Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY
2011-12-20
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)
David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R
2014-12-16
Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.
Electronic and Vibrational Coherence in Charge-Transfer Reactions
NASA Astrophysics Data System (ADS)
Scherer, Norbert
1996-03-01
The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.
48 CFR 252.232-7011 - Payments in Support of Emergencies and Contingency Operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... Internal Revenue Code. (ix) Electronic funds transfer banking information. (A) The Contractor shall include electronic funds transfer banking information on the invoice only if required elsewhere in this contract. (B) If electronic funds transfer banking information is not required to be on the invoice, in order for...
Photo-induced electron transfer method
Wohlgemuth, R.; Calvin, M.
1984-01-24
The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.
DOE R&D Accomplishments Database
1998-09-21
In the late 1950s to early 1960s Rudolph A. Marcus developed a theory for treating the rates of outer-sphere electron-transfer reactions. Outer-sphere reactions are reactions in which an electron is transferred from a donor to an acceptor without any chemical bonds being made or broken. (Electron-transfer reactions in which bonds are made or broken are referred to as inner-sphere reactions.) Marcus derived several very useful expressions, one of which has come to be known as the Marcus cross-relation or, more simply, as the Marcus equation. It is widely used for correlating and predicting electron-transfer rates. For his contributions to the understanding of electron-transfer reactions, Marcus received the 1992 Nobel Prize in Chemistry. This paper discusses the development and use of the Marcus equation. Topics include self-exchange reactions; net electron-transfer reactions; Marcus cross-relation; and proton, hydride, atom and group transfers.
Photo-induced electron transfer method
Wohlgemuth, Roland; Calvin, Melvin
1984-01-01
The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.
Telematics and satellites. Part 1: Information systems
NASA Astrophysics Data System (ADS)
Burke, W. R.
1980-06-01
Telematic systems are identified and described. The applications are examined emphasizing the role played by satellite links. The discussion includes file transfer, examples of distributed processor systems, terminal communication, information retrieval systems, office information systems, electronic preparation and publishing of information, electronic systems for transfer of funds, electronic mail systems, record file transfer characteristics, intra-enterprise networks, and inter-enterprise networks.
Electron shuttles in biotechnology.
Watanabe, Kazuya; Manefield, Mike; Lee, Matthew; Kouzuma, Atsushi
2009-12-01
Electron-shuttling compounds (electron shuttles [ESs], or redox mediators) are essential components in intracellular electron transfer, while microbes also utilize self-produced and naturally present ESs for extracellular electron transfer. These compounds assist in microbial energy metabolism by facilitating electron transfer between microbes, from electron-donating substances to microbes, and/or from microbes to electron-accepting substances. Artificially supplemented ESs can create new routes of electron flow in the microbial energy metabolism, thereby opening up new possibilities for the application of microbes to biotechnology processes. Typical examples of such processes include halogenated-organics bioremediation, azo-dye decolorization, and microbial fuel cells. Herein we suggest that ESs can be applied widely to create new microbial biotechnology processes.
Electronic coupling in long-range electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, M.D.
1996-12-31
One of the quantities crucial in controlling electron transfer (et) kinetics is the donor/acceptor electronic coupling integral (HDA). Recent theoretical models for HDA will be presented, and the results of ab initio computational implementation will be reported and analyzed for several metal-to-metal ligand charge transfer processes in complex molecular aggregates. New procedures for defining diabatic states, including a generalization of the Mulliken-Hush model, allow applications to optical and excited state as well as ground state et in a many-state framework.
Martínez-González, Eduardo; Frontana, Carlos
2014-05-07
In this work, experimental evidence of the influence of the electron transfer kinetics during electron transfer controlled hydrogen bonding between anion radicals of metronidazole and ornidazole, derivatives of 5-nitro-imidazole, and 1,3-diethylurea as the hydrogen bond donor, is presented. Analysis of the variations of voltammetric EpIcvs. log KB[DH], where KB is the binding constant, allowed us to determine the values of the binding constant and also the electron transfer rate k, confirmed by experiments obtained at different scan rates. Electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level for metronidazole, including the solvent effect by the Cramer/Truhlar model, suggested that the minimum energy conformer is stabilized by intramolecular hydrogen bonding. In this structure, the inner reorganization energy, λi,j, contributes significantly (0.5 eV) to the total reorganization energy of electron transfer, thus leading to a diminishment of the experimental k.
2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCusker, James
The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.
Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO
NASA Astrophysics Data System (ADS)
David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing
2017-08-01
Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.
Extracellular electron transfer mechanisms between microorganisms and minerals.
Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K
2016-10-01
Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.
2008-01-30
Energy Fusion Cell, and allocations include $110 million for oil pipeline exclusion zones—which aim to prevent illegal tapping and sabotage of...sectors in Iraq. This quarter SIGIR highlights two of these programs: the electronic funds transfer ( EFT ) system and U.S. advisory support provided to...the Iraq Stock Exchange. eleCTroniC funds Transfer SIGIR noted last quarter that Iraq finally acti- vated an electronic funds transfer ( EFT ) system
2008-01-30
Cell, and allocations include $110 million for oil pipeline exclusion zones—which aim to prevent illegal tapping and sabotage of pipelines—$51...This quarter SIGIR highlights two of these programs: the electronic funds transfer ( EFT ) system and U.S. advisory support provided to the Iraq Stock...Exchange. eleCTroniC funds Transfer SIGIR noted last quarter that Iraq finally acti- vated an electronic funds transfer ( EFT ) system. The United
Extracellular electron transfer mechanisms between microorganisms and minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Liang; Dong, Hailiang; Reguera, Gemma
Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels andmore » nanomaterials.« less
Biotechnological Aspects of Microbial Extracellular Electron Transfer
Kato, Souichiro
2015-01-01
Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795
Investigating molecule-semiconductor interfaces with nonlinear spectroscopies
NASA Astrophysics Data System (ADS)
Giokas, Paul George
Knowledge of electronic structures and transport mechanisms at molecule-semiconductor interfaces is motivated by their ubiquity in photoelectrochemical cells. In this dissertation, optical spectroscopies are used uncover the influence of electronic coupling, coherent vibrational motion, and molecular geometry, and other factors on dynamics initiated by light absorption at such interfaces. These are explored for a family of ruthenium bipyridyl chromophores bound to titanium dioxide. Transient absorption measurements show molecular singlet state electron injection in 100 fs or less. Resonance Raman intensity analysis suggests the electronic excitations possess very little charge transfer character. The connections drawn in this work between molecular structure and photophysical behavior contribute to the general understanding of photoelectrochemical cells. Knowledge of binding geometry in nanocrystalline films is challenged by heterogeneity of semiconductor surfaces. Polarized resonance Raman spectroscopy is used to characterize the ruthenium chromophore family on single crystal titanium dioxide . Chromophores display a broad distribution of molecular geometries at the interface, with increased variation in binding angle due to the presence of a methylene bridge, as well as additional phosphonate anchors. This result implies multiple binding configurations for chromophores which incorporate multiple phosphonate ligands, and indicates the need for careful consideration when developing surface-assembled chromophore-catalyst cells. Electron transfer transitions occurring on the 100 fs time scale challenge conventional second-order approximations made when modeling these reactions. A fourth-order perturbative model which includes the relationship between coincident electron transfer and nuclear relaxation processes is presented. Insights provided by the model are illustrated for a two-level donor molecule. The presented fourth-order rate formula constitutes a rigorous and intuitive framework for understanding sub-picosecond photoinduced electron transfer dynamics. Charge transfer systems fit by this model include catechol-sensitized titanium dioxide nanoparticles and a closely-related molecular complex. These systems exhibit vibrational coherence coincident with back-electron transfer in the first picosecond after excitation, which suggests that intramolecular nuclear motion strongly influences the electronic transfer process and plays an important role in the dynamics of interfacial systems following light absorption.
NASA Technical Reports Server (NTRS)
Gan, L.; Cravens, T. E.
1992-01-01
Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.
Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.
Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella
2013-12-18
Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.
2016-05-15
Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperaturemore » and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.« less
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin
2015-06-01
We report a simple, versatile, and wafer-scale water-assisted transfer printing method (WTP) that enables the transfer of nanowire devices onto diverse nonconventional substrates that were not easily accessible before, such as paper, plastics, tapes, glass, polydimethylsiloxane (PDMS), aluminum foil, and ultrathin polymer substrates. The WTP method relies on the phenomenon of water penetrating into the interface between Ni and SiO2. The transfer yield is nearly 100%, and the transferred devices, including NW resistors, diodes, and field effect transistors, maintain their original geometries and electronic properties with high fidelity.
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.
2011-01-01
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
Guo, Xunmin; Liu, Zheyun; Song, Qinhua; Wang, Lijuan; Zhong, Dongping
2015-02-26
Many biomimetic chemical systems for repair of UV-damaged DNA showed very low repair efficiency, and the molecular origin is still unknown. Here, we report our systematic characterization of the repair dynamics of a model compound of indole-thymine dimer adduct in three solvents with different polarity. By resolving all elementary steps including three electron-transfer processes and two bond-breaking and bond-formation dynamics with femtosecond resolution, we observed the slow electron injection in 580 ps in water, 4 ns in acetonitrile, and 1.38 ns in dioxane, the fast back electron transfer without repair in 120, 150, and 180 ps, and the slow bond splitting in 550 ps, 1.9 ns, and 4.5 ns, respectively. The dimer bond cleavage is clearly accelerated by the solvent polarity. By comparing with the biological repair machine photolyase with a slow back electron transfer (2.4 ns) and a fast bond cleavage (90 ps), the low repair efficiency in the biomimetic system is mainly determined by the fast back electron transfer and slow bond breakage. We also found that the model system exists in a dynamic heterogeneous C-clamped conformation, leading to a stretched dynamic behavior. In water, we even identified another stacked form with ultrafast cyclic electron transfer, significantly reducing the repair efficiency. Thus, the comparison of the repair efficiency in different solvents is complicated and should be cautious, and only the dynamics by resolving all elementary steps can finally determine the total repair efficiency. Finally, we use the Marcus electron-transfer theory to analyze all electron-transfer reactions and rationalize all observed electron-transfer dynamics.
Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors
NASA Astrophysics Data System (ADS)
Hestand, Nicholas J.
The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. (Abstract shortened by ProQuest.).
Fundamental Studies Connected with Electrochemical Energy Storage
NASA Technical Reports Server (NTRS)
Buck, E.; Sen, R.
1974-01-01
Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.
36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?
Code of Federal Regulations, 2012 CFR
2012-07-01
... electronic records in a format that is independent of specific hardware or software. Except as specified in... a request from NARA to provide the software to decompress the records. (3) Agencies interested in... organization. Acceptable transfer formats include the Geography Markup Language (GML) as defined by the Open...
Method of fabricating a cooled electronic system
Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E
2014-02-11
A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
NASA Astrophysics Data System (ADS)
Khan, Yaser; Brumer, Paul
2012-11-01
A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.
ERIC Educational Resources Information Center
Ventura, Karen; Smith, Mark B.; Prat, Jacob R.; Echegoyen, Lourdes E.; Villagran´, Dino
2017-01-01
We have designed a 4 h physical chemistry laboratory to introduce upper division students to electrochemistry concepts, including mixed valency and electron transfer (ET), using cyclic and differential pulse voltammetries. In this laboratory practice, students use a ferrocene dimer consisting of two ferrocene centers covalently bonded through a…
The impact of symmetric modes on intramolecular electron transfer: A semi-classical approach
NASA Astrophysics Data System (ADS)
Coropceanu, Veaceslav; Boldyrev, Sergei I.; Risko, Chad; Brédas, Jean-Luc
2006-07-01
We have generalized the Hush equations developed for the analysis of intervalence charge-transfer bands by including into the model the interaction with symmetric vibrations. Our results indicate that in symmetric class-II systems the maximum of the intervalence charge-transfer band is equal to the reorganization energy λ related to the antisymmetric vibrations as is the case in the conventional Hush model. In contrast, the corresponding transition dipole moment and the activation barrier for thermal electron transfer, in addition to their dependence on λ, also depend on the reorganization energy L related to symmetric vibrational modes. We show that the interaction with symmetric vibrational modes reduces the activation barrier and that the thermal electron-transfer rates derived on the basis of a Hush-type analysis of the optical data are generally underestimated.
Scholz, Mirko; Flender, Oliver; Boschloo, Gerrit; Oum, Kawon; Lenzer, Thomas
2017-03-08
The stability of dye cations against recombination with conduction band electrons in mesoporous TiO 2 electrodes is a key property for improving light harvesting in dye-sensitised solar cells. Using ultrafast transient broadband absorption spectroscopy, we monitor efficient intramolecular hole transfer in the solar cell dye E6 having two peripheral triarylamine acceptors. After photoexcitation, two hole transfer mechanisms are identified: a concerted mechanism for electron injection and hole transfer (2.4 ps) and a sequential mechanism with time constants of 3.9 ps and 30 ps. This way the dye retards unwanted recombination with a TiO 2 conduction band electron by quickly moving the hole further away from the surface. Contact of the E6/TiO 2 surface with the solvent acetonitrile has almost no influence on the electron injection and hole transfer kinetics. Fast hole transfer (2.8 ps) is also observed on a "non-injecting" Al 2 O 3 surface generating a radical cation-radical anion species with a lifetime of 530 ps. The findings confirm the good intramolecular hole transfer properties of this dye on both thin films. In contrast, intramolecular hole transfer does not occur in the mid-polar organic solvent methyl acetate. This is confirmed by TDDFT calculations suggesting a polarity-induced reduction of the driving force for hole transfer. In methyl acetate, only the relaxation of the initially photoexcited core chromophore is observed including solvent relaxation processes of the electronically excited state S 1 /ICT.
Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ihly, Rachelle; Mistry, Kevin S.; Ferguson, Andrew J.
2016-04-25
Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the firstmore » time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.« less
The microbe electric: conversion of organic matter to electricity.
Lovley, Derek R
2008-12-01
Broad application of microbial fuel cells will require substantial increases in current density. A better understanding of the microbiology of these systems may help. Recent studies have greatly expanded the range of microorganisms known to function either as electrode-reducing microorganisms at the anode or as electrode-oxidizing microorganisms at the cathode. Microorganisms that can completely oxidize organic compounds with an electrode serving as the sole electron acceptor are expected to be the primary contributors to power production. Several mechanisms for electron transfer to anodes have been proposed including: direct electron transfer via outer-surface c-type cytochromes, long-range electron transfer via microbial nanowires, electron flow through a conductive biofilm matrix containing cytochromes, and soluble electron shuttles. Which mechanisms are most important depend on the microorganisms and the thickness of the anode biofilm. Emerging systems biology approaches to the study, design, and evolution of microorganisms interacting with electrodes are expected to contribute to improved microbial fuel cells.
Terahertz Free-Electron Laser Optical Design and Simulation
2010-06-01
Using this β i z in the relativistic limit and near resonance (the condition where optimum energy transfer occurs between the electron beam...is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and...B. HEAT TRANSFER OUT OF A LENS / WINDOW........... 32 C. LINEAR EXPANSION OF OPTICAL MATERIALS.......... 35 D. MAXIMUM ALLOWABLE POWER
Cooled electronic system with thermal spreaders coupling electronics cards to cold rails
Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E
2013-07-23
Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.
Electroactive Biofilms: Current Status and Future Research Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borole, Abhijeet P; Reguera, Gemma; Ringeisen, Bradley
2011-01-01
Electroactive biofilms generated by electrochemically active microorganisms have many potential applications in bioenergy and chemicals production. This review assesses the effects of microbiological and process parameters on enrichment of such biofilms as well as critically evaluates the current knowledge of the mechanisms of extracellular electron transfer in BES systems. First we discuss the role of biofilm forming microorganisms vs. planktonic microorganisms. Physical, chemical and electrochemical parameters which dictate the enrichment and subsequent performance of the biofilms are discussed. Potential dependent biological parameters including biofilm growth rate, specific electron transfer rate and others and their relationship to BES system performance ismore » assessed. A review of the mechanisms of electron transfer in BES systems is included followed by a discussion of biofilm and its exopolymeric components and their electrical conductivity. A discussion of the electroactive biofilms in biocathodes is also included. Finally, we identify the research needs for further development of the electroactive biofilms to enable commercial applications.« less
5 CFR 582.204 - Electronic disbursement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Electronic disbursement. 582.204 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.204 Electronic disbursement. The party... funds remitted by electronic funds transfer, rather than by paper check. The request shall include the...
5 CFR 582.204 - Electronic disbursement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Electronic disbursement. 582.204 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.204 Electronic disbursement. The party... funds remitted by electronic funds transfer, rather than by paper check. The request shall include the...
5 CFR 582.204 - Electronic disbursement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Electronic disbursement. 582.204 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.204 Electronic disbursement. The party... funds remitted by electronic funds transfer, rather than by paper check. The request shall include the...
5 CFR 582.204 - Electronic disbursement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Electronic disbursement. 582.204 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.204 Electronic disbursement. The party... funds remitted by electronic funds transfer, rather than by paper check. The request shall include the...
5 CFR 582.204 - Electronic disbursement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Electronic disbursement. 582.204 Section... GARNISHMENT OF FEDERAL EMPLOYEES' PAY Service of Legal Process § 582.204 Electronic disbursement. The party... funds remitted by electronic funds transfer, rather than by paper check. The request shall include the...
An application protocol for CAD to CAD transfer of electronic information
NASA Technical Reports Server (NTRS)
Azu, Charles C., Jr.
1993-01-01
The exchange of Computer Aided Design (CAD) information between dissimilar CAD systems is a problem. This is especially true for transferring electronics CAD information such as multi-chip module (MCM), hybrid microcircuit assembly (HMA), and printed circuit board (PCB) designs. Currently, there exists several neutral data formats for transferring electronics CAD information. These include IGES, EDIF, and DXF formats. All these formats have limitations for use in exchanging electronic data. In an attempt to overcome these limitations, the Navy's MicroCIM program implemented a project to transfer hybrid microcircuit design information between dissimilar CAD systems. The IGES (Initial Graphics Exchange Specification) format is used since it is well established within the CAD industry. The goal of the project is to have a complete transfer of microelectronic CAD information, using IGES, without any data loss. An Application Protocol (AP) is being developed to specify how hybrid microcircuit CAD information will be represented by IGES entity constructs. The AP defines which IGES data items are appropriate for describing HMA geometry, connectivity, and processing as well as HMA material characteristics.
Dual Catalysis Strategies in Photochemical Synthesis
2016-01-01
The interaction between an electronically excited photocatalyst and an organic molecule can result in the genertion of a diverse array of reactive intermediates that can be manipulated in a variety of ways to result in synthetically useful bond constructions. This Review summarizes dual-catalyst strategies that have been applied to synthetic photochemistry. Mechanistically distinct modes of photocatalysis are discussed, including photoinduced electron transfer, hydrogen atom transfer, and energy transfer. We focus upon the cooperative interactions of photocatalysts with redox mediators, Lewis and Brønsted acids, organocatalysts, enzymes, and transition metal complexes. PMID:27109441
Dual Catalysis Strategies in Photochemical Synthesis.
Skubi, Kazimer L; Blum, Travis R; Yoon, Tehshik P
2016-09-14
The interaction between an electronically excited photocatalyst and an organic molecule can result in the genertion of a diverse array of reactive intermediates that can be manipulated in a variety of ways to result in synthetically useful bond constructions. This Review summarizes dual-catalyst strategies that have been applied to synthetic photochemistry. Mechanistically distinct modes of photocatalysis are discussed, including photoinduced electron transfer, hydrogen atom transfer, and energy transfer. We focus upon the cooperative interactions of photocatalysts with redox mediators, Lewis and Brønsted acids, organocatalysts, enzymes, and transition metal complexes.
The Internet and Technical Services: A Point Break Approach.
ERIC Educational Resources Information Center
McCombs, Gillian M.
1994-01-01
Discusses implications of using the Internet for library technical services. Topics addressed include creative uses of the Internet; three basic applications on the Internet, i.e., electronic mail, remote log-in to another computer, and file transfer; electronic processing of information; electronic access to information; and electronic processing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at highmore » temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes.« less
Liu, Jian; McLuckey, Scott A.
2012-01-01
The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation. PMID:23264749
Qin, Xin; Deng, Li; Hu, Caihong; Li, Li; Chen, Xiaohua
2017-10-20
The possible catalytic mechanism of the reduction of nitrite by copper-containing nitrite reductases (CuNiRs) is examined by using the M06 function according to two copper models, which include type-one copper (T1Cu) and type-two copper (T2Cu) sites. Examinations confirm that the protonation of two residues, His255 and Asp98, near the T2Cu site, can modulate the redox states of T1Cu and T2Cu, but cannot directly cause electron transfer from T1Cu to T2Cu. The electron hole remains at the T2Cu site when only one residue, His255 or Asp98, is protonated. However, the hole resides at the T1Cu site when both His255 and Asp98 are protonated. Then, the first protonation of nitrite takes place through indirect proton transfer from protonated His255 through the bridging H 2 O and Asp98 with three protons moving together, which cannot cause the cleavage of the HO-NO bond. Subsequently, the substrate is required to obtain another proton from reprotonated His255 through the bridging H 2 O. The reprotonation of nitrite induces the generation of nitric oxide (NO) and H 2 O at the T2Cu site through a special double-proton-coupled spin-exchanged electron-transfer mechanism with indirect proton transfer from His255 to the substrate, a beta-electron of T2Cu I shift to the NO cation, and the remaining alpha-electron changing spin direction at the same time. These results may provide useful information to better understand detailed proton-/electron-transfer reactions for the catalytic processes of CuNiR. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron Transfer Mechanisms of DNA Repair by Photolyase
NASA Astrophysics Data System (ADS)
Zhong, Dongping
2015-04-01
Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.
Marcus Bell-Shaped Electron Transfer Kinetics Observed in an Arrhenius Plot.
Waskasi, Morteza M; Kodis, Gerdenis; Moore, Ana L; Moore, Thomas A; Gust, Devens; Matyushov, Dmitry V
2016-07-27
The Marcus theory of electron transfer predicts a bell-shaped dependence of the reaction rate on the reaction free energy. The top of the "inverted parabola" corresponds to zero activation barrier when the electron-transfer reorganization energy and the reaction free energy add up to zero. Although this point has traditionally been reached by altering the chemical structures of donors and acceptors, the theory suggests that it can also be reached by varying other parameters of the system including temperature. We find here dramatic evidence of this phenomenon from experiments on a fullerene-porphyrin dyad. Following photoinduced electron transfer, the rate of charge recombination shows a bell-shaped dependence on the inverse temperature, first increasing with cooling and then decreasing at still lower temperatures. This non-Arrhenius rate law is a result of a strong, approximately hyperbolic temperature variation of the reorganization energy and the reaction free energy. Our results provide potentially the cleanest confirmation of the Marcus energy gap law so far since no modification of the chemical structure is involved.
Electrochemistry of redox-active self-assembled monolayers
Eckermann, Amanda L.; Feld, Daniel J.; Shaw, Justine A.; Meade, Thomas J.
2010-01-01
Redox-active self-assembled monolayers (SAMs) provide an excellent platform for investigating electron transfer kinetics. Using a well-defined bridge, a redox center can be positioned at a fixed distance from the electrode and electron transfer kinetics probed using a variety of electrochemical techniques. Cyclic voltammetry, AC voltammetry, electrochemical impedance spectroscopy, and chronoamperometry are most commonly used to determine the rate of electron transfer of redox-activated SAMs. A variety of redox species have been attached to SAMs, and include transition metal complexes (e.g., ferrocene, ruthenium pentaammine, osmium bisbipyridine, metal clusters) and organic molecules (e.g., galvinol, C60). SAMs offer an ideal environment to study the outer-sphere interactions of redox species. The composition and integrity of the monolayer and the electrode material influence the electron transfer kinetics and can be investigated using electrochemical methods. Theoretical models have been developed for investigating SAM structure. This review discusses methods and monolayer compositions for electrochemical measurements of redox-active SAMs. PMID:20563297
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
Chaudhuri, Swades K; Lovley, Derek R
2003-10-01
Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.
Bibliography of electron transfer in heavy particle collisions, 1950--1975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, S.W.; Barnett, C.F.; Crandall, D.H.
1979-02-01
This annotated bibliography lists published work on electron transfer in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactants and authors.
Zhu, Xiao-Qing; Li, Xiu-Tao; Han, Su-Hui; Mei, Lian-Rui
2012-05-18
The effects of substituents on the temperature dependences of kinetic isotope effect (KIE) for the reactions of the hydride transfer from the substituted 5-methyl-6-phenyl-5,6-dihydrophenanthridine (G-PDH) to thioxanthylium (TX(+)) in acetonitrile were examined, and the results show that the temperature dependences of KIE for the hydride transfer reactions can be converted by adjusting the nature of the substituents in the molecule of the hydride donor. In general, electron-withdrawing groups can make the KIE to have normal temperature dependence, but electron-donating groups can make the KIE to have abnormal temperature dependence. Thermodynamic analysis on the possible pathways of the hydride transfer from G-PDH to TX(+) in acetonitrile suggests that the transfers of the hydride anion in the reactions are all carried out by the concerted one-step mechanism whether the substituent is an electron-withdrawing group or an electron-donating group. But the examination of Hammett-type free energy analysis on the hydride transfer reactions supports that the concerted one-step hydride transfer is not due to an elementary chemical reaction. The experimental values of KIE at different temperatures for the hydride transfer reactions were modeled by using a kinetic equation formed according to a multistage mechanism of the hydride transfer including a returnable charge-transfer complex as the reaction intermediate; the real mechanism of the hydride transfer and the root that why the temperature dependences of KIE can be converted as the nature of the substituents are changed were discovered.
Mechanisms for the Reduction of Actinides and Tc(VII) in Geobacter sulfurreducens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd, Jonathan R.
2004-06-01
The mechanism of the reduction of U(VI) and Cr(VI) has now been studied in detail. Cr(VI) is reduced by one-electron transfer reactions to Cr(III), via a cell-bound Cr(V) intermediate identified by EPR spectroscopy. Studies with a cytochrome c7 mutant demonstrate that the electron transfer chain includes this protein which may be the terminal reductase for Cr(VI). Potential mechanisms of inhibition of Cr(III) precipitation, involving complex formation with organic acids commonly used as electron donors for metal reduction in the subsurface have also been identified. We have also initiated a collaboration with computational chemists led by Prof Ian Hillier in Manchester,more » to model metal binding to cytochrome c7, and subsequent electron transfer from the enzyme to the metal quantum mechanically.« less
NASA Astrophysics Data System (ADS)
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M.; Nemeth, William; Wang, Qi; van Duin, Adri C. T.; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-01
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Lee, Chi Hwan; Kim, Jae-Han; Zou, Chenyu; Cho, In Sun; Weisse, Jeffery M; Nemeth, William; Wang, Qi; van Duin, Adri C T; Kim, Taek-Soo; Zheng, Xiaolin
2013-10-10
Peel-and-stick process, or water-assisted transfer printing (WTP), represents an emerging process for transferring fully fabricated thin-film electronic devices with high yield and fidelity from a SiO2/Si wafer to various non-Si based substrates, including papers, plastics and polymers. This study illustrates that the fundamental working principle of the peel-and-stick process is based on the water-assisted subcritical debonding, for which water reduces the critical adhesion energy of metal-SiO2 interface by 70 ~ 80%, leading to clean and high quality transfer of thin-film electronic devices. Water-assisted subcritical debonding is applicable for a range of metal-SiO2 interfaces, enabling the peel-and-stick process as a general and tunable method for fabricating flexible/transparent thin-film electronic devices.
Direct transfer of graphene onto flexible substrates.
Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T
2013-10-29
In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.
Direct transfer of graphene onto flexible substrates
Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.
2013-01-01
In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582
[Promoting efficiency of microbial extracellular electron transfer by synthetic biology].
Li, Feng; Song, Hao
2017-03-25
Electroactive bacteria, including electrigenic bacteria (exoelectrogens) and electroautotrophic bacteria, implement microbial bioelectrocatalysis processes via bi-directional exchange of electrons and energy with environments, enabling a wide array of applications in environmental and energy fields, including microbial fuel cells (MFC), microbial electrolysis cells (MEC), microbial electrosynthesis (MES) to produce electricity and bulk fine chemicals. However, the low efficiency in the extracellular electron transfer (EET) of exoelectrogens and electrotrophic microbes limited their industrial applications. Here, we reviewed synthetic biology approaches to engineer electroactive microorganisms to break the bottleneck of their EET pathways, to achieve higher efficiency of EET of a number of electroactive microorganisms. Such efforts will lead to a breakthrough in the applications of these electroactive microorganisms and microbial electrocatalysis systems.
Liu, Baoshun
2016-04-28
In photocatalysis, it is known that light intensity, organic concentration, and temperature affect the photocatalytic activity by changing the microscopic kinetics of holes and electrons. However, how the microscopic kinetics of holes and electrons relates to the photocatalytic activity was not well known. In the present research, we developed a Monte-Carlo random walking model that involved all of the charge kinetics, including the photo-generation, the recombination, the transport, and the interfacial transfer of holes and electrons, to simulate the overall photocatalytic reaction, which we called a "computer experiment" of photocatalysis. By using this model, we simulated the effect of light intensity, temperature, and organic surface coverage on the photocatalytic activity and the density of the free electrons that accumulate in the simulated system. It was seen that the increase of light intensity increases the electron density and its mobility, which increases the probability for a hole/electron to find an electron/hole for recombination, and consequently led to an apparent kinetics that the quantum yield (QY) decreases with the increase of light intensity. It was also seen that the increase of organic surface coverage could increase the rate of hole interfacial transfer and result in the decrease of the probability for an electron to recombine with a hole. Moreover, the increase of organic coverage on the nano-material surface can also increase the accumulation of electrons, which enhances the mobility for electrons to undergo interfacial transfer, and finally leads to the increase of photocatalytic activity. The simulation showed that the temperature had a more complicated effect, as it can simultaneously change the activation of electrons, the interfacial transfer of holes, and the interfacial transfer of electrons. It was shown that the interfacial transfer of holes might play a main role at low temperature, with the temperature-dependence of QY conforming to the Arrhenius model. The activation of electrons from the traps to the conduction band might become important at high temperature, which accelerates the electron movement for recombination and leads to a temperature dependence of QY that deviates from the Arrhenius model.
Mechanisms of transport and electron transfer at conductive polymer/liquid interfaces
NASA Astrophysics Data System (ADS)
Ratcliff, Erin
Organic semiconductors (OSCs) have incredible prospects for next-generation, flexible electronic devices including bioelectronics, thermoelectrics, opto-electronics, and energy storage and conversion devices. Yet many fundamental challenges still exist. First, solution processing prohibits definitive control over microstructure, which is fundamental for controlling electrical, ionic, and thermal transport properties. Second, OSCs generally suffer from poor electrical conductivities due to a combination of low carriers and low mobility. Third, polymeric semiconductors have potential-dependent, dynamically evolving electronic and chemical states, leading to complex interfacial charge transfer properties in contact with liquids. This talk will focus on the use of alternative synthetic strategies of oxidative chemical vapor deposition and electrochemical deposition to control physical, electronic, and chemical structure. We couple our synthetic efforts with energy-, time-, and spatially resolved spectroelectrochemical and microscopy techniques to understand the critical interfacial chemistry-microstructure-property relationships: first at the macroscale, and then moving towards the nanoscale. In particular, approaches to better understand electron transfer events at polymer/liquid interfaces as a function of: 1.) chemical composition; 2.) electronic density of states (DOS); and 3.) crystallinity and microstructure will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp
An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.
Shewanella secretes flavins that mediate extracellular electron transfer
Marsili, Enrico; Baron, Daniel B.; Shikhare, Indraneel D.; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.
2008-01-01
Bacteria able to transfer electrons to metals are key agents in biogeochemical metal cycling, subsurface bioremediation, and corrosion processes. More recently, these bacteria have gained attention as the transfer of electrons from the cell surface to conductive materials can be used in multiple applications. In this work, we adapted electrochemical techniques to probe intact biofilms of Shewanella oneidensis MR-1 and Shewanella sp. MR-4 grown by using a poised electrode as an electron acceptor. This approach detected redox-active molecules within biofilms, which were involved in electron transfer to the electrode. A combination of methods identified a mixture of riboflavin and riboflavin-5′-phosphate in supernatants from biofilm reactors, with riboflavin representing the dominant component during sustained incubations (>72 h). Removal of riboflavin from biofilms reduced the rate of electron transfer to electrodes by >70%, consistent with a role as a soluble redox shuttle carrying electrons from the cell surface to external acceptors. Differential pulse voltammetry and cyclic voltammetry revealed a layer of flavins adsorbed to electrodes, even after soluble components were removed, especially in older biofilms. Riboflavin adsorbed quickly to other surfaces of geochemical interest, such as Fe(III) and Mn(IV) oxy(hydr)oxides. This in situ demonstration of flavin production, and sequestration at surfaces, requires the paradigm of soluble redox shuttles in geochemistry to be adjusted to include binding and modification of surfaces. Moreover, the known ability of isoalloxazine rings to act as metal chelators, along with their electron shuttling capacity, suggests that extracellular respiration of minerals by Shewanella is more complex than originally conceived. PMID:18316736
Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim
2016-09-15
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.
Effect of dynamic disorder on charge transport along a pentacene chain
NASA Astrophysics Data System (ADS)
Böhlin, J.; Linares, M.; Stafström, S.
2011-02-01
The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.
Megiatto, Jackson D; Cazeils, Emmanuel; Ham-Pichavant, Frédérique; Grelier, Stéphane; Gardrat, Christian; Castellan, Alain
2012-05-14
A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.
