in IT due to the fact of faster and more efficient deployment of different applications in a cloud environment. It allows to deploy and manage geophysical applications and systems in minutes across multiple clouds and data centers that becomes of utmost importance for the next generation applications. In this session we'll demonstrate how Docker containers technology within multi-cloud can accelerate the development of applications specifically designed for geophysical researches.
Cloud Computing for radiologists.
Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit
2012-07-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.
Cloud Computing for radiologists
Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit
2012-01-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560
Visual Analysis of Cloud Computing Performance Using Behavioral Lines.
Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu
2016-02-29
Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.
Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing.
Trudgian, David C; Mirzaei, Hamid
2012-12-07
We have extended the functionality of the Central Proteomics Facilities Pipeline (CPFP) to allow use of remote cloud and high performance computing (HPC) resources for shotgun proteomics data processing. CPFP has been modified to include modular local and remote scheduling for data processing jobs. The pipeline can now be run on a single PC or server, a local cluster, a remote HPC cluster, and/or the Amazon Web Services (AWS) cloud. We provide public images that allow easy deployment of CPFP in its entirety in the AWS cloud. This significantly reduces the effort necessary to use the software, and allows proteomics laboratories to pay for compute time ad hoc, rather than obtaining and maintaining expensive local server clusters. Alternatively the Amazon cloud can be used to increase the throughput of a local installation of CPFP as necessary. We demonstrate that cloud CPFP allows users to process data at higher speed than local installations but with similar cost and lower staff requirements. In addition to the computational improvements, the web interface to CPFP is simplified, and other functionalities are enhanced. The software is under active development at two leading institutions and continues to be released under an open-source license at http://cpfp.sourceforge.net.
Adventures in Private Cloud: Balancing Cost and Capability at the CloudSat Data Processing Center
NASA Astrophysics Data System (ADS)
Partain, P.; Finley, S.; Fluke, J.; Haynes, J. M.; Cronk, H. Q.; Miller, S. D.
2016-12-01
Since the beginning of the CloudSat Mission in 2006, The CloudSat Data Processing Center (DPC) at the Cooperative Institute for Research in the Atmosphere (CIRA) has been ingesting data from the satellite and other A-Train sensors, producing data products, and distributing them to researchers around the world. The computing infrastructure was specifically designed to fulfill the requirements as specified at the beginning of what nominally was a two-year mission. The environment consisted of servers dedicated to specific processing tasks in a rigid workflow to generate the required products. To the benefit of science and with credit to the mission engineers, CloudSat has lasted well beyond its planned lifetime and is still collecting data ten years later. Over that period requirements of the data processing system have greatly expanded and opportunities for providing value-added services have presented themselves. But while demands on the system have increased, the initial design allowed for very little expansion in terms of scalability and flexibility. The design did change to include virtual machine processing nodes and distributed workflows but infrastructure management was still a time consuming task when system modification was required to run new tests or implement new processes. To address the scalability, flexibility, and manageability of the system Cloud computing methods and technologies are now being employed. The use of a public cloud like Amazon Elastic Compute Cloud or Google Compute Engine was considered but, among other issues, data transfer and storage cost becomes a problem especially when demand fluctuates as a result of reprocessing and the introduction of new products and services. Instead, the existing system was converted to an on premises private Cloud using the OpenStack computing platform and Ceph software defined storage to reap the benefits of the Cloud computing paradigm. This work details the decisions that were made, the benefits that have been realized, the difficulties that were encountered and issues that still exist.
Klonoff, David C
2017-07-01
The Internet of Things (IoT) is generating an immense volume of data. With cloud computing, medical sensor and actuator data can be stored and analyzed remotely by distributed servers. The results can then be delivered via the Internet. The number of devices in IoT includes such wireless diabetes devices as blood glucose monitors, continuous glucose monitors, insulin pens, insulin pumps, and closed-loop systems. The cloud model for data storage and analysis is increasingly unable to process the data avalanche, and processing is being pushed out to the edge of the network closer to where the data-generating devices are. Fog computing and edge computing are two architectures for data handling that can offload data from the cloud, process it nearby the patient, and transmit information machine-to-machine or machine-to-human in milliseconds or seconds. Sensor data can be processed near the sensing and actuating devices with fog computing (with local nodes) and with edge computing (within the sensing devices). Compared to cloud computing, fog computing and edge computing offer five advantages: (1) greater data transmission speed, (2) less dependence on limited bandwidths, (3) greater privacy and security, (4) greater control over data generated in foreign countries where laws may limit use or permit unwanted governmental access, and (5) lower costs because more sensor-derived data are used locally and less data are transmitted remotely. Connected diabetes devices almost all use fog computing or edge computing because diabetes patients require a very rapid response to sensor input and cannot tolerate delays for cloud computing.
2012-01-01
Background Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. Results In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Conclusions Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org. PMID:23281941
El-Kalioby, Mohamed; Abouelhoda, Mohamed; Krüger, Jan; Giegerich, Robert; Sczyrba, Alexander; Wall, Dennis P; Tonellato, Peter
2012-01-01
Bioinformatics services have been traditionally provided in the form of a web-server that is hosted at institutional infrastructure and serves multiple users. This model, however, is not flexible enough to cope with the increasing number of users, increasing data size, and new requirements in terms of speed and availability of service. The advent of cloud computing suggests a new service model that provides an efficient solution to these problems, based on the concepts of "resources-on-demand" and "pay-as-you-go". However, cloud computing has not yet been introduced within bioinformatics servers due to the lack of usage scenarios and software layers that address the requirements of the bioinformatics domain. In this paper, we provide different use case scenarios for providing cloud computing based services, considering both the technical and financial aspects of the cloud computing service model. These scenarios are for individual users seeking computational power as well as bioinformatics service providers aiming at provision of personalized bioinformatics services to their users. We also present elasticHPC, a software package and a library that facilitates the use of high performance cloud computing resources in general and the implementation of the suggested bioinformatics scenarios in particular. Concrete examples that demonstrate the suggested use case scenarios with whole bioinformatics servers and major sequence analysis tools like BLAST are presented. Experimental results with large datasets are also included to show the advantages of the cloud model. Our use case scenarios and the elasticHPC package are steps towards the provision of cloud based bioinformatics services, which would help in overcoming the data challenge of recent biological research. All resources related to elasticHPC and its web-interface are available at http://www.elasticHPC.org.
2012-05-01
cloud computing 17 NASA Nebula Platform • Cloud computing pilot program at NASA Ames • Integrates open-source components into seamless, self...Mission support • Education and public outreach (NASA Nebula , 2010) 18 NSF Supported Cloud Research • Support for Cloud Computing in...Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special Publication 800-145 • NASA Nebula (2010). Retrieved from
Scheduling multimedia services in cloud computing environment
NASA Astrophysics Data System (ADS)
Liu, Yunchang; Li, Chunlin; Luo, Youlong; Shao, Yanling; Zhang, Jing
2018-02-01
Currently, security is a critical factor for multimedia services running in the cloud computing environment. As an effective mechanism, trust can improve security level and mitigate attacks within cloud computing environments. Unfortunately, existing scheduling strategy for multimedia service in the cloud computing environment do not integrate trust mechanism when making scheduling decisions. In this paper, we propose a scheduling scheme for multimedia services in multi clouds. At first, a novel scheduling architecture is presented. Then, We build a trust model including both subjective trust and objective trust to evaluate the trust degree of multimedia service providers. By employing Bayesian theory, the subjective trust degree between multimedia service providers and users is obtained. According to the attributes of QoS, the objective trust degree of multimedia service providers is calculated. Finally, a scheduling algorithm integrating trust of entities is proposed by considering the deadline, cost and trust requirements of multimedia services. The scheduling algorithm heuristically hunts for reasonable resource allocations and satisfies the requirement of trust and meets deadlines for the multimedia services. Detailed simulated experiments demonstrate the effectiveness and feasibility of the proposed trust scheduling scheme.
Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing
NASA Astrophysics Data System (ADS)
Klems, Markus; Nimis, Jens; Tai, Stefan
On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.
Cloud motion in relation to the ambient wind field
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Scoggins, J. R.
1975-01-01
Trajectories of convective clouds were computed from a mathematical model and compared with trajectories observed by radar. The ambient wind field was determined from the AVE IIP data. The model includes gradient, coriolis, drag, lift, and lateral forces. The results show that rotational effects may account for large differences between the computed and observed trajectories and that convective clouds may move 10 to 20 degrees to the right or left of the average wind vector and at speeds 5 to 10 m/sec faster or slower than the average ambient wind speed.
76 FR 34650 - Announcing a Meeting of the Information Security and Privacy Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... The agenda is expected to include the following items: --Cloud Security and Privacy Panel discussion on addressing security and privacy for different types of cloud computing, --Presentation from...
Cloud Computing and Its Applications in GIS
NASA Astrophysics Data System (ADS)
Kang, Cao
2011-12-01
Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)
IBM Cloud Computing Powering a Smarter Planet
NASA Astrophysics Data System (ADS)
Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu
With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj
2016-04-01
Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.
Cloud Computing Security Issue: Survey
NASA Astrophysics Data System (ADS)
Kamal, Shailza; Kaur, Rajpreet
2011-12-01
Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.
T-Check in System-of-Systems Technologies: Cloud Computing
2010-09-01
T-Check in System-of-Systems Technologies: Cloud Computing Harrison D. Strowd Grace A. Lewis September 2010 TECHNICAL NOTE CMU/SEI-2010... Cloud Computing 1 1.2 Types of Cloud Computing 2 1.3 Drivers and Barriers to Cloud Computing Adoption 5 2 Using the T-Check Method 7 2.1 T-Check...Hypothesis 3 25 3.4.2 Deployment View of the Solution for Testing Hypothesis 3 27 3.5 Selecting Cloud Computing Providers 30 3.6 Implementing the T-Check
2010-07-01
Cloud computing , an emerging form of computing in which users have access to scalable, on-demand capabilities that are provided through Internet... cloud computing , (2) the information security implications of using cloud computing services in the Federal Government, and (3) federal guidance and...efforts to address information security when using cloud computing . The complete report is titled Information Security: Federal Guidance Needed to
Are Cloud Environments Ready for Scientific Applications?
NASA Astrophysics Data System (ADS)
Mehrotra, P.; Shackleford, K.
2011-12-01
Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.
Evaluation of wind field statistics near and inside clouds using a coherent Doppler lidar
NASA Astrophysics Data System (ADS)
Lottman, Brian Todd
1998-09-01
This work proposes advanced techniques for measuring the spatial wind field statistics near and inside clouds using a vertically pointing solid state coherent Doppler lidar on a fixed ground based platform. The coherent Doppler lidar is an ideal instrument for high spatial and temporal resolution velocity estimates. The basic parameters of lidar are discussed, including a complete statistical description of the Doppler lidar signal. This description is extended to cases with simple functional forms for aerosol backscatter and velocity. An estimate for the mean velocity over a sensing volume is produced by estimating the mean spectra. There are many traditional spectral estimators, which are useful for conditions with slowly varying velocity and backscatter. A new class of estimators (novel) is introduced that produces reliable velocity estimates for conditions with large variations in aerosol backscatter and velocity with range, such as cloud conditions. Performance of traditional and novel estimators is computed for a variety of deterministic atmospheric conditions using computer simulated data. Wind field statistics are produced for actual data for a cloud deck, and for multi- layer clouds. Unique results include detection of possible spectral signatures for rain, estimates for the structure function inside a cloud deck, reliable velocity estimation techniques near and inside thin clouds, and estimates for simple wind field statistics between cloud layers.
Grids, virtualization, and clouds at Fermilab
Timm, S.; Chadwick, K.; Garzoglio, G.; ...
2014-06-11
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less
Grids, virtualization, and clouds at Fermilab
NASA Astrophysics Data System (ADS)
Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.
2014-06-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.
Cloud Compute for Global Climate Station Summaries
NASA Astrophysics Data System (ADS)
Baldwin, R.; May, B.; Cogbill, P.
2017-12-01
Global Climate Station Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically are statistical analyses of station data over 5-, 10-, 20-, 30-year or longer time periods. The summaries are computed from the global surface hourly dataset. This dataset totaling over 500 gigabytes is comprised of 40 different types of weather observations with 20,000 stations worldwide. NCEI and the U.S. Navy developed these value added products in the form of hourly summaries from many of these observations. Enabling this compute functionality in the cloud is the focus of the project. An overview of approach and challenges associated with application transition to the cloud will be presented.
Risk in the Clouds?: Security Issues Facing Government Use of Cloud Computing
NASA Astrophysics Data System (ADS)
Wyld, David C.
Cloud computing is poised to become one of the most important and fundamental shifts in how computing is consumed and used. Forecasts show that government will play a lead role in adopting cloud computing - for data storage, applications, and processing power, as IT executives seek to maximize their returns on limited procurement budgets in these challenging economic times. After an overview of the cloud computing concept, this article explores the security issues facing public sector use of cloud computing and looks to the risk and benefits of shifting to cloud-based models. It concludes with an analysis of the challenges that lie ahead for government use of cloud resources.
A Review Study on Cloud Computing Issues
NASA Astrophysics Data System (ADS)
Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti
2018-05-01
Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.
Feeney, James M; Montgomery, Stephanie C; Wolf, Laura; Jayaraman, Vijay; Twohig, Michael
2016-09-01
Among transferred trauma patients, challenges with the transfer of radiographic studies include problems loading or viewing the studies at the receiving hospitals, and problems manipulating, reconstructing, or evalu- ating the transferred images. Cloud-based image transfer systems may address some ofthese problems. We reviewed the charts of patients trans- ferred during one year surrounding the adoption of a cloud computing data transfer system. We compared the rates of repeat imaging before (precloud) and af- ter (postcloud) the adoption of the cloud-based data transfer system. During the precloud period, 28 out of 100 patients required 90 repeat studies. With the cloud computing transfer system in place, three out of 134 patients required seven repeat films. There was a statistically significant decrease in the proportion of patients requiring repeat films (28% to 2.2%, P < .0001). Based on an annualized volume of 200 trauma patient transfers, the cost savings estimated using three methods of cost analysis, is between $30,272 and $192,453.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
...--Intersection of Cloud Computing and Mobility Forum and Workshop AGENCY: National Institute of Standards and.../intersection-of-cloud-and-mobility.cfm . SUPPLEMENTARY INFORMATION: NIST hosted six prior Cloud Computing Forum... interoperability, portability, and security, discuss the Federal Government's experience with cloud computing...
Embracing the Cloud: Six Ways to Look at the Shift to Cloud Computing
ERIC Educational Resources Information Center
Ullman, David F.; Haggerty, Blake
2010-01-01
Cloud computing is the latest paradigm shift for the delivery of IT services. Where previous paradigms (centralized, decentralized, distributed) were based on fairly straightforward approaches to technology and its management, cloud computing is radical in comparison. The literature on cloud computing, however, suffers from many divergent…
The Research of the Parallel Computing Development from the Angle of Cloud Computing
NASA Astrophysics Data System (ADS)
Peng, Zhensheng; Gong, Qingge; Duan, Yanyu; Wang, Yun
2017-10-01
Cloud computing is the development of parallel computing, distributed computing and grid computing. The development of cloud computing makes parallel computing come into people’s lives. Firstly, this paper expounds the concept of cloud computing and introduces two several traditional parallel programming model. Secondly, it analyzes and studies the principles, advantages and disadvantages of OpenMP, MPI and Map Reduce respectively. Finally, it takes MPI, OpenMP models compared to Map Reduce from the angle of cloud computing. The results of this paper are intended to provide a reference for the development of parallel computing.
A microphysical parameterization of aqSOA and sulfate formation in clouds
NASA Astrophysics Data System (ADS)
McVay, Renee; Ervens, Barbara
2017-07-01
Sulfate and secondary organic aerosol (cloud aqSOA) can be chemically formed in cloud water. Model implementation of these processes represents a computational burden due to the large number of microphysical and chemical parameters. Chemical mechanisms have been condensed by reducing the number of chemical parameters. Here an alternative is presented to reduce the number of microphysical parameters (number of cloud droplet size classes). In-cloud mass formation is surface and volume dependent due to surface-limited oxidant uptake and/or size-dependent pH. Box and parcel model simulations show that using the effective cloud droplet diameter (proportional to total volume-to-surface ratio) reproduces sulfate and aqSOA formation rates within ≤30% as compared to full droplet distributions; other single diameters lead to much greater deviations. This single-class approach reduces computing time significantly and can be included in models when total liquid water content and effective diameter are available.
Integration of hybrid wireless networks in cloud services oriented enterprise information systems
NASA Astrophysics Data System (ADS)
Li, Shancang; Xu, Lida; Wang, Xinheng; Wang, Jue
2012-05-01
This article presents a hybrid wireless network integration scheme in cloud services-based enterprise information systems (EISs). With the emerging hybrid wireless networks and cloud computing technologies, it is necessary to develop a scheme that can seamlessly integrate these new technologies into existing EISs. By combining the hybrid wireless networks and computing in EIS, a new framework is proposed, which includes frontend layer, middle layer and backend layers connected to IP EISs. Based on a collaborative architecture, cloud services management framework and process diagram are presented. As a key feature, the proposed approach integrates access control functionalities within the hybrid framework that provide users with filtered views on available cloud services based on cloud service access requirements and user security credentials. In future work, we will implement the proposed framework over SwanMesh platform by integrating the UPnP standard into an enterprise information system.
Archive Management of NASA Earth Observation Data to Support Cloud Analysis
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark A.
2017-01-01
NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly.
A Novel College Network Resource Management Method using Cloud Computing
NASA Astrophysics Data System (ADS)
Lin, Chen
At present information construction of college mainly has construction of college networks and management information system; there are many problems during the process of information. Cloud computing is development of distributed processing, parallel processing and grid computing, which make data stored on the cloud, make software and services placed in the cloud and build on top of various standards and protocols, you can get it through all kinds of equipments. This article introduces cloud computing and function of cloud computing, then analyzes the exiting problems of college network resource management, the cloud computing technology and methods are applied in the construction of college information sharing platform.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing.
Cole, Brian S; Moore, Jason H
2018-03-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing
Moore, Jason H.
2018-01-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416
NASA Astrophysics Data System (ADS)
Dong, Yumin; Xiao, Shufen; Ma, Hongyang; Chen, Libo
2016-12-01
Cloud computing and big data have become the developing engine of current information technology (IT) as a result of the rapid development of IT. However, security protection has become increasingly important for cloud computing and big data, and has become a problem that must be solved to develop cloud computing. The theft of identity authentication information remains a serious threat to the security of cloud computing. In this process, attackers intrude into cloud computing services through identity authentication information, thereby threatening the security of data from multiple perspectives. Therefore, this study proposes a model for cloud computing protection and management based on quantum authentication, introduces the principle of quantum authentication, and deduces the quantum authentication process. In theory, quantum authentication technology can be applied in cloud computing for security protection. This technology cannot be cloned; thus, it is more secure and reliable than classical methods.
Costs of cloud computing for a biometry department. A case study.
Knaus, J; Hieke, S; Binder, H; Schwarzer, G
2013-01-01
"Cloud" computing providers, such as the Amazon Web Services (AWS), offer stable and scalable computational resources based on hardware virtualization, with short, usually hourly, billing periods. The idea of pay-as-you-use seems appealing for biometry research units which have only limited access to university or corporate data center resources or grids. This case study compares the costs of an existing heterogeneous on-site hardware pool in a Medical Biometry and Statistics department to a comparable AWS offer. The "total cost of ownership", including all direct costs, is determined for the on-site hardware, and hourly prices are derived, based on actual system utilization during the year 2011. Indirect costs, which are difficult to quantify are not included in this comparison, but nevertheless some rough guidance from our experience is given. To indicate the scale of costs for a methodological research project, a simulation study of a permutation-based statistical approach is performed using AWS and on-site hardware. In the presented case, with a system utilization of 25-30 percent and 3-5-year amortization, on-site hardware can result in smaller costs, compared to hourly rental in the cloud dependent on the instance chosen. Renting cloud instances with sufficient main memory is a deciding factor in this comparison. Costs for on-site hardware may vary, depending on the specific infrastructure at a research unit, but have only moderate impact on the overall comparison and subsequent decision for obtaining affordable scientific computing resources. Overall utilization has a much stronger impact as it determines the actual computing hours needed per year. Taking this into ac count, cloud computing might still be a viable option for projects with limited maturity, or as a supplement for short peaks in demand.
Key Lessons in Building "Data Commons": The Open Science Data Cloud Ecosystem
NASA Astrophysics Data System (ADS)
Patterson, M.; Grossman, R.; Heath, A.; Murphy, M.; Wells, W.
2015-12-01
Cloud computing technology has created a shift around data and data analysis by allowing researchers to push computation to data as opposed to having to pull data to an individual researcher's computer. Subsequently, cloud-based resources can provide unique opportunities to capture computing environments used both to access raw data in its original form and also to create analysis products which may be the source of data for tables and figures presented in research publications. Since 2008, the Open Cloud Consortium (OCC) has operated the Open Science Data Cloud (OSDC), which provides scientific researchers with computational resources for storing, sharing, and analyzing large (terabyte and petabyte-scale) scientific datasets. OSDC has provided compute and storage services to over 750 researchers in a wide variety of data intensive disciplines. Recently, internal users have logged about 2 million core hours each month. The OSDC also serves the research community by colocating these resources with access to nearly a petabyte of public scientific datasets in a variety of fields also accessible for download externally by the public. In our experience operating these resources, researchers are well served by "data commons," meaning cyberinfrastructure that colocates data archives, computing, and storage infrastructure and supports essential tools and services for working with scientific data. In addition to the OSDC public data commons, the OCC operates a data commons in collaboration with NASA and is developing a data commons for NOAA datasets. As cloud-based infrastructures for distributing and computing over data become more pervasive, we ask, "What does it mean to publish data in a data commons?" Here we present the OSDC perspective and discuss several services that are key in architecting data commons, including digital identifier services.
Two-Cloud-Servers-Assisted Secure Outsourcing Multiparty Computation
Wen, Qiaoyan; Zhang, Hua; Jin, Zhengping; Li, Wenmin
2014-01-01
We focus on how to securely outsource computation task to the cloud and propose a secure outsourcing multiparty computation protocol on lattice-based encrypted data in two-cloud-servers scenario. Our main idea is to transform the outsourced data respectively encrypted by different users' public keys to the ones that are encrypted by the same two private keys of the two assisted servers so that it is feasible to operate on the transformed ciphertexts to compute an encrypted result following the function to be computed. In order to keep the privacy of the result, the two servers cooperatively produce a custom-made result for each user that is authorized to get the result so that all authorized users can recover the desired result while other unauthorized ones including the two servers cannot. Compared with previous research, our protocol is completely noninteractive between any users, and both of the computation and the communication complexities of each user in our solution are independent of the computing function. PMID:24982949
Two-cloud-servers-assisted secure outsourcing multiparty computation.
Sun, Yi; Wen, Qiaoyan; Zhang, Yudong; Zhang, Hua; Jin, Zhengping; Li, Wenmin
2014-01-01
We focus on how to securely outsource computation task to the cloud and propose a secure outsourcing multiparty computation protocol on lattice-based encrypted data in two-cloud-servers scenario. Our main idea is to transform the outsourced data respectively encrypted by different users' public keys to the ones that are encrypted by the same two private keys of the two assisted servers so that it is feasible to operate on the transformed ciphertexts to compute an encrypted result following the function to be computed. In order to keep the privacy of the result, the two servers cooperatively produce a custom-made result for each user that is authorized to get the result so that all authorized users can recover the desired result while other unauthorized ones including the two servers cannot. Compared with previous research, our protocol is completely noninteractive between any users, and both of the computation and the communication complexities of each user in our solution are independent of the computing function.
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
Polyphony: A Workflow Orchestration Framework for Cloud Computing
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom
2010-01-01
Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan.
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services. PMID:28112020
Implementation of cloud computing in higher education
NASA Astrophysics Data System (ADS)
Asniar; Budiawan, R.
2016-04-01
Cloud computing research is a new trend in distributed computing, where people have developed service and SOA (Service Oriented Architecture) based application. This technology is very useful to be implemented, especially for higher education. This research is studied the need and feasibility for the suitability of cloud computing in higher education then propose the model of cloud computing service in higher education in Indonesia that can be implemented in order to support academic activities. Literature study is used as the research methodology to get a proposed model of cloud computing in higher education. Finally, SaaS and IaaS are cloud computing service that proposed to be implemented in higher education in Indonesia and cloud hybrid is the service model that can be recommended.
Research on Key Technologies of Cloud Computing
NASA Astrophysics Data System (ADS)
Zhang, Shufen; Yan, Hongcan; Chen, Xuebin
With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.
The Many Colors and Shapes of Cloud
NASA Astrophysics Data System (ADS)
Yeh, James T.
