Sample records for including elevated temperature

  1. Scots pine responses to elevated temperature and carbon dioxide concentration: growth and wood properties.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Kellomäki, Seppo

    2005-01-01

    Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.

  2. Integrated research in constitutive modelling at elevated temperatures, part 1

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.; Allen, D. H.

    1986-01-01

    Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development.

  3. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  4. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration.

    PubMed

    Kilpeläinen, Antti; Peltola, Heli; Ryyppö, Aija; Sauvala, Kari; Laitinen, Kaisa; Kellomäki, Seppo

    2003-09-01

    Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.

  5. Methods for structural design at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.

    1973-01-01

    A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.

  6. The Environmental Cost of Misinformation: Why the Recommendation to Use Elevated Temperatures for Handwashing is Problematic

    PubMed Central

    Carrico, Amanda R.; Spoden, Micajah; Wallston, Kenneth A.; Vandenbergh, Michael P.

    2013-01-01

    Multiple government and health organizations recommend the use of warm or hot water in publications designed to educate the public on best practices for washing one’s hands. This is despite research suggesting that the use of an elevated water temperature does not improve handwashing efficacy, but can cause hand irritation. There is reason to believe that the perception that warm or hot water is more effective at cleaning one’s hands is pervasive, and may be one factor that is driving up unnecessary energy consumption and greenhouse gas emissions. We examine handwashing practices and beliefs about water temperature using a survey of 510 adults in the United States. The survey included measures of handwashing frequency, duration, the proportion of time an elevated temperature was used, and beliefs about water temperature and handwashing efficacy. We also estimate the energy consumed and resultant carbon dioxide equivalent emissions (CO2eq) in the U.S. due to the use of elevated temperatures during handwashing. Participants used an elevated temperature 64% of the time, causing 6.3 million metric tons (MMt) of CO2eq which is 0.1% of total annual emissions and 0.3% of commercial and residential sector emissions. Roughly 69% of the sample believed that elevated temperatures improve handwashing efficacy. Updating these beliefs could prevent 1 MMt of CO2eq annually, exceeding the total emissions from many industrial sources in the U.S. including the Lead and Zinc industries. In addition to causing skin irritation, the recommendation to use an elevated temperature during handwashing contributes to another major threat to public health—climate change. Health and consumer protection organizations should consider advocating for the use of a “comfortable” temperature rather than warm or hot water. PMID:23814480

  7. Modelling the influence of elevation and snow regime on winter stream temperature in the rain-on-snow zone

    NASA Astrophysics Data System (ADS)

    Leach, J.; Moore, D.

    2015-12-01

    Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.

  8. Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees?

    Treesearch

    T.O. Veteli; W.J. Mattson; P. Niemela; R. Julkunen-Tiitto; S. Kellomaki; K. Kuokkanen; A. Lavola

    2007-01-01

    Global climate change includes concomitant changes in many components of the abiotic flux necessary for plant life. In this paper, we investigate the combined effects of elevated CO2 (720 ppm) and temperature (+2 K) on the phytochemistry of three deciduous tree species. The analysis revealed that elevated CO2 generally...

  9. Geographical and Geomorphological Effects on Air Temperatures in the Columbia Basin's Signature Vineyards

    NASA Astrophysics Data System (ADS)

    Olson, L.; Pogue, K. R.; Bader, N.

    2012-12-01

    The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.

  10. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius

    PubMed Central

    Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing

    2017-01-01

    Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Nelson, Kevin; Jin, Helena

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension barmore » techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.« less

  12. A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.

    1995-01-01

    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.

  13. Elevated temperature and CO(2) concentration effects on xylem anatomy of Scots pine.

    PubMed

    Kilpeläinen, Antti; Gerendiain, Ane Zubizarreta; Luostarinen, Katri; Peltola, Heli; Kellomäki, Seppo

    2007-09-01

    We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.

  14. Effects of nuclear radiation and elevated temperature storage on electroexplosive devices

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J.

    1976-01-01

    Aerospace type electroexplosive devices (EEDs) were subjected to nuclear radiation. Components and chemicals used in the EEDs were also included. The kind of radiation and total dosage administered were those which may be experienced in a space flight of 10 years duration, based on information available at this time. After irradiation, the items were stored in elevated constant-temperature ovens to accelerate early effects of the exposure to radiation. Periodically, samples were withdrawn for visual observation and testing. Significant changes occurred which were attributed to elevated-temperature storage and not radiation.

  15. Radiation from wireless technology elevates blood glucose and body temperature in 40-year-old type 1 diabetic male.

    PubMed

    Kleiber, Catherine E

    2017-01-01

    A type 1 diabetic male reports multiple instances when his blood glucose was dramatically elevated by the presence of microwave radiation from wireless technology and plummeted when the radiation exposure ended. In one instance, his body temperature elevated in addition to his blood glucose. Both remained elevated for nearly 48 h after exposure with the effect gradually decreasing. Possible mechanisms for microwave radiation elevating blood glucose include effects on glucose transport proteins and ion channels, insulin conformational changes and oxidative stress. Temperature elevation may be caused by microwave radiation-triggered Ca 2+ efflux, a mechanism similar to malignant hyperthermia. The potential for radiation from wireless technology to cause serious biological effects has important implications and necessitates a reevaluation of its near-ubiquitous presence, especially in hospitals and medical facilities.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, G.L.; Bates, C.R.

    A new procedure for testing elevated-temperature cathodic disbondment (C.D.) in fusion-bonded epoxy (FBE) pipeline coatings appears consistent and reliable. Further, its results question C.D. theories that fail to account for effects at above-ambient temperatures. The work to develop this procedure also included experiments that demonstrated how the relative performance of coating systems - especially FBE line-pipe coatings operated at elevated temperature - could not be predicted from ambient-temperature assessment. Data reported in this third in a series on pipeline-protection technology confirm and expand on these aspects and introduce more recent results on the behavior of FBE coatings subjected to elevated-temperaturemore » C.D. testing.« less

  17. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration.

    PubMed

    Potosnak, Mark J; Lestourgeon, Lauren; Nunez, Othon

    2014-05-15

    Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Investigation of the formability of aluminium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  19. High Strain-Rate and Temperature Effects on the Response of Composites

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2004-01-01

    The objective of the research is to expand the experimental study of the effect of strain rate on mechanical response (deformation and failure) of epoxy resins and carbon fibers/epoxy matrix composites, to include elevated temperature tests. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 700 per second and elevated temperatures of 50 and 80 C. The results show that the temperature significantly affects the response of epoxy.

  20. Net Shaped Component Fabrication of Refractory Metal Alloys using Vacuum Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Sen, S.; ODell, S.; Gorti, S.; Litchford, R.

    2006-01-01

    The vacuum plasma spraying (VPS) technique was employed to produce dense and net shaped components of a new tungsten-rhenium (W-Re) refractory metal alloy. The fine grain size obtained using this technique enhanced the mechanical properties of the alloy at elevated temperatures. The alloy development also included incorporation of thermodynamically stable dispersion phases to pin down grain boundaries at elevated temperatures and thereby circumventing the inherent problem of recrystallization of refractory alloys at elevated temperatures. Requirements for such alloys as related to high temperature space propulsion components will be discussed. Grain size distribution as a function of cooling rate and dispersion phase loading will be presented. Mechanical testing and grain growth results as a function of temperature will also be discussed.

  1. The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (Gadus morhua) are stimulated with bacterial versus viral antigens.

    PubMed

    Hori, Tiago S; Gamperl, A Kurt; Nash, Gord; Booman, Marije; Barat, Ashoktaru; Rise, Matthew L

    2013-10-01

    Exposure to elevated temperature is an inherent feature of Atlantic cod (Gadus morhua) sea-cage culture in some regions (e.g., Newfoundland) and may also become an increasingly prevalent challenge for wild fish populations because of accelerated climate change. Therefore, understanding how elevated temperatures impacts the immune response of this commercially important species may help to reduce the potential negative impacts of such challenges. Previously, we investigated the impacts of moderately elevated temperature on the antiviral responses of Atlantic cod (Hori et al. 2012) and reported that elevated temperature modulated the spleen transcriptome response to polyriboinosinic polyribocytidylic acid (pIC, a viral mimic). Herein, we report a complementary microarray study that investigated the impact of the same elevated temperature regime on the Atlantic cod spleen transcriptome response to intraperitoneal (IP) injection of formalin-killed Aeromonas salmonicida (ASAL). Fish were held at two different temperatures (10 °C and 16 °C) prior to immune stimulation and sampled 6 and 24 h post-injection (HPI). In this experiment, we identified 711 and 666 nonredundant ASAL-responsive genes at 6HPI and 24HPI, respectively. These included several known antibacterial genes, including hepcidin, cathelicidin, ferritin heavy subunit, and interleukin 8. However, we only identified 15 differentially expressed genes at 6HPI and 2 at 24HPI (FDR 1%) when comparing ASAL-injected fish held at 10 °C versus 16 °C. In contrast, the same comparisons with pIC-injected fish yielded 290 and 339 differentially expressed genes (FDR 1%) at 6HPI and 24HPI, respectively. These results suggest that moderately elevated temperature has a lesser effect on the Atlantic cod spleen transcriptome response to ASAL (i.e., the antibacterial response) than to pIC (i.e., antiviral response). Thus, the impacts of high temperatures on the cod's immune response may be pathogen dependent.

  2. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Liang; Zhou, Hang; Link, Timothy E

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  3. Forest productivity varies with soil moisture more than temperature in a small montane watershed

    DOE PAGES

    Wei, Liang; Zhou, Hang; Link, Timothy E; ...

    2018-05-16

    Mountainous terrain creates variability in microclimate, including nocturnal cold air drainage and resultant temperature inversions. Driven by the elevational temperature gradient, vapor pressure deficit (VPD) also varies with elevation. Soil depth and moisture availability often increase from ridgetop to valley bottom. These variations complicate predictions of forest productivity and other biological responses. We analyzed spatiotemporal air temperature (T) and VPD variations in a forested, 27-km 2 catchment that varied from 1000 to 1650 m in elevation. Temperature inversions occurred on 76% of mornings in the growing season. The inversion had a clear upper boundary at midslope (~1370 m a.s.l.). Vapormore » pressure was relatively constant across elevations, therefore VPD was mainly controlled by T in the watershed. Here, we assessed the impact of microclimate and soil moisture on tree height, forest productivity, and carbon stable isotopes (δ 13C) using a physiological forest growth model (3-PG). Simulated productivity and tree height were tested against observations derived from lidar data. The effects on photosynthetic gas-exchange of dramatic elevational variations in T and VPD largely cancelled as higher temperature (increasing productivity) accompanies higher VPD (reducing productivity). Although it was not measured, the simulations suggested that realistic elevational variations in soil moisture predicted the observed decline in productivity with elevation. Therefore, in this watershed, the model parameterization should have emphasized soil moisture rather than precise descriptions of temperature inversions.« less

  4. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    PubMed

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  5. Climate data by elevation in the Great Smoky Mountains: a database and graphical displays for 1947 - 1950 with comparison to long-term data

    USGS Publications Warehouse

    Busing, Richard T.; Stephens, Luther A.; Clebsch, Edward E.C.

    2004-01-01

    A climate data set is presented for four sites spanning the elevation gradient in the Great Smoky Mountains from Gatlinburg to Clingmans Dome. Monthly mean values for cloud cover, temperature, humidity, precipitation, and soil moisture are included. Stephens (1969) is the source of all summarized mean monthly data. Values are the averages of four years (1947-1950) with moderate to high precipitation. Graphical displays show strong climatic patterns of variation among seasons and elevations. The upper stations had lower temperatures and higher precipitation totals; however, temperature lapse rates and variation in vapor pressure deficits decreased at upper elevations. To examine how well the four-year sample represents the long-term climate, temperature and precipitation for the Gatlinburg (1460 ft elevation at park headquarters) station were compared between the years in the sample and the years in the full record from 1928 to 2003. Trends related to season and elevation are consistent with earlier studies and provide a basis for interpretation of climate dynamics in the southern Appalachian Mountains.

  6. Finite Element Analysis of the Random Response Suppression of Composite Panels at Elevated Temperatures using Shape Memory Alloy Fibers

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Zhong, Z. W.; Mei, Chuh

    1994-01-01

    A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.

  7. Effects of Elevated CO2 and Temperature on Yield and Fruit Quality of Strawberry (Fragaria × ananassa Duch.) at Two Levels of Nitrogen Application

    PubMed Central

    Sun, Peng; Mantri, Nitin; Lou, Heqiang; Hu, Ya; Sun, Dan; Zhu, Yueqing; Dong, Tingting; Lu, Hongfei

    2012-01-01

    We investigated if elevated CO2 could alleviate the negative effect of high temperature on fruit yield of strawberry (Fragaria × ananassa Duch. cv. Toyonoka) at different levels of nitrogen and also tested the combined effects of CO2, temperature and nitrogen on fruit quality of plants cultivated in controlled growth chambers. Results show that elevated CO2 and high temperature caused a further 12% and 35% decrease in fruit yield at low and high nitrogen, respectively. The fewer inflorescences and smaller umbel size during flower induction caused the reduction of fruit yield at elevated CO2 and high temperature. Interestingly, nitrogen application has no beneficial effect on fruit yield, and this may be because of decreased sucrose export to the shoot apical meristem at floral transition. Moreover, elevated CO2 increased the levels of dry matter-content, fructose, glucose, total sugar and sweetness index per dry matter, but decreased fruit nitrogen content, total antioxidant capacity and all antioxidant compounds per dry matter in strawberry fruit. The reduction of fruit nitrogen content and antioxidant activity was mainly caused by the dilution effect of accumulated non-structural carbohydrates sourced from the increased net photosynthetic rate at elevated CO2. Thus, the quality of strawberry fruit would increase because of the increased sweetness and the similar amount of fruit nitrogen content, antioxidant activity per fresh matter at elevated CO2. Overall, we found that elevated CO2 improved the production of strawberry (including yield and quality) at low temperature, but decreased it at high temperature. The dramatic fluctuation in strawberry yield between low and high temperature at elevated CO2 implies that more attention should be paid to the process of flower induction under climate change, especially in fruits that require winter chilling for reproductive growth. PMID:22911728

  8. Influence of increasing temperature and salinity on herbicide toxicity in estuarine phytoplankton.

    PubMed

    DeLorenzo, Marie E; Danese, Loren E; Baird, Thomas D

    2013-07-01

    Ecological risk assessments are, in part, based on results of toxicity tests conducted under standard exposure conditions. Global climate change will have a wide range of effects on estuarine habitats, including potentially increasing water temperature and salinity, which may alter the risk assessment of estuarine pollutants. We examined the effects of increasing temperature and salinity on the toxicity of common herbicides (irgarol, diuron, atrazine, and ametryn) to the phytoplankton species Dunaliella tertiolecta. Static 96-h algal bioassays were conducted for each herbicide under four exposure scenarios: standard temperature and salinity (25°C, 20 ppt), standard temperature and elevated salinity (25°C, 40 ppt), elevated temperature and standard salinity (35°C, 20 ppt), and elevated temperature and elevated salinity (35°C, 40 ppt). The endpoints assessed were algal cell density at 96 h, growth rate, chlorophyll a content, lipid content, and starch content. Increasing exposure temperature reduced growth rate and 96-h cell density but increased the cellular chlorophyll and lipid concentrations of the control algae. Exposure condition did not alter starch content of control algae. Herbicides were found to decrease growth rate, 96 h cell density, and cellular chlorophyll and lipid concentrations, while starch concentrations increased with herbicide exposure. Herbicide effects under standard test conditions were then compared with those observed under elevated temperature and salinity. Herbicide effects on growth rate, cell density, and starch content were more pronounced under elevated salinity and temperature conditions. To encompass the natural variability in estuarine temperature and salinity, and to account for future changes in climate, toxicity tests should be conducted under a wider range of environmental conditions. Copyright © 2011 Wiley Periodicals, Inc.

  9. Hostile environments and high temperature measurements; Proceedings of the Conference, Kansas City, MO, Nov. 6-8, 1989

    NASA Astrophysics Data System (ADS)

    Topics presented include the identification of stagnant region in a fluidized bed combustor, high sensitivity objective grating speckle, an X-ray beam method for displacement and strain distributions using the moire method, and high-temperature deformation of a Ti-alloy composite under complex loading. Also addressed are a hybrid procedure for dynamic characterization of ceramics at elevated temperature, thermo-structural measurements in a SiC coated carbon-carbon hypersonic glide vehicle, and recent experience with elevated-temperature foil strain gages with application to thin-gage materials.

  10. Do all leaf photosynthesis parameters of rice acclimate to elevated CO2 , elevated temperature, and their combination, in FACE environments?

    PubMed

    Cai, Chuang; Li, Gang; Yang, Hailong; Yang, Jiaheng; Liu, Hong; Struik, Paul C; Luo, Weihong; Yin, Xinyou; Di, Lijun; Guo, Xuanhe; Jiang, Wenyu; Si, Chuanfei; Pan, Genxing; Zhu, Jianguo

    2018-04-01

    Leaf photosynthesis of crops acclimates to elevated CO 2 and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO 2 and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO 2 enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO 2 (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0-2.0°C). Parameters of the C 3 photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (g s ) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO 2 , elevated temperature, and their combination. The combination of elevated CO 2 and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The g s model significantly underestimated g s under the combination of elevated CO 2 and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled g s -FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of g s hardly improved prediction of leaf photosynthesis under the four combinations of CO 2 and temperature. Therefore, the typical procedure that crop models using the FvCB and g s models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change. © 2017 John Wiley & Sons Ltd.

  11. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption

    PubMed Central

    Morris, Megan M.; Brown, Matt; Doane, Michael; Edwards, Matthew S.; Michael, Todd P.; Dinsdale, Elizabeth A.

    2018-01-01

    Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2), on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 ‘future conditions’, with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production. PMID:29474389

  12. Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy

    DOE PAGES

    Yang, Tengfei; Xia, Songqin; Guo, Wei; ...

    2017-09-29

    Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less

  13. Effects of temperature on the irradiation responses of Al 0.1 CoCrFeNi high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tengfei; Xia, Songqin; Guo, Wei

    Structural damage and chemical segregation in Al 0.1CoCrFeNi high entropy alloy irradiated at elevated temperatures are studied using transmission electron microscopy (TEM) and atom probe tomography (APT). Irradiation-induced defects include dislocation loops, long dislocations and stacking-fault tetrahedra, but no voids can be observed. Furthermore, as irradiation temperature increases, defect density is decreased but defect size is increased, which is induced by increasing defect mobility. Finally, APT characterization reveals that ion irradiation at elevated temperatures can induce an enrichment of Ni and Co as well as a depletion of Fe and Cr at defect clusters, mainly including dislocation loops and longmore » dislocations.« less

  14. The Impact of Elevated Temperatures on Continental Carbon Cycling in the Paleogene

    NASA Astrophysics Data System (ADS)

    Pancost, R. D.; Handley, L.; Taylor, K. W.; Collinson, M. E.; Weijers, J.; Talbot, H. M.; Hollis, C. J.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    Recent climate and biogeochemical modelling suggests that methane flux from wetlands and soils was greater during past greenhouse climates, due to a combination of higher continental temperatures, an enhanced hydrological cycle, and elevated primary production. Here, we examine continental environments in the Paleogene using a range of biomarker proxies (complemented by palaeobotanical approaches), including air temperatures derived from the distribution of soil bacterial glycerol dialkyl glycerol tetraethers (the MBT/CBT proxy), as well as evidence from wetland and lacustrine settings for enhanced methane cycling. Previously published and new MBT/CBT records parallel sea surface temperature records, suggesting elevated continental temperatures during the Eocene even at mid- to high latitudes (New Zealand, 20-28°C; the Arctic, 17°C; across the Sierra Nevada, 15-25°C; and SE England, 20-30°C). Such temperatures are broadly consistent with paleobotanical records and would have directly led to increased methane production via the metabolic impact of temperature on rates of methanogenesis. To test this, we have determined the distributions and carbon isotopic compositions of archaeal ether lipids and bacterial hopanoids in thermally immature Eocene lignites. In particular, the Cobham lignite, deposited in SE England and spanning the PETM, is characterised by markedly higher concentrations of both methanogen and methanotroph biomarkers compared to modern and Holocene temperate peats. Elevated temperatures, by fostering either stratification and/or decreased oxygen solubility, could have also led to enhanced methane production in Paleogene lakes. Both the Messel Shale (Germany) and Green River Formation, specifically the Parachute Creek oil shale horizons (Utah and Wyoming), are characterised by strongly reducing conditions (including euxinic conditions in the latter), as well as abundant methanogen and methanotroph biomarkers. Such results confirm model predictions of elevated Eocene methane levels relative to the Holocene (x10), but suggest that even these could be underestimates as they do not take into account lacustrine production and are generally characterised by lower high latitude temperatures than proxies suggest.

  15. Reliability and life prediction of ceramic composite structures at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1994-01-01

    Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.

  16. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  17. Thermal ecology of montane Atelopus (Anura: Bufonidae): A study of intrageneric diversity.