Quantum electron tunneling in respiratory complex I.
Hayashi, Tomoyuki; Stuchebrukhov, Alexei A
2011-05-12
We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. While the one-electron tunneling approximation is found to hold in electron tunneling between the antiferromagnetic binuclear and tetranuclear Fe/S clusters without major orbital or spin rearrangement of the core electrons, induced polarization of the core electrons contributes significantly to decrease the electron transfer rates to 19-56 %. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of the electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A signature of the wave properties of electrons is observed as distinct quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included is in good agreement with a reported phenomenological relation.
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that provides an...
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...
12 CFR 1005.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.14 Electronic fund transfer service provider not holding consumer's account. (a) Provider of electronic fund transfer service. A person that...
Sulas, Dana B.; Yao, Kai; Intemann, Jeremy J.; ...
2015-09-12
Using an analysis based on Marcus theory, we characterize losses in open-circuit voltage (V OC) due to changes in charge-transfer state energy, electronic coupling, and spatial density of charge-transfer states in a series of polymer/fullerene solar cells. Here, we use a series of indacenodithiophene polymers and their selenium-substituted analogs as electron donor materials and fullerenes as the acceptors. By combining device measurements and spectroscopic studies (including subgap photocurrent, electroluminescence, and, importantly, time-resolved photoluminescence of the charge-transfer state) we are able to isolate the values for electronic coupling and the density of charge-transfer states (NCT), rather than the more commonly measuredmore » product of these values. We find values for NCT that are surprisingly large (~4.5 × 10 21–6.2 × 10 22 cm -3), and we find that a significant increase in N CT upon selenium substitution in donor polymers correlates with lower VOC for bulk heterojunction photovoltaic devices. The increase in N CT upon selenium substitution is also consistent with nanoscale morphological characterization. Using transmission electron microscopy, selected area electron diffraction, and grazing incidence wide-angle X-ray scattering, we find evidence of more intermixed polymer and fullerene domains in the selenophene blends, which have higher densities of polymer/fullerene interfacial charge-transfer states. Our results provide an important step toward understanding the spatial nature of charge-transfer states and their effect on the open-circuit voltage of polymer/fullerene solar cells« less
Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyanagi, Takashi
2005-12-09
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form canmore » function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.« less
Asymmetric Marcus-Hush theory for voltammetry.
Laborda, Eduardo; Henstridge, Martin C; Batchelor-McAuley, Christopher; Compton, Richard G
2013-06-21
The current state-of-the-art in modeling the rate of electron transfer between an electroactive species and an electrode is reviewed. Experimental studies show that neither the ubiquitous Butler-Volmer model nor the more modern symmetric Marcus-Hush model are able to satisfactorily reproduce the experimental voltammetry for both solution-phase and surface-bound redox couples. These experimental deviations indicate the need for revision of the simplifying approximations used in the above models. Within this context, models encompassing asymmetry are considered which include different vibrational and solvation force constants for the electroactive species. The assumption of non-adiabatic electron transfer is also examined. These refinements have provided more satisfactory models of the electron transfer process and they enable us to gain more information about the microscopic characteristics of the system by means of simple electrochemical measurements.
Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions
2018-01-01
Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173
Toward clean suspended CVD graphene
Yulaev, Alexander; Univ. of Maryland, College Park, MD; Cheng, Guangjun; ...
2016-08-26
The application of suspended graphene as electron transparent supporting media in electron microscopy, vacuum electronics, and micromechanical devices requires the least destructive and maximally clean transfer from their original growth substrate to the target of interest. Here, we use thermally evaporated anthracene films as the sacrificial layer for graphene transfer onto an arbitrary substrate. We show that clean suspended graphene can be achieved via desorbing the anthracene layer at temperatures in the 100 °C to 150 °C range, followed by two sequential annealing steps for the final cleaning, using a Pt catalyst and activated carbon. The cleanliness of the suspendedmore » graphene membranes was analyzed employing the high surface sensitivity of low energy scanning electron microscopy and X-ray photoelectron spectroscopy. A quantitative comparison with two other commonly used transfer methods revealed the superiority of the anthracene approach to obtain a larger area of clean, suspended CVD graphene. Lastly, our graphene transfer method based on anthracene paves the way for integrating cleaner graphene in various types of complex devices, including the ones that are heat and humidity sensitive.« less
pH sensitive quantum dot-anthraquinone nanoconjugates
NASA Astrophysics Data System (ADS)
Ruedas-Rama, Maria Jose; Hall, Elizabeth A. H.
2014-05-01
Semiconductor quantum dots (QDs) have been shown to be highly sensitive to electron or charge transfer processes, which may alter their optical properties. This feature can be exploited for different sensing applications. Here, we demonstrate that QD-anthraquinone conjugates can function as electron transfer-based pH nanosensors. The attachment of the anthraquinones on the surface of QDs results in the reduction of electron hole recombination, and therefore a quenching of the photoluminescence intensity. For some anthraquinone derivatives tested, the quenching mechanism is simply caused by an electron transfer process from QDs to the anthraquinone, functioning as an electron acceptor. For others, electron transfer and energy transfer (FRET) processes were found. A detailed analysis of the quenching processes for CdSe/ZnS QD of two different sizes is presented. The photoluminescence quenching phenomenon of QDs is consistent with the pH sensitive anthraquinone redox chemistry. The resultant family of pH nanosensors shows pKa ranging ˜5-8, being ideal for applications of pH determination in physiological samples like blood or serum, for intracellular pH determination, and for more acidic cellular compartments such as endosomes and lysosomes. The nanosensors showed high selectivity towards many metal cations, including the most physiologically important cations which exist at high concentration in living cells. The reversibility of the proposed systems was also demonstrated. The nanosensors were applied in the determination of pH in samples mimicking the intracellular environment. Finally, the possibility of incorporating a reference QD to achieve quantitative ratiometric measurements was investigated.
Niu, Zhuyu; Jia, Yating; Chen, Yuancai; Hu, Yongyou; Chen, Junfeng; Lv, Yuancai
2018-06-08
This study constructed a biological-inorganic hybrid system including Pseudomonas putida (P. putida) and bioreduced Pd (0) nanoparticles (NPs), and inspected the influence of bio-nano Pd (0) on the direct electron transfer and phenol biodegradation. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) showed that bio-nano Pd (0) (~10 nm) were evenly dispersed on the surface and in the periplasm of P. putida. With the incorporation of bio-nano Pd (0), the redox currents of bacteria in the cyclic voltammetry (CV) became higher and the oxidation current increased as the addition of lactate, while the highest increase rates of two electron transfer system (ETS) rates were 63.97% and 33.79%, respectively. These results indicated that bio-nano Pd (0) could directly promote the electron transfer of P. putida. In phenol biodegradation process, P. putida-Pd (0)- 2 showed the highest k (0.2992 h -1 ), μ m (0.035 h -1 ) and K i (714.29 mg/L) and the lowest apparent K s (76.39 mg/L). The results of kinetic analysis indicated that bio-nano Pd (0) markedly enhanced the biocatalytic efficiency, substrate affinity and the growth of cells compared to native P. putida. The positive effects of bio-nano Pd (0) to the electron transfer of P. putida would promote the biodegradation of phenol. Copyright © 2018 Elsevier Inc. All rights reserved.
Quantum tunneling resonant electron transfer process in Lorentzian plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791
The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less
Ultrafast direct electron transfer at organic semiconductor and metal interfaces.
Xiang, Bo; Li, Yingmin; Pham, C Huy; Paesani, Francesco; Xiong, Wei
2017-11-01
The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate by observing the first dynamical electric field-induced vibrational sum frequency generation (VSFG). In transient electric field-induced VSFG measurements on this system, we observe dynamical responses (<150 fs) that depend on photon energy and polarization, demonstrating that electrons are directly transferred from the Fermi level of gold to the lowest unoccupied molecular orbital of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a subensemble of surface molecules can adopt conformations for direct electron transfer. Density functional theory calculations support the experimental results and ascribe the observed electron transfer to a flat-lying polymer configuration in which electronic orbitals are found to be delocalized across the interface. The present observation of direct electron transfer at complex interfaces and the insights gained into the relationship between molecular conformations and electron dynamics will have implications for implementing novel direct electron transfer in energy materials.
Fapetu, Segun; Keshavarz, Taj; Clements, Mark; Kyazze, Godfrey
2016-09-01
To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2011-05-01
Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from
Powering microbes with electricity: direct electron transfer from electrodes to microbes.
Lovley, Derek R
2011-02-01
The discovery of electrotrophs, microorganisms that can directly accept electrons from electrodes for the reduction of terminal electron acceptors, has spurred the investigation of a wide range of potential applications. To date, only a handful of pure cultures have been shown to be capable of electrotrophy, but this process has also been inferred in many studies with undefined consortia. Potential electron acceptors include: carbon dioxide, nitrate, metals, chlorinated compounds, organic acids, protons and oxygen. Direct electron transfer from electrodes to cells has many advantages over indirect electrical stimulation of microbial metabolism via electron shuttles or hydrogen production. Supplying electrons with electrodes for the bioremediation of chlorinated compounds, nitrate or toxic metals may be preferable to adding organic electron donors or hydrogen to the subsurface or bioreactors. The most transformative application of electrotrophy may be microbial electrosynthesis in which carbon dioxide and water are converted to multi-carbon organic compounds that are released extracellularly. Coupling photovoltaic technology with microbial electrosynthesis represents a novel photosynthesis strategy that avoids many of the drawbacks of biomass-based strategies for the production of transportation fuels and other organic chemicals. The mechanisms for direct electron transfer from electrodes to microorganisms warrant further investigation in order to optimize envisioned applications. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan
2014-03-01
Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.
Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1*
Baron, Daniel; LaBelle, Edward; Coursolle, Dan; Gralnick, Jeffrey A.; Bond, Daniel R.
2009-01-01
Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. PMID:19661057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudackov, Alexander; Hammes-Schiffer, Sharon
2015-11-17
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency regimes for the proton donor-acceptor vibrational mode. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term does not significantly impact the rate constants derived using the cumulant expansion approachmore » in any of the regimes studied. The effects of the quadratic term may become significant when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant, however, particularly at high temperatures and for proton transfer interfaces with extremely soft proton donor-acceptor modes that are associated with extraordinarily weak hydrogen bonds. Even with the thermal averaging procedure, the effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances, and the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton transfer and proton-coupled electron transfer in chemical and biological processes. We are grateful for support from National Institutes of Health Grant GM056207 (applications to enzymes) and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (applications to molecular electrocatalysts).« less
Metal complex-based electron-transfer mediators in dye-sensitized solar cells
Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano
2006-03-28
This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.
Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang
2015-08-03
We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jones, Matthew; Talfournier, Francois; Bobrov, Anton; Grossmann, J Günter; Vekshin, Nikolai; Sutcliffe, Michael J; Scrutton, Nigel S
2002-03-08
The trimethylamine dehydrogenase-electron transferring flavoprotein (TMADH.ETF) electron transfer complex has been studied by fluorescence and absorption spectroscopies. These studies indicate that a series of conformational changes occur during the assembly of the TMADH.ETF electron transfer complex and that the kinetics of assembly observed with mutant TMADH (Y442F/L/G) or ETF (alpha R237A) complexes are much slower than are the corresponding rates of electron transfer in these complexes. This suggests that electron transfer does not occur in the thermodynamically most favorable state (which takes too long to form), but that one or more metastable states (which are formed more rapidly) are competent in transferring electrons from TMADH to ETF. Additionally, fluorescence spectroscopy studies of the TMADH.ETF complex indicate that ETF undergoes a stable conformational change (termed structural imprinting) when it interacts transiently with TMADH to form a second, distinct, structural form. The mutant complexes compromise imprinting of ETF, indicating a dependence on the native interactions present in the wild-type complex. The imprinted form of semiquinone ETF exhibits an enhanced rate of electron transfer to the artificial electron acceptor, ferricenium. Overall molecular conformations as probed by small-angle x-ray scattering studies are indistinguishable for imprinted and non-imprinted ETF, suggesting that changes in structure likely involve confined reorganizations within the vicinity of the FAD. Our results indicate a series of conformational events occur during the assembly of the TMADH.ETF electron transfer complex, and that the properties of electron transfer proteins can be affected lastingly by transient interaction with their physiological redox partners. This may have significant implications for our understanding of biological electron transfer reactions in vivo, because ETF encounters TMADH at all times in the cell. Our studies suggest that caution needs to be exercised in extrapolating the properties of in vitro interprotein electron transfer reactions to those occurring in vivo.
Antioxidative mechanisms in chlorogenic acid.
Tošović, Jelena; Marković, Svetlana; Dimitrić Marković, Jasmina M; Mojović, Miloš; Milenković, Dejan
2017-12-15
Although chlorogenic acid (5CQA) is an important ingredient of various foods and beverages, mechanisms of its antioxidative action have not been fully clarified. Besides electron spin resonance experiment, this study includes thermodynamic and mechanistic investigations of the hydrogen atom transfer (HAT), radical adduct formation (RAF), sequential proton loss electron transfer (SPLET), and single electron transfer - proton transfer (SET-PT) mechanisms of 5CQA in benzene, ethanol, and water solutions. The calculations were performed using the M06-2X/6-311++G(d,p) level of theory and CPCM solvation model. It was found that SET-PT is not a plausible antioxidative mechanism of 5CQA. RAF pathways are faster, but HAT yields thermodynamically more stable radical products, indicating that in acidic and neutral media 5CQA can take either HAT or RAF pathways. In basic environment (e.g. at physiological pH) SPLET is the likely antioxidative mechanism of 5CQA with extremely high rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
31 CFR 208.3 - Payment by electronic funds transfer.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
31 CFR 208.3 - Payment by electronic funds transfer.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Payment by electronic funds transfer... DISBURSEMENTS § 208.3 Payment by electronic funds transfer. Subject to § 208.4, and notwithstanding any other... electronic funds transfer. ...
48 CFR 18.123 - Electronic funds transfer.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer. 18.123 Section 18.123 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
48 CFR 18.124 - Electronic funds transfer.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, S.; Lin, C.C.
The absorption coefficients for the free-free transitions in collisions between slow electrons and neutral oxygen atoms have been calculated for wavelengths in the range of 1 to 30 [mu]m and temperatures between 5000 and 50 000 K. The wave functions of the unbound electron are the solutions of a one-electron Schroedinger-like continuum equation that includes the Coulomb, exchange, and polarization interactions with the oxygen atom. The polarization potential is determined by a first-principles calculation based on the method of polarized orbitals. Our absorption coefficients are in good agreement with those of John and Williams [J. Quant. Spectrosc. Radiat. Transfer 17,more » 169 (1977)], but are much smaller than the experimental data of Taylor and Caledonia [J. Quant. Spectrosc. Radiat. Transfer 9, 681 (1969)] and of Kung and Chang [J. Quant. Spectrosc. Radiat. Transfer 16, 579 (1976)].« less
A Unified Approach to the Study of Chemical Reactions in Freshman Chemistry.
ERIC Educational Resources Information Center
Cassen, T.; DuBois, Thomas D.
1982-01-01
Provides rationale and objectives for presenting chemical reactions in a unified, logical six-stage approach rather than a piecemeal approach. Stages discussed include: introduction, stable electronic configurations and stable oxidation states, reactions between two free elements, ion transfer/proton transfer reactions, double displacement…
76 FR 12729 - Cambridge Environmental Inc; Transfer of Data
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
...) and/ or electronic form. Due dates for each data package and/or assessment and/or project shall be...; Transfer of Data AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: This notice... evaluating assessments. This includes evaluating the applicability of the data and methods used in the...
Chemical and quantum simulation of electron transfer through a polypeptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ungar, L.W.; Voth, G.A.; Newton, M.D.
1999-08-26
Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.
2011-01-01
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.
Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V
2011-01-04
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.
Modular electron transfer circuits for synthetic biology
Agapakis, Christina M
2010-01-01
Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209
Modular jet impingement assemblies with passive and active flow control for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh
2016-09-13
Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.
DFT Study on Nitrite Reduction Mechanism in Copper-Containing Nitrite Reductase.
Lintuluoto, Masami; Lintuluoto, Juha M
2016-01-12
Dissimilatory reduction of nitrite by copper-containing nitrite reductase (CuNiR) is an important step in the geobiochemical nitrogen cycle. The proposed mechanisms for the reduction of nitrite by CuNiRs include intramolecular electron and proton transfers, and these two events are understood to couple. Proton-coupled electron transfer is one of the key processes in enzyme reactions. We investigated the geometric structure of bound nitrite and the mechanism of nitrite reduction on CuNiR using density functional theory calculations. Also, the proton transfer pathway, the key residues, and their roles in the reaction mechanism were clarified in this study. In our results, the reduction of T2 Cu site promotes the proton transfer, and the hydrogen bond network around the binding site has an important role not only to stabilize the nitrite binding but also to promote the proton transfer to nitrite.
Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J
2014-07-22
Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.
Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons
NASA Astrophysics Data System (ADS)
Chen, Mingguang; Stekovic, Dejan; Li, Wangxiang; Arkook, Bassim; Haddon, Robert C.; Bekyarova, Elena
2017-06-01
Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.
Interhospital transfer handoff practices among US tertiary care centers: A descriptive survey.
Herrigel, Dana J; Carroll, Madeline; Fanning, Christine; Steinberg, Michael B; Parikh, Amay; Usher, Michael
2016-06-01
Interhospital transfer is an understudied area within transitions of care. The process by which hospitals accept and transfer patients is not well described. National trends and best practices are unclear. To describe the demographics of large transfer centers, to identify common handoff practices, and to describe challenges and notable innovations involving the interhospital transfer handoff process. A convenience sample of 32 tertiary care centers in the United States was studied. Respondents were typically transfer center directors surveyed by phone. Data regarding transfer center demographics, handoff communication practices, electronic infrastructure, and data sharing were obtained. The median number of patients transferred each month per receiving institution was 700 (range, 250-2500); on average, 28% of these patients were transferred to an intensive care unit. Transfer protocols and practices varied by institution. Transfer center coordinators typically had a medical background (78%), and critical care-trained registered nurse was the most prevalent (38%). Common practices included: mandatory recorded 3-way physician-to-physician conversation (84%) and mandatory clinical status updates prior to patient arrival (81%). However, the timeline of clinical status updates was variable. Less frequent transfer practices included: electronic medical record (EMR) cross-talk availability and utilization (23%), real-time transfer center documentation accessibility in the EMR (32%), and referring center clinical documentation available prior to transport (29%). A number of innovative strategies to address challenges involving interhospital handoffs are reported. Interhospital transfer practices vary widely amongst tertiary care centers. Practices that lead to improved patient handoffs and reduced medical errors need additional prospective evaluation. Journal of Hospital Medicine 2016;11:413-417. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.
Hot-electron transfer in quantum-dot heterojunction films.
Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J
2018-06-13
Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.
Physical stage of photosynthesis charge separation
NASA Astrophysics Data System (ADS)
Yakovlev, A. G.; Shuvalov, V. A.
2016-06-01
An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.
Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian
2012-03-28
In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.
Electron-Transfer Dynamics for a Donor-Bridge-Acceptor Complex in Ionic Liquids.
DeVine, Jessalyn A; Labib, Marena; Harries, Megan E; Rached, Rouba Abdel Malak; Issa, Joseph; Wishart, James F; Castner, Edward W
2015-08-27
Intramolecular photoinduced electron transfer from an N,N-dimethyl-p-phenylenediamine donor bridged by a diproline spacer to a coumarin 343 acceptor was studied using time-resolved fluorescence measurements in three ionic liquids and in acetonitrile. The three ionic liquids have the bis[(trifluoromethyl)sulfonyl]amide anion paired with the tributylmethylammonium, 1-butyl-1-methylpyrrolidinium, and 1-decyl-1-methylpyrrolidinium cations. The dynamics in the two-proline donor-bridge-acceptor complex are compared to those observed for the same donor and acceptor connected by a single proline bridge, studied previously by Lee et al. (J. Phys. Chem. C 2012, 116, 5197). The increased conformational freedom afforded by the second bridging proline resulted in multiple energetically accessible conformations. The multiple conformations have significant variations in donor-acceptor electronic coupling, leading to dynamics that include both adiabatic and nonadiabatic contributions. In common with the single-proline bridged complex, the intramolecular electron transfer in the two-proline system was found to be in the Marcus inverted regime.
A bioinspired redox relay that mimics radical interactions of the Tyr-His pairs of photosystem II
NASA Astrophysics Data System (ADS)
Megiatto, Jackson D., Jr.; Méndez-Hernández, Dalvin D.; Tejeda-Ferrari, Marely E.; Teillout, Anne-Lucie; Llansola-Portolés, Manuel J.; Kodis, Gerdenis; Poluektov, Oleg G.; Rajh, Tijana; Mujica, Vladimiro; Groy, Thomas L.; Gust, Devens; Moore, Thomas A.; Moore, Ana L.
2014-05-01
In water-oxidizing photosynthetic organisms, light absorption generates a powerfully oxidizing chlorophyll complex (P680•+) in the photosystem II reaction centre. This is reduced via an electron transfer pathway from the manganese-containing water-oxidizing catalyst, which includes an electron transfer relay comprising a tyrosine (Tyr)-histidine (His) pair that features a hydrogen bond between a phenol group and an imidazole group. By rapidly reducing P680•+, the relay is thought to mitigate recombination reactions, thereby ensuring a high quantum yield of water oxidation. Here, we show that an artificial reaction centre that features a benzimidazole-phenol model of the Tyr-His pair mimics both the short-internal hydrogen bond in photosystem II and, using electron paramagnetic resonance spectroscopy, the thermal relaxation that accompanies proton-coupled electron transfer. Although this artificial system is much less complex than the natural one, theory suggests that it captures the essential features that are important in the function of the relay.
Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M
2017-11-15
Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.
Electron-transfer oxidation properties of DNA bases and DNA oligomers.
Fukuzumi, Shunichi; Miyao, Hiroshi; Ohkubo, Kei; Suenobu, Tomoyoshi
2005-04-21
Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer.
Duan, Hong-Guang; Prokhorenko, Valentyn I; Cogdell, Richard J; Ashraf, Khuram; Stevens, Amy L; Thorwart, Michael; Miller, R J Dwayne
2017-08-08
During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales [Formula: see text]100 fs. Today's understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer
NASA Astrophysics Data System (ADS)
Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne
2017-08-01
During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales <<100 fs. Today’s understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.
The Historian and Electronic Research: File Transfer Protocol (FTP).
ERIC Educational Resources Information Center
McCarthy, Michael J.
1993-01-01
Asserts that the Internet will become the academic communication medium for historians in the 1990s. Describes the "file transfer protocol" (FTP) access approach to the Internet and discusses its significant for historical research. Includes instructions for using FTP and a list of history-related FTP sites. (CFR)
14 CFR 1274.931 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...
77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-10
... Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act, and the official... Sec. 1005.3(a) in the interim final rule, Electronic Fund Transfers (Regulation E), published on...
14 CFR 1274.931 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.931 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods July 2002 Payments under this...
NASA Astrophysics Data System (ADS)
Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai
2016-04-01
New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00902f
ERIC Educational Resources Information Center
Tennant, Roy
1992-01-01
Explains how users can find and access information resources available on the Internet. Highlights include network information centers (NICs); lists, both formal and informal; computer networking protocols, including international standards; electronic mail; remote log-in; and file transfer. (LRW)
14 CFR § 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Electronic funds transfer payment methods... GRANTS AND COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made...
14 CFR 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...
14 CFR 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...
14 CFR 1260.69 - Electronic funds transfer payment methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Electronic funds transfer payment methods... COOPERATIVE AGREEMENTS General Special Conditions § 1260.69 Electronic funds transfer payment methods. Electronic Funds Transfer Payment Methods October 2000 (a) Payments under this grant will be made by the...
Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-01-03
In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less
Electronic Delocalization, Vibrational Dynamics and Energy Transfer in Organic Chromophores
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian; ...
2017-06-12
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
ERIC Educational Resources Information Center
Jul, Erik
1992-01-01
Describes the use of file transfer protocol (FTP) on the INTERNET computer network and considers its use as an electronic publishing system. The differing electronic formats of text files are discussed; the preparation and access of documents are described; and problems are addressed, including a lack of consistency. (LRW)
Internet, World Wide Web, and Creativity.
ERIC Educational Resources Information Center
Siau, Keng
1999-01-01
This article presents the services available on the Internet for creativity and discusses their applicability to electronic brainstorming. Services include bulletin boards, electronic mail and listservs, chat groups, file transfers, and remote login. Opportunities provided by the World Wide Web are discussed, along with tools available to…
The influence of dielectric relaxation on intramolecular electron transfer
NASA Astrophysics Data System (ADS)
Heitele, H.; Michel-Beyerle, M. E.; Finckh, P.
1987-07-01
An unusually strong temperature dependence on the intramolecular electron-transfer rate has been observed for bridged donor-acceptor compounds in propylene glycol solution. In the frame of recent electron-transfer theories this effect reflects the influence of dielectric relaxation dynamics on electron transfer. With increasing dielectric relaxation time a smooth transition from non-adiabatic to solvent-controlled adiabatic behaviour is observed. The electron transfer rate in the solvent-controlled adiabatic limit is dominated by an inhomogeneous distribution of relaxation times.
Laser Measurement Of Convective-Heat-Transfer Coefficient
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.
1994-01-01
Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.
Possible Dynamically Gated Conductance along Heme Wires in Bacterial Multiheme Cytochromes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Dayle MA; Rosso, Kevin M.
2014-07-24
The staggered cross decaheme configuration of electron transfer co-factors in the outer-membrane cytochrome MtrF may serve as a prototype for conformationally-gated multi-heme electron transport. Derived from the bacterium Shewanella oneidensis, the staggered cross configuration reveals intersecting c-type octaheme and tetraheme “wires” containing thermodynamic “hills” and “valleys”, suggesting that the protein structure may include a dynamical mechanism for conductance and pathway switching depending on enzymatic functional need. Recent molecular simulations have established the pair-wise electronic couplings, redox potentials, and reorganization energies to predict the maximum conductance along the various heme wire pathways by sequential hopping of a single electron (PNAS (2014)more » 11,611-616). Here, we expand this information with classical molecular and statistical mechanics calculations of large-amplitude protein dynamics in MtrF, to address its potential to modulate pathway conductance, including assessment of the effect of the total charge state. Explicit solvent molecular dynamics simulations of fully oxidized and fully reduced MtrF employing ten independent 50-ns simulations at 300 K and 1 atm showed that reduced MtrF is more expanded and explores more conformational space than oxidized MtrF, and that heme reduction leads to increased heme solvent exposure. The slowest mode of collective decaheme motion is 90% similar between the oxidized and reduced states, and consists primarily of inter-heme separation with minor rotational contributions. The frequency of this motion is 1.7×107 s 1 for fully-oxidized and fully-reduced MtrF, respectively, slower than the downhill electron transfer rates between stacked heme pairs at the octaheme termini and faster than the electron transfer rates between parallel hemes in the tetraheme chain. This implies that MtrF uses slow conformational fluctuations to modulate electron flow along the octaheme pathway, apparently for the purpose of increasing the residence time of electrons on lowest potential hemes 4 and 9. This apparent gating mechanism should increase the success rate of electron transfer from MtrF to low potential environmental acceptors via these two solvent-exposed hemes.« less
DOE R&D Accomplishments Database
Marcus, R. A.
1962-01-01
Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)
Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria.
Pisciotta, John M; Zou, Yongjin; Baskakov, Ilia V
2011-07-01
Certain anaerobic bacteria, termed electrogens, produce an electric current when electrons from oxidized organic molecules are deposited to extracellular metal oxide acceptors. In these heterotrophic "metal breathers", the respiratory electron transport chain (R-ETC) works in concert with membrane-bound cytochrome oxidases to transfer electrons to the extracellular acceptors. The diversity of bacteria able to generate an electric current appears more widespread than previously thought, and aerobic phototrophs, including cyanobacteria, possess electrogenic activity. However, unlike heterotrophs, cyanobacteria electrogenic activity is light dependent, which suggests that a novel pathway could exist. To elucidate the electrogenic mechanism of cyanobacteria, the current studies used site-specific inhibitors to target components of the photosynthetic electron transport chain (P-ETC) and cytochrome oxidases. Here, we show that (1) P-ETC and, particularly, water photolysed by photosystem II (PSII) is the source of electrons discharged to the environment by illuminated cyanobacteria, and (2) water-derived electrons are transmitted from PSII to extracellular electron acceptors via plastoquinone and cytochrome bd quinol oxidase. Two cyanobacterial genera (Lyngbya and Nostoc) displayed very similar electrogenic responses when treated with P-ETC site-specific inhibitors, suggesting a conserved electrogenic pathway. We propose that in cyanobacteria, electrogenic activity may represent a form of overflow metabolism to protect cells under high-intensity light. This study offers insight into electron transfer between phototrophic microorganisms and the environment and expands our knowledge into biologically based mechanisms for harnessing solar energy.
12 CFR 205.15 - Electronic fund transfer of government benefits.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer of government benefits. 205.15 Section 205.15 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.15 Electronic fund transfer of government...
Code of Federal Regulations, 2014 CFR
2014-01-01
...-time electronic fund transfer from a consumer's account. The consumer must authorize the transfer. (ii... one-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR... transfer. A consumer authorizes a one-time electronic fund transfer from his or her account to pay the fee...
Simulation of solution phase electron transfer in a compact donor-acceptor dyad.
Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy
2011-10-27
Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
Renger, Thomas; Schlodder, Eberhard
2011-01-01
In this review we discuss structure-function relationships of the core complex of photosystem II, as uncovered from analysis of optical spectra of the complex and its subunits. Based on descriptions of optical difference spectra including site directed mutagenesis we propose a revision of the multimer model of the symmetrically arranged reaction center pigments, described by an asymmetric exciton Hamiltonian. Evidence is provided for the location of the triplet state, the identity of the primary electron donor, the localization of the cation and the secondary electron transfer pathway in the reaction center. We also discuss the stationary and time-dependent optical properties of the CP43 and CP47 subunits and the excitation energy transfer and trapping-by-charge-transfer kinetics in the core complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Vaikunth, Sumeet S; Williams, Roberta G; Uzunyan, Merujan Y; Tun, Han; Barton, Cheryl; Chang, Philip M
2018-01-01
Transition from pediatric to adult care is a critical time for patients with congenital heart disease. Lapses in care can lead to poor outcomes, including increased mortality. Formal transition clinics have been implemented to improve success of transferring care from pediatric to adult providers; however, data regarding outcomes remain limited. We sought to evaluate outcomes of transfer within a dedicated transition clinic for young adult patients with congenital heart disease. We performed a retrospective analysis of all 73 patients seen in a dedicated young adult congenital heart disease transition clinic from January 2012 to December 2015 within a single academic institution that delivered pediatric and adult care at separate children's and adult hospitals, respectively. Demographic characteristics including congenital heart disease severity, gender, age, presence of comorbidities, presence of cardiac implantable electronic devices, and type of insurance were correlated to success of transfer. Rate of successful transfer was evaluated, and multivariate analysis was performed to determine which demographic variables were favorably associated with transfer. Thirty-nine percent of patients successfully transferred from pediatric to adult services during the study period. Severe congenital heart disease (OR 4.44, 95% CI 1.25-15.79, P = .02) and presence of a cardiac implantable electronic device (OR 4.93, 95% CI 1.18-20.58, P = .03) correlated with transfer. Trends favoring successful transfer with presence of comorbidities and private insurance were also noted. Despite a dedicated transition clinic, successful transfer rates remained relatively low though comparable to previously published rates. Severity of disease and presence of implantable devices correlated with successful transfer. Other obstacles to transfer remain and require combined efforts from pediatric and adult care systems, insurance carriers, and policy makers to improve transfer outcomes. © 2017 Wiley Periodicals, Inc.
Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao
2013-06-01
Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Harriman, Anthony
2011-05-26
A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.
Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae
2018-01-01
Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Student Experiment to Demonstrate the Energy Loss and Straggling of Electrons in Matter.
ERIC Educational Resources Information Center
de Bruin, M.; Huijgen, F. W. J.
1990-01-01
Described is an introductory experiment that allows students to directly observe and measure the linear energy transfer in matter. Illustrated are the experimental setup including the radioactive source, electronic equipment, and the detector; measurement and calculations; and the results. (CW)
Two-Electron Transfer Pathways.
Lin, Jiaxing; Balamurugan, D; Zhang, Peng; Skourtis, Spiros S; Beratan, David N
2015-06-18
The frontiers of electron-transfer chemistry demand that we develop theoretical frameworks to describe the delivery of multiple electrons, atoms, and ions in molecular systems. When electrons move over long distances through high barriers, where the probability for thermal population of oxidized or reduced bridge-localized states is very small, the electrons will tunnel from the donor (D) to acceptor (A), facilitated by bridge-mediated superexchange interactions. If the stable donor and acceptor redox states on D and A differ by two electrons, it is possible that the electrons will propagate coherently from D to A. While structure-function relations for single-electron superexchange in molecules are well established, strategies to manipulate the coherent flow of multiple electrons are largely unknown. In contrast to one-electron superexchange, two-electron superexchange involves both one- and two-electron virtual intermediate states, the number of virtual intermediates increases very rapidly with system size, and multiple classes of pathways interfere with one another. In the study described here, we developed simple superexchange models for two-electron transfer. We explored how the bridge structure and energetics influence multielectron superexchange, and we compared two-electron superexchange interactions to single-electron superexchange. Multielectron superexchange introduces interference between singly and doubly oxidized (or reduced) bridge virtual states, so that even simple linear donor-bridge-acceptor systems have pathway topologies that resemble those seen for one-electron superexchange through bridges with multiple parallel pathways. The simple model systems studied here exhibit a richness that is amenable to experimental exploration by manipulating the multiple pathways, pathway crosstalk, and changes in the number of donor and acceptor species. The features that emerge from these studies may assist in developing new strategies to deliver multiple electrons in condensed-phase redox systems, including multiple-electron redox species, multimetallic/multielectron redox catalysts, and multiexciton excited states.