While many enterprises and business entities are deploying and exploiting Cloud Computing, the academic institutes and researchers are also busy trying to wrestle this beast and put a leash on this possible paradigm changing computing model. Many have argued that Cloud Computing is nothing more than a name change of Utility Computing. Others have argued that Cloud Computing is a revolutionary change of the computing architecture. So it has been difficult to put a boundary of what is in Cloud Computing, and what is not. I assert that it is equally difficult to find a group of people who would agree on even the definition of Cloud Computing. In actuality, may be all that arguments are not necessary, as Clouds have many shapes and colors. In this presentation, the speaker will attempt to illustrate that the shape and the color of the cloud depend very much on the business goals one intends to achieve. It will be a very rich territory for both the businesses to take the advantage of the benefits of Cloud Computing and the academia to integrate the technology research and business research.
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration
2014-06-01
The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.
NASA Astrophysics Data System (ADS)
Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.
2017-12-01
In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.
The Education Value of Cloud Computing
ERIC Educational Resources Information Center
Katzan, Harry, Jr.
2010-01-01
Cloud computing is a technique for supplying computer facilities and providing access to software via the Internet. Cloud computing represents a contextual shift in how computers are provisioned and accessed. One of the defining characteristics of cloud software service is the transfer of control from the client domain to the service provider.…
Cloud Computing. Technology Briefing. Number 1
ERIC Educational Resources Information Center
Alberta Education, 2013
2013-01-01
Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…
Can cloud computing benefit health services? - a SWOT analysis.
Kuo, Mu-Hsing; Kushniruk, Andre; Borycki, Elizabeth
2011-01-01
In this paper, we discuss cloud computing, the current state of cloud computing in healthcare, and the challenges and opportunities of adopting cloud computing in healthcare. A Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis was used to evaluate the feasibility of adopting this computing model in healthcare. The paper concludes that cloud computing could have huge benefits for healthcare but there are a number of issues that will need to be addressed before its widespread use in healthcare.
State of the Art of Network Security Perspectives in Cloud Computing
NASA Astrophysics Data System (ADS)
Oh, Tae Hwan; Lim, Shinyoung; Choi, Young B.; Park, Kwang-Roh; Lee, Heejo; Choi, Hyunsang
Cloud computing is now regarded as one of social phenomenon that satisfy customers' needs. It is possible that the customers' needs and the primary principle of economy - gain maximum benefits from minimum investment - reflects realization of cloud computing. We are living in the connected society with flood of information and without connected computers to the Internet, our activities and work of daily living will be impossible. Cloud computing is able to provide customers with custom-tailored features of application software and user's environment based on the customer's needs by adopting on-demand outsourcing of computing resources through the Internet. It also provides cloud computing users with high-end computing power and expensive application software package, and accordingly the users will access their data and the application software where they are located at the remote system. As the cloud computing system is connected to the Internet, network security issues of cloud computing are considered as mandatory prior to real world service. In this paper, survey and issues on the network security in cloud computing are discussed from the perspective of real world service environments.
Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing
NASA Astrophysics Data System (ADS)
Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey
Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.
If It's in the Cloud, Get It on Paper: Cloud Computing Contract Issues
ERIC Educational Resources Information Center
Trappler, Thomas J.
2010-01-01
Much recent discussion has focused on the pros and cons of cloud computing. Some institutions are attracted to cloud computing benefits such as rapid deployment, flexible scalability, and low initial start-up cost, while others are concerned about cloud computing risks such as those related to data location, level of service, and security…
Cloud computing method for dynamically scaling a process across physical machine boundaries
Gillen, Robert E.; Patton, Robert M.; Potok, Thomas E.; Rojas, Carlos C.
2014-09-02
A cloud computing platform includes first device having a graph or tree structure with a node which receives data. The data is processed by the node or communicated to a child node for processing. A first node in the graph or tree structure determines the reconfiguration of a portion of the graph or tree structure on a second device. The reconfiguration may include moving a second node and some or all of its descendant nodes. The second and descendant nodes may be copied to the second device.
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
Enhancing Security by System-Level Virtualization in Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei
Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.
Smart learning services based on smart cloud computing.
Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik
2011-01-01
Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.
Smart Learning Services Based on Smart Cloud Computing
Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik
2011-01-01
Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048
Military clouds: utilization of cloud computing systems at the battlefield
NASA Astrophysics Data System (ADS)
Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai
2012-05-01
Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.
NASA Astrophysics Data System (ADS)
Aneri, Parikh; Sumathy, S.
2017-11-01
Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.
Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-01-01
Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313
Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-06-01
Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.
Identity-Based Authentication for Cloud Computing
NASA Astrophysics Data System (ADS)
Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao
Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.
Cloud Based Educational Systems and Its Challenges and Opportunities and Issues
ERIC Educational Resources Information Center
Paul, Prantosh Kr.; Lata Dangwal, Kiran
2014-01-01
Cloud Computing (CC) is actually is a set of hardware, software, networks, storage, services an interface combines to deliver aspects of computing as a service. Cloud Computing (CC) actually uses the central remote servers to maintain data and applications. Practically Cloud Computing (CC) is extension of Grid computing with independency and…
A scoping review of cloud computing in healthcare.
Griebel, Lena; Prokosch, Hans-Ulrich; Köpcke, Felix; Toddenroth, Dennis; Christoph, Jan; Leb, Ines; Engel, Igor; Sedlmayr, Martin
2015-03-19
Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain. MEDLINE was searched in July 2013 and in December 2014 for publications containing the terms "cloud computing" and "cloud-based". Each journal and conference article was categorized and summarized independently by two researchers who consolidated their findings. 102 publications have been analyzed and 6 main topics have been found: telemedicine/teleconsultation, medical imaging, public health and patient self-management, hospital management and information systems, therapy, and secondary use of data. Commonly used features are broad network access for sharing and accessing data and rapid elasticity to dynamically adapt to computing demands. Eight articles favor the pay-for-use characteristics of cloud-based services avoiding upfront investments. Nevertheless, while 22 articles present very general potentials of cloud computing in the medical domain and 66 articles describe conceptual or prototypic projects, only 14 articles report from successful implementations. Further, in many articles cloud computing is seen as an analogy to internet-/web-based data sharing and the characteristics of the particular cloud computing approach are unfortunately not really illustrated. Even though cloud computing in healthcare is of growing interest only few successful implementations yet exist and many papers just use the term "cloud" synonymously for "using virtual machines" or "web-based" with no described benefit of the cloud paradigm. The biggest threat to the adoption in the healthcare domain is caused by involving external cloud partners: many issues of data safety and security are still to be solved. Until then, cloud computing is favored more for singular, individual features such as elasticity, pay-per-use and broad network access, rather than as cloud paradigm on its own.
Modeling the Cloud to Enhance Capabilities for Crises and Catastrophe Management
2016-11-16
order for cloud computing infrastructures to be successfully deployed in real world scenarios as tools for crisis and catastrophe management, where...Statement of the Problem Studied As cloud computing becomes the dominant computational infrastructure[1] and cloud technologies make a transition to hosting...1. Formulate rigorous mathematical models representing technological capabilities and resources in cloud computing for performance modeling and
Automating NEURON Simulation Deployment in Cloud Resources.
Stockton, David B; Santamaria, Fidel
2017-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.
Automating NEURON Simulation Deployment in Cloud Resources
Santamaria, Fidel
2016-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341
Homomorphic encryption experiments on IBM's cloud quantum computing platform
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud
ERIC Educational Resources Information Center
Wang, Minjuan; Chen, Yong; Khan, Muhammad Jahanzaib
2014-01-01
Mobile cloud learning, a combination of mobile learning and cloud computing, is a relatively new concept that holds considerable promise for future development and delivery in the education sectors. Cloud computing helps mobile learning overcome obstacles related to mobile computing. The main focus of this paper is to explore how cloud computing…
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
Cloud Service Selection Using Multicriteria Decision Analysis
Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Israat Tanzeena
2014-01-01
Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios. PMID:24696645
Cloud service selection using multicriteria decision analysis.
Whaiduzzaman, Md; Gani, Abdullah; Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Mohammad Nazmul; Haque, Israat Tanzeena
2014-01-01
Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.
Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.
Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P
2010-12-22
Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.
NASA Technical Reports Server (NTRS)
Dumbauld, R. K.; Bjorklund, J. R.; Bowers, J. F.
1973-01-01
The NASA/MSFC multilayer diffusion models are discribed which are used in applying meteorological information to the estimation of toxic fuel hazards resulting from the launch of rocket vehicle and from accidental cold spills and leaks of toxic fuels. Background information, definitions of terms, description of the multilayer concept are presented along with formulas for determining the buoyant rise of hot exhaust clouds or plumes from conflagrations, and descriptions of the multilayer diffusion models. A brief description of the computer program is given, and sample problems and their solutions are included. Derivations of the cloud rise formulas, users instructions, and computer program output lists are also included.
ATLAS user analysis on private cloud resources at GoeGrid
NASA Astrophysics Data System (ADS)
Glaser, F.; Nadal Serrano, J.; Grabowski, J.; Quadt, A.
2015-12-01
User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.
75 FR 64258 - Cloud Computing Forum & Workshop II
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop II to be held on November 4 and 5, 2010. This workshop will provide information on a Cloud Computing Roadmap Strategy as well as provide...
76 FR 62373 - Notice of Public Meeting-Cloud Computing Forum & Workshop IV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...--Cloud Computing Forum & Workshop IV AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop IV to be held on... to help develop open standards in interoperability, portability and security in cloud computing. This...
Project #OA-FY14-0126, January 15, 2014. The EPA OIG is starting fieldwork on the Council of the Inspectors General on Integrity and Efficiency (CIGIE) Cloud Computing Initiative – Status of Cloud-Computing Environments Within the Federal Government.
Intelligent cloud computing security using genetic algorithm as a computational tools
NASA Astrophysics Data System (ADS)
Razuky AL-Shaikhly, Mazin H.
2018-05-01
An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.
WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K; Kagadis, G; Xing, L
As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set againstmore » new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.« less
Cloud Computing with iPlant Atmosphere.
McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos
2013-10-15
Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.
Energy Consumption Management of Virtual Cloud Computing Platform
NASA Astrophysics Data System (ADS)
Li, Lin
2017-11-01
For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.
Cloud-free resolution element statistics program
NASA Technical Reports Server (NTRS)
Liley, B.; Martin, C. D.
1971-01-01
Computer program computes number of cloud-free elements in field-of-view and percentage of total field-of-view occupied by clouds. Human error is eliminated by using visual estimation to compute cloud statistics from aerial photographs.
Research on Influence of Cloud Environment on Traditional Network Security
NASA Astrophysics Data System (ADS)
Ming, Xiaobo; Guo, Jinhua
2018-02-01
Cloud computing is a symbol of the progress of modern information network, cloud computing provides a lot of convenience to the Internet users, but it also brings a lot of risk to the Internet users. Second, one of the main reasons for Internet users to choose cloud computing is that the network security performance is great, it also is the cornerstone of cloud computing applications. This paper briefly explores the impact on cloud environment on traditional cybersecurity, and puts forward corresponding solutions.
77 FR 26509 - Notice of Public Meeting-Cloud Computing Forum & Workshop V
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
...--Cloud Computing Forum & Workshop V AGENCY: National Institute of Standards & Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop V to be held on Tuesday... workshop. This workshop will provide information on the U.S. Government (USG) Cloud Computing Technology...
Cloud computing: a new business paradigm for biomedical information sharing.
Rosenthal, Arnon; Mork, Peter; Li, Maya Hao; Stanford, Jean; Koester, David; Reynolds, Patti
2010-04-01
We examine how the biomedical informatics (BMI) community, especially consortia that share data and applications, can take advantage of a new resource called "cloud computing". Clouds generally offer resources on demand. In most clouds, charges are pay per use, based on large farms of inexpensive, dedicated servers, sometimes supporting parallel computing. Substantial economies of scale potentially yield costs much lower than dedicated laboratory systems or even institutional data centers. Overall, even with conservative assumptions, for applications that are not I/O intensive and do not demand a fully mature environment, the numbers suggested that clouds can sometimes provide major improvements, and should be seriously considered for BMI. Methodologically, it was very advantageous to formulate analyses in terms of component technologies; focusing on these specifics enabled us to bypass the cacophony of alternative definitions (e.g., exactly what does a cloud include) and to analyze alternatives that employ some of the component technologies (e.g., an institution's data center). Relative analyses were another great simplifier. Rather than listing the absolute strengths and weaknesses of cloud-based systems (e.g., for security or data preservation), we focus on the changes from a particular starting point, e.g., individual lab systems. We often find a rough parity (in principle), but one needs to examine individual acquisitions--is a loosely managed lab moving to a well managed cloud, or a tightly managed hospital data center moving to a poorly safeguarded cloud? 2009 Elsevier Inc. All rights reserved.
National electronic medical records integration on cloud computing system.
Mirza, Hebah; El-Masri, Samir
2013-01-01
Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.
Software Reuse Methods to Improve Technological Infrastructure for e-Science
NASA Technical Reports Server (NTRS)
Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.
2011-01-01
Social computing has the potential to contribute to scientific research. Ongoing developments in information and communications technology improve capabilities for enabling scientific research, including research fostered by social computing capabilities. The recent emergence of e-Science practices has demonstrated the benefits from improvements in the technological infrastructure, or cyber-infrastructure, that has been developed to support science. Cloud computing is one example of this e-Science trend. Our own work in the area of software reuse offers methods that can be used to improve new technological development, including cloud computing capabilities, to support scientific research practices. In this paper, we focus on software reuse and its potential to contribute to the development and evaluation of information systems and related services designed to support new capabilities for conducting scientific research.
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
Research on OpenStack of open source cloud computing in colleges and universities’ computer room
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhang, Dandan
2017-06-01
In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers’ perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers’ legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients’ control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale. PMID:27755563
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers' perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers' legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients' control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale.
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
Cloudbus Toolkit for Market-Oriented Cloud Computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian
This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.
Extension of four-dimensional atmospheric models. [and cloud cover data bank
NASA Technical Reports Server (NTRS)
Fowler, M. G.; Lisa, A. S.; Tung, S. L.
1975-01-01
The cloud data bank, the 4-D atmospheric model, and a set of computer programs designed to simulate meteorological conditions for any location above the earth are described in turns of space vehicle design and simulation of vehicle reentry trajectories. Topics discussed include: the relationship between satellite and surface observed cloud cover using LANDSAT 1 photographs and including the effects of cloud shadows; extension of the 4-D model to the altitude of 52 km; and addition of the u and v wind components to the 4-D model of means and variances at 1 km levels from the surface to 25 km. Results of the cloud cover analysis are presented along with the stratospheric model and the tropospheric wind profiles.
The diverse use of clouds by CMS
Andronis, Anastasios; Bauer, Daniela; Chaze, Olivier; ...
2015-12-23
The resources CMS is using are increasingly being offered as clouds. In Run 2 of the LHC the majority of CMS CERN resources, both in Meyrin and at the Wigner Computing Centre, will be presented as cloud resources on which CMS will have to build its own infrastructure. This infrastructure will need to run all of the CMS workflows including: Tier 0, production and user analysis. In addition, the CMS High Level Trigger will provide a compute resource comparable in scale to the total offered by the CMS Tier 1 sites, when it is not running as part of themore » trigger system. During these periods a cloud infrastructure will be overlaid on this resource, making it accessible for general CMS use. Finally, CMS is starting to utilise cloud resources being offered by individual institutes and is gaining experience to facilitate the use of opportunistically available cloud resources. Lastly, we present a snap shot of this infrastructure and its operation at the time of the CHEP2015 conference.« less
NASA Astrophysics Data System (ADS)
Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati
2012-01-01
Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.
Archive Management of NASA Earth Observation Data to Support Cloud Analysis
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Baynes, Kathleen; McInerney, Mark
2017-01-01
NASA collects, processes and distributes petabytes of Earth Observation (EO) data from satellites, aircraft, in situ instruments and model output, with an order of magnitude increase expected by 2024. Cloud-based web object storage (WOS) of these data can simplify the execution of such an increase. More importantly, it can also facilitate user analysis of those volumes by making the data available to the massively parallel computing power in the cloud. However, storing EO data in cloud WOS has a ripple effect throughout the NASA archive system with unexpected challenges and opportunities. One challenge is modifying data servicing software (such as Web Coverage Service servers) to access and subset data that are no longer on a directly accessible file system, but rather in cloud WOS. Opportunities include refactoring of the archive software to a cloud-native architecture; virtualizing data products by computing on demand; and reorganizing data to be more analysis-friendly. Reviewed by Mark McInerney ESDIS Deputy Project Manager.
Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.
2015-01-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363
Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L
2015-02-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Thayer-Calder, K.; Gettelman, A.; Craig, C.; ...
2015-06-30
Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme.This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
Thayer-Calder, Katherine; Gettelman, A.; Craig, Cheryl; ...
2015-12-01
Most global climate models parameterize separate cloud types using separate parameterizations.This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into a microphysicsmore » scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. In conclusion, the new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, perceptible water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less
An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Little, M. M.
2013-12-01
NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.
ERIC Educational Resources Information Center
Kaestner, Rich
2012-01-01
Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…
Cloud Computing in Higher Education Sector for Sustainable Development
ERIC Educational Resources Information Center
Duan, Yuchao
2016-01-01
Cloud computing is considered a new frontier in the field of computing, as this technology comprises three major entities namely: software, hardware and network. The collective nature of all these entities is known as the Cloud. This research aims to examine the impacts of various aspects namely: cloud computing, sustainability, performance…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...
Reviews on Security Issues and Challenges in Cloud Computing
NASA Astrophysics Data System (ADS)
An, Y. Z.; Zaaba, Z. F.; Samsudin, N. F.
2016-11-01
Cloud computing is an Internet-based computing service provided by the third party allowing share of resources and data among devices. It is widely used in many organizations nowadays and becoming more popular because it changes the way of how the Information Technology (IT) of an organization is organized and managed. It provides lots of benefits such as simplicity and lower costs, almost unlimited storage, least maintenance, easy utilization, backup and recovery, continuous availability, quality of service, automated software integration, scalability, flexibility and reliability, easy access to information, elasticity, quick deployment and lower barrier to entry. While there is increasing use of cloud computing service in this new era, the security issues of the cloud computing become a challenges. Cloud computing must be safe and secure enough to ensure the privacy of the users. This paper firstly lists out the architecture of the cloud computing, then discuss the most common security issues of using cloud and some solutions to the security issues since security is one of the most critical aspect in cloud computing due to the sensitivity of user's data.
NASA Technical Reports Server (NTRS)
Endlich, R. M.; Wolf, D. E.
1980-01-01
The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).
Cloudbursting - Solving the 3-body problem
NASA Astrophysics Data System (ADS)
Chang, G.; Heistand, S.; Vakhnin, A.; Huang, T.; Zimdars, P.; Hua, H.; Hood, R.; Koenig, J.; Mehrotra, P.; Little, M. M.; Law, E.
2014-12-01
Many science projects in the future will be accomplished through collaboration among 2 or more NASA centers along with, potentially, external scientists. Science teams will be composed of more geographically dispersed individuals and groups. However, the current computing environment does not make this easy and seamless. By being able to share computing resources among members of a multi-center team working on a science/ engineering project, limited pre-competition funds could be more efficiently applied and technical work could be conducted more effectively with less time spent moving data or waiting for computing resources to free up. Based on the work from an NASA CIO IT Labs task, this presentation will highlight our prototype work in identifying the feasibility and identify the obstacles, both technical and management, to perform "Cloudbursting" among private clouds located at three different centers. We will demonstrate the use of private cloud computing infrastructure at the Jet Propulsion Laboratory, Langley Research Center, and Ames Research Center to provide elastic computation to each other to perform parallel Earth Science data imaging. We leverage elastic load balancing and auto-scaling features at each data center so that each location can independently define how many resources to allocate to a particular job that was "bursted" from another data center and demonstrate that compute capacity scales up and down with the job. We will also discuss future work in the area, which could include the use of cloud infrastructure from different cloud framework providers as well as other cloud service providers.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Liou, Kuo-Nan; Takano, Yoshihide
1993-01-01
The impact of using phase functions for spherical droplets and hexagonal ice crystals to analyze radiances from cirrus is examined. Adding-doubling radiative transfer calculations are employed to compute radiances for different cloud thicknesses and heights over various backgrounds. These radiances are used to develop parameterizations of top-of-the-atmosphere visible reflectance and IR emittance using tables of reflectances as a function of cloud optical depth, viewing and illumination angles, and microphysics. This parameterization, which includes Rayleigh scattering, ozone absorption, variable cloud height, and an anisotropic surface reflectance, reproduces the computed top-of-the-atmosphere reflectances with an accruacy of +/- 6 percent for four microphysical models: 10-micron water droplet, small symmetric crystal, cirrostratus, and cirrus uncinus. The accuracy is twice that of previous models.
A Comprehensive Review of Existing Risk Assessment Models in Cloud Computing
NASA Astrophysics Data System (ADS)
Amini, Ahmad; Jamil, Norziana
2018-05-01
Cloud computing is a popular paradigm in information technology and computing as it offers numerous advantages in terms of economical saving and minimal management effort. Although elasticity and flexibility brings tremendous benefits, it still raises many information security issues due to its unique characteristic that allows ubiquitous computing. Therefore, the vulnerabilities and threats in cloud computing have to be identified and proper risk assessment mechanism has to be in place for better cloud computing management. Various quantitative and qualitative risk assessment models have been proposed but up to our knowledge, none of them is suitable for cloud computing environment. This paper, we compare and analyse the strengths and weaknesses of existing risk assessment models. We then propose a new risk assessment model that sufficiently address all the characteristics of cloud computing, which was not appeared in the existing models.
Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets
Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L
2014-01-01
Background As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Methods Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Results Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Conclusions Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. PMID:24464852
Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems
2012-01-31
2012 UNCLASSIFIED 1 of 58 Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems A Report to the U.S. Department...2.1.7 Engineering of Computational Behavior .............................................................18 2.2 How the Cloud Will Impact Systems...58 Executive Summary This report discusses the impact of cloud computing and the broader revolution in computing on systems, on the disciplines of
Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud
NASA Astrophysics Data System (ADS)
Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok
Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.
Virtualization and cloud computing in dentistry.
Chow, Frank; Muftu, Ali; Shorter, Richard
2014-01-01
The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.
NASA Technical Reports Server (NTRS)
Dasgupta, Partha; Leblanc, Richard J., Jr.; Appelbe, William F.
1988-01-01
Clouds is an operating system in a novel class of distributed operating systems providing the integration, reliability, and structure that makes a distributed system usable. Clouds is designed to run on a set of general purpose computers that are connected via a medium-of-high speed local area network. The system structuring paradigm chosen for the Clouds operating system, after substantial research, is an object/thread model. All instances of services, programs and data in Clouds are encapsulated in objects. The concept of persistent objects does away with the need for file systems, and replaces it with a more powerful concept, namely the object system. The facilities in Clouds include integration of resources through location transparency; support for various types of atomic operations, including conventional transactions; advanced support for achieving fault tolerance; and provisions for dynamic reconfiguration.
Global Software Development with Cloud Platforms
NASA Astrophysics Data System (ADS)
Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya
Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.
Zhu, Lingyun; Li, Lianjie; Meng, Chunyan
2014-12-01
There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.
A service based adaptive U-learning system using UX.
Jeong, Hwa-Young; Yi, Gangman
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques.
A Service Based Adaptive U-Learning System Using UX
Jeong, Hwa-Young
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832
User's manual for the REEDM (Rocket Exhaust Effluent Diffusion Model) computer program
NASA Technical Reports Server (NTRS)
Bjorklund, J. R.; Dumbauld, R. K.; Cheney, C. S.; Geary, H. V.
1982-01-01
The REEDM computer program predicts concentrations, dosages, and depositions downwind from normal and abnormal launches of rocket vehicles at NASA's Kennedy Space Center. The atmospheric dispersion models, cloud-rise models, and other formulas used in the REEDM model are described mathematically Vehicle and source parameters, other pertinent physical properties of the rocket exhaust cloud, and meteorological layering techniques are presented as well as user's instructions for REEDM. Worked example problems are included.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... explored in this series is cloud computing. The workshop on this topic will be held in Gaithersburg, MD on October 21, 2011. Assertion: ``Current implementations of cloud computing indicate a new approach to security'' Implementations of cloud computing have provided new ways of thinking about how to secure data...
77 FR 74829 - Notice of Public Meeting-Cloud Computing and Big Data Forum and Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-18
...--Cloud Computing and Big Data Forum and Workshop AGENCY: National Institute of Standards and Technology... Standards and Technology (NIST) announces a Cloud Computing and Big Data Forum and Workshop to be held on... followed by a one-day hands-on workshop. The NIST Cloud Computing and Big Data Forum and Workshop will...