    PubMed

    Rueda Solano, Luis Alberto; Navas, Carlos A; Carvajalino-Fernández, Juan Manuel; Amézquita, Adolfo

    2016-05-01

    Harlequin frogs (Bufonidae: Atelopus) are among the most threatened frog genus in the world and reach very high elevations in the tropical Andes and the Sierra Nevada de Santa Marta (SNSM). Learning about their thermal ecology is essential to infer sensitivity to environmental changes, particularly climate warming. We report on the activity temperature and thermoregulatory behavior of three high-elevation species of harlequin frogs, Atelopus nahumae, Atelopus laetissimus and Atelopus carrikeri. The first two mentioned live in streams in Andean rain forests, whereas A. carrikeri inhabits paramo streams in the SNSM. We studied the thermal ecology of these species in tree localities differing in altitude, and focused on activity body, operative, substrate and air temperature. A main trend was lower body temperature as elevation increased, so that differences among species were largely explained by differences in substrate temperature. However, this temperature variation was much lower in forest species than paramo species. The Atelopus species included in this work proved to be thermoconformers, a trend that not extended to all congenerics at high elevation. This diversity in thermal ecology poses important questions when discussing the impact of climate warming for high-elevation harlequin frogs. For example, forest species show narrow thermal ranges and, if highly specialized, may be more susceptible to temperature change. Paramo species such as A. carrikeri, in contrast, may be more resilient to temperature change. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mixture and method for simulating soiling and weathering of surfaces

    DOEpatents

    Sleiman, Mohamad; Kirchstetter, Thomas; Destaillats, Hugo; Levinson, Ronnen; Berdahl, Paul; Akbari, Hashem

    2018-01-02

    This disclosure provides systems, methods, and apparatus related to simulated soiling and weathering of materials. In one aspect, a soiling mixture may include an aqueous suspension of various amounts of salt, soot, dust, and humic acid. In another aspect, a method may include weathering a sample of material in a first exposure of the sample to ultraviolet light, water vapor, and elevated temperatures, depositing a soiling mixture on the sample, and weathering the sample in a second exposure of the sample to ultraviolet light, water vapor, and elevated temperatures.

  19. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chezganov, D. S.; Lobov, A. I.; Baturin, I. S.; Smirnov, M. M.

    2013-12-01

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  20. Tensile properties of AZ11A-0 magnesium-alloy sheet under rapid-heating and constant temperature

    NASA Technical Reports Server (NTRS)

    Kurg, Ivo M

    1956-01-01

    Specimens of AZ31A-0 magnesium alloy sheet were heated to rupture at nominal rates of 0.2 F to 100 F per second under constant tensile load conditions. The data are presented and compared with the results of conventional tensile stress-strain tests at elevated temperatures after 1.2-hour exposure. A temperature-rate parameter was used to construct master curves from which stresses and temperatures for yield and rupture can be predicted under rapid-heating conditions. A comparison of the elevated-temperature tensile properties of AZ31A-0 and HK31XA-H24 magnesium-alloy sheet under both constant-temperature and rapid-heating conditions is included.

  1. Snowmelt sensitivity to warmer temperatures: a field-validated model analysis, southern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2014-12-01

    We present model simulations of climate change impacts on snowmelt processes over a 1600 km2 area in the southern Sierra Nevada, including western Sequoia National Park. The domain spans a 3600 m elevation gradient and ecosystems ranging from semi-arid grasslands to giant sequoia groves to alpine tundra. Three reference years were evaluated: a moderately dry snow season (23% below average SWE), an average snow season (7% above average SWE), and a moderately wet snow season (54% above average SWE). The Alpine3D model was run for the reference years and results were evaluated against data from a multi-scale measurement campaign that included repeated manual snow courses and basin-scale snow surveys, dozens of automated snow depth sensors, and automated SWE stations. Compared to automated measurements, the model represented the date of snow disappearance within two days. Compared to manual measurements, model SWE RMSE values for the average and wet snow seasons were highly correlated (R2=0.89 and R2=0.73) with the distance of SWE measurements from the nearest precipitation gauge used to force the model; no significant correlation was found with elevation. The results suggest that Alpine3D is highly accurate during the melt season and that precipitation uncertainty may critically limit snow model accuracy. The air temperature measured at 19 regional stations for the three reference years was modified by +1°C to +6°C to simulate the impact of warmer temperatures on snowmelt dynamics over the 3600 m elevation gradient. For all years, progressively warmer temperatures caused the seasonal SWE centroid to shift earlier and higher in elevation. At forested middle elevations, 70 - 80% of the present-day snowpack volume is lost in a +2°C scenario; 30 - 40% of that change is a result of precipitation phase shift and the remainder is due to enhanced melt. At all elevations, spring and fall snowpack was most sensitive to warmer temperatures; mid-winter sensitivity was least for elevations >3100 m. Interestingly, the dominant effect of warmer temperatures on snowmelt was a reduction in daily melt rates. The drier year was most sensitive to temperature changes with a greater decrease in the number of days with high melt rates. The results offer insight into the sensitivity of snowmelt processes to warmer temperatures in the Sierra Nevada.

  2. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008

    PubMed Central

    2009-01-01

    Background This review examines recent evidence on mortality from elevated ambient temperature for studies published from January 2001 to December 2008. Methods PubMed was used to search for the following keywords: temperature, apparent temperature, heat, heat index, and mortality. The search was limited to the English language and epidemiologic studies. Studies that reported mortality counts or excess deaths following heat waves were excluded so that the focus remained on general ambient temperature and mortality in a variety of locations. Studies focusing on cold temperature effects were also excluded. Results Thirty-six total studies were presented in three tables: 1) elevated ambient temperature and mortality; 2) air pollutants as confounders and/or effect modifiers of the elevated ambient temperature and mortality association; and 3) vulnerable subgroups of the elevated ambient temperature-mortality association. The evidence suggests that particulate matter with less than 10 um in aerodynamic diameter and ozone may confound the association, while ozone was an effect modifier in the warmer months in some locations. Nonetheless, the independent effect of temperature and mortality was withheld. Elevated temperature was associated with increased risk for those dying from cardiovascular, respiratory, cerebrovascular, and some specific cardiovascular diseases, such as ischemic heart disease, congestive heart failure, and myocardial infarction. Vulnerable subgroups also included: Black racial/ethnic group, women, those with lower socioeconomic status, and several age groups, particularly the elderly over 65 years of age as well as infants and young children. Conclusion Many of these outcomes and vulnerable subgroups have only been identified in recent studies and varied by location and study population. Thus, region-specific policies, especially in urban areas, are vital to the mitigation of heat-related deaths. PMID:19758453

  3. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1987-01-01

    The objective of the Elevated Temperature Crack Growth Program is to evaluate proposed nonlinear fracture mechanics methods for application to hot section components of aircraft gas turbine engines. Progress during the past year included linear-elastic fracture mechanics data reduction on nonlinear crack growth rate data on Alloy 718. The bulk of the analytical work centered on thermal gradient problems and proposed fracture mechanics parameters. Good correlation of thermal gradient experimental displacement data and finite element prediction was obtained.

  4. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  5. Shape of isolated domains in lithium tantalate single crystals at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shur, V. Ya., E-mail: vladimir.shur@usu.ru; Akhmatkhanov, A. R.; Baturin, I. S.

    2013-12-09

    The shape of isolated domains has been investigated in congruent lithium tantalate (CLT) single crystals at elevated temperatures and analyzed in terms of kinetic approach. The obtained temperature dependence of the growing domain shape in CLT including circular shape at temperatures above 190 °C has been attributed to increase of relative input of isotropic ionic conductivity. The observed nonstop wall motion and independent domain growth after merging in CLT as opposed to stoichiometric lithium tantalate have been attributed to difference in wall orientation. The computer simulation has confirmed applicability of the kinetic approach to the domain shape explanation.

  6. Effect of increased temperature, CO2, and iron on nitrate uptake and primary productivity in the coastal Ross Sea

    NASA Astrophysics Data System (ADS)

    Bronk, D. A.; Spackeen, J.; Sipler, R. E.; Bertrand, E. M.; Roberts, Q. N.; Xu, K.; Baer, S. E.; McQuaid, J.; Zhu, Z.; Walworth, N. G.; Hutchins, D. A.; Allen, A. E.

    2016-02-01

    Western Antarctic Seas are rapidly changing as a result of elevated concentrations of CO2 and rising sea surface temperatures. It is critical to determine how the structure and function of microbial communities will be impacted by these changes in the future because the Southern Ocean has seasonally high rates of primary production, is an important sink for anthropogenic CO2, and supports a diverse assemblage of higher trophic level organisms. During the Austral summer of 2013 and 2015, a collaborative research group conducted a series of experiments to understand how the individual and combined effects of temperature, CO2, and iron impact Ross Sea microorganisms. Our project used a variety of approaches, including batch experiments, semi-continuous experiments, and continuous-culturing over extended time intervals, to determine how future changes may shift Ross Sea microbial communities and how nutrient cycling and carbon biogeochemistry may subsequently be altered. Chemical and biological parameters were measured throughout the experiments to assess changes in community composition and nutrient cycling, including uptake rate measurements of nitrate and bicarbonate by different size fractions of microorganisms. Relative to the control, nitrate uptake rates significantly increased when temperature and iron were elevated indicating that temperature and iron are important physical drivers that influence nutrient cycling. Elevations in temperature and iron independently and synergistically produced higher rates than elevated CO2. Our nutrient uptake results also suggest that the physiology of large microorganisms will be more impacted by climate change variables than small microorganisms.

  7. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.

    PubMed

    Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A

    2015-02-01

    The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components. © 2014 Commonwealth of Australia. Global Change Biology © 2014 John Wiley & Sons Ltd.

  8. Fatigue damage characterization of braided and woven fiber reinforced polymer matrix composites at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Montesano, John

    The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.

  9. Fracture and damage; Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, CA, Nov. 8-13, 1992

    NASA Technical Reports Server (NTRS)

    Nagar, Arvind (Editor)

    1992-01-01

    The latest developments in the area of fracture and damage at high temperatures are discussed, in particular: modeling; analysis and experimental techniques for interface damage in composites including the effects of residual stresses and temperatures; and crack growth, inelastic deformation and fracture parameters for isotropic materials. Also included are damage modeling and experiments at elevated temperatures.

  10. Effects of thermal stress and nitrate enrichment on the larval performance of two Caribbean reef corals

    NASA Astrophysics Data System (ADS)

    Serrano, Xaymara M.; Miller, Margaret W.; Hendee, James C.; Jensen, Brittany A.; Gapayao, Justine Z.; Pasparakis, Christina; Grosell, Martin; Baker, Andrew C.

    2018-03-01

    The effects of multiple stressors on the early life stages of reef-building corals are poorly understood. Elevated temperature is the main physiological driver of mass coral bleaching events, but increasing evidence suggests that other stressors, including elevated dissolved inorganic nitrogen (DIN), may exacerbate the negative effects of thermal stress. To test this hypothesis, we investigated the performance of larvae of Orbicella faveolata and Porites astreoides, two important Caribbean reef coral species with contrasting reproductive and algal transmission modes, under increased temperature and/or elevated DIN. We used a fluorescence-based microplate respirometer to measure the oxygen consumption of coral larvae from both species, and also assessed the effects of these stressors on P. astreoides larval settlement and mortality. Overall, we found that (1) larvae increased their respiration in response to different factors ( O. faveolata in response to elevated temperature and P. astreoides in response to elevated nitrate) and (2) P. astreoides larvae showed a significant increase in settlement as a result of elevated nitrate, but higher mortality under elevated temperature. This study shows how microplate respirometry can be successfully used to assess changes in respiration of coral larvae, and our findings suggest that the effects of thermal stress and nitrate enrichment in coral larvae may be species specific and are neither additive nor synergistic for O. faveolata or P. astreoides. These findings may have important consequences for the recruitment and community reassembly of corals to nutrient-polluted reefs that have been impacted by climate change.

  11. Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network

    USGS Publications Warehouse

    Gallo, K.P.

    2005-01-01

    Adjustments to data observed at pairs of climate stations have been recommended to remove the biases introduced by differences between the stations in time of observation, temperature instrumentatios, latitude, and elevation. A new network of climate stations, located in rural settings, permits comparisons of temperatures for several pairs of stations without two of the biases (time of observation and instrurtientation). The daily, monthly, and annual minimum, maximum, and mean temperatures were compared for five pairs of stations included in the U.S. Climate Reference Network. Significant differences were found between the paired stations in the annual minimum, maximum, and mean temperatures for all five pairs of stations. Adjustments for latitude and elevation differences contributed to greater differences in mean annual temperature for four of the five stations. Lapse rates computed from the mean annual temperature differences between station pairs differed from a constant value, whether or not latitude adjustments were made to the data. The results suggest that microclimate influences on temperatures observed at nearby (horizontally and vertically) stations are potentially much greater than influences that might be due to latitude or elevation differences between the stations. ?? 2005 American Meteorological Society.

  12. A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles

    PubMed Central

    Colwell, Robert K.; Rangel, Thiago F.

    2010-01-01

    Quaternary glacial–interglacial cycles repeatedly forced thermal zones up and down the slopes of mountains, at all latitudes. Although no one doubts that these temperature cycles have left their signature on contemporary patterns of geography and phylogeny, the relative roles of ecology and evolution are not well understood, especially for the tropics. To explore key mechanisms and their interactions in the context of chance events, we constructed a geographical range-based, stochastic simulation model that incorporates speciation, anagenetic evolution, niche conservatism, range shifts and extinctions under late Quaternary temperature cycles along tropical elevational gradients. In the model, elevational patterns of species richness arise from the differential survival of founder lineages, consolidated by speciation and the inheritance of thermal niche characteristics. The model yields a surprisingly rich variety of realistic patterns of phylogeny and biogeography, including close matches to a variety of contemporary elevational richness profiles from an elevational transect in Costa Rica. Mountaintop extinctions during interglacials and lowland extinctions at glacial maxima favour mid-elevation lineages, especially under the constraints of niche conservatism. Asymmetry in temperature (greater duration of glacial than of interglacial episodes) and in lateral area (greater land area at low than at high elevations) have opposing effects on lowland extinctions and the elevational pattern of species richness in the model—and perhaps in nature, as well. PMID:20980317

  13. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress.

    PubMed

    Oksala, Niku K J; Ekmekçi, F Güler; Ozsoy, Ergi; Kirankaya, Serife; Kokkola, Tarja; Emecen, Güzin; Lappalainen, Jani; Kaarniranta, Kai; Atalay, Mustafa

    2014-01-01

    Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Method of solution preparation of polyolefin class polymers for electrospinning processing included

    NASA Technical Reports Server (NTRS)

    Rabolt, John F. (Inventor); Givens, Steven R. (Inventor); Lee, Keun-Hyung (Inventor)

    2011-01-01

    A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.

  15. A simplified ductile-brittle transition temperature tester

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1973-01-01

    The construction and operation of a versatile, simplified bend tester is described. The tester is usable at temperatures from - 192 to 650 C in air. Features of the tester include a single test chamber for cryogenic or elevated temperatures, specimen alining support rollers, and either manual or motorized operation.

  16. The influence of elevation, latitude and Arctic Oscillation on trends in temperature extremes over northeastern China, 1961-2011

    NASA Astrophysics Data System (ADS)

    Zeng, Wei; Yu, Zhen; Li, Xilin

    2018-04-01

    Trend magnitudes of 14 indices of temperature extremes at 70 stations with elevations, latitude and Arctic Oscillation over northeast China during 1960-2011 are examined. There are no significant correlations between elevation and trend magnitudes with the exception of TXn (Min T max), TNn (Min T min), TR20 (tropical nights) and GSL (growing season length). Analysis of trend magnitudes by topographic type has a strong influence, which overrides that of degree of urbanization. By contrast, most of the temperature indices have stronger correlations with the latitude and Arctic Oscillation index. The correlations between the Arctic Oscillation index and percentile indices, including TX10p (cool days), TX90p (warm days), TN10p (cool nights), TN90p (warm nights), are not the same in different areas. To summarize, analysis of trend magnitudes by topographic type, the latitude and the Arctic Oscillation shows three factors to have a strong influence in this dataset, which overrides that of elevation and degree of urbanization.

  17. Mechanical properties of turbine blade alloys in hydrogen at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Deluca, D. P.

    1981-01-01

    The mechanical properties of single crystal turbine blade alloys in a gaseous hydrogen environment were determined. These alloys are proposed for use in space propulsion systems in pure or partial high pressure hydrogen environments at elevated temperatures. Mechanical property tests included: tensile, creep, low fatigue (LCF), and crack growth. Specimens were in both transverse and longitudinal directions relative to the casting solidification direction. Testing was conducted on solid specimens exposed to externally pressurized environments of gaseous hydrogen and hydrogen-enriched steam.

  18. Climate change and frog calls: long-term correlations along a tropical altitudinal gradient

    PubMed Central

    Narins, Peter M.; Meenderink, Sebastiaan W. F.

    2014-01-01

    Temperature affects nearly all biological processes, including acoustic signal production and reception. Here, we report on advertisement calls of the Puerto Rican coqui frog (Eleutherodactylus coqui) that were recorded along an altitudinal gradient and compared these with similar recordings along the same altitudinal gradient obtained 23 years earlier. We found that over this period, at any given elevation, calls exhibited both significant increases in pitch and shortening of their duration. All of the observed differences are consistent with a shift to higher elevations for the population, a well-known strategy for adapting to a rise in ambient temperature. Using independent temperature data over the same time period, we confirm a significant increase in temperature, the magnitude of which closely predicts the observed changes in the frogs’ calls. Physiological responses to long-term temperature rises include reduction in individual body size and concomitantly, population biomass. These can have potentially dire consequences, as coqui frogs form an integral component of the food web in the Puerto Rican rainforest. PMID:24718765

  19. Climate change and frog calls: long-term correlations along a tropical altitudinal gradient.

    PubMed

    Narins, Peter M; Meenderink, Sebastiaan W F

    2014-05-22

    Temperature affects nearly all biological processes, including acoustic signal production and reception. Here, we report on advertisement calls of the Puerto Rican coqui frog (Eleutherodactylus coqui) that were recorded along an altitudinal gradient and compared these with similar recordings along the same altitudinal gradient obtained 23 years earlier. We found that over this period, at any given elevation, calls exhibited both significant increases in pitch and shortening of their duration. All of the observed differences are consistent with a shift to higher elevations for the population, a well-known strategy for adapting to a rise in ambient temperature. Using independent temperature data over the same time period, we confirm a significant increase in temperature, the magnitude of which closely predicts the observed changes in the frogs' calls. Physiological responses to long-term temperature rises include reduction in individual body size and concomitantly, population biomass. These can have potentially dire consequences, as coqui frogs form an integral component of the food web in the Puerto Rican rainforest.

  20. The effect of elevated temperatures on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae).

    PubMed

    Oliver, Shüné V; Brooke, Basil D

    2017-02-14

    Temperature plays a crucial role in the life history of insects. Recent climate change research has highlighted the importance of elevated temperature on malaria vector distribution. This study aims to examine the role of elevated temperatures on epidemiologically important life-history traits in the major malaria vector, Anopheles arabiensis. Specifically, the differential effects of temperature on insecticide-resistant and susceptible strains were examined. Two laboratory strains of A. arabiensis, the insecticide-susceptible SENN and the insecticide-resistant SENN DDT strains, were used to examine the effect of elevated temperatures on larval development and adult longevity. The effects of various elevated temperatures on insecticide resistance phenotypes were also examined and the biochemical basis of the changes in insecticide resistance phenotype was assessed. SENN and SENN DDT larvae developed at similar rates at elevated temperatures. SENN DDT adult survivorship did not vary between control and elevated temperatures, while the longevity of SENN adults at constantly elevated temperatures was significantly reduced. SENN DDT adults lived significantly longer than SENN at constantly elevated temperatures. Elevated rearing temperatures, as well as a short-term exposure to 37 and 39 °C as adults, augmented pyrethroid resistance in adult SENN DDT, and increased pyrethroid tolerance in SENN. Detoxification enzyme activity was not implicated in this phenotypic effect. Quercertin-induced synergism of inducible heat shock proteins negated this temperature-mediated augmentation of pyrethroid resistance. Insecticide-resistant A. arabiensis live longer than their susceptible counterparts at elevated temperatures. Exposure to heat shock augments pyrethroid resistance in both resistant and susceptible strains. This response is potentially mediated by inducible heat shock proteins.

  1. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  2. Assessing conditions influencing the longitudinal distribution of exotic brown trout (Salmo trutta) in a mountain stream: a spatially-explicit modeling approach

    USGS Publications Warehouse

    Meredith, Christy S.; Budy, Phaedra; Hooten, Mevin B.; Oliveira Prates, Marcos

    2017-01-01

    Trout species often segregate along elevational gradients, yet the mechanisms driving this pattern are not fully understood. On the Logan River, Utah, USA, exotic brown trout (Salmo trutta) dominate at low elevations but are near-absent from high elevations with native Bonneville cutthroat trout (Onchorhynchus clarkii utah). We used a spatially-explicit Bayesian modeling approach to evaluate how abiotic conditions (describing mechanisms related to temperature and physical habitat) as well as propagule pressure explained the distribution of brown trout in this system. Many covariates strongly explained redd abundance based on model performance and coefficient strength, including average annual temperature, average summer temperature, gravel availability, distance from a concentrated stocking area, and anchor ice-impeded distance from a concentrated stocking area. In contrast, covariates that exhibited low performance in models and/or a weak relationship to redd abundance included reach-average water depth, stocking intensity to the reach, average winter temperature, and number of days with anchor ice. Even if climate change creates more suitable summer temperature conditions for brown trout at high elevations, our findings suggest their success may be limited by other conditions. The potential role of anchor ice in limiting movement upstream is compelling considering evidence suggesting anchor ice prevalence on the Logan River has decreased significantly over the last several decades, likely in response to climatic changes. Further experimental and field research is needed to explore the role of anchor ice, spawning gravel availability, and locations of historical stocking in structuring brown trout distributions on the Logan River and elsewhere.