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2010 CFR
2010-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2010-01-01 2010-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2013 CFR
2013-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2013-01-01 2013-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2014 CFR
2014-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2014-01-01 2014-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2011 CFR
2011-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
12 CFR 205.14 - Electronic fund transfer service provider not holding consumer's account.
Code of Federal Regulations, 2012 CFR
2012-01-01
... consumer learns of the loss or theft; and extends the time periods for reporting unauthorized transfers or... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Electronic fund transfer service provider not... GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.14 Electronic fund...
NASA Astrophysics Data System (ADS)
Imai, Shigeru; Ito, Masato
2018-06-01
In this paper, anomalous single-electron transfer in common-gate quadruple-dot turnstile devices with asymmetric junction capacitances is revealed. That is, the islands have the same total number of excess electrons at high and low gate voltages of the swing that transfers a single electron. In another situation, two electrons enter the islands from the source and two electrons leave the islands for the source and drain during a gate voltage swing cycle. First, stability diagrams of the turnstile devices are presented. Then, sequences of single-electron tunneling events by gate voltage swings are investigated, which demonstrate the above-mentioned anomalous single-electron transfer between the source and the drain. The anomalous single-electron transfer can be understood by regarding the four islands as “three virtual islands and a virtual source or drain electrode of a virtual triple-dot device”. The anomalous behaviors of the four islands are explained by the normal behavior of the virtual islands transferring a single electron and the behavior of the virtual electrode.
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.; Rösch, Notker
2002-09-01
The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.
Electron Transfer Between Electrically Conductive Minerals and Quinones
NASA Astrophysics Data System (ADS)
Taran, Olga
2017-07-01
Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well known, but the impact of abiotic currents across naturally occurring conductive and semiconducitve minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite and greigite), and hydroquinones - a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains of life and interactions between quinones and pyrite might have been an early analogue of this ubiquitous systems.
transition metal systems, macromolecular dynamics, comparative chemical bonding analysis, electron transfer . Research Interests Dynamics and control on discrete structures, including excited-state transition metal
Pandit, Palash; Yamamoto, Koji; Nakamura, Toshikazu; Nishimura, Katsuyuki; Kurashige, Yuki; Yanai, Takeshi; Nakamura, Go; Masaoka, Shigeyuki; Furukawa, Ko; Yakiyama, Yumi; Kawano, Masaki
2015-01-01
Regulation of electron transfer on organic substances by external stimuli is a fundamental issue in science and technology, which affects organic materials, chemical synthesis, and biological metabolism. Nevertheless, acid/base-responsive organic materials that exhibit reversible electron transfer have not been well studied and developed, owing to the difficulty in inventing a mechanism to associate acid/base stimuli and electron transfer. We discovered a new phenomenon in which N–N linked bicarbazole (BC) and tetramethylbiacridine (TBA) derivatives undergo electron transfer disproportionation by acid stimulus, forming their stable radical cations and reduced species. The reaction occurs through a biradical intermediate generated by the acid-triggered N–N bond cleavage reaction of BC or TBA, which acts as a two electron acceptor to undergo electron transfer reactions with two equivalents of BC or TBA. In addition, in the case of TBA the disproportionation reaction is highly reversible through neutralization with NEt3, which recovers TBA through back electron transfer and N–N bond formation reactions. This highly reversible electron transfer reaction is possible due to the association between the acid stimulus and electron transfer via the acid-regulated N–N bond cleavage/formation reactions which provide an efficient switching mechanism, the ability of the organic molecules to act as multi-electron donors and acceptors, the extraordinary stability of the radical species, the highly selective reactivity, and the balance of the redox potentials. This discovery provides new design concepts for acid/base-regulated organic electron transfer systems, chemical reagents, or organic materials. PMID:29218181
Rate of Interfacial Electron Transfer through the 1,2,3-Triazole Linkage
Devaraj, Neal K.; Decreau, Richard A.; Ebina, Wataru; Collman, James P.; Chidsey, Christopher E. D.
2012-01-01
The rate of electron transfer is measured to two ferrocene and one iron tetraphenylporphyrin redox species coupled through terminal acetylenes to azide-terminated thiol monolayers by the Cu(I)-catalyzed azide–alkyne cycloaddition (a Sharpless “click” reaction) to form the 1,2,3-triazole linkage. The high yield, chemoselectivity, convenience, and broad applicability of this triazole formation reaction make such a modular assembly strategy very attractive. Electron-transfer rate constants from greater than 60,000 to 1 s−1 are obtained by varying the length and conjugation of the electron-transfer bridge and by varying the surrounding diluent thiols in the monolayer. Triazole and the triazole carbonyl linkages provide similar electronic coupling for electron transfer as esters. The ability to vary the rate of electron transfer to many different redox species over many orders of magnitude by using modular coupling chemistry provides a convenient way to study and control the delivery of electrons to multielectron redox catalysts and similar interfacial systems that require controlled delivery of electrons. PMID:16898751
ERIC Educational Resources Information Center
Wiggins, Rich
1993-01-01
Describes the Gopher system developed at the University of Minnesota for accessing information on the Internet. Highlights include the need for navigation tools; Gopher clients; FTP (File Transfer Protocol); campuswide information systems; navigational enhancements; privacy and security issues; electronic publishing; multimedia; and future…
Covalent electron transfer chemistry of graphene with diazonium salts.
Paulus, Geraldine L C; Wang, Qing Hua; Strano, Michael S
2013-01-15
Graphene is an atomically thin, two-dimensional allotrope of carbon with exceptionally high carrier mobilities, thermal conductivity, and mechanical strength. From a chemist's perspective, graphene can be regarded as a large polycyclic aromatic molecule and as a surface without a bulk contribution. Consequently, chemistries typically performed on organic molecules and surfaces have been used as starting points for the chemical functionalization of graphene. The motivations for chemical modification of graphene include changing its doping level, opening an electronic band gap, charge storage, chemical and biological sensing, making new composite materials, and the scale-up of solution-processable graphene. In this Account, we focus on graphene functionalization via electron transfer chemistries, in particular via reactions with aryl diazonium salts. Because electron transfer chemistries depend on the Fermi energy of graphene and the density of states of the reagents, the resulting reaction rate depends on the number of graphene layers, edge states, defects, atomic structure, and the electrostatic environment. We limit our Account to focus on pristine graphene over graphene oxide, because free electrons in the latter are already bound to oxygen-containing functionalities and the resulting chemistries are dominated by localized reactivity and defects. We describe the reaction mechanism of diazonium functionalization of graphene and show that the reaction conditions determine the relative degrees of chemisorption and physisorption, which allows for controlled modulation of the electronic properties of graphene. Finally we discuss different applications for graphene modified by this chemistry, including as an additive in polymer matrices, as biosensors when coupled with cells and biomolecules, and as catalysts when combined with nanoparticles.
Typical effects of laser dazzling CCD camera
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin
2015-05-01
In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu
2015-12-07
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot bemore » accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.« less
NASA Astrophysics Data System (ADS)
Boriev, I. A.
2018-03-01
An analysis of the problem of so-called “abnormal” fast transfer of electrons in tokamak plasma, which turned out much faster than the result of accepted calculation, is given. Such transfer of hot electrons leads to unexpectedly fast destruction of the inner tokamak wall with ejection of its matter in plasma volume, what violates a condition of plasma confinement for controlled thermonuclear fusion. It is shown, taking into account real physics of electron drift in the gas (plasma) and using the conservation law for momentum of electron transfer (drift), that the drift velocity of elastically scattered electrons should be significantly greater than that of accepted calculation. The reason is that the relaxation time of the momentum of electron transfer, to which the electron drift velocity is proportional, is significantly greater (from 16 up to 4 times) than the electron free path time. Therefore, generally accepted replacement of the relaxation time, which is unknown a priori, by the electron free path time, leads to significant (16 times for thermal electrons) underestimation of electron drift velocity (mobility). This result means, that transfer of elastically (and isotropically) scattered electrons in the gas phase should be so fast, and corresponds to multiplying coefficient (16), introduced by D. Bohm to explain the observed by him “abnormal” fast diffusion of electrons.
Electrostatic transfer of epitaxial graphene to glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne
2010-12-01
We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environmentmore » [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.« less
Koch, Marius; Letrun, Romain; Vauthey, Eric
2014-03-12
The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.
NASA Astrophysics Data System (ADS)
Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.
2018-05-01
New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera and Condensed Matter Physics Center
2015-10-14
Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF{sub 2} and Yb/Sr pairs in SrF{sub 2} crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f{sup N−1}5d excited states of Y b{sup 2+}: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b{sup 2+} + Ca{sup 2+} (Sr{sup 2+}) → Y b{sup 3+} + Ca{sup +} (Sr{sup +}) electron phototransfer. This mechanism applies to all the observed Ymore » b{sup 2+} 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF{sub 2}:Y b{sup 2+} because the Y b{sup 3+}–Ca{sup +} states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF{sub 2}:Y b{sup 2+} at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b{sup 2+} active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF{sub 2} host, associated with the lowest 4f–5d band.« less
Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony
2009-01-01
Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide.
NASA Astrophysics Data System (ADS)
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
Electron transfer and reaction mechanism of laccases.
Jones, Stephen M; Solomon, Edward I
2015-03-01
Laccases are part of the family of multicopper oxidases (MCOs), which couple the oxidation of substrates to the four electron reduction of O2 to H2O. MCOs contain a minimum of four Cu's divided into Type 1 (T1), Type 2 (T2), and binuclear Type 3 (T3) Cu sites that are distinguished based on unique spectroscopic features. Substrate oxidation occurs near the T1, and electrons are transferred approximately 13 Å through the protein via the Cys-His pathway to the T2/T3 trinuclear copper cluster (TNC), where dioxygen reduction occurs. This review outlines the electron transfer (ET) process in laccases, and the mechanism of O2 reduction as elucidated through spectroscopic, kinetic, and computational data. Marcus theory is used to describe the relevant factors which impact ET rates including the driving force, reorganization energy, and electronic coupling matrix element. Then, the mechanism of O2 reaction is detailed with particular focus on the intermediates formed during the two 2e(-) reduction steps. The first 2e(-) step forms the peroxide intermediate, followed by the second 2e(-) step to form the native intermediate, which has been shown to be the catalytically relevant fully oxidized form of the enzyme.
Kim, Ye Ji; Kim, Sun Min; Yu, Chunghyeon; Yoo, YoungMin; Cho, Eun Jin; Yang, Jung Woon; Kim, Sung Wng
2017-01-31
Halogenated organic compounds are important anthropogenic chemicals widely used in chemical industry, biology, and pharmacology; however, the persistence and inertness of organic halides cause human health problems and considerable environmental pollution. Thus, the elimination or replacement of halogen atoms with organic halides has been considered a central task in synthetic chemistry. In dehalogenation reactions, the consecutive single-electron transfer from reducing agents generates the radical and corresponding carbanion and thus removes the halogen atom as the leaving group. Herein, we report a new strategy for an efficient chemoselective hydrodehalogenation through the formation of stable carbanion intermediates, which are simply achieved by using highly mobile two-dimensional electrons of inorganic electride [Ca 2 N] + ·e - with effective electron transfer ability. The consecutive single-electron transfer from inorganic electride [Ca 2 N] + ·e - stabilized free carbanions, which is a key step in achieving the selective reaction. Furthermore, a determinant more important than leaving group ability is the stability control of free carbanions according to the s character determined by the backbone structure. We anticipate that this approach may provide new insight into selective chemical formation, including hydrodehalogenation.
NASA Astrophysics Data System (ADS)
Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.
2018-05-01
The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.
Touriño, Sonia; Lizárraga, Daneida; Carreras, Anna; Lorenzo, Sonia; Ugartondo, Vanessa; Mitjans, Montserrat; Vinardell, María Pilar; Juliá, Luis; Cascante, Marta; Torres, Josep Lluís
2008-03-01
Witch hazel ( Hammamelis virginiana) bark is a rich source of both condensed and hydrolizable oligomeric tannins. From a polyphenolic extract soluble in both ethyl acetate and water, we have generated fractions rich in pyrogallol-containing polyphenols (proanthocyanidins, gallotannins, and gallates). The mixtures were highly active as free radical scavengers against ABTS, DPPH (hydrogen donation and electron transfer), and HNTTM (electron transfer). They were also able to reduce the newly introduced TNPTM radical, meaning that they included some highly reactive components. Witch hazel phenolics protected red blood cells from free radical-induced hemolysis and were mildly cytotoxic to 3T3 fibroblasts and HaCat keratinocytes. They also inhibited the proliferation of tumoral SK-Mel 28 melanoma cells at lower concentrations than grape and pine procyanidins. The high content in pyrogallol moieties may be behind the effect of witch hazel phenolics on skin cells. Because the most cytotoxic and antiproliferative mixtures were also the most efficient as electron transfer agents, we hypothesize that the final putative antioxidant effect of polyphenols may be in part attributed to the stimulation of defense systems by mild prooxidant challenges provided by reactive oxygen species generated through redox cycling.
Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2015-11-10
Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2015-05-12
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
Ghosh, Hirendra N; Verma, Sandeep; Nibbering, Erik T J
2011-02-10
Femtosecond infrared spectroscopy is used to study both forward and backward electron transfer (ET) dynamics between coumarin 337 (C337) and the aromatic amine solvents aniline (AN), N-methylaniline (MAN), and N,N-dimethylaniline (DMAN), where all the aniline solvents can donate an electron but only AN and MAN can form hydrogen bonds with C337. The formation of a hydrogen bond with AN and MAN is confirmed with steady state FT-IR spectroscopy, where the C═O stretching vibration is a direct marker mode for hydrogen bond formation. Transient IR absorption measurements in all solvents show an absorption band at 2166 cm(-1), which has been attributed to the C≡N stretching vibration of the C337 radical anion formed after ET. Forward electron transfer dynamics is found to be biexponential with time constants τ(ET)(1) = 500 fs, τ(ET)(2) = 7 ps in all solvents. Despite the presence of hydrogen bonds of C337 with the solvents AN and MAN, no effect has been found on the forward electron transfer step. Because of the absence of an H/D isotope effect on the forward electron transfer reaction of C337 in AN, hydrogen bonds are understood to play a minor role in mediating electron transfer. In contrast, direct π-orbital overlap between C337 and the aromatic amine solvents causes ultrafast forward electron transfer dynamics. Backward electron transfer dynamics, in contrast, is dependent on the solvent used. Standard Marcus theory explains the observed backward electron transfer rates.
Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase
Farver, Ole; Kroneck, Peter M. H.; Zumft, Walter G.; Pecht, Israel
2003-01-01
Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime example of intraprotein control of the electron-transfer rates by allosteric interactions. PMID:12802018
Toogood, Helen S; Leys, David; Scrutton, Nigel S
2007-11-01
Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.
Graphene-on-semiconductor substrates for analog electronics
Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard
2016-04-26
Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.
Heterogeneous catalysis with lasers
NASA Astrophysics Data System (ADS)
George, T. F.
1986-06-01
Theoretical techniques have been developed to describe a variety of laser-induced molecular rate processes occurring at solid surfaces which are involved in heterogeneous catalysis. Such processes include adsorption, migration, chemical reactions and desorption. The role of surface phonons in laser-selective processes and laser heating has been analyzed. The importance of electronic degrees of freedom has been considered for semiconductor and metal substrates, with special emphasis on the laser excitation of surface states. Surface-modified photochemistry has also been investigated, where the effect of a metal surface on the resonance fluorescence spectrum of a laser-driven atom/molecule has been assessed by means of surface-dressed optical Bloch equations. It is seen that the spectrum can be significantly different from the gas-phase case. Two related gas-surface collision processes have also been studied. First, the feasibility of the formation of the electron-hole pairs in a semiconductor by vibrationally excited molecules has been explored. Second, charge transfer in ion-surface collisions has been examined for both one-electron and two-electron transfer processes. Work has been initiated on microstructures and rough structures, including clusters and surface gratings.
2014-09-24
which nature uses strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an...strong electron correlation for efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm...efficient energy transfer, particularly in photosynthesis and bioluminescence, (ii) providing an innovative paradigm for energy transfer in photovoltaic
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
Dynamics of exciton transfer in coupled polymer chains.
Zhang, Y L; Liu, X J; Sun, Z; An, Z
2013-05-07
The dynamics of singlet and triplet exciton transfer in coupled polymer chains are investigated within the Su-Schrieffer-Heeger+Pariser-Parr-Pople model including both electron-phonon (e-p) coupling and electron-electron (e-e) interactions, using a multi-configurational time-dependent Hartree-Fock dynamic method. In order to explain the processes involved, the effects of on-site and long-range e-e interactions on the locality of the singlet and triplet excitons are first investigated on an isolated chain. It is found that the locality of the singlet exciton decreases, while the locality of the triplet exciton increases with an increase in the on-site e-e interactions. On the other hand, an increase in the long-range e-e interaction results in a more localized singlet exciton and triplet exciton. In coupled polymer chains, we then quantitatively show the yields of singlet and triplet exciton transfer products under the same interchain coupling. It is found that the yield of singlet interchain excitons is much higher than that of triplet interchain excitons, that is to say, singlet exciton transfer is significantly easier than that for triplet excitons. This results from the fact that the singlet exciton is more delocalized than the triplet exciton. In addition, hopping of electrons with opposite spins between the coupled chains can facilitate the transfer of singlet excitons. The results are of great significance for understanding the photoelectric conversion process and developing high-power organic optoelectronic applications.
Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui
2013-03-07
Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Tanabe, Setsuhisa
2015-03-30
A facile method to describe the electron transfer and energy transfer processes among lanthanide ions is presented based on the temperature dependent donor luminescence decay kinetics. The electron transfer process in Ce{sup 3+}-Yb{sup 3+} exhibits a steady rise with temperature, whereas the Ce{sup 3+}-Tb{sup 3+} energy transfer remains nearly unaffected. This feature has been investigated using the rate equation modeling and a methodology for the quantitative estimation of interaction parameters is presented. Moreover, the overall consequences of electron transfer and energy transfer process on donor-acceptor luminescence behavior, quantum efficiency, and donor luminescence decay kinetics are discussed in borate glass host.more » The results in this study propose a straight forward approach to distinguish the electron transfer and energy transfer processes between lanthanide ions in dielectric hosts, which is highly advantageous in view of the recent developments on lanthanide doped materials for spectral conversion, persistent luminescence, and related applications.« less
Fundamental studies of energy-and hole/electron- transfer in hydroporphyrin architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocian, David F.
2014-08-20
The long-term objective of the Bocian/Holten/Lindsey research program is to design, synthesize, and characterize tetrapyrrole-based molecular architectures that absorb sunlight, funnel energy, and separate charge with high efficiency and in a manner compatible with current and future solar-energy conversion schemes. The synthetic tetrapyrroles include porphyrins and hydroporphyrins; the latter classes of molecules encompass analogues of the naturally occurring chlorophylls and bacteriochlorophylls (e.g., chlorins, bacteriochlorins, and their derivatives). The attainment of the goals of the research program requires the close interplay of molecular design and synthesis (Lindsey group), static and time-resolved optical spectroscopic measurements (Holten group), and electrochemical, electron paramagnetic resonance,more » and resonance Raman studies, as well as density functional theory calculations (Bocian Group). The proposed research encompasses four interrelated themes: (1) Determination of the rates of ground-state hole/electron transfer between (hydro)porphyrins in multipigment arrays as a function of array size, distance between components, linker type, site of linker connection, and frontier molecular orbital composition. (2) Examination of excited-state energy transfer among hydroporphyrins in multipigment arrrays, including both pairwise and non-adjacent transfer, with a chief aim to identify the relative contributions of through-space (Förster) and through-bond (Dexter) mechanisms of energy transfer, including the roles of site of linker connection and frontier molecular orbital composition. (3) Elucidation of the role of substituents in tuning the spectral and electronic properties of bacteriochlorins, with a primary aim of learning how to shift the long-wavelength absorption band deeper into the near-infrared region. (4) Continued development of the software package PhotochemCAD for spectral manipulations and calculations through the compilation of a database of spectra for naturally occurring and synthetic hydroporphyrins. The availability of such data should augment efforts in the design of light-harvesting systems where spectral coverage in the red and near-infrared regions is desired. Collectively, the proposed studies will provide fundamental insights into molecular properties, interactions, and processes relevant to the design of molecular architectures for solar-energy conversion. The accomplishment of these goals is only possible through a highly synergistic program that encompasses molecular design, synthesis, and characterization.« less
Electrical/electronics working group summary
NASA Technical Reports Server (NTRS)
Schoenfeld, A. D.
1984-01-01
The electrical/electronics, technology area was considered. It was found that there are no foreseeable circuit or component problems to hinder the implementation of the flywheel energy storage concept. The definition of the major component or technology developments required to permit a technology ready date of 1987 was addressed. Recommendations: motor/generators, suspension electronics, power transfer, power conditioning and distribution, and modeling. An introduction to the area of system engineering is also included.
NASA Astrophysics Data System (ADS)
Yamaji, Minoru; Oshima, Juro; Hidaka, Motohiko
2009-06-01
Evidence for the coupled electron/proton transfer mechanism of the phenolic H-atom transfer between triplet π,π ∗ 3,3'-carbonylbis(7-diethylaminocoumarin) and phenol derivatives is obtained by using laser photolysis techniques. It was confirmed that the quenching rate constants of triplet CBC by phenols having positive Hammett constants do not follow the Rehm-Weller equation for electron transfer while those by phenols with negative Hammett constants do it. From the viewpoint of thermodynamic parameters for electron transfer, the crucial factors for phenolic H-atom transfer to π,π ∗ triplet are discussed.
Refojo, Patrícia N; Teixeira, Miguel; Pereira, Manuela M
2012-10-01
Alternative complexes III (ACIII) are recently identified membrane-bound enzymes that replace functionally the cytochrome bc(1/)b(6)f complexes. In general, ACIII are composed of four transmembrane proteins and three peripheral subunits that contain iron-sulfur centers and C-type hemes. ACIII are built by a combination of modules present in different enzyme families, namely the complex iron-sulfur molybdenum containing enzymes. In this article a historical perspective on the investigation of ACIII is presented, followed by an overview of the present knowledge on these enzymes. Electron transfer pathways within the protein are discussed taking into account possible different locations (cytoplasmatic or periplasmatic) of the iron-sulfur containing protein and their contribution to energy conservation. In this way several hypotheses for energy conservation modes are raised including linear and bifurcating electron transfer pathways. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.
The novel cytochrome c6 of chloroplasts: a case of evolutionary bricolage?
Howe, Christopher J; Schlarb-Ridley, Beatrix G; Wastl, Juergen; Purton, Saul; Bendall, Derek S
2006-01-01
Cytochrome c6 has long been known as a redox carrier of the thylakoid lumen of cyanobacteria and some eukaryotic algae that can substitute for plastocyanin in electron transfer. Until recently, it was widely accepted that land plants lack a cytochrome c6. However, a homologue of the protein has now been identified in several plant species together with an additional isoform in the green alga Chlamydomonas reinhardtii. This form of the protein, designated cytochrome c6A, differs from the 'conventional' cytochrome c6 in possessing a conserved insertion of 12 amino acids that includes two absolutely conserved cysteine residues. There are conflicting reports of whether cytochrome c6A can substitute for plastocyanin in photosynthetic electron transfer. The evidence for and against this is reviewed and the likely evolutionary history of cytochrome c6A is discussed. It is suggested that it has been converted from a primary role in electron transfer to one in regulation within the chloroplast, and is an example of evolutionary 'bricolage'.
Harinipriya, S; Sangaranarayanan, M V
2006-01-31
The evaluation of the free energy of activation pertaining to the electron-transfer reactions occurring at liquid/liquid interfaces is carried out employing a diffuse boundary model. The interfacial solvation numbers are estimated using a lattice gas model under the quasichemical approximation. The standard reduction potentials of the redox couples, appropriate inner potential differences, dielectric permittivities, as well as the width of the interface are included in the analysis. The methodology is applied to the reaction between [Fe(CN)6](3-/4-) and [Lu(biphthalocyanine)](3+/4+) at water/1,2-dichloroethane interface. The rate-determining step is inferred from the estimated free energy of activation for the constituent processes. The results indicate that the solvent shielding effect and the desolvation of the reactants at the interface play a central role in dictating the free energy of activation. The heterogeneous electron-transfer rate constant is evaluated from the molar reaction volume and the frequency factor.
Water-chromophore electron transfer determines the photochemistry of cytosine and cytidine.
Szabla, Rafał; Kruse, Holger; Šponer, Jiří; Góra, Robert W
2017-07-21
Many of the UV-induced phenomena observed experimentally for aqueous cytidine were lacking the mechanistic interpretation for decades. These processes include the substantial population of the puzzling long-lived dark state, photohydration, cytidine to uridine conversion and oxazolidinone formation. Here, we present quantum-chemical simulations of excited-state spectra and potential energy surfaces of N1-methylcytosine clustered with two water molecules using the second-order approximate coupled cluster (CC2), complete active space with second-order perturbation theory (CASPT2), and multireference configuration interaction with single and double excitation (MR-CISD) methods. We argue that the assignment of the long-lived dark state to a singlet nπ* excitation involving water-chromophore electron transfer might serve as an explanation for the numerous experimental observations. While our simulated spectra for the state are in excellent agreement with experimentally acquired data, the electron-driven proton transfer process occurring on the surface may initiate the subsequent damage in the vibrationally hot ground state of the chromophore.
Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems
NASA Astrophysics Data System (ADS)
Lambert, Christoph; Nöll, Gilbert; Schelter, Jürgen
2002-09-01
Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken-Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.
Bollella, Paolo; Gorton, Lo; Antiochia, Riccarda
2018-04-24
Dehydrogenase based bioelectrocatalysis has been increasingly exploited in recent years in order to develop new bioelectrochemical devices, such as biosensors and biofuel cells, with improved performances. In some cases, dehydrogeases are able to directly exchange electrons with an appropriately designed electrode surface, without the need for an added redox mediator, allowing bioelectrocatalysis based on a direct electron transfer process. In this review we briefly describe the electron transfer mechanism of dehydrogenase enzymes and some of the characteristics required for bioelectrocatalysis reactions via a direct electron transfer mechanism. Special attention is given to cellobiose dehydrogenase and fructose dehydrogenase, which showed efficient direct electron transfer reactions. An overview of the most recent biosensors and biofuel cells based on the two dehydrogenases will be presented. The various strategies to prepare modified electrodes in order to improve the electron transfer properties of the device will be carefully investigated and all analytical parameters will be presented, discussed and compared.
Herrera, Barbara
2011-05-01
In this article, a theoretical study of 1-5 proton transfers is presented. Two model systems which represent 1-5 proton transfer, 3-hidroxy-2-propenimine and salicyldenaniline have been studied as shown in Fig. 1. For this purpose, a DFT/B3LYP/6-311+G**, reaction force and reaction electronic flux analysis is made. The obtained results indicate that both proton transfers exhibit energetic and electronic differences emphasizing the role of the neighbor ring and the impact of conjugation on electronic properties.
Coherent Electron Transfer at the Ag / Graphite Heterojunction Interface
NASA Astrophysics Data System (ADS)
Tan, Shijing; Dai, Yanan; Zhang, Shengmin; Liu, Liming; Zhao, Jin; Petek, Hrvoje
2018-03-01
Charge transfer in transduction of light to electrical or chemical energy at heterojunctions of metals with semiconductors or semimetals is believed to occur by photogenerated hot electrons in metal undergoing incoherent internal photoemission through the heterojunction interface. Charge transfer, however, can also occur coherently by dipole coupling of electronic bands at the heterojunction interface. Microscopic physical insights into how transfer occurs can be elucidated by following the coherent polarization of the donor and acceptor states on the time scale of electronic dephasing. By time-resolved multiphoton photoemission spectroscopy (MPP), we investigate the coherent electron transfer from an interface state that forms upon chemisorption of Ag nanoclusters onto graphite to a σ symmetry interlayer band of graphite. Multidimensional MPP spectroscopy reveals a resonant two-photon transition, which dephases within 10 fs completing the coherent transfer.
Food Antioxidants: Chemical Insights at the Molecular Level.
Galano, Annia; Mazzone, Gloria; Alvarez-Diduk, Ruslán; Marino, Tiziana; Alvarez-Idaboy, J Raúl; Russo, Nino
2016-01-01
In this review, we briefly summarize the reliability of the density functional theory (DFT)-based methods to accurately predict the main antioxidant properties and the reaction mechanisms involved in the free radical-scavenging reactions of chemical compounds present in food. The analyzed properties are the bond dissociation energies, in particular those involving OH bonds, electron transfer enthalpies, adiabatic ionization potentials, and proton affinities. The reaction mechanisms are hydrogen-atom transfer, proton-coupled electron transfer, radical adduct formation, single electron transfer, sequential electron proton transfer, proton-loss electron transfer, and proton-loss hydrogen-atom transfer. Furthermore, the chelating ability of these compounds and its role in decreasing or inhibiting the oxidative stress induced by Fe(III) and Cu(II) are considered. Comparisons between theoretical and experimental data confirm that modern theoretical tools are not only able to explain controversial experimental facts but also to predict chemical behavior.
A Scholar's Journey: Using the Internet for Adult and Distance Education Research.
ERIC Educational Resources Information Center
Ellsworth, Jill H.
1993-01-01
Discusses use of the Internet for research on adult and distance education. Highlights include a description of the Internet; scholarly discussion lists; Telnet; FTP (File Transfer Protocol); scholarship and research, including access to university library catalogs and electronic journals; and online information about networks, including user…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kryachko, E.S.
1999-06-03
The electronic coupling between the initial and final diabatic states is the major factor that determines the rate of electron transfer. A general formula for the adiabatic-to-diabatic mixing angle in terms of the electronic dipole moments is derived within a two-state model. It expresses the electronic coupling determining the rate of electronic transfer in terms of the off-diagonal diabatic dipole moment.
NASA Technology Transfer - Human Robot Teaming
2016-12-23
Produced for Intelligent Robotics Group to show at January 2017 Consumer Electronics Show (CES). Highlights development of VERVE (Visual Environment for Remote Virtual Exploration) software used on K-10, K-REX, SPHERES and AstroBee projects for 3D awareness. Also mentions transfer of software to Nissan for their development in their Autonomous Vehicle project. Video includes Nissan's self-driving car around NASA Ames.
ERIC Educational Resources Information Center
Blasi, Laura; Alfonso, Berta
2006-01-01
Building and evaluating artifacts specifically for K-12 education, technologists committed to design sciences are needed along with an approach to evaluation increasing the systemic transfer from research and development into school settings. The authors describe THE VIRTUAL LAB scanning electronic microscope simulation, including (a) its…
Application of Electron-Transfer Theory to Several Systems of Biological Interest
DOE R&D Accomplishments Database
Marcus, R. A.; Sutin, N.
1985-03-23
Electron-transfer reaction rates are compared with theoretically calculated values for several reactions in the bacterial photosynthetic reaction center. A second aspect of the theory, the cross-relation, is illustrated using protein-protein electron transfers.
Quantum Electron Tunneling in Respiratory Complex I1
Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.