ERIC Educational Resources Information Center
Tweel, Abdeneaser
2012-01-01
High uncertainties related to cloud computing adoption may hinder IT managers from making solid decisions about adopting cloud computing. The problem addressed in this study was the lack of understanding of the relationship between factors related to the adoption of cloud computing and IT managers' interest in adopting this technology. In…
When cloud computing meets bioinformatics: a review.
Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong
2013-10-01
In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.
2016-12-01
With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.
NASA Astrophysics Data System (ADS)
Yu, Xiaoyuan; Yuan, Jian; Chen, Shi
2013-03-01
Cloud computing is one of the most popular topics in the IT industry and is recently being adopted by many companies. It has four development models, as: public cloud, community cloud, hybrid cloud and private cloud. Except others, private cloud can be implemented in a private network, and delivers some benefits of cloud computing without pitfalls. This paper makes a comparison of typical open source platforms through which we can implement a private cloud. After this comparison, we choose Eucalyptus and Wavemaker to do a case study on the private cloud. We also do some performance estimation of cloud platform services and development of prototype software as cloud services.
Cloud4Psi: cloud computing for 3D protein structure similarity searching.
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-10-01
Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Fisher, W.; Yoksas, T.
2014-12-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high student expectations. These changes are upending traditional approaches to accessing and using data and software. It is clear that Unidata's products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our initial efforts to deploy a subset of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup
Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.
2010-01-01
Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure. PMID:21258651
Flexible services for the support of research.
Turilli, Matteo; Wallom, David; Williams, Chris; Gough, Steve; Curran, Neal; Tarrant, Richard; Bretherton, Dan; Powell, Andy; Johnson, Matt; Harmer, Terry; Wright, Peter; Gordon, John
2013-01-28
Cloud computing has been increasingly adopted by users and providers to promote a flexible, scalable and tailored access to computing resources. Nonetheless, the consolidation of this paradigm has uncovered some of its limitations. Initially devised by corporations with direct control over large amounts of computational resources, cloud computing is now being endorsed by organizations with limited resources or with a more articulated, less direct control over these resources. The challenge for these organizations is to leverage the benefits of cloud computing while dealing with limited and often widely distributed computing resources. This study focuses on the adoption of cloud computing by higher education institutions and addresses two main issues: flexible and on-demand access to a large amount of storage resources, and scalability across a heterogeneous set of cloud infrastructures. The proposed solutions leverage a federated approach to cloud resources in which users access multiple and largely independent cloud infrastructures through a highly customizable broker layer. This approach allows for a uniform authentication and authorization infrastructure, a fine-grained policy specification and the aggregation of accounting and monitoring. Within a loosely coupled federation of cloud infrastructures, users can access vast amount of data without copying them across cloud infrastructures and can scale their resource provisions when the local cloud resources become insufficient.
NASA Technical Reports Server (NTRS)
Hasler, A. F.
1981-01-01
Observations of cloud geometry using scan-synchronized stereo geostationary satellites having images with horizontal spatial resolution of approximately 0.5 km, and temporal resolution of up to 3 min are presented. The stereo does not require a cloud with known emissivity to be in equilibrium with an atmosphere with a known vertical temperature profile. It is shown that absolute accuracies of about 0.5 km are possible. Qualitative and quantitative representations of atmospheric dynamics were shown by remapping, display, and stereo image analysis on an interactive computer/imaging system. Applications of stereo observations include: (1) cloud top height contours of severe thunderstorms and hurricanes, (2) cloud top and base height estimates for cloud-wind height assignment, (3) cloud growth measurements for severe thunderstorm over-shooting towers, (4) atmospheric temperature from stereo heights and infrared cloud top temperatures, and (5) cloud emissivity estimation. Recommendations are given for future improvements in stereo observations, including a third GOES satellite, operational scan synchronization of all GOES satellites and better resolution sensors.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Astrophysics Data System (ADS)
Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.
2011-12-01
Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly better performance than the local machine. Much of the difference was due to newer equipment in the Nebula than the legacy computer, which is suggestive of a potential economic advantage beyond elastic power, i.e., access to up-to-date hardware vs. legacy hardware that must be maintained past its prime to amortize the cost. In addition to a trade study of advantages and challenges of porting complex processing to the cloud, a tutorial was developed to enable further progress in utilizing the Nebula for Earth Science applications and understanding better the potential for Cloud Computing in further data- and computing-intensive Earth Science research. In particular, highly bursty computing such as that experienced in the user-demand-driven Giovanni system may become more tractable in a Cloud environment. Our future work will continue to focus on migrating more GES DISC's applications/instances, e.g. Giovanni instances, to the Nebula platform and making matured migrated applications to be in operation on the Nebula.
Use of parallel computing in mass processing of laser data
NASA Astrophysics Data System (ADS)
Będkowski, J.; Bratuś, R.; Prochaska, M.; Rzonca, A.
2015-12-01
The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.
The emerging role of cloud computing in molecular modelling.
Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W
2013-07-01
There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways. Copyright © 2013 Elsevier Inc. All rights reserved.
Challenges in Securing the Interface Between the Cloud and Pervasive Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagesse, Brent J
2011-01-01
Cloud computing presents an opportunity for pervasive systems to leverage computational and storage resources to accomplish tasks that would not normally be possible on such resource-constrained devices. Cloud computing can enable hardware designers to build lighter systems that last longer and are more mobile. Despite the advantages cloud computing offers to the designers of pervasive systems, there are some limitations of leveraging cloud computing that must be addressed. We take the position that cloud-based pervasive system must be secured holistically and discuss ways this might be accomplished. In this paper, we discuss a pervasive system utilizing cloud computing resources andmore » issues that must be addressed in such a system. In this system, the user's mobile device cannot always have network access to leverage resources from the cloud, so it must make intelligent decisions about what data should be stored locally and what processes should be run locally. As a result of these decisions, the user becomes vulnerable to attacks while interfacing with the pervasive system.« less
NASA Astrophysics Data System (ADS)
Perez Montes, Diego A.; Añel Cabanelas, Juan A.; Wallom, David C. H.; Arribas, Alberto; Uhe, Peter; Caderno, Pablo V.; Pena, Tomas F.
2017-04-01
Cloud Computing is a technological option that offers great possibilities for modelling in geosciences. We have studied how two different climate models, HadAM3P-HadRM3P and CESM-WACCM, can be adapted in two different ways to run on Cloud Computing Environments from three different vendors: Amazon, Google and Microsoft. Also, we have evaluated qualitatively how the use of Cloud Computing can affect the allocation of resources by funding bodies and issues related to computing security, including scientific reproducibility. Our first experiments were developed using the well known ClimatePrediction.net (CPDN), that uses BOINC, over the infrastructure from two cloud providers, namely Microsoft Azure and Amazon Web Services (hereafter AWS). For this comparison we ran a set of thirteen month climate simulations for CPDN in Azure and AWS using a range of different virtual machines (VMs) for HadRM3P (50 km resolution over South America CORDEX region) nested in the global atmosphere-only model HadAM3P. These simulations were run on a single processor and took between 3 and 5 days to compute depending on the VM type. The last part of our simulation experiments was running WACCM over different VMS on the Google Compute Engine (GCE) and make a comparison with the supercomputer (SC) Finisterrae1 from the Centro de Supercomputacion de Galicia. It was shown that GCE gives better performance than the SC for smaller number of cores/MPI tasks but the model throughput shows clearly how the SC performance is better after approximately 100 cores (related with network speed and latency differences). From a cost point of view, Cloud Computing moves researchers from a traditional approach where experiments were limited by the available hardware resources to monetary resources (how many resources can be afforded). As there is an increasing movement and recommendation for budgeting HPC projects on this technology (budgets can be calculated in a more realistic way) we could see a shift on the trends over the next years to consolidate Cloud as the preferred solution.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.
2011-10-01
One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of 345.4 W m-2 is estimated by combining the modeled instantaneous surface longwave irradiance computed with CALIOP and CPR cloud profiles with the global annual mean longwave irradiance from the CERES product (AVG), which includes the diurnal variation of the irradiance. The estimated bias error is -1.5 W m-2 and the uncertainty is 6.9 W m-2. The uncertainty is predominately caused by the near-surface temperature and column water vapor amount uncertainties.
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator); Baum, Bryan A.; Charlock, Thomas P.; Green, Richard N.; Lee, Robert B., III; Minnis, Patrick; Smith, G. Louis; Coakley, J. A.; Randall, David R.
1995-01-01
The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 4 details the advanced CERES techniques for computing surface and atmospheric radiative fluxes (using the coincident CERES cloud property and top-of-the-atmosphere (TOA) flux products) and for averaging the cloud properties and TOA, atmospheric, and surface radiative fluxes over various temporal and spatial scales. CERES attempts to match the observed TOA fluxes with radiative transfer calculations that use as input the CERES cloud products and NOAA National Meteorological Center analyses of temperature and humidity. Slight adjustments in the cloud products are made to obtain agreement of the calculated and observed TOA fluxes. The computed products include shortwave and longwave fluxes from the surface to the TOA. The CERES instantaneous products are averaged on a 1.25-deg latitude-longitude grid, then interpolated to produce global, synoptic maps to TOA fluxes and cloud properties by using 3-hourly, normalized radiances from geostationary meteorological satellites. Surface and atmospheric fluxes are computed by using these interpolated quantities. Clear-sky and total fluxes and cloud properties are then averaged over various scales.
An Architecture for Cross-Cloud System Management
NASA Astrophysics Data System (ADS)
Dodda, Ravi Teja; Smith, Chris; van Moorsel, Aad
The emergence of the cloud computing paradigm promises flexibility and adaptability through on-demand provisioning of compute resources. As the utilization of cloud resources extends beyond a single provider, for business as well as technical reasons, the issue of effectively managing such resources comes to the fore. Different providers expose different interfaces to their compute resources utilizing varied architectures and implementation technologies. This heterogeneity poses a significant system management problem, and can limit the extent to which the benefits of cross-cloud resource utilization can be realized. We address this problem through the definition of an architecture to facilitate the management of compute resources from different cloud providers in an homogenous manner. This preserves the flexibility and adaptability promised by the cloud computing paradigm, whilst enabling the benefits of cross-cloud resource utilization to be realized. The practical efficacy of the architecture is demonstrated through an implementation utilizing compute resources managed through different interfaces on the Amazon Elastic Compute Cloud (EC2) service. Additionally, we provide empirical results highlighting the performance differential of these different interfaces, and discuss the impact of this performance differential on efficiency and profitability.
Cloud Computing - A Unified Approach for Surveillance Issues
NASA Astrophysics Data System (ADS)
Rachana, C. R.; Banu, Reshma, Dr.; Ahammed, G. F. Ali, Dr.; Parameshachari, B. D., Dr.
2017-08-01
Cloud computing describes highly scalable resources provided as an external service via the Internet on a basis of pay-per-use. From the economic point of view, the main attractiveness of cloud computing is that users only use what they need, and only pay for what they actually use. Resources are available for access from the cloud at any time, and from any location through networks. Cloud computing is gradually replacing the traditional Information Technology Infrastructure. Securing data is one of the leading concerns and biggest issue for cloud computing. Privacy of information is always a crucial pointespecially when an individual’s personalinformation or sensitive information is beingstored in the organization. It is indeed true that today; cloud authorization systems are notrobust enough. This paper presents a unified approach for analyzing the various security issues and techniques to overcome the challenges in the cloud environment.
Research on the application in disaster reduction for using cloud computing technology
NASA Astrophysics Data System (ADS)
Tao, Liang; Fan, Yida; Wang, Xingling
Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.
Unidata Cyberinfrastructure in the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Young, J. W.
2016-12-01
Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers, Python scientific libraries, scripts, and workflows; * Exploring end-to-end modeling and prediction capabilities in the cloud; * Partnering with NOAA and public cloud vendors (e.g., Amazon and OCC) on the NOAA Big Data Project to harness their capabilities and resources for the benefit of the academic community.
ERIC Educational Resources Information Center
Conn, Samuel S.; Reichgelt, Han
2013-01-01
Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…
Challenges and Security in Cloud Computing
NASA Astrophysics Data System (ADS)
Chang, Hyokyung; Choi, Euiin
People who live in this world want to solve any problems as they happen then. An IT technology called Ubiquitous computing should help the situations easier and we call a technology which makes it even better and powerful cloud computing. Cloud computing, however, is at the stage of the beginning to implement and use and it faces a lot of challenges in technical matters and security issues. This paper looks at the cloud computing security.
Scaling predictive modeling in drug development with cloud computing.
Moghadam, Behrooz Torabi; Alvarsson, Jonathan; Holm, Marcus; Eklund, Martin; Carlsson, Lars; Spjuth, Ola
2015-01-26
Growing data sets with increased time for analysis is hampering predictive modeling in drug discovery. Model building can be carried out on high-performance computer clusters, but these can be expensive to purchase and maintain. We have evaluated ligand-based modeling on cloud computing resources where computations are parallelized and run on the Amazon Elastic Cloud. We trained models on open data sets of varying sizes for the end points logP and Ames mutagenicity and compare with model building parallelized on a traditional high-performance computing cluster. We show that while high-performance computing results in faster model building, the use of cloud computing resources is feasible for large data sets and scales well within cloud instances. An additional advantage of cloud computing is that the costs of predictive models can be easily quantified, and a choice can be made between speed and economy. The easy access to computational resources with no up-front investments makes cloud computing an attractive alternative for scientists, especially for those without access to a supercomputer, and our study shows that it enables cost-efficient modeling of large data sets on demand within reasonable time.
Making Cloud Computing Available For Researchers and Innovators (Invited)
NASA Astrophysics Data System (ADS)
Winsor, R.
2010-12-01
High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.
Big data mining analysis method based on cloud computing
NASA Astrophysics Data System (ADS)
Cai, Qing Qiu; Cui, Hong Gang; Tang, Hao
2017-08-01
Information explosion era, large data super-large, discrete and non-(semi) structured features have gone far beyond the traditional data management can carry the scope of the way. With the arrival of the cloud computing era, cloud computing provides a new technical way to analyze the massive data mining, which can effectively solve the problem that the traditional data mining method cannot adapt to massive data mining. This paper introduces the meaning and characteristics of cloud computing, analyzes the advantages of using cloud computing technology to realize data mining, designs the mining algorithm of association rules based on MapReduce parallel processing architecture, and carries out the experimental verification. The algorithm of parallel association rule mining based on cloud computing platform can greatly improve the execution speed of data mining.
Charting a Security Landscape in the Clouds: Data Protection and Collaboration in Cloud Storage
2016-07-01
cloud computing is perhaps the most revolutionary force in the information technology industry today. This field encompasses many different domains...characteristic shared by all cloud computing tasks is that they involve storing data in the cloud . In this report, we therefore aim to describe and rank the...CONCLUSION The advent of cloud computing has caused government organizations to rethink their IT architectures so that they can take advantage of the
Jade: using on-demand cloud analysis to give scientists back their flow
NASA Astrophysics Data System (ADS)
Robinson, N.; Tomlinson, J.; Hilson, A. J.; Arribas, A.; Powell, T.
2017-12-01
The UK's Met Office generates 400 TB weather and climate data every day by running physical models on its Top 20 supercomputer. As data volumes explode, there is a danger that analysis workflows become dominated by watching progress bars, and not thinking about science. We have been researching how we can use distributed computing to allow analysts to process these large volumes of high velocity data in a way that's easy, effective and cheap.Our prototype analysis stack, Jade, tries to encapsulate this. Functionality includes: An under-the-hood Dask engine which parallelises and distributes computations, without the need to retrain analysts Hybrid compute clusters (AWS, Alibaba, and local compute) comprising many thousands of cores Clusters which autoscale up/down in response to calculation load using Kubernetes, and balances the cluster across providers based on the current price of compute Lazy data access from cloud storage via containerised OpenDAP This technology stack allows us to perform calculations many orders of magnitude faster than is possible on local workstations. It is also possible to outperform dedicated local compute clusters, as cloud compute can, in principle, scale to much larger scales. The use of ephemeral compute resources also makes this implementation cost efficient.
Introducing Cloud Computing Topics in Curricula
ERIC Educational Resources Information Center
Chen, Ling; Liu, Yang; Gallagher, Marcus; Pailthorpe, Bernard; Sadiq, Shazia; Shen, Heng Tao; Li, Xue
2012-01-01
The demand for graduates with exposure in Cloud Computing is on the rise. For many educational institutions, the challenge is to decide on how to incorporate appropriate cloud-based technologies into their curricula. In this paper, we describe our design and experiences of integrating Cloud Computing components into seven third/fourth-year…
Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.
Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen
2013-01-01
Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.
Bootstrapping and Maintaining Trust in the Cloud
2016-12-01
simultaneous cloud nodes. 1. INTRODUCTION The proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as...Amazon Web Services and Google Compute Engine means more cloud tenants are hosting sensitive, private, and business critical data and applications in the...thousands of IaaS resources as they are elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features
Study on the application of mobile internet cloud computing platform
NASA Astrophysics Data System (ADS)
Gong, Songchun; Fu, Songyin; Chen, Zheng
2012-04-01
The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.
Integration of Cloud resources in the LHCb Distributed Computing
NASA Astrophysics Data System (ADS)
Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel
2014-06-01
This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.
SPARCCS - Smartphone-Assisted Readiness, Command and Control System
2012-06-01
and database needs. By doing this SPARCCS takes advantage of all the capabilities cloud computing has to offer, especially that of disbursed data...40092829/ Microsoft. (2011). Cloud Computing . Retrieved September 24, 2011, http ://www.microsoft.com/industry/government/guides/cloud_computing/2...Command, and Control System) to address these issues. We use smartphones in conjunction with cloud computing to extend the benefits of collaborative
Development of an atmospheric infrared radiation model with high clouds for target detection
NASA Astrophysics Data System (ADS)
Bellisario, Christophe; Malherbe, Claire; Schweitzer, Caroline; Stein, Karin
2016-10-01
In the field of target detection, the simulation of the camera FOV (field of view) background is a significant issue. The presence of heterogeneous clouds might have a strong impact on a target detection algorithm. In order to address this issue, we present here the construction of the CERAMIC package (Cloudy Environment for RAdiance and MIcrophysics Computation) that combines cloud microphysical computation and 3D radiance computation to produce a 3D atmospheric infrared radiance in attendance of clouds. The input of CERAMIC starts with an observer with a spatial position and a defined FOV (by the mean of a zenithal angle and an azimuthal angle). We introduce a 3D cloud generator provided by the French LaMP for statistical and simplified physics. The cloud generator is implemented with atmospheric profiles including heterogeneity factor for 3D fluctuations. CERAMIC also includes a cloud database from the French CNRM for a physical approach. We present here some statistics developed about the spatial and time evolution of the clouds. Molecular optical properties are provided by the model MATISSE (Modélisation Avancée de la Terre pour l'Imagerie et la Simulation des Scènes et de leur Environnement). The 3D radiance is computed with the model LUCI (for LUminance de CIrrus). It takes into account 3D microphysics with a resolution of 5 cm-1 over a SWIR bandwidth. In order to have a fast computation time, most of the radiance contributors are calculated with analytical expressions. The multiple scattering phenomena are more difficult to model. Here a discrete ordinate method with correlated-K precision to compute the average radiance is used. We add a 3D fluctuations model (based on a behavioral model) taking into account microphysics variations. In fine, the following parameters are calculated: transmission, thermal radiance, single scattering radiance, radiance observed through the cloud and multiple scattering radiance. Spatial images are produced, with a dimension of 10 km x 10 km and a resolution of 0.1 km with each contribution of the radiance separated. We present here the first results with examples of a typical scenarii. A 1D comparison in results is made with the use of the MATISSE model by separating each radiance calculated, in order to validate outputs. The code performance in 3D is shown by comparing LUCI to SHDOM model, referency code which uses the Spherical Harmonic Discrete Ordinate Method for 3D Atmospheric Radiative Transfer model. The results obtained by the different codes present a strong agreement and the sources of small differences are considered. An important gain in time is observed for LUCI versus SHDOM. We finally conclude on various scenarios for case analysis.
Use of cloud computing in biomedicine.
Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil
2016-12-01
Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.
A resource management architecture based on complex network theory in cloud computing federation
NASA Astrophysics Data System (ADS)
Zhang, Zehua; Zhang, Xuejie
2011-10-01
Cloud Computing Federation is a main trend of Cloud Computing. Resource Management has significant effect on the design, realization, and efficiency of Cloud Computing Federation. Cloud Computing Federation has the typical characteristic of the Complex System, therefore, we propose a resource management architecture based on complex network theory for Cloud Computing Federation (abbreviated as RMABC) in this paper, with the detailed design of the resource discovery and resource announcement mechanisms. Compare with the existing resource management mechanisms in distributed computing systems, a Task Manager in RMABC can use the historical information and current state data get from other Task Managers for the evolution of the complex network which is composed of Task Managers, thus has the advantages in resource discovery speed, fault tolerance and adaptive ability. The result of the model experiment confirmed the advantage of RMABC in resource discovery performance.
Evaluating the Efficacy of the Cloud for Cluster Computation
NASA Technical Reports Server (NTRS)
Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom
2012-01-01
Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.
CSNS computing environment Based on OpenStack
NASA Astrophysics Data System (ADS)
Li, Yakang; Qi, Fazhi; Chen, Gang; Wang, Yanming; Hong, Jianshu
2017-10-01
Cloud computing can allow for more flexible configuration of IT resources and optimized hardware utilization, it also can provide computing service according to the real need. We are applying this computing mode to the China Spallation Neutron Source(CSNS) computing environment. So, firstly, CSNS experiment and its computing scenarios and requirements are introduced in this paper. Secondly, the design and practice of cloud computing platform based on OpenStack are mainly demonstrated from the aspects of cloud computing system framework, network, storage and so on. Thirdly, some improvments to openstack we made are discussed further. Finally, current status of CSNS cloud computing environment are summarized in the ending of this paper.
COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications
NASA Astrophysics Data System (ADS)
Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi
2012-05-01
The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.
Hybrid cloud: bridging of private and public cloud computing
NASA Astrophysics Data System (ADS)
Aryotejo, Guruh; Kristiyanto, Daniel Y.; Mufadhol
2018-05-01
Cloud Computing is quickly emerging as a promising paradigm in the recent years especially for the business sector. In addition, through cloud service providers, cloud computing is widely used by Information Technology (IT) based startup company to grow their business. However, the level of most businesses awareness on data security issues is low, since some Cloud Service Provider (CSP) could decrypt their data. Hybrid Cloud Deployment Model (HCDM) has characteristic as open source, which is one of secure cloud computing model, thus HCDM may solve data security issues. The objective of this study is to design, deploy and evaluate a HCDM as Infrastructure as a Service (IaaS). In the implementation process, Metal as a Service (MAAS) engine was used as a base to build an actual server and node. Followed by installing the vsftpd application, which serves as FTP server. In comparison with HCDM, public cloud was adopted through public cloud interface. As a result, the design and deployment of HCDM was conducted successfully, instead of having good security, HCDM able to transfer data faster than public cloud significantly. To the best of our knowledge, Hybrid Cloud Deployment model is one of secure cloud computing model due to its characteristic as open source. Furthermore, this study will serve as a base for future studies about Hybrid Cloud Deployment model which may relevant for solving big security issues of IT-based startup companies especially in Indonesia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pete Beckman and Ian Foster
Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
Bionimbus: a cloud for managing, analyzing and sharing large genomics datasets.
Heath, Allison P; Greenway, Matthew; Powell, Raymond; Spring, Jonathan; Suarez, Rafael; Hanley, David; Bandlamudi, Chai; McNerney, Megan E; White, Kevin P; Grossman, Robert L
2014-01-01
As large genomics and phenotypic datasets are becoming more common, it is increasingly difficult for most researchers to access, manage, and analyze them. One possible approach is to provide the research community with several petabyte-scale cloud-based computing platforms containing these data, along with tools and resources to analyze it. Bionimbus is an open source cloud-computing platform that is based primarily upon OpenStack, which manages on-demand virtual machines that provide the required computational resources, and GlusterFS, which is a high-performance clustered file system. Bionimbus also includes Tukey, which is a portal, and associated middleware that provides a single entry point and a single sign on for the various Bionimbus resources; and Yates, which automates the installation, configuration, and maintenance of the software infrastructure required. Bionimbus is used by a variety of projects to process genomics and phenotypic data. For example, it is used by an acute myeloid leukemia resequencing project at the University of Chicago. The project requires several computational pipelines, including pipelines for quality control, alignment, variant calling, and annotation. For each sample, the alignment step requires eight CPUs for about 12 h. BAM file sizes ranged from 5 GB to 10 GB for each sample. Most members of the research community have difficulty downloading large genomics datasets and obtaining sufficient storage and computer resources to manage and analyze the data. Cloud computing platforms, such as Bionimbus, with data commons that contain large genomics datasets, are one choice for broadening access to research data in genomics. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The Integration of CloudStack and OCCI/OpenNebula with DIRAC
NASA Astrophysics Data System (ADS)
Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan
2012-12-01
The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.