  3. 49 CFR 172.325 - Elevated temperature materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be marked...

  4. 49 CFR 172.325 - Elevated temperature materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Elevated temperature materials. 172.325 Section... REQUIREMENTS, AND SECURITY PLANS Marking § 172.325 Elevated temperature materials. (a) Except as provided in paragraph (b) of this section, a bulk packaging containing an elevated temperature material must be marked...

  5. Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control.

    PubMed

    Fajardo, Alex; Piper, Frida I; Pfund, Laura; Körner, Christian; Hoch, Günter

    2012-09-01

    In low temperature-adapted plants, including treeline trees, light-saturated photosynthesis is considerably less sensitive to temperature than growth. As a consequence, all plants tested so far show increased nonstructural carbohydrate (NSC) tissue concentrations when exposed to low temperatures. Reduced carbon supply is thus an unlikely cause for low temperature range limits of plants. For altitudinal treeline trees there is, however, a possibility that high NSC genotypes have been selected. Here, we explored this possibility using afforestations with single-provenance conifers along elevational gradients in the Southern Chilean Andes and the Swiss Alps. Tree growth was measured at each of four approximately equidistant elevations at and below the treeline. Additionally, at the same elevations, needle, branch and stem sapwood tissues were collected to determine NSC concentrations. Overall, growth decreased and NSC concentrations increased with elevation. Along with previous empirical and experimental studies, the findings of this study provide no indication of NSC reduction at the treeline; NSC increased in most species (each represented by one common population) towards their upper climatic limit. The disparity between carbon acquisition and structural carbon investment at low temperature (accumulation of NSC) thus does occur even among genotypes not adapted to treeline environments. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Elevated-temperature application of the IITRI compression test fixture for graphite/polyimide filamentary composites

    NASA Technical Reports Server (NTRS)

    Raju, B. B.; Camarda, C. J.; Cooper, P. A.

    1979-01-01

    Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiengmoon, A., E-mail: ampornw@nu.ac.th

    The effects of Si on microstructure and phase transformation at elevated temperature of ferritic 31wt.%Cr-1.1wt.%C white cast irons with up to 3wt.%Si have been studied. Applications of these irons include parts requiring heat resistance at elevated temperature. The irons were produced by sand casting. The microstructure in as-cast condition and after being subjected to high temperature (700 to 1000 °C) was investigated by light microscopy, X-ray diffraction, and electron microscopy. The results revealed that the as-cast microstructure consisted mainly of primary ferrite dendrites and eutectic (ferrite + M{sub 7}C{sub 3}). Si promotes M{sub 7}C{sub 3}-to-M{sub 23}C{sub 6} transformation in themore » irons subjected to transformation at elevated temperature, but no sigma phase was found. The extent of M{sub 7}C{sub 3}-to-M{sub 23}C{sub 6} transformation increases proportional to the increasing transformation temperature, holding time and Si content in the irons. For the iron with 1.0wt.%Si content after holding at elevated temperatures, martensite was also found, which could be attributed to carbon accretion effects in eutectic ferrite. Si was incorporated in M{sub 23}C{sub 6} such that M{sub 23}C{sub 6} containing Si can show darker contrast under SEM-BEI as compared to M{sub 7}C{sub 3}; this is the opposite to what has been observed for the cases of typical M{sub 23}C{sub 6} and M{sub 23}C{sub 6} containing Mo or W. The results obtained are important to understand the change in properties of ferritic, high chromium irons containing Si subjected to elevated temperature.« less

  8. Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2006-12-01

    Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.

  9. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    PubMed

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  10. Inelastic deformation of metal matrix composites: Plasticity and damage mechanisms, part 2

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The inelastic deformation mechanisms for the SiC (SCS-6)/Ti-15-3 system were studied at 538 C (1000 F) using a combination of mechanical measurements and detailed microstructural examinations. The objectives were to evaluate the contributions of plasticity and damage to the overall MMC response, and to compare the room temperature and elevated temperature deformation behaviors. Four different laminates were studied: (0)8, (90)8,(+ or -45)2s, and (0/90)2s, with the primary emphasis on the unidirectional (0)8, and (90)8 systems. The elevated temperature responses were similar to those at room temperature, involving a two-stage elastic-plastic type of response for the (0)8 system, and a characteristic three-stage deformation response for the (90)8 and (+ or -45)2s systems. The primary effects of elevated temperatures included: (1) reduction in the 'yield' and failure strengths; (2) plasticity through diffused slip rather than concentrated planar slip (which occurred at room temperature); and (3) time-dependent deformation. The inelastic deformation mechanism for the (0)8 MMC was dominated by plasticity at both temperatures. For the (90)8 and (+ or -45)2s MMCs, a combination of damage and plasticity contributed to the deformation at both temperatures.

  11. Large thermal protection system panel

    NASA Technical Reports Server (NTRS)

    Weinberg, David J. (Inventor); Myers, Franklin K. (Inventor); Tran, Tu T. (Inventor)

    2003-01-01

    A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles.

  12. Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel

    NASA Astrophysics Data System (ADS)

    Keys, Matthew; Tilstone, Gavin; Findlay, Helen S.; Widdicombe, Claire E.; Lawson, Tracy

    2018-05-01

    The combined effects of elevated pCO2 and temperature were investigated during an experimentally induced autumn phytoplankton bloom in vitro sampled from the western English Channel (WEC). A full factorial 36-day microcosm experiment was conducted under year 2100 predicted temperature (+4.5 °C) and pCO2 levels (800 µatm). Over the experimental period total phytoplankton biomass was significantly influenced by elevated pCO2. At the end of the experiment, biomass increased 6.5-fold under elevated pCO2 and 4.6-fold under elevated temperature relative to the ambient control. By contrast, the combined influence of elevated pCO2 and temperature had little effect on biomass relative to the control. Throughout the experiment in all treatments and in the control, the phytoplankton community structure shifted from dinoflagellates to nanophytoplankton . At the end of the experiment, under elevated pCO2 nanophytoplankton contributed 90 % of community biomass and was dominated by Phaeocystis spp. Under elevated temperature, nanophytoplankton comprised 85 % of the community biomass and was dominated by smaller nanoflagellates. In the control, larger nanoflagellates dominated whilst the smallest nanophytoplankton contribution was observed under combined elevated pCO2 and temperature ( ˜ 40 %). Under elevated pCO2, temperature and in the control there was a significant decrease in dinoflagellate biomass. Under the combined effects of elevated pCO2 and temperature, dinoflagellate biomass increased and was dominated by the harmful algal bloom (HAB) species, Prorocentrum cordatum. At the end of the experiment, chlorophyll a (Chl a) normalised maximum photosynthetic rates (PBm) increased > 6-fold under elevated pCO2 and > 3-fold under elevated temperature while no effect on PBm was observed when pCO2 and temperature were elevated simultaneously. The results suggest that future increases in temperature and pCO2 simultaneously do not appear to influence coastal phytoplankton productivity but significantly influence community composition during autumn in the WEC.

  13. Influence of elevated carbon dioxide and temperature on belowground carbon allocation and enzyme activities in tropical flooded soil planted with rice.

    PubMed

    Bhattacharyya, P; Roy, K S; Neogi, S; Manna, M C; Adhya, T K; Rao, K S; Nayak, A K

    2013-10-01

    Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.

  14. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  15. Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills.

    PubMed

    Jafari, Navid H; Stark, Timothy D; Thalhamer, Todd

    2017-01-01

    Elevated temperatures in waste containment facilities can pose health, environmental, and safety risks because they generate toxic gases, pressures, leachate, and heat. In particular, MSW landfills undergo changes in behavior that typically follow a progression of indicators, e.g., elevated temperatures, changes in gas composition, elevated gas pressures, increased leachate migration, slope movement, and unusual and rapid surface settlement. This paper presents two MSW landfill case studies that show the spatial and time-lapse movements of these indicators and identify four zones that illustrate the transition of normal MSW decomposition to the region of elevated temperatures. The spatial zones are gas front, temperature front, and smoldering front. The gas wellhead temperature and the ratio of CH 4 to CO 2 are used to delineate the boundaries between normal MSW decomposition, gas front, and temperature front. The ratio of CH 4 to CO 2 and carbon monoxide concentrations along with settlement strain rates and subsurface temperatures are used to delineate the smoldering front. In addition, downhole temperatures can be used to estimate the rate of movement of elevated temperatures, which is important for isolating and containing the elevated temperature in a timely manner. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Marine Microbial Gene Abundance and Community Composition in Response to Ocean Acidification and Elevated Temperature in Two Contrasting Coastal Marine Sediments.

    PubMed

    Currie, Ashleigh R; Tait, Karen; Parry, Helen; de Francisco-Mora, Beatriz; Hicks, Natalie; Osborn, A Mark; Widdicombe, Steve; Stahl, Henrik

    2017-01-01

    Marine ecosystems are exposed to a range of human-induced climate stressors, in particular changing carbonate chemistry and elevated sea surface temperatures as a consequence of climate change. More research effort is needed to reduce uncertainties about the effects of global-scale warming and acidification for benthic microbial communities, which drive sedimentary biogeochemical cycles. In this research, mesocosm experiments were set up using muddy and sandy coastal sediments to investigate the independent and interactive effects of elevated carbon dioxide concentrations (750 ppm CO 2 ) and elevated temperature (ambient +4°C) on the abundance of taxonomic and functional microbial genes. Specific quantitative PCR primers were used to target archaeal, bacterial, and cyanobacterial/chloroplast 16S rRNA in both sediment types. Nitrogen cycling genes archaeal and bacterial ammonia monooxygenase ( amoA ) and bacterial nitrite reductase ( nirS ) were specifically targeted to identify changes in microbial gene abundance and potential impacts on nitrogen cycling. In muddy sediment, microbial gene abundance, including amoA and nirS genes, increased under elevated temperature and reduced under elevated CO 2 after 28 days, accompanied by shifts in community composition. In contrast, the combined stressor treatment showed a non-additive effect with lower microbial gene abundance throughout the experiment. The response of microbial communities in the sandy sediment was less pronounced, with the most noticeable response seen in the archaeal gene abundances in response to environmental stressors over time. 16S rRNA genes ( amoA and nirS ) were lower in abundance in the combined stressor treatments in sandy sediments. Our results indicated that marine benthic microorganisms, especially in muddy sediments, are susceptible to changes in ocean carbonate chemistry and seawater temperature, which ultimately may have an impact upon key benthic biogeochemical cycles.

  17. Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid.

    PubMed

    Wen, Bin; Zhang, Nan; Jin, Shi-Rong; Chen, Zai-Zhong; Gao, Jian-Zhong; Liu, Ying; Liu, Han-Peng; Xu, Zhe

    2018-02-01

    Knowledge on the impacts of microplastics (MPs) pollution on freshwater environments and biota remains limited. Meanwhile, freshwater ecosystems have been threatened by elevated temperatures caused by climate change. To date, no information exists on how MPs-especially under elevated temperature conditions-affect predatory performance, digestive processes and metabolic pathways in freshwater organisms. Here, we examined MPs, elevated temperature and their combined effects on juveniles (0+ group) of an Amazonian cichlid, the discus fish (Symphysodon aequifasciatus). For 30 days, fish were exposed to ambient or elevated temperatures (i.e., 28 or 31 °C) in the absence or presence of MPs (i.e., 0 or 200 μg/L). The following metrics were quantified: MPs accumulation; predatory performance; and biomarkers involved in neurotransmission, digestion and energy production. The results showed that survival rate and body length were not affected by MPs, elevated temperatures or their combination. Elevated temperatures resulted in an increase in MP concentrations in fish bodies. Exposure to MPs decreased the post-exposure predatory performance (PEPP) at ambient temperatures but not at elevated temperatures. Elevated temperatures, however, had no effect on the PEPP but antagonistically interacted with MPs, leading to similar predatory performances under present and future conditions. Acetylcholinesterase (AChE) activity was only affected by MPs and decreased in the presence of MPs, indicating adverse effects in nervous and neuromuscular function and, thus, potentially in predatory performance. Trypsin activity was only influenced by MPs and decreased during exposure to MPs. Elevated temperatures or MPs alone increased the amylase activity but interacted antagonistically. Lipase activity was not influenced by either of the two stressors. In contrast, alkaline phosphatase (ALP) activity was affected by MPs or elevated temperatures alone and decreased with both stressors. Such results indicate deficits in the digestive capabilities of early-stage S. aequifasciatus under elevated temperature conditions and especially during exposure to MPs. Electron transport system (ETS) activity was not influenced by either of the two stressors. Both elevated temperatures and MPs alone increased LDH activity; however, the interaction between the two stressors cancelled activity but was still higher than activity in present conditions. Citrate synthase (CS) activity decreased with elevated temperature but increased during exposure to MPs. Cytochrome c oxidase (COX) activity was only influenced by MPs and increased in the presence of MPs. Thus, S. aequifasciatus juveniles exposed to elevated temperatures and MPs not only relied on anaerobic glycolysis for energy production but also depended on aerobic metabolism in the presence of MPs. Overall, these findings suggested that MPs showed a greater impact than elevated temperatures on the predatory performance, digestion and energy production of S. aequifasciatus. Nevertheless, juvenile survival and growth were minimally impacted, and thus, S. aequifasciatus could cope with near-future temperature increases and MP exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. LaRC TPI 1500 series polymers

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Bai, Jia-Mo

    1990-01-01

    The crystallization behavior and the melt flow properties of two batches of 1500 series LaRC-TPI polymers from Mitsui Toatsu Chemicals (MTC) were investigated. The characterization methods include Differential Scanning Calorimetry, the x ray diffractography and the melt rheology. The as-received materials possess initial crystalline melting peak temperatures of 295 and 305 C, respectively. These materials are less readily recrystallizable at elevated temperatures when compared to other semicrystalline thermoplastics. For the samples annealed at temperatures below 330 C, a semicrystalline polymer can be obtained. On the other hand, a purely amorphous structure is realized in the samples annealed at temperatures above 330 C. Isothermal crystallization kinetics were studied by means of the simple Avrami equation. The viscoelastic properties at elevated temperatures below and above glass transition temperature of the polymers were measured. Information with regard to the molecule sizes and distributions in these polymers were also extracted from melt rheology.

  19. Elevated temperature forming method and preheater apparatus

    DOEpatents

    Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing

    2013-06-11

    An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.

  20. Paleoclimate and paleoelevation in the western US Cordillera, 80 Ma to Present

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Thompson, J. M.; Foreman, B. Z.; Wernicke, B. P.; Chamberlain, C. P.; Eiler, J. M.; Koch, P. L.

    2011-12-01

    Disentangling local to regional paleoclimatic signals from paleoelevation changes in the terrestrial sedimentary record is challenging, and can be done with confidence only by compiling spatially and temporally distributed datasets (preferably drawing on diverse proxies). Spatial coverage is particularly important for paleoelevation reconstruction because climate at low elevation sites must be known to identify higher paleoelevation sites and to quantify their altitude. The abundance of previous paleoclimatic and paleoelevation studies from the western United States can provide some of the necessary temporal and spatial framework for discriminating signals of climate change from elevation changes. Here, we present a compilation of previously published and new paleotemperature data from the western United States from the Late Cretaceous - Present derived from leaf physiognomy MAT estimates and carbonate clumped-isotope temperature estimates. After coarsely binning the data into high paleoelevation (>2 km) and lower paleoelevation (<2 km) sites (according to original interpretations made by the authors of previous studies), we compare the general temporal patterns of temperature change from western North America with those implied by the marine stable isotope record. Within this framework, we begin to evaluate sites of uncertain paleoelevation that cannot be compared with contemporaneous, adjacent low elevation sites. In this compilation, both low and high elevation land temperatures are warmer than today during the Late Cretaceous, reach an apex during the early-middle Eocene and then cool to the Present (sharply from the late Miocene to Pleistocene). The observed pattern matches reasonably well with the coarse temporal pattern of climate change based on the marine oxygen isotope record. Paleobotanical data reflect mean annual temperature (MAT), whereas the clumped isotope data from paleosol and lacustrine carbonates appear to be biased toward summer temperatures. Throughout the Late Mesozoic and Cenozoic, both MAT and summer paleotemperature estimates are higher than modern MAT and summer temperature, but the relatively consistent difference between these records implies a seasonal range in temperature that was similar to modern. Summer temperatures from low paleoelevation sites during the Late Cretaceous to the Early Eocene are relatively warm (30 - 40 degrees C), though these values may include a few degrees of radiant solar heating of the surface. Interestingly, Early Eocene-aged carbonate samples from southwest Montana are cooler on average than other carbonate samples of roughly the same age, but are similar in temperature to samples thought to be at high elevation during the Late Cretaceous. Thus, these samples may reflect high elevation summer temperatures, rather than low elevation temperatures, demonstrating the utility of this combined spatial and temporal approach to evaluating terrestrial paleoenvironmental records.

  1. Warming and pCO2 effects on Florida stone crab larvae

    NASA Astrophysics Data System (ADS)

    Gravinese, Philip M.; Enochs, Ian C.; Manzello, Derek P.; van Woesik, Robert

    2018-05-01

    Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of CO2 (pCO2), resulting in more acidic waters. It is presently unknown how elevated temperature and pCO2 will influence the early life history stages of the majority of marine coastal species. We investigated the combined effect of elevated temperature (30 °C control and 32 °C treatment) and elevated pCO2 (450 μatm control and 1100 μatm treatment) on the (i) growth, (ii) survival, (iii) condition, and (iv) morphology of larvae of the commercially important Florida stone crab, Menippe mercenaria. At elevated temperature, larvae exhibited a significantly shorter molt stage, and elevated pCO2 caused stage-V larvae to delay metamorphosis to post-larvae. On average, elevated pCO2 resulted in a 37% decrease in survivorship relative to the control; however the effect of elevated temperature reduced larval survivorship by 71%. Exposure to both elevated temperature and pCO2 reduced larval survivorship by 80% relative to the control. Despite this, no significant differences were detected in the condition or morphology of stone crab larvae when subjected to elevated temperature and pCO2 treatments. Although elevated pCO2 could result in a reduction in larval supply, future increases in seawater temperatures are even more likely to threaten the future sustainability of the stone-crab fishery.

  2. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings.

    PubMed

    Duan, Honglang; Duursma, Remko A; Huang, Guomin; Smith, Renee A; Choat, Brendan; O'Grady, Anthony P; Tissue, David T

    2014-07-01

    It has been reported that elevated temperature accelerates the time-to-mortality in plants exposed to prolonged drought, while elevated [CO(2)] acts as a mitigating factor because it can reduce stomatal conductance and thereby reduce water loss. We examined the interactive effects of elevated [CO(2)] and temperature on the inter-dependent carbon and hydraulic characteristics associated with drought-induced mortality in Eucalyptus radiata seedlings grown in two [CO(2)] (400 and 640 μL L(-1)) and two temperature (ambient and ambient +4 °C) treatments. Seedlings were exposed to two controlled drying and rewatering cycles, and then water was withheld until plants died. The extent of xylem cavitation was assessed as loss of stem hydraulic conductivity. Elevated temperature triggered more rapid mortality than ambient temperature through hydraulic failure, and was associated with larger water use, increased drought sensitivities of gas exchange traits and earlier occurrence of xylem cavitation. Elevated [CO(2)] had a negligible effect on seedling response to drought, and did not ameliorate the negative effects of elevated temperature on drought. Our findings suggest that elevated temperature and consequent higher vapour pressure deficit, but not elevated [CO(2)], may be the primary contributors to drought-induced seedling mortality under future climates. © 2013 John Wiley & Sons Ltd.

  3. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

    PubMed

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.

  4. Temperature Variations of Saturn Rings with Viewing Geometries from Prime to Equinox Cassini Missions

    NASA Technical Reports Server (NTRS)

    Deau, E. A.; Spilker, L. J.; Morishima, R.; Brooks, S.; Pilorz, S.; Altobelli, N.

    2011-01-01

    After more than six years in orbit around Saturn, the Cassini Composite Infrared Spectrometer (CIRS) has acquired an extensive set of measurements of Saturn's main rings (A, B, C and Cassini Division) in the thermal infrared. Temperatures were retrieved for the lit and unlit rings over a variety of ring geometries that include phase angle, solar and spacecraft elevations and local time. We show that some of these parameters (solar and spacecraft elevations, phase angle) play a role in the temperature variations in the first order, while the others (ring and particle local time) produced second order effects. The results of this comparison will be presented.