2014-01-01
We have simulated the atomistic details of electronic wiring of all Fe/S clusters in complex I, a key enzyme in the respiratory electron transport chain. The tunneling current theory of many-electron systems is applied to the broken-symmetry (BS) states of the protein at the ZINDO level. One-electron tunneling approximation is found to hold in electron tunneling between the anti-ferromagnetic binuclear and tetranuclear Fe/S clusters with moderate induced polarization of the core electrons. Calculated tunneling energy is about 3 eV higher than Fermi level in the band gap of the protein, which supports that the mechanism of electron transfer is quantum mechanical tunneling, as in the rest of electron transport chain. Resulting electron tunneling pathways consist of up to three key contributing protein residues between neighboring Fe/S clusters. A distinct signature of the wave properties of electrons is observed as quantum interferences when multiple tunneling pathways exist. In N6a-N6b, electron tunnels along different pathways depending on the involved BS states, suggesting possible fluctuations of the tunneling pathways driven by the local protein environment. The calculated distance dependence of the electron transfer rates with internal water molecules included are in good agreement with a reported phenomenological relation. PMID:21495666
NASA Astrophysics Data System (ADS)
Hagras, Muhammad Ahmed
Electron transfer occurs in many biological systems which are imperative to sustain life; oxidative phosphorylation in prokaryotes and eukaryotes, and photophosphorylation in photosynthetic and plant cells are well-balanced and complementary processes. Investigating electron transfer in those natural systems provides detailed knowledge of the atomistic events that lead eventually to production of ATP, or harvesting light energy. Ubiquinol:cytochrome c oxidoreductase complex (also known as bc 1 complex, or respiratory complex III) is a middle player in the electron transport proton pumping orchestra, located in the inner-mitochondrial membrane in eukaryotes or plasma membrane in prokaryotes, which converts the free energy of redox reactions to electrochemical proton gradient across the membrane, following the fundamental chemiosmotic principle discovered by Peter Mitchell 1. In humans, the malfunctioned bc1 complex plays a major role in many neurodegenerative diseases, stress-induced aging, and cancer development, because it produces most of the reactive oxygen species, which are also involved in cellular signaling 2. The mitochondrial bc1 complex has an intertwined dimeric structure comprised of 11 subunits in each monomer, but only three of them have catalytic function, and those are the only domains found in bacterial bc1 complex. The core subunits include: Rieske domain, which incorporates iron-sulfur cluster [2Fe-2S]; trans-membrane cytochrome b domain, incorporating low-potential heme group (heme b L) and high-potential heme group (heme b H); and cytochrome c1 domain, containing heme c1 group and two separate binding sites, Qo (or QP) site where the hydrophobic electron carrier ubihydroquinol QH2 is oxidized, and Qi (or QN) site where ubiquinone molecule Q is reduced 3. Electrons and protons in the bc1 complex flow according to the proton-motive Q-cycle proposed by Mitchell, which includes a unique electron flow bifurcation at the Qo site. At this site, one electron of a bound QH2 molecule transfers to [2Fe-2S] cluster of the Rieske domain, docked at the proximal docking site, and another electron transfers to heme b L , which subsequently passes it to heme bH , and finally to Q or SQ molecule bound at the Qi-site 4. Rieske domain undergoes a domain movement 22 A to bind at the distal docking site, where [2Fe-2S] cluster passes its electron to heme c1, which in turn passes it to heme c of the water-soluble cytochrome c carrier 3c, 5 (which shuttles it to cytochrome c oxidase, complex IV). In the current compiled work presented in the subsequent chapters, we deployed a stacking tiers hierarchy where each chapter's work presents a foundation for the next one. In chapter 1, we first present different methods to calculate tunneling currents in proteins including a new derivation method for the inter-atomic tunneling current method. In addition, we show the results of the inter-atomic tunneling current theory on models based on heme bL-heme bH redox pair system in bc1 complex. Afterwards, in chapter 2, we examine the electron tunneling pathways 6 between different intra-monomeric and inter-monomeric redox centers of bc1 complex, including its electron carriers - ubiquinol, ubiquinone, and cytochrome c molecules, using the well-studied coarse-grained interatomic method of the tunneling current theory 7. Going through the different tunneling pathways in bc1 complex, we discovered a pair of internal switches that modulate the electron transfer rate which we discuss in full details in chapter 3. Motivated by the discovery of those internal switches, we discuss in chapter 4 the discovery of a new binding pocket (designated as NonQ-site or NQ-site for short) in bc 1 complex which is located at the opposite side of the enzyme with respect to Qo site. In contrast to Qo site, however, the NQ-site penetrates deeply in the cytochrome b domain and reaches very closely the LH region. Hence the NQ-site provides a suitable binding pocket for ligands that can influence the orientation of Phe90 residue, and hence modulate the corresponding ET rate between heme b L and heme bH. Finally we present in chapter 5 our unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins.
Lu, Qiujun; Chen, Xiaogen; Liu, Dan; Wu, Cuiyan; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo
2018-05-15
The selective and sensitive detection of dopamine (DA) is of great significance for the identification of schizophrenia, Huntington's disease, and Parkinson's disease from the perspective of molecular diagnostics. So far, most of DA fluorescence sensors are based on the electron transfer from the fluorescence nanomaterials to DA-quinone. However, the limited electron transfer ability of the DA-quinone affects the level of detection sensitivity of these sensors. In this work, based on the DA can reduce Ag + into AgNPs followed by oxidized to DA-quinone, we developed a novel silicon nanoparticles-based electron transfer fluorescent sensor for the detection of DA. As electron transfer acceptor, the AgNPs and DA-quinone can quench the fluorescence of silicon nanoparticles effectively through the synergistic electron transfer effect. Compared with traditional fluorescence DA sensors, the proposed synergistic electron transfer-based sensor improves the detection sensitivity to a great extent (at least 10-fold improvement). The proposed sensor shows a low detection limit of DA, which is as low as 0.1 nM under the optimal conditions. This sensor has potential applicability for the detection of DA in practical sample. This work has been demonstrated to contribute to a substantial improvement in the sensitivity of the sensors. It also gives new insight into design electron transfer-based sensors. Copyright © 2018. Published by Elsevier B.V.
Ultrafast Intramolecular Electron and Proton Transfer in Bis(imino)isoindole Derivatives.
Driscoll, Eric; Sorenson, Shayne; Dawlaty, Jahan M
2015-06-04
Concerted motion of electrons and protons in the excited state is pertinent to a wide range of chemical phenomena, including those relevant for solar-to-fuel light harvesting. The excited state dynamics of small proton-bearing molecules are expected to serve as models for better understanding such phenomena. In particular, for designing the next generation of multielectron and multiproton redox catalysts, understanding the dynamics of more than one proton in the excited state is important. Toward this goal, we have measured the ultrafast dynamics of intramolecular excited state proton transfer in a recently synthesized dye with two equivalent transferable protons. We have used a visible ultrafast pump to initiate the proton transfer in the excited state, and have probed the transient absorption of the molecule over a wide bandwidth in the visible range. The measurement shows that the signal which is characteristic of proton transfer emerges within ∼710 fs. To identify whether both protons were transferred in the excited state, we have measured the ultrafast dynamics of a related derivative, where only a single proton was available for transfer. The measured proton transfer time in that molecule was ∼427 fs. The observed dynamics in both cases were reasonably fit with single exponentials. Supported by the ultrafast observations, steady-state fluorescence, and preliminary computations of the relaxed excited states, we argue that the doubly protonated derivative most likely transfers only one of its two protons in the excited state. We have performed calculations of the frontier molecular orbitals in the Franck-Condon region. The calculations show that in both derivatives, the excitation is primarily from the HOMO to LUMO causing a large rearrangement of the electronic charge density immediately after photoexcitation. In particular, charge density is shifted away from the phenolic protons and toward the proton acceptor nitrogens. The proton transfer is hypothesized to occur both due to enhanced acidity of the phenolic proton and enhanced basicity of the nitrogen in the excited state. We hope this study can provide insight for better understanding of the general class of excited state concerted electron-proton dynamics.
NASA Astrophysics Data System (ADS)
Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.
2015-12-01
Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES
Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...
Tunneling induced electron transfer between separated protons
NASA Astrophysics Data System (ADS)
Vindel-Zandbergen, Patricia; Meier, Christoph; Sola, Ignacio R.
2018-04-01
We study electron transfer between two separated protons using local control theory. In this symmetric system one can favour a slow transfer by biasing the algorithm, achieving high efficiencies for fixed nuclei. The solution can be parametrized using a sequence of a pump followed by a dump pulse that lead to tunneling-induced electron transfer. Finally, we study the effect of the nuclear kinetic energy on the efficiency. Even in the absence of relative motion between the protons, the spreading of the nuclear wave function is enough to reduce the yield of electronic transfer to less than one half.
X.400: The Standard for Message Handling Systems.
ERIC Educational Resources Information Center
Swain, Leigh; Tallim, Paula
1990-01-01
Profiles X.400, the Open Systems Interconnection (OSI) Application layer standard that supports interpersonal electronic mail services, facsimile transfer, electronic data interchange, electronic funds transfer, electronic publishing, and electronic invoicing. Also discussed are an electronic directory to support message handling, compatibility…
Farnum, Byron H; Morseth, Zachary A; Brennaman, M Kyle; Papanikolas, John M; Meyer, Thomas J
2015-06-18
Degenerately doped In2O3:Sn semiconductor nanoparticles (nanoITO) have been used to study the photoinduced interfacial electron-transfer reactivity of surface-bound [Ru(II)(bpy)2(4,4'-(PO3H2)2-bpy)](2+) (RuP(2+)) molecules as a function of driving force over a range of 1.8 eV. The metallic properties of the ITO nanoparticles, present within an interconnected mesoporous film, allowed for the driving force to be tuned by controlling their Fermi level with an external bias while their optical transparency allowed for transient absorption spectroscopy to be used to monitor electron-transfer kinetics. Photoinduced electron transfer from excited-state -RuP(2+*) molecules to nanoITO was found to be dependent on applied bias and competitive with nonradiative energy transfer to nanoITO. Back electron transfer from nanoITO to oxidized -RuP(3+) was also dependent on the applied bias but without complication from inter- or intraparticle electron diffusion in the oxide nanoparticles. Analysis of the electron injection kinetics as a function of driving force using Marcus-Gerischer theory resulted in an experimental estimate of the reorganization energy for the excited-state -RuP(3+/2+*) redox couple of λ* = 0.83 eV and an electronic coupling matrix element, arising from electronic wave function overlap between the donor orbital in the molecule and the acceptor orbital(s) in the nanoITO electrode, of Hab = 20-45 cm(-1). Similar analysis of the back electron-transfer kinetics yielded λ = 0.56 eV for the ground-state -RuP(3+/2+) redox couple and Hab = 2-4 cm(-1). The use of these wide band gap, degenerately doped materials provides a unique experimental approach for investigating single-site electron transfer at the surface of oxide nanoparticles.
Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.
Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R
2013-09-05
Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.
PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS
NASA Technical Reports Server (NTRS)
Beratan, D. N.
1994-01-01
The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the distribution. The main memory requirement for execution is 2.6 Mb. This program is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution) or on a TK50 tape cartridge. PATHWAYS was developed in 1988. PATHWAYS is a copyrighted work with all copyright vested in NASA. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. BIOGRAF is a trademark of Molecular Simulations, Inc., Sunnyvale, CA.
Otte, Douglas A L; Woerpel, K A
2015-08-07
Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.
Evidence for protein conformational change at a Au(110)/protein interface
NASA Astrophysics Data System (ADS)
Messiha, H. L.; Smith, C. I.; Scrutton, N. S.; Weightman, P.
2008-07-01
Evidence is presented that reflection anisotropy spectroscopy (RAS) can provide real-time measurements of conformational change in proteins induced by electron transfer reactions. A bacterial electron transferring flavoprotein (ETF) has been modified so as to adsorb on an Au(110) electrode and enable reversible electron transfer to the protein cofactor in the absence of mediators. Reversible changes are observed in the RAS of this protein that are interpreted as arising from conformational changes accompanying the transfer of electrons.
Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.
Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T
2014-11-01
We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.
Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer
Westereng, Bjørge; Cannella, David; Wittrup Agger, Jane; Jørgensen, Henning; Larsen Andersen, Mogens; Eijsink, Vincent G.H.; Felby, Claus
2015-01-01
Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert. PMID:26686263
NASA Astrophysics Data System (ADS)
Yang, Chou-Hsun; Hsu, Chao-Ping
2013-10-01
The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.
Inorganic Reaction Mechanisms. Part I
ERIC Educational Resources Information Center
Cooke, D. O.
1976-01-01
Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.; ...
2016-03-22
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer
NASA Astrophysics Data System (ADS)
Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.
2007-12-01
This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.
Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru
2016-10-01
Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.
Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre
2002-04-24
A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron transfer to AuP+ and was followed by a quantitative energy transfer to give the 3ZnP state (k = 1.5x10(9) x s(-1)).
A molecular shift register based on electron transfer
NASA Technical Reports Server (NTRS)
Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.
1988-01-01
An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.
Model of multistep electron transfer in a single-mode polar medium
NASA Astrophysics Data System (ADS)
Feskov, S. V.; Yudanov, V. V.
2017-09-01
A mathematical model of multistep photoinduced electron transfer (PET) in a polar medium with a single relaxation time (Debye solvent) is developed. The model includes the polarization nonequilibrity formed in the vicinity of the donor-acceptor molecular system at the initial steps of photoreaction and its influence on the subsequent steps of PET. It is established that the results from numerical simulation of transient luminescence spectra of photoexcited donor-acceptor complexes (DAC) conform to calculated data obtained on the basis of the familiar experimental technique used to measure the relaxation function of solvent polarization in the vicinity of DAC in the picosecond and subpicosecond ranges.
Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura
2016-02-04
A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications.
The derivative discontinuity of the exchange-correlation functional.
Mori-Sánchez, Paula; Cohen, Aron J
2014-07-28
The derivative discontinuity is a key concept in electronic structure theory in general and density functional theory in particular. The electronic energy of a quantum system exhibits derivative discontinuities with respect to different degrees of freedom that are a consequence of the integer nature of electrons. The classical understanding refers to the derivative discontinuity of the total energy as a function of the total number of electrons (N), but it can also manifest at constant N. Examples are shown in models including several hydrogen systems with varying numbers of electrons or nuclear charge (Z), as well as the 1-dimensional Hubbard model (1DHM). Two sides of the problem are investigated: first, the failure of currently used approximate exchange-correlation functionals in DFT and, second, the importance of the derivative discontinuity in the exact electronic structure of molecules, as revealed by full configuration interaction (FCI). Currently, all approximate functionals, including hybrids, miss the derivative discontinuity, leading to basic errors that can be seen in many ways: from the complete failure to give the total energy of H2 and H2(+), to the missing gap in Mott insulators such as stretched H2 and the thermodynamic limit of the 1DHM, or a qualitatively incorrect density in the HZ molecule with two electrons and incorrect electron transfer processes. Description of the exact particle behaviour of electrons is emphasised, which is key to many important physical processes in real systems, especially those involving electron transfer, and offers a challenge for the development of new exchange-correlation functionals.
One electron oxidation of 3-methylcholanthrene: A chemical model for its mechanism of carcinogenesis
NASA Astrophysics Data System (ADS)
Lehner, Andreas F.; Horn, Jamie; Flesher, James W.
2017-06-01
One electron transfer oxidation has long been proposed as a route to the ultimate electrophilic and carcinogenic metabolites of both methylated and non-methylated polycyclic aromatic hydrocarbons (PAH). The carcinogenic hydrocarbon 3-methylcholanthrene (3-MC) has a methyl-analogous function at its meso-anthracenic center in the form of a dimethylene bridge, and treatment of this compound with the one electron transfer oxidizing reagent ferric ferricyanide, FeIII(FeIII(CN)6), in mixed aqueous-organic media generated multiple oxygenated species, many of which duplicate those found in mammalian metabolism including known carcinogens 1-hydroxy-3MC and 1-keto-3MC. These results are in agreement with a Unified Theory for PAH Carcinogenicity which predicts in vivo generation of a proximate benzylic alcohol metabolite from the 3-MC procarcinogen and conjugation with a moiety such as sulfate intended for rapid urinary excretion. The sulfate instead acts as a leaving group and generates an electrophilic carbocation capable of reacting with sensitive nucleophiles such as DNA in cellular nuclei. The products of one electron transfer oxidation align well with predictions of the Unified Theory since in many cases these products provide substrates or precursors for conjugation reactions.
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2012 CFR
2012-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions for..., for an unauthorized electronic fund transfer involving the consumer's account only if the financial...
Toogood, Helen S; van Thiel, Adam; Scrutton, Nigel S; Leys, David
2005-08-26
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... Information: Electronic Transfer Account (ETA) Financial Agency Agreement AGENCY: Financial Management Service... of information described below: Title: Electronic Transfer Account (ETA) Financial Agency Agreement... public and other Federal agencies to take this opportunity to comment on a continuing information...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Payment by electronic funds transfer is not required in the following cases: (1) Where an individual: (i... are not required to be made by electronic funds transfer, unless and until such payments become... waiver request with Treasury certifying that payment by electronic funds transfer would impose a hardship...
12 CFR 1005.7 - Initial disclosures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's account. (b) Content of... Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E...
Solvent effects on the oxidation (electron transfer) reaction of [Fe(CN) 6] 4- by [Co(NH 3) 5pz] 3+
NASA Astrophysics Data System (ADS)
Muriel, F.; Jiménez, R.; López, M.; Prado-Gotor, R.; Sánchez, F.
2004-03-01
Solvent effects on the title reaction were studied in different reaction media constituted by water and organic cosolvents (methanol, tert-butyl alcohol, ethyleneglycol and glucose) at 298.2 K. The results are considered in light of the Marcus-Hush approach for electron transfer reactions. Variations of the electron transfer rate constant are shown to be mainly due to changes in the reaction free energy. On the other hand the energies of the MMCT band, corresponding to the optical electron transfer within the ion pair [Fe(CN) 6] 4-/[Co(NH 3) 5pz] 3+, in the different reaction media, have been obtained. The activation free energies of the thermal electron transfer process have been calculated from the band ( Eop) data, and compared with those obtained from the kinetic study. Quantitative agreement is found between the two series of data. This shows the possibility of estimating activation free energies for electron transfer reactions from static (optical) measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokhan, Oleksandr; Ponomarenko, Nina S.; Pokkuluri, P. Raj
PpcA, a tri-heme cytochrome c7 from Geobacter sulfurreducens was investigated as a model for photosensitizer-initiated electron transfer within a multi-heme "molecular wire" protein architecture. E. coli expression of PpcA was found to be tolerant of cysteine site-directed mutagenesis, demonstrated by the successful expression of natively folded proteins bearing cysteine mutations at a series of sites selected to vary characteristically with respect to the three -CXXCH- heme binding domains. A preliminary survey of 5 selected mutants found that the introduced cysteines can be readily covalently linked to a Ru(II)-(2,2'-bpy)2(4-bromomethyl-4’-methyl-2,2'-bpy) photosensitizer (where bpy = bipyridine), and that the linked constructs support bothmore » photo-oxidative and photo-reductive quenching of the photosensitizer excited-state, depending upon the initial heme redox state. For photo-oxidative electron transfer, apparent heme reduction risetimes were found to vary from 7 x 10-12 s to 5 x 10-8 s, depending upon the site of photosensitizer linking. The excited-state electron transfers are about 103-fold faster than any previously reported photosensitizer-redox protein covalently linked construct. Preliminary conformational analysis using molecular dynamics simulations shows that rates for electron transfer track both the distance and pathways for electron transfer. Two mutants with the fastest charge transfer rates, A23C and K29C, showed a significant role of specific paths for electron transfer. While K29C labeled mutant was expected to have approximately 0.8Å greater donor-acceptor distance, it showed 20-fold faster charge separation rate. Clear evidence for inter-heme electron transfer within the multi-heme protein is not detected within the lifetimes of the charge separated states. These results demonstrate an opportunity to develop multi-heme c-cytochromes for investigation of electron transfer in protein "molecular wires" and to serve as frameworks for metalloprotein designs that support multiple electron transfer redox chemistry.« less
Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee
2016-11-09
The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.
Global and Local Partitioning of the Charge Transferred in the Parr-Pearson Model.
Orozco-Valencia, Angel Ulises; Gázquez, José L; Vela, Alberto
2017-05-25
Through a simple proposal, the charge transfer obtained from the cornerstone theory of Parr and Pearson is partitioned, for each reactant, in two channels: an electrophilic, through which the species accepts electrons, and the other, a nucleophilic, where the species donates electrons. It is shown that this global model allows us to determine unambiguously the charge-transfer mechanism prevailing in a given reaction. The partitioning is extended to include local effects through the Fukui functions of the reactants. This local model is applied to several emblematic reactions in organic and inorganic chemistry, and we show that besides improving the correlations obtained with the global model it provides valuable information concerning the atoms in the reactants playing the most important roles in the reaction and thus improving our understanding of the reaction under study.
Quantum Calculations of Electron Tunneling in Respiratory Complex III.
Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A
2015-11-19
The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.
Charge transfer from TiO2 into adsorbed benzene diazonium compounds
NASA Astrophysics Data System (ADS)
Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram
2004-08-01
Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.
Sung, Jooyoung; Nowak-Król, Agnieszka; Schlosser, Felix; Fimmel, Benjamin; Kim, Woojae; Kim, Dongho; Würthner, Frank
2016-07-27
We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2014 CFR
2014-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...
12 CFR 1005.6 - Liability of consumer for unauthorized transfers.
Code of Federal Regulations, 2013 CFR
2013-01-01
... transfers. 1005.6 Section 1005.6 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION ELECTRONIC FUND TRANSFERS (REGULATION E) General § 1005.6 Liability of consumer for unauthorized transfers. (a) Conditions... this section, for an unauthorized electronic fund transfer involving the consumer's account only if the...
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Peter
This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less
NASA Astrophysics Data System (ADS)
Spiegel, J. Dominik; Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M.
2017-01-01
BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET). Through-space EET is brought about by direct and exchange interactions between the transition densities of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic coupling matrix element (ECME) including CT contributions which is based on supermolecular one-electron transition density matrices (STD). The validity of the approach is assessed for a model system of two π -stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic excitation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton acceptor are obtained by the redesigned combined density functional theory and multireference configuration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the covalently linked EET cassettes.
Electron transfer to nitrogenase in different genomic and metabolic backgrounds.
Poudel, Saroj; Colman, Daniel R; Fixen, Kathryn R; Ledbetter, Rhesa N; Zheng, Yanning; Pence, Natasha; Seefeldt, Lance C; Peters, John W; Harwood, Caroline S; Boyd, Eric S
2018-02-26
Nitrogenase catalyzes the reduction of dinitrogen (N 2 ) using low potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O 2 ) sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd/Fld-reducing enzymes in 359 genomes of putative N 2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified and their distributions largely corresponded to differences in the host cells' ability to integrate O 2 or light into energy metabolism. Predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the level of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N 2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation. IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O 2 or light into their energy metabolism. Acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex. Copyright © 2018 American Society for Microbiology.
What Hinders Electron Transfer Dissociation (ETD) of DNA Cations?
NASA Astrophysics Data System (ADS)
Hari, Yvonne; Leumann, Christian J.; Schürch, Stefan
2017-12-01
Radical activation methods, such as electron transfer dissociation (ETD), produce structural information complementary to collision-induced dissociation. Herein, electron transfer dissociation of 3-fold protonated DNA hexamers was studied to gain insight into the fragmentation mechanism. The fragmentation patterns of a large set of DNA hexamers confirm cytosine as the primary target of electron transfer. The reported data reveal backbone cleavage by internal electron transfer from the nucleobase to the phosphate linker leading either to a•/ w or d/ z• ion pairs. This reaction pathway contrasts with previous findings on the dissociation processes after electron capture by DNA cations, suggesting multiple, parallel dissociation channels. However, all these channels merely result in partial fragmentation of the precursor ion because the charge-reduced DNA radical cations are quite stable. Two hypotheses are put forward to explain the low dissociation yield of DNA radical cations: it is either attributed to non-covalent interactions between complementary fragments or to the stabilization of the unpaired electron in stacked nucleobases. MS3 experiments suggest that the charge-reduced species is the intact oligonucleotide. Moreover, introducing abasic sites significantly increases the dissociation yield of DNA cations. Consequently, the stabilization of the unpaired electron by π-π-stacking provides an appropriate rationale for the high intensity of DNA radical cations after electron transfer. [Figure not available: see fulltext.
75 FR 33681 - Electronic Fund Transfers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... FEDERAL RESERVE SYSTEM 12 CFR Part 205 [Regulation E; Docket No. R-1343] Electronic Fund Transfers June 4, 2010. AGENCY: Board of Governors of the Federal Reserve System. ACTION: Final rule; correction..., published on June 4, 2010 (75 FR 31665) make the following correction: PART 205--ELECTRONIC FUND TRANSFERS...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawtelle, S.M.
The determination of the electron transfer properties of gold, tin, and titanium compounds using electrochemical and spectroelectrochemical techniques is the focus of this dissertation. The investigations of the gold compounds include the determination of the properties of Au[PR[sub 3
Transport properties of plasmas in microwave electrothermal thrusters. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.
1990-01-01
The microwave electrothermal thruster is a potential propulsion system for spacecraft applications such as platform station keeping. It is a thruster which allows no contact between the electrodes and the propellant. For this thruster, the electromagnetic energy is transferred to the electrons in the plasma region of the propellant using the TM011 and TM012 modes of a microwave cavity system. The collisional processes by the electrons with the propellant causes transfer of the energy. Work was done to study these processes using several diagnostic techniques - calorimetry, photography, and spectroscopy. Experimental results of these techniques for nitrogen and helium gasesmore » are included. These diagnostic techniques are important in understanding plasma phenomena and designing practical plasma rocket thrusters. In addition, a broad theoretical background is included to provide a fundamental description of the plasma phenomena.« less
Roque, Matheus; Lattes, Karinna; Serra, Sandra; Solà, Ivan; Geber, Selmo; Carreras, Ramón; Checa, Miguel Angel
2013-01-01
To examine the available evidence to assess if cryopreservation of all embryos and subsequent frozen embryo transfer (FET) results in better outcomes compared with fresh transfer. Systematic review and meta-analysis. Centers for reproductive care. Infertility patient(s). An exhaustive electronic literature search in MEDLINE, EMBASE, and the Cochrane Library was performed through December 2011. We included randomized clinical trials comparing outcomes of IVF cycles between fresh and frozen embryo transfers. The outcomes of interest were ongoing pregnancy rate, clinical pregnancy rate, and miscarriage. We included three trials accounting for 633 cycles in women aged 27-33 years. Data analysis showed that FET resulted in significantly higher ongoing pregnancy rates and clinical pregnancy rates. Our results suggest that there is evidence that IVF outcomes may be improved by performing FET compared with fresh embryo transfer. This could be explained by a better embryo-endometrium synchrony achieved with endometrium preparation cycles. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Diller, David J
2017-01-10
Here we present a new method for point charge calculation which we call Q ET (charges by electron transfer). The intent of this work is to develop a method that can be useful for studying charge transfer in large biological systems. It is based on the intuitive framework of the Q EQ method with the key difference being that the Q ET method tracks all pairwise electron transfers by augmenting the Q EQ pseudoenergy function with a distance dependent cost function for each electron transfer. This approach solves the key limitation of the Q EQ method which is its handling of formally charged groups. First, we parametrize the Q ET method by fitting to electrostatic potentials calculated using ab initio quantum mechanics on over 11,000 small molecules. On an external test set of over 2500 small molecules the Q ET method achieves a mean absolute error of 1.37 kcal/mol/electron when compared to the ab initio electrostatic potentials. Second, we examine the conformational dependence of the charges on over 2700 tripeptides. With the tripeptide data set, we show that the conformational effects account for approximately 0.4 kcal/mol/electron on the electrostatic potentials. Third, we test the Q ET method for its ability to reproduce the effects of polarization and electron transfer on 1000 water clusters. For the water clusters, we show that the Q ET method captures about 50% of the polarization and electron transfer effects. Finally, we examine the effects of electron transfer and polarizability on the electrostatic interaction between p38 and 94 small molecule ligands. When used in conjunction with the Generalized-Born continuum solvent model, polarization and electron transfer with the Q ET model lead to an average change of 17 kcal/mol on the calculated electrostatic component of ΔG.
Tomiki, Takeshi; Saitou, Naruya
2004-08-01
The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfur/nitrogen assimilation system first diverged, then the sulfur/nitrogen dissimilation system was produced from the latter system.
Predicting the Rate Constant of Electron Tunneling Reactions at the CdSe-TiO2 Interface.
Hines, Douglas A; Forrest, Ryan P; Corcelli, Steven A; Kamat, Prashant V
2015-06-18
Current interest in quantum dot solar cells (QDSCs) motivates an understanding of the electron transfer dynamics at the quantum dot (QD)-metal oxide (MO) interface. Employing transient absorption spectroscopy, we have monitored the electron transfer rate (ket) at this interface as a function of the bridge molecules that link QDs to TiO2. Using mercaptoacetic acid, 3-mercaptopropionic acid, 8-mercaptooctanoic acid, and 16-mercaptohexadecanoic acid, we observe an exponential attenuation of ket with increasing linker length, and attribute this to the tunneling of the electron through the insulating linker molecule. We model the electron transfer reaction using both rectangular and trapezoidal barrier models that have been discussed in the literature. The one-electron reduction potential (equivalent to the lowest unoccupied molecular orbital) of each molecule as determined by cyclic voltammetry (CV) was used to estimate the effective barrier height presented by each ligand at the CdSe-TiO2 interface. The electron transfer rate (ket) calculated for each CdSe-ligand-TiO2 interface using both models showed the results in agreement with the experimentally determined trend. This demonstrates that electron transfer between CdSe and TiO2 can be viewed as electron tunneling through a layer of linking molecules and provides a useful method for predicting electron transfer rate constants.
Sirjoosingh, Andrew; Hammes-Schiffer, Sharon
2011-03-24
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
49 CFR 225.37 - Optical media transfer and electronic submission.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Optical media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Optical media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of optical media (CD-ROM), or...
76 FR 708 - Electronic Funds Transfer of Depository Taxes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-06
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 [TD 9507] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue Service... Electronic Funds Transfer (EFT). The temporary and final regulations provide rules under which depositors...
76 FR 709 - Electronic Funds Transfer of Depository Taxes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-06
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 40 and 301 [TD 9507] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue Service (IRS...) providing guidance relating to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). The temporary...
78 FR 49365 - Electronic Fund Transfers (Regulation E); Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
... BUREAU OF CONSUMER FINANCIAL PROTECTION 12 CFR Part 1005 [Docket No. CFPB-2012-0050] RIN 3170-AA33 Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... 2013 Final Rule, which along with three other final rules \\1\\ implements the Electronic Fund Transfer...
75 FR 52485 - Electronic Funds Transfer of Depository Taxes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Parts 1, 31, 40, and 301 [REG-153340-09] RIN 1545-BJ13 Electronic Funds Transfer of Depository Taxes; Correction AGENCY: Internal Revenue... to Federal tax deposits (FTDs) by Electronic Funds Transfer (EFT). FOR FURTHER INFORMATION CONTACT...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
...; Submission for OMB Review; Payment by Electronic Fund Transfer AGENCY: Department of Defense (DOD), General... collection requirement concerning payment by electronic fund transfer. A notice was published in the Federal... technological collection techniques or other forms of information technology. DATES: Submit comments on or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I Protection of... REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry Product type...
NASA Astrophysics Data System (ADS)
Sugawara, Hirotake; Yamamoto, Tappei
2016-09-01
In order to quantitatively evaluate the electron confinement effect of the confronting divergent magnetic fields (CDMFs) applied to an inductively coupled plasma, we analyzed the electron transfer between two regions divided by the separatrix of the CDMFs in Ar at 0.67 Pa at 300 K using a Monte Carlo method. A conventional transfer judgement was simply based on the electron passage across the separatrix from the upstream source region to the downstream diffusion region. An issue was an overestimation of the transfer due to temporary stay of electrons in the downstream region. Electrons may pass the downstream region during their gyration even in case they are effectively bound to the upstream region, where their guiding magnetic flux lines run. More than half of the transfers were temporary ones and such seeming transfers were relevantly excluded from the statistics by introducing a newly chosen criterion based on the passage of electron gyrocenters across the separatrix and collisional events in the downstream region. Simulation results showed a tendency that the ratio of the temporary transfers excluded was higher under stronger magnetic fields because of higher cyclotron frequency. Work supported by JSPS Kakenhi Grant Number 16K05626.
The role of defects in Fe(II) – goethite electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade de Notini, Luiza; Latta, Drew; Neumann, Anke
Despite accumulating experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemical calculations suggest that oxidation of sorbed Fe(II) is not energetically feasible unless defects are present. Here we used isotope specific 57Fe Mössbauer spectroscopy to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, we heated the mineral to try to anneal the goethite surface and ground goethite to try to create defects. We found that heating goethite results in less oxidation of sorbed Fe(II) by goethite. When goethite was re-ground after heating, electron transfer was partially restored. X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) ofmore » heated and ground goethite confirm that heating and grinding alter the surface structure of the goethite. We propose that the heating process annealed the surface and decreased the number of sites where electron transfer could occur. Our experimental findings suggest that surface defects play an important role in Fe(II)-goethite electron transfer as suggested by computational calculations. Our finding that defects influence heterogeneous Fe(II)-goethite electron transfer has important implications for Fe(II) driven recrystallization of Fe oxides, as well as X and Y.« less
Guillot, Benoît; Jelsch, Christian; Podjarny, Alberto; Lecomte, Claude
2008-05-01
The valence electron density of the protein human aldose reductase was analyzed at 0.66 angstroms resolution. The methodological developments in the software MoPro to adapt standard charge-density techniques from small molecules to macromolecular structures are described. The deformation electron density visible in initial residual Fourier difference maps was significantly enhanced after high-order refinement. The protein structure was refined after transfer of the experimental library multipolar atom model (ELMAM). The effects on the crystallographic statistics, on the atomic thermal displacement parameters and on the structure stereochemistry are analyzed. Constrained refinements of the transferred valence populations Pval and multipoles Plm were performed against the X-ray diffraction data on a selected substructure of the protein with low thermal motion. The resulting charge densities are of good quality, especially for chemical groups with many copies present in the polypeptide chain. To check the effect of the starting point on the result of the constrained multipolar refinement, the same charge-density refinement strategy was applied but using an initial neutral spherical atom model, i.e. without transfer from the ELMAM library. The best starting point for a protein multipolar refinement is the structure with the electron density transferred from the database. This can be assessed by the crystallographic statistical indices, including Rfree, and the quality of the static deformation electron-density maps, notably on the oxygen electron lone pairs. The analysis of the main-chain bond lengths suggests that stereochemical dictionaries would benefit from a revision based on recently determined unrestrained atomic resolution protein structures.
Peters, John W; Miller, Anne-Frances; Jones, Anne K; King, Paul W; Adams, Michael Ww
2016-04-01
Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
NASA Technical Reports Server (NTRS)
Beratan, David N. (Inventor)
1991-01-01
Highly conjugated organic polymers typically have large non-resonant electronic susceptibilities, which give the molecules unusual optical properties. To enhance these properties, defects are introduced into the polymer chain. Examples include light doping of the conjugated polymer and synthesis, conjugated polymers which incorporate either electron donating or accepting groups, and conjugated polymers which contain a photoexcitable species capable of reversibly transferring its electron to an acceptor. Such defects in the chain permit enhancement of the second hyperpolarizability by at least an order of magnitude.