Galaxy CloudMan: delivering cloud compute clusters.
Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James
2010-12-21
Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.
NASA Astrophysics Data System (ADS)
Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.
2017-12-01
Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.
Dynamic electronic institutions in agent oriented cloud robotic systems.
Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice
2015-01-01
The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
Libraries in the Cloud: Making a Case for Google and Amazon
ERIC Educational Resources Information Center
Buck, Stephanie
2009-01-01
As news outlets create headlines such as "A Cloud & A Prayer," "The Cloud Is the Computer," and "Leveraging Clouds to Make You More Efficient," many readers have been left with cloud confusion. Many definitions exist for cloud computing, and a uniform definition is hard to find. In its most basic form, cloud…
Managing a tier-2 computer centre with a private cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara
2014-06-01
In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.
ERIC Educational Resources Information Center
Dulaney, Malik H.
2013-01-01
Emerging technologies challenge the management of information technology in organizations. Paradigm changing technologies, such as cloud computing, have the ability to reverse the norms in organizational management, decision making, and information technology governance. This study explores the effects of cloud computing on information technology…
Factors Influencing the Adoption of Cloud Computing by Decision Making Managers
ERIC Educational Resources Information Center
Ross, Virginia Watson
2010-01-01
Cloud computing is a growing field, addressing the market need for access to computing resources to meet organizational computing requirements. The purpose of this research is to evaluate the factors that influence an organization in their decision whether to adopt cloud computing as a part of their strategic information technology planning.…
NASA Astrophysics Data System (ADS)
Saito, Masanori; Iwabuchi, Hironobu; Yang, Ping; Tang, Guanglin; King, Michael D.; Sekiguchi, Miho
2017-04-01
Ice particle morphology and microphysical properties of cirrus clouds are essential for assessing radiative forcing associated with these clouds. We develop an optimal estimation-based algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including quasi-horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle model is used, and the relevant bulk optical properties are computed using state-of-the-art light-scattering computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric gases, and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with other satellite products and CERs essentially agree with the other counterparts. A 1 month global analysis for April 2007, in which CALIPSO off-nadir angle is 0.3°, shows that the HOP has significant temperature-dependence and is critical to the lidar ratio when cloud temperature is warmer than -40°C. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is 27-31 sr over the globe.
Cloud Computing Services for Seismic Networks
NASA Astrophysics Data System (ADS)
Olson, Michael
This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.
Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao
2018-05-23
The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.
Design for Run-Time Monitor on Cloud Computing
NASA Astrophysics Data System (ADS)
Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.
Research on phone contacts online status based on mobile cloud computing
NASA Astrophysics Data System (ADS)
Wang, Wen-jinga; Ge, Weib
2013-03-01
Because the limited ability of storage space, CPU processing on mobile phone, it is difficult to realize complex applications on mobile phones, but along with the development of cloud computing, we can place the computing and storage in the clouds, provide users with rich cloud services, helping users complete various function through the browser has become the trend for future mobile communication. This article is taking the mobile phone contacts online status as an example to analysis the development and application of mobile cloud computing.
Bootstrapping and Maintaining Trust in the Cloud
2016-12-01
proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as Amazon Web Services and Google Compute Engine means...IaaS trusted computing system: • Secure Bootstrapping – the system should enable the tenant to securely install an initial root secret into each cloud ...elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features, but none achieve all. Excalibur [31] sup
Using the cloud to speed-up calibration of watershed-scale hydrologic models (Invited)
NASA Astrophysics Data System (ADS)
Goodall, J. L.; Ercan, M. B.; Castronova, A. M.; Humphrey, M.; Beekwilder, N.; Steele, J.; Kim, I.
2013-12-01
This research focuses on using the cloud to address computational challenges associated with hydrologic modeling. One example is calibration of a watershed-scale hydrologic model, which can take days of execution time on typical computers. While parallel algorithms for model calibration exist and some researchers have used multi-core computers or clusters to run these algorithms, these solutions do not fully address the challenge because (i) calibration can still be too time consuming even on multicore personal computers and (ii) few in the community have the time and expertise needed to manage a compute cluster. Given this, another option for addressing this challenge that we are exploring through this work is the use of the cloud for speeding-up calibration of watershed-scale hydrologic models. The cloud used in this capacity provides a means for renting a specific number and type of machines for only the time needed to perform a calibration model run. The cloud allows one to precisely balance the duration of the calibration with the financial costs so that, if the budget allows, the calibration can be performed more quickly by renting more machines. Focusing specifically on the SWAT hydrologic model and a parallel version of the DDS calibration algorithm, we show significant speed-up time across a range of watershed sizes using up to 256 cores to perform a model calibration. The tool provides a simple web-based user interface and the ability to monitor the calibration job submission process during the calibration process. Finally this talk concludes with initial work to leverage the cloud for other tasks associated with hydrologic modeling including tasks related to preparing inputs for constructing place-based hydrologic models.
NASA Astrophysics Data System (ADS)
Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao
In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.
NASA Astrophysics Data System (ADS)
Evans, J. D.; Hao, W.; Chettri, S.
2013-12-01
The cloud is proving to be a uniquely promising platform for scientific computing. Our experience with processing satellite data using Amazon Web Services highlights several opportunities for enhanced performance, flexibility, and cost effectiveness in the cloud relative to traditional computing -- for example: - Direct readout from a polar-orbiting satellite such as the Suomi National Polar-Orbiting Partnership (S-NPP) requires bursts of processing a few times a day, separated by quiet periods when the satellite is out of receiving range. In the cloud, by starting and stopping virtual machines in minutes, we can marshal significant computing resources quickly when needed, but not pay for them when not needed. To take advantage of this capability, we are automating a data-driven approach to the management of cloud computing resources, in which new data availability triggers the creation of new virtual machines (of variable size and processing power) which last only until the processing workflow is complete. - 'Spot instances' are virtual machines that run as long as one's asking price is higher than the provider's variable spot price. Spot instances can greatly reduce the cost of computing -- for software systems that are engineered to withstand unpredictable interruptions in service (as occurs when a spot price exceeds the asking price). We are implementing an approach to workflow management that allows data processing workflows to resume with minimal delays after temporary spot price spikes. This will allow systems to take full advantage of variably-priced 'utility computing.' - Thanks to virtual machine images, we can easily launch multiple, identical machines differentiated only by 'user data' containing individualized instructions (e.g., to fetch particular datasets or to perform certain workflows or algorithms) This is particularly useful when (as is the case with S-NPP data) we need to launch many very similar machines to process an unpredictable number of data files concurrently. Our experience shows the viability and flexibility of this approach to workflow management for scientific data processing. - Finally, cloud computing is a promising platform for distributed volunteer ('interstitial') computing, via mechanisms such as the Berkeley Open Infrastructure for Network Computing (BOINC) popularized with the SETI@Home project and others such as ClimatePrediction.net and NASA's Climate@Home. Interstitial computing faces significant challenges as commodity computing shifts from (always on) desktop computers towards smartphones and tablets (untethered and running on scarce battery power); but cloud computing offers significant slack capacity. This capacity includes virtual machines with unused RAM or underused CPUs; virtual storage volumes allocated (& paid for) but not full; and virtual machines that are paid up for the current hour but whose work is complete. We are devising ways to facilitate the reuse of these resources (i.e., cloud-based interstitial computing) for satellite data processing and related analyses. We will present our findings and research directions on these and related topics.
Cloud Collaboration: Cloud-Based Instruction for Business Writing Class
ERIC Educational Resources Information Center
Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny
2014-01-01
Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…
RAPPORT: running scientific high-performance computing applications on the cloud.
Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt
2013-01-28
Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.
Security model for VM in cloud
NASA Astrophysics Data System (ADS)
Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.
2013-03-01
Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.
Integrating multiple scientific computing needs via a Private Cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.
2014-06-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
Towards real-time photon Monte Carlo dose calculation in the cloud
NASA Astrophysics Data System (ADS)
Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-01
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
Towards real-time photon Monte Carlo dose calculation in the cloud.
Ziegenhein, Peter; Kozin, Igor N; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-07
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
Default Parallels Plesk Panel Page
services that small businesses want and need. Our software includes key building blocks of cloud service virtualized servers Service Provider Products Parallels® Automation Hosting, SaaS, and cloud computing , the leading hosting automation software. You see this page because there is no Web site at this
Lightweight Data Systems in the Cloud: Costs, Benefits and Best Practices
NASA Astrophysics Data System (ADS)
Fatland, R.; Arendt, A. A.; Howe, B.; Hess, N. J.; Futrelle, J.
2015-12-01
We present here a simple analysis of both the cost and the benefit of using the cloud in environmental science circa 2016. We present this set of ideas to enable the potential 'cloud adopter' research scientist to explore and understand the tradeoffs in moving some aspect of their compute work to the cloud. We present examples, design patterns and best practices as an evolving body of knowledge that help optimize benefit to the research team. Thematically this generally means not starting from a blank page but rather learning how to find 90% of the solution to a problem pre-built. We will touch on four topics of interest. (1) Existing cloud data resources (NASA, WHOI BCO DMO, etc) and how they can be discovered, used and improved. (2) How to explore, compare and evaluate cost and compute power from many cloud options, particularly in relation to data scale (size/complexity). (3) What are simple / fast 'Lightweight Data System' procedures that take from 20 minutes to one day to implement and that have a clear immediate payoff in environmental data-driven research. Examples include publishing a SQL Share URL at (EarthCube's) CINERGI as a registered data resource and creating executable papers on a cloud-hosted Jupyter instance, particularly iPython notebooks. (4) Translating the computational terminology landscape ('cloud', 'HPC cluster', 'hadoop', 'spark', 'machine learning') into examples from the community of practice to help the geoscientist build or expand their mental map. In the course of this discussion -- which is about resource discovery, adoption and mastery -- we provide direction to online resources in support of these themes.
ERIC Educational Resources Information Center
Islam, Muhammad Faysal
2013-01-01
Cloud computing offers the advantage of on-demand, reliable and cost efficient computing solutions without the capital investment and management resources to build and maintain in-house data centers and network infrastructures. Scalability of cloud solutions enable consumers to upgrade or downsize their services as needed. In a cloud environment,…
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-01-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic. PMID:26451333
Cloud Computing for Pharmacometrics: Using AWS, NONMEM, PsN, Grid Engine, and Sonic.
Sanduja, S; Jewell, P; Aron, E; Pharai, N
2015-09-01
Cloud computing allows pharmacometricians to access advanced hardware, network, and security resources available to expedite analysis and reporting. Cloud-based computing environments are available at a fraction of the time and effort when compared to traditional local datacenter-based solutions. This tutorial explains how to get started with building your own personal cloud computer cluster using Amazon Web Services (AWS), NONMEM, PsN, Grid Engine, and Sonic.
Secure data sharing in public cloud
NASA Astrophysics Data System (ADS)
Venkataramana, Kanaparti; Naveen Kumar, R.; Tatekalva, Sandhya; Padmavathamma, M.
2012-04-01
Secure multi-party protocols have been proposed for entities (organizations or individuals) that don't fully trust each other to share sensitive information. Many types of entities need to collect, analyze, and disseminate data rapidly and accurately, without exposing sensitive information to unauthorized or untrusted parties. Solutions based on secure multiparty computation guarantee privacy and correctness, at an extra communication (too costly in communication to be practical) and computation cost. The high overhead motivates us to extend this SMC to cloud environment which provides large computation and communication capacity which makes SMC to be used between multiple clouds (i.e., it may between private or public or hybrid clouds).Cloud may encompass many high capacity servers which acts as a hosts which participate in computation (IaaS and PaaS) for final result, which is controlled by Cloud Trusted Authority (CTA) for secret sharing within the cloud. The communication between two clouds is controlled by High Level Trusted Authority (HLTA) which is one of the hosts in a cloud which provides MgaaS (Management as a Service). Due to high risk for security in clouds, HLTA generates and distributes public keys and private keys by using Carmichael-R-Prime- RSA algorithm for exchange of private data in SMC between itself and clouds. In cloud, CTA creates Group key for Secure communication between the hosts in cloud based on keys sent by HLTA for exchange of Intermediate values and shares for computation of final result. Since this scheme is extended to be used in clouds( due to high availability and scalability to increase computation power) it is possible to implement SMC practically for privacy preserving in data mining at low cost for the clients.
Applications integration in a hybrid cloud computing environment: modelling and platform
NASA Astrophysics Data System (ADS)
Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang
2013-08-01
With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.
NASA Technical Reports Server (NTRS)
Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian
2012-01-01
Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.
A Cloud-Based Infrastructure for Near-Real-Time Processing and Dissemination of NPP Data
NASA Astrophysics Data System (ADS)
Evans, J. D.; Valente, E. G.; Chettri, S. S.
2011-12-01
We are building a scalable cloud-based infrastructure for generating and disseminating near-real-time data products from a variety of geospatial and meteorological data sources, including the new National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP). Our approach relies on linking Direct Broadcast and other data streams to a suite of scientific algorithms coordinated by NASA's International Polar-Orbiter Processing Package (IPOPP). The resulting data products are directly accessible to a wide variety of end-user applications, via industry-standard protocols such as OGC Web Services, Unidata Local Data Manager, or OPeNDAP, using open source software components. The processing chain employs on-demand computing resources from Amazon.com's Elastic Compute Cloud and NASA's Nebula cloud services. Our current prototype targets short-term weather forecasting, in collaboration with NASA's Short-term Prediction Research and Transition (SPoRT) program and the National Weather Service. Direct Broadcast is especially crucial for NPP, whose current ground segment is unlikely to deliver data quickly enough for short-term weather forecasters and other near-real-time users. Direct Broadcast also allows full local control over data handling, from the receiving antenna to end-user applications: this provides opportunities to streamline processes for data ingest, processing, and dissemination, and thus to make interpreted data products (Environmental Data Records) available to practitioners within minutes of data capture at the sensor. Cloud computing lets us grow and shrink computing resources to meet large and rapid fluctuations in data availability (twice daily for polar orbiters) - and similarly large fluctuations in demand from our target (near-real-time) users. This offers a compelling business case for cloud computing: the processing or dissemination systems can grow arbitrarily large to sustain near-real time data access despite surges in data volumes or user demand, but that computing capacity (and hourly costs) can be dropped almost instantly once the surge passes. Cloud computing also allows low-risk experimentation with a variety of machine architectures (processor types; bandwidth, memory, and storage capacities, etc.) and of system configurations (including massively parallel computing patterns). Finally, our service-based approach (in which user applications invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored products on demand. To maximize the usefulness and impact of our technology, we have emphasized open, industry-standard software interfaces. We are also using and developing open source software to facilitate the widespread adoption of similar, derived, or interoperable systems for processing and serving near-real-time data from NPP and other sources.
Securing the Data Storage and Processing in Cloud Computing Environment
ERIC Educational Resources Information Center
Owens, Rodney
2013-01-01
Organizations increasingly utilize cloud computing architectures to reduce costs and energy consumption both in the data warehouse and on mobile devices by better utilizing the computing resources available. However, the security and privacy issues with publicly available cloud computing infrastructures have not been studied to a sufficient depth…
Reflection of solar radiation by a cylindrical cloud
NASA Technical Reports Server (NTRS)
Smith, G. L.
1989-01-01
Potential applications of an analytic method for computing the solar radiation reflected by a cylindrical cloud are discussed, including studies of radiative transfer within finite clouds and evaluations of these effects on other clouds and on remote sensing problems involving finite clouds. The pattern of reflected sunlight from a cylindrical cloud as seen at a large distance has been considered and described by the bidirectional function method for finite cloud analysis, as previously studied theoretically for plane-parallel atmospheres by McKee and Cox (1974); Schmetz and Raschke (1981); and Stuhlmann et al. (1985). However, the lack of three-dimensional radiative transfer solutions for anisotropic scattering media have hampered theoretical investigations of bidirectional functions for finite clouds. The present approach permits expression of the directional variation of the radiation field as a spherical harmonic series to any desired degree and order.
A Comprehensive Toolset for General-Purpose Private Computing and Outsourcing
2016-12-08
project and scientific advances made towards each of the research thrusts throughout the project duration. 1 Project Objectives Cloud computing enables...possibilities that the cloud enables is computation outsourcing, when the client can utilize any necessary computing resources for its computational task...Security considerations, however, stand on the way of harnessing the full benefits of cloud computing to the fullest extent and prevent clients from
Galaxy CloudMan: delivering cloud compute clusters
2010-01-01
Background Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is “cloud computing”, which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate “as is” use by experimental biologists. Results We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon’s EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. Conclusions The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge. PMID:21210983
Chung, Chi-Jung; Kuo, Yu-Chen; Hsieh, Yun-Yu; Li, Tsai-Chung; Lin, Cheng-Chieh; Liang, Wen-Miin; Liao, Li-Na; Li, Chia-Ing; Lin, Hsueh-Chun
2017-11-01
This study applied open source technology to establish a subject-enabled analytics model that can enhance measurement statistics of case studies with the public health data in cloud computing. The infrastructure of the proposed model comprises three domains: 1) the health measurement data warehouse (HMDW) for the case study repository, 2) the self-developed modules of online health risk information statistics (HRIStat) for cloud computing, and 3) the prototype of a Web-based process automation system in statistics (PASIS) for the health risk assessment of case studies with subject-enabled evaluation. The system design employed freeware including Java applications, MySQL, and R packages to drive a health risk expert system (HRES). In the design, the HRIStat modules enforce the typical analytics methods for biomedical statistics, and the PASIS interfaces enable process automation of the HRES for cloud computing. The Web-based model supports both modes, step-by-step analysis and auto-computing process, respectively for preliminary evaluation and real time computation. The proposed model was evaluated by computing prior researches in relation to the epidemiological measurement of diseases that were caused by either heavy metal exposures in the environment or clinical complications in hospital. The simulation validity was approved by the commercial statistics software. The model was installed in a stand-alone computer and in a cloud-server workstation to verify computing performance for a data amount of more than 230K sets. Both setups reached efficiency of about 10 5 sets per second. The Web-based PASIS interface can be used for cloud computing, and the HRIStat module can be flexibly expanded with advanced subjects for measurement statistics. The analytics procedure of the HRES prototype is capable of providing assessment criteria prior to estimating the potential risk to public health. Copyright © 2017 Elsevier B.V. All rights reserved.
Security Risks of Cloud Computing and Its Emergence as 5th Utility Service
NASA Astrophysics Data System (ADS)
Ahmad, Mushtaq
Cloud Computing is being projected by the major cloud services provider IT companies such as IBM, Google, Yahoo, Amazon and others as fifth utility where clients will have access for processing those applications and or software projects which need very high processing speed for compute intensive and huge data capacity for scientific, engineering research problems and also e- business and data content network applications. These services for different types of clients are provided under DASM-Direct Access Service Management based on virtualization of hardware, software and very high bandwidth Internet (Web 2.0) communication. The paper reviews these developments for Cloud Computing and Hardware/Software configuration of the cloud paradigm. The paper also examines the vital aspects of security risks projected by IT Industry experts, cloud clients. The paper also highlights the cloud provider's response to cloud security risks.
Waggle: A Framework for Intelligent Attentive Sensing and Actuation
NASA Astrophysics Data System (ADS)
Sankaran, R.; Jacob, R. L.; Beckman, P. H.; Catlett, C. E.; Keahey, K.
2014-12-01
Advances in sensor-driven computation and computationally steered sensing will greatly enable future research in fields including environmental and atmospheric sciences. We will present "Waggle," an open-source hardware and software infrastructure developed with two goals: (1) reducing the separation and latency between sensing and computing and (2) improving the reliability and longevity of sensing-actuation platforms in challenging and costly deployments. Inspired by "deep-space probe" systems, the Waggle platform design includes features that can support longitudinal studies, deployments with varying communication links, and remote management capabilities. Waggle lowers the barrier for scientists to incorporate real-time data from their sensors into their computations and to manipulate the sensors or provide feedback through actuators. A standardized software and hardware design allows quick addition of new sensors/actuators and associated software in the nodes and enables them to be coupled with computational codes both insitu and on external compute infrastructure. The Waggle framework currently drives the deployment of two observational systems - a portable and self-sufficient weather platform for study of small-scale effects in Chicago's urban core and an open-ended distributed instrument in Chicago that aims to support several research pursuits across a broad range of disciplines including urban planning, microbiology and computer science. Built around open-source software, hardware, and Linux OS, the Waggle system comprises two components - the Waggle field-node and Waggle cloud-computing infrastructure. Waggle field-node affords a modular, scalable, fault-tolerant, secure, and extensible platform for hosting sensors and actuators in the field. It supports insitu computation and data storage, and integration with cloud-computing infrastructure. The Waggle cloud infrastructure is designed with the goal of scaling to several hundreds of thousands of Waggle nodes. It supports aggregating data from sensors hosted by the nodes, staging computation, relaying feedback to the nodes and serving data to end-users. We will discuss the Waggle design principles and their applicability to various observational research pursuits, and demonstrate its capabilities.
A Big Data Platform for Storing, Accessing, Mining and Learning Geospatial Data
NASA Astrophysics Data System (ADS)
Yang, C. P.; Bambacus, M.; Duffy, D.; Little, M. M.
2017-12-01
Big Data is becoming a norm in geoscience domains. A platform that is capable to effiently manage, access, analyze, mine, and learn the big data for new information and knowledge is desired. This paper introduces our latest effort on developing such a platform based on our past years' experiences on cloud and high performance computing, analyzing big data, comparing big data containers, and mining big geospatial data for new information. The platform includes four layers: a) the bottom layer includes a computing infrastructure with proper network, computer, and storage systems; b) the 2nd layer is a cloud computing layer based on virtualization to provide on demand computing services for upper layers; c) the 3rd layer is big data containers that are customized for dealing with different types of data and functionalities; d) the 4th layer is a big data presentation layer that supports the effient management, access, analyses, mining and learning of big geospatial data.
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
Formal Specification and Analysis of Cloud Computing Management
2012-01-24
te r Cloud Computing in a Nutshell We begin this introduction to Cloud Computing with a famous quote by Larry Ellison: “The interesting thing about...the wording of some of our ads.” — Larry Ellison, Oracle CEO [106] In view of this statement, we summarize the essential aspects of Cloud Computing...1] M. Abadi, M. Burrows , M. Manasse, and T. Wobber. Moderately hard, memory-bound functions. ACM Transactions on Internet Technology, 5(2):299–327
A Test-Bed of Secure Mobile Cloud Computing for Military Applications
2016-09-13
searching databases. This kind of applications is a typical example of mobile cloud computing (MCC). MCC has lots of applications in the military...Release; Distribution Unlimited UU UU UU UU 13-09-2016 1-Aug-2014 31-Jul-2016 Final Report: A Test-bed of Secure Mobile Cloud Computing for Military...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Test-bed, Mobile Cloud Computing , Security, Military Applications REPORT
Cloud computing can simplify HIT infrastructure management.
Glaser, John
2011-08-01
Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan; Fisher, Ward; Yoksas, Tom
2015-04-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high expectations from students who have grown up with smartphones and tablets. These changes are upending traditional approaches to accessing and using data and software. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable in the form of downloadable Unidata-in-a-box virtual images, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our ongoing efforts to deploy a suite of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
Migrating Educational Data and Services to Cloud Computing: Exploring Benefits and Challenges
ERIC Educational Resources Information Center
Lahiri, Minakshi; Moseley, James L.
2013-01-01
"Cloud computing" is currently the "buzzword" in the Information Technology field. Cloud computing facilitates convenient access to information and software resources as well as easy storage and sharing of files and data, without the end users being aware of the details of the computing technology behind the process. This…
Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811
Design and development of a run-time monitor for multi-core architectures in cloud computing.
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.
Challenges and opportunities of cloud computing for atmospheric sciences
NASA Astrophysics Data System (ADS)
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
Application of microarray analysis on computer cluster and cloud platforms.
Bernau, C; Boulesteix, A-L; Knaus, J
2013-01-01
Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Background Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. Results We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. Conclusions This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation. PMID:26501966
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Spazier, J.; Reißland, S.
2014-12-01
Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the concept a whirl and to shape science's future. Further functionality, improvements and possible profound changes have to implemented successively based on the users' evolving needs.
Genomics Virtual Laboratory: A Practical Bioinformatics Workbench for the Cloud.