  5. Synergistic Effects of Physical Aging and Damage on Long-Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Brinson, L. Cate

    1999-01-01

    The research consisted of two major parts, first modeling and simulation of the combined effects of aging and damage on polymer composites and secondly an experimental phase examining composite response at elevated temperatures, again activating both aging and damage. For the simulation, a damage model for polymeric composite laminates operating at elevated temperatures was developed. Viscoelastic behavior of the material is accounted for via the correspondence principle and a variational approach is adopted to compute the temporal stresses within the laminate. Also, the effect of physical aging on ply level stress and on overall laminate behavior is included. An important feature of the model is that damage evolution predictions for viscoelastic laminates can be made. This allows us to track the mechanical response of the laminate up to large load levels though within the confines of linear viscoelastic constitutive behavior. An experimental investigation of microcracking and physical aging effects in polymer matrix composites was also pursued. The goal of the study was to assess the impact of aging on damage accumulation, in ten-ns of microcracking, and the impact of damage on aging and viscoelastic behavior. The testing was performed both at room and elevated temperatures on [+/- 45/903](sub s) and [02/903](sub s) laminates, both containing a set of 90 deg plies centrally located to facilitate investigation of microcracking. Edge replication and X-ray-radiography were utilized to quantify damage. Sequenced creep tests were performed to characterize viscoelastic and aging parameters. Results indicate that while the aging times studied have limited ]Influence on damage evolution, elevated temperature and viscoelastic effects have a profound effect on the damage mode seen. Some results are counterintuitive, including the lower strain to failure for elevated temperature tests and the catastrophic failure mode observed for the [+/- 45/9O3](sub s), specimens. The fracture toughness for transverse cracks increases with increasing temperature for both systems: transverse cracking was completely absent prior to failure in [+/- 45/903](sub s), and was suppressed for [02/903](sub s). No significant effect of damage on aging or viscoelastic parameters was observed.

  6. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation.

    PubMed

    Ivanina, Anna V; Kurochkin, Ilya O; Leamy, Larry; Sokolova, Inna M

    2012-09-15

    Intertidal bivalves are commonly exposed to multiple stressors including periodic hypoxia, temperature fluctuations and pollution, which can strongly affect energy metabolism. We used top-down control and elasticity analyses to determine the interactive effects of intermittent hypoxia, cadmium (Cd) exposure and acute temperature stress on mitochondria of the eastern oyster Crassostrea virginica. Oysters were acclimated at 20°C for 30 days in the absence or presence of 50 μg l(-1) Cd and then subjected to a long-term hypoxia (6 days at <0.5% O(2) in seawater) followed by normoxic recovery. Mitochondrial function was assessed at the acclimation temperature (20°C), or at elevated temperature (30°C) mimicking acute temperature stress in the intertidal zone. In the absence of Cd or temperature stress, mitochondria of oysters showed high resilience to transient hypoxia. In control oysters at 20°C, hypoxia/reoxygenation induced elevated flux capacity of all three studied mitochondrial subsystems (substrate oxidation, phosphorylation and proton leak) and resulted in a mild depolarization of resting mitochondria. Elevated proton conductance and enhanced capacity of phosphorylation and substrate oxidation subsystems may confer resistance to hypoxia/reoxygenation stress in oyster mitochondria by alleviating production of reactive oxygen species and maintaining high aerobic capacity and ATP synthesis rates during recovery. Exposure to environmental stressors such as Cd and elevated temperatures abolished the putative adaptive responses of the substrate oxidation and phosphorylation subsystems, and strongly enhanced proton leak in mitochondria of oysters subjected to hypoxia/reoxygenation stress. Our findings suggest that Cd exposure and acute temperature stress may lead to the loss of mitochondrial resistance to hypoxia and reoxygenation and thus potentially affect the ability of oysters to survive periodic oxygen deprivation in coastal and estuarine habitats.

  7. Elevated temperature inhibits recruitment of transferrin-positive vesicles and induces iron-deficiency genes expression in Aiptasia pulchella host-harbored Symbiodinium.

    PubMed

    Song, Po-Ching; Wu, Tsung-Meng; Hong, Ming-Chang; Chen, Ming-Chyuan

    2015-10-01

    Coral bleaching is the consequence of disruption of the mutualistic Cnidaria-dinoflagellate association. Elevated seawater temperatures have been proposed as the most likely cause of coral bleaching whose severity is enhanced by a limitation in the bioavailability of iron. Iron is required by numerous organisms including the zooxanthellae residing inside the symbiosome of cnidarian cells. However, the knowledge of how symbiotic zooxanthellae obtain iron from the host cells and how elevated water temperature affects the association is very limited. Since cellular iron acquisition is known to be mediated through transferrin receptor-mediated endocytosis, a vesicular trafficking pathway specifically regulated by Rab4 and Rab5, we set out to examine the roles of these key proteins in the iron acquisition by the symbiotic Symbiodinium. Thus, we hypothesized that the iron recruitments into symbiotic zooxanthellae-housed symbiosomes may be dependent on rab4/rab5-mediated fusion with vesicles containing iron-bound transferrins and will be retarded under elevated temperature. In this study, we cloned a novel monolobal transferrin (ApTF) gene from the tropical sea anemone Aiptasia pulchella and confirmed that the association of ApTF with A. pulchella Rab4 (ApRab4) or A. pulchella Rab5 (ApRab5) vesicles is inhibited by elevated temperature through immunofluorescence analysis. We confirmed the iron-deficient phenomenon by demonstrating the induced overexpression of iron-deficiency-responsive genes, flavodoxin and high-affinity iron permease 1, and reduced intracellular iron concentration in zooxanthellae under desferrioxamine B (iron chelator) and high temperature treatment. In conclusion, our data are consistent with algal iron deficiency being a contributing factor for the thermal stress-induced bleaching of symbiotic cnidarians. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Mountain pine beetle host selection behavior confirms high resistance in Great Basin bristlecone pine

    Treesearch

    Erika L. Eidson; Karen E. Mock; Barbara J. Bentz

    2017-01-01

    Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epidemic levels across much of western North America, including high elevations where cool temperatures previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible hosts and experienced high levels of mortality in recent outbreaks, but...

  9. Growth performance and survival of larval Atlantic herring, under the combined effects of elevated temperatures and CO2

    PubMed Central

    Stiasny, Martina H.; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona

    2018-01-01

    In the coming decades, environmental change like warming and acidification will affect life in the ocean. While data on single stressor effects on fish are accumulating rapidly, we still know relatively little about interactive effects of multiple drivers. Of particular concern in this context are the early life stages of fish, for which direct effects of increased CO2 on growth and development have been observed. Whether these effects are further modified by elevated temperature was investigated here for the larvae of Atlantic herring (Clupea harengus), a commercially important fish species. Over a period of 32 days, larval survival, growth in size and weight, and instantaneous growth rate were assessed in a crossed experimental design of two temperatures (10°C and 12°C) with two CO2 levels (400 μatm and 900 μatm CO2) at food levels mimicking natural levels using natural prey. Elevated temperature alone led to increased swimming activity, as well as decreased survival and instantaneous growth rate (Gi). The comparatively high sensitivity to elevated temperature in this study may have been influenced by low food levels offered to the larvae. Larval size, Gi and swimming activity were not affected by CO2, indicating tolerance of this species to projected "end of the century" CO2 levels. A synergistic effect of elevated temperature and CO2 was found for larval weight, where no effect of elevated CO2 concentrations was detected in the 12°C treatment, but a negative CO2 effect was found in the 10°C treatment. Contrasting CO2 effects were found for survival between the two temperatures. Under ambient CO2 conditions survival was increased at 12°C compared to 10°C. In general, CO2 effects were minor and considered negligible compared to the effect of temperature under these mimicked natural food conditions. These findings emphasize the need to include biotic factors such as energy supply via prey availability in future studies on interactive effects of multiple stressors. PMID:29370273

  10. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures.

    PubMed

    Anderson, Laurel J; Cipollini, Don

    2013-08-01

    Global increases in atmospheric CO2 and temperature may interact in complex ways to influence plant physiology and growth, particularly for species that grow in cool, early spring conditions in temperate forests. Plant species may also vary in their responses to environmental changes; fast-growing invasives may be more responsive to rising CO2 than natives and may increase production of allelopathic compounds under these conditions, altering species' competitive interactions. We examined growth and physiological responses of Alliaria petiolata, an allelopathic, invasive herb, and Geum vernum, a co-occurring native herb, to ambient and elevated spring temperatures and atmospheric CO2 conditions in a factorial growth chamber experiment. At 5 wk, leaves were larger at high temperature, and shoot biomass increased under elevated CO2 only at high temperature in both species. As temperatures gradually warmed to simulate seasonal progression, G. vernum became responsive to CO2 at both temperatures, whereas A. petiolata continued to respond to elevated CO2 only at high temperature. Elevated CO2 increased thickness and decreased nitrogen concentrations in leaves of both species. Alliaria petiolata showed photosynthetic downregulation at elevated CO2, whereas G. vernum photosynthesis increased at elevated temperature. Flavonoid and cyanide concentrations decreased significantly in A. petiolata leaves in the elevated CO2 and temperature treatment. Total glucosinolate concentrations and trypsin inhibitor activities did not vary among treatments. Future elevated spring temperatures and CO2 will interact to stimulate growth for A. petiolata and G. vernum, but there may be reduced allelochemical effects in A. petiolata.

  11. Method for fabricating wrought components for high-temperature gas-cooled reactors and product

    DOEpatents

    Thompson, Larry D.; Johnson, Jr., William R.

    1985-01-01

    A method and alloys for fabricating wrought components of a high-temperature gas-cooled reactor are disclosed. These wrought, nickel-based alloys, which exhibit strength and excellent resistance to carburization at elevated temperatures, include aluminum and titanium in amounts and ratios to promote the growth of carburization resistant films while preserving the wrought character of the alloys. These alloys also include substantial amounts of molybdenum and/or tungsten as solid-solution strengtheners. Chromium may be included in concentrations less than 10% to assist in fabrication. Minor amounts of carbon and one or more carbide-forming metals also contribute to high-temperature strength.

  12. Effects of elevated temperature and CO2 concentration on photosynthesis of the alpine plants in Zoige Plateau, China

    NASA Astrophysics Data System (ADS)

    Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie

    2017-04-01

    Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants

  13. Frozen Smoke

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a NASA SBIR (Small Business Innovative Research) contract with Johnson Space Center, Aspen Systems developed aerogel-based superinsulation. This super-insulation is an innovative, flexible cryogenic insulation with extremely low thermal conductivity. Potential commercial uses include cryogenic applications in the transportation, storage and transfer of cryogens; near room-temperature applications such as refrigerator insulation; and elevated temperature applications such as insulations for high- temperature industrial processes and furnaces.

  14. Heat-Related Illnesses

    DTIC Science & Technology

    1988-04-01

    factors, thermometry, and fever versus hyper- thernia. ihe review of heat illnesses includes heat "anps, heat edema, heat syncope, heat exhaustiom...clinical situations. For example, fever , the daily circadian rhythm of temperature variation, and the 0.50 C difference in rectal temperature following...thermometry is state of the art. Fever versus Hyperthermia Elevations of body temperature can occur as a result of several different mechanisms. One

  15. Needle metabolome, freezing tolerance and gas exchange in Norway spruce seedlings exposed to elevated temperature and ozone concentration.

    PubMed

    Riikonen, Johanna; Kontunen-Soppela, Sari; Ossipov, Vladimir; Tervahauta, Arja; Tuomainen, Marjo; Oksanen, Elina; Vapaavuori, Elina; Heinonen, Jaakko; Kivimäenpää, Minna

    2012-09-01

    Northern forests are currently experiencing increasing mean temperatures, especially during autumn and spring. Consequently, alterations in carbon sequestration, leaf biochemical quality and freezing tolerance (FT) are likely to occur. The interactive effects of elevated temperature and ozone (O(3)), the most harmful phytotoxic air pollutant, on Norway spruce (Picea abies (L.) Karst.) seedlings were studied by analysing phenology, metabolite concentrations in the needles, FT and gas exchange. Sampling was performed in September and May. The seedlings were exposed to a year-round elevated temperature (+1.3 °C), and to 1.4× ambient O(3) concentration during the growing season in the field. Elevated temperature increased the concentrations of amino acids, organic acids of the citric acid cycle and some carbohydrates, and reduced the concentrations of phenolic compounds, some organic acids of the shikimic acid pathway, sucrose, cyclitols and steroids, depending on the timing of the sampling. Although growth onset occurred earlier at elevated temperature, the temperature of 50% lethality (LT(50)) was similar in the treatments. Photosynthesis and the ratio of photosynthesis to dark respiration were reduced by elevated temperature. Elevated concentrations of O(3) reduced the total concentration of soluble sugars, and tended to reduce LT(50) of the needles in September. These results show that alterations in needle chemical quality can be expected at elevated temperatures, but the seedlings' sensitivity to autumn and spring frosts is not altered. Elevated O(3) has the potential to disturb cold hardening of Norway spruce seedlings in autumn, and to alter the water balance of the seedling through changes in stomatal conductance (g(s)), while elevated temperature is likely to reduce g(s) and consequently reduce the O(3)-flux inside the leaves.

  16. Elevated seawater temperature, not pCO2, negatively affects post-spawning adult mussels (Mytilus edulis) under food limitation.

    PubMed

    Clements, Jeff C; Hicks, Carla; Tremblay, Réjan; Comeau, Luc A

    2018-01-01

    Pre-spawning blue mussels ( Mytilus edulis ) appear sensitive to elevated temperature and robust to elevated p CO 2 ; however, the effects of these stressors soon after investing energy into spawning remain unknown. Furthermore, while studies suggest that elevated p CO 2 affects the byssal attachment strength of Mytilus trossulus from southern latitudes, p CO 2 and temperature impacts on the byssus strength of other species at higher latitudes remain undocumented. In a 90 day laboratory experiment, we exposed post-spawning adult blue mussels ( M. edulis ) from Atlantic Canada to three p CO 2 levels ( p CO 2 ~625, 1295 and 2440 μatm) at two different temperatures (16°C and 22°C) and assessed energetic reserves on Day 90, byssal attachment strength on Days 30 and 60, and condition index and mortality on Days 30, 60 and 90. Results indicated that glycogen content was negatively affected under elevated temperature, but protein, lipid, and overall energy content were unaffected. Reduced glycogen content under elevated temperature was associated with reduced condition index, reduced byssal thread attachment strength, and increased mortality; elevated p CO 2 had no effects. Overall, these results suggest that the glycogen reserves of post-spawning adult M. edulis are sensitive to elevated temperature, and can result in reduced health and byssal attachment strength, leading to increased mortality. These results are similar to those reported for pre-spawning mussels and suggest that post-spawning blue mussels are tolerant to elevated p CO 2 and sensitive to elevated temperature. In contrast to previous studies, however, elevated pCO 2 did not affect byssus strength, suggesting that negative effects of elevated p CO 2 on byssus strength are not universal.

  17. Investigation of tension-compression fatigue behavior of a cross-ply metal matrix composite at room and elevated temperatures. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyum, E.A.

    1993-12-01

    This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less

  18. Marine Benthic Communities of Block Island and Rhode Island Sounds and What they're Good For

    EPA Science Inventory

    The benthic invertebrates of Block Island and Rhode Island Sounds include those adapted to near-shore habitats with variable temperature and salinity, mid-shelf species with narrower requirements, and boreal species that avoid elevated temperatures. Studies of benthic fauna in th...

  19. Creep of Hi-Nicalon S Ceramic Fiber Tows at Elevated Temperature in Air and in Steam

    DTIC Science & Technology

    2012-03-22

    temperature and environmental effects is a critical factor in development of composites with load carrying capacity and environmental durability...applications, including aircraft jet engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is

  20. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated [CO2] and temperature.

    PubMed

    Jauregui, Iván; Aroca, Ricardo; Garnica, María; Zamarreño, Ángel M; García-Mina, José M; Serret, Maria D; Parry, Martin; Irigoyen, Juan J; Aranjuelo, Iker

    2015-11-01

    Although climate scenarios have predicted an increase in [CO(2)] and temperature conditions, to date few experiments have focused on the interaction of [CO(2)] and temperature effects in wheat development. Recent evidence suggests that photosynthetic acclimation is linked to the photorespiration and N assimilation inhibition of plants exposed to elevated CO(2). The main goal of this study was to analyze the effect of interacting [CO(2)] and temperature on leaf photorespiration, C/N metabolism and N transport in wheat plants exposed to elevated [CO(2)] and temperature conditions. For this purpose, wheat plants were exposed to elevated [CO(2)] (400 vs 700 µmol mol(-1)) and temperature (ambient vs ambient + 4°C) in CO(2) gradient greenhouses during the entire life cycle. Although at the agronomic level, elevated temperature had no effect on plant biomass, physiological analyses revealed that combined elevated [CO(2)] and temperature negatively affected photosynthetic performance. The limited energy levels resulting from the reduced respiratory and photorespiration rates of such plants were apparently inadequate to sustain nitrate reductase activity. Inhibited N assimilation was associated with a strong reduction in amino acid content, conditioned leaf soluble protein content and constrained leaf N status. Therefore, the plant response to elevated [CO(2)] and elevated temperature resulted in photosynthetic acclimation. The reduction in transpiration rates induced limitations in nutrient transport in leaves of plants exposed to elevated [CO(2)] and temperature, led to mineral depletion and therefore contributed to the inhibition of photosynthetic activity. © 2015 Scandinavian Plant Physiology Society.

  1. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    PubMed

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  2. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  3. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress.

    PubMed

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-09-23

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  4. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    PubMed Central

    Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua

    2015-01-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070

  5. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    NASA Astrophysics Data System (ADS)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  6. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  7. Temperature and pH effects on feeding and growth of Antarctic krill

    NASA Astrophysics Data System (ADS)

    Saba, G.; Bockus, A.; Fantasia, R. L.; Shaw, C.; Sugla, M.; Seibel, B.

    2016-02-01

    Rapid warming in the Western Antarctic Peninsula (WAP) region is occurring, and is associated with an overall decline in primary, secondary, and higher trophic levels, including Antarctic krill (Euphausia superba), a key species in Antarctic food webs. Additionally, there are predictions that by the end of this century the Southern Ocean will be one of the first regions to be affected by seawater chemistry changes associated with enhanced CO2. Ocean acidification and warming may act synergistically to impair animal performance, which may negatively impact Antarctic krill. We assessed the effects of temperature (ambient temperature, ambient +3 degrees C) and pH (Experiment 1 = 8.0, 7.7; Experiment 2 = 8.0, 7.5, 7.1) on juvenile Antarctic krill feeding and growth (growth increment and intermolt period) during incubation experiments at Palmer Station, Antarctica. Food intake was lower in krill exposed to reduced pH. Krill intermolt period (IMP) was significantly lower in the elevated temperature treatments (16.9 days) compared to those at 0 degrees (22.8 days). Within the elevated temperature treatment, minor increases in IMP occurred in krill exposed reduced pH. Growth increment (GI) was lower with decreased pH at the first molt, and this was exacerbated at elevated temperature. However, differences in GI were eliminated between the first and second molts suggesting potential ability of Antarctic krill to acclimate to changes in temperature and pH. Reductions in juvenile krill growth and feeding under elevated temperature and reduced pH are likely caused by higher demands for internal acid-base regulation or a metabolic suppression. However, the subtlety of these feeding and growth responses leaves an open question as to how krill populations will tolerate prolonged future climate change in the Antarctic.

  8. Temperature suitability for malaria climbing the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Lyon, Bradfield; Dinku, Tufa; Raman, Anita; Thomson, Madeleine C.

    2017-06-01

    While the effect of climate change on the prevalence of malaria in the highlands of Eastern Africa has been the topic of protracted debate, temperature is widely accepted as a fundamentally important environmental factor constraining its transmission. Air temperatures below approximately 18 °C and 15 °C, respectively, prohibit the development of the Plasmodium falciparum and P. vivax parasites responsible for the majority of malaria cases in Ethiopia. Low temperatures also impede the development rates of the Anopheles mosquito vectors. While locations of sufficiently high elevation have temperatures below these transmission thresholds, a fundamental question is how such temperature ‘threshold elevations’ are changing with time. A lack of high quality, high spatial resolution climate data has previously prohibited a rigorous investigation. Using a newly developed national temperature dataset for Ethiopia that combines numerous in-situ surface observations with downscaled reanalysis data, we here identify statistically significant increases in elevation for both the 18 °C and 15 °C thresholds in highland areas between 1981-2014. Substantial interannual and spatial variations in threshold elevations are identified, the former associated with the El Niño Southern-Oscillation and the latter with the complex climate of the region. The estimated population in locations with an upward trend in the 15 °C threshold elevation is approximately 6.5 million people (2.2 million for 18 °C). While not a direct prediction of the additional population made vulnerable to malaria through a shift to higher temperature, our results underscore a newly acquired ability to investigate climate variability and trends at fine spatial scales across Ethiopia, including changes in a fundamental constraint on malaria transmission in the Ethiopian Highlands.

  9. Carbohydrate metabolism in the subtending leaf cross-acclimates to waterlogging and elevated temperature stress and influences boll biomass in cotton (Gossypium hirsutum).

    PubMed

    Wang, Haimiao; Chen, Yinglong; Hu, Wei; Wang, Shanshan; Snider, John L; Zhou, Zhiguo

    2017-11-01

    Short-term waterlogging and chronic elevated temperature occur concomitantly in the cotton (Gossypium hirsutum) growing season. While previous research about co-occurring waterlogging and elevated temperature has focused primarily on cotton fiber, no studies have investigated carbohydrate metabolism of the subtending leaf (a major source leaf for boll development) cross-acclimation to aforementioned stressors. To address this, plants were exposed to ambient (31.6/26.5°C) and elevated (34.1/29.0°C) temperatures during the whole flowering and boll formation stage, and waterlogging (0, 3, 6 days) beginning on the day of anthesis. Both waterlogging and high temperature limited boll biomass (reduced by 1.19-32.14%), but effects of different durations of waterlogging coupled with elevated temperature on carbohydrate metabolism in the subtending leaf were quite different. The 6-day waterlogging combined with elevated temperature had the most negative impact on net photosynthetic rate (Pn) and carbohydrate metabolism of any treatment, leading to upregulated GhSusA and GhSusC expression and enhanced sucrose synthase (SuSy, EC 2.4.1.13) activity for sucrose degradation. A prior exposure to waterlogging for 3 days improved subtending leaf performance under elevated temperature. Pn, sucrose concentrations, Rubisco (EC 4.1.1.39) activity, and cytosolic fructose-1,6-bisphosphatase (cy-FBPase, EC 3.1.3.11) activity in the subtending leaf significantly increased, while SuSy activity decreased under 3 days waterlogging and elevated temperature combined relative to elevated temperature alone. Thus, we concluded that previous exposure to a brief (3 days) waterlogging stress improved sucrose composition and accumulation cross-acclimation to high temperature later in development not only by promoting leaf photosynthesis but also inhibiting sucrose degradation. © 2017 Scandinavian Plant Physiology Society.