Effect of group electronegativity on electron transfer in bis(hydrazine) radical cations.
Qin, Haimei; Zhong, Xinxin; Si, Yubing; Zhang, Weiwei; Zhao, Yi
2011-04-14
The radical cation of 4,10-ditert-butyl-5,9-diisopropyl-4,5,9,10-tetraazatetracyclo[6.2.2.2]-tetradecane (sBI4T(+)), as well as its substituted bis(hydrazine) radical cations, is chosen for the investigation of the electronegativity dependence of its intramolecular electron transfer. To do so, two parameters, reorganization energy and electronic coupling, are calculated with several ab initio approaches. It is found that the electronic couplings decrease with the increase of the group electronegativity while the reorganization energies do not show an explicit dependency. Furthermore, Marcus formula is employed to reveal those effect on the electron transfer rates. The predicted rates of electron transfer generally decrease with increasing group electronegativity, although not monotonically.
NASA Astrophysics Data System (ADS)
Fujita, Takehiro; Matsui, Toru; Sumita, Masato; Imamura, Yutaka; Morihashi, Kenji
2018-02-01
We investigated the charge-transfer reactions of solar cells including a quaterthiophene copolymer with naphtho-bis-thiadiazole (PNTz4T) and naphtho-bis-oxadiazole (PNOz4T) using constrained density functional theory (CDFT). According to our calculations, the high electron-transfer rate results in a highly efficient solar cell, and the stable charge-transfer state results in low energy loss. Our computations imply that the following three factors are crucial to improve the performance of semiconducting polymers: (i) large structural changes following charge-transfer, (ii) narrow band gap, and (iii) spatially delocalized lowest unoccupied molecular orbital (LUMO) of the ground state.
NASA Astrophysics Data System (ADS)
Rupnik, Kresimir; Cooper, Benjamin; Dunne, Taylor; Gerosa, Katherine; Mercer, Kaitlyn; McGill, Stephen
In previous work, new Nanoparticle-enzyme Based Hybrids (NEBH) synthesis methods were investigated for nanoparticles of different shapes and electron energies. These hybrids can provide electromagnetic-field-driven ESH separations and transfers to desired molecular locations. Of paramount biomedical interest are the activity centers (including Fe-clusters) in proteins that perform their intended function and help synthesize other molecules. In this work we discuss results of our recent in situ ESH dynamics measurements: we use <15fs (Vitara) PPS broad band pulses and ultrahigh, 25T, magnetic fields from Split-helix magnet at NHMFL. Work included multi-spectral domain PPS harmonic generations and PPS sum frequency generations. Model compounds, including cytochromes, were used for testing and calibrations and previously studied Fe-S enzymes were prepared for measurements. While PPS opto-magnetic methods are known for their insight into electronic structure, our femtosecond measurements can provide ultrafast dynamic imaging of ESH mechanisms decision making steps. UF-PPS Project, performed in part at NHMFL, supported by NSF CA No. DMR-1157490, and 0654118 and U.S. DOE.
The rapid formation of functional monolayers on silicon under mild conditions.
Ciampi, Simone; Luais, Erwann; James, Michael; Choudhury, Moinul H; Darwish, Nadim A; Gooding, J Justin
2014-05-07
We report on an exceedingly mild chemical functionalization of hydrogen-terminated Si(100) with unactivated and unprotected bifunctional α,ω-dialkynes. Monolayer formation occurs rapidly in the dark, and at room temperature, from dilute solutions of an aromatic-conjugated acetylene. The method addresses the poor reactivity of p-type substrates under mild conditions. We suggest the importance of several factors, including an optimal orientation for electron transfer between the adsorbate and the Si surface, conjugation of the acetylenic function with a π-system, as well as the choice of a solvent system that favors electron transfer and screens Coulombic interactions between surface holes and electrons. The passivated Si(100) electrode is amenable to further functionalization and shown to be a viable model system for redox studies at non-oxide semiconductor electrodes in aqueous solutions.
Hoggard, Anneli; Wang, Lin-Yung; Ma, Lulu; Fang, Ying; You, Ge; Olson, Jana; Liu, Zheng; Chang, Wei-Shun; Ajayan, Pulickel M; Link, Stephan
2013-12-23
We present a quantitative analysis of the electron transfer between single gold nanorods and monolayer graphene under no electrical bias. Using single-particle dark-field scattering and photoluminescence spectroscopy to access the homogeneous linewidth, we observe broadening of the surface plasmon resonance for gold nanorods on graphene compared to nanorods on a quartz substrate. Because of the absence of spectral plasmon shifts, dielectric interactions between the gold nanorods and graphene are not important and we instead assign the plasmon damping to charge transfer between plasmon-generated hot electrons and the graphene that acts as an efficient acceptor. Analysis of the plasmon linewidth yields an average electron transfer time of 160 ± 30 fs, which is otherwise difficult to measure directly in the time domain with single-particle sensitivity. In comparison to intrinsic hot electron decay and radiative relaxation, we furthermore calculate from the plasmon linewidth that charge transfer between the gold nanorods and the graphene support occurs with an efficiency of ∼10%. Our results are important for future applications of light harvesting with metal nanoparticle plasmons and efficient hot electron acceptors as well as for understanding hot electron transfer in plasmon-assisted chemical reactions.
Oughli, Alaa A; Vélez, Marisela; Birrell, James A; Schuhmann, Wolfgang; Lubitz, Wolfgang; Plumeré, Nicolas; Rüdiger, Olaf
2018-06-08
In this work we present a viologen-modified electrode providing protection for hydrogenases against high potential inactivation. Hydrogenases, including O2-tolerant classes, suffer from reversible inactivation upon applying high potentials, which limits their use in biofuel cells to certain conditions. Our previously reported protection strategy based on the integration of hydrogenase into redox matrices enabled the use of these biocatalysts in biofuel cells even under anode limiting conditions. However, mediated catalysis required application of an overpotential to drive the reaction, and this translates into a power loss in a biofuel cell. In the present work, the enzyme is adsorbed on top of a covalently-attached viologen layer which leads to mixed, direct and mediated, electron transfer processes; at low overpotentials, the direct electron transfer process generates a catalytic current, while the mediated electron transfer through the viologens at higher potentials generates a redox buffer that prevents oxidative inactivation of the enzyme. Consequently, the enzyme starts the catalysis at no overpotential with viologen self-activated protection at high potentials.
Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.
2012-01-01
Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698
Ermakova, Maria; Huokko, Tuomas; Richaud, Pierre; Bersanini, Luca; Howe, Christopher J; Lea-Smith, David J; Peltier, Gilles; Allahverdiyeva, Yagut
2016-06-01
Various oxygen-utilizing electron sinks, including the soluble flavodiiron proteins (Flv1/3), and the membrane-localized respiratory terminal oxidases (RTOs), cytochrome c oxidase (Cox) and cytochrome bd quinol oxidase (Cyd), are present in the photosynthetic electron transfer chain of Synechocystis sp. PCC 6803. However, the role of individual RTOs and their relative importance compared with other electron sinks are poorly understood, particularly under light. Via membrane inlet mass spectrometry gas exchange, chlorophyll a fluorescence, P700 analysis, and inhibitor treatment of the wild type and various mutants deficient in RTOs, Flv1/3, and photosystem I, we investigated the contribution of these complexes to the alleviation of excess electrons in the photosynthetic chain. To our knowledge, for the first time, we demonstrated the activity of Cyd in oxygen uptake under light, although it was detected only upon inhibition of electron transfer at the cytochrome b6f site and in ∆flv1/3 under fluctuating light conditions, where linear electron transfer was drastically inhibited due to impaired photosystem I activity. Cox is mostly responsible for dark respiration and competes with P700 for electrons under high light. Only the ∆cox/cyd double mutant, but not single mutants, demonstrated a highly reduced plastoquinone pool in darkness and impaired gross oxygen evolution under light, indicating that thylakoid-based RTOs are able to compensate partially for each other. Thus, both electron sinks contribute to the alleviation of excess electrons under illumination: RTOs continue to function under light, operating on slower time ranges and on a limited scale, whereas Flv1/3 responds rapidly as a light-induced component and has greater capacity. © 2016 American Society of Plant Biologists. All Rights Reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fluorinated Heat Transfer Fluids Used by the Electronics Industry I Table I-2 to Subpart I of Part 98... GREENHOUSE GAS REPORTING Electronics Manufacturing Pt. 98, Subpt. I, Table I-2 Table I-2 to Subpart I of Part 98—Examples of Fluorinated GHGs and Fluorinated Heat Transfer Fluids Used by the Electronics Industry...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... 40 Cigars and cigarettes, Claims, Electronic fund transfers, Excise taxes, Labeling, Packaging and... that are not required to pay taxes through electronic funds transfer (EFT), this first payment period..., Electronic funds transfers, Excise taxes, Exports, Food additives, Fruit juices, Labeling, Liquors, Packaging...
Wang, Qi; Puntambekar, Ajinkya; Chakrapani, Vidhya
2017-09-14
Species from ambient atmosphere such as water and oxygen are known to affect electronic and optical properties of GaN, but the underlying mechanism is not clearly known. In this work, we show through careful measurement of electrical resistivity and photoluminescence intensity under various adsorbates that the presence of oxygen or water vapor alone is not sufficient to induce electron transfer to these species. Rather, the presence of both water and oxygen is necessary to induce electron transfer from GaN that leads to the formation of an electron depletion region on the surface. Exposure to acidic gases decreases n-type conductivity due to increased electron transfer from GaN, while basic gases increase n-type conductivity and PL intensity due to reduced charge transfer from GaN. These changes in the electrical and optical properties, as explained using a new electrochemical framework based on the phenomenon of surface transfer doping, suggest that gases interact with the semiconductor surface through electrochemical reactions occurring in an adsorbed water layer present on the surface.
The interaction of trimethylamine dehydrogenase and electron-transferring flavoprotein.
Shi, Weiwei; Mersfelder, John; Hille, Russ
2005-05-27
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.
Protein electron transfer: Dynamics and statistics
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2013-07-01
Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.
Protein electron transfer: Dynamics and statistics.
Matyushov, Dmitry V
2013-07-14
Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.
The isotopic effects of electron transfer: An explanation for Fe isotope fractionation in nature
NASA Astrophysics Data System (ADS)
Kavner, Abby; Bonet, François; Shahar, Anat; Simon, Justin; Young, Edward
2005-06-01
Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from -0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values (relative to IRMM-14) ranging from -0.18(±0.02) to -2.290(±0.006) ‰, and corresponding δ 57Fe values of -0.247(±0.014) and -3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus's theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.
NASA Astrophysics Data System (ADS)
Meyenburg, I.; Hofeditz, N.; Ruess, R.; Rudolph, M.; Schlettwein, D.; Heimbrodt, W.
2018-05-01
We studied the electron transfer at the interface of organic-inorganic hybrids consisting of indoline derivatives (D149 and D131) on ZnO substrates using a new optical method. We revealed the electron transfer times from the excited dye, e.g. the excitons formed in the dye aggregates to the ZnO substrate by analyzing the photoluminescence transients of the excitons after femtosecond excitation and applying kinetic model calculations. We reveal the changes of the electron transfer times by applying electrical bias. Pushing the Fermi energy of the ZnO substrate towards the excited dye level the transfer time gets longer and eventually the electron transfer is suppressed. The level alignment between the excited dye state and the ZnO Fermi-level is estimated. The excited state of D131 is about 100 meV higher than the respective state of D149 compared to the ZnO conduction band. This leads to shorter electron transfer times and eventually to higher quantum efficiencies of the solar cells.
Doping graphene films via chemically mediated charge transfer.
Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh
2011-01-31
Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.
Ju, Bo; Wang, Yi; Zhang, Yu-Mo; Zhang, Ting; Liu, Zhihe; Li, Minjie; Xiao-An Zhang, Sean
2018-04-18
Advances in the development of fluorescent carbon dots (CDs) for detecting nitro-explosives have attracted great interest. However, developing long-wavelength luminescence CDs for highly selective determination of 2,4,6-trinitrophenol (TNP) and getting insight into the detection mechanism remain further to be investigated. Here, excitation-independent yellow-green emission CDs with good photostability and low biotoxicity were introduced for detecting TNP selectively. Then, two types of electron transfer (ET) processes including hydrogen-bond interaction-assisted ET and proton transfer-assisted ET are suggested to be responsible for their photophysical behavior. Finally, the visual detection of TNP has been successfully developed by a CD-based indicator paper. The facile, highly sensitive, and selective detection for TNP in both of a solution and a solid phase makes CDs potentially useful in environmental sensor applications.
Park, Jung Tae; Chi, Won Seok; Jeon, Harim; Kim, Jong Hak
2014-03-07
TiO2 nanoparticles are surface-modified via atom transfer radical polymerization (ATRP) with a hydrophilic poly(oxyethylene)methacrylate (POEM), which can coordinate to the Ag precursor, i.e. silver trifluoromethanesulfonate (AgCF3SO3). Following the reduction of Ag ions, a Nb2O5 doping process and calcination at 450 °C, bi-functional Nb-doped TiO2/Ag ternary nanostructures are generated. The resulting nanostructures are characterized by energy-filtering transmission electron microscopy (EF-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. The dye-sensitized solar cell (DSSC) based on the Nb-doped TiO2/Ag nanostructure photoanode with a polymerized ionic liquid (PIL) as the solid polymer electrolyte shows an overall energy conversion efficiency (η) of 6.9%, which is much higher than those of neat TiO2 (4.7%) and Nb-doped TiO2 (5.4%). The enhancement of η is mostly due to the increase of current density, attributed to the improved electron transfer properties including electron injection, collection, and plasmonic effects without the negative effects of charge recombination or problems with corrosion. These properties are supported by intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) and incident photon-to-electron conversion efficiency (IPCE) measurements.
Nobu, Masaru K; Narihiro, Takashi; Hideyuki, Tamaki; Qiu, Yan-Ling; Sekiguchi, Yuji; Woyke, Tanja; Goodwin, Lynne; Davenport, Karen W; Kamagata, Yoichi; Liu, Wen-Tso
2015-12-01
How aromatic compounds are degraded in various anaerobic ecosystems (e.g. groundwater, sediments, soils and wastewater) is currently poorly understood. Under methanogenic conditions (i.e. groundwater and wastewater treatment), syntrophic metabolizers are known to play an important role. This study explored the draft genome of Syntrophorhabdus aromaticivorans strain UI and identified the first syntrophic phenol-degrading phenylphosphate synthase (PpsAB) and phenylphosphate carboxylase (PpcABCD) and syntrophic terephthalate-degrading decarboxylase complexes. The strain UI genome also encodes benzoate degradation through hydration of the dienoyl-coenzyme A intermediate as observed in Geobacter metallireducens and Syntrophus aciditrophicus. Strain UI possesses electron transfer flavoproteins, hydrogenases and formate dehydrogenases essential for syntrophic metabolism. However, the biochemical mechanisms for electron transport between these H2 /formate-generating proteins and syntrophic substrate degradation remain unknown for many syntrophic metabolizers, including strain UI. Analysis of the strain UI genome revealed that heterodisulfide reductases (HdrABC), which are poorly understood electron transfer genes, may contribute to syntrophic H2 and formate generation. The genome analysis further identified a putative ion-translocating ferredoxin : NADH oxidoreductase (IfoAB) that may interact with HdrABC and dissimilatory sulfite reductase gamma subunit (DsrC) to perform novel electron transfer mechanisms associated with syntrophic metabolism. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Shen, Qing; Ogomi, Yuhei; Park, Byung-wook; Inoue, Takafumi; Pandey, Shyam S; Miyamoto, Akari; Fujita, Shinsuke; Katayama, Kenji; Toyoda, Taro; Hayase, Shuzi
2012-04-07
Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to NcSn. These results demonstrate that photoexcited electrons can be effectively injected into SnO(2) from both of the N719 and NcSn dyes.
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
12 CFR 205.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.9 Receipts at electronic terminals; periodic..., a financial institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following...
Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.
Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R
2013-08-01
Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.
Halogenated solvent remediation
Sorenson, Jr., Kent S.
2008-11-11
Methods for enhancing bioremediation of ground water contaminated with nonaqueous halogenated solvents are disclosed. An illustrative method includes adding an electron donor for microbe-mediated anaerobic reductive dehalogenation of the halogenated solvents, which electron donor enhances mass transfer of the halogenated solvents from residual source areas into the aqueous phase of the ground water. Illustrative electron donors include C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, salts thereof, esters of C.sub.2-C.sub.4 carboxylic acids and hydroxy acids, and mixtures thereof, of which lactic acid, salts of lactic acid--such as sodium lactate, lactate esters, and mixtures thereof are particularly illustrative. The microbes are either indigenous to the ground water, or such microbes can be added to the ground water in addition to the electron donor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.
2016-01-28
This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Dioxygen in Polyoxometalate Mediated Reactions.
Weinstock, Ira A; Schreiber, Roy E; Neumann, Ronny
2018-03-14
In this review article, we consider the use of molecular oxygen in reactions mediated by polyoxometalates. Polyoxometalates are anionic metal oxide clusters of a variety of structures that are soluble in liquid phases and therefore amenable to homogeneous catalytic transformations. Often, they are active for electron transfer oxidations of a myriad of substrates and upon reduction can be reoxidized by molecular oxygen. For example, the phosphovanadomolybdate, H 5 PV 2 Mo 10 O 40 , can oxidize Pd(0) thereby enabling aerobic reactions catalyzed by Pd and H 5 PV 2 Mo 10 O 40 . In a similar vein, polyoxometalates can stabilize metal nanoparticles, leading to additional transformations. Furthermore, electron transfer oxidation of other substrates such as halides and sulfur-containing compounds is possible. More uniquely, H 5 PV 2 Mo 10 O 40 and its analogues can mediate electron transfer-oxygen transfer reactions where oxygen atoms are transferred from the polyoxometalate to the substrate. This unique property has enabled correspondingly unique transformations involving carbon-carbon, carbon-hydrogen, and carbon-metal bond activation. The pathway for the reoxidation of vanadomolybdates with O 2 appears to be an inner-sphere reaction, but the oxidation of one-electron reduced polyoxotungstates has been shown through intensive research to be an outer-sphere reaction. Beyond electron transfer and electron transfer-oxygen transfer aerobic transformations, there a few examples of apparent dioxygenase activity where both oxygen atoms are donated to a substrate.
Tempo-spatially resolved dynamics of elec- trons and holes in bilayer MoS2 -WS2
NASA Astrophysics Data System (ADS)
Galicia-Hernandez, J. M.; Turkowski, V.; Hernandez-Cocoletzi, G.; Rahman, T. S.
We have performed a Density-Matrix Time-Dependent Density-Functional Theory analysis of the response of bilayer MoS2-WS2 to external laser-pulse perturbations. Time-resolved study of the dynamics of electrons and holes, including formation and dissociation of strongly-bound intra- and inter-layer excitonic states, shows that the experimentally observed ultrafast inter-layer MoS2 to WS2 migration of holes may be attributed to unusually large delocalization of the hole state which extends far into the inter-layer region. We also argue that the velocity of the hole transfer may be further enhanced by its interaction with transfer phonon modes. We analyze other possible consequences of the hole delocalization in the system, including reduction of the effects of the electron-electron and hole-hole repulsion in the trions and biexcitons as compared to that in the monolayers Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354 and by CONACYT Scholarship No. 23210 (J.M.G.H.).
Picture of the Week: Hacking the bio-nano interface for better biofuels
) influence electron transfer between the enzyme and the electrode to determine the best placement of enzymes compounds) influence electron transfer between the enzyme and the electrode to determine the best placement studied how three quinones (a class of organic compounds) influence electron transfer between the enzyme
Lancaster, Kelly; Odom, Susan A; Jones, Simon C; Thayumanavan, S; Marder, Seth R; Brédas, Jean-Luc; Coropceanu, Veaceslav; Barlow, Stephen
2009-02-11
The electron spin resonance spectra of the radical cations of 4,4'-bis[di(4-methoxyphenyl)amino]tolane, E-4,4'-bis[di(4-methoxyphenyl)amino]stilbene, and E,E-1,4-bis{4-[di(4-methoxyphenyl)amino]styryl}benzene in dichloromethane exhibit five lines over a wide temperature range due to equivalent coupling to two 14N nuclei, indicating either delocalization between both nitrogen atoms or rapid intramolecular electron transfer on the electron spin resonance time scale. In contrast, those of the radical cations of 1,4-bis{4-[di(4-methoxyphenyl)amino]phenylethynyl}benzene and E,E-1,4-bis{4-[di(4-n-butoxyphenyl)amino]styryl}-2,5-dicyanobenzene exhibit line shapes that vary strongly with temperature, displaying five lines at room temperature and only three lines at ca. 190 K, indicative of slow electron transfer on the electron spin resonance time scale at low temperatures. The rates of intramolecular electron transfer in the latter compounds were obtained by simulation of the electron spin resonance spectra and display an Arrhenius temperature dependence. The activation barriers obtained from Arrhenius plots are significantly less than anticipated from Hush analyses of the intervalence bands when the diabatic electron-transfer distance, R, is equated to the N[symbol: see text]N distance. Comparison of optical and electron spin resonance data suggests that R is in fact only ca. 40% of the N[symbol: see text]N distance, while the Arrhenius prefactor indicates that the electron transfer falls in the adiabatic regime.
NASA Astrophysics Data System (ADS)
Lyon, Yana A.; Beran, Gregory; Julian, Ryan R.
2017-07-01
Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers.
Role of protein fluctuation correlations in electron transfer in photosynthetic complexes.
Nesterov, Alexander I; Berman, Gennady P
2015-04-01
We consider the dependence of the electron transfer in photosynthetic complexes on correlation properties of random fluctuations of the protein environment. The electron subsystem is modeled by a finite network of connected electron (exciton) sites. The fluctuations of the protein environment are modeled by random telegraph processes, which act either collectively (correlated) or independently (uncorrelated) on the electron sites. We derived an exact closed system of first-order linear differential equations with constant coefficients, for the average density matrix elements and for their first moments. Under some conditions, we obtained analytic expressions for the electron transfer rates and found the range of parameters for their applicability by comparing with the exact numerical simulations. We also compared the correlated and uncorrelated regimes and demonstrated numerically that the uncorrelated fluctuations of the protein environment can, under some conditions, either increase or decrease the electron transfer rates.
Role of coherence and delocalization in photo-induced electron transfer at organic interfaces
NASA Astrophysics Data System (ADS)
Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.
2016-09-01
Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.
Alternative ground states enable pathway switching in biological electron transfer
Abriata, Luciano A.; Alvarez-Paggi, Damian; Ledesma, Gabirela N.; ...
2012-10-10
Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronicmore » wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. In conclusion, these findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction.« less
Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su
2016-06-23
It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination.
Hankache, Jihane; Wenger, Oliver S
2012-02-28
Four rigid rod-like molecules comprised of a Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) photosensitizer, a 9,10-anthraquinone electron acceptor, and a molecular bridge connecting the two redox partners were synthesized and investigated by optical spectroscopic and electrochemical means. An attempt was made to assess the relative importance of driving-force, solvent polarity, and bridge variation on the rates of photoinduced electron transfer in these molecules. Expectedly, introduction of tert-butyl substituents in the bipyridine ligands of the ruthenium complex and a change in solvent from dichloromethane to acetonitrile lead to a significant acceleration of charge transfer rates. In dichloromethane, photoinduced electron transfer is not competitive with the inherent excited-state deactivation processes of the photosensitizer. In acetonitrile, an increase in driving-force by 0.2 eV through attachment of tert-butyl substituents to the bpy ancillary ligands causes an increase in electron transfer rates by an order of magnitude. Replacement of a p-xylene bridge by a p-dimethoxybenzene spacer entails an acceleration of charge transfer rates by a factor of 3.5. In the dyads from this study, the relative order of importance of individual influences on electron transfer rates is therefore as follows: solvent polarity ≥ driving-force > donor-bridge energy gap.
Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin.
Yong, Yang-Chun; Yu, Yang-Yang; Yang, Yun; Liu, Jing; Wang, Jing-Yuan; Song, Hao
2013-02-01
The microbial fuel cell (MFC), is a promising environmental biotechnology for harvesting electricity energy from organic wastes. However, low bacterial membrane permeability of electron shuttles is a limiting factor that restricts the electron shuttle-mediated extracellular electron transfer (EET) from bacteria to electrodes, thus the electricity power output of MFCs. To this end, we heterologously expressed a porin protein OprF from Pseudomonas aeruginosa PAO1 into Escherichia coli, which dramatically increased its membrane permeability, delivering a much higher current output in MFCs than its parental strain (BL21). We found that the oprF-expression strain showed more efficient EET than its parental strain. More strikingly, the enhanced membrane permeability also rendered the oprF-expression strain an efficient usage of riboflavin as the electron shuttle, whereas its parental strain was incapable of. Our results substantiated that membrane permeability is crucial for the efficient EET, and indicated that the expression of synthetic porins could be an efficient strategy to enhance bioelectricity generation by microorganisms (including electrogenic bacteria) in MFCs. Copyright © 2012 Wiley Periodicals, Inc.
CRADA Payment Options | NCI Technology Transfer Center | TTC
NCI TTC CRADA PAYMENT OPTIONS: Electronic Payments by Wire Transfer via Fedwire, Mail a check to the Institute or Center, or Automated Clearing House (ACH)/Electronic Funds Transfer (ETF) payments via Pay.gov (NCI ONLY).
Transfer coefficients in ultracold strongly coupled plasma
NASA Astrophysics Data System (ADS)
Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.
2018-03-01
We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.
Jang, M H; Scrutton, N S; Hille, R
2000-04-28
The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.
NASA Astrophysics Data System (ADS)
Bominaar, E. L.; Achim, C.; Borshch, S. A.
1999-06-01
Polynuclear transition-metal complexes, such as Fe-S clusters, are the prosthetic groups in a large number of metalloproteins and serve as temporary electron storage units in a number of important redox-based biological processes. Polynuclearity distinguishes clusters from mononuclear centers and confers upon them unique properties, such as spin ordering and the presence of thermally accessible excited spin states in clusters with paramagnetic sites, and fractional valencies in clusters of the mixed-valence type. In an earlier study we presented an effective-mode (EM) analysis of electron transfer from a binuclear mixed-valence donor with paramagnetic sites to a mononuclear acceptor which revealed that the cluster-specific attributes have an important impact on the kinetics of long-range electron transfer. In the present study, the validity of these results is tested in the framework of more detailed theories which we have termed the multimode semiclassical (SC) model and the quantum-mechanical (QM) model. It is found that the qualitative trends in the rate constant are the same in all treatments and that the semiclassical models provide a good approximation of the more rigorous quantum-mechanical description of electron transfer under physiologically relevant conditions. In particular, the present results corroborate the importance of electron transfer via excited spin states in reactions with a low driving force and justify the use of semiclassical theory in cases in which the QM model is computationally too demanding. We consider cases in which either one or two donor sites of a dimer are electronically coupled to the acceptor. In the case of multiconnectivity, the rate constant for electron transfer from a valence-delocalized (class-III) donor is nonadditive with respect to transfer from individual metal sites of the donor and undergoes an order-of-magnitude change by reversing the sign of the intradimer metal-metal resonance parameter (β). In the case of single connectivity, the rate constant for electron transfer from a valence-localized (class-II) donor can readily be tuned over several orders of magnitude by introducing differences in the electronic potentials at the two metal sites of the donor. These results indicate that theories of cluster-based electron transfer, in order to be realistic, need to consider both intrinsic electronic structure and extrinsic interactions of the cluster with the protein environment.
Cieluch, Ewelina; Pietryga, Krzysztof; Sarewicz, Marcin; Osyczka, Artur
2010-02-01
Cytochrome c(1) of Rhodobacter (Rba.) species provides a series of mutants which change barriers for electron transfer through the cofactor chains of cytochrome bc(1) by modifying heme c(1) redox midpoint potential. Analysis of post-flash electron distribution in such systems can provide useful information about the contribution of individual reactions to the overall electron flow. In Rba. capsulatus, the non-functional low-potential forms of cytochrome c(1) which are devoid of the disulfide bond naturally present in this protein revert spontaneously by introducing a second-site suppression (mutation A181T) that brings the potential of heme c(1) back to the functionally high levels, yet maintains it some 100 mV lower from the native value. Here we report that the disulfide and the mutation A181T can coexist in one protein but the mutation exerts a dominant effect on the redox properties of heme c(1) and the potential remains at the same lower value as in the disulfide-free form. This establishes effective means to modify a barrier for electron transfer between the FeS cluster and heme c(1) without breaking disulfide. A comparison of the flash-induced electron transfers in native and mutated cytochrome bc(1) revealed significant differences in the post-flash equilibrium distribution of electrons only when the connection of the chains with the quinone pool was interrupted at the level of either of the catalytic sites by the use of specific inhibitors, antimycin or myxothiazol. In the non-inhibited system no such differences were observed. We explain the results using a kinetic model in which a shift in the equilibrium of one reaction influences the equilibrium of all remaining reactions in the cofactor chains. It follows a rather simple description in which the direction of electron flow through the coupled chains of cytochrome bc(1) exclusively depends on the rates of all reversible partial reactions, including the Q/QH2 exchange rate to/from the catalytic sites. 2009 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Changwon; Atalla, Viktor; Smith, Sean
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
Sulfate-reducing bacteria: Microbiology and physiology
NASA Technical Reports Server (NTRS)
Peck, H. D.
1985-01-01
The sulfate reducing bacteria, the first nonphotosynthetic anaerobic bacteria demonstrated to contain c type cytochromes, perform electron transfer coupled to phosphorylation. A new bioenergetic scheme for the formation of a proton gradient for growth of Desulfovibrio on organic substrates and sulfate involving vectors electron transfer and consistent with the cellular localization of enzymes and electron transfer components was proposed. Hydrogen is produced in the cytoplasm from organic substrates and, as a permease molecule diffuses rapidly across the cytoplasmic membrane, it is oxidized to protons and electrons by the periplasmic hydrogenase. The electrons only are transferred across the cytoplasmic membrane to the cytoplasm where they are used to reduce sulfate to sulfide. The protons are used for transport or to drive a reversible ATPOSE. The net effect is the transfer of protons across the cytoplasmic membrane with the intervention of a proton pump. This type of H2 cycling is relevant to the bioenergetics of other types of anaerobic microorganisms.
Park, Changwon; Atalla, Viktor; Smith, Sean; ...
2017-06-16
Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less
Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer
NASA Astrophysics Data System (ADS)
Sotiriou, Georgios A.; Blattmann, Christoph O.; Deligiannakis, Yiannis
2015-12-01
Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer.Proton-coupled electron transfer (PCET) reactions involve the transfer of a proton and an electron and play an important role in a number of chemical and biological processes. Here, we describe a novel phenomenon, plasmon-enhanced PCET, which is manifested using SiO2-coated Ag nanoparticles functionalized with gallic acid (GA), a natural antioxidant molecule that can perform PCET. These GA-functionalized nanoparticles show enhanced plasmonic response at near-IR wavelengths, due to particle agglomeration caused by the GA molecules. Near-IR laser irradiation induces strong local hot-spots on the SiO2-coated Ag nanoparticles, as evidenced by surface enhanced Raman scattering (SERS). This leads to plasmon energy transfer to the grafted GA molecules that lowers the GA-OH bond dissociation enthalpy by at least 2 kcal mol-1 and therefore facilitates PCET. The nanoparticle-driven plasmon-enhancement of PCET brings together the so far unrelated research domains of nanoplasmonics and electron/proton translocation with significant impact on applications based on interfacial electron/proton transfer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04942c
Sündermann, Axel; Oostenbrink, Chris
2013-01-01
Cytochrome P450 reductase (CYPOR) undergoes a large conformational change to allow for an electron transfer to a redox partner to take place. After an internal electron transfer over its cofactors, it opens up to facilitate the interaction and electron transfer with a cytochrome P450. The open conformation appears difficult to crystallize. Therefore, a model of a human CYPOR in the open conformation was constructed to be able to investigate the stability and conformational change of this protein by means of molecular dynamics simulations. Since the role of the protein is to provide electrons to a redox partner, the interactions with cytochrome P450 2D6 (2D6) were investigated and a possible complex structure is suggested. Additionally, electron pathway calculations with a newly written program were performed to investigate which amino acids relay the electrons from the FMN cofactor of CYPOR to the HEME of 2D6. Several possible interacting amino acids in the complex, as well as a possible electron transfer pathway were identified and open the way for further investigation by site directed mutagenesis studies. PMID:23832577
Siletsky, Sergey A; Belevich, Ilya; Belevich, Nikolai P; Soulimane, Tewfik; Wikström, Mårten
2017-11-01
Two electrogenic phases with characteristic times of ~14μs and ~290μs are resolved in the kinetics of membrane potential generation coupled to single-electron reduction of the oxidized "relaxed" O state of ba 3 oxidase from T. thermophilus (O→E transition). The rapid phase reflects electron redistribution between Cu A and heme b. The slow phase includes electron redistribution from both Cu A and heme b to heme a 3 , and electrogenic proton transfer coupled to reduction of heme a 3 . The distance of proton translocation corresponds to uptake of a proton from the inner water phase into the binuclear center where heme a 3 is reduced, but there is no proton pumping and no reduction of Cu B . Single-electron reduction of the oxidized "unrelaxed" state (O H →E H transition) is accompanied by electrogenic reduction of the heme b/heme a 3 pair by Cu A in a "fast" phase (~22μs) and transfer of protons in "middle" and "slow" electrogenic phases (~0.185ms and ~0.78ms) coupled to electron redistribution from the heme b/heme a 3 pair to the Cu B site. The "middle" and "slow" electrogenic phases seem to be associated with transfer of protons to the proton-loading site (PLS) of the proton pump, but when all injected electrons reach Cu B the electronic charge appears to be compensated by back-leakage of the protons from the PLS into the binuclear site. Thus proton pumping occurs only to the extent of ~0.1 H + /e - , probably due to the formed membrane potential in the experiment. Copyright © 2017 Elsevier B.V. All rights reserved.