Afgan, Enis; Sloggett, Clare; Goonasekera, Nuwan; Makunin, Igor; Benson, Derek; Crowe, Mark; Gladman, Simon; Kowsar, Yousef; Pheasant, Michael; Horst, Ron; Lonie, Andrew
2015-01-01
Analyzing high throughput genomics data is a complex and compute intensive task, generally requiring numerous software tools and large reference data sets, tied together in successive stages of data transformation and visualisation. A computational platform enabling best practice genomics analysis ideally meets a number of requirements, including: a wide range of analysis and visualisation tools, closely linked to large user and reference data sets; workflow platform(s) enabling accessible, reproducible, portable analyses, through a flexible set of interfaces; highly available, scalable computational resources; and flexibility and versatility in the use of these resources to meet demands and expertise of a variety of users. Access to an appropriate computational platform can be a significant barrier to researchers, as establishing such a platform requires a large upfront investment in hardware, experience, and expertise. We designed and implemented the Genomics Virtual Laboratory (GVL) as a middleware layer of machine images, cloud management tools, and online services that enable researchers to build arbitrarily sized compute clusters on demand, pre-populated with fully configured bioinformatics tools, reference datasets and workflow and visualisation options. The platform is flexible in that users can conduct analyses through web-based (Galaxy, RStudio, IPython Notebook) or command-line interfaces, and add/remove compute nodes and data resources as required. Best-practice tutorials and protocols provide a path from introductory training to practice. The GVL is available on the OpenStack-based Australian Research Cloud (http://nectar.org.au) and the Amazon Web Services cloud. The principles, implementation and build process are designed to be cloud-agnostic. This paper provides a blueprint for the design and implementation of a cloud-based Genomics Virtual Laboratory. We discuss scope, design considerations and technical and logistical constraints, and explore the value added to the research community through the suite of services and resources provided by our implementation.
NASA Astrophysics Data System (ADS)
Ten Hoeve, J. E.; Jacobson, M. Z.
2010-12-01
Satellite observational studies have found an increase in cloud fraction (CF) and cloud optical depth (COD) with increasing aerosol optical depth (AOD) followed by a decreasing CF/COD with increasing AOD at higher AODs over the Amazon Basin. The shape of this curve is similar to that of a boomerang, and thus the effect has been dubbed the "boomerang effect.” The increase in CF/COD with increasing AOD at low AODs is ascribed to the first and second indirect effects and is referred to as a microphysical effect of aerosols on clouds. The decrease in CF/COD at higher AODs is ascribed to enhanced warming of clouds due to absorbing aerosols, either as inclusions in drops or interstitially between drops. This is referred to as a radiative effect. To date, the interaction of the microphysical and radiative effects has not been simulated with a regional or global computer model. Here, we simulate the boomerang effect with the nested global-through-urban climate, air pollution, weather forecast model, GATOR-GCMOM, for the Amazon biomass burning season of 2006. We also compare the model with an extensive set of data, including satellite data from MODIS, TRMM, and CALIPSO, in situ surface observations, upper-air data, and AERONET data. Biomass burning emissions are obtained from the Global Fire Emissions Database (GFEDv2), and are combined with MODIS land cover data along with biomass burning emission factors. A high-resolution domain, nested within three increasingly coarser domains, is employed over the heaviest biomass burning region within the arc of deforestation. Modeled trends in cloud properties with aerosol loading compare well with MODIS observed trends, allowing causation of these observed correlations, including of the boomerang effect, to be determined by model results. The impact of aerosols on various cloud parameters, such as cloud optical thickness, cloud fraction, cloud liquid water/ice content, and precipitation, are shown through differences between simulations that include and exclude biomass burning emissions. This study suggests by cause and effect through numerical modeling that aerosol radiative effects counteract microphysical effects at high AODs, a result previously shown by correlation alone. As such, computer models that exclude treatment of cloud radiative effects are likely to overpredict the indirect effects of aerosols on clouds and underestimate the warming due to aerosols containing black carbon.
Consolidation of cloud computing in ATLAS
NASA Astrophysics Data System (ADS)
Taylor, Ryan P.; Domingues Cordeiro, Cristovao Jose; Giordano, Domenico; Hover, John; Kouba, Tomas; Love, Peter; McNab, Andrew; Schovancova, Jaroslava; Sobie, Randall; ATLAS Collaboration
2017-10-01
Throughout the first half of LHC Run 2, ATLAS cloud computing has undergone a period of consolidation, characterized by building upon previously established systems, with the aim of reducing operational effort, improving robustness, and reaching higher scale. This paper describes the current state of ATLAS cloud computing. Cloud activities are converging on a common contextualization approach for virtual machines, and cloud resources are sharing monitoring and service discovery components. We describe the integration of Vacuum resources, streamlined usage of the Simulation at Point 1 cloud for offline processing, extreme scaling on Amazon compute resources, and procurement of commercial cloud capacity in Europe. Finally, building on the previously established monitoring infrastructure, we have deployed a real-time monitoring and alerting platform which coalesces data from multiple sources, provides flexible visualization via customizable dashboards, and issues alerts and carries out corrective actions in response to problems.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2013-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
NASA Technical Reports Server (NTRS)
Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.
2014-01-01
This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.
Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.
Williams, Daniel R; Tang, Yinshan
2013-05-07
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Fienen, Michael N.; Kunicki, Thomas C.; Kester, Daniel E.
2011-01-01
This report documents cloudPEST-a Python module with functions to facilitate deployment of the model-independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2(TradeMark)) that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2 tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily on the Windows(Registered) operating system but are extensible to Linux(Registered).
Techniques and resources for storm-scale numerical weather prediction
NASA Technical Reports Server (NTRS)
Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert
1993-01-01
The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.
Cloud Computing in Support of Synchronized Disaster Response Operations
2010-09-01
scalable, Web application based on cloud computing technologies to facilitate communication between a broad range of public and private entities without...requiring them to compromise security or competitive advantage. The proposed design applies the unique benefits of cloud computing architectures such as
Architectural Implications of Cloud Computing
2011-10-24
Public Cloud Infrastructure-as-a- Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of...Twitter #SEIVirtualForum © 2011 Carnegie Mellon University Software -as-a- Service ( SaaS ) Model of software deployment in which a third-party...and System Solutions (RTSS) Program. Her current interests and projects are in service -oriented architecture (SOA), cloud computing, and context
Integrating Cloud-Computing-Specific Model into Aircraft Design
NASA Astrophysics Data System (ADS)
Zhimin, Tian; Qi, Lin; Guangwen, Yang
Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.
Cognitive Approaches for Medicine in Cloud Computing.
Ogiela, Urszula; Takizawa, Makoto; Ogiela, Lidia
2018-03-03
This paper will present the application potential of the cognitive approach to data interpretation, with special reference to medical areas. The possibilities of using the meaning approach to data description and analysis will be proposed for data analysis tasks in Cloud Computing. The methods of cognitive data management in Cloud Computing are aimed to support the processes of protecting data against unauthorised takeover and they serve to enhance the data management processes. The accomplishment of the proposed tasks will be the definition of algorithms for the execution of meaning data interpretation processes in safe Cloud Computing. • We proposed a cognitive methods for data description. • Proposed a techniques for secure data in Cloud Computing. • Application of cognitive approaches for medicine was described.
Towards an Approach of Semantic Access Control for Cloud Computing
NASA Astrophysics Data System (ADS)
Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai
With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.
A cloud-based system for automatic glaucoma screening.
Fengshou Yin; Damon Wing Kee Wong; Ying Quan; Ai Ping Yow; Ngan Meng Tan; Gopalakrishnan, Kavitha; Beng Hai Lee; Yanwu Xu; Zhuo Zhang; Jun Cheng; Jiang Liu
2015-08-01
In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases including glaucoma. However, these systems are usually standalone software with basic functions only, limiting their usage in a large scale. In this paper, we introduce an online cloud-based system for automatic glaucoma screening through the use of medical image-based pattern classification technologies. It is designed in a hybrid cloud pattern to offer both accessibility and enhanced security. Raw data including patient's medical condition and fundus image, and resultant medical reports are collected and distributed through the public cloud tier. In the private cloud tier, automatic analysis and assessment of colour retinal fundus images are performed. The ubiquitous anywhere access nature of the system through the cloud platform facilitates a more efficient and cost-effective means of glaucoma screening, allowing the disease to be detected earlier and enabling early intervention for more efficient intervention and disease management.
Making the most of cloud storage - a toolkit for exploitation by WLCG experiments
NASA Astrophysics Data System (ADS)
Alvarez Ayllon, Alejandro; Arsuaga Rios, Maria; Bitzes, Georgios; Furano, Fabrizio; Keeble, Oliver; Manzi, Andrea
2017-10-01
Understanding how cloud storage can be effectively used, either standalone or in support of its associated compute, is now an important consideration for WLCG. We report on a suite of extensions to familiar tools targeted at enabling the integration of cloud object stores into traditional grid infrastructures and workflows. Notable updates include support for a number of object store flavours in FTS3, Davix and gfal2, including mitigations for lack of vector reads; the extension of Dynafed to operate as a bridge between grid and cloud domains; protocol translation in FTS3; the implementation of extensions to DPM (also implemented by the dCache project) to allow 3rd party transfers over HTTP. The result is a toolkit which facilitates data movement and access between grid and cloud infrastructures, broadening the range of workflows suitable for cloud. We report on deployment scenarios and prototype experience, explaining how, for example, an Amazon S3 or Azure allocation can be exploited by grid workflows.
Easy, Collaborative and Engaging--The Use of Cloud Computing in the Design of Management Classrooms
ERIC Educational Resources Information Center
Schneckenberg, Dirk
2014-01-01
Background: Cloud computing has recently received interest in information systems research and practice as a new way to organise information with the help of an increasingly ubiquitous computer infrastructure. However, the use of cloud computing in higher education institutions and business schools, as well as its potential to create novel…
Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget
NASA Astrophysics Data System (ADS)
Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.
2016-12-01
A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the imager-based cloud retrievals (inverse problem) and the computed radiative fluxes (forward calculation). In addition to comparing radiative fluxes using the different ice cloud particle models, we also compare instantaneous TOA flux calculations with those observed by the CERES instrument.
Identifying the impact of G-quadruplexes on Affymetrix 3' arrays using cloud computing.
Memon, Farhat N; Owen, Anne M; Sanchez-Graillet, Olivia; Upton, Graham J G; Harrison, Andrew P
2010-01-15
A tetramer quadruplex structure is formed by four parallel strands of DNA/ RNA containing runs of guanine. These quadruplexes are able to form because guanine can Hoogsteen hydrogen bond to other guanines, and a tetrad of guanines can form a stable arrangement. Recently we have discovered that probes on Affymetrix GeneChips that contain runs of guanine do not measure gene expression reliably. We associate this finding with the likelihood that quadruplexes are forming on the surface of GeneChips. In order to cope with the rapidly expanding size of GeneChip array datasets in the public domain, we are exploring the use of cloud computing to replicate our experiments on 3' arrays to look at the effect of the location of G-spots (runs of guanines). Cloud computing is a recently introduced high-performance solution that takes advantage of the computational infrastructure of large organisations such as Amazon and Google. We expect that cloud computing will become widely adopted because it enables bioinformaticians to avoid capital expenditure on expensive computing resources and to only pay a cloud computing provider for what is used. Moreover, as well as financial efficiency, cloud computing is an ecologically-friendly technology, it enables efficient data-sharing and we expect it to be faster for development purposes. Here we propose the advantageous use of cloud computing to perform a large data-mining analysis of public domain 3' arrays.
Reconciliation of the cloud computing model with US federal electronic health record regulations
2011-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing. PMID:21727204
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
High-performance scientific computing in the cloud
NASA Astrophysics Data System (ADS)
Jorissen, Kevin; Vila, Fernando; Rehr, John
2011-03-01
Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.
Reconciliation of the cloud computing model with US federal electronic health record regulations.
Schweitzer, Eugene J
2012-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing.
OpenID connect as a security service in Cloud-based diagnostic imaging systems
NASA Astrophysics Data System (ADS)
Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter
2015-03-01
The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
NASA Astrophysics Data System (ADS)
Huang, Qian
2014-09-01
Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.
Adopting Cloud Computing in the Pakistan Navy
2015-06-01
administrative aspect is required to operate optimally, provide synchronized delivery of cloud services, and integrate multi-provider cloud environment...AND ABBREVIATIONS ANSI American National Standards Institute AWS Amazon web services CIA Confidentiality Integrity Availability CIO Chief...also adopted cloud computing as an integral component of military operations conducted either locally or remotely. With the use of 2 cloud services
Translational bioinformatics in the cloud: an affordable alternative
2010-01-01
With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Minnis, P.; Spangenberg, D.; Ayers, J. K.; Palikonda, R.; Vakhnin, A.; Dubois, R.; Murphy, P. R.
2014-12-01
The processing, storage and dissemination of satellite cloud and radiation products produced at NASA Langley Research Center are key activities for the Climate Science Branch. A constellation of systems operates in sync to accomplish these goals. Because of the complexity involved with operating such intricate systems, there are both high failure rates and high costs for hardware and system maintenance. Cloud computing has the potential to ameliorate cost and complexity issues. Over time, the cloud computing model has evolved and hybrid systems comprising off-site as well as on-site resources are now common. Towards our mission of providing the highest quality research products to the widest audience, we have explored the use of the Amazon Web Services (AWS) Cloud and Storage and present a case study of our results and efforts. This project builds upon NASA Langley Cloud and Radiation Group's experience with operating large and complex computing infrastructures in a reliable and cost effective manner to explore novel ways to leverage cloud computing resources in the atmospheric science environment. Our case study presents the project requirements and then examines the fit of AWS with the LaRC computing model. We also discuss the evaluation metrics, feasibility, and outcomes and close the case study with the lessons we learned that would apply to others interested in exploring the implementation of the AWS system in their own atmospheric science computing environments.
Addition of a Hydrological Cycle to the EPIC Jupiter Model
NASA Astrophysics Data System (ADS)
Dowling, T. E.; Palotai, C. J.
2002-09-01
We present a progress report on the development of the EPIC atmospheric model to include clouds, moist convection, and precipitation. Two major goals are: i) to study the influence that convective water clouds have on Jupiter's jets and vortices, such as those to the northwest of the Great Red Spot, and ii) to predict ammonia-cloud evolution for direct comparison to visual images (instead of relying on surrogates for clouds like potential vorticity). Data structures in the model are now set up to handle the vapor, liquid, and solid phases of the most common chemical species in planetary atmospheres. We have adapted the Prather conservation of second-order moments advection scheme to the model, which yields high accuracy for dealing with cloud edges. In collaboration with computer scientists H. Dietz and T. Mattox at the U. Kentucky, we have built a dedicated 40-node parallel computer that achieves 34 Gflops (double precision) at 74 cents per Mflop, and have updated the EPIC-model code to use cache-aware memory layouts and other modern optimizations. The latest test-case results of cloud evolution in the model will be presented. This research is funded by NASA's Planetary Atmospheres and EPSCoR programs.
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung
2015-04-01
To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.
ERIC Educational Resources Information Center
Metz, Rosalyn
2010-01-01
While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…
Geometric Data Perturbation-Based Personal Health Record Transactions in Cloud Computing
Balasubramaniam, S.; Kavitha, V.
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud. PMID:25767826
Geometric data perturbation-based personal health record transactions in cloud computing.
Balasubramaniam, S; Kavitha, V
2015-01-01
Cloud computing is a new delivery model for information technology services and it typically involves the provision of dynamically scalable and often virtualized resources over the Internet. However, cloud computing raises concerns on how cloud service providers, user organizations, and governments should handle such information and interactions. Personal health records represent an emerging patient-centric model for health information exchange, and they are outsourced for storage by third parties, such as cloud providers. With these records, it is necessary for each patient to encrypt their own personal health data before uploading them to cloud servers. Current techniques for encryption primarily rely on conventional cryptographic approaches. However, key management issues remain largely unsolved with these cryptographic-based encryption techniques. We propose that personal health record transactions be managed using geometric data perturbation in cloud computing. In our proposed scheme, the personal health record database is perturbed using geometric data perturbation and outsourced to the Amazon EC2 cloud.
AstroCloud, a Cyber-Infrastructure for Astronomy Research: Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Li, C.; Wang, J.; Cui, C.; He, B.; Fan, D.; Yang, Y.; Chen, J.; Zhang, H.; Yu, C.; Xiao, J.; Wang, C.; Cao, Z.; Fan, Y.; Hong, Z.; Li, S.; Mi, L.; Wan, W.; Wang, J.; Yin, S.
2015-09-01
AstroCloud is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on CloudStack, an open source software, we set up the cloud computing environment for AstroCloud Project. It consists of five distributed nodes across the mainland of China. Users can use and analysis data in this cloud computing environment. Based on GlusterFS, we built a scalable cloud storage system. Each user has a private space, which can be shared among different virtual machines and desktop systems. With this environments, astronomer can access to astronomical data collected by different telescopes and data centers easily, and data producers can archive their datasets safely.
ERIC Educational Resources Information Center
Venkatesh, Vijay P.
2013-01-01
The current computing landscape owes its roots to the birth of hardware and software technologies from the 1940s and 1950s. Since then, the advent of mainframes, miniaturized computing, and internetworking has given rise to the now prevalent cloud computing era. In the past few months just after 2010, cloud computing adoption has picked up pace…
Cloud Computing at the Tactical Edge
2012-10-01
Cloud Computing (CloudCom ’09). Bejing , China , December 2009. Springer-Verlag, 2009. [Marinelli 2009] Marinelli, E. Hyrax: Cloud Computing on Mobile...offloading is appropriate. Each applica- tion overlay is generated from the same Base VM Image that resides in the cloudlet. In an opera - tional setting...overlay, the following opera - tions execute: 1. The overlay is decompressed using the tools listed in Section 4.2. 2. VM synthesis is performed through
Collaborative Working Architecture for IoT-Based Applications.
Mora, Higinio; Signes-Pont, María Teresa; Gil, David; Johnsson, Magnus
2018-05-23
The new sensing applications need enhanced computing capabilities to handle the requirements of complex and huge data processing. The Internet of Things (IoT) concept brings processing and communication features to devices. In addition, the Cloud Computing paradigm provides resources and infrastructures for performing the computations and outsourcing the work from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based applications, however, there is still much research to be done to properly gear all the systems for working together. This work proposes a collaborative model and an architecture to take advantage of the available computing resources. The resulting architecture involves a novel network design with different levels which combines sensing and processing capabilities based on the Mobile Cloud Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can be used in diverse real applications. The results show the flexibility of the architecture to perform complex computational tasks of advanced applications.
ERIC Educational Resources Information Center
Aaron, Lynn S.; Roche, Catherine M.
2012-01-01
"Cloud computing" refers to the use of computing resources on the Internet instead of on individual personal computers. The field is expanding and has significant potential value for educators. This is discussed with a focus on four main functions: file storage, file synchronization, document creation, and collaboration--each of which has…
The Development of an Educational Cloud for IS Curriculum through a Student-Run Data Center
ERIC Educational Resources Information Center
Hwang, Drew; Pike, Ron; Manson, Dan
2016-01-01
The industry-wide emphasis on cloud computing has created a new focus in Information Systems (IS) education. As the demand for graduates with adequate knowledge and skills in cloud computing is on the rise, IS educators are facing a challenge to integrate cloud technology into their curricula. Although public cloud tools and services are available…
An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing.
Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei
2016-02-18
Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users' costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers' resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center's energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically.
An Efficient Virtual Machine Consolidation Scheme for Multimedia Cloud Computing
Han, Guangjie; Que, Wenhui; Jia, Gangyong; Shu, Lei
2016-01-01
Cloud computing has innovated the IT industry in recent years, as it can delivery subscription-based services to users in the pay-as-you-go model. Meanwhile, multimedia cloud computing is emerging based on cloud computing to provide a variety of media services on the Internet. However, with the growing popularity of multimedia cloud computing, its large energy consumption cannot only contribute to greenhouse gas emissions, but also result in the rising of cloud users’ costs. Therefore, the multimedia cloud providers should try to minimize its energy consumption as much as possible while satisfying the consumers’ resource requirements and guaranteeing quality of service (QoS). In this paper, we have proposed a remaining utilization-aware (RUA) algorithm for virtual machine (VM) placement, and a power-aware algorithm (PA) is proposed to find proper hosts to shut down for energy saving. These two algorithms have been combined and applied to cloud data centers for completing the process of VM consolidation. Simulation results have shown that there exists a trade-off between the cloud data center’s energy consumption and service-level agreement (SLA) violations. Besides, the RUA algorithm is able to deal with variable workload to prevent hosts from overloading after VM placement and to reduce the SLA violations dramatically. PMID:26901201
Cloud Infrastructure & Applications - CloudIA
NASA Astrophysics Data System (ADS)
Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank
The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... Rehabilitation Research--Disability and Rehabilitation Research Project--Inclusive Cloud and Web Computing CFDA... inclusive Cloud and Web computing. The Assistant Secretary may use this priority for competitions in fiscal... Priority for Inclusive Cloud and Web Computing'' in the subject line of your electronic message. FOR...
Cloud Computing for Teaching Practice: A New Design?
ERIC Educational Resources Information Center
Saadatdoost, Robab; Sim, Alex Tze Hiang; Jafarkarimi, Hosein; Hee, Jee Mei; Saadatdoost, Leila
2014-01-01
Recently researchers have shown an increased interest in cloud computing technology. It is becoming increasingly difficult to ignore cloud computing technology in education context. However rapid changes in information technology are having a serious effect on teaching framework designs. So far, however, there has been little discussion about…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
... Rehabilitation Research--Disability and Rehabilitation Research Projects--Inclusive Cloud and Web Computing... Rehabilitation Research Projects (DRRPs)--Inclusive Cloud and Web Computing Notice inviting applications for new...#DRRP . Priorities: Priority 1--DRRP on Inclusive Cloud and Web Computing-- is from the notice of final...
Navigating the Challenges of the Cloud
ERIC Educational Resources Information Center
Ovadia, Steven
2010-01-01
Cloud computing is increasingly popular in education. Cloud computing is "the delivery of computer services from vast warehouses of shared machines that enables companies and individuals to cut costs by handing over the running of their email, customer databases or accounting software to someone else, and then accessing it over the internet."…
A study on strategic provisioning of cloud computing services.
Whaiduzzaman, Md; Haque, Mohammad Nazmul; Rejaul Karim Chowdhury, Md; Gani, Abdullah
2014-01-01
Cloud computing is currently emerging as an ever-changing, growing paradigm that models "everything-as-a-service." Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified.
A Study on Strategic Provisioning of Cloud Computing Services
Rejaul Karim Chowdhury, Md
2014-01-01
Cloud computing is currently emerging as an ever-changing, growing paradigm that models “everything-as-a-service.” Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified. PMID:25032243
Evaluating cloud retrieval algorithms with the ARM BBHRP framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlawer,E.; Dunn,M.; Mlawer, E.
2008-03-10
Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analysesmore » has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.« less
How to Cloud for Earth Scientists: An Introduction
NASA Technical Reports Server (NTRS)
Lynnes, Chris
2018-01-01
This presentation is a tutorial on getting started with cloud computing for the purposes of Earth Observation datasets. We first discuss some of the main advantages that cloud computing can provide for the Earth scientist: copious processing power, immense and affordable data storage, and rapid startup time. We also talk about some of the challenges of getting the most out of cloud computing: re-organizing the way data are analyzed, handling node failures and attending.
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; ...
2017-06-19
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called “ultraparameterization” (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (~14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers.more » Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.« less
Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence
NASA Astrophysics Data System (ADS)
Parishani, Hossein; Pritchard, Michael S.; Bretherton, Christopher S.; Wyant, Matthew C.; Khairoutdinov, Marat
2017-07-01
Systematic biases in the representation of boundary layer (BL) clouds are a leading source of uncertainty in climate projections. A variation on superparameterization (SP) called "ultraparameterization" (UP) is developed, in which the grid spacing of the cloud-resolving models (CRMs) is fine enough (250 × 20 m) to explicitly capture the BL turbulence, associated clouds, and entrainment in a global climate model capable of multiyear simulations. UP is implemented within the Community Atmosphere Model using 2° resolution (˜14,000 embedded CRMs) with one-moment microphysics. By using a small domain and mean-state acceleration, UP is computationally feasible today and promising for exascale computers. Short-duration global UP hindcasts are compared with SP and satellite observations of top-of-atmosphere radiation and cloud vertical structure. The most encouraging improvement is a deeper BL and more realistic vertical structure of subtropical stratocumulus (Sc) clouds, due to stronger vertical eddy motions that promote entrainment. Results from 90 day integrations show climatological errors that are competitive with SP, with a significant improvement in the diurnal cycle of offshore Sc liquid water. Ongoing concerns with the current UP implementation include a dim bias for near-coastal Sc that also occurs less prominently in SP and a bright bias over tropical continental deep convection zones. Nevertheless, UP makes global eddy-permitting simulation a feasible and interesting alternative to conventionally parameterized GCMs or SP-GCMs with turbulence parameterizations for studying BL cloud-climate and cloud-aerosol feedback.