  10. Ecological effects of feral biofuel crops in constructed oak ...

    EPA Pesticide Factsheets

    The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesocosm held three tubs. One had six native plant species; one had five native species with the annual crop Sorghum bicolor and one had five native species along with the weedy perennial Sorghum halepense. The experimental treatments were ambient (control), elevated temperature, drought, or a combination of elevated temperature and drought. Total aboveground biomass of the community was greatest in the control and drought treatments, lowest with elevated temperature + drought, and intermediate in high temperature treatments (P<0.0001). Sorghum species produced significantly less biomass than the native grass species (P< 0.05). S. bicolor seed biomass was greatest under elevated temperature and lowest in the elevated temperature + drought treatment (P=0.0002). Neither of the Sorghum species significantly affected active soil bacterial biomass. Active bacterial biomass was lowest in the drought and elevated temperature and drought treatments (P<0.05). Active soil fungal biomass was highest in the tubs containing S. bicolor. Percent total carbon in the soil increased between 2010 and 2011 (P=0.0054); it was lowest in the elevated temperature and drought mesocosms (P<0.05). Longer term studi

  11. Field experimental data for crop modeling of wheat growth response to nitrogen fertilizer, elevated CO2, water stress, and high temperature

    USDA-ARS?s Scientific Manuscript database

    Field experimental data of five experiments covering a wide range Field experimental data of five experiments covering a wide range of growing conditions are assembled for wheat growth and cropping systems modeling. The data include (i) an experiment on interactive effects of elevated CO2 by water a...

  12. Stable isotope ratios and reforestation potential in Acacia koa populations on Hawai'i

    Treesearch

    Shaneka Lawson; Carrie Pike

    2017-01-01

    Stable carbon and nitrogen isotopes can be influenced by a multitude of factors including elevation, precipitation rate, season, and temperature. This work examined variability in foliar stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of koa (Acacia koa) across 17 sites on Hawai'i Island, delineated by elevation and precipitation...

  13. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures.

    PubMed

    Zamora-Camacho, Francisco Javier; Rubiño-Hispán, María Virtudes; Reguera, Senda; Moreno-Rueda, Gregorio

    2015-08-01

    Sprint speed has a capital relevance in most animals' fitness, mainly for fleeing from predators. Sprint performance is maximal within a certain range of body temperatures in ectotherms, whose thermal upkeep relies on exogenous thermal sources. Ectotherms can respond to diverse thermal environments either by shifting their thermal preferences or maintaining them through different adaptive mechanisms. Here, we tested whether maximum sprint speed of a lizard that shows conservative thermal ecology along a 2200-meter elevational gradient differs with body temperature in lizards from different elevations. Lizards ran faster at optimum than at suboptimum body temperature. Notably, high-elevation lizards were not faster than mid- and low-elevation lizards at suboptimum body temperature, despite their low-quality thermal environment. This result suggests that both preferred body temperature and thermal dependence of speed performance are co-adapted along the elevational gradient. High-elevation lizards display a number of thermoregulatory strategies that allow them to achieve high optimum body temperatures in a low thermal-quality habitat and thus maximize speed performance. As for reproductive condition, we did not find any effect of it on sprint speed, or any significant interaction with elevation or body temperature. However, strikingly, gravid females were significantly slower than males and non-gravid females at suboptimum temperature, but performed similarly well at optimal temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    PubMed

    Ramalho, José C; Pais, Isabel P; Leitão, António E; Guerra, Mauro; Reboredo, Fernando H; Máguas, Cristina M; Carvalho, Maria L; Scotti-Campos, Paula; Ribeiro-Barros, Ana I; Lidon, Fernando J C; DaMatta, Fábio M

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO 2 ] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO 2 ] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO 2 ] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO 2 L -1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30-35 or 36-40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p -coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO 2 ]. However, the [CO 2 ] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p -coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO 2 ] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO 2 ] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios.

  15. Can Elevated Air [CO2] Conditions Mitigate the Predicted Warming Impact on the Quality of Coffee Bean?

    PubMed Central

    Ramalho, José C.; Pais, Isabel P.; Leitão, António E.; Guerra, Mauro; Reboredo, Fernando H.; Máguas, Cristina M.; Carvalho, Maria L.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.

    2018-01-01

    Climate changes, mostly related to high temperature, are predicted to have major negative impacts on coffee crop yield and bean quality. Recent studies revealed that elevated air [CO2] mitigates the impact of heat on leaf physiology. However, the extent of the interaction between elevated air [CO2] and heat on coffee bean quality was never addressed. In this study, the single and combined impacts of enhanced [CO2] and temperature in beans of Coffea arabica cv. Icatu were evaluated. Plants were grown at 380 or 700 μL CO2 L-1 air, and then submitted to a gradual temperature rise from 25°C up to 40°C during ca. 4 months. Fruits were harvested at 25°C, and in the ranges of 30–35 or 36–40°C, and bean physical and chemical attributes with potential implications on quality were then examined. These included: color, phenolic content, soluble solids, chlorogenic, caffeic and p-coumaric acids, caffeine, trigonelline, lipids, and minerals. Most of these parameters were mainly affected by temperature (although without a strong negative impact on bean quality), and only marginally, if at all, by elevated [CO2]. However, the [CO2] vs. temperature interaction strongly attenuated some of the negative impacts promoted by heat (e.g., total chlorogenic acids), thus maintaining the bean characteristics closer to those obtained under adequate temperature conditions (e.g., soluble solids, caffeic and p-coumaric acids, trigonelline, chroma, Hue angle, and color index), and increasing desirable features (acidity). Fatty acid and mineral pools remained quite stable, with only few modifications due to elevated air [CO2] (e.g., phosphorous) and/or heat. In conclusion, exposure to high temperature in the last stages of fruit maturation did not strongly depreciate bean quality, under the conditions of unrestricted water supply and moderate irradiance. Furthermore, the superimposition of elevated air [CO2] contributed to preserve bean quality by modifying and mitigating the heat impact on physical and chemical traits of coffee beans, which is clearly relevant in a context of predicted climate change and global warming scenarios. PMID:29559990

  16. Combination treatment of elevated UVB radiation, CO2 and temperature has little effect on silver birch (Betula pendula) growth and phytochemistry.

    PubMed

    Lavola, Anu; Nybakken, Line; Rousi, Matti; Pusenius, Jyrki; Petrelius, Mari; Kellomäki, Seppo; Julkunen-Tiitto, Riitta

    2013-12-01

    Elevations of carbon dioxide, temperature and ultraviolet-B (UBV) radiation in the growth environment may have a high impact on the accumulation of carbon in plants, and the different factors may work in opposite directions or induce additive effects. To detect the changes in the growth and phytochemistry of silver birch (Betula pendula) seedlings, six genotypes were exposed to combinations of ambient or elevated levels of CO2 , temperature and UVB radiation in top-closed chambers for 7 weeks. The genotypes were relatively similar in their responses, and no significant interactive effects of three-level climate factors on the measured parameters were observed. Elevated UVB had no effect on growth, nor did it alter plant responses to CO2 and/or temperature in combined treatments. Growth in all plant parts increased under elevated CO2 , and height and stem biomass increased under elevated temperature. Increased carbon distribution to biomass did not reduce its allocation to phytochemicals: condensed tannins, most flavonols and phenolic acids accumulated under elevated CO2 and elevated UVB, but this effect disappeared under elevated temperature. Leaf nitrogen content decreased under elevated CO2 . We conclude that, as a result of high genetic variability in phytochemicals, B. pendula seedlings have potential to adapt to the tested environmental changes. The induction in protective flavonoids under UVB radiation together with the positive impact of elevated CO2 and temperature mitigates possible UVB stress effects, and thus atmospheric CO2 concentration and temperature are the climate change factors that will dictate the establishment and success of birch at higher altitudes in the future. © 2013 Scandinavian Plant Physiology Society.

  17. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    PubMed

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine[OPEN

    PubMed Central

    2016-01-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low-temperature events changes, this is unlikely to increase risk of freezing damage in P. strobus seedlings. PMID:27591187

  19. Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jianhua; Yi Danqing; Su Xuping

    2008-07-15

    The effects of deformation ageing treatment (DAT) on the microstructure and properties of aluminum alloy 2618 were investigated. The alloy was subjected to deformation ageing treatment which included solution treating at 535 deg. C quenching into water at room-temperature, cold rolling (10%) and further ageing to peak hardness level at 200 deg. C. The electron microscopic studies revealed that the treatment affects the ageing characteristics and the coarsening of ageing phase (S') at elevated-temperature. The dislocation-precipitate tangles substructure couldn't be found in alloy 2618. The tensile and hardness tests showed that deformation-ageing treatment causes a significant improvement in tensile strengthmore » and hardness to alloy 2618 at room- and elevated-temperature.« less

  20. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL CARBON DENSITY FRACTIONS IN A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  1. DOES SOIL CO2 EFFLUX ACCLIMATIZETO ELEVATED TEMPERATURE AND CO2 DURING LONG-TERM TREATMENT OF DOUGLAS-FIR SEEDLINGS?

    EPA Science Inventory

    We investigated the effects of elevated soil temperature and atmospheric CO2 efflux (SCE) during the third an fourth years of study. We hypothesized that elevated temperature would stimulate SCE, and elevated CO2 would also stimulate SCE with the stimulation being greater at hig...

  2. ELEVATED TEMPERATURE, SOIL MOISTURE AND SEASONALITY BUT NOT CO2 AFFECT CANOPY ASSIMILATION AND SYSTEM RESPIRATION IN SEEDLING DOUGLAS-FIR ECOSYSTEMS

    EPA Science Inventory

    We investigated the effects of elevated atmospheric CO2 and air temperature on C cycling in trees and associated soil system, focusing on canopy CO2 assimilation (Asys) and system CO2 loss through respiration (Rsys). We hypothesized that both elevated CO2 and elevated temperature...

  3. Microevolution of the photosynthetic temperature optimum in relation to the elevational complex gradient

    Treesearch

    John H. Fryer; F. Thomas Ledig

    1972-01-01

    Balsam fir seedlings were grown under uniform conditions from seed collected along an elevational gradient in the White Mountains of New Hampshire. Photosynthetic temperature optimum of the seedlings decreased with increasing elevation of the seed source. The change in temperature optimum with elevation was similar to the adiabatic lapse rate, suggesting a precise...

  4. Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut.

    PubMed

    Gräns, Albin; Jutfelt, Fredrik; Sandblom, Erik; Jönsson, Elisabeth; Wiklander, Kerstin; Seth, Henrik; Olsson, Catharina; Dupont, Sam; Ortega-Martinez, Olga; Einarsdottir, Ingibjörg; Björnsson, Björn Thrandur; Sundell, Kristina; Axelsson, Michael

    2014-03-01

    As a consequence of increasing atmospheric CO2, the world's oceans are becoming warmer and more acidic. Whilst the ecological effects of these changes are poorly understood, it has been suggested that fish performance including growth will be reduced mainly as a result of limitations in oxygen transport capacity. Contrary to the predictions given by the oxygen- and capacity-limited thermal tolerance hypothesis, we show that aerobic scope and cardiac performance of Atlantic halibut (Hippoglossus hippoglossus) increase following 14-16 weeks exposure to elevated temperatures and even more so in combination with CO2-acidified seawater. However, the increase does not translate into improved growth, demonstrating that oxygen uptake is not the limiting factor for growth performance at high temperatures. Instead, long-term exposure to CO2-acidified seawater reduces growth at temperatures that are frequently encountered by this species in nature, indicating that elevated atmospheric CO2 levels may have serious implications on fish populations in the future.

  5. Application of elevated temperature-dispersive liquid-liquid microextraction for determination of organophosphorus pesticides residues in aqueous samples followed by gas chromatography-flame ionization detection.

    PubMed

    Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Rezaee Aghdam, Samaneh; Nouri, Nina; Bamorrowat, Mahdi

    2016-12-01

    In the present study, an elevated temperature, dispersive, liquid-liquid microextraction/gas chromatography-flame ionization detection was investigated for the determination, pre-concentration, and extraction of six organophosphorus pesticides (malathion, phosalone, dichlorvos, diazinon, profenofos, and chlorpyrifos) residues in fruit juice and aqueous samples. A mixture of 1,2-dibromoethane (extraction solvent) and dimethyl sulfoxide (disperser solvent) was injected rapidly into the sample solution heated at an elevated temperature. Analytical parameters, including enrichment factors (1600-2075), linearity (r>0.994), limits of detection (0.82-2.72ngmL(-1)) and quantification (2.60-7.36ngmL(-1)), relative standard deviations (<7%) and extraction recoveries (64-83%), showed the high efficiency of the method developed for analysis of the target analytes. The proposed procedure was used effectively to analyse selected analytes in river water and fruit juice, and diazinon was found at ngmL(-1) concentrations in apple juice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization.

    PubMed

    Achmon, Yigal; Harrold, Duff R; Claypool, Joshua T; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2016-02-01

    Pomaces from tomato paste and wine production are the most abundant fruit processing residues in California. These residues were examined as soil amendments for solarization to promote conditions conducive to soil disinfestation (biosolarization). Simulated biosolarization studies were performed in both aerobic and anaerobic soil environments and soil temperature elevation, pH, and evolution of CO2, H2 and CH4 gases were measured as metrics of soil microbial activity. Tomato pomace amendment induced conditions associated with soil pest inactivation, including elevation of soil temperature by up to 2°C for a duration of 4days under aerobic conditions and a reduction of soil pH from 6.5 to 4.68 under anaerobic conditions. White wine grape pomace amendment showed similar trends but to a lesser extent. Red wine grape pomace was generally less suitable for biosolarization due to significantly lower soil temperature elevations, reduced acidification relative to the other pomaces and induction of methanogenesis in the soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Climate-mediated cooperation promotes niche expansion in burying beetles.

    PubMed

    Sun, Syuan-Jyun; Rubenstein, Dustin R; Chen, Bo-Fei; Chan, Shih-Fan; Liu, Jian-Nan; Liu, Mark; Hwang, Wenbe; Yang, Ping-Shih; Shen, Sheng-Feng

    2014-05-13

    The ability to form cooperative societies may explain why humans and social insects have come to dominate the earth. Here we examine the ecological consequences of cooperation by quantifying the fitness of cooperative (large groups) and non-cooperative (small groups) phenotypes in burying beetles (Nicrophorus nepalensis) along an elevational and temperature gradient. We experimentally created large and small groups along the gradient and manipulated interspecific competition with flies by heating carcasses. We show that cooperative groups performed as thermal generalists with similarly high breeding success at all temperatures and elevations, whereas non-cooperative groups performed as thermal specialists with higher breeding success only at intermediate temperatures and elevations. Studying the ecological consequences of cooperation may not only help us to understand why so many species of social insects have conquered the earth, but also to determine how climate change will affect the success of these and other social species, including our own.DOI: http://dx.doi.org/10.7554/eLife.02440.001. Copyright © 2014, Sun et al.

  8. Climate-mediated cooperation promotes niche expansion in burying beetles

    PubMed Central

    Sun, Syuan-Jyun; Rubenstein, Dustin R; Chen, Bo-Fei; Chan, Shih-Fan; Liu, Jian-Nan; Liu, Mark; Hwang, Wenbe; Yang, Ping-Shih; Shen, Sheng-Feng

    2014-01-01

    The ability to form cooperative societies may explain why humans and social insects have come to dominate the earth. Here we examine the ecological consequences of cooperation by quantifying the fitness of cooperative (large groups) and non-cooperative (small groups) phenotypes in burying beetles (Nicrophorus nepalensis) along an elevational and temperature gradient. We experimentally created large and small groups along the gradient and manipulated interspecific competition with flies by heating carcasses. We show that cooperative groups performed as thermal generalists with similarly high breeding success at all temperatures and elevations, whereas non-cooperative groups performed as thermal specialists with higher breeding success only at intermediate temperatures and elevations. Studying the ecological consequences of cooperation may not only help us to understand why so many species of social insects have conquered the earth, but also to determine how climate change will affect the success of these and other social species, including our own. DOI: http://dx.doi.org/10.7554/eLife.02440.001 PMID:24842999

  9. Elastic hysteresis phenomena in ULE and Zerodur optical glasses at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, S.C.; Coon, D.N.; Epstein, J.S.

    1988-01-01

    Elastic hysteresis phenomena were observed in ULE and Zerodur glasses at elevated temperatures up to glass transition. These effects were found under load deformation testing using four-point bending. Permanent creep resulted in Zerodur at 900/degree/C and in ULE at 1000/degree/C. The deformation was monitored at mid-span of the samples with a capacitance-type transducer having 0.01 micrometer resolution. These hysteresis effects may be classified as elastic bimodulus between loading and unloading; that is, two different elastic moduli were observed between loading and unloading. Upon complete unloading, a minimal deformation state promptly returned, indicating little or no viscoelastic creep. The hysteresis effectmore » may be attributed to a change in glass structure as a function of stress state. A description of the test apparatus and procedure, test results for both glasses at several elevated temperatures, and an elementary discussion of continuum theory of constitutive behavior are included. 6 refs., 9 figs.« less

  10. Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure.

    PubMed

    Li, Guanghui; Zhao, Jun; Wang, Zike

    2018-06-16

    Fiber-reinforced polymer (FRP) bars have been widely applied in civil engineering. This paper presents the results of an experimental study to investigate the tensile fatigue mechanical properties of glass fiber-reinforced polymer (GFRP) bars after elevated temperatures exposure. For this purpose, a total of 105 GFRP bars were conducted for testing. The specimens were exposed to heating regimes of 100, 150, 200, 250, 300 and 350 °C for a period of 0, 1 or 2 h. The GFRP bars were tested with different times of cyclic load after elevated temperatures exposure. The results show that the tensile strength and elastic modulus of GFRP bars decrease with the increase of elevated temperature and holding time, and the tensile strength of GFRP bars decreases obviously by 19.5% when the temperature reaches 250 °C. Within the test temperature range, the tensile strength of GFRP bars decreases at most by 28.0%. The cyclic load accelerates the degradation of GFRP bars after elevated temperature exposure. The coupling of elevated temperature and holding time enhance the degradation effect of cyclic load on GFRP bars. The tensile strength of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 50.5% compared with that at room temperature and by 36.3% compared with that after exposing at 350 °C without cyclic load. In addition, the elastic modulus of GFRP bars after elevated temperatures exposure at 350 °C under cyclic load is reduced by 17.6% compared with that at room temperature and by 6.0% compared with that after exposing at 350 °C without cyclic load.

  11. Fuel retention under elevated wall temperature in KSTAR with a carbon wall

    NASA Astrophysics Data System (ADS)

    Cao, B.; Hong, S. H.

    2018-03-01

    The fuel retention during KSTAR discharges with elevated wall temperature (150 °C) has been studied by using the method of global particle balance. The results show that the elevated wall temperature could reduce the dynamic retention via implantation and absorption, especially for the short pulse shots with large injected fuel particles. There is no signature changing of long-term retention, which related to co-deposition, under elevated wall temperature. For soft-landing shots (normal shots), the exhausted fuel particles during discharges is larger with elevated wall temperature than without, but the exhausted particles after discharges within 90 s looks similar. The outgassing particles because of disruption could be exhausted within 15 s.

  12. Temperature elevation in the fetus from electromagnetic exposure during magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kikuchi, Satoru; Saito, Kazuyuki; Takahashi, Masaharu; Ito, Koichi

    2010-04-01

    This study computationally assessed the temperature elevations due to electromagnetic wave energy deposition during magnetic resonance imaging in non-pregnant and pregnant woman models. We used a thermal model with thermoregulatory response of the human body for our calculations. We also considered the effect of blood temperature variation on body core temperature. In a thermal equilibrium state, the temperature elevations in the intrinsic tissues of the woman and fetal tissues were 0.85 and 0.61 °C, respectively, at a whole-body averaged specific absorption rate of 2.0 W kg-1, which is the restriction value of the International Electrotechnical Commission for the normal operating mode. As predicted, these values are below the temperature elevation of 1.5 °C that is expected to be teratogenic. However, these values exceeded the recommended temperature elevation limit of 0.5 °C by the International Commission on Non-Ionizing Radiation Protection. We also assessed the irradiation time required for a temperature elevation of 0.5 °C at the aforementioned specific absorption rate. As a result, the calculated irradiation time was 40 min.

  13. Parameter variation effects on temperature elevation in a steady-state, one-dimensional thermal model for millimeter wave exposure of one- and three-layer human tissue.