Electron transfer across a thermal gradient
Craven, Galen T.
2016-01-01
Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor–acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086
Chuang, Chi-Hung; Porel, Mintu; Choudhury, Rajib; Burda, Clemens; Ramamurthy, V
2018-01-11
Results of our study on ultrafast electron transfer (eT) dynamics from coumarins (coumarin-1, coumarin-480, and coumarin-153) incarcerated within octa acid (OA) capsules as electron donors to methyl viologen dissolved in water as acceptor are presented. Upon photoexcitation, coumarin inside the OA capsule transfers an electron to the acceptor electrostatically attached to the capsule leading to a long-lived radical-ion pair separated by the OA capsular wall. This charge-separated state returns to the neutral ground state via back electron transfer on the nanosecond time scale. This system allows for ultrafast electron transfer processes through a molecular wall from the apolar capsular interior to the highly polar (aqueous) environment on the femtosecond time scale. Employing femtosecond transient absorption spectroscopy, distinct rates of both forward (1-25 ps) and backward eT (700-1200 ps) processes were measured. Further understanding of the energetics is provided using Rehm-Weller analysis for the investigated photoinduced eT reactions. The results provide the rates of the eT across a molecular wall, akin to an isotropic solution, depending on the standard free energy of the reaction. The insights from this work could be utilized in the future design of efficient electron transfer processes across interfaces separating apolar and polar environments.
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2015-10-14
While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.
Electronic Transfer of School Records.
ERIC Educational Resources Information Center
Yeagley, Raymond
2001-01-01
Describes the electronic transfer of student records, notably the use of a Web-server named CHARLOTTE sponsored by the National Forum on Education Statistics and an Electronic Data Exchange system named SPEEDE/ExPRESS. (PKP)
Zhang, Dongwei; Zhao, Liang; Zhu, Yanan; Li, Aiyuan; He, Chao; Yu, Hongtao; He, Yaowu; Yan, Chaoyi; Goto, Osamu; Meng, Hong
2016-07-20
N,N'-Bis(4-trifluoromethoxyphenyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-POCF3) and N,N'-bis(4-trifluoromethoxybenzyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-BOCF3) have similar optical and electrochemical properties with a deep LUMO level of approximately 4.2 eV, but exhibit significant differences in electron mobility and molecular packing. NDI-POCF3 exhibits nondetectable charge mobility. Interestingly, NDI-BOCF3 shows air-stable electron transfer performance with enhanced mobility by increasing the deposition temperature onto the octadecyltrichlorosilane (OTS)-modified SiO2/Si substrates and achieves electron mobility as high as 0.7 cm(2) V(-1) s(-1) in air. The different mobilities of those two materials can be explained by several factors including thin-film morphology and crystallinity. In contrast to the poor thin-film morphology and crystallinity of NDI-POCF3, NDI-BOCF3 exhibits larger grain sizes and improved crystallinities due to the higher deposition temperature. In addition, the theoretical calculated transfer integrals of the intermolecular lowest unoccupied molecular orbital (LUMO) of the two materials further show that a large intermolecular orbital overlap of NDI-BOCF3 can transfer electron more efficiently than NDI-POCF3 in thin-film transistors. On the basis of fact that the theoretical calculations are consistent with the experimental results, it can be concluded that the p-(trifluoromethoxy) benzyl (BOCF3) molecular architecture on the former position of the naphthalene tetracarboxylic diimides (NDI) core provides a more effective way to enhance the intermolecular electron transfer property than the p-(trifluoromethoxy) phenyl (POCF3) group for the future design of NDI-related air-stable n-channel semiconductor.
Soltau, Sarah R.; Dahlberg, Peter D.; Niklas, Jens; Poluektov, Oleg G.; Mulfort, Karen L.
2016-01-01
A series of Ru–protein–Co biohybrids have been prepared using the electron transfer proteins ferredoxin (Fd) and flavodoxin (Fld) as scaffolds for photocatalytic hydrogen production. The light-generated charge separation within these hybrids has been monitored by transient optical and electron paramagnetic resonance spectroscopies. Two distinct electron transfer pathways are observed. The Ru–Fd–Co biohybrid produces up to 650 turnovers of H2 utilizing an oxidative quenching mechanism for Ru(ii)* and a sequential electron transfer pathway via the native [2Fe–2S] cluster to generate a Ru(iii)–Fd–Co(i) charge separated state that lasts for ∼6 ms. In contrast, a direct electron transfer pathway occurs for the Ru–ApoFld–Co biohybrid, which lacks an internal electron relay, generating Ru(i)–ApoFld–Co(i) charge separated state that persists for ∼800 μs and produces 85 turnovers of H2 by a reductive quenching mechanism for Ru(ii)*. This work demonstrates the utility of protein architectures for linking donor and catalytic function via direct or sequential electron transfer pathways to enable stabilized charge separation which facilitates photocatalysis for solar fuel production. PMID:28451142
The frequency of and reasons for acute hospital transfers of older nursing home residents.
Kirsebom, Marie; Hedström, Mariann; Wadensten, Barbro; Pöder, Ulrika
2014-01-01
The purpose of the study was to examine the frequency of and reason for transfer from nursing homes to the emergency department (ED), whether these transfers led to admission to a hospital ward, and whether the transfer rate differs as a function of type of nursing home provider and to identify the frequency of avoidable hospitalizations as defined by the Swedish Association of Local Authorities and Regions (SALAR). The design was retrospective, descriptive. Data were collected in a Swedish municipality where 30,000 inhabitants are 65 years or older. Structured reviews of the electronic healthcare records were performed. Included were residents living in a nursing home age 65+, with healthcare records including documented transfers to the ED during a 9-month period in 2010. The transfer rate to the ED was 594 among a total of 431 residents (M=1.37 each). 63% resulted in hospitalization (M=7.12 days). Nursing home's transfer rate differed between 0.00 and 1.03 transfers/bed and was higher for the private for-profit providers than for public/private non-profit providers. One-fourth of the transfers were caused by falls and/or injuries, including fractures. The frequency of avoidable hospitalizations was 16% among the 375 hospitalizations. The proportion of transfers to the ED ranged widely between nursing homes. The reasons for this finding ought to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tsai, Bor-sheng
1991-01-01
Examines the information communication process and proposes a fuzzy commonality model for improving communication systems. Topics discussed include components of an electronic information programing and processing system and the flow of the formation and transfer of information, including DOS (disk operating system) commands, computer programing…
Donor acceptor electronic couplings in π-stacks: How many states must be accounted for?
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2006-04-01
Two-state model is commonly used to estimate the donor-acceptor electronic coupling Vda for electron transfer. However, in some important cases, e.g. for DNA π-stacks, this scheme fails to provide accurate values of Vda because of multistate effects. The Generalized Mulliken-Hush method enables a multistate treatment of Vda. In this Letter, we analyze the dependence of calculated electronic couplings on the number of the adiabatic states included in the model. We suggest a simple scheme to determine this number. The superexchange correction of the two-state approximation is shown to provide good estimates of the electronic coupling.
Production of vibrationally excited N 2 by electron impact
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Teubner, P. J. O.
2004-08-01
Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N 2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates ( Q) for vibrational excitation of N 2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N 2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known 2Π g resonance in N 2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than 6000 K.
Photogeneration of Charge Carriers in Bilayer Assemblies of Conjugated Rigid-Rod Polymers
1994-07-08
photoinduced electron transfer and exciplex formation at the bilayer interface. Thus photocarrier generation on photoexcitation of the conjugated rigid...rod polymers in the bilayer occurs by photoinduced electron transfer, forming intermolecular exciplexes which dissociate efficiently in electric field...photogeneration, conjugated rigid-rod polymers, is. MACI COD bilayer assemblies, electron transfer, exciplexes . 11. SEOJUTY CLASUICA 10. 51(11MIE CLASSIMIAVION
Is back-electron transfer process in Betaine-30 coherent?
NASA Astrophysics Data System (ADS)
Rafiq, Shahnawaz; Scholes, Gregory D.
2017-09-01
The possible role of coherent vibrational motion in ultrafast photo-induced electron transfer remains unclear despite considerable experimental and theoretical advances. We revisited this problem by tracking the back-electron transfer (bET) process in Betaine-30 with broadband pump-probe spectroscopy. Dephasing time constant of certain high-frequency vibrations as a function of solvent shows a trend similar to the ET rates. In the purview of Bixon-Jortner model, high-frequency quantum vibrations bridge the reactant-product energy gap by providing activationless vibronic channels. Such interaction reduces the effective coupling significantly and thereby the coherence effects are eliminated due to energy gap fluctuations, making the back-electron transfer incoherent.
NASA Astrophysics Data System (ADS)
Li, Lesheng; Giokas, Paul G.; Kanai, Yosuke; Moran, Andrew M.
2014-06-01
Kinetic models based on Fermi's Golden Rule are commonly employed to understand photoinduced electron transfer dynamics at molecule-semiconductor interfaces. Implicit in such second-order perturbative descriptions is the assumption that nuclear relaxation of the photoexcited electron donor is fast compared to electron injection into the semiconductor. This approximation breaks down in systems where electron transfer transitions occur on 100-fs time scale. Here, we present a fourth-order perturbative model that captures the interplay between time-coincident electron transfer and nuclear relaxation processes initiated by light absorption. The model consists of a fairly small number of parameters, which can be derived from standard spectroscopic measurements (e.g., linear absorbance, fluorescence) and/or first-principles electronic structure calculations. Insights provided by the model are illustrated for a two-level donor molecule coupled to both (i) a single acceptor level and (ii) a density of states (DOS) calculated for TiO2 using a first-principles electronic structure theory. These numerical calculations show that second-order kinetic theories fail to capture basic physical effects when the DOS exhibits narrow maxima near the energy of the molecular excited state. Overall, we conclude that the present fourth-order rate formula constitutes a rigorous and intuitive framework for understanding photoinduced electron transfer dynamics that occur on the 100-fs time scale.
Marsili, Enrico; Rollefson, Janet B.; Baron, Daniel B.; Hozalski, Raymond M.; Bond, Daniel R.
2008-01-01
While electrochemical characterization of enzymes immobilized on electrodes has become common, there is still a need for reliable quantitative methods for study of electron transfer between living cells and conductive surfaces. This work describes growth of thin (<20 μm) Geobacter sulfurreducens biofilms on polished glassy carbon electrodes, using stirred three-electrode anaerobic bioreactors controlled by potentiostats and nondestructive voltammetry techniques for characterization of viable biofilms. Routine in vivo analysis of electron transfer between bacterial cells and electrodes was performed, providing insight into the main redox-active species participating in electron transfer to electrodes. At low scan rates, cyclic voltammetry revealed catalytic electron transfer between cells and the electrode, similar to what has been observed for pure enzymes attached to electrodes under continuous turnover conditions. Differential pulse voltammetry and electrochemical impedance spectroscopy also revealed features that were consistent with electron transfer being mediated by an adsorbed catalyst. Multiple redox-active species were detected, revealing complexity at the outer surfaces of this bacterium. These techniques provide the basis for cataloging quantifiable, defined electron transfer phenotypes as a function of potential, electrode material, growth phase, and culture conditions and provide a framework for comparisons with other species or communities. PMID:18849456
X ray opacity in cluster cooling flows
NASA Technical Reports Server (NTRS)
Wise, Michael W.; Sarazin, Craig L.
1993-01-01
We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak
2016-07-15
Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less
Phase-coherent engineering of electronic heat currents with a Josephson modulator
NASA Astrophysics Data System (ADS)
Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco
In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.
Proton transfer in microbial electrolysis cells
Borole, Abhijeet P.; Lewis, Alex J.
2017-02-15
Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions require protons as the reactant. Determination of transport rates via proton balance was investigated in microbial electrolysis cells, which can be applied to other forms of microbial electrochemical systems. Lastly, these systems have a unique niche in the development of future biorefineries as a means of recovering energy from waste streams with potential for water recycle, making them an integral part of the water–energy nexus focus area.« less
Proton transfer in microbial electrolysis cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borole, Abhijeet P.; Lewis, Alex J.
Proton transfer and electron transfer are of prime importance in the development of microbial electrochemical cells. While electron transfer is primarily controlled by biology, proton transfer is controlled by process engineering and cell design. To develop commercially feasible technologies around the concept of a bioelectrochemical cell, real feedstocks have to be explored and associated limitations have to be identified. Here in this study, the proton transfer rate was quantified for a microbial electrolysis cell (MEC) and its dependence on process parameters was investigated using a proton balance model. The reaction system consisted of a biomass-derived pyrolytic aqueous stream as amore » substrate producing hydrogen in a flow-through MEC. The proton transfer rate increased with anode flow rate and organic loading rate up to a maximum of 0.36 ± 0.01 moles per m 2 per h, equivalent to a hydrogen production rate of 9.08 L per L per day. Higher rates of hydrogen production, reaching 11.7 ± 0.2 L per L per day were achieved, when additional protons were provided via the cathode buffer. Electrochemical impedance spectroscopy shows that proton transfer was the dominant resistance in the production of hydrogen. The quantification of proton transfer rates for MECs with potential for biorefinery application and the demonstration of high hydrogen production rates approaching those required for commercial consideration indicate the strong potential of this technology for renewable hydrogen production. Understanding the transport phenomenon in bioelectrochemical cells is of great significance since these systems have potential for wide-ranging applications including energy production, bioremediation, chemical and nanomaterial synthesis, electro-fermentation, energy storage, desalination, and produced water treatment. Electron transfer in anode biofilms has been investigated extensively, but proton transfer studies are also important, since many cathodic half reactions require protons as the reactant. Determination of transport rates via proton balance was investigated in microbial electrolysis cells, which can be applied to other forms of microbial electrochemical systems. Lastly, these systems have a unique niche in the development of future biorefineries as a means of recovering energy from waste streams with potential for water recycle, making them an integral part of the water–energy nexus focus area.« less
Real-time electron transfer in respiratory complex I
Verkhovskaya, Marina L.; Belevich, Nikolai; Euro, Liliya; Wikström, Mårten; Verkhovsky, Michael I.
2008-01-01
Electron transfer in complex I from Escherichia coli was investigated by an ultrafast freeze-quench approach. The reaction of complex I with NADH was stopped in the time domain from 90 μs to 8 ms and analyzed by electron paramagnetic resonance (EPR) spectroscopy at low temperatures. The data show that after binding of the first molecule of NADH, two electrons move via the FMN cofactor to the iron–sulfur (Fe/S) centers N1a and N2 with an apparent time constant of ≈90 μs, implying that these two centers should have the highest redox potential in the enzyme. The rate of reduction of center N2 (the last center in the electron transfer sequence) is close to that predicted by electron transfer theory, which argues for the absence of coupled proton transfer or conformational changes during electron transfer from FMN to N2. After fast reduction of N1a and N2, we observe a slow, ≈1-ms component of reduction of other Fe/S clusters. Because all elementary electron transfer rates between clusters are several orders of magnitude higher than this observed rate, we conclude that the millisecond component is limited by a single process corresponding to dissociation of the oxidized NAD+ molecule from its binding site, where it prevents entry of the next NADH molecule. Despite the presence of approximately one ubiquinone per enzyme molecule, no transient semiquinone formation was observed, which has mechanistic implications, suggesting a high thermodynamic barrier for ubiquinone reduction to the semiquinone radical. Possible consequences of these findings for the proton translocation mechanism are discussed. PMID:18316732
Dexter energy transfer pathways
Skourtis, Spiros S.; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M.; Beratan, David N.
2016-01-01
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor–acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways. PMID:27382185
Dexter energy transfer pathways.
Skourtis, Spiros S; Liu, Chaoren; Antoniou, Panayiotis; Virshup, Aaron M; Beratan, David N
2016-07-19
Energy transfer with an associated spin change of the donor and acceptor, Dexter energy transfer, is critically important in solar energy harvesting assemblies, damage protection schemes of photobiology, and organometallic opto-electronic materials. Dexter transfer between chemically linked donors and acceptors is bridge mediated, presenting an enticing analogy with bridge-mediated electron and hole transfer. However, Dexter coupling pathways must convey both an electron and a hole from donor to acceptor, and this adds considerable richness to the mediation process. We dissect the bridge-mediated Dexter coupling mechanisms and formulate a theory for triplet energy transfer coupling pathways. Virtual donor-acceptor charge-transfer exciton intermediates dominate at shorter distances or higher tunneling energy gaps, whereas virtual intermediates with an electron and a hole both on the bridge (virtual bridge excitons) dominate for longer distances or lower energy gaps. The effects of virtual bridge excitons were neglected in earlier treatments. The two-particle pathway framework developed here shows how Dexter energy-transfer rates depend on donor, bridge, and acceptor energetics, as well as on orbital symmetry and quantum interference among pathways.
Effect of proton transfer on the electronic coupling in DNA
NASA Astrophysics Data System (ADS)
Rak, Janusz; Makowska, Joanna; Voityuk, Alexander A.
2006-06-01
The effects of single and double proton transfer within Watson-Crick base pairs on donor-acceptor electronic couplings, Vda, in DNA are studied on the bases of quantum chemical calculations. Four dimers [AT,AT], [GC,GC], [GC,AT] and [GC,TA)] are considered. Three techniques - the generalized Mulliken-Hush scheme, the fragment charge method and the diabatic states method - are employed to estimate Vda for hole transfer between base pairs. We show that both single- and double proton transfer (PT) reactions may substantially affect the electronic coupling in DNA. The electronic coupling in [AT,AT] is predicted to be most sensitive to PT. Single PT within the first base pair in the dimer leads to increase in the hole transfer efficiency by a factor of 4, while proton transfer within the second pair should substantially, by 2.7 times, decrease the rate of charge transfer. Thus, directional asymmetry of the PT effects on the electronic coupling is predicted. The changes in the Vda matrix elements correlate with the topological properties of orbitals of donor and acceptor and can be qualitatively rationalized in terms of resonance structures of donor and acceptor. Atomic pair contributions to the Vda matrix elements are also analyzed.
Electronic Data Interchange: Using Technology to Exchange Transcripts.
ERIC Educational Resources Information Center
Stewart, John T.
1994-01-01
Describes the Florida Automated System for Transferring Educational Records (FASTER) project, which permits the electronic exchange of student transcripts; uses of similar electronic data interchange (EDI) programs in other states; and the national SPEEDE/ExPRESS project, which uses a standard format for transferring electronic transcripts.…
An Ab Initio Exciton Model Including Charge-Transfer Excited States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin; Parrish, Robert M.; Liu, Fang
Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less
An Ab Initio Exciton Model Including Charge-Transfer Excited States
Li, Xin; Parrish, Robert M.; Liu, Fang; ...
2017-06-15
Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less
An Ab Initio Exciton Model Including Charge-Transfer Excited States.
Li, Xin; Parrish, Robert M; Liu, Fang; Kokkila Schumacher, Sara I L; Martínez, Todd J
2017-08-08
The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem. Res. 2014 , 47 , 2857 - 2866 ]. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited states and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.
Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces
NASA Astrophysics Data System (ADS)
Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.
2017-07-01
During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.
NASA Astrophysics Data System (ADS)
Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.
2014-12-01
Anaeromyxobacter dehalogenans is a metabolically versatile Deltaproteobacterium and conserves energy from the reduction of various electron acceptors, including insoluble MnO2 and ferric oxides/oxyhydroxides (FeOOH). The goal of this study was to identify c-type cytochromes involved in electron transfer to MnO2. The characterization of deletion mutants has revealed a number of c-type cytochromes involved in electron transfer to solid metal oxides in Shewanella spp. and Geobacter spp; however, a genetic system for Anaeromyxobacter is not available. The A. dehalogenans str. 2CP-C genome encodes 68 putative c-type cytochromes, which all lack functional assignments. To identify c-type cytochromes involved in electron transfer to solid MnO2, protein expression profiles of A. dehalogenans str. 2CP-C cells grown with acetate as electron donor and MnO2, ferric citrate, FeOOH, nitrate or fumarate as electron acceptors were compared. Whole cell proteomes were analyzed after trypsin proteolysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Distinct c-type cytochrome expression patterns were observed with cells grown with different electron acceptors. A. dehalogenans str. 2CP-C grown with MnO2 expressed 25 out of the 68 c-type cytochromes encoded on the genome. The c-type cytochrome Adeh_1278 was only expressed in strain 2CP-C grown with MnO2. Reverse transcription PCR confirmed that the Adeh_1278 gene was transcribed in MnO2-grown cells but not in cells grown with other terminal electron acceptors. The expression of the Adeh_1278 gene correlated with Mn(IV) reduction activity. Adeh_1278 has three heme binding motifs and is predicted to be located in the periplasm. The identification of Adeh_1278 as a protein uniquely expressed when MnO2 serves as electron acceptor suggests its utility as a biomarker for MnO2 reduction. This example demonstrates the value of the LC-MS/MS approach for identifying specific proteins of interest and making functional assignments to proteins, including c-type cytochromes that have not been characterized. The distinctive expression of c-type cytochromes in response to growth with different terminal electron acceptors offers opportunities for functional (i.e., activity) in situ monitoring using metaproteomics or transcript-targeted approaches.
ERIC Educational Resources Information Center
Zekeri, Andrew A.
2004-01-01
The reasons for moving from paper coupons to delivering food stamps electronically include potential reduction in the cost of administering the system and in fraud, theft and abuse of the system. Furthermore, the use of EBT is believed o reduce social stigma and embarrassment felt by recipients when using paper coupon. Therefore, using survey data…
Electron transfer statistics and thermal fluctuations in molecular junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goswami, Himangshu Prabal; Harbola, Upendra
2015-02-28
We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend tomore » suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, A; Gardel, EJ; Vidoudez, C
Oxidation-reduction reactions underlie energy generation in nearly all life forms. Although most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph Rhodopseudomonas palustris TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and ruBisCo form I expression are stimulated by light.more » Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the pioABC operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... related to the electronics manufacturing source category. DATES: This rule will be effective on March 23...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSFERS (REGULATION E) General § 1005.9 Receipts at electronic terminals; periodic statements. (a... institution shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
12 CFR 1005.9 - Receipts at electronic terminals; periodic statements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... TRANSFERS (REGULATION E) § 1005.9 Receipts at electronic terminals; periodic statements. (a) Receipts at... shall make a receipt available to a consumer at the time the consumer initiates an electronic fund transfer at an electronic terminal. The receipt shall set forth the following information, as applicable...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... electronic funds transfer information to maintain its vendor (credit union) records to make electronic... maintain current electronic funds transfer data for its vendor (credit union) electronic routing and... the information on the respondents such as through the use of automated collection techniques or other...
Rapid electron transfer by the carbon matrix in natural pyrogenic carbon
Sun, Tianran; Levin, Barnaby D. A.; Guzman, Juan J. L.; Enders, Akio; Muller, David A.; Angenent, Largus T.; Lehmann, Johannes
2017-01-01
Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria–carbon–mineral conductive network. PMID:28361882
Laser-Material Interactions for Flexible Applications.
Joe, Daniel J; Kim, Seungjun; Park, Jung Hwan; Park, Dae Yong; Lee, Han Eol; Im, Tae Hong; Choi, Insung; Ruoff, Rodney S; Lee, Keon Jae
2017-07-01
The use of lasers for industrial, scientific, and medical applications has received an enormous amount of attention due to the advantageous ability of precise parameter control for heat transfer. Laser-beam-induced photothermal heating and reactions can modify nanomaterials such as nanoparticles, nanowires, and two-dimensional materials including graphene, in a controlled manner. There have been numerous efforts to incorporate lasers into advanced electronic processing, especially for inorganic-based flexible electronics. In order to resolve temperature issues with plastic substrates, laser-material processing has been adopted for various applications in flexible electronics including energy devices, processors, displays, and other peripheral electronic components. Here, recent advances in laser-material interactions for inorganic-based flexible applications with regard to both materials and processes are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.
Twenty Years of Rad-Hard K14 SPAD in Space Projects
Michálek, Vojtěch; Procházka, Ivan; Blažej, Josef
2015-01-01
During last two decades, several photon counting detectors have been developed in our laboratory. One of the most promising detector coming from our group silicon K14 Single Photon Avalanche Diode (SPAD) is presented with its valuable features and space applications. Based on the control electronics, it can be operated in both gated and non-gated mode. Although it was designed for photon counting detection, it can be employed for multiphoton detection as well. With respect to control electronics employed, the timing jitter can be as low as 20 ps RMS. Detection efficiency is about 40 % in range of 500 nm to 800 nm. The detector including gating and quenching circuitry has outstanding timing stability. Due to its radiation resistivity, the diode withstands 100 krad gamma ray dose without parameters degradation. Single photon detectors based on K14 SPAD were used for planetary altimeter and atmospheric lidar in MARS92/96 and Mars Surveyor ’98 space projects, respectively. Recent space applications of K14 SPAD comprises LIDAR and mainly time transfer between ground stations and artificial satellites. These include Laser Time Transfer, Time Transfer by Laser Link, and European Laser Timing projects. PMID:26213945
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-02-01
Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekiert, Robert; Czapla, Monika; Sarewicz, Marcin
2014-08-22
Highlights: • We used hybrid fusion bc{sub 1} complex to test inter-monomer electron transfer in vivo. • Cross-inactivated complexes were able to sustain photoheterotrophic growth. • Inter-monomer electron transfer supports catalytic cycle in vivo. • bc{sub 1} dimer is functional even when cytochrome b subunits come from different species. - Abstract: Electronic connection between Q{sub o} and Q{sub i} quinone catalytic sites of dimeric cytochrome bc{sub 1} is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the lattermore » remains unclear. Here, using a series of mutated hybrid cytochrome bc{sub 1}-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.« less
Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer
Petrenko, Alexander; Stein, Matthias
2017-01-01
Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774
Nanofabrication on unconventional substrates using transferred hard masks
Li, Luozhou; Bayn, Igal; Lu, Ming; ...
2015-01-15
Here, a major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantationmore » are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.« less
NASA Space Engineering Research Center for VLSI System Design
NASA Technical Reports Server (NTRS)
1993-01-01
This annual report outlines the activities of the past year at the NASA SERC on VLSI Design. Highlights for this year include the following: a significant breakthrough was achieved in utilizing commercial IC foundries for producing flight electronics; the first two flight qualified chips were designed, fabricated, and tested and are now being delivered into NASA flight systems; and a new technology transfer mechanism has been established to transfer VLSI advances into NASA and commercial systems.
Jia, Ru; Yang, Dongqing; Xu, Dake; Gu, Tingyue
2017-12-01
Electron transfer is a rate-limiting step in microbiologically influenced corrosion (MIC) caused by microbes that utilize extracellular electrons. Cross-cell wall electron transfer is necessary to transport the electrons released from extracellular iron oxidation into the cytoplasm of cells. Electron transfer mediators were found to accelerate the MIC caused by sulfate reducing bacteria. However, there is no publication in the literature showing the effect of electron transfer mediators on MIC caused by nitrate reducing bacteria (NRB). This work demonstrated that the corrosion of anaerobic Pseudomonas aeruginosa (PAO1) grown as a nitrate reducing bacterium biofilm on C1018 carbon steel was enhanced by two electron transfer mediators, riboflavin and flavin adenine dinucleotide (FAD) separately during a 7-day incubation period. The addition of either 10ppm (w/w) (26.6μM) riboflavin or 10ppm (12.7μM) FAD did not increase planktonic cell counts, but they increased the maximum pit depth on carbon steel coupons considerably from 17.5μm to 24.4μm and 25.0μm, respectively. Riboflavin and FAD also increased the specific weight loss of carbon steel from 2.06mg/cm 2 to 2.34mg/cm 2 and 2.61mg/cm 2 , respectively. Linear polarization resistance, electrochemical impedance spectroscopy and potentiodynamic polarization curves all corroborated the pitting and weight loss data. Copyright © 2017 Elsevier B.V. All rights reserved.
Cytochromes and iron sulfur proteins in sulfur metabolism of phototrophic bacteria
NASA Technical Reports Server (NTRS)
Fischer, U.
1985-01-01
Dissimilatory sulfur metabolism in phototrophic sulfur bacteria provides the bacteria with electrons for photosynthetic electron transport chain and, with energy. Assimilatory sulfate reduction is necessary for the biosynthesis of sulfur-containing cell components. Sulfide, thiosulfate, and elemental sulfur are the sulfur compounds most commonly used by phototrophic bacteria as electron donors for anoxygenic photosynthesis. Cytochromes or other electron transfer proteins, like high-potential-iron-sulfur protein (HIPIP) function as electron acceptors or donors for most enzymatic steps during the oxidation pathways of sulfide or thiosulfate. Yet, heme- or siroheme-containing proteins themselves undergo enzymatic activities in sulfur metabolism. Sirohemes comprise a porphyrin-like prosthetic group of sulfate reductase. eenzymatic reactions involve electron transfer. Electron donors or acceptors are necessary for each reaction. Cytochromes and iron sulfur problems, are able to transfer electrons.
Frenkel versus charge-transfer exciton dispersion in molecular crystals
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco
2013-11-01
By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.
Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces.
Tremblay, Pier-Luc; Angenent, Largus T; Zhang, Tian
2017-04-01
Autotrophic microbes can acquire electrons from solid donors such as steel, other microbial cells, or electrodes. Based on this feature, bioprocesses are being developed for the microbial electrosynthesis (MES) of useful products from the greenhouse gas CO 2 . Extracellular electron-transfer mechanisms involved in the acquisition of electrons from metals by electrical microbially influenced corrosion (EMIC), from other living cells by interspecies electron transfer (IET), or from an electrode during MES rely on: (i) mediators such as H 2 ; (ii) physical contact through electron-transfer proteins; or (iii) mediator-generating enzymes detached from cells. This review explores the interactions of autotrophs with solid electron donors and their importance in nature and for biosustainable technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction
NASA Astrophysics Data System (ADS)
Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro
2007-11-01
The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.
Computer Networks and Networking: A Primer.
ERIC Educational Resources Information Center
Collins, Mauri P.
1993-01-01
Provides a basic introduction to computer networks and networking terminology. Topics addressed include modems; the Internet; TCP/IP (Transmission Control Protocol/Internet Protocol); transmission lines; Internet Protocol numbers; network traffic; Fidonet; file transfer protocol (FTP); TELNET; electronic mail; discussion groups; LISTSERV; USENET;…
Easy Online Access to Helpful Internet Guides.
ERIC Educational Resources Information Center
Tuss, Joan
1993-01-01
Lists recommended guides to the Internet that are available electronically. Basic commands needed to use anonymous ftp (file transfer protocol) are explained. An annotation and command formats to access, scan, retrieve, and exit each file are included for 11 titles. (EAM)
The Internet for Educators: A User's Guide.
ERIC Educational Resources Information Center
Monahan, Brian D.; Dharm, Matthew
1995-01-01
Presents a practical guide to use of the Internet. Topics discussed include getting connected; the UNIX operating system; electronic mail; FTP (File Transfer Protocol); Finger; Telnet; Archie; Veronica; Gopher; teacher education; the Yanoff List; and expansion of the Internet. (three references) (LRW)
Long-Range (Forster) Electronic Energy Transfer: A Laboratory Experiment.
ERIC Educational Resources Information Center
Berkovic, G.
1984-01-01
An experiment which measures the steady-state fluorescence of pyrene (the donor) in the presence of varying concentrations of acridine orange (the acceptor) in ethyline glycol solutions is described. Background information, equipment needed, and procedures used are included. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Tiejun; Department of Chemistry, Iowa State University, Ames, Iowa 50011; Song, Xueyu
2014-10-07
Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.
Cohen-Atiya, Meirav; Mandler, Daniel
2006-10-14
A new approach based on measuring the change of the open-circuit potential (OCP) of a hanging mercury drop electrode (HMDE), modified with alkanethiols of different chain length conducted in a solution containing a mixture of Ru(NH3)6(2+) and Ru(NH3)6(3+) is used for studying electron transfer across the monolayer. Following the time dependence of the OCP allowed the extraction of the kinetic parameters, such as the charge transfer resistance (R(ct)) and the electron transfer rate constant (k(et)), for different alkanethiol monolayers. An electron tunneling coefficient, beta, of 0.9 A(-1) was calculated for the monolayers on Hg.
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Boning; Liang, Min; Zmich, Nicole
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
Photoinduced Bimolecular Electron Transfer in Ionic Liquids: Cationic Electron Donors
Wu, Boning; Liang, Min; Zmich, Nicole; ...
2018-01-29
Recently, we have reported a systematic study of photoinduced electron-transfer reactions in ionic liquid solvents using neutral and anionic electron donors and a series of cyano-substituted anthracene acceptors [Wu, B.; Maroncelli, M.; Castner, E. W., Jr.Photoinduced Bimolecular Electron Transfer in Ionic Liquids. J. Am. Chem. Soc.139, 2017, 14568]. In this paper, we report complementary results for a cationic class of 1-alkyl-4-dimethylaminopyridinium electron donors. Reductive quenching of cyano-substituted anthracene fluorophores by these cationic quenchers is studied in solutions of acetonitrile and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Varying the length of the alkyl chain permits tuning of the quencher diffusivities in solution.more » The observed quenching kinetics are interpreted using a diffusion-reaction analysis. Finally, together with results from the prior study, these results show that the intrinsic electron-transfer rate constant does not depend on the quencher charge in this family of reactions.« less
The role of electrostatics in TrxR electron transfer mechanism: A computational approach.