On the Modeling and Management of Cloud Data Analytics
NASA Astrophysics Data System (ADS)
Castillo, Claris; Tantawi, Asser; Steinder, Malgorzata; Pacifici, Giovanni
A new era is dawning where vast amount of data is subjected to intensive analysis in a cloud computing environment. Over the years, data about a myriad of things, ranging from user clicks to galaxies, have been accumulated, and continue to be collected, on storage media. The increasing availability of such data, along with the abundant supply of compute power and the urge to create useful knowledge, gave rise to a new data analytics paradigm in which data is subjected to intensive analysis, and additional data is created in the process. Meanwhile, a new cloud computing environment has emerged where seemingly limitless compute and storage resources are being provided to host computation and data for multiple users through virtualization technologies. Such a cloud environment is becoming the home for data analytics. Consequently, providing good performance at run-time to data analytics workload is an important issue for cloud management. In this paper, we provide an overview of the data analytics and cloud environment landscapes, and investigate the performance management issues related to running data analytics in the cloud. In particular, we focus on topics such as workload characterization, profiling analytics applications and their pattern of data usage, cloud resource allocation, placement of computation and data and their dynamic migration in the cloud, and performance prediction. In solving such management problems one relies on various run-time analytic models. We discuss approaches for modeling and optimizing the dynamic data analytics workload in the cloud environment. All along, we use the Map-Reduce paradigm as an illustration of data analytics.
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...
2015-02-19
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
NASA Astrophysics Data System (ADS)
Meertens, C. M.; Boler, F. M.; Ertz, D. J.; Mencin, D.; Phillips, D.; Baker, S.
2017-12-01
UNAVCO, in its role as a NSF facility for geodetic infrastructure and data, has succeeded for over two decades using on-premises infrastructure, and while the promise of cloud-based infrastructure is well-established, significant questions about suitability of such infrastructure for facility-scale services remain. Primarily through the GeoSciCloud award from NSF EarthCube, UNAVCO is investigating the costs, advantages, and disadvantages of providing its geodetic data and services in the cloud versus using UNAVCO's on-premises infrastructure. (IRIS is a collaborator on the project and is performing its own suite of investigations). In contrast to the 2-3 year time scale for the research cycle, the time scale of operation and planning for NSF facilities is for a minimum of five years and for some services extends to a decade or more. Planning for on-premises infrastructure is deliberate, and migrations typically take months to years to fully implement. Migrations to a cloud environment can only go forward with similar deliberate planning and understanding of all costs and benefits. The EarthCube GeoSciCloud project is intended to address the uncertainties of facility-level operations in the cloud. Investigations are being performed in a commercial cloud environment (Amazon AWS) during the first year of the project and in a private cloud environment (NSF XSEDE resource at the Texas Advanced Computing Center) during the second year. These investigations are expected to illuminate the potential as well as the limitations of running facility scale production services in the cloud. The work includes running parallel equivalent cloud-based services to on premises services and includes: data serving via ftp from a large data store, operation of a metadata database, production scale processing of multiple months of geodetic data, web services delivery of quality checked data and products, large-scale compute services for event post-processing, and serving real time data from a network of 700-plus GPS stations. The evaluation is based on a suite of metrics that we have developed to elucidate the effectiveness of cloud-based services in price, performance, and management. Services are currently running in AWS and evaluation is underway.
Secure Cloud Computing Implementation Study For Singapore Military Operations
2016-09-01
COMPUTING IMPLEMENTATION STUDY FOR SINGAPORE MILITARY OPERATIONS by Lai Guoquan September 2016 Thesis Advisor: John D. Fulp Co-Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE SECURE CLOUD COMPUTING IMPLEMENTATION STUDY FOR SINGAPORE MILITARY OPERATIONS 5. FUNDING NUMBERS...addition, from the military perspective, the benefits of cloud computing were analyzed from a study of the U.S. Department of Defense. Then, using
Operating Dedicated Data Centers - Is It Cost-Effective?
NASA Astrophysics Data System (ADS)
Ernst, M.; Hogue, R.; Hollowell, C.; Strecker-Kellog, W.; Wong, A.; Zaytsev, A.
2014-06-01
The advent of cloud computing centres such as Amazon's EC2 and Google's Computing Engine has elicited comparisons with dedicated computing clusters. Discussions on appropriate usage of cloud resources (both academic and commercial) and costs have ensued. This presentation discusses a detailed analysis of the costs of operating and maintaining the RACF (RHIC and ATLAS Computing Facility) compute cluster at Brookhaven National Lab and compares them with the cost of cloud computing resources under various usage scenarios. An extrapolation of likely future cost effectiveness of dedicated computing resources is also presented.
Cloud Technology May Widen Genomic Bottleneck - TCGA
Computational biologist Dr. Ilya Shmulevich suggests that renting cloud computing power might widen the bottleneck for analyzing genomic data. Learn more about his experience with the Cloud in this TCGA in Action Case Study.
Performance Evaluation of Resource Management in Cloud Computing Environments.
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price.
Performance Evaluation of Resource Management in Cloud Computing Environments
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price. PMID:26555730
Development of a Cloud Resolving Model for Heterogeneous Supercomputers
NASA Astrophysics Data System (ADS)
Sreepathi, S.; Norman, M. R.; Pal, A.; Hannah, W.; Ponder, C.
2017-12-01
A cloud resolving climate model is needed to reduce major systematic errors in climate simulations due to structural uncertainty in numerical treatments of convection - such as convective storm systems. This research describes the porting effort to enable SAM (System for Atmosphere Modeling) cloud resolving model on heterogeneous supercomputers using GPUs (Graphical Processing Units). We have isolated a standalone configuration of SAM that is targeted to be integrated into the DOE ACME (Accelerated Climate Modeling for Energy) Earth System model. We have identified key computational kernels from the model and offloaded them to a GPU using the OpenACC programming model. Furthermore, we are investigating various optimization strategies intended to enhance GPU utilization including loop fusion/fission, coalesced data access and loop refactoring to a higher abstraction level. We will present early performance results, lessons learned as well as optimization strategies. The computational platform used in this study is the Summitdev system, an early testbed that is one generation removed from Summit, the next leadership class supercomputer at Oak Ridge National Laboratory. The system contains 54 nodes wherein each node has 2 IBM POWER8 CPUs and 4 NVIDIA Tesla P100 GPUs. This work is part of a larger project, ACME-MMF component of the U.S. Department of Energy(DOE) Exascale Computing Project. The ACME-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model. Super-parameterization dramatically increases arithmetic intensity, making the MMF approach an ideal strategy to achieve good performance on emerging exascale computing architectures. The goal of the project is to integrate superparameterization into ACME, and explore its full potential to scientifically and computationally advance climate simulation and prediction.
Platform for High-Assurance Cloud Computing
2016-06-01
to create today’s standard cloud computing applications and services. Additionally , our SuperCloud (a related but distinct project under the same... Additionally , our SuperCloud (a related but distinct project under the same MRC funding) reduces vendor lock-in and permits application to migrate, to follow...managing key- value storage with strong assurance properties. This first accomplishment allows us to climb the cloud technical stack, by offering
MCloud: Secure Provenance for Mobile Cloud Users
2016-10-03
Feasibility of Smartphone Clouds , 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid). 04-MAY- 15, Shenzhen, China...final decision. MCloud: Secure Provenance for Mobile Cloud Users Final Report Bogdan Carbunar Florida International University Computing and...Release; Distribution Unlimited UU UU UU UU 03-10-2016 31-May-2013 30-May-2016 Final Report: MCloud: Secure Provenance for Mobile Cloud Users The views
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian; ...
2017-09-29
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzman, Burt; Bauerdick, Lothar A. T.; Bockelman, Brian
Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing interest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized bothmore » local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. Additionally, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.« less
A lightweight distributed framework for computational offloading in mobile cloud computing.
Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul
2014-01-01
The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.
A Lightweight Distributed Framework for Computational Offloading in Mobile Cloud Computing
Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul
2014-01-01
The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC. PMID:25127245
Information Security in the Age of Cloud Computing
ERIC Educational Resources Information Center
Sims, J. Eric
2012-01-01
Information security has been a particularly hot topic since the enhanced internal control requirements of Sarbanes-Oxley (SOX) were introduced in 2002. At about this same time, cloud computing started its explosive growth. Outsourcing of mission-critical functions has always been a gamble for managers, but the advantages of cloud computing are…
Cloud Computing in the Curricula of Schools of Computer Science and Information Systems
ERIC Educational Resources Information Center
Lawler, James P.
2011-01-01
The cloud continues to be a developing area of information systems. Evangelistic literature in the practitioner field indicates benefit for business firms but disruption for technology departments of the firms. Though the cloud currently is immature in methodology, this study defines a model program by which computer science and information…
Cloud Computing: Should It Be Integrated into the Curriculum?
ERIC Educational Resources Information Center
Changchit, Chuleeporn
2015-01-01
Cloud computing has become increasingly popular among users and businesses around the world, and education is no exception. Cloud computing can bring an increased number of benefits to an educational setting, not only for its cost effectiveness, but also for the thirst for technology that college students have today, which allows learning and…
A Semantic Based Policy Management Framework for Cloud Computing Environments
ERIC Educational Resources Information Center
Takabi, Hassan
2013-01-01
Cloud computing paradigm has gained tremendous momentum and generated intensive interest. Although security issues are delaying its fast adoption, cloud computing is an unstoppable force and we need to provide security mechanisms to ensure its secure adoption. In this dissertation, we mainly focus on issues related to policy management and access…
ERIC Educational Resources Information Center
Ishola, Bashiru Abayomi
2017-01-01
Cloud computing has recently emerged as a potential alternative to the traditional on-premise computing that businesses can leverage to achieve operational efficiencies. Consequently, technology managers are often tasked with the responsibilities to analyze the barriers and variables critical to organizational cloud adoption decisions. This…
CANFAR+Skytree: A Cloud Computing and Data Mining System for Astronomy
NASA Astrophysics Data System (ADS)
Ball, N. M.
2013-10-01
This is a companion Focus Demonstration article to the CANFAR+Skytree poster (Ball 2013, this volume), demonstrating the usage of the Skytree machine learning software on the Canadian Advanced Network for Astronomical Research (CANFAR) cloud computing system. CANFAR+Skytree is the world's first cloud computing system for data mining in astronomy.
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert
2016-01-01
A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.
Cloud Computing for Protein-Ligand Binding Site Comparison
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824
Cloud computing for protein-ligand binding site comparison.
Hung, Che-Lun; Hua, Guan-Jie
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.
NASA Astrophysics Data System (ADS)
Brandic, Ivona; Music, Dejan; Dustdar, Schahram
Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.
A new data collaboration service based on cloud computing security
NASA Astrophysics Data System (ADS)
Ying, Ren; Li, Hua-Wei; Wang, Li na
2017-09-01
With the rapid development of cloud computing, the storage and usage of data have undergone revolutionary changes. Data owners can store data in the cloud. While bringing convenience, it also brings many new challenges to cloud data security. A key issue is how to support a secure data collaboration service that supports access and updates to cloud data. This paper proposes a secure, efficient and extensible data collaboration service, which prevents data leaks in cloud storage, supports one to many encryption mechanisms, and also enables cloud data writing and fine-grained access control.
AceCloud: Molecular Dynamics Simulations in the Cloud.
Harvey, M J; De Fabritiis, G
2015-05-26
We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.
NASA Astrophysics Data System (ADS)
Dowling, J. A.; Burdett, N.; Greer, P. B.; Sun, J.; Parker, J.; Pichler, P.; Stanwell, P.; Chandra, S.; Rivest-Hénault, D.; Ghose, S.; Salvado, O.; Fripp, J.
2014-03-01
Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.
Cloud computing in medical imaging.
Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R
2013-07-01
Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Technical Reports Server (NTRS)
Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce
2011-01-01
Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases
On Study of Building Smart Campus under Conditions of Cloud Computing and Internet of Things
NASA Astrophysics Data System (ADS)
Huang, Chao
2017-12-01
two new concepts in the information era are cloud computing and internet of things, although they are defined differently, they share close relationship. It is a new measure to realize leap-forward development of campus by virtue of cloud computing, internet of things and other internet technologies to build smart campus. This paper, centering on the construction of smart campus, analyzes and compares differences between network in traditional campus and that in smart campus, and makes proposals on how to build smart campus finally from the perspectives of cloud computing and internet of things.
Design and Implement of Astronomical Cloud Computing Environment In China-VO
NASA Astrophysics Data System (ADS)
Li, Changhua; Cui, Chenzhou; Mi, Linying; He, Boliang; Fan, Dongwei; Li, Shanshan; Yang, Sisi; Xu, Yunfei; Han, Jun; Chen, Junyi; Zhang, Hailong; Yu, Ce; Xiao, Jian; Wang, Chuanjun; Cao, Zihuang; Fan, Yufeng; Liu, Liang; Chen, Xiao; Song, Wenming; Du, Kangyu
2017-06-01
Astronomy cloud computing environment is a cyber-Infrastructure for Astronomy Research initiated by Chinese Virtual Observatory (China-VO) under funding support from NDRC (National Development and Reform commission) and CAS (Chinese Academy of Sciences). Based on virtualization technology, astronomy cloud computing environment was designed and implemented by China-VO team. It consists of five distributed nodes across the mainland of China. Astronomer can get compuitng and storage resource in this cloud computing environment. Through this environments, astronomer can easily search and analyze astronomical data collected by different telescopes and data centers , and avoid the large scale dataset transportation.
Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus
NASA Astrophysics Data System (ADS)
Baun, Christian; Kunze, Marcel
Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.
NASA Astrophysics Data System (ADS)
Boichu, Marie; Clarisse, Lieven; Khvorostyanov, Dmitry; Clerbaux, Cathy
2014-04-01
Forecasting the dispersal of volcanic clouds during an eruption is of primary importance, especially for ensuring aviation safety. As volcanic emissions are characterized by rapid variations of emission rate and height, the (generally) high level of uncertainty in the emission parameters represents a critical issue that limits the robustness of volcanic cloud dispersal forecasts. An inverse modeling scheme, combining satellite observations of the volcanic cloud with a regional chemistry-transport model, allows reconstructing this source term at high temporal resolution. We demonstrate here how a progressive assimilation of freshly acquired satellite observations, via such an inverse modeling procedure, allows for delivering robust sulfur dioxide (SO2) cloud dispersal forecasts during the eruption. This approach provides a computationally cheap estimate of the expected location and mass loading of volcanic clouds, including the identification of SO2-rich parts.
NASA Astrophysics Data System (ADS)
Kobayashi, M. I. N.; Inutsuka, S.; Kobayashi, H.; Hasegawa, K.
We formulate the evolution equation for the giant molecular cloud (GMC) mass functions including self-growth of GMCs through the thermal instability, self-dispersal due to massive stars born in GMCs, cloud-cloud collisions (CCCs), and gas resurrection that replenishes the minimum-mass GMC population. The computed time evolutions obtained from this formulation suggest that the slope of GMC mass function in the mass range <105.5 Mȯ is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC process modifies only the massive end of the mass function. Our results also suggest that most of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60 per cent contributes in inter-arm regions.
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-07
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.
ERIC Educational Resources Information Center
Alshihri, Bandar A.
2017-01-01
Cloud computing is a recent computing paradigm that has been integrated into the educational system. It provides numerous opportunities for delivering a variety of computing services in a way that has not been experienced before. The Google Company is among the top business companies that afford their cloud services by launching a number of…
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
Integration of High-Performance Computing into Cloud Computing Services
NASA Astrophysics Data System (ADS)
Vouk, Mladen A.; Sills, Eric; Dreher, Patrick
High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).
Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.
Liao, Wen-Hwa; Qiu, Wan-Li
2016-01-01
Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture.
Unidata cyberinfrastructure in the cloud: A progress report
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan
2016-04-01
Data services, software, and committed support are critical components of geosciences cyber-infrastructure that can help scientists address problems of unprecedented complexity, scale, and scope. Unidata is currently working on innovative ideas, new paradigms, and novel techniques to complement and extend its offerings. Our goal is to empower users so that they can tackle major, heretofore difficult problems. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. To realize the above vision, Unidata is working toward: * Providing access to many types of data from a cloud (e.g., TDS, RAMADDA and EDEX); * Deploying data-proximate tools to easily process, analyze and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Fostering partnerships with NOAA and public cloud vendors (e.g., Amazon) to harness their capabilities and resources for the benefit of the academic community.
The Ethics of Cloud Computing.
de Bruin, Boudewijn; Floridi, Luciano
2017-02-01
Cloud computing is rapidly gaining traction in business. It offers businesses online services on demand (such as Gmail, iCloud and Salesforce) and allows them to cut costs on hardware and IT support. This is the first paper in business ethics dealing with this new technology. It analyzes the informational duties of hosting companies that own and operate cloud computing datacentres (e.g., Amazon). It considers the cloud services providers leasing 'space in the cloud' from hosting companies (e.g., Dropbox, Salesforce). And it examines the business and private 'clouders' using these services. The first part of the paper argues that hosting companies, services providers and clouders have mutual informational (epistemic) obligations to provide and seek information about relevant issues such as consumer privacy, reliability of services, data mining and data ownership. The concept of interlucency is developed as an epistemic virtue governing ethically effective communication. The second part considers potential forms of government restrictions on or proscriptions against the development and use of cloud computing technology. Referring to the concept of technology neutrality, it argues that interference with hosting companies and cloud services providers is hardly ever necessary or justified. It is argued, too, however, that businesses using cloud services (e.g., banks, law firms, hospitals etc. storing client data in the cloud) will have to follow rather more stringent regulations.
Opportunities and challenges of cloud computing to improve health care services.
Kuo, Alex Mu-Hsing
2011-09-21
Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed.
HyspIRI Low Latency Concept and Benchmarks
NASA Technical Reports Server (NTRS)
Mandl, Dan
2010-01-01
Topics include HyspIRI low latency data ops concept, HyspIRI data flow, ongoing efforts, experiment with Web Coverage Processing Service (WCPS) approach to injecting new algorithms into SensorWeb, low fidelity HyspIRI IPM testbed, compute cloud testbed, open cloud testbed environment, Global Lambda Integrated Facility (GLIF) and OCC collaboration with Starlight, delay tolerant network (DTN) protocol benchmarking, and EO-1 configuration for preliminary DTN prototype.
Microsoft Office 365 Deployment Continues through June at NCI at Frederick | Poster
The latest Microsoft suite, Office 365 (O365), is being deployed to all NCI at Frederick computers during the months of May and June to comply with federal mandates. The suite includes the latest versions of Word, Excel, Outlook, PowerPoint, and Skype for Business, along with cloud-based capabilities. These cloud-based capabilities will help meet the federal mandates that
Exploiting GPUs in Virtual Machine for BioCloud
Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon
2013-01-01
Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment. PMID:23710465
Exploiting GPUs in virtual machine for BioCloud.
Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon
2013-01-01
Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
A Strategic Approach to Network Defense: Framing the Cloud
2011-03-10
accepted network defensive principles, to reduce risks associated with emerging virtualization capabilities and scalability of cloud computing . This expanded...defensive framework can assist enterprise networking and cloud computing architects to better design more secure systems.
BioVLAB-MMIA: a cloud environment for microRNA and mRNA integrated analysis (MMIA) on Amazon EC2.
Lee, Hyungro; Yang, Youngik; Chae, Heejoon; Nam, Seungyoon; Choi, Donghoon; Tangchaisin, Patanachai; Herath, Chathura; Marru, Suresh; Nephew, Kenneth P; Kim, Sun
2012-09-01
MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research. However, the ability to conduct genome-wide microRNA-mRNA (gene) integration currently requires sophisticated, high-end informatics tools, significant expertise in bioinformatics and computer science to carry out the complex integration analysis. In addition, increased computing infrastructure capabilities are essential in order to accommodate large data sets. In this study, we have extended the BioVLAB cloud workbench to develop an environment for the integrated analysis of microRNA and mRNA expression data, named BioVLAB-MMIA. The workbench facilitates computations on the Amazon EC2 and S3 resources orchestrated by the XBaya Workflow Suite. The advantages of BioVLAB-MMIA over the web-based MMIA system include: 1) readily expanded as new computational tools become available; 2) easily modifiable by re-configuring graphic icons in the workflow; 3) on-demand cloud computing resources can be used on an "as needed" basis; 4) distributed orchestration supports complex and long running workflows asynchronously. We believe that BioVLAB-MMIA will be an easy-to-use computing environment for researchers who plan to perform genome-wide microRNA-mRNA (gene) integrated analysis tasks.
Trusted computing strengthens cloud authentication.
Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba
2014-01-01
Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.
Trusted Computing Strengthens Cloud Authentication
2014-01-01
Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model. PMID:24701149
Sector and Sphere: the design and implementation of a high-performance data cloud
Gu, Yunhong; Grossman, Robert L.
2009-01-01
Cloud computing has demonstrated that processing very large datasets over commodity clusters can be done simply, given the right programming model and infrastructure. In this paper, we describe the design and implementation of the Sector storage cloud and the Sphere compute cloud. By contrast with the existing storage and compute clouds, Sector can manage data not only within a data centre, but also across geographically distributed data centres. Similarly, the Sphere compute cloud supports user-defined functions (UDFs) over data both within and across data centres. As a special case, MapReduce-style programming can be implemented in Sphere by using a Map UDF followed by a Reduce UDF. We describe some experimental studies comparing Sector/Sphere and Hadoop using the Terasort benchmark. In these studies, Sector is approximately twice as fast as Hadoop. Sector/Sphere is open source. PMID:19451100
Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)
NASA Astrophysics Data System (ADS)
Nebert, D. D.; Huang, Q.; Yang, C.
2013-12-01
The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.
Infrastructures for Distributed Computing: the case of BESIII
NASA Astrophysics Data System (ADS)
Pellegrino, J.
2018-05-01
The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.
ERIC Educational Resources Information Center
Liao, Yuan
2011-01-01
The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…
NASA Astrophysics Data System (ADS)
Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego
2017-04-01
In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior, with relative errors less than 1% for the radiance derivatives, but FADOME is 2 times faster than LDOME and 2.5 times faster than LMOME.
An integrated system for land resources supervision based on the IoT and cloud computing
NASA Astrophysics Data System (ADS)
Fang, Shifeng; Zhu, Yunqiang; Xu, Lida; Zhang, Jinqu; Zhou, Peiji; Luo, Kan; Yang, Jie
2017-01-01
Integrated information systems are important safeguards for the utilisation and development of land resources. Information technologies, including the Internet of Things (IoT) and cloud computing, are inevitable requirements for the quality and efficiency of land resources supervision tasks. In this study, an economical and highly efficient supervision system for land resources has been established based on IoT and cloud computing technologies; a novel online and offline integrated system with synchronised internal and field data that includes the entire process of 'discovering breaches, analysing problems, verifying fieldwork and investigating cases' was constructed. The system integrates key technologies, such as the automatic extraction of high-precision information based on remote sensing, semantic ontology-based technology to excavate and discriminate public sentiment on the Internet that is related to illegal incidents, high-performance parallel computing based on MapReduce, uniform storing and compressing (bitwise) technology, global positioning system data communication and data synchronisation mode, intelligent recognition and four-level ('device, transfer, system and data') safety control technology. The integrated system based on a 'One Map' platform has been officially implemented by the Department of Land and Resources of Guizhou Province, China, and was found to significantly increase the efficiency and level of land resources supervision. The system promoted the overall development of informatisation in fields related to land resource management.
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee
2015-01-01
Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962
Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds
NASA Astrophysics Data System (ADS)
Li, Rui; Chen, Lei; Li, Wen-Syan
Cloud computing denotes the latest trend in application development for parallel computing on massive data volumes. It relies on clouds of servers to handle tasks that used to be managed by an individual server. With cloud computing, software vendors can provide business intelligence and data analytic services for internet scale data sets. Many open source projects, such as Hadoop, offer various software components that are essential for building a cloud infrastructure. Current Hadoop (and many others) requires users to configure cloud infrastructures via programs and APIs and such configuration is fixed during the runtime. In this chapter, we propose a workload manager (WLM), called CloudWeaver, which provides automated configuration of a cloud infrastructure for runtime execution. The workload management is data-driven and can adapt to dynamic nature of operator throughput during different execution phases. CloudWeaver works for a single job and a workload consisting of multiple jobs running concurrently, which aims at maximum throughput using a minimum set of processors.
Legal issues in clouds: towards a risk inventory.