    PubMed

    Kanezaki, Akio; Hirata, Akimasa; Watanabe, Soichi; Shirai, Hiroshi

    2010-08-21

    The present study describes theoretical parametric analysis of the steady-state temperature elevation in one-dimensional three-layer (skin, fat and muscle) and one-layer (skin only) models due to millimeter-wave exposure. The motivation of this fundamental investigation is that some variability of warmth sensation in the human skin has been reported. An analytical solution for a bioheat equation was derived by using the Laplace transform for the one-dimensional human models. Approximate expressions were obtained to investigate the dependence of temperature elevation on different thermal and tissue thickness parameters. It was shown that the temperature elevation on the body surface decreases monotonically with the blood perfusion rate, heat conductivity and heat transfer from the body to air. Also revealed were the conditions where maximum and minimum surface temperature elevations were observed for different thermal and tissue thickness parameters. The surface temperature elevation in the three-layer model is 1.3-2.8 times greater than that in the one-layer model. The main reason for this difference is attributed to the adiabatic nature of the fat layer. By considering the variation range of thermal and tissue thickness parameters which causes the maximum and minimum temperature elevations, the dominant parameter influencing the surface temperature elevation was found to be the heat transfer coefficient between the body surface and air.

  14. Alterations in gonadotropin secretion and ovarian function in prepubertal gilts by elevated environmental temperature.

    PubMed

    Flowers, B; Day, B N

    1990-03-01

    The effect of chronic exposure to elevated environmental temperature on gonadotropin secretion and ovarian function was studied in prepubertal gilts. Gilts were maintained under control (15.6 degrees C) or elevated temperature (33.3 degrees C) conditions from 150 to 180 days of age. Endocrine and ovarian responses to bilateral (BLO), unilateral (ULO), and sham ovariectomy were evaluated between 175 and 180 days of age. During the 96-h sampling period after BLO, plasma concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were suppressed in heat-stressed females. Similarly, elevated temperatures abolished the transient rise in FSH and subsequent follicular growth normally associated with ULO. In contrast, environmental treatment had no effect on the secretion of FSH and LH after sham ovariectomy, yet the number of small follicles was lower in gilts exposed to elevated temperatures than in females maintained under control conditions. These results indicate that a chronic exposure to elevated environmental temperature during pubertal development diminished the ability of the hypothalamo-hypophyseal axis to secrete FSH and LH, which had physiological consequences on follicular growth. When provided an appropriate stimulus (ULO), an acute period of FSH secretion and subsequent development of follicles failed to occur in females exposed to elevated temperatures. Consequently, we propose that delayed puberty in gilts during periods of elevated environmental temperatures is due, in part, to a diminished capacity for gonadotropin secretion.

  15. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures

    PubMed Central

    Abdulkareem, Omar A.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Binhussain, Mohammed

    2013-01-01

    This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates. PMID:28788339

  16. Mechanical and Microstructural Evaluations of Lightweight Aggregate Geopolymer Concrete before and after Exposed to Elevated Temperatures.

    PubMed

    Abdulkareem, Omar A; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Ismail, Khairul Nizar; Binhussain, Mohammed

    2013-10-09

    This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.

  17. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore.

    PubMed

    Murray, T J; Ellsworth, D S; Tissue, D T; Riegler, M

    2013-05-01

    Understanding the direct and indirect effects of elevated [CO2 ] and temperature on insect herbivores and how these factors interact are essential to predict ecosystem-level responses to climate change scenarios. In three concurrent glasshouse experiments, we measured both the individual and interactive effects of elevated [CO2 ] and temperature on foliar quality. We also assessed the interactions between their direct and plant-mediated effects on the development of an insect herbivore of eucalypts. Eucalyptus tereticornis saplings were grown at ambient or elevated [CO2 ] (400 and 650 μmol mol(-1) respectively) and ambient or elevated ( + 4 °C) temperature for 10 months. Doratifera quadriguttata (Lepidoptera: Limacodidae) larvae were feeding directly on these trees, on their excised leaves in a separate glasshouse, or on excised field-grown leaves within the temperature and [CO2 ] controlled glasshouse. To allow insect gender to be determined and to ensure that any sex-specific developmental differences could be distinguished from treatment effects, insect development time and consumption were measured from egg hatch to pupation. No direct [CO2 ] effects on insects were observed. Elevated temperature accelerated larval development, but did not affect leaf consumption. Elevated [CO2 ] and temperature independently reduced foliar quality, slowing larval development and increasing consumption. Simultaneously increasing both [CO2 ] and temperature reduced these shifts in foliar quality, and negative effects on larval performance were subsequently ameliorated. Negative nutritional effects of elevated [CO2 ] and temperature were also independently outweighed by the direct positive effect of elevated temperature on larvae. Rising [CO2 ] and temperature are thus predicted to have interactive effects on foliar quality that affect eucalypt-feeding insects. However, the ecological consequences of these interactions will depend on the magnitude of concurrent temperature rise and its direct effects on insect physiology and feeding behaviour. © 2013 Blackwell Publishing Ltd.

  18. Constitutive modeling of superalloy single crystals with verification testing

    NASA Technical Reports Server (NTRS)

    Jordan, Eric; Walker, Kevin P.

    1985-01-01

    The goal is the development of constitutive equations to describe the elevated temperature stress-strain behavior of single crystal turbine blade alloys. The program includes both the development of a suitable model and verification of the model through elevated temperature-torsion testing. A constitutive model is derived from postulated constitutive behavior on individual crystallographic slip systems. The behavior of the entire single crystal is then arrived at by summing up the slip on all the operative crystallographic slip systems. This type of formulation has a number of important advantages, including the prediction orientation dependence and the ability to directly represent the constitutive behavior in terms which metallurgists use in describing the micromechanisms. Here, the model is briefly described, followed by the experimental set-up and some experimental findings to date.

  19. Miocene Surface Temperature Estimates of the Southern Altiplano and Their Implications for Surface Uplift

    NASA Astrophysics Data System (ADS)

    Smith, J. J.; Garzione, C.; Higgins, P.; MacFadden, B.; Auerbach, D.; Croft, D.

    2008-12-01

    Surface temperature estimates derived from stable isotopes can be used to infer tectonic history and subsequent climate change of the Bolivian Altiplano. This study compares surface temperatures calculated from two fossil localities (Cerdas and Quehua) that span middle to late Miocene age in the southern Altiplano. Temperatures were calculated using the approach of Zanazzi et al. (2007) by comparing the stable isotopes of fossil tooth enamel and concurrent fossilized bones. The δ18O of the surface water is derived from fossil tooth enamel that mineralized at a known mammal body temperature. Surface water compositions are then used to calculate the temperature at which fossil bones were diagenetically altered, using the assumption that most alteration of fossil bones occurs within 20 to 50 thousand years of deposition. These surface temperature estimates can be used as a proxy for the amount of surface uplift based on modern temperature lapse rates. The vertical surface temperature gradient observed in the present-day Andes is about 4.66°C/km. Changes in surface elevations may explain large temperature changes reflected throughout the middle to late Miocene. Cerdas and Quehua, at modern elevations of ~3800m, have fossil records that include teeth and diagenetically altered bones that were deposited before and during a period of inferred rapid surface uplift of the northern Altiplano of 2.5 ± 1 km between ~10 to 6 Ma. Both sites have been dated by magnetostratigraphy and by 40Ar/39Ar dating of tuffs: Cerdas dates from 16.358 ± 0.071 to 15.105 ± 0.073 Ma, and Quehua ranges from 12.611 ± 0.034 to 6.844 ± 0.386 Ma. The close proximity and current elevation of Cerdas (21.9°S, 3800m) and Quehua (20.0°S, 3800m) allows for the assumption that their elevations were closely correlated through time. Thus the temperatures and elevation estimates derived from each location are assumed to reflect the larger extent of the southern Altiplano. If analysis of fossil enamel and bone from these locations shows a significant temperature decrease from middle to late Miocene, this would support the hypothesis of rapid regional surface uplift of the Altiplano during the late Miocene due to loss of the dense lower crust and/or lithospheric mantle.

  20. Stable catalyst layers for hydrogen permeable composite membranes

    DOEpatents

    Way, J. Douglas; Wolden, Colin A

    2014-01-07

    The present invention provides a hydrogen separation membrane based on nanoporous, composite metal carbide or metal sulfide coated membranes capable of high flux and permselectivity for hydrogen without platinum group metals. The present invention is capable of being operated over a broad temperature range, including at elevated temperatures, while maintaining hydrogen selectivity.

  1. Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995

    USGS Publications Warehouse

    Haggard, Brian; Green, W. Reed

    2002-01-01

    The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.

  2. Interactive effects of elevated temperature and CO2 levels on energy metabolism and biomineralization of marine bivalves Crassostrea virginica and Mercenaria mercenaria.

    PubMed

    Ivanina, Anna V; Dickinson, Gary H; Matoo, Omera B; Bagwe, Rita; Dickinson, Ashley; Beniash, Elia; Sokolova, Inna M

    2013-09-01

    The continuing increase of carbon dioxide (CO2) levels in the atmosphere leads to increases in global temperatures and partial pressure of CO2 (PCO2) in surface waters, causing ocean acidification. These changes are especially pronounced in shallow coastal and estuarine waters and are expected to significantly affect marine calcifiers including bivalves that are ecosystem engineers in estuarine and coastal communities. To elucidate potential effects of higher temperatures and PCO2 on physiology and biomineralization of marine bivalves, we exposed two bivalve species, the eastern oysters Crassostrea virginica and the hard clams Mercenaria mercenaria to different combinations of PCO2 (~400 and 800μatm) and temperatures (22 and 27°C) for 15weeks. Survival, bioenergetic traits (tissue levels of lipids, glycogen, glucose and high energy phosphates) and biomineralization parameters (mechanical properties of the shells and activity of carbonic anhydrase, CA) were determined in clams and oysters under different temperature and PCO2 regimes. Our analysis showed major inter-species differences in shell mechanical traits and bioenergetics parameters. Elevated temperature led to the depletion of tissue energy reserves indicating energy deficiency in both species and resulted in higher mortality in oysters. Interestingly, while elevated PCO2 had a small effect on the physiology and metabolism of both species, it improved survival in oysters. At the same time, a combination of high temperature and elevated PCO2 lead to a significant decrease in shell hardness in both species, suggesting major changes in their biomineralization processes. Overall, these studies show that global climate change and ocean acidification might have complex interactive effects on physiology, metabolism and biomineralization in coastal and estuarine marine bivalves. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Bioavailable soil phosphorus decreases with increasing elevation in a subarctic tundra landscape.

    PubMed

    Vincent, Andrea G; Sundqvist, Maja K; Wardle, David A; Giesler, Reiner

    2014-01-01

    Phosphorus (P) is an important macronutrient in arctic and subarctic tundra and its bioavailability is regulated by the mineralization of organic P. Temperature is likely to be an important control on P bioavailability, although effects may differ across contrasting plant communities with different soil properties. We used an elevational gradient in northern Sweden that included both heath and meadow vegetation types at all elevations to study the effects of temperature, soil P sorption capacity and oxalate-extractable aluminium (Alox) and iron (Feox) on the concentration of different soil P fractions. We hypothesized that the concentration of labile P fractions would decrease with increasing elevation (and thus declining temperature), but would be lower in meadow than in heath, given that N to P ratios in meadow foliage are higher. As expected, labile P in the form of Resin-P declined sharply with elevation for both vegetation types. Meadow soils did not have lower concentrations of Resin-P than heath soils, but they did have 2-fold and 1.5-fold higher concentrations of NaOH-extractable organic P and Residual P, respectively. Further, meadow soils had 3-fold higher concentrations of Alox + Feox and a 20% higher P sorption index than did heath soils. Additionally, Resin-P expressed as a proportion of total soil P for the meadow was on average half that in the heath. Declining Resin-P concentrations with elevation were best explained by an associated 2.5-3.0 °C decline in temperature. In contrast, the lower P availability in meadow relative to heath soils may be associated with impaired organic P mineralization, as indicated by a higher accumulation of organic P and P sorption capacity. Our results indicate that predicted temperature increases in the arctic over the next century may influence P availability and biogeochemistry, with consequences for key ecosystem processes limited by P, such as primary productivity.

  4. Bioavailable Soil Phosphorus Decreases with Increasing Elevation in a Subarctic Tundra Landscape

    PubMed Central

    Vincent, Andrea G.; Sundqvist, Maja K.; Wardle, David A.; Giesler, Reiner

    2014-01-01

    Phosphorus (P) is an important macronutrient in arctic and subarctic tundra and its bioavailability is regulated by the mineralization of organic P. Temperature is likely to be an important control on P bioavailability, although effects may differ across contrasting plant communities with different soil properties. We used an elevational gradient in northern Sweden that included both heath and meadow vegetation types at all elevations to study the effects of temperature, soil P sorption capacity and oxalate-extractable aluminium (Alox) and iron (Feox) on the concentration of different soil P fractions. We hypothesized that the concentration of labile P fractions would decrease with increasing elevation (and thus declining temperature), but would be lower in meadow than in heath, given that N to P ratios in meadow foliage are higher. As expected, labile P in the form of Resin-P declined sharply with elevation for both vegetation types. Meadow soils did not have lower concentrations of Resin-P than heath soils, but they did have 2–fold and 1.5–fold higher concentrations of NaOH-extractable organic P and Residual P, respectively. Further, meadow soils had 3-fold higher concentrations of Alox + Feox and a 20% higher P sorption index than did heath soils. Additionally, Resin-P expressed as a proportion of total soil P for the meadow was on average half that in the heath. Declining Resin-P concentrations with elevation were best explained by an associated 2.5–3.0°C decline in temperature. In contrast, the lower P availability in meadow relative to heath soils may be associated with impaired organic P mineralization, as indicated by a higher accumulation of organic P and P sorption capacity. Our results indicate that predicted temperature increases in the arctic over the next century may influence P availability and biogeochemistry, with consequences for key ecosystem processes limited by P, such as primary productivity. PMID:24676035

  5. Inhalation toxicology. XI., The effect of elevated temperature on carbon monoxide toxicity.

    DOT National Transportation Integrated Search

    1990-12-01

    Laboratory rats were exposed (a) to experimental concentrations of carbon monoxide in air at ambient temperature, (b) to elevated temperature atmospheres from 40 C to 60 C, and (c) to selected carbon monoxide (CO) concentrations at the elevated tem...

  6. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain)

    NASA Astrophysics Data System (ADS)

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-05-01

    Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (Tb) and laboratory-preferred (Tpref) body temperatures of lizards with different reproductive conditions, as well as ambient (Ta) and copper-model operative temperature (Te), which we used to determine thermal quality of the habitat (de), accuracy (db), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while Ta constrained Tb only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, Tpref dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (Te > Tpref). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, db and de-db were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.

  7. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments

    USDA-ARS?s Scientific Manuscript database

    Seed nutrition of crops can be affected by global climate changes due to elevated CO2 and elevated temperatures. Information on the effects of elevated CO2 and temperature on seed nutrition is very limited in spite of its importance to seed quality and food security. Therefore, the objective of this...

  8. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.

  9. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  10. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?

    PubMed

    Hall, Marianne; Medlyn, Belinda E; Abramowitz, Gab; Franklin, Oskar; Räntfors, Mats; Linder, Sune; Wallin, Göran

    2013-11-01

    Photosynthesis is highly responsive to environmental and physiological variables, including phenology, foliage nitrogen (N) content, atmospheric CO2 concentration ([CO2]), irradiation (Q), air temperature (T) and vapour pressure deficit (D). Each of these responses is likely to be modified by long-term changes in climatic conditions such as rising air temperature and [CO2]. When modelling photosynthesis under climatic changes, which parameters are then most important to calibrate for future conditions? To assess this, we used measurements of shoot carbon assimilation rates and microclimate conditions collected at Flakaliden, northern Sweden. Twelve 40-year-old Norway spruce trees were enclosed in whole-tree chambers and exposed to elevated [CO2] and elevated air temperature, separately and in combination. The treatments imposed were elevated temperature, +2.8 °C in July/August and +5.6 °C in December above ambient, and [CO2] (ambient CO2 ∼370 μ mol mol(-1), elevated CO2 ∼700 μ mol mol(-1)). The relative importance of parameterization of Q, T and D responses for effects on the photosynthetic rate, expressed on a projected needle area, and the annual shoot carbon uptake was quantified using an empirical shoot photosynthesis model, which was developed and fitted to the measurements. The functional form of the response curves was established using an artificial neural network. The [CO2] treatment increased annual shoot carbon (C) uptake by 50%. Most important was effects on the light response curve, with a 67% increase in light-saturated photosynthetic rate, and a 52% increase in the initial slope of the light response curve. An interactive effect of light saturated photosynthetic rate was found with foliage N status, but no interactive effect for high temperature and high CO2. The air temperature treatment increased the annual shoot C uptake by 44%. The most important parameter was the seasonality, with an elongation of the growing season by almost 4 weeks. The temperature response curve was almost flat over much of the temperature range. A shift in temperature optimum had thus an insignificant effect on modelled annual shoot C uptake. The combined temperature and [CO2] treatment resulted in a 74% increase in annual shoot C uptake compared with ambient conditions, with no clear interactive effects on parameter values.

  11. Interactive effect of elevated CO2 and temperature on coral physiology

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.; Cai, W.; Warner, M.; Melman, T.; Schoepf, V.; Baumann, J.; Matsui, Y.; Pettay, D. T.; Hoadley, K.; Xu, H.; Wang, Y.; Li, Q.; Hu, X.

    2011-12-01

    Increases in ocean acidification and temperature threaten coral reefs globally. However, the interactive effect of both lower pH and higher temperature on coral physiology and growth are poorly understood. Here, we present preliminary findings from a replicated controlled experiment where four species of corals (Acorpora millepora, Pocillopora damicornis, Montipora monasteriata, Turbinaria reniformis) were reared under the following six treatments for three weeks: 1) 400ppm CO2 and ambient temperature, 2) 400ppm CO2 and elevated temperature, 3) 650ppm CO2 and ambient temperature, 4) 650ppm CO2 and elevated temperature, 5) 800ppm CO2 and ambient temperature, 6) 800ppm CO2 and elevated temperature. Initial findings of photophysiological health (Fv/Fm), calcification rates (as measured by both buoyant weight and the total alkalinity methods), and energy reserves will be presented.

  12. Effects of elevated CO2 and temperature on Gynostemma pentaphyllum physiology and bioactive compounds.

    PubMed

    Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo

    2016-06-01

    Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  14. High-dose oxytocin is not associated with maternal temperature elevation: a retrospective cohort study of mid-trimester pregnancy with intrauterine fetal demise.

    PubMed

    Frölich, M A; Esame, A; Warren Iii, W M; Owen, J

    2011-01-01

    Maternal intrapartum fever has been associated with an increased incidence of neonatal morbidity. In this retrospective cohort study, we evaluated whether intravenous oxytocin has a fever-inducing effect. Oxytocin augments secretion of prostaglandins E(2) and F(2α) which are inflammatory mediators known to elevate body temperature. Between January 2005 and June 2008, 279 patients were admitted with mid-trimester fetal demise. Patients meeting inclusion criteria included 34 women who received a high-dose intravenous oxytocin regimen and 29 patients who delivered after spontaneous labor without the need for augmentation. Oral temperatures were measured on admission and at delivery. The median length of oxytocin infusion was 5.3h. The calculated temperature change was -0.14°C in the oxytocin group and +0.12°C in the control group. These findings were confirmed in a model adjusted for patients' white blood cell count and duration of labor. We did not observe an effect of analgesia type, epidural versus intravenous analgesia, on duration of labor. Based on this comparative analysis of pregnant women who received high-doses of oxytocin, we found insufficient evidence to support that high-dose intravenous oxytocin elevates intrapartum maternal temperature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Tree and forest water use under elevated CO2 and temperature in Scandinavian boreal forest

    NASA Astrophysics Data System (ADS)

    Berg Hasper, Thomas; Wallin, Göran; Lamba, Shubhangi; Sigurdsson, Bjarni D.; Laudon, Hjalmar; Medhurst, Jane L.; Räntfors, Mats; Linder, Sune; Uddling, Johan

    2014-05-01

    According to experimental studies and models, rising atmospheric carbon dioxide concentration ([CO2]) and temperature have the potential to affect stomatal conductance and, consequently, tree and forest transpiration. This effect has in turn the capacity to influence the terrestrial energy and water balance, including affecting of the magnitude of river runoff. Furthermore, forest productivity is currently water-limited in southern Scandinavia and in a near future, under the projected climatic change, this limitation may become a reality in the central and northern parts of Scandinavia. In this study we examine the water-use responses in 12 40-year old native boreal Norway spruce (Picea abies (L.) Karst.) trees exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 °C in summer / +5.6 °C in winter), as well as of entire boreal forests to temporal variation in [CO2], temperature and precipitation over the past 50 years in central and northern Sweden. The controlled factorial CO2 and temperature whole-tree chamber experiment at Flakaliden study site demonstrated that Norway spruce trees lacked elevated [CO2]-induced water savings at guard cell, shoot, and tree levels in the years of measurements. Experimentally, elevated temperature did not result in increased shoot or tree water use as stomatal closure fully cancelled the effect of higher vapour pressure deficit in warmed air environment. Consistent with these results, large scale river runoff data and evapotranspiration estimates from large forested watersheds in central Sweden supported lack of elevated CO2-mediated water savings, and rather suggested that the increasing evapotranspiration trend found in this study was primarily linked to increasing precipitation, rising temperature and more efficient forest management. The results from the whole-tree chamber experiment and boreal forested watersheds have important implications for more accurate predictions of boreal atmosphere-biosphere interactions, indicating that tree responses to precipitation and temperature are more important than responses to elevated [CO2] in determining the future forest water-use and hydrology of Scandinavian boreal ecosystems.