Teixeira, Vitor H; Capacho, Ana Sofia C; Machuqueiro, Miguel
2016-12-01
Thioredoxin reductase (TrxR) is an important enzyme in the control of the intracellular reduced redox environment. It transfers electrons from NADPH to several molecules, including its natural partner, thioredoxin. Although there is a generally accepted model describing how the electrons are transferred along TrxR, which involves a flexible arm working as a "shuttle," the molecular details of such mechanism are not completely understood. In this work, we use molecular dynamics simulations with Poisson-Boltzmann/Monte Carlo pKa calculations to investigate the role of electrostatics in the electron transfer mechanism. We observed that the combination of redox/protonation states of the N-terminal (FAD and Cys59/64) and C-terminal (Cys497/Selenocysteine498) redox centers defines the preferred relative positions and allows for the flexible arm to work as the desired "shuttle." Changing the redox/ionization states of those key players, leads to electrostatic triggers pushing the arm into the pocket when oxidized, and pulling it out, once it has been reduced. The calculated pKa values for Cys497 and Selenocysteine498 are 9.7 and 5.8, respectively, confirming that the selenocysteine is indeed deprotonated at physiological pH. This can be an important advantage in terms of reactivity (thiolate/selenolate are more nucleophilic than thiol/selenol) and ability to work as an electrostatic trigger (the "shuttle" mechanism) and may be the reason why TrxR uses selenium instead of sulfur. Proteins 2016; 84:1836-1843. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Małecki, Jędrzej; Dahl, Helge-André; Moen, Anders; Davydova, Erna; Falnes, Pål Ø.
2016-01-01
Human METTL20 is a mitochondrial, lysine-specific methyltransferase that methylates the β-subunit of electron transfer flavoprotein (ETFβ). Interestingly, putative METTL20 orthologues are found in a subset of α-proteobacteria, including Agrobacterium tumefaciens. Using an activity-based approach, we identified in bacterial extracts two substrates of recombinant METTL20 from A. tumefaciens (AtMETTL20), namely ETFβ and the ribosomal protein RpL7/L12. We show that AtMETTL20, analogous to the human enzyme, methylates ETFβ on Lys-193 and Lys-196 both in vitro and in vivo. ETF plays a key role in mediating electron transfer from various dehydrogenases, and we found that its electron transferring ability was diminished by AtMETTL20-mediated methylation of ETFβ. Somewhat surprisingly, AtMETTL20 also catalyzed monomethylation of RpL7/L12 on Lys-86, a common modification also found in many bacteria that lack METTL20. Thus, we here identify AtMETTL20 as the first enzyme catalyzing RpL7/L12 methylation. In summary, here we have identified and characterized a novel bacterial lysine-specific methyltransferase with unprecedented dual substrate specificity within the seven β-strand class of lysine-specific methyltransferases, as it targets two apparently unrelated substrates, ETFβ and RpL7/L12. Moreover, the present work establishes METTL20-mediated methylation of ETFβ as the first lysine methylation event occurring in both bacteria and humans. PMID:26929405
Zhu, Jiali; Sun, Shan; Jiang, Kai; Wang, Yuhui; Liu, Wenqing; Lin, Hengwei
2017-11-15
Herein, a highly sensitive and selective fluorimetric nanoprobe for peroxynitrite (ONOO - ) detection based on photoinduced electron transfer (PET) from ferrocene (Fc) to carbon dots (CDs) is reported. The nanoprobe (named CDs-Fc) can be facilely constructed through covalently conjugating CDs and ferrocenecarboxylic acid. Further studies reveal that the energy level of highest occupied molecular orbital (HOMO) of the CDs is lowered with the addition of ONOO - due to its oxidation and nitration capabilities. Thus, an efficient electron transfer from Fc to the excited states of CDs could occur, leading to obvious fluorescence quenching. The fluorescence quenching of the nanoprobe was determined to be peroxynitrite concentrations dependence with a linear range between 4nM to 0.12μM. Thanks to the excellent optical properties of the CDs and efficient electron transfer efficiency from Fc to the excited CDs, the nanoprobe exhibits very high sensitivity to ONOO - with a limit of detection (LOD) of 2.9nM. To the best of our knowledge, this LOD is the highest reported value till today for the detection of peroxynitrite. Besides, the nanoprobe also shows excellent selectivity to ONOO - among a broad range of substances, even including other reactive oxygen/nitrogen species (ROS/RNS). Finally, the nanoprobe was verified to be very low cytotoxicity, and was successfully applied for intracellular ONOO - detection. This work would provide a promising tool for the research of ONOO - in cytobiology and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto
An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less
Xurun, Yu; Xinyu, Chen; Liang, Zhou; Jing, Zhang; Heng, Yu; Shanshan, Shao; Fei, Xiong; Zhong, Wang
2015-03-01
Nutrients from spikelet phloem are commonly delivered to endosperm via caryopsis nutrient transfer tissues (NTTs). Elucidation of NTTs development is paramount to developing an understanding of the control of assimilate partitioning. Little information was available on the structural development of the entire NTTs and their functions, particularly those involved in the relationship between development of NTTs and growth of filial tissues including endosperm and embryo. In this study, wheat caryopses at different development stages were collected for observation of the NTTs by light microscopy, stereoscopic microscopy, and scanning electron microscopy. The cytological features of NTTs in the developing wheat caryopsis were clearly elucidated. The results were as follows: NTTs in the wheat caryopsis include maternal transfer tissues that are composed of vascular bundle, chalaza and nucellar projection transfer cells, and endosperm transfer tissues that consist of the aleurone transfer cells, starchy endosperm transfer cells, and endosperm conducting cells. The initiation, development, and apoptosis of these NTTs revealed the pattern of temporal and spatial gradient and were closely coordinated with endosperm and embryo development. These results may give us a further understanding about the functions of NTTs and their relationships with endosperm and embryo development.
Mao, Huihui; Luo, Guanghua; Zhan, Yuxia; Zhang, Jun; Yao, Shuang; Yu, Yang
2018-04-30
The base-quenched probe method for detecting single nucleotide polymorphisms (SNPs) relies on real-time PCR and melting-curve analysis, which might require only one pair of primers and one probe. At present, it has been successfully applied to detect SNPs of multiple genes. However, the mechanism of the base-quenched probe method remains unclear. Therefore, we investigated the possible mechanism of fluorescence quenching by DNA bases in aqueous solution using spectroscopic techniques. It showed that the possible mechanism might be photo-induced electron transfer. We next analyzed electron transfer or transmission between DNA bases and fluorophores. The data suggested that in single-stranded DNA, the electrons of the fluorophore are transferred to the orbital of pyrimidine bases (thymine (T) and cytosine (C)), or that the electron orbitals of the fluorophore are occupied by electrons from purine bases (guanine (G) and adenine (A)), which lead to fluorescence quenching. In addition, the electrons of a fluorophore excited by light can be transmitted along double-stranded DNA, which gives rise to stronger fluorescence quenching. Furthermore, we demonstrated that the quenching efficiency of bases is in the order of G > C ≥ A ≥ T and the capability of electron transmission of base-pairs in double-stranded DNA is in the order of CG[combining low line] ≥ GC[combining low line] > TA[combining low line] ≥ AT[combining low line] (letters representing bases on the complementary strand of the probe are bold and underlined), and the most common commercial fluorophores including FAM, HEX, TET, JOE, and TAMRA could be influenced by bases and are in line with this mechanism and regularity.
NASA Astrophysics Data System (ADS)
Ghorbani, Omid; Ghanbari-Adivi, Ebrahim
2017-12-01
A full quantum mechanical version of the three-body distorted wave-eikonal initial state (3DW-EIS) theory is developed to study of the single ionization of the atomic targets by ion impact at different momentum transfers. The calculations are performed both with and without including the internuclear interaction in the transition amplitude. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s2 ) and 24 \\text{Mev} \\text{O}8+\\text{-Li}~(2s ) collisions, the emission of the active electron into the scattering plane is considered and the fully differential cross-sections (FDCSs) are calculated for a fixed value of the ejected electron energy and a variety of momentum transfers. For both the specified collision systems, the obtained results are compared with the experimental data and with the cross-sections obtained using the semi-classical continuum distorted wave-eikonal initial state (CDW-EIS) approach. For 16 \\text{Mev} \\text{O}7+ \\text{-He}~(1s^2) , we also compared the results with those of a four-body three-Coulomb-wave (3CW) model. In general, we find some large discrepancies between the results obtained by different theories. These discrepancies are much more significant at larger momentum transfers. Also, for some ranges of the electron emission angles the results are much more sensitive to the internuclear interaction to be either turned on or off.
Yang, Yang; Liu, Xuegang; Ye, Gang; Zhu, Shan; Wang, Zhe; Huo, Xiaomei; Matyjaszewski, Krzysztof; Lu, Yuexiang; Chen, Jing
2017-04-19
Developing green and efficient technologies for surface modification of magnetic nanoparticles (MNPs) is of crucial importance for their biomedical and environmental applications. This study reports, for the first time, a novel strategy by integrating metal-free photoinduced electron transfer-atom transfer radical polymerization (PET-ATRP) with the bioinspired polydopamine (PDA) chemistry for controlled architecture of functional polymer brushes from MNPs. Conformal PDA encapsulation layers were initially generated on the surfaces of MNPs, which served as the protective shells while providing an ideal platform for tethering 2-bromo-2-phenylacetic acid (BPA), a highly efficient initiator. Metal-free PET-ATRP technique was then employed for controlled architecture of poly(glycidyl methacrylate) (PGMA) brushes from the core-shell MNPs by using diverse organic dyes as photoredox catalysts. Impacts of light sources (including UV and visible lights), photoredox catalysts, and polymerization time on the composition and morphology of the PGMA brushes were investigated. Moreover, the versatility of the PGMA-functionalized core-shell MNPs was demonstrated by covalent attachment of ethylenediamine (EDA), a model functional molecule, which afforded the MNPs with improved hydrophilicity, dispersibility, and superior binding ability to uranyl ions. The green methodology by integrating metal-free PET-ATRP with facile PDA chemistry would provide better opportunities for surface modification of MNPs and miscellaneous nanomaterials for biomedical and electronic applications.
Toddlers' word learning and transfer from electronic and print books.
Strouse, Gabrielle A; Ganea, Patricia A
2017-04-01
Transfer from symbolic media to the real world can be difficult for young children. A sample of 73 toddlers aged 17 to 23months were read either an electronic book displayed on a touchscreen device or a traditional print book in which a novel object was paired with a novel label. Toddlers in both conditions learned the label within the context of the book. However, only those who read the traditional format book generalized and transferred the label to other contexts. An older group of 28 toddlers aged 24 to 30months did generalize and transfer from the electronic book. Across ages, those children who primarily used screens to watch prerecorded video at home transferred less from the electronic book than those with more diverse home media experiences. Copyright © 2016 Elsevier Inc. All rights reserved.
Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo
2006-01-12
The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.
Glutaric aciduria type 2, late onset type in Thai siblings with myopathy.
Wasant, Pornswan; Kuptanon, Chulaluck; Vattanavicharn, Nithiwat; Liammongkolkul, Somporn; Ratanarak, Pisanu; Sangruchi, Tumtip; Yamaguchi, Seiji
2010-10-01
Reported here is a novel presentation of late onset glutaric aciduria type 2 in two Thai siblings. A 9-year-old boy presented with gradual onset of proximal muscle weakness for 6 weeks. The initial diagnosis was postviral myositis, and then polymyositis. Electromyography and nerve conduction velocity testing indicated a myopathic pattern. Muscle biopsy revealed excessive accumulation of fat. Acylcarnitine profiling led to the diagnosis of glutaric aciduria type 2. Immunoblot analysis of electron-transferring-flavoprotein and its dehydrogenase electron-transferring-flavoprotein dehydrogenase led to mutation analysis of the ETFDH gene, which revealed two different pathogenic mutations in both alleles and confirmed the diagnosis of glutaric aciduria type 2 caused by electron-transferring-flavoprotein dehydrogenase deficiency. The boy recovered completely after treatment. Later, his younger sibling became symptomatic; the same diagnosis was confirmed, and treatment was similarly effective. Acylcarnitine profiling was a crucial investigation in making this diagnosis in the presence of normal urine organic acid findings. Late onset glutaric aciduria type 2, a rare cause of muscle weakness in children, should be included in the differential diagnosis of myopathy. Copyright © 2010 Elsevier Inc. All rights reserved.
Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z.-L. Zhou; M. Bouwhuis; M. Ferro-Luzzi
1999-01-01
We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm{sup -1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/c with a tensor polarized {sup 2}H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.
Monte Carlo study of the effective Sherman function for electron polarimetry
NASA Astrophysics Data System (ADS)
Drągowski, M.; Włodarczyk, M.; Weber, G.; Ciborowski, J.; Enders, J.; Fritzsche, Y.; Poliszczuk, A.
2016-12-01
The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Møller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.
NASA Astrophysics Data System (ADS)
Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.
2018-06-01
Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.
Rappaport, Fabrice; Boussac, Alain; Force, Dee Ann; Peloquin, Jeffrey; Brynda, Marcin; Sugiura, Miwa; Un, Sun; Britt, R. David; Diner, Bruce A.
2009-01-01
The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from TyrZ to P680•+ has been decreased by ~ 80 meV by mutating the axial ligand of P680, and that for proton transfer upon oxidation of TyrZ by substituting a 3-fluorotyrosine (3F-TyrZ) for TyrZ. In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of TyrZ and 3F-TyrZ were found to be similar. However, in the pH range where the phenolic hydroxyl of TyrZ is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-TyrZ is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al., 2006, JACS 128:1569–79). Thus, when the phenol of YZ acts as a H-bond-donor, its oxidation by P680•+ is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of TyrZ has been proposed to occur concertedly with the electron transfer to P680•+. This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer. PMID:19265377
ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor
NASA Astrophysics Data System (ADS)
Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi
2016-08-01
ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM-1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2-1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future.
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...
2014-10-08
Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less
Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.
2014-01-01
The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534
Energy gap law of electron transfer in nonpolar solvents.
Tachiya, M; Seki, Kazuhiko
2007-09-27
We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.
Simulation-Based Approach to Determining Electron Transfer Rates Using Square-Wave Voltammetry.
Dauphin-Ducharme, Philippe; Arroyo-Currás, Netzahualcóyotl; Kurnik, Martin; Ortega, Gabriel; Li, Hui; Plaxco, Kevin W
2017-05-09
The efficiency with which square-wave voltammetry differentiates faradic and charging currents makes it a particularly sensitive electroanalytical approach, as evidenced by its ability to measure nanomolar or even picomolar concentrations of electroactive analytes. Because of the relative complexity of the potential sweep it uses, however, the extraction of detailed kinetic and mechanistic information from square-wave data remains challenging. In response, we demonstrate here a numerical approach by which square-wave data can be used to determine electron transfer rates. Specifically, we have developed a numerical approach in which we model the height and the shape of voltammograms collected over a range of square-wave frequencies and amplitudes to simulated voltammograms as functions of the heterogeneous rate constant and the electron transfer coefficient. As validation of the approach, we have used it to determine electron transfer kinetics in both freely diffusing and diffusionless surface-tethered species, obtaining electron transfer kinetics in all cases in good agreement with values derived using non-square-wave methods.
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis.
Deutzmann, Jörg S; Sahin, Merve; Spormann, Alfred M
2015-04-21
Direct, mediator-free transfer of electrons between a microbial cell and a solid phase in its surrounding environment has been suggested to be a widespread and ecologically significant process. The high rates of microbial electron uptake observed during microbially influenced corrosion of iron [Fe(0)] and during microbial electrosynthesis have been considered support for a direct electron uptake in these microbial processes. However, the underlying molecular mechanisms of direct electron uptake are unknown. We investigated the electron uptake characteristics of the Fe(0)-corroding and electromethanogenic archaeon Methanococcus maripaludis and discovered that free, surface-associated redox enzymes, such as hydrogenases and presumably formate dehydrogenases, are sufficient to mediate an apparent direct electron uptake. In genetic and biochemical experiments, we showed that these enzymes, which are released from cells during routine culturing, catalyze the formation of H2 or formate when sorbed to an appropriate redox-active surface. These low-molecular-weight products are rapidly consumed by M. maripaludis cells when present, thereby preventing their accumulation to any appreciable or even detectable level. Rates of H2 and formate formation by cell-free spent culture medium were sufficient to explain the observed rates of methane formation from Fe(0) and cathode-derived electrons by wild-type M. maripaludis as well as by a mutant strain carrying deletions in all catabolic hydrogenases. Our data collectively show that cell-derived free enzymes can mimic direct extracellular electron transfer during Fe(0) corrosion and microbial electrosynthesis and may represent an ecologically important but so far overlooked mechanism in biological electron transfer. The intriguing trait of some microbial organisms to engage in direct electron transfer is thought to be widespread in nature. Consequently, direct uptake of electrons into microbial cells from solid surfaces is assumed to have a significant impact not only on fundamental microbial and biogeochemical processes but also on applied bioelectrochemical systems, such as microbial electrosynthesis and biocorrosion. This study provides a simple mechanistic explanation for frequently observed fast electron uptake kinetics in microbiological systems without a direct transfer: free, cell-derived enzymes can interact with cathodic surfaces and catalyze the formation of intermediates that are rapidly consumed by microbial cells. This electron transfer mechanism likely plays a significant role in various microbial electron transfer reactions in the environment. Copyright © 2015 Deutzmann et al.
27 CFR 27.48a - Payment of tax by electronic fund transfer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... brought into the United States from Puerto Rico or the Virgin Islands) during the calendar year, without... by the taxpayer. (b) For the purposes of this section, a taxpayer includes a controlled group of..., the rules for a “controlled group of corporations” apply in a similar fashion to groups which include...
Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis
2016-07-08
AFRL-AFOSR-VA-TR-2016-0244 Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis Jahan Dawlaty UNIVERSITY OF SOUTHERN...TITLE AND SUBTITLE Ultrafast Spectroscopy of Proton-Coupled Electron Transfer (PCET) in Photocatalysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550...298 Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report: AFOSR YIP Grant FA9550-13-1-0128: Ultrafast Spectroscopy
2010-02-11
purchase a new gun. Mr. Mike Ackeret ( Transfer Engineering Inc.) Transfer Engineering’s expertise in specialty UHV work and machining propelled...modifications they helped design for the test stand. With UNLV guidance, Transfer Engineering designed and built the original UNLV SEE Test Stand...Staib electron gun, an isolated beam drift tube, a hexanode delay line with a chevron microchannel plate (MCP) stack, an isolated grid, an isolated
Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M
2008-02-21
Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wishart, J.F.; Sun, J.; Su, C.
1997-01-23
Several ruthenium ammine complexes were used to modify horse-heart cytochrome c at histidine-33, creating a series of (NH{sub 3}){sub 4}(L)Ru-Cyt c derivatives (L = H{sub 2}O/OH{sup -}, ammonia, 4-ethylpyridine, 3,5-lutidine, pyridine, isonicotinamide, N-methylpyrazinium) with a wide range of driving forces for Fe-to-Ru electron transfer (-{Delta}G{degree} = -0.125 to +0.46 eV). Electron-transfer rates and activation parameters were measured by pulse radiolysis using azide or carbonate radicals. The driving-force dependence of electron-transfer rates between redox centers of the same charge types obeys Marcus-Hush theory. The activationless rate limit for all of the ruthenium derivatives except the N-methylpyrazinium complex is 3.9x10{sup 5} s{supmore » -1}. Thermodynamic parameters obtained from nonisothermal differential pulse voltammetry show that the electron-transfer reactions are entropy-driven. The thermodynamic and kinetic effects of phosphate ion binding to the ruthenium center are examined. The rate of intramolecular electron transfer in (NH{sub 3}){sub 4}(isn)Ru{sup III}-Cyt c{sup II} decreases at high pH, with a midpoint at pH 9.1. 28 refs., 4 figs., 3 tabs.« less
Excitation energy transfer in the photosystem I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, Andrew N
2012-09-25
Photosystem I is a multimeric pigment protein complex in plants, green alage and cyanobacteria that functions in series with Photosystem II to use light energy to oxidize water and reduce carbon dioxide. The Photosystem I core complex contains 96 chlorophyll a molecules and 22 carotenoids that are involved in light harvesting and electron transfer. In eucaryotes, PSI also has a peripheral light harvesting complex I (LHCI). The role of specific chlorophylls in excitation and electron transfer are still unresolved. In particular, the role of so-called bridging chlorophylls, located between the bulk antenna and the core electron transfer chain, in themore » transfer of excitation energy to the reaction center are unknown. During the past funding period, site directed mutagenesis has been used to create mutants that effect the physical properties of these key chlorophylls, and to explore how this alters the function of the photosystem. Studying these mutants using ultrafast absorption spectroscopy has led to a better understanding of the process by which excitation energy is transferred from the antenna chlorophylls to the electron transfer chain chlorophylls, and what the role of connecting chlorophylls and A_0 chlorophylls is in this process. We have also used these mutants to investigate whch of the central group of six chlorophylls are involved in the primary steps of charge separation and electron transfer.« less
Dynamics of charge-transfer excitons in type-II semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.
2018-03-01
The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.
36 CFR § 1235.44 - What general transfer requirements apply to electronic records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements apply to electronic records? § 1235.44 Section § 1235.44 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO THE NATIONAL... requirements apply to electronic records? (a) Each agency must retain a copy of permanent electronic records...
NASA Astrophysics Data System (ADS)
Perlík, Václav; Seibt, Joachim; Cranston, Laura J.; Cogdell, Richard J.; Lincoln, Craig N.; Savolainen, Janne; Šanda, František; Mančal, Tomáš; Hauer, Jürgen
2015-06-01
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system's Hamiltonian, reproduces all measured quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.
Electron transfer from plastocyanin to photosystem I.
Haehnel, W; Jansen, T; Gause, K; Klösgen, R B; Stahl, B; Michl, D; Huvermann, B; Karas, M; Herrmann, R G
1994-01-01
Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed. Images PMID:8131737
Plasmonic Solar Cells: From Rational Design to Mechanism Overview.
Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha
2016-12-28
Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.
12 CFR 205.7 - Initial disclosures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... TRANSFERS (REGULATION E) § 205.7 Initial disclosures. (a) Timing of disclosures. A financial institution shall make the disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's...
12 CFR 205.7 - Initial disclosures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRANSFERS (REGULATION E) § 205.7 Initial disclosures. (a) Timing of disclosures. A financial institution shall make the disclosures required by this section at the time a consumer contracts for an electronic fund transfer service or before the first electronic fund transfer is made involving the consumer's...
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-03-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.
Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface.
Lian, Zichao; Sakamoto, Masanori; Matsunaga, Hironori; Vequizo, Junie Jhon M; Yamakata, Akira; Haruta, Mitsutaka; Kurata, Hiroki; Ota, Wataru; Sato, Tohru; Teranishi, Toshiharu
2018-06-13
Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism for achieving artificial photosynthesis using the whole solar spectrum, even including the infrared (IR) region. In contrast to the explosive development of photocatalysts based on the plasmon-induced hot electron transfer, the hole transfer system is still quite immature regardless of its importance, because the mechanism of plasmon-induced hole transfer has remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS heterostructured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy. TR-IR spectroscopy enables the direct observation of carrier in a LSPR-excited CdS/CuS HNC. The spectroscopic results provide insight into the novel hole transfer mechanism, named plasmon-induced transit carrier transfer (PITCT), with high quantum yields (19%) and long-lived charge separations (9.2 μs). As an ultrafast charge recombination is a major drawback of all plasmonic energy conversion systems, we anticipate that PITCT will break the limit of conventional plasmon-induced energy conversion.
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
1987-12-29
when the air or gas stream contains particulate matter. b. Pulverized materials passing through chutes or pneumatic conveyors . c. Nonconductive power...Hanover NH, 1971, AD 722 221. 146.Oakley, R.J., "Surface Transfer Impedance and Cable Shielding Design ," Wire Journal, Vol 4, No. 3, March 1971, pp...including considerations of grounding, bonding, and shielding in all phases of design , construction, operation, and maintenance of electronic equipment
"Artificial intelligence" at streamgaging stations
R. B. Thomas
1985-01-01
Two types of problems are related to collecting hydrologic data at stream gaging stations. One includes the technical/logistical questions associated with measuring and transferring data for processing. Effort spent on these problems ranges from improving devices for sensing data to using electronic data loggers.
Teacher Education Faculty and Computer Competency.
ERIC Educational Resources Information Center
Barger, Robert N.; Armel, Donald
A project was introduced in the College of Education at Eastern Illinois University to assist faculty, through inservice training, to become more knowledgeable about computer applications and limitations. Practical needs of faculty included word processing, statistical analysis, database manipulation, electronic mail, file transfers, file…
ERIC Educational Resources Information Center
Microcomputers for Information Management, 1995
1995-01-01
Provides definitions for 71 terms related to the Internet, including Archie, bulletin board system, cyberspace, e-mail (electronic mail), file transfer protocol, gopher, hypertext, integrated services digital network, local area network, listserv, modem, packet switching, server, telnet, UNIX, WAIS (wide area information servers), and World Wide…
A Beginner's Guide to the Internet.
ERIC Educational Resources Information Center
McAdams, Charles A.; Nelson, Mark A.
1995-01-01
Maintains that the Internet offers services and opportunities for music teachers and students. Provides an overview of topics such as electronic mail, File Transfer Protocol (FTP), Gopher, and the World Wide Web (WWW). Includes two lists of music resources available on the Internet. (CFR)
Gaining Access to the Internet.
ERIC Educational Resources Information Center
Notess, Greg R.
1992-01-01
Discusses Internet services and protocols (i.e., electronic mail, file transfer, and remote login) and provides instructions for retrieving guides and directories of the Internet. Services providing access to the Internet are described, including bulletin board systems, regional networks, nationwide connections, and library organizations; and a…
Penning ionization widths by Fano-algebraic diagrammatic construction method
NASA Astrophysics Data System (ADS)
Yun, Renjie; Narevicius, Edvardas; Averbukh, Vitali
2018-03-01
We present an ab initio theory and computational method for Penning ionization widths. Our method is based on the Fano theory of resonances, algebraic diagrammatic construction (ADC) scheme for many-electron systems, and Stieltjes imaging procedure. It includes an extension of the Fano-ADC scheme [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] to triplet excited states. Penning ionization widths of various He*-H2 states are calculated as a function of the distance R between He* and H2. We analyze the asymptotic (large-R) dependences of the Penning widths in the region where the well-established electron transfer mechanism of the decay is suppressed by the multipole- and/or spin-forbidden energy transfer. The R-12 and R-8 power laws are derived for the asymptotes of the Penning widths of the singlet and triplet excited states of He*(1s2s1,3S), respectively. We show that the electron transfer mechanism dominates Penning ionization of He*(1s2s 3S)-H2 up until the He*-H2 separation is large enough for the radiative decay of He* to become the dominant channel. The same mechanism also dominates the ionization of He*(1s2s 1S)-H2 when R < 5 Å. We estimate that the regime of energy transfer in the He*-H2 Penning ionization cannot be reached by approaching zero collisional temperature. However, the multipole-forbidden energy transfer mechanism can become important for Penning ionization in doped helium droplets.
Kuleta, Patryk; Sarewicz, Marcin; Postila, Pekka; Róg, Tomasz; Osyczka, Artur
2016-10-01
Describing dynamics of proton transfers in proteins is challenging, but crucial for understanding processes which use them for biological functions. In cytochrome bc1, one of the key enzymes of respiration or photosynthesis, proton transfers engage in oxidation of quinol (QH2) and reduction of quinone (Q) taking place at two distinct catalytic sites. Here we evaluated by site-directed mutagenesis the contribution of Lys251/Asp252 pair (bacterial numbering) in electron transfers and associated with it proton uptake to the quinone reduction site (Qi site). We showed that the absence of protonable group at position 251 or 252 significantly changes the equilibrium levels of electronic reactions including the Qi-site mediated oxidation of heme bH, reverse reduction of heme bH by quinol and heme bH/Qi semiquinone equilibrium. This implicates the role of H-bonding network in binding of quinone/semiquinone and defining thermodynamic properties of Q/SQ/QH2 triad. The Lys251/Asp252 proton path is disabled only when both protonable groups are removed. With just one protonable residue from this pair, the entrance of protons to the catalytic site is sustained, albeit at lower rates, indicating that protons can travel through parallel routes, possibly involving water molecules. This shows that proton paths display engineering tolerance for change as long as all the elements available for functional cooperation secure efficient proton delivery to the catalytic site. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel
2007-01-08
Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.
Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun
2015-10-28
The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification.
Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun
2015-01-01
The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification. PMID:26508362
Effect of friction on electron transfer: The two reaction coordinate case
NASA Astrophysics Data System (ADS)
Onuchic, José Nelson
1987-04-01
Electron transfer is a very important reaction in many biological processes such as photosynthesis and oxidative phosphorylation. In many of these reactions, most of the interesting dynamics can be included by using two reaction coordinates: one fast (local high frequency vibration modes) and one slow (outersphere modes such as solvent polarization). We report a model to describe this problem, which uses path integral techniques to calculate electron transfer rates, and also to obtain the Fokker-Planck equations associated with this model. Different limiting cases lead to qualitatively different results such as exponential or nonexponential time decay for the donor survival probability. Conditions for the validity of the adiabatic or the nonadiabatic limits will be discussed. Application of this model to real systems is proposed, in particular for a porphyrin rigidly linked to a quinone, which is a very interesting model compound for primary events of photosynthesis. This model can also be used for other multicoordinate biological reactions such as ligand binding to heme proteins. Also, in the concluding part of Sec. III, we discuss the important limit where the fast vibronic mode is much faster than all the other nuclear modes coupled to the problem. In this limit the fast mode ``renormalizes'' the electronic matrix element, and this considerably simplifies the treatment of the problem, reducing it to coupling only to the slow modes.
Neal, Sonya E.; Dabir, Deepa V.; Wijaya, Juwina; Boon, Cennyana; Koehler, Carla M.
2017-01-01
Prokaryotes have aerobic and anaerobic electron acceptors for oxidative folding of periplasmic proteins. The mitochondrial intermembrane space has an analogous pathway with the oxidoreductase Mia40 and sulfhydryl oxidase Erv1, termed the mitochondrial intermembrane space assembly (MIA) pathway. The aerobic electron acceptors include oxygen and cytochrome c, but an acceptor that can function under anaerobic conditions has not been identified. Here we show that the fumarate reductase Osm1, which facilitates electron transfer from fumarate to succinate, fills this gap as a new electron acceptor. In addition to microsomes, Osm1 localizes to the mitochondrial intermembrane space and assembles with Erv1 in a complex. In reconstitution studies with reduced Tim13, Mia40, and Erv1, the addition of Osm1 and fumarate completes the disulfide exchange pathway that results in Tim13 oxidation. From in vitro import assays, mitochondria lacking Osm1 display decreased import of MIA substrates, Cmc1 and Tim10. Comparative reconstitution assays support that the Osm1/fumarate couple accepts electrons with similar efficiency to cytochrome c and that the cell has strategies to coordinate expression of the terminal electron acceptors. Thus Osm1/fumarate is a new electron acceptor couple in the mitochondrial intermembrane space that seems to function in both aerobic and anaerobic conditions. PMID:28814504
USING MOLECULAR PROBES TO STUDY INTERFACIAL REDOX REACTION AT FE-BEARING SMECTITES
The interfacial electron transfer of clay-water systems has a wide range of significance in geochemical and biogeochernical environments. However the mechanism of interfacial electron transport is poorly understood. The electron transfer mechanism at the solid-water interfaces of...
Mathes, Tilo; van Stokkum, Ivo H. M.; Stierl, Manuela; Kennis, John T. M.
2012-01-01
Photoinduced electron transfer in biological systems, especially in proteins, is a highly intriguing matter. Its mechanistic details cannot be addressed by structural data obtained by crystallography alone because this provides only static information on a given redox system. In combination with transient spectroscopy and site-directed manipulation of the protein, however, a dynamic molecular picture of the ET process may be obtained. In BLUF (blue light sensors using FAD) photoreceptors, proton-coupled electron transfer between a tyrosine and the flavin cofactor is the key reaction to switch from a dark-adapted to a light-adapted state, which corresponds to the biological signaling state. Particularly puzzling is the fact that, although the various naturally occurring BLUF domains show little difference in the amino acid composition of the flavin binding pocket, the reaction rates of the forward reaction differ quite largely from a few ps up to several hundred ps. In this study, we modified the redox potential of the flavin/tyrosine redox pair by site-directed mutagenesis close to the flavin C2 carbonyl and fluorination of the tyrosine, respectively. We provide information on how changes in the redox potential of either reaction partner significantly influence photoinduced proton-coupled electron transfer. The altered redox potentials allowed us furthermore to experimentally describe an excited state charge transfer intermediately prior to electron transfer in the BLUF photocycle. Additionally, we show that the electron transfer rate directly correlates with the quantum yield of signaling state formation. PMID:22833672
12 CFR 205.11 - Procedures for resolving errors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... institution's findings and shall note the consumer's right to request the documents that the institution... transfer; (ii) An incorrect electronic fund transfer to or from the consumer's account; (iii) The omission... made by the financial institution relating to an electronic fund transfer; (v) The consumer's receipt...
Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.
Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A
2018-06-01
The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.
Excited state electron transfer in systems with a well-defined geometry. [cyclophane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, K.J.
1980-12-01
The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less
Zang, Yang; Lei, Jianping; Ju, Huangxian
2017-10-15
Photoelectrochemical (PEC) biosensing is a popular research hotspot that has attracted substantial attention from chemists and biologists due to its low cost and desirable sensitivity. The PEC biosensing mainly refers to the influence of the interaction between recognition element and analyte on photocurrent signal, which involves the charge and energy transfer of PEC reaction between electron donor/acceptor and photoactive material upon light irradiation. Understanding the fundamentals of PEC strategy benefits the development of next-generation PEC sensors. However, the research on detection mechanism of PEC sensors is in the initial stage and need to be further exploited. Thus, with a particular focus on the signal transduction formats, this review highlights the novel concept on PEC sensing strategies, and categorizes the recent illustrative examples into three signaling principles: reactant determinant, electron transfer and energy transfer, providing the comprehensive design guidelines for researchers to develop more advanced PEC sensors. The prospects and challenges for future work are also included. Copyright © 2017 Elsevier B.V. All rights reserved.
2010-01-01
Background The archaeon, Methanosarcina acetivorans strain C2A forms methane, a potent greenhouse gas, from a variety of one-carbon substrates and acetate. Whereas the biochemical pathways leading to methane formation are well understood, little is known about the expression of the many of the genes that encode proteins needed for carbon flow, electron transfer and/or energy conservation. Quantitative transcript analysis was performed on twenty gene clusters encompassing over one hundred genes in M. acetivorans that encode enzymes/proteins with known or potential roles in substrate conversion to methane. Results The expression of many seemingly "redundant" genes/gene clusters establish substrate dependent control of approximately seventy genes for methane production by the pathways for methanol and acetate utilization. These include genes for soluble-type and membrane-type heterodisulfide reductases (hdr), hydrogenases including genes for a vht-type F420 non-reducing hydrogenase, molybdenum-type (fmd) as well as tungsten-type (fwd) formylmethanofuran dehydrogenases, genes for rnf and mrp-type electron transfer complexes, for acetate uptake, plus multiple genes for aha- and atp-type ATP synthesis complexes. Analysis of promoters for seven gene clusters reveal UTR leaders of 51-137 nucleotides in length, raising the possibility of both transcriptional and translational levels of control. Conclusions The above findings establish the differential and coordinated expression of two major gene families in M. acetivorans in response to carbon/energy supply. Furthermore, the quantitative mRNA measurements demonstrate the dynamic range for modulating transcript abundance. Since many of these gene clusters in M. acetivorans are also present in other Methanosarcina species including M. mazei, and in M. barkeri, these findings provide a basis for predicting related control in these environmentally significant methanogens. PMID:20178638
A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics
Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf
2016-01-01
Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419
Ferrocene-Modified Linear Poly(ethylenimine) for Enzymatic Immobilization and Electron Mediation.
Hickey, David P
2017-01-01
Enzymatic glucose biosensors and biofuel cells make use of the electrochemical transduction between an oxidoreductase enzyme, such as glucose oxidase (GOx), and an electrode to either quantify the amount of glucose in a solution or generate electrical energy. However, many enzymes including GOx are not able to electrochemically interact with an electrode surface directly, but require an external electrochemical relay to shuttle electrons to the electrode. Ferrocene-modified linear poly(ethylenimine) (Fc-LPEI) redox polymers have been designed to simultaneously immobilize glucose oxidase (GOx) at an electrode and mediate electron transfer from their flavin adenine dinucleotide (FAD) active site to the electrode surface. Cross-linked films of Fc-LPEI create hydrogel networks that allow for rapid transport of glucose, while the covalently bound ferrocene moieties are able to facilitate rapid electron transfer due to the ability of ferrocene to exchange electrons between adjacent ferrocene residues. For these reasons, Fc-LPEI films have been widely used in the development of high current density bioanode materials. This chapter describes the synthesis of a commonly used dimethylferrocene-modified linear poly(ethylenimine), as well as the subsequent preparation and electrochemical characterization of a GOx bioanode film utilizing the synthesized polymer.
Protonation-Gated Dual Photochromism of a Chromene-Styryl Dye Hybrid.
Berdnikova, Daria V; Paululat, Thomas; Jonusauskas, Gediminas; Peregudova, Svetlana M; Fedorova, Olga A
2017-10-20
A novel hybrid bisphotochromic system involving a chromene residue and a styryl dye fragment is described. Initially, the compound shows almost no photochromism due to intramolecular energy and electron transfer between the chromophores. Protonation of the hybrid system blocks the transfer processes and unlocks a dual photochromic activity that includes ring opening of the chromene fragment and E-Z-isomerization of the styryl dye residue. Deprotonation of any photoinduced form resets the system to the initial photoinactive form.
Experimental study of high-performance cooling system pipeline diameter and working fluid amount
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan
2016-03-01
This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.
Dielectric spectroscopy on organic charge-transfer salts
NASA Astrophysics Data System (ADS)
Lunkenheimer, P.; Loidl, A.
2015-09-01
This topical review provides an overview of the dielectric properties of a variety of organic charge-transfer salts, based on both, data reported in literature and our own experimental results. Moreover, we discuss in detail the different processes that can contribute to the dielectric response of these materials. We concentrate on the family of the 1D (TMTTF)2 X systems and the 2D BEDT-TTF-based charge-transfer salts, which in recent years have attracted considerable interest due to their often intriguing dielectric properties. We will mainly focus on the occurrence of electronic ferroelectricity in these systems, which also includes examples of multiferroicity.
Dielectric spectroscopy on organic charge-transfer salts.
Lunkenheimer, P; Loidl, A
2015-09-23
This topical review provides an overview of the dielectric properties of a variety of organic charge-transfer salts, based on both, data reported in literature and our own experimental results. Moreover, we discuss in detail the different processes that can contribute to the dielectric response of these materials. We concentrate on the family of the 1D (TMTTF)2 X systems and the 2D BEDT-TTF-based charge-transfer salts, which in recent years have attracted considerable interest due to their often intriguing dielectric properties. We will mainly focus on the occurrence of electronic ferroelectricity in these systems, which also includes examples of multiferroicity.
The Long Duration Exposure Facility (LDEF) annotated bibliography
NASA Technical Reports Server (NTRS)
Levine, Arlene S.
1995-01-01
A major objective of the Space Act of 1958 which led to the establishment of the National Aeronautics and Space Administration (NASA) was the dissemination of science and technology. Today, under NASA administrator Daniel Goldin and the White House, there is a reemphasis on the dissemination and transfer of NASA science and technology to U.S. industry: both aerospace and non aerospace. The goal of this transfer of science and technology is to aid U.S. industries, making them more competitive in the global economy. After 69 months in space, LDEF provided new and important information on the space environment and how this hostile environment impacts spacecraft materials and systems. The space environment investigated by the LDEF researchers included: ionizing radiation, ultraviolet radiation, meteoroid and debris, atomic oxygen, thermal cycling, vacuum, microgravity, induced contamination and various synergistic effects. The materials used as part of LDEF and its experiments include polymers, metals, glass, paints and coatings. Fiber optic, mechanical, electrical, and optical systems were also used on LDEF. As part of the effort to disseminate and transfer LDEF science and technology, an annotated bibliographic database is being developed. This bibliography will be available electronically, as well as in hard copy. All LDEF domestic and foreign publications in the open literature, including scientific journals, the NASA LDEF Symposia volumes, books, technical reports and unrestricted contractor reports will be included in this database. The hard copy, as well as the electronic database, will be categorized by section in the scientific and technical discipline.
Wilker, Molly B.; Utterback, James K.; Greene, Sophie; ...
2017-12-08
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilker, Molly B.; Utterback, James K.; Greene, Sophie
Complexes of CdS nanorods and [FeFe] hydrogenase from Clostridium acetobutylicum have been shown to photochemically produce H 2. This study examines the role of the ligands that passivate the nanocrystal surfaces in the electron transfer from photoexcited CdS to hydrogenase and the H 2 generation that follows. We functionalized CdS nanorods with a series of mercaptocarboxylate surface-capping ligands of varying lengths and measured their photoexcited electron relaxation by transient absorption (TA) spectroscopy before and after hydrogenase adsorption. Rate constants for electron transfer from the nanocrystals to the enzyme, extracted by modeling of TA kinetics, decrease exponentially with ligand length, suggestingmore » that the ligand layer acts as a barrier to charge transfer and controls the degree of electronic coupling. Relative light-driven H 2 production efficiencies follow the relative quantum efficiencies of electron transfer, revealing the critical role of surface-capping ligands in determining the photochemical activity of these nanocrystal-enzyme complexes. Our results suggest that the H 2 production in this system could be maximized with a choice of a surface-capping ligand that decreases the distance between the nanocrystal surface and the electron injection site of the enzyme.« less
Electron transfer between colloidal ZnO nanocrystals.
Hayoun, Rebecca; Whitaker, Kelly M; Gamelin, Daniel R; Mayer, James M
2011-03-30
Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.
Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik
2015-08-27
Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.
Supramolecular networks with electron transfer in two dimensions
Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin
2016-09-13
Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda, Kouta; Matsumura, Hirotoshi; Ishida, Takuya
A pyranose dehydrogenase from Coprinopsis cinerea (CcPDH) is an extracellular quinohemoeprotein, which consists a b-type cytochrome domain, a pyrroloquinoline-quinone (PQQ) domain, and a family 1-type carbohydrate-binding module. The electron transfer reaction of CcPDH was studied using some electron acceptors and a carbon electrode at various pH levels. Phenazine methosulfate (PMS) reacted directly at the PQQ domain, whereas cytochrome c (cyt c) reacted via the cytochrome domain of intact CcPDH. Thus, electrons are transferred from reduced PQQ in the catalytic domain of CcPDH to heme b in the N-terminal cytochrome domain, which acts as a built-in mediator and transfers electron tomore » a heterogenous electron transfer protein. The optimal pH values of the PMS reduction (pH 6.5) and the cyt c reduction (pH 8.5) differ. The catalytic currents for the oxidation of L-fucose were observed within a range of pH 4.5 to 11. Bioelectrocatalysis of CcPDH based on direct electron transfer demonstrated that the pH profile of the biocatalytic current was similar to the reduction activity of cyt c characters. - Highlights: • pH dependencies of activity were different for the reduction of cyt c and DCPIP. • DET-based bioelectrocatalysis of CcPDH was observed. • The similar pH-dependent profile was found with cyt c and electrode. • The present results suggested that IET reaction of CcPDH shows pH dependence.« less
Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions☆
Mailloux, Ryan J.; Jin, Xiaolei; Willmore, William G.
2013-01-01
Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling. PMID:24455476
Liang, Zhongguan; Liu, Weiqing; Chen, Jun; Hu, Linhua; Dai, Songyuan
2015-01-21
After injection of electrolyte, the internal three-dimensional solid-liquid penetration system of dye-sensitized solar cells (DSCs) can take a period of time to reach "mature" state. This paper studies the changes of microscopic processes of DSCs including TiO2 energy-level movement, localized state distribution, charge accumulation, electron transport, and recombination dynamics, from the beginning of electrolyte injection to the time of reached mature state. The results show that the microscopic dynamics process of DSCs exhibited a time-dependent behavior and achieved maturity ∼12 h after injecting the electrolyte into DSCs. Within 0-12 h, several results were observed: (1) the conduction band edge of TiO2 moved slightly toward negative potential direction; (2) the localized states in the band gap of TiO2 was reduced according to the same distribution law; (3) the transport resistance in TiO2 film increased, and electron transport time was prolonged as the time of maturity went on, which indicated that the electron transport process is impeded gradually; (4) the recombination resistance at the TiO2/electrolyte (EL) interface increases, and electron lifetime gradually extends, therefore, the recombination process is continuously suppressed. Furthermore, results suggest that the parameters of EL/Pt-transparent conductive oxide (TCO) interface including the interfacial capacitance, electron-transfer resistance, and transfer time constant would change with time of maturity, indicating that the EL/Pt-TCO interface is a potential factor affecting the mature process of DSCs.
Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.
Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G
2014-01-01
Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.
Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.
Zeng, Zhirui; Tice, Michael M
2018-01-01
Some microbial carbonates are robust biosignatures due to their distinct morphologies and compositions. However, whether carbonates induced by microbial iron reduction have such features is unknown. Iron-reducing bacteria use various strategies to transfer electrons to iron oxide minerals (e.g., membrane-bound enzymes, soluble electron shuttles, nanowires, as well as different mechanisms for moving over or attaching to mineral surfaces). This diversity has the potential to create mineral biosignatures through manipulating the microenvironments in which carbonate precipitation occurs. We used Shewanella oneidensis MR-1, Geothrix fermentans, and Geobacter metallireducens GS-15, representing three different strategies, to reduce solid ferric hydroxide in order to evaluate their influence on carbonate and micropore formation (micro-size porosity in mineral rocks). Our results indicate that electron transfer strategies determined the morphology (rhombohedral, spherical, or long-chained) of precipitated calcium-rich siderite by controlling the level of carbonate saturation and the location of carbonate formation. Remarkably, electron transfer strategies also produced distinctive cell-shaped micropores in both carbonate and hydroxide minerals, thus producing suites of features that could potentially serve as biosignatures recording information about the sizes, shapes, and physiologies of iron-reducing organisms. Key Words: Microbial iron reduction-Micropore-Electron transfer strategies-Microbial carbonate. Astrobiology 18, 28-36.
36 CFR § 1235.50 - What specifications and standards for transfer apply to electronic records?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF RECORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...
36 CFR 1235.50 - What specifications and standards for transfer apply to electronic records?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Property NATIONAL ARCHIVES AND RECORDS ADMINISTRATION RECORDS MANAGEMENT TRANSFER OF REC- ORDS TO THE... Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi Road... and Records Administration, Electronic/Special Media Records Services Division (NWME), 8601 Adelphi...
Code of Federal Regulations, 2014 CFR
2014-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to initiate a one-time electronic fund transfer from a consumer's account. The consumer must...-time electronic fund transfer (in providing a check to a merchant or other payee for the MICR encoding... information for the transfer shall also provide a notice to the consumer at the same time it provides the...
Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics.
Ng, Tsz-Wai; Lo, Ming-Fai; Fung, Man-Keung; Zhang, Wen-Jun; Lee, Chun-Sing
2014-08-20
Charge transfer and interactions at organic heterojunctions (OHJs) are known to have critical influences on various properties of organic electronic devices. In this Research News article, a short review is given from the electronic viewpoint on how the local molecular interactions and interfacial energetics at P/N OHJs contribute to the recombination/dissociation of electron-hole pairs. Very often, the P-type materials donate electrons to the N-type materials, giving rise to charge-transfer complexes (CTCs) with a P(δ+) -N(δ-) configuration. A recently observed opposite charge-transfer direction in OHJs is also discussed (i.e., N-type material donates electrons to P-type material to form P(δ-) -N(δ+) ). Recent studies on the electronic structures of CTC-forming material pairs are also summarized. The formation of P(δ-) -N(δ+) -type CTCs and their correlations with exciplex emission are examined. Furthermore, the potential applications of CTCs in NIR photovoltaic devices are reviewed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.
2015-01-01
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920
Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...
2015-03-02
Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less
Photosensitizing Electron Transfer Processes of Fullerenes, Carbon Nanotubes, and Carbon Nanohorns.
Ito, Osamu
2017-03-01
In this account, studies on the photosensitizing electron transfer of nanocarbons, such as fullerenes, single-walled carbon nanotubes (SWCNTs), and carbon nanohorns (CNH), performed in our laboratory for about 15 years in the early 21st century have been briefly reviewed. These novel nanocarbons act as excellent electron acceptors, when they are linked to light-absorbing electron donors, such as porphyrins or phthalocyanines. For such molecule-nanocarbon hybrids, the direct confirmation of fast, transient, electron-transfer phenomena must be performed with time-resolved spectroscopic methods, such as transient absorption spectral measurements, in addition to fluorescence time-profile measurements in the wide-wavelength regions. Careful use of these methods affords useful information to understand photoinduced electron-transfer mechanisms. In addition, kinetic data obtained by these methods can assist in the construction of light-active devices, such as photovoltaic cells and solar H 2 -generation systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Xian-Wei; Chen, Jie-Jie; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Li, Dao-Bo; Xiong, Lu; Zhang, Yuan-Yuan; Zhao, Feng; Yu, Han-Qing
2014-01-01
Bioelectrochemical systems (BESs) share the principle of the microbially catalyzed anodic substrate oxidation. Creating an electrode interface to promote extracellular electron transfer from microbes to electrode and understanding such mechanisms are crucial for engineering BESs. In this study, significantly promoted electron transfer and a 10-times increase in current generation in a BES were achieved by the utilization of carbon nanotube (CNT) network, compared with carbon paper. The mechanisms for the enhanced current generation with the CNT network were elucidated with both experimental approach and molecular dynamic simulations. The fabricated CNT network was found to be able to substantially enhance the interaction between the c-type cytochromes and solid electron acceptor, indicating that the direct electron transfer from outer-membrane decaheme c-type cytochromes to electrode might occur. The results obtained in this study will benefit for the optimized design of new materials to target the outer membrane proteins for enhanced electron exchanges.
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-14
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
NASA Astrophysics Data System (ADS)
Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li
2016-09-01
Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.
a Time-Dependent Many-Electron Approach to Atomic and Molecular Interactions
NASA Astrophysics Data System (ADS)
Runge, Keith
A new methodology is developed for the description of electronic rearrangement in atomic and molecular collisions. Using the eikonal representation of the total wavefunction, time -dependent equations are derived for the electronic densities within the time-dependent Hartree-Fock approximation. An averaged effective potential which ensures time reversal invariance is used to describe the effect of the fast electronic transitions on the slower nuclear motions. Electron translation factors (ETF) are introduced to eliminate spurious asymptotic couplings, and a local ETF is incorporated into a basis of traveling atomic orbitals. A reference density is used to describe local electronic relaxation and to account for the time propagation of fast and slow motions, and is shown to lead to an efficient integration scheme. Expressions for time-dependent electronic populations and polarization parameters are given. Electronic integrals over Gaussians including ETFs are derived to extend electronic state calculations to dynamical phenomena. Results of the method are in good agreement with experimental data for charge transfer integral cross sections over a projectile energy range of three orders of magnitude in the proton-Hydrogen atom system. The more demanding calculations of integral alignment, state-to-state integral cross sections, and differential cross sections are found to agree well with experimental data provided care is taken to include ETFs in the calculation of electronic integrals and to choose the appropriate effective potential. The method is found to be in good agreement with experimental data for the calculation of charge transfer integral cross sections and state-to-state integral cross sections in the one-electron heteronuclear Helium(2+)-Hydrogen atom system and in the two-electron system, Hydrogen atom-Hydrogen atom. Time-dependent electronic populations are seen to oscillate rapidly in the midst of collision event. In particular, multiple exchanges of the electron are seen to occur in the proton-Hydrogen atom system at low collision energies. The concepts and results derived from the approach provide new insight into the dynamics of nuclear screening and electronic rearrangement in atomic collisions.
Jeong, Jaeyoung; Kim, Juho; Song, Kwangsun; Autumn, Kellar; Lee, Jongho
2014-01-01
Developing electronics in unconventional forms provides opportunities to expand the use of electronics in diverse applications including bio-integrated or implanted electronics. One of the key challenges lies in integrating semiconductor microdevices onto unconventional substrates without glue, high pressure or temperature that may cause damage to microdevices, substrates or interfaces. This paper describes a solution based on natural gecko setal arrays that switch adhesion mechanically on and off, enabling pick and place manipulation of thin microscale semiconductor materials onto diverse surfaces including plants and insects whose surfaces are usually rough and irregular. A demonstration of functional ‘geckoprinted’ microelectronic devices provides a proof of concept of our results in practical applications. PMID:25056216
Feist, Adam M; Nagarajan, Harish; Rotaru, Amelia-Elena; Tremblay, Pier-Luc; Zhang, Tian; Nevin, Kelly P; Lovley, Derek R; Zengler, Karsten
2014-04-01
Geobacter species are of great interest for environmental and biotechnology applications as they can carry out direct electron transfer to insoluble metals or other microorganisms and have the ability to assimilate inorganic carbon. Here, we report on the capability and key enabling metabolic machinery of Geobacter metallireducens GS-15 to carry out CO2 fixation and direct electron transfer to iron. An updated metabolic reconstruction was generated, growth screens on targeted conditions of interest were performed, and constraint-based analysis was utilized to characterize and evaluate critical pathways and reactions in G. metallireducens. The novel capability of G. metallireducens to grow autotrophically with formate and Fe(III) was predicted and subsequently validated in vivo. Additionally, the energetic cost of transferring electrons to an external electron acceptor was determined through analysis of growth experiments carried out using three different electron acceptors (Fe(III), nitrate, and fumarate) by systematically isolating and examining different parts of the electron transport chain. The updated reconstruction will serve as a knowledgebase for understanding and engineering Geobacter and similar species.
Rajeev, Pournami; Jain, Abhiney; Pirbadian, Sahand; Okamoto, Akihiro; Gralnick, Jeffrey A.; El-Naggar, Mohamed Y.; Nealson, Kenneth H.
2018-01-01
ABSTRACT While typically investigated as a microorganism capable of extracellular electron transfer to minerals or anodes, Shewanella oneidensis MR-1 can also facilitate electron flow from a cathode to terminal electron acceptors, such as fumarate or oxygen, thereby providing a model system for a process that has significant environmental and technological implications. This work demonstrates that cathodic electrons enter the electron transport chain of S. oneidensis when oxygen is used as the terminal electron acceptor. The effect of electron transport chain inhibitors suggested that a proton gradient is generated during cathode oxidation, consistent with the higher cellular ATP levels measured in cathode-respiring cells than in controls. Cathode oxidation also correlated with an increase in the cellular redox (NADH/FMNH2) pool determined with a bioluminescence assay, a proton uncoupler, and a mutant of proton-pumping NADH oxidase complex I. This work suggested that the generation of NADH/FMNH2 under cathodic conditions was linked to reverse electron flow mediated by complex I. A decrease in cathodic electron uptake was observed in various mutant strains, including those lacking the extracellular electron transfer components necessary for anodic-current generation. While no cell growth was observed under these conditions, here we show that cathode oxidation is linked to cellular energy acquisition, resulting in a quantifiable reduction in the cellular decay rate. This work highlights a potential mechanism for cell survival and/or persistence on cathodes, which might extend to environments where growth and division are severely limited. PMID:29487241
Practical Applications of Data Processing to School Purchasing.
ERIC Educational Resources Information Center
California Association of School Business Officials, San Diego. Imperial Section.
Electronic data processing provides a fast and accurate system for handling large volumes of routine data. If properly employed, computers can perform myriad functions for purchasing operations, including purchase order writing; equipment inventory control; vendor inventory; and equipment acquisition, transfer, and retirement. The advantages of…
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.
2011-05-24
The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectralmore » measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.« less
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.
Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M
2011-05-24
The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.
Interaction mechanisms and biological effects of static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less
Vladimir A. Grigoriev; Craig L. Hill; Ira A. Weinstock
2000-01-01
The use of soluble salts of polyoxometalates (d0-early-transition metal oxygen-anion clusters or POMs) as selective oxidation or electron-transfer catalysts, as probes in physical-organic and biological chemistry, and in the study of electron-and energy-transfer phenomena constitutes a substantial and rapidly growing literature. While rarely addressed, however, POM...
Toogood, Helen S; van Thiel, Adam; Basran, Jaswir; Sutcliffe, Mike J; Scrutton, Nigel S; Leys, David
2004-07-30
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.
Molecular implementation of molecular shift register memories
NASA Technical Reports Server (NTRS)
Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)
1991-01-01
An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.
NASA Astrophysics Data System (ADS)
Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.
2017-09-01
The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.
Yoon, Jongwon; Jeong, Yunkyung; Kim, Heeje; Yoo, Seonggwang; Jung, Hoon Sun; Kim, Yonghun; Hwang, Youngkyu; Hyun, Yujun; Hong, Woong-Ki; Lee, Byoung Hun; Choa, Sung-Hoon; Ko, Heung Cho
2016-01-01
Electronic textile (e-textile) allows for high-end wearable electronic devices that provide easy access for carrying, handling and using. However, the related technology does not seem to be mature because the woven fabric hampers not only the device fabrication process directly on the complex surface but also the transfer printing of ultrathin planar electronic devices. Here we report an indirect method that enables conformal wrapping of surface with arbitrary yet complex shapes. Artificial cilia are introduced in the periphery of electronic devices as adhesive elements. The cilia also play an important role in confining a small amount of glue and damping mechanical stress to maintain robust electronic performance under mechanical deformation. The example of electronic applications depicts the feasibility of cilia for ‘stick-&-play' systems, which provide electronic functions by transfer printing on unconventional complex surfaces. PMID:27248982
NASA Astrophysics Data System (ADS)
Shoji, Mitsuo; Isobe, Hiroshi; Shigeta, Yasuteru; Nakajima, Takahito; Yamaguchi, Kizashi
2018-04-01
The reaction mechanism of the O2 formation in the S4 state of the oxygen-evolving complex of photosystem II was clarified at the quantum mechanics/molecular mechanics (QM/MM) level. After the Yz (Y161) oxidation and the following proton transfer in the S3 state, five reaction steps are required to produce the molecular dioxygen. The highest barrier step is the first proton transfer reaction (0 → 1). The following reactions involving electron transfers were precisely analyzed in terms of their energies, structures and spin densities. We found that the one-electron transfer from the Mn4Ca cluster to Y161 triggers the O-O sigma bond formation.
12 CFR 205.10 - Preauthorized transfers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Preauthorized transfers. 205.10 Section 205.10 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC...'s account—(1) Notice by financial institution. When a person initiates preauthorized electronic fund...
Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups.
Nieto-Pescador, Jesus; Abraham, Baxter; Li, Jingjing; Batarseh, Alberto; Bartynski, Robert A; Galoppini, Elena; Gundlach, Lars
2016-01-14
Heterogeneous electron transfer (HET) between photoexcited molecules and colloidal TiO 2 has been investigated for a set of Zn-porphyrin chromophores attached to the semiconductor via linkers that allow to change level alignment by 200 meV by reorientation of the dipole moment. These unique dye molecules have been studied by femtosecond transient absorption spectroscopy in solution and adsorbed on the TiO 2 colloidal film in vacuum. In solution energy transfer from the excited chromophore to the dipole group has been identified as a slow relaxation pathway competing with S 2 -S 1 internal conversion. On the film heterogeneous electron transfer occurred in 80 fs, much faster compared to all intramolecular pathways. Despite a difference of 200 meV in level alignment of the excited state with respect to the semiconductor conduction band, identical electron transfer times were measured for different linkers. The measurements are compared to a quantum-mechanical model that accounts for electronic-vibronic coupling and finite band width for the acceptor states. We conclude that HET occurs into a distribution of transition states that differs from regular surface states or bridge mediated states.
Elucidating nitric oxide synthase domain interactions by molecular dynamics.
Hollingsworth, Scott A; Holden, Jeffrey K; Li, Huiying; Poulos, Thomas L
2016-02-01
Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis. © 2015 The Protein Society.
ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor
Zhao, Yu; Li, Wenbo; Pan, Lijia; Zhai, Dongyuan; Wang, Yu; Li, Lanlan; Cheng, Wen; Yin, Wei; Wang, Xinran; Xu, Jian-Bin; Shi, Yi
2016-01-01
ZnO-nanorods/graphene heterostructure was synthesized by hydrothermal growth of ZnO nanorods on chemically reduced graphene (CRG) film. The hybrid structure was demonstrated as a biosensor, where direct electron transfer between glucose oxidase (GOD) and electrode was observed. The charge transfer was attributed to the ZnO nanorod wiring between the redox center of GOD and electrode, and the ZnO/graphene heterostructure facilitated the transport of electrons on the hybride electrode. The glucose sensor based on the GOD-ZnO/CRG/Pt electrode had a high sensitivity of 17.64 μA mM−1, which is higher than most of the previously reported values for direct electron transfer based glucose biosensors. Moreover, this biosensor is linearly proportional to the concentration of glucose in the range of 0.2–1.6 mM. The study revealed that the band structure of electrode could affect the detection of direct electron transfer of GOD, which would be helpful for the design of the biosensor electrodes in the future. PMID:27572675
Ultrafast electronic dynamics driven by nuclear motion
NASA Astrophysics Data System (ADS)
Vendrell, Oriol
2016-05-01
The transfer of electrical charge on a microscopic scale plays a fundamental role in chemistry, in biology, and in technological applications. In this contribution, we will discuss situations in which nuclear motion plays a central role in driving the electronic dynamics of photo-excited or photo-ionized molecular systems. In particular, we will explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we will illustrate how the double hole can be transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. We thank the Hamburg Centre for Ultrafast Imaging and the Volkswagen Foundation for financial support.
Fast electron transfer through a single molecule natively structured redox protein
NASA Astrophysics Data System (ADS)
Della Pia, Eduardo Antonio; Chi, Qijin; MacDonald, J. Emyr; Ulstrup, Jens; Jones, D. Dafydd; Elliott, Martin
2012-10-01
The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between a gold surface and a platinum-iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be `gated' through electrochemical control of the heme redox state. Reproducible and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role of the heme co-factor bound to the natively structured protein. We suggest that the two-step model of protein electron transfer in the STM geometry requires a multi-electron transfer to explain such a high conductance. The model also yields a low value for the reorganisation energy, implying that solvent reorganisation is largely absent.The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposite ends of the molecule through protein engineering, resulting in defined covalent contact between a gold surface and a platinum-iridium STM tip. Two different orientations of the linkers were examined: a long-axis configuration (SH-LA) and a short-axis configuration (SH-SA). In each case, the molecular conductance could be `gated' through electrochemical control of the heme redox state. Reproducible and remarkably high conductance was observed in this relatively complex electron transfer system, with single-molecule conductance values peaking around 18 nS and 12 nS for the SH-SA and SH-LA cytochrome b562 molecules near zero electrochemical overpotential. This strongly points to the important role of the heme co-factor bound to the natively structured protein. We suggest that the two-step model of protein electron transfer in the STM geometry requires a multi-electron transfer to explain such a high conductance. The model also yields a low value for the reorganisation energy, implying that solvent reorganisation is largely absent. Electronic supplementary information (ESI) available: Experimental methods, DNA and protein sequences, additional STM statistical analysis and images, electrochemical data and It-z data analysis. See DOI: 10.1039/c2nr32131a
Lu, Lu; Huang, Xirong; Qu, Yinbo
2011-10-01
The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-05-01
Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlík, Václav; Seibt, Joachim; Šanda, František
The initial energy transfer steps in photosynthesis occur on ultrafast timescales. We analyze the carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium purpuratum as well as in an artificial light-harvesting dyad system by using transient grating and two-dimensional electronic spectroscopy with 10 fs time resolution. We find that Förster-type models reproduce the experimentally observed 60 fs transfer times, but overestimate coupling constants, which lead to a disagreement with both linear absorption and electronic 2D-spectra. We show that a vibronic model, which treats carotenoid vibrations on both electronic ground and excited states as part of the system’s Hamiltonian, reproduces all measuredmore » quantities. Importantly, the vibronic model presented here can explain the fast energy transfer rates with only moderate coupling constants, which are in agreement with structure based calculations. Counterintuitively, the vibrational levels on the carotenoid electronic ground state play the central role in the excited state population transfer to bacteriochlorophyll; resonance between the donor-acceptor energy gap and the vibrational ground state energies is the physical basis of the ultrafast energy transfer rates in these systems.« less
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.
Garcia Costas, Amaya M; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J; Ledbetter, Rhesa N; Fixen, Kathryn R; Seefeldt, Lance C; Adams, Michael W W; Harwood, Caroline S; Boyd, Eric S; Peters, John W
2017-11-01
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. Copyright © 2017 American Society for Microbiology.
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family
Garcia Costas, Amaya M.; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J.; Ledbetter, Rhesa N.; Seefeldt, Lance C.; Adams, Michael W. W.
2017-01-01
ABSTRACT Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. PMID:28808132
Screening of exciplex formation by distant electron transfer.
Fedorenko, S G; Khokhlova, S S; Burshtein, A I
2012-01-12
The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace images of all these populations, and these are used to specify the quantum yields of the corresponding reaction products. It appears that diffusion facilitates the exciplex production and the electron transfer. On the other hand the stronger the electron transfer is, the weaker is the exciplex production. At slow diffusion the distant quenching of excitations by ionization prevents their reaching the contact where they can turn into exciplexes. This is a screening effect that is most pronounced when the ionization rate is large.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.S.; Freilich, S.C.; Schaeffer, C.G.
Studies were initiated utilizing picosecond (ps) absorption spectroscopy, to directly monitor the dynamics of electron transfer from 1,4-diazabicyclo(2.2.2)octane (Dabco) to the excited states of benzophenone and fluorenone. These two systems were chosen because of their contrasting photochemistry. The quantum yield for photoreduction of benzophenone in polar solvents is generally greater than 0.1, while that of fluorenone is zero. In polar solvents, the proposed mechanism dictates that an electron is transferred to the excited singlet state fluorenone, which then back-transfers the electron, regenerating ground-state fluorenone and amine. Photolysis of benzophenone in the presence of an amine transfers an electron to anmore » excited triplet state, forming an ion pair that is stable relative to diffusional separation. The results of this study verify this proposal.« less