Djemame, Karim; Barnitzke, Benno; Corrales, Marcelo; Kiran, Mariam; Jiang, Ming; Armstrong, Django; Forgó, Nikolaus; Nwankwo, Iheanyi
2013-01-28
Cloud computing technologies have reached a high level of development, yet a number of obstacles still exist that must be overcome before widespread commercial adoption can become a reality. In a cloud environment, end users requesting services and cloud providers negotiate service-level agreements (SLAs) that provide explicit statements of all expectations and obligations of the participants. If cloud computing is to experience widespread commercial adoption, then incorporating risk assessment techniques is essential during SLA negotiation and service operation. This article focuses on the legal issues surrounding risk assessment in cloud computing. Specifically, it analyses risk regarding data protection and security, and presents the requirements of an inherent risk inventory. The usefulness of such a risk inventory is described in the context of the OPTIMIS project.
Exploration of cloud computing late start LDRD #149630 : Raincoat. v. 2.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Echeverria, Victor T.; Metral, Michael David; Leger, Michelle A.
This report contains documentation from an interoperability study conducted under the Late Start LDRD 149630, Exploration of Cloud Computing. A small late-start LDRD from last year resulted in a study (Raincoat) on using Virtual Private Networks (VPNs) to enhance security in a hybrid cloud environment. Raincoat initially explored the use of OpenVPN on IPv4 and demonstrates that it is possible to secure the communication channel between two small 'test' clouds (a few nodes each) at New Mexico Tech and Sandia. We extended the Raincoat study to add IPSec support via Vyatta routers, to interface with a public cloud (Amazon Elasticmore » Compute Cloud (EC2)), and to be significantly more scalable than the previous iteration. The study contributed to our understanding of interoperability in a hybrid cloud.« less
GATE Monte Carlo simulation in a cloud computing environment
NASA Astrophysics Data System (ADS)
Rowedder, Blake Austin
The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.
International Symposium on Grids and Clouds (ISGC) 2016
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2016 will be held at Academia Sinica in Taipei, Taiwan from 13-18 March 2016, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). The theme of ISGC 2016 focuses on“Ubiquitous e-infrastructures and Applications”. Contemporary research is impossible without a strong IT component - researchers rely on the existence of stable and widely available e-infrastructures and their higher level functions and properties. As a result of these expectations, e-Infrastructures are becoming ubiquitous, providing an environment that supports large scale collaborations that deal with global challenges as well as smaller and temporal research communities focusing on particular scientific problems. To support those diversified communities and their needs, the e-Infrastructures themselves are becoming more layered and multifaceted, supporting larger groups of applications. Following the call for the last year conference, ISGC 2016 continues its aim to bring together users and application developers with those responsible for the development and operation of multi-purpose ubiquitous e-Infrastructures. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities, Arts, and Social Sciences (HASS) Applications, Virtual Research Environment (including Middleware, tools, services, workflow, etc.), Data Management, Big Data, Networking & Security, Infrastructure & Operations, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC), etc.
Spontaneous Ad Hoc Mobile Cloud Computing Network
Lacuesta, Raquel; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes. PMID:25202715
Spontaneous ad hoc mobile cloud computing network.
Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less
Matsu: An Elastic Cloud Connected to a SensorWeb for Disaster Response
NASA Technical Reports Server (NTRS)
Mandl, Daniel
2011-01-01
This slide presentation reviews the use of cloud computing combined with the SensorWeb in aiding disaster response planning. Included is an overview of the architecture of the SensorWeb, and overviews of the phase 1 of the EO-1 system and the steps to improve it to transform it to an On-demand product cloud as part of the Open Cloud Consortium (OCC). The effectiveness of this system is demonstrated in the SensorWeb for the Namibia flood in 2010, using information blended from MODIS, TRMM, River Gauge data, and the Google Earth version of Namibia the system enabled river surge predictions and could enable planning for future disaster responses.
Bioinformatics clouds for big data manipulation.
Dai, Lin; Gao, Xin; Guo, Yan; Xiao, Jingfa; Zhang, Zhang
2012-11-28
As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics. This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor.
Evolving the Land Information System into a Cloud Computing Service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houser, Paul R.
The Land Information System (LIS) was developed to use advanced flexible land surface modeling and data assimilation frameworks to integrate extremely large satellite- and ground-based observations with advanced land surface models to produce continuous high-resolution fields of land surface states and fluxes. The resulting fields are extremely useful for drought and flood assessment, agricultural planning, disaster management, weather and climate forecasting, water resources assessment, and the like. We envisioned transforming the LIS modeling system into a scientific cloud computing-aware web and data service that would allow clients to easily setup and configure for use in addressing large water management issues.more » The focus of this Phase 1 project was to determine the scientific, technical, commercial merit and feasibility of the proposed LIS-cloud innovations that are currently barriers to broad LIS applicability. We (a) quantified the barriers to broad LIS utility and commercialization (high performance computing, big data, user interface, and licensing issues); (b) designed the proposed LIS-cloud web service, model-data interface, database services, and user interfaces; (c) constructed a prototype LIS user interface including abstractions for simulation control, visualization, and data interaction, (d) used the prototype to conduct a market analysis and survey to determine potential market size and competition, (e) identified LIS software licensing and copyright limitations and developed solutions, and (f) developed a business plan for development and marketing of the LIS-cloud innovation. While some significant feasibility issues were found in the LIS licensing, overall a high degree of LIS-cloud technical feasibility was found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, J
Purpose: This study evaluated the efficiency of 4D lung radiation treatment planning using Monte Carlo simulation on the cloud. The EGSnrc Monte Carlo code was used in dose calculation on the 4D-CT image set. Methods: 4D lung radiation treatment plan was created by the DOSCTP linked to the cloud, based on the Amazon elastic compute cloud platform. Dose calculation was carried out by Monte Carlo simulation on the 4D-CT image set on the cloud, and results were sent to the FFD4D image deformation program for dose reconstruction. The dependence of computing time for treatment plan on the number of computemore » node was optimized with variations of the number of CT image set in the breathing cycle and dose reconstruction time of the FFD4D. Results: It is found that the dependence of computing time on the number of compute node was affected by the diminishing return of the number of node used in Monte Carlo simulation. Moreover, the performance of the 4D treatment planning could be optimized by using smaller than 10 compute nodes on the cloud. The effects of the number of image set and dose reconstruction time on the dependence of computing time on the number of node were not significant, as more than 15 compute nodes were used in Monte Carlo simulations. Conclusion: The issue of long computing time in 4D treatment plan, requiring Monte Carlo dose calculations in all CT image sets in the breathing cycle, can be solved using the cloud computing technology. It is concluded that the optimized number of compute node selected in simulation should be between 5 and 15, as the dependence of computing time on the number of node is significant.« less
ERIC Educational Resources Information Center
Buckman, Joel; Gold, Stephanie
2012-01-01
This article outlines privacy and data security compliance issues facing postsecondary education institutions when they utilize cloud computing and concludes with a practical list of do's and dont's. Cloud computing does not change an institution's privacy and data security obligations. It does involve reliance on a third party, which requires an…
ERIC Educational Resources Information Center
Pike, Ronald E.; Pittman, Jason M.; Hwang, Drew
2017-01-01
This paper investigates the use of a cloud computing environment to facilitate the teaching of web development at a university in the Southwestern United States. A between-subjects study of students in a web development course was conducted to assess the merits of a cloud computing environment instead of personal computers for developing websites.…
Assessing Affordances of Selected Cloud Computing Tools for Language Teacher Education in Nigeria
ERIC Educational Resources Information Center
Ofemile, Abdulmalik Yusuf
2015-01-01
This paper reports part of a study that hoped to understand Teacher Educators' (TE) assessment of the affordances of selected cloud computing tools ranked among the top 100 for the year 2010. Research has shown that ICT and by extension cloud computing has positive impacts on daily life and this informed the Nigerian government's policy to…
Bio and health informatics meets cloud : BioVLab as an example.
Chae, Heejoon; Jung, Inuk; Lee, Hyungro; Marru, Suresh; Lee, Seong-Whan; Kim, Sun
2013-01-01
The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains.
Efficient Redundancy Techniques in Cloud and Desktop Grid Systems using MAP/G/c-type Queues
NASA Astrophysics Data System (ADS)
Chakravarthy, Srinivas R.; Rumyantsev, Alexander
2018-03-01
Cloud computing is continuing to prove its flexibility and versatility in helping industries and businesses as well as academia as a way of providing needed computing capacity. As an important alternative to cloud computing, desktop grids allow to utilize the idle computer resources of an enterprise/community by means of distributed computing system, providing a more secure and controllable environment with lower operational expenses. Further, both cloud computing and desktop grids are meant to optimize limited resources and at the same time to decrease the expected latency for users. The crucial parameter for optimization both in cloud computing and in desktop grids is the level of redundancy (replication) for service requests/workunits. In this paper we study the optimal replication policies by considering three variations of Fork-Join systems in the context of a multi-server queueing system with a versatile point process for the arrivals. For services we consider phase type distributions as well as shifted exponential and Weibull. We use both analytical and simulation approach in our analysis and report some interesting qualitative results.
An ARM data-oriented diagnostics package to evaluate the climate model simulation
NASA Astrophysics Data System (ADS)
Zhang, C.; Xie, S.
2016-12-01
A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.
Performance, Agility and Cost of Cloud Computing Services for NASA GES DISC Giovanni Application
NASA Astrophysics Data System (ADS)
Pham, L.; Chen, A.; Wharton, S.; Winter, E. L.; Lynnes, C.
2013-12-01
The NASA Goddard Earth Science Data and Information Services Center (GES DISC) is investigating the performance, agility and cost of Cloud computing for GES DISC applications. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), one of the core applications at the GES DISC for online climate-related Earth science data access, subsetting, analysis, visualization, and downloading, was used to evaluate the feasibility and effort of porting an application to the Amazon Cloud Services platform. The performance and the cost of running Giovanni on the Amazon Cloud were compared to similar parameters for the GES DISC local operational system. A Giovanni Time-Series analysis of aerosol absorption optical depth (388nm) from OMI (Ozone Monitoring Instrument)/Aura was selected for these comparisons. All required data were pre-cached in both the Cloud and local system to avoid data transfer delays. The 3-, 6-, 12-, and 24-month data were used for analysis on the Cloud and local system respectively, and the processing times for the analysis were used to evaluate system performance. To investigate application agility, Giovanni was installed and tested on multiple Cloud platforms. The cost of using a Cloud computing platform mainly consists of: computing, storage, data requests, and data transfer in/out. The Cloud computing cost is calculated based on the hourly rate, and the storage cost is calculated based on the rate of Gigabytes per month. Cost for incoming data transfer is free, and for data transfer out, the cost is based on the rate in Gigabytes. The costs for a local server system consist of buying hardware/software, system maintenance/updating, and operating cost. The results showed that the Cloud platform had a 38% better performance and cost 36% less than the local system. This investigation shows the potential of cloud computing to increase system performance and lower the overall cost of system management.
Realistic natural atmospheric phenomena and weather effects for interactive virtual environments
NASA Astrophysics Data System (ADS)
McLoughlin, Leigh
Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physically-based simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation..
Opportunities and Challenges of Cloud Computing to Improve Health Care Services
2011-01-01
Cloud computing is a new way of delivering computing resources and services. Many managers and experts believe that it can improve health care services, benefit health care research, and change the face of health information technology. However, as with any innovation, cloud computing should be rigorously evaluated before its widespread adoption. This paper discusses the concept and its current place in health care, and uses 4 aspects (management, technology, security, and legal) to evaluate the opportunities and challenges of this computing model. Strategic planning that could be used by a health organization to determine its direction, strategy, and resource allocation when it has decided to migrate from traditional to cloud-based health services is also discussed. PMID:21937354
Radiotherapy Monte Carlo simulation using cloud computing technology.
Poole, C M; Cornelius, I; Trapp, J V; Langton, C M
2012-12-01
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.
Genomic cloud computing: legal and ethical points to consider
Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Burton, Paul; Chisholm, Rex; Fortier, Isabel; Goodwin, Pat; Harris, Jennifer; Hveem, Kristian; Kaye, Jane; Kent, Alistair; Knoppers, Bartha Maria; Lindpaintner, Klaus; Little, Julian; Riegman, Peter; Ripatti, Samuli; Stolk, Ronald; Bobrow, Martin; Cambon-Thomsen, Anne; Dressler, Lynn; Joly, Yann; Kato, Kazuto; Knoppers, Bartha Maria; Rodriguez, Laura Lyman; McPherson, Treasa; Nicolás, Pilar; Ouellette, Francis; Romeo-Casabona, Carlos; Sarin, Rajiv; Wallace, Susan; Wiesner, Georgia; Wilson, Julia; Zeps, Nikolajs; Simkevitz, Howard; De Rienzo, Assunta; Knoppers, Bartha M
2015-01-01
The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key ‘points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These ‘points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure. PMID:25248396
Genomic cloud computing: legal and ethical points to consider.
Dove, Edward S; Joly, Yann; Tassé, Anne-Marie; Knoppers, Bartha M
2015-10-01
The biggest challenge in twenty-first century data-intensive genomic science, is developing vast computer infrastructure and advanced software tools to perform comprehensive analyses of genomic data sets for biomedical research and clinical practice. Researchers are increasingly turning to cloud computing both as a solution to integrate data from genomics, systems biology and biomedical data mining and as an approach to analyze data to solve biomedical problems. Although cloud computing provides several benefits such as lower costs and greater efficiency, it also raises legal and ethical issues. In this article, we discuss three key 'points to consider' (data control; data security, confidentiality and transfer; and accountability) based on a preliminary review of several publicly available cloud service providers' Terms of Service. These 'points to consider' should be borne in mind by genomic research organizations when negotiating legal arrangements to store genomic data on a large commercial cloud service provider's servers. Diligent genomic cloud computing means leveraging security standards and evaluation processes as a means to protect data and entails many of the same good practices that researchers should always consider in securing their local infrastructure.
Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration
Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin
2010-01-01
This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235
OpenID Connect as a security service in cloud-based medical imaging systems.
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-04-01
The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.
The Metadata Cloud: The Last Piece of a Distributed Data System Model
NASA Astrophysics Data System (ADS)
King, T. A.; Cecconi, B.; Hughes, J. S.; Walker, R. J.; Roberts, D.; Thieman, J. R.; Joy, S. P.; Mafi, J. N.; Gangloff, M.
2012-12-01
Distributed data systems have existed ever since systems were networked together. Over the years the model for distributed data systems have evolved from basic file transfer to client-server to multi-tiered to grid and finally to cloud based systems. Initially metadata was tightly coupled to the data either by embedding the metadata in the same file containing the data or by co-locating the metadata in commonly named files. As the sources of data multiplied, data volumes have increased and services have specialized to improve efficiency; a cloud system model has emerged. In a cloud system computing and storage are provided as services with accessibility emphasized over physical location. Computation and data clouds are common implementations. Effectively using the data and computation capabilities requires metadata. When metadata is stored separately from the data; a metadata cloud is formed. With a metadata cloud information and knowledge about data resources can migrate efficiently from system to system, enabling services and allowing the data to remain efficiently stored until used. This is especially important with "Big Data" where movement of the data is limited by bandwidth. We examine how the metadata cloud completes a general distributed data system model, how standards play a role and relate this to the existing types of cloud computing. We also look at the major science data systems in existence and compare each to the generalized cloud system model.
Processing NASA Earth Science Data on Nebula Cloud
NASA Technical Reports Server (NTRS)
Chen, Aijun; Pham, Long; Kempler, Steven
2012-01-01
Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-07-24
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.
Scientific Services on the Cloud
NASA Astrophysics Data System (ADS)
Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong
Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.
1984-07-01
aerosols and sub pixel-sized clouds all tend to increase Channel 1 with respect to Channel 2 and reduce the computed VIN. Further, the Guide states that... computation of the VIN. Large scale cloud contamination of pixels, while diffi- cult to correct for, can at least be monitored and affected pixels...techniques have been developed for computer cloud screening. See, for example, Horvath et al. (1982), Gray and McCrary (1981a) and Nixon et al. (1983
NASA Astrophysics Data System (ADS)
Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats
2014-06-01
Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt
Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared overmore » the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.« less
Service-oriented Software Defined Optical Networks for Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Ji, Yuefeng
2017-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.
Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. Formore » better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.« less
Provider-Independent Use of the Cloud
NASA Astrophysics Data System (ADS)
Harmer, Terence; Wright, Peter; Cunningham, Christina; Perrott, Ron
Utility computing offers researchers and businesses the potential of significant cost-savings, making it possible for them to match the cost of their computing and storage to their demand for such resources. A utility compute provider enables the purchase of compute infrastructures on-demand; when a user requires computing resources a provider will provision a resource for them and charge them only for their period of use of that resource. There has been a significant growth in the number of cloud computing resource providers and each has a different resource usage model, application process and application programming interface (API)-developing generic multi-resource provider applications is thus difficult and time consuming. We have developed an abstraction layer that provides a single resource usage model, user authentication model and API for compute providers that enables cloud-provider neutral applications to be developed. In this paper we outline the issues in using external resource providers, give examples of using a number of the most popular cloud providers and provide examples of developing provider neutral applications. In addition, we discuss the development of the API to create a generic provisioning model based on a common architecture for cloud computing providers.
NASA Astrophysics Data System (ADS)
Yoon, S.
2016-12-01
To define geodetic reference frame using GPS data collected by Continuously Operating Reference Stations (CORS) network, historical GPS data needs to be reprocessed regularly. Reprocessing GPS data collected by upto 2000 CORS sites for the last two decades requires a lot of computational resource. At National Geodetic Survey (NGS), there has been one completed reprocessing in 2011, and currently, the second reprocessing is undergoing. For the first reprocessing effort, in-house computing resource was utilized. In the current second reprocessing effort, outsourced cloud computing platform is being utilized. In this presentation, the outline of data processing strategy at NGS is described as well as the effort to parallelize the data processing procedure in order to maximize the benefit of the cloud computing. The time and cost savings realized by utilizing cloud computing approach will also be discussed.
Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets
NASA Astrophysics Data System (ADS)
Rossi, L.; Stam, D. M.
2017-11-01
Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)
2001-01-01
Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.
NASA Astrophysics Data System (ADS)
Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.
2015-12-01
A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a local computer, and inter-compare CRM output and data with GCE and NU-WRF.
Cloud Infrastructures for In Silico Drug Discovery: Economic and Practical Aspects
Clematis, Andrea; Quarati, Alfonso; Cesini, Daniele; Milanesi, Luciano; Merelli, Ivan
2013-01-01
Cloud computing opens new perspectives for small-medium biotechnology laboratories that need to perform bioinformatics analysis in a flexible and effective way. This seems particularly true for hybrid clouds that couple the scalability offered by general-purpose public clouds with the greater control and ad hoc customizations supplied by the private ones. A hybrid cloud broker, acting as an intermediary between users and public providers, can support customers in the selection of the most suitable offers, optionally adding the provisioning of dedicated services with higher levels of quality. This paper analyses some economic and practical aspects of exploiting cloud computing in a real research scenario for the in silico drug discovery in terms of requirements, costs, and computational load based on the number of expected users. In particular, our work is aimed at supporting both the researchers and the cloud broker delivering an IaaS cloud infrastructure for biotechnology laboratories exposing different levels of nonfunctional requirements. PMID:24106693
NASA Technical Reports Server (NTRS)
Wang, W.-C.; Stone, P. H.
1980-01-01
The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.
RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds
NASA Technical Reports Server (NTRS)
Vogelmann, Andrew M.; McFarquhar, Greg M.; Ogren, John A.; Turner, David D.; Comstock, Jennifer M.; Feingold, Graham; Long, Charles N.; Jonsson, Haflidi H.; Bucholtz, Anthony; Collins, Don R.;
2012-01-01
Small boundary-layer clouds are ubiquitous over many parts of the globe and strongly influence the Earths radiative energy balance. However, our understanding of these clouds is insufficient to solve pressing scientific problems. For example, cloud feedback represents the largest uncertainty amongst all climate feedbacks in general circulation models (GCM). Several issues complicate understanding boundary-layer clouds and simulating them in GCMs. The high spatial variability of boundary-layer clouds poses an enormous computational challenge, since their horizontal dimensions and internal variability occur at spatial scales much finer than the computational grids used in GCMs. Aerosol-cloud interactions further complicate boundary-layer cloud measurement and simulation. Additionally, aerosols influence processes such as precipitation and cloud lifetime. An added complication is that at small scales (order meters to 10s of meters) distinguishing cloud from aerosol is increasingly difficult, due to the effects of aerosol humidification, cloud fragments and photon scattering between clouds.
Bioinformatics clouds for big data manipulation
2012-01-01
Abstract As advances in life sciences and information technology bring profound influences on bioinformatics due to its interdisciplinary nature, bioinformatics is experiencing a new leap-forward from in-house computing infrastructure into utility-supplied cloud computing delivered over the Internet, in order to handle the vast quantities of biological data generated by high-throughput experimental technologies. Albeit relatively new, cloud computing promises to address big data storage and analysis issues in the bioinformatics field. Here we review extant cloud-based services in bioinformatics, classify them into Data as a Service (DaaS), Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), and present our perspectives on the adoption of cloud computing in bioinformatics. Reviewers This article was reviewed by Frank Eisenhaber, Igor Zhulin, and Sandor Pongor. PMID:23190475
Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation
NASA Astrophysics Data System (ADS)
Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.
2017-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.
Prediction based proactive thermal virtual machine scheduling in green clouds.
Kinger, Supriya; Kumar, Rajesh; Sharma, Anju
2014-01-01
Cloud computing has rapidly emerged as a widely accepted computing paradigm, but the research on Cloud computing is still at an early stage. Cloud computing provides many advanced features but it still has some shortcomings such as relatively high operating cost and environmental hazards like increasing carbon footprints. These hazards can be reduced up to some extent by efficient scheduling of Cloud resources. Working temperature on which a machine is currently running can be taken as a criterion for Virtual Machine (VM) scheduling. This paper proposes a new proactive technique that considers current and maximum threshold temperature of Server Machines (SMs) before making scheduling decisions with the help of a temperature predictor, so that maximum temperature is never reached. Different workload scenarios have been taken into consideration. The results obtained show that the proposed system is better than existing systems of VM scheduling, which does not consider current temperature of nodes before making scheduling decisions. Thus, a reduction in need of cooling systems for a Cloud environment has been obtained and validated.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Searching for SNPs with cloud computing
2009-01-01
As DNA sequencing outpaces improvements in computer speed, there is a critical need to accelerate tasks like alignment and SNP calling. Crossbow is a cloud-computing software tool that combines the aligner Bowtie and the SNP caller SOAPsnp. Executing in parallel using Hadoop, Crossbow analyzes data comprising 38-fold coverage of the human genome in three hours using a 320-CPU cluster rented from a cloud computing service for about $85. Crossbow is available from http://bowtie-bio.sourceforge.net/crossbow/. PMID:19930550
The Role of Standards in Cloud-Computing Interoperability
2012-10-01
services are not shared outside the organization. CloudStack, Eucalyptus, HP, Microsoft, OpenStack , Ubuntu, and VMWare provide tools for building...center requirements • Developing usage models for cloud ven- dors • Independent IT consortium OpenStack http://www.openstack.org • Open-source...software for running private clouds • Currently consists of three core software projects: OpenStack Compute (Nova), OpenStack Object Storage (Swift
On Using Home Networks and Cloud Computing for a Future Internet of Things
NASA Astrophysics Data System (ADS)
Niedermayer, Heiko; Holz, Ralph; Pahl, Marc-Oliver; Carle, Georg
In this position paper we state four requirements for a Future Internet and sketch our initial concept. The requirements: (1) more comfort, (2) integration of home networks, (3) resources like service clouds in the network, and (4) access anywhere on any machine. Future Internet needs future quality and future comfort. There need to be new possiblities for everyone. Our focus is on higher layers and related to the many overlay proposals. We consider them to run on top of a basic Future Internet core. A new user experience means to include all user devices. Home networks and services should be a fundamental part of the Future Internet. Home networks extend access and allow interaction with the environment. Cloud Computing can provide reliable resources beyond local boundaries. For access anywhere, we also need secure storage for data and profiles in the network, in particular for access with non-personal devices (Internet terminal, ticket machine, ...).
Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure
NASA Astrophysics Data System (ADS)
Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei
2011-09-01
Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-03-06
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.
Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-01-01
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305
Construction and application of Red5 cluster based on OpenStack
NASA Astrophysics Data System (ADS)
Wang, Jiaqing; Song, Jianxin
2017-08-01
With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.
The Magellan Final Report on Cloud Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
,; Coghlan, Susan; Yelick, Katherine
The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computingmore » Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.« less
Toward ubiquitous healthcare services with a novel efficient cloud platform.