  16. Effect of biochar application and soil temperature on characteristics of organic matter associated with aggregate-size and density fractions

    NASA Astrophysics Data System (ADS)

    Kaiser, Michael; Grunwald, Dennis; Marhan, Sven; Poll, Christian; Bamminger, Chris; Ludwig, Bernard

    2016-04-01

    Potential increases in soil temperature due to climate change might result in intensified soil organic matter (SOM) decomposition and thus higher CO2 emissions. Management options to increase and stabilize SOM include the application of biochar. However, the effects of biochar amendments under elevated soil temperatures on SOM dynamics are largely unknown. The objective of this study was to analyze the effect of biochar application and elevated soil temperature on the amount and composition of OM associated with fractions of different turnover kinetics. Samples were taken from four treatments of the Hohenheim Climate Change Experiment with the factors temperature (ambient or elevated by 2.5 °C in 4 cm depth, six years before sampling) and biochar (control and 30 t / ha Miscanthus pyrolysis biochar, one year before sampling) in two depths (0 - 5 and 5 - 15 cm). Basal respiration and microbial biomass C were analyzed within an incubation experiment. Aggregate size-fractions were separated by wet-sieving and the free light, occluded light (oLF), and heavy fractions were isolated by density fractionation. All fractions were analyzed for organic C and δ13C as well as by infrared spectroscopy. Preliminary data suggest that biochar significantly increased basal respiration and that the microbial biomass C was significantly affected by elevated temperature. No biochar-C was found in the microbial biomass. Biochar and elevated temperature had only minor effects on the organic C associated with aggregate-size classes, although biochar was incorporated into all fractions already after one year of application. Biochar application significantly increased the organic C associated with oLF. In most samples affected by biochar, the proportion of C=O groups was significantly increased. The results suggest that already after one year, biochar-mineral interactions were formed leading to an aggregate occlusion of applied biochar. At least in the short-term, the effect of biochar on the amount and composition of OM associated with different aggregate-size and density fractions seem to be independent from soil temperature.

  17. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  18. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  19. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  20. 46 CFR 36.01-5 - Certificate of inspection-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS ELEVATED TEMPERATURE CARGOES... for the carriage of elevated temperature cargoes as follows: “Inspected and approved for the carriage of Grade E combustible liquids when transported in molten form at elevated temperatures.” (b...

  1. Explosive and pyrotechnic aging demonstration

    NASA Technical Reports Server (NTRS)

    Rouch, L. L., Jr.; Maycock, J. N.

    1976-01-01

    The survivability was experimentally verified of fine selected explosive and pyrotechnic propellant materials when subjected to sterilization, and prolonged exposure to space environments. This verification included thermal characterization, sterilization heat cycling, sublimation measurements, isothermal decomposition measurements, and accelerated aging at a preselected elevated temperature. Temperatures chosen for sublimation and isothermal decomposition measurements were those in which the decomposition processess occurring would be the same as those taking place in real-time aging. The elevated temperature selected (84 C) for accelerated aging was based upon the parameters calculated from the kinetic data obtained in the isothermal measurement tests and was such that one month of accelerated aging in the laboratory approximated one year of real-time aging at 66 C. Results indicate that HNS-IIA, pure PbN6, KDNBF, and Zr/KC10 are capable of withstanding sterilization. The accelerated aging tests indicated that unsterilized HNS-IIA and Zr/KC104 can withstand the 10 year, elevated temperature exposure, pure PbN6 and KDNBF exhibit small weight losses (less than 2 percent) and B/KC104 exhibits significant changes in its thermal characteristics. Accelerated aging tests after sterilization indicated that only HNS-IIA exhibited high stability.

  2. Inelastic deformation and damage at high temperature

    NASA Astrophysics Data System (ADS)

    Krempl, E.

    1992-06-01

    Combined experimental and theoretical investigations into the inelastic deformation and damage behavior of engineering alloys at elevated temperatures are being pursued. The analysis of previously performed strain rate change and relaxation tests on modified 9Cr-1Mo steel showed the need for inclusion of a recovery of state term in the growth laws for the state variables of the viscoplasticity theory based on overstress (VBO). Recovery of state terms were introduced and the experimental results were satisfactorily simulated. The finite deformation theory of VBO has been developed further to include a convected derivative rationale for the choice of the objective stress rate. The reversing direct current voltage drop measurements during low cycle fatigue at elevated temperature were improved. A passive filter bank and new positioning devices for the coils were installed. Tests at 650 C and lasting several days showed excessive, uncontrollable temperature changes. It was decided to drop the test temperature to 538 C which is close to the operating temperature of type 304 stainless steel. The temperature fluctuations in torsion tests were within +/- 3 C which was considered satisfactory.

  3. Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes

    PubMed Central

    Nottingham, Andrew T.; Whitaker, Jeanette; Turner, Benjamin L.; Salinas, Norma; Zimmermann, Michael; Malhi, Yadvinder; Meir, Patrick

    2015-01-01

    The temperature sensitivity of soil organic matter (SOM) decomposition in tropical forests will influence future climate. Studies of a 3.5-kilometer elevation gradient in the Peruvian Andes, including short-term translocation experiments and the examination of the long-term adaptation of biota to local thermal and edaphic conditions, have revealed several factors that may regulate this sensitivity. Collectively this work suggests that, in the absence of a moisture constraint, the temperature sensitivity of decomposition is regulated by the chemical composition of plant debris (litter) and both the physical and chemical composition of preexisting SOM: higher temperature sensitivities are found in litter or SOM that is more chemically complex and in SOM that is less occluded within aggregates. In addition, the temperature sensitivity of SOM in tropical montane forests may be larger than previously recognized because of the presence of “cold-adapted” and nitrogen-limited microbial decomposers and the possible future alterations in plant and microbial communities associated with warming. Studies along elevation transects, such as those reviewed here, can reveal factors that will regulate the temperature sensitivity of SOM. They can also complement and guide in situ soil-warming experiments, which will be needed to understand how this vulnerability to temperature may be mediated by altered plant productivity under future climatic change. PMID:26955086

  4. Influence of electron radiation and temperature on the cyclic, matrix dominated response of graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Reed, Susan M.; Herakovich, Carl T.; Sykes, George F., Jr.

    1987-01-01

    The effects of electron radiation and elevated temperature on the matrix-dominated cyclic response of standard T300/934 and a chemically modified T300/934 graphite-epoxy are characterized. Both materials were subjected to 1.0 x 10 to the 10th rads of 1.0 MeV electron irradiation, under vacuum, to simulate 30 years in geosynchronous orbit. Cyclic tests were performed at room temperature and elevated temperature (121 C) on 4-ply unidirectional laminates to characterize the effects associated with irradiation and elevated temperature. Both materials exhibited energy dissipation in their response at elevated temperature. The irradiated modified material also exhibited energy dissipation at room temperature. The combination of elevated temperature and irradiation resulted in the most severe effects in the form of lower proportional limits, and greater energy dissipation. Dynamic-mechanical analysis demonstrated that the glass transition temperature, T(g), of the standard material was lowered 39 C by irradiation, wereas the T(g) of the modified material was lowered 28 C by irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated materials.

  5. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz.

    PubMed

    Oizumi, Takuya; Laakso, Ilkka; Hirata, Akimasa; Fujiwara, Osamu; Watanabe, Soichi; Taki, Masao; Kojima, Masami; Sasaki, Hiroshi; Sasaki, Kazuyuki

    2013-07-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye.

  6. A STUDY OF THE EFFECTS OF ELEVATED TEMPERATURES ON THE GROWTH AND INHERITANCE OF SACCHAROMYCES CEREVISIAE (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, F

    1958-11-01

    A comparative study was made of the growth of yeast in various media at the optimum temperature (30 ) and at supraoptimum temperatures. It was found that at elevated temperatures there is a decrease in the ability of yeast to grow, which may be alleviated by increasing the percentage of yeast extract in the medium, adding oleic acid to the medium, or using an inoculum of cells that have previously been grown at the elevated temperature. Because of these findings, it is believed that growth at elevated temperatures results in an increased nutrient requirement which may be eliminated by inducedmore » adaptation. When yeasts were grown at elevated temperatures or exposed for a short time to lethal temperatures it was found that there was a great increase in the fraction of respiratory-deficient mutants (petites). It was shown that the increase of mutants did not arise because of selection, but that the elevated temperatures actually induced the mutation. From the results of various genetic analyses it is shown that these respiratorydeficient mutants are very similar, if not identical. to vegetative petites occurring spontaneously or induced by acriflavine. The kinetics of this mutation is discussed, with possible theoretical interpretations. (auth)« less

  7. Development of mutated Kluyveromyces marxianus strains for ethanol production at elevated temperature from biomass hydrolysate

    USDA-ARS?s Scientific Manuscript database

    The yeast K. marxianus has advantages over the most commonly used industrial ethanologen, Saccharomyces cerevisiae, such as the ability to grow at 47°C, to produce ethanol at temperatures above 40°C, and to grow on a wide variety of substrates, including starch, sucrose, pectins, and cellulosic biom...

  8. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain).

    PubMed

    Zamora-Camacho, Francisco Javier; Reguera, Senda; Moreno-Rueda, Gregorio

    2016-05-01

    Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (T(b)) and laboratory-preferred (T(pref)) body temperatures of lizards with different reproductive conditions, as well as ambient (T(a)) and copper-model operative temperature (T(e)), which we used to determine thermal quality of the habitat (d(e)), accuracy (d(b)), and effectiveness of thermoregulation (de-db) indexes. We detected no Tb trend in elevation, while T(a) constrained T(b) only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, T(pref) dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (T(e) > T(pref)). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, d(b) and d(e)-d(b) were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.

  9. Comparison of transient measurements of infrared radiation and stress waves for practical ablation monitoring during photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Arai, Tsunenori; Kikuchi, Makoto; Nakano, Hironori; Kawauchi, Satoko; Obara, Minoru

    1998-05-01

    We compared infrared radiation measurement with stress wave measurement for real-time ablation monitoring during photorefractive keratectomy (PRK). We estimated temperature elevation which may be one of the most effective parameter for PRK monitoring, because the ablation mechanism is mainly attributed to thermal kinetics. The temperature elevation of ablated cornea was evaluated by the infrared radiation and the stress wave. The thermal radiation from irradiated cornea was detected by a MCT detector. The measured signal increased sharply just after the laser irradiation and decreased quasi- exponentially. We could calculate the temperature elevation by observed signal using Stefan-Boltzmann radiation law. In the case of the gelatin gel (15% wt) ablation in vitro, the temperature elevation was 97 deg. at 208 mJ/cm2 in the laser fluence. We also measured transient stress wave by the acoustic transducer which was made by polyvinylidene fluoride (PVDF) film. The temperature elevation could be calculated from the peak stress amplitude based on the short pulsed laser ablation theory. The good agreement on the temperature elevation was obtained between the infrared and the stress based estimations. Due to non-contact and non-invasive method, our infrared measurements for temperature elevation monitoring may be available to accomplish the feedback control on the PRK.

  10. Stress induced by hooking, net towing, elevated sea water temperature and air in sablefish: Lack of concordance between mortality and physiological measures of stress

    USGS Publications Warehouse

    Davis, M.W.; Olla, B.L.; Schreck, C.B.

    2001-01-01

    In a series of laboratory studies designed to simulate bycatch processes, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated sea water temperature and air. Mortality did not result from hooking or net towing followed by exposure to air, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to air resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and air resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to air, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and air, no further increases occurred above the concentrations induced by net towing and air, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and air, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch processes remain to be fully understood.

  11. Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.

    1977-01-01

    Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.

  12. Elevated temperature enhances normal early embryonic development in the coral Platygyra acuta under low salinity conditions

    NASA Astrophysics Data System (ADS)

    Chui, Apple Pui Yi; Ang, Put

    2015-06-01

    To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.

  13. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  14. Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature.

    PubMed

    Mikkelsen, B L; Olsen, C E; Lyngkjær, M F

    2015-10-01

    Plants produce secondary metabolites promoting adaptation to changes in the environment and challenges by pathogenic microorganisms. A future climate with increased temperature and CO2 and ozone levels will likely alter the chemical composition of plants and thereby plant-pathogen interactions. To investigate this, barley was grown at elevated CO2, temperature and ozone levels as single factors or in combination resembling future climatic conditions. Increased basal resistance to the powdery mildew fungus was observed when barley was grown under elevated CO2, temperature and ozone as single factors. However, this effect was neutralized in the combination treatments. Twenty-five secondary metabolites were putatively identified in healthy and diseased barley leaves, including phenylpropanoids, phenolamides and hydroxynitrile glucosides. Accumulation of the compounds was affected by the climatic growth conditions. Especially elevated temperature, but also ozone, showed a strong impact on accumulation of many compounds, suggesting that these metabolites play a role in adaptation to unfavorable growth conditions. Many compounds were found to increase in powdery mildew diseased leaves, in correlation with a strong and specific influence of the climatic growth conditions. The observed disease phenotypes could not be explained by accumulation of single compounds. However, decreased accumulation of the powdery mildew associated defense compound p-coumaroylhydroxyagmatine could be implicated in the increased disease susceptibility observed when barley was grown under combination of elevated CO2, temperature and ozone. The accumulation pattern of the compounds in both healthy and diseased leaves from barley grown in the combination treatments could not be deduced from the individual single factor treatments. This highlights the complex role and regulation of secondary metabolites in plants' adaptation to unfavorable growth conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Genetic variation in resistance of the preimplantation bovine embryo to heat shock.

    PubMed

    Hansen, Peter J

    2014-12-01

    Reproduction is among the physiological functions in mammals most susceptible to disruption by hyperthermia. Many of the effects of heat stress on function of the oocyte and embryo involve direct effects of elevated temperature (i.e. heat shock) on cellular function. Mammals limit the effects of heat shock by tightly regulating body temperature. This ability is genetically controlled: lines of domestic animals have been developed with superior ability to regulate body temperature during heat stress. Through experimentation in cattle, it is also evident that there is genetic variation in the resistance of cells to the deleterious effects of elevated temperature. Several breeds that were developed in hot climates, including Bos indicus (Brahman, Gir, Nelore and Sahiwal) and Bos taurus (Romosinuano and Senepol) are more resistant to the effects of elevated temperature on cellular function than breeds that evolved in cooler climates (Angus, Holstein and Jersey). Genetic differences are expressed in the preimplantation embryo by Day 4-5 of development (after embryonic genome activation). It is not clear whether genetic differences are expressed in cells in which transcription is repressed (oocytes >100 µm in diameter or embryos at stages before embryonic genome activation). The molecular basis for cellular thermotolerance has also not been established, although there is some suggestion for involvement of heat shock protein 90 and the insulin-like growth factor 1 system. Given the availability of genomic tools for genetic selection, identification of genes controlling cellular resistance to elevated temperature could be followed by progress in selection for those genes within the populations in which they exist. It could also be possible to introduce genes from thermotolerant breeds into thermally sensitive breeds. The ability to edit the genome makes it possible to design new genes that confer protection of cells from stresses like heat shock.

  16. Shear wave EMAT thickness measurements of low carbon steel at 450 °C without cooling

    NASA Astrophysics Data System (ADS)

    Lunn, Natasha; Potter, Mark; Dixon, Steve

    2017-02-01

    Performing high temperature online inspection without plant shutdown is highly desirable, yet, development of portable or permanently installed high temperature ultrasonic sensors, without the need for sample surface preparation, remains a key challenge. Low carbon steel pipelines operating at elevated temperatures often develop a magnetostrictive oxide coating (magnetite), which improves electromagnetic acoustic transducer (EMAT) efficiency below the Curie temperature of magnetite (575 °C), via a magnetostrictive mechanism. Coupling the inherent non-contacting nature of EMATs with the enhanced efficiency from a magnetite coating, we are able to continuously operate an uncoded EMAT at elevated temperatures without permanent installation or surface preparation. In this work, a high temperature shear wave EMAT utilizing a high field, high Curie point, permanent magnet has been developed to generate ultrasonic bulk thickness measurements on magnetite coated steel at temperatures of up to 450 °C, without cooling. Relatively high signal-to-noise ratios, in the region of 30 dB for single shot data, have been measured at 450 °C using this technique. The EMAT design and results from high temperature trials, including the performance with change in temperature, sample thickness and EMAT-sample lift-off, are presented here.

  17. Summer Temperature Extremes in the Northern Rockies: A Tree-Ring-Based Reconstruction (1670-2014) from the Bighorn Mountains, WY

    NASA Astrophysics Data System (ADS)

    Hudson, A.; Alfaro-Sanchez, R.; Belmecheri, S.; Moore, D. J.; Trouet, V.

    2017-12-01

    Anthropogenic climate change has caused global temperatures to rise in recent decades. Temperatures at the regional scale are influenced by various factors including topography, atmospheric circulation, and seasonality that superimpose year-to-year variability on this global warming trend. Here, we develop a tree-ring based summer temperature reconstruction for the northern Rockies in order to investigate the drivers of the year-to-year temperature variability in this region. For this purpose, we sampled 10 sites in the semi-arid Bighorn Mountains, WY and developed two tree-ring width chronologies for differing elevations. The high elevation Picea engelmannii chronology (>2,630m) is positively correlated with July temperature variability, whereas the low elevation (<2,580m) chronology - consisting of Pinus contorta, Pseudotsuga menziesii, and Pinus albicaulis - is sensitive to summer precipitation and negatively correlated with June and July temperatures. A reconstruction based on a combination of the two chronologies explains 30% of the variance in regional June and July temperatures over the instrumental period, covers the period 1670-2014, and is representative for the central United States and southern Canada region. Our reconstruction shows significantly lower summer temperatures in the year following the 16 largest tropical eruptions from 1670 to the present. The reconstruction further captures the high summer temperatures during the 1930s dust bowl era and shows a steep increase in variance in the late 20th century. Enhanced late 20th century variance has also been detected in climate and ecosystem dynamics in the Northeast Pacific, which suggests an impact of an amplified meridional flow on northern Rockies summer temperatures.

  18. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.

    PubMed

    Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi

    2013-08-01

    An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.

  19. Measurement of mechanical properties of metallic glass at elevated temperature using sonic resonance method

    NASA Astrophysics Data System (ADS)

    Kaluvan, Suresh; Zhang, Haifeng; Mridha, Sanghita; Mukherjee, Sundeep

    2017-04-01

    Bulk metallic glasses are fully amorphous multi-component alloys with homogeneous and isotropic structure down to the atomic scale. Some attractive attributes of bulk metallic glasses include high strength and hardness as well as excellent corrosion and wear resistance. However, there are few reports and limited understanding of their mechanical properties at elevated temperatures. We used a nondestructive sonic resonance method to measure the Young's modulus and Shear modulus of a bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5, at elevated temperatures. The measurement system was designed using a laser displacement sensor to detect the sonic vibration produced by a speaker on the specimen in high-temperature furnace. The OMICRON Bode-100 Vector Network Analyzer was used to sweep the frequency and its output was connected to the speaker which vibrated the material in its flexural mode and torsional modes. A Polytec OFV-505 laser vibrometer sensor was used to capture the vibration of the material at various frequencies. The flexural and torsional mode frequency shift due to the temperature variation was used to determine the Young's modulus and Shear modulus. The temperature range of measurement was from 50°C to 350°C. The Young's modulus was found to reduce from 100GPa to 94GPa for the 300°C temperature span. Similarly, the Shear modulus decreased from 38.5GPa at 50°C to 36GPa at 350°C.

  20. Development of the III-V Barrier PhotoDetector Heterostructures for Spectral Range Above 10 microns

    DTIC Science & Technology

    2016-02-14

    Figure 5. Quantum efficiency spectra (a) and temperature dependence of dark current (b) in heterostructures consisting of bulk InAsSb absorber and...compositions covering the range from 20 to 65 %. The solved challenges include selection of the buffer grade composition rate and growth temperature ...absorbers can operate at elevated temperatures and with faster response compared to those in detectors with n-type absorbers. It was important to

  1. On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Grayson, Michael A.

    1999-01-01

    A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.

  2. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  3. ELEVATED CO2 AND TEMPERATURE ALTER THE ECOSYSTEM C EXCHANGE IN A YOUNG DOUGLAS FIR MESOCOSM EXPERIMENT

    EPA Science Inventory

    We investigated the effects of elevated CO2 (EC) [ambient CO2 (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 °C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstruc...

  4. Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method.

    PubMed

    Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih

    2015-02-01

    Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.

  5. Tunable diode-laser absorption measurements of methane at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Nagali, V.; Chou, S. I.; Baer, D. S.; Hanson, R. K.; Segall, J.

    1996-07-01

    A diode-laser sensor system based on absorption spectroscopy techniques has been developed to monitor CH4 nonintrusively in high-temperature environments. Fundamental spectroscopic parameters, including the line strengths of the transitions in the R(6) manifold of the 2 nu 3 band near 1.646 mu m, have been determined from high-resolution absorption measurements in a heated static cell. In addition, a corrected expression for the CH 4 partition function has been validated experimentally over the temperature range from 400 to 915 K. Potential applications of the diode-laser sensor system include process control, combustion measurements, and atmospheric monitoring.

  6. Elevated temperature alters proteomic responses of individual organisms within a biofilm community

    DOE PAGES

    Mosier, Annika C.; Li, Zhou; Thomas, Brian C.; ...

    2014-07-22

    Microbial communities that underpin global biogeochemical cycles will likely be influenced by elevated temperature associated with environmental change. In this paper, we test an approach to measure how elevated temperature impacts the physiology of individual microbial groups in a community context, using a model microbial-based ecosystem. The study is the first application of tandem mass tag (TMT)-based proteomics to a microbial community. We accurately, precisely and reproducibly quantified thousands of proteins in biofilms growing at 40, 43 and 46 °C. Elevated temperature led to upregulation of proteins involved in amino-acid metabolism at the level of individual organisms and the entiremore » community. Proteins from related organisms differed in their relative abundance and functional responses to temperature. Elevated temperature repressed carbon fixation proteins from two Leptospirillum genotypes, whereas carbon fixation proteins were significantly upregulated at higher temperature by a third member of this genus. Leptospirillum group III bacteria may have been subject to viral stress at elevated temperature, which could lead to greater carbon turnover in the microbial food web through the release of viral lysate. Finally, overall, these findings highlight the utility of proteomics-enabled community-based physiology studies, and provide a methodological framework for possible extension to additional mixed culture and environmental sample analyses.« less

  7. Combined effects of temperature and avermectins on life history and stress response of the western flower thrips, Frankliniella occidentalis.

    PubMed

    Li, Hong-Bo; Zheng, Yu-Tao; Sun, Dan-Dan; Wang, Jian-Jun; Du, Yu-Zhou

    2014-01-01

    Temperature and pesticide are two important factors that affect survival, reproduction and other physiological processes of insects. To determine interactions of elevated temperature and avermectins treatment on the western flower thrips, Frankliniella occidentalis, newly emerged adults were exposed to combinations of three temperatures (21, 26 and 33 °C) and two avermectins concentrations (0, 45 ppm), and survival rate, reproduction, longevity, antioxidant enzymes activities and heat shock proteins (hsps) induction were analyzed. The results showed that the survival, longevity and reproduction of F. occidentalis decreased with increased temperature and avermectins treatment. While elevated temperature and avermectins treatment significantly decreased activity of SOD, activities of POD and GST significantly increased after exposure to elevated temperature, avermectins or their combination. Elevated temperature had no effect on activity of CAT, but it was obviously improved by the combination of temperature and avermectins treatment. Expression analysis of hsps showed that four heat shock proteins (hsp90, hsc702, hsp60 and hop) were up-regulated by the induction of elevated temperature with small fold changes. After treatment with avermectins, expression levels of hsp90, hsc701, hsc702 and hop were significantly up-regulated with increased temperature and higher than those of their respective control at higher temperature. Surprisingly, expression level of hps60 was down-regulated with increased temperature, but the expression level at 21 or 26 °C remained higher than that of control. Overall, our studies suggest that elevated temperature enhance toxicity of avermectins and their combination induced acute oxidative damage to F. occidentalis. Therefore, consideration of temperature in evaluating avermectins toxicity is necessary to make accurate prediction of its effect on F. occidentalis and other insects. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    PubMed

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Elevation of liquidus temperature in a gel-derived Na2O-SiO2 glass

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.; Neilson, G. F.

    1983-01-01

    The liquidus temperatures of a 19 wt% soda-silica glass prepared by gel and conventional techniques were determined. X-ray diffraction measurements of the glasses which were heat-treated at several temperatures were used to experimentally determine the liquidus temperatures. It was found that the gel-derived glass has an elevated liquidus. This result is discussed in relation to the previous discovery that the immiscibility temperature of this gel-derived glass is elevated

  10. Effect of elevated substrate temperature deposition on the mechanical losses in tantala thin film coatings

    NASA Astrophysics Data System (ADS)

    Vajente, G.; Birney, R.; Ananyeva, A.; Angelova, S.; Asselin, R.; Baloukas, B.; Bassiri, R.; Billingsley, G.; Fejer, M. M.; Gibson, D.; Godbout, L. J.; Gustafson, E.; Heptonstall, A.; Hough, J.; MacFoy, S.; Markosyan, A.; Martin, I. W.; Martinu, L.; Murray, P. G.; Penn, S.; Roorda, S.; Rowan, S.; Schiettekatte, F.; Shink, R.; Torrie, C.; Vine, D.; Reid, S.; Adhikari, R. X.

    2018-04-01

    Brownian thermal noise in dielectric multilayer coatings limits the sensitivity of current and future interferometric gravitational wave detectors. In this work we explore the possibility of improving the mechanical losses of tantala, often used as the high refractive index material, by depositing it on a substrate held at elevated temperature. Promising results have been previously obtained with this technique when applied to amorphous silicon. We show that depositing tantala on a hot substrate reduced the mechanical losses of the as-deposited coating, but subsequent thermal treatments had a larger impact, as they reduced the losses to levels previously reported in the literature. We also show that the reduction in mechanical loss correlates with increased medium range order in the atomic structure of the coatings using x-ray diffraction and Raman spectroscopy. Finally, a discussion is included on our results, which shows that the elevated temperature deposition of pure tantala coatings does not appear to reduce mechanical loss in a similar way to that reported in the literature for amorphous silicon; and we suggest possible future research directions.

  11. ELEVATED CO2 AND ELEVATED TEMPERATURE HAVE NO EFFECT ON DOUGLAS-FIR FINE-ROOT DYNAMICS IN NITROGEN-POOR SOIL

    EPA Science Inventory

    Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO2 and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality ...

  12. Automation of the temperature elevation test in transformers with insulating oil.

    PubMed

    Vicente, José Manuel Esteves; Rezek, Angelo José Junqueira; de Almeida, Antonio Tadeu Lyrio; Guimarães, Carlos Alberto Mohallem

    2008-01-01

    The automation of the temperature elevation test is outlined here for both the oil temperature elevation and the determination of the winding temperature elevation. While automating this test it is necessary to use four thermometers, one three-phase wattmeter, a motorized voltage variator and a Kelvin bridge to measure the resistance. All the equipments must communicate with a microcomputer, which will have the test program implemented. The system to be outlined here was initially implemented in the laboratory and, due to the good results achieved, is already in use in some transformer manufacturing plants.

  13. Negative electrode catalyst for the iron chromium redox energy storage system

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N. H. (Inventor)

    1985-01-01

    A redox cell which operates at elevated temperatures and which utilizes the same two metal couples in each of the two reactant fluids is disclosed. Each fluid includes a bismuth salt and may also include a lead salt. A low cost, cation permselective membrane separates the reactant fluids.

  14. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  15. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction.

    PubMed

    Lefevre, Sjannie

    2016-01-01

    With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase-optimum-decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms.

  16. Are global warming and ocean acidification conspiring against marine ectotherms? A meta-analysis of the respiratory effects of elevated temperature, high CO2 and their interaction

    PubMed Central

    Lefevre, Sjannie

    2016-01-01

    Abstract With the occurrence of global change, research aimed at estimating the performance of marine ectotherms in a warmer and acidified future has intensified. The concept of oxygen- and capacity-limited thermal tolerance, which is inspired by the Fry paradigm of a bell-shaped increase–optimum–decrease-type response of aerobic scope to increasing temperature, but also includes proposed negative and synergistic effects of elevated CO2 levels, has been suggested as a unifying framework. The objectives of this meta-analysis were to assess the following: (i) the generality of a bell-shaped relationship between absolute aerobic scope (AAS) and temperature; (ii) to what extent elevated CO2 affects resting oxygen uptake MO2rest and AAS; and (iii) whether there is an interaction between elevated temperature and CO2. The behavioural effects of CO2 are also briefly discussed. In 31 out of 73 data sets (both acutely exposed and acclimated), AAS increased and remained above 90% of the maximum, whereas a clear thermal optimum was observed in the remaining 42 data sets. Carbon dioxide caused a significant rise in MO2rest in only 18 out of 125 data sets, and a decrease in 25, whereas it caused a decrease in AAS in four out of 18 data sets and an increase in two. The analysis did not reveal clear evidence for an overall correlation with temperature, CO2 regime or duration of CO2 treatment. When CO2 had an effect, additive rather than synergistic interactions with temperature were most common and, interestingly, they even interacted antagonistically on MO2rest and AAS. The behavioural effects of CO2 could complicate experimental determination of respiratory performance. Overall, this meta-analysis reveals heterogeneity in the responses to elevated temperature and CO2 that is not in accordance with the idea of a single unifying principle and which cannot be ignored in attempts to model and predict the impacts of global warming and ocean acidification on marine ectotherms. PMID:27382472

  17. Does long-term cultivation of saplings under elevated CO2 concentration influence their photosynthetic response to temperature?

    PubMed Central

    Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar

    2015-01-01

    Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary. PMID:25851132

  18. Process development of two high strength tantalum base alloys (ASTAR-1211C and ASTAR-1511C)

    NASA Technical Reports Server (NTRS)

    Ammon, R. L.

    1974-01-01

    Two tantalum base alloys, Ta-12W-1.0Re-0.7Hf-0.025C(ASTAR-1211C) and Ta-15W-1.0Re-0.7Hf-0.025C(ASTAR-1511C), were cast as 12.5 cm (5 inch) diameter ingots and processed to swaged rod, sheet, forged plate, and tubing. Swaged rod was evaluated with respect to low temperature ductility, elevated temperature tensile properties, and elevated temperature creep behavior. A standard swaging process and final annealing schedule were determined. Elevated temperature tensile properties, low temperature impact properties, low temperature DBTT behavior, and extended elevated temperature creep properties were determined. A process for producing ASTAR-1211C and ASTAR-1511C sheet were developed. The DBTT properties of GTA and EB weld sheet given post-weld anneal and thermal aging treatments were determined using bend and tensile specimens. High and low temperature mechanical properties of forging ASTAR-1211C and ASTAR-1511C plate were determined as well as elevated temperature creep properties. Attempts to produce ASTAR-1211C tubing were partially successful while attempts to make ASTAR-1511C tubing were completely unsuccessful.

  19. High temperature bias line stabilized current sources

    DOEpatents

    Patterson, III, Raymond B.

    1984-01-01

    A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower.

  20. High temperature bias line stabilized current sources

    DOEpatents

    Patterson, R.B. III.

    1984-09-11

    A compensation device for the base of emitter follower configured bipolar transistors becoming operable at elevated temperatures including a bipolar transistor of a geometry of not more than half the geometry of the bipolar emitter follower having its collector connected to the base of the emitter follower and its base and emitter connected together and to the emitter of the emitter follower. 1 fig.

  1. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  2. Leaf physiological responses of mature Norway Spruce trees exposed to elevated carbon dioxide and temperature

    NASA Astrophysics Data System (ADS)

    Lamba, Shubhangi; Uddling, Johan; Räntfors, Mats; Hall, Marianne; Wallin, Göran

    2014-05-01

    Leaf photosynthesis, respiration and stomatal conductance exert strong control over the exchange of carbon, water and energy between the terrestrial biosphere and the atmosphere. As such, leaf physiological responses to rising atmospheric CO2 concentration ([CO2]) and temperature have important implications for the global carbon cycle and rate of ongoing global warming, as well as for local and regional hydrology and evaporative cooling. It is therefore critical to improve the understanding of plant physiological responses to elevated [CO2] and temperature, in particular for boreal and tropical ecosystems. In order to do so, we examined physiological responses of mature boreal Norway spruce trees (ca 40-years old) exposed to elevated [CO2] and temperature inside whole-tree chambers at Flakaliden research site, Northern Sweden. The trees were exposed to a factorial combination of two levels of [CO2] (ambient and doubled) and temperature (ambient and +2.8 degree C in summer and +5.6 degree C in winter). Three replicates in each of the four treatments were used. It was found that photosynthesis was increased considerably in elevated [CO2], but was not affected by the warming treatment. The maximum rate of photosynthetic carboxylation was reduced in the combined elevated [CO2] and elevated temperature treatment, but not in single factor treatments. Elevated [CO2] also strongly increased the base rate of respiration and to a lesser extent reduced the temperature sensitivity (Q10 value) of respiration; responses which may be important for the carbon balance of these trees which have a large proportion of shaded foliage. Stomatal conductance at a given VPD was reduced by elevated temperature treatment, to a degree that mostly offset the higher vapour pressure deficit in warmed air with respect to transpiration. Elevated [CO2] did not affect stomatal conductance, and thus increased the ratio of leaf internal to external [CO2]. These results indicate that the large elevated [CO2]-induced increase in CO2 uptake is partly counteracted by substantial increases in autotrophic respiration in boreal spruce. Furthermore, stomatal results suggest conservative leaf-level water use of spruce under rising [CO2] and temperature.

  3. Seasonal variation in respiration of 1-year-old shoots of scots pine exposed to elevated carbon dioxide and temperature for 4 years.

    PubMed

    Zha, T S; Kellomaki, S; Wang, K Y

    2003-07-01

    Sixteen 20-year-old Scots pine (Pinus sylvestris L.) trees growing in the field were enclosed for 4 years in environment-controlled chambers that maintained: (1) ambient conditions (CON); (2) elevated atmospheric CO2 concentration (ambient + 350 micro mol mol-1; EC); (3) elevated temperature (ambient +2-6 degrees C; ET); or (4) elevated CO2 and elevated temperature (ECT). The dark respiration rates of 1-year-old shoots, from which needles had been partly removed, were measured over the growing season in the fourth year. In all treatments, the temperature coefficient of respiration, Q10, changed with season, being smaller during the growing season than at other times. Respiration rate varied diurnally and seasonally with temperature, being highest around mid-summer and declining gradually thereafter. When measurements were made at the temperature of the chamber, respiration rates were reduced by the EC treatment relative to CON, but were increased by ET and ECT treatments. However, respiration rates at a reference temperature of 15 degrees C were reduced by ET and ECT treatments, reflecting a decreased capacity for respiration at warmer temperatures (negative acclimation). The interaction between season and treatment was not significant. Growth respiration did not differ between treatments, but maintenance respiration did, and the differences in mean daily respiration rate between the treatments were attributable to the maintenance component. We conclude that maintenance respiration should be considered when modelling respiratory responses to elevated CO2 and elevated temperature, and that increased atmospheric temperature is more important than increasing CO2 when assessing the carbon budget of pine forests under conditions of climate change.

  4. Magnetic Materials Suitable for Fission Power Conversion in Space Missions

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl L.

    2012-01-01

    Terrestrial fission reactors use combinations of shielding and distance to protect power conversion components from elevated temperature and radiation. Space mission systems are necessarily compact and must minimize shielding and distance to enhance system level efficiencies. Technology development efforts to support fission power generation scenarios for future space missions include studying the radiation tolerance of component materials. The fundamental principles of material magnetism are reviewed and used to interpret existing material radiation effects data for expected fission power conversion components for target space missions. Suitable materials for the Fission Power System (FPS) Project are available and guidelines are presented for bounding the elevated temperature/radiation tolerance envelope for candidate magnetic materials.

  5. Status Report - Cane Fiberboard Properties And Degradation Rates For Storage Of The 9975 Shipping Package In KAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, W.

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 10 years. The aging environments have included elevated temperature < 250 ºF (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight, dimensions and density) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAC, these models allow developmentmore » of service life predictions.« less

  6. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure.

    PubMed

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-21

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 degrees C at a whole-body-averaged specific absorption rate of 0.08 W kg(-1), which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  7. Effects of exurban development and temperature on bird species in the southern Appalachians.

    PubMed

    Lumpkin, Heather A; Pearson, Scott M

    2013-10-01

    Land-use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species occurrence at 140 study sites in the southern Appalachian Mountains (North Carolina, U.S.A.) that varied with respect to building density and elevation. We used occupancy models to determine 36 bird species' associations with building density, forest canopy cover, average daily mean temperature, and an interaction between building density and mean temperature. Responses varied with habitat requirement, breeding range, and migration distance. Building density and mean temperature were both included in the top occupancy models for 19 of 36 species and a building density by temperature interaction was included in models for 8 bird species. As exurban development expands in the southern Appalachians, interior forest species and Neotropical migrants are likely to decline, but shrubland or edge species are not likely to benefit. Overall, effects of building density were greater than those of forest canopy cover. Exurban development had a greater effect on birds at high elevations due to a greater abundance of sensitive forest-interior species and Neotropical migrants. A warming climate may exacerbate these negative effects. © 2013 Society for Conservation Biology.

  8. Plant developmental responses to climate change.

    PubMed

    Gray, Sharon B; Brady, Siobhan M

    2016-11-01

    Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO 2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO 2 , most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO 2 vary by cell type and by species. Variability also exists between C 3 and C 4 species in response to elevated CO 2 , especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO 2 . Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this lack of data is particularly prevalent in the case of interactive effects of multiple climate change factors. As future growing conditions will likely expose plants to multiple climate change factors simultaneously, with a sum negative influence on global agriculture, further research in this area is critical. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

    PubMed Central

    Lozano-Fuentes, Saul; Hayden, Mary H.; Welsh-Rodriguez, Carlos; Ochoa-Martinez, Carolina; Tapia-Santos, Berenice; Kobylinski, Kevin C.; Uejio, Christopher K.; Zielinski-Gutierrez, Emily; Monache, Luca Delle; Monaghan, Andrew J.; Steinhoff, Daniel F.; Eisen, Lars

    2012-01-01

    México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer. PMID:22987656

  10. Structural efficiencies of various aluminum, titanium, and steel alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Hughes, Philip J

    1953-01-01

    Efficient temperature ranges are indicated for two high-strength aluminum alloys, two titanium alloys, and three steels for some short-time compression-loading applications at elevated temperatures. Only the effects of constant temperatures and short exposure to temperature are considered, and creep is assumed not to be a factor. The structural efficiency analysis is based upon preliminary results of short-time elevated-temperature compressive stress-strain tests of the materials. The analysis covers strength under uniaxial compression, elastic stiffness, column buckling, and the buckling of long plates in compression or in shear.

  11. Plastic responses to elevated temperature in low and high elevation populations of three grassland species.

    PubMed

    Frei, Esther R; Ghazoul, Jaboury; Pluess, Andrea R

    2014-01-01

    Local persistence of plant species in the face of climate change is largely mediated by genetic adaptation and phenotypic plasticity. In species with a wide altitudinal range, population responses to global warming are likely to differ at contrasting elevations. In controlled climate chambers, we investigated the responses of low and high elevation populations (1200 and 1800 m a.s.l.) of three nutrient-poor grassland species, Trifolium montanum, Ranunculus bulbosus, and Briza media, to ambient and elevated temperature. We measured growth-related, reproductive and phenological traits, evaluated differences in trait plasticity and examined whether trait values or plasticities were positively related to approximate fitness and thus under selection. Elevated temperature induced plastic responses in several growth-related traits of all three species. Although flowering phenology was advanced in T. montanum and R. bulbosus, number of flowers and reproductive allocation were not increased under elevated temperature. Plasticity differed between low and high elevation populations only in leaf traits of T. montanum and B. media. Some growth-related and phenological traits were under selection. Moreover, plasticities were not correlated with approximate fitness indicating selectively neutral plastic responses to elevated temperature. The observed plasticity in growth-related and phenological traits, albeit variable among species, suggests that plasticity is an important mechanism in mediating plant responses to elevated temperature. However, the capacity of species to respond to climate change through phenotypic plasticity is limited suggesting that the species additionally need evolutionary adaptation to adjust to climate change. The observed selection on several growth-related and phenological traits indicates that the study species have the potential for future evolution in the context of a warming climate.

  12. Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge.

    PubMed

    Ramsby, Blake D; Hoogenboom, Mia O; Whalan, Steve; Webster, Nicole S

    2018-04-01

    Bioeroding sponges break down calcium carbonate substratum, including coral skeleton, and their capacity for reef erosion is expected to increase in warmer and more acidic oceans. However, elevated temperature can disrupt the functionally important microbial symbionts of some sponge species, often with adverse consequences for host health. Here, we provide the first detailed description of the microbial community of the bioeroding sponge Cliona orientalis and assess how the community responds to seawater temperatures incrementally increasing from 23°C to 32°C. The microbiome, identified using 16S rRNA gene sequencing, was dominated by Alphaproteobacteria, including a single operational taxonomic unit (OTU; Rhodothalassium sp.) that represented 21% of all sequences. The "core" microbial community (taxa present in >80% of samples) included putative nitrogen fixers and ammonia oxidizers, suggesting that symbiotic nitrogen metabolism may be a key function of the C. orientalis holobiont. The C. orientalis microbiome was generally stable at temperatures up to 27°C; however, a community shift occurred at 29°C, including changes in the relative abundance and turnover of microbial OTUs. Notably, this microbial shift occurred at a lower temperature than the 32°C threshold that induced sponge bleaching, indicating that changes in the microbiome may play a role in the destabilization of the C. orientalis holobiont. C. orientalis failed to regain Symbiodinium or restore its baseline microbial community following bleaching, suggesting that the sponge has limited ability to recover from extreme thermal exposure, at least under aquarium conditions. © 2018 John Wiley & Sons Ltd.

  13. Study on elevated-temperature flow behavior of Ni-Cr-Mo-B ultra-heavy-plate steel via experiment and modelling

    NASA Astrophysics Data System (ADS)

    Gao, Zhi-yu; Kang, Yu; Li, Yan-shuai; Meng, Chao; Pan, Tao

    2018-04-01

    Elevated-temperature flow behavior of a novel Ni