He, Chenguang; Fan, Xiaomao; Li, Ye
2013-01-01
Ubiquitous healthcare services are becoming more and more popular, especially under the urgent demand of the global aging issue. Cloud computing owns the pervasive and on-demand service-oriented natures, which can fit the characteristics of healthcare services very well. However, the abilities in dealing with multimodal, heterogeneous, and nonstationary physiological signals to provide persistent personalized services, meanwhile keeping high concurrent online analysis for public, are challenges to the general cloud. In this paper, we proposed a private cloud platform architecture which includes six layers according to the specific requirements. This platform utilizes message queue as a cloud engine, and each layer thereby achieves relative independence by this loosely coupled means of communications with publish/subscribe mechanism. Furthermore, a plug-in algorithm framework is also presented, and massive semistructure or unstructured medical data are accessed adaptively by this cloud architecture. As the testing results showing, this proposed cloud platform, with robust, stable, and efficient features, can satisfy high concurrent requests from ubiquitous healthcare services.
Attribute based encryption for secure sharing of E-health data
NASA Astrophysics Data System (ADS)
Charanya, R.; Nithya, S.; Manikandan, N.
2017-11-01
Distributed computing is one of the developing innovations in IT part and information security assumes a real part. It includes sending gathering of remote server and programming that permit the unified information and online access to PC administrations. Distributed computing depends on offering of asset among different clients are additionally progressively reallocated on interest. Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. The reasons for security and protection issues, which rise on the grounds that the health information possessed by distinctive clients are put away in some cloud servers rather than under their own particular control”z. To deal with security problems, various schemes based on the Attribute-Based Encryption have been proposed. In this paper, in order to make ehealth data’s more secure we use multi party in cloud computing system. Where the health data is encrypted using attributes and key policy. And the user with a particular attribute and key policy alone will be able to decrypt the health data after it is verified by “key distribution centre” and the “secure data distributor”. This technique can be used in medical field for secure storage of patient details and limiting to particular doctor access. To make data’s scalable secure we need to encrypt the health data before outsourcing.
A Thermal Infrared Radiation Parameterization for Atmospheric Studies
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Suarez, Max J.; Liang, Xin-Zhong; Yan, Michael M.-H.; Cote, Charles (Technical Monitor)
2001-01-01
This technical memorandum documents the longwave radiation parameterization developed at the Climate and Radiation Branch, NASA Goddard Space Flight Center, for a wide variety of weather and climate applications. Based on the 1996-version of the Air Force Geophysical Laboratory HITRAN data, the parameterization includes the absorption due to major gaseous absorption (water vapor, CO2, O3) and most of the minor trace gases (N2O, CH4, CFCs), as well as clouds and aerosols. The thermal infrared spectrum is divided into nine bands. To achieve a high degree of accuracy and speed, various approaches of computing the transmission function are applied to different spectral bands and gases. The gaseous transmission function is computed either using the k-distribution method or the table look-up method. To include the effect of scattering due to clouds and aerosols, the optical thickness is scaled by the single-scattering albedo and asymmetry factor. The parameterization can accurately compute fluxes to within 1% of the high spectral-resolution line-by-line calculations. The cooling rate can be accurately computed in the region extending from the surface to the 0.01-hPa level.
A Brief Analysis of Development Situations and Trend of Cloud Computing
NASA Astrophysics Data System (ADS)
Yang, Wenyan
2017-12-01
in recent years, the rapid development of Internet technology has radically changed people's work, learning and lifestyles. More and more activities are completed by virtue of computers and networks. The amount of information and data generated is bigger day by day, and people rely more on computer, which makes computing power of computer fail to meet demands of accuracy and rapidity from people. The cloud computing technology has experienced fast development, which is widely applied in the computer industry as a result of advantages of high precision, fast computing and easy usage. Moreover, it has become a focus in information research at present. In this paper, the development situations and trend of cloud computing shall be analyzed and researched.
The StratusLab cloud distribution: Use-cases and support for scientific applications
NASA Astrophysics Data System (ADS)
Floros, E.
2012-04-01
The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.
Tools for Analyzing Computing Resource Management Strategies and Algorithms for SDR Clouds
NASA Astrophysics Data System (ADS)
Marojevic, Vuk; Gomez-Miguelez, Ismael; Gelonch, Antoni
2012-09-01
Software defined radio (SDR) clouds centralize the computing resources of base stations. The computing resource pool is shared between radio operators and dynamically loads and unloads digital signal processing chains for providing wireless communications services on demand. Each new user session request particularly requires the allocation of computing resources for executing the corresponding SDR transceivers. The huge amount of computing resources of SDR cloud data centers and the numerous session requests at certain hours of a day require an efficient computing resource management. We propose a hierarchical approach, where the data center is divided in clusters that are managed in a distributed way. This paper presents a set of computing resource management tools for analyzing computing resource management strategies and algorithms for SDR clouds. We use the tools for evaluating a different strategies and algorithms. The results show that more sophisticated algorithms can achieve higher resource occupations and that a tradeoff exists between cluster size and algorithm complexity.
NASA Astrophysics Data System (ADS)
Xiong, Ting; He, Zhiwen
2017-06-01
Cloud computing was first proposed by Google Company in the United States, which was based on the Internet center, providing a standard and open network sharing service approach. With the rapid development of the higher education in China, the educational resources provided by colleges and universities had greatly gap in the actual needs of teaching resources. therefore, Cloud computing of using the Internet technology to provide shared methods liked the timely rain, which had become an important means of the Digital Education on sharing applications in the current higher education. Based on Cloud computing environment, the paper analyzed the existing problems about the sharing of digital educational resources in Jiangxi Province Independent Colleges. According to the sharing characteristics of mass storage, efficient operation and low input about Cloud computing, the author explored and studied the design of the sharing model about the digital educational resources of higher education in Independent College. Finally, the design of the shared model was put into the practical applications.
Survey on Security Issues in Cloud Computing and Associated Mitigation Techniques
NASA Astrophysics Data System (ADS)
Bhadauria, Rohit; Sanyal, Sugata
2012-06-01
Cloud Computing holds the potential to eliminate the requirements for setting up of high-cost computing infrastructure for IT-based solutions and services that the industry uses. It promises to provide a flexible IT architecture, accessible through internet for lightweight portable devices. This would allow multi-fold increase in the capacity or capabilities of the existing and new software. In a cloud computing environment, the entire data reside over a set of networked resources, enabling the data to be accessed through virtual machines. Since these data-centers may lie in any corner of the world beyond the reach and control of users, there are multifarious security and privacy challenges that need to be understood and taken care of. Also, one can never deny the possibility of a server breakdown that has been witnessed, rather quite often in the recent times. There are various issues that need to be dealt with respect to security and privacy in a cloud computing scenario. This extensive survey paper aims to elaborate and analyze the numerous unresolved issues threatening the cloud computing adoption and diffusion affecting the various stake-holders linked to it.
Using cloud models of heartbeats as the entity identifier to secure mobile devices.
Fu, Donglai; Liu, Yanhua
2017-01-01
Mobile devices are extensively used to store more private and often sensitive information. Therefore, it is important to protect them against unauthorised access. Authentication ensures that authorised users can use mobile devices. However, traditional authentication methods, such as numerical or graphic passwords, are vulnerable to passive attacks. For example, an adversary can steal the password by snooping from a shorter distance. To avoid these problems, this study presents a biometric approach that uses cloud models of heartbeats as the entity identifier to secure mobile devices. Here, it is identified that these concepts including cloud model or cloud have nothing to do with cloud computing. The cloud model appearing in the study is the cognitive model. In the proposed method, heartbeats are collected by two ECG electrodes that are connected to one mobile device. The backward normal cloud generator is used to generate ECG standard cloud models characterising the heartbeat template. When a user tries to have access to their mobile device, cloud models regenerated by fresh heartbeats will be compared with ECG standard cloud models to determine if the current user can use this mobile device. This authentication method was evaluated from three aspects including accuracy, authentication time and energy consumption. The proposed method gives 86.04% of true acceptance rate with 2.73% of false acceptance rate. One authentication can be done in 6s, and this processing consumes about 2000 mW of power.
Toward a Fault Tolerant Architecture for Vital Medical-Based Wearable Computing.
Abdali-Mohammadi, Fardin; Bajalan, Vahid; Fathi, Abdolhossein
2015-12-01
Advancements in computers and electronic technologies have led to the emergence of a new generation of efficient small intelligent systems. The products of such technologies might include Smartphones and wearable devices, which have attracted the attention of medical applications. These products are used less in critical medical applications because of their resource constraint and failure sensitivity. This is due to the fact that without safety considerations, small-integrated hardware will endanger patients' lives. Therefore, proposing some principals is required to construct wearable systems in healthcare so that the existing concerns are dealt with. Accordingly, this paper proposes an architecture for constructing wearable systems in critical medical applications. The proposed architecture is a three-tier one, supporting data flow from body sensors to cloud. The tiers of this architecture include wearable computers, mobile computing, and mobile cloud computing. One of the features of this architecture is its high possible fault tolerance due to the nature of its components. Moreover, the required protocols are presented to coordinate the components of this architecture. Finally, the reliability of this architecture is assessed by simulating the architecture and its components, and other aspects of the proposed architecture are discussed.
NASA Technical Reports Server (NTRS)
Darzi, Michael; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor)
1992-01-01
Methods for detecting and screening cloud contamination from satellite derived visible and infrared data are reviewed in this document. The methods are applicable to past, present, and future polar orbiting satellite radiometers. Such instruments include the Coastal Zone Color Scanner (CZCS), operational from 1978 through 1986; the Advanced Very High Resolution Radiometer (AVHRR); the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), scheduled for launch in August 1993; and the Moderate Resolution Imaging Spectrometer (IMODIS). Constant threshold methods are the least demanding computationally, and often provide adequate results. An improvement to these methods are the least demanding computationally, and often provide adequate results. An improvement to these methods is to determine the thresholds dynamically by adjusting them according to the areal and temporal distributions of the surrounding pixels. Spatial coherence methods set thresholds based on the expected spatial variability of the data. Other statistically derived methods and various combinations of basic methods are also reviewed. The complexity of the methods is ultimately limited by the computing resources. Finally, some criteria for evaluating cloud screening methods are discussed.
Integrating the Apache Big Data Stack with HPC for Big Data
NASA Astrophysics Data System (ADS)
Fox, G. C.; Qiu, J.; Jha, S.
2014-12-01
There is perhaps a broad consensus as to important issues in practical parallel computing as applied to large scale simulations; this is reflected in supercomputer architectures, algorithms, libraries, languages, compilers and best practice for application development. However, the same is not so true for data intensive computing, even though commercially clouds devote much more resources to data analytics than supercomputers devote to simulations. We look at a sample of over 50 big data applications to identify characteristics of data intensive applications and to deduce needed runtime and architectures. We suggest a big data version of the famous Berkeley dwarfs and NAS parallel benchmarks and use these to identify a few key classes of hardware/software architectures. Our analysis builds on combining HPC and ABDS the Apache big data software stack that is well used in modern cloud computing. Initial results on clouds and HPC systems are encouraging. We propose the development of SPIDAL - Scalable Parallel Interoperable Data Analytics Library -- built on system aand data abstractions suggested by the HPC-ABDS architecture. We discuss how it can be used in several application areas including Polar Science.
Creating a Rackspace and NASA Nebula compatible cloud using the OpenStack project (Invited)
NASA Astrophysics Data System (ADS)
Clark, R.
2010-12-01
NASA and Rackspace have both provided technology to the OpenStack that allows anyone to create a private Infrastructure as a Service (IaaS) cloud using open source software and commodity hardware. OpenStack is designed and developed completely in the open and with an open governance process. NASA donated Nova, which powers the compute portion of NASA Nebula Cloud Computing Platform, and Rackspace donated Swift, which powers Rackspace Cloud Files. The project is now in continuous development by NASA, Rackspace, and hundreds of other participants. When you create a private cloud using Openstack, you will have the ability to easily interact with your private cloud, a government cloud, and an ecosystem of public cloud providers, using the same API.
A Geospatial Information Grid Framework for Geological Survey.
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper.
A Geospatial Information Grid Framework for Geological Survey
Wu, Liang; Xue, Lei; Li, Chaoling; Lv, Xia; Chen, Zhanlong; Guo, Mingqiang; Xie, Zhong
2015-01-01
The use of digital information in geological fields is becoming very important. Thus, informatization in geological surveys should not stagnate as a result of the level of data accumulation. The integration and sharing of distributed, multi-source, heterogeneous geological information is an open problem in geological domains. Applications and services use geological spatial data with many features, including being cross-region and cross-domain and requiring real-time updating. As a result of these features, desktop and web-based geographic information systems (GISs) experience difficulties in meeting the demand for geological spatial information. To facilitate the real-time sharing of data and services in distributed environments, a GIS platform that is open, integrative, reconfigurable, reusable and elastic would represent an indispensable tool. The purpose of this paper is to develop a geological cloud-computing platform for integrating and sharing geological information based on a cloud architecture. Thus, the geological cloud-computing platform defines geological ontology semantics; designs a standard geological information framework and a standard resource integration model; builds a peer-to-peer node management mechanism; achieves the description, organization, discovery, computing and integration of the distributed resources; and provides the distributed spatial meta service, the spatial information catalog service, the multi-mode geological data service and the spatial data interoperation service. The geological survey information cloud-computing platform has been implemented, and based on the platform, some geological data services and geological processing services were developed. Furthermore, an iron mine resource forecast and an evaluation service is introduced in this paper. PMID:26710255
NASA Astrophysics Data System (ADS)
Nguyen, L.; Chee, T.; Minnis, P.; Palikonda, R.; Smith, W. L., Jr.; Spangenberg, D.
2016-12-01
The NASA LaRC Satellite ClOud and Radiative Property retrieval System (SatCORPS) processes and derives near real-time (NRT) global cloud products from operational geostationary satellite imager datasets. These products are being used in NRT to improve forecast model, aircraft icing warnings, and support aircraft field campaigns. Next generation satellites, such as the Japanese Himawari-8 and the upcoming NOAA GOES-R, present challenges for NRT data processing and product dissemination due to the increase in temporal and spatial resolution. The volume of data is expected to increase to approximately 10 folds. This increase in data volume will require additional IT resources to keep up with the processing demands to satisfy NRT requirements. In addition, these resources are not readily available due to cost and other technical limitations. To anticipate and meet these computing resource requirements, we have employed a hybrid cloud computing environment to augment the generation of SatCORPS products. This paper will describe the workflow to ingest, process, and distribute SatCORPS products and the technologies used. Lessons learn from working on both AWS Clouds and GovCloud will be discussed: benefits, similarities, and differences that could impact decision to use cloud computing and storage. A detail cost analysis will be presented. In addition, future cloud utilization, parallelization, and architecture layout will be discussed for GOES-R.
Mobile healthcare information management utilizing Cloud Computing and Android OS.
Doukas, Charalampos; Pliakas, Thomas; Maglogiannis, Ilias
2010-01-01
Cloud Computing provides functionality for managing information data in a distributed, ubiquitous and pervasive manner supporting several platforms, systems and applications. This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service. This article summarizes the implementation details and presents initial results of the system in practice.
Retrieving and Indexing Spatial Data in the Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Wang, Sheng; Zhou, Daliang
In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.
Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond
2015-01-01
The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.
OpenID Connect as a security service in cloud-based medical imaging systems
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-01-01
Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682
Extended outlook: description, utilization, and daily applications of cloud technology in radiology.
Gerard, Perry; Kapadia, Neil; Chang, Patricia T; Acharya, Jay; Seiler, Michael; Lefkovitz, Zvi
2013-12-01
The purpose of this article is to discuss the concept of cloud technology, its role in medical applications and radiology, the role of the radiologist in using and accessing these vast resources of information, and privacy concerns and HIPAA compliance strategies. Cloud computing is the delivery of shared resources, software, and information to computers and other devices as a metered service. This technology has a promising role in the sharing of patient medical information and appears to be particularly suited for application in radiology, given the field's inherent need for storage and access to large amounts of data. The radiology cloud has significant strengths, such as providing centralized storage and access, reducing unnecessary repeat radiologic studies, and potentially allowing radiologic second opinions more easily. There are significant cost advantages to cloud computing because of a decreased need for infrastructure and equipment by the institution. Private clouds may be used to ensure secure storage of data and compliance with HIPAA. In choosing a cloud service, there are important aspects, such as disaster recovery plans, uptime, and security audits, that must be considered. Given that the field of radiology has become almost exclusively digital in recent years, the future of secure storage and easy access to imaging studies lies within cloud computing technology.
The monitoring and managing application of cloud computing based on Internet of Things.
Luo, Shiliang; Ren, Bin
2016-07-01
Cloud computing and the Internet of Things are the two hot points in the Internet application field. The application of the two new technologies is in hot discussion and research, but quite less on the field of medical monitoring and managing application. Thus, in this paper, we study and analyze the application of cloud computing and the Internet of Things on the medical field. And we manage to make a combination of the two techniques in the medical monitoring and managing field. The model architecture for remote monitoring cloud platform of healthcare information (RMCPHI) was established firstly. Then the RMCPHI architecture was analyzed. Finally an efficient PSOSAA algorithm was proposed for the medical monitoring and managing application of cloud computing. Simulation results showed that our proposed scheme can improve the efficiency about 50%. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Enhancing Instruction through Constructivism, Cooperative Learning, and Cloud Computing
ERIC Educational Resources Information Center
Denton, David W.
2012-01-01
Cloud computing technologies, such as Google Docs and Microsoft Office Live, have the potential to enhance instructional methods predicated on constructivism and cooperative learning. Cloud-based application features like file sharing and online publishing are prompting departments of education across the nation to adopt these technologies.…
Research on cloud-based remote measurement and analysis system
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan
2015-02-01
The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.
NASA Astrophysics Data System (ADS)
Zhao, Yu; Shi, Chen-Xiao; Kwon, Ki-Chul; Piao, Yan-Ling; Piao, Mei-Lan; Kim, Nam
2018-03-01
We propose a fast calculation method for a computer-generated hologram (CGH) of real objects that uses a point cloud gridding method. The depth information of the scene is acquired using a depth camera and the point cloud model is reconstructed virtually. Because each point of the point cloud is distributed precisely to the exact coordinates of each layer, each point of the point cloud can be classified into grids according to its depth. A diffraction calculation is performed on the grids using a fast Fourier transform (FFT) to obtain a CGH. The computational complexity is reduced dramatically in comparison with conventional methods. The feasibility of the proposed method was confirmed by numerical and optical experiments.
ProteoCloud: a full-featured open source proteomics cloud computing pipeline.
Muth, Thilo; Peters, Julian; Blackburn, Jonathan; Rapp, Erdmann; Martens, Lennart
2013-08-02
We here present the ProteoCloud pipeline, a freely available, full-featured cloud-based platform to perform computationally intensive, exhaustive searches in a cloud environment using five different peptide identification algorithms. ProteoCloud is entirely open source, and is built around an easy to use and cross-platform software client with a rich graphical user interface. This client allows full control of the number of cloud instances to initiate and of the spectra to assign for identification. It also enables the user to track progress, and to visualize and interpret the results in detail. Source code, binaries and documentation are all available at http://proteocloud.googlecode.com. Copyright © 2012 Elsevier B.V. All rights reserved.
Towards a Multi-Mission, Airborne Science Data System Environment
NASA Astrophysics Data System (ADS)
Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.
2011-12-01
NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.
Cloud computing approaches to accelerate drug discovery value chain.
Garg, Vibhav; Arora, Suchir; Gupta, Chitra
2011-12-01
Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... include cloud computing applications that allow for personalized accessible interfaces. The RERC must... the article search feature at: www.federalregister.gov . Specifically, through the advanced search...
NASA Astrophysics Data System (ADS)
Kant, Sunny; Panda, Jagabandhu; Pani, Shantanu Kumar; Wang, Pao K.
2018-05-01
This study attempts to analyze possible aerosol-cloud-precipitation interaction over the eastern part of India including Bhubaneswar city and the whole Odisha region primarily using a long-term satellite-based dataset from 2000 to 2016 during pre-monsoon period. Relationship between aerosol optical depth (AOD), rainfall, and cloud properties is examined by taking convectively driven rain events. The two-sample student's t test is used to compute "p" value of datasets that are statically significant. Role of aerosols in governing cloud properties is analyzed through the variation of COD (cloud optical depth) and CER (cloud effective radius) in the AOD ranges 0.2-0.8. A relatively stronger and affirmative AOD-CER relationship is observed over Bhubaneswar city compared to Odisha region though the aerosols still play an appreciable role for the later too. The AOD-COD relationship is weak over both the regions. For Odisha, relationships between aerosol and cloud parameters are insignificant irrespective of rainfall regimes. Fostering of heavy rainfall over these regions takes place due to invigoration and microphysical effect during pre-monsoon months, depending upon meteorological conditions. Liquid water content and presence of a mixed-phase zone, both seem to be quite important in the convectively driven precipitation over Odisha region including Bhubaneswar city.
Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands
NASA Technical Reports Server (NTRS)
Kuze, Akihiko; Chance, Kelly V.
1994-01-01
Cloud height and cloud coverage detection are important for total ozone retrieval using ultraviolet and visible scattered light. Use of the O2 A and B bands, around 761 and 687 nm, by a satellite-borne instrument of moderately high spectral resolution viewing in the nadir makes it possible to detect cloud top height and related parameters, including fractional coverage. The measured values of a satellite-borne spectrometer are convolutions of the instrument slit function and the atmospheric transmittance between cloud top and satellite. Studies here determine the optical depth between a satellite orbit and the Earth or cloud top height to high accuracy using FASCODE 3. Cloud top height and a cloud coverage parameter are determined by least squares fitting to calculated radiance ratios in the oxygen bands. A grid search method is used to search the parameter space of cloud top height and the coverage parameter to minimize an appropriate sum of squares of deviations. For this search, nonlinearity of the atmospheric transmittance (i.e., leverage based on varying amounts of saturation in the absorption spectrum) is important for distinguishing between cloud top height and fractional coverage. Using the above-mentioned method, an operational cloud detection algorithm which uses minimal computation time can be implemented.
International Symposium on Grids and Clouds (ISGC) 2014
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2014 will be held at Academia Sinica in Taipei, Taiwan from 23-28 March 2014, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC).“Bringing the data scientist to global e-Infrastructures” is the theme of ISGC 2014. The last decade has seen the phenomenal growth in the production of data in all forms by all research communities to produce a deluge of data from which information and knowledge need to be extracted. Key to this success will be the data scientist - educated to use advanced algorithms, applications and infrastructures - collaborating internationally to tackle society’s challenges. ISGC 2014 will bring together researchers working in all aspects of data science from different disciplines around the world to collaborate and educate themselves in the latest achievements and techniques being used to tackle the data deluge. In addition to the regular workshops, technical presentations and plenary keynotes, ISGC this year will focus on how to grow the data science community by considering the educational foundation needed for tomorrow’s data scientist. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities & Social Sciences Application, Virtual Research Environment (including Middleware, tools, services, workflow, ... etc.), Data Management, Big Data, Infrastructure & Operations Management, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC).
Computational biology in the cloud: methods and new insights from computing at scale.
Kasson, Peter M
2013-01-01
The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.
Cloud-based crowd sensing: a framework for location-based crowd analyzer and advisor
NASA Astrophysics Data System (ADS)
Aishwarya, K. C.; Nambi, A.; Hudson, S.; Nadesh, R. K.
2017-11-01
Cloud computing is an emerging field of computer science to integrate and explore large and powerful computing systems and storages for personal and also for enterprise requirements. Mobile Cloud Computing is the inheritance of this concept towards mobile hand-held devices. Crowdsensing, or to be precise, Mobile Crowdsensing is the process of sharing resources from an available group of mobile handheld devices that support sharing of different resources such as data, memory and bandwidth to perform a single task for collective reasons. In this paper, we propose a framework to use Crowdsensing and perform a crowd analyzer and advisor whether the user can go to the place or not. This is an ongoing research and is a new concept to which the direction of cloud computing has shifted and is viable for more expansion in the near future.
A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform
NASA Astrophysics Data System (ADS)
Hassan, Mohammad Mehedi; Huh, Eui-Nam
In today's world the emerging Cloud computing (Weiss, 2007) offer a new computing model where resources such as computing power, storage, online applications and networking infrastructures can be shared as "services" over the internet. Cloud providers (CPs) are incentivized by the profits to be made by charging consumers for accessing these services. Consumers, such as enterprises, are attracted by the opportunity for reducing or eliminating costs associated with "in-house" provision of these services.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-01-01
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient. PMID:28737733
Cloud Quantum Computing of an Atomic Nucleus
NASA Astrophysics Data System (ADS)
Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P.
2018-05-01
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Cloud Quantum Computing of an Atomic Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute
Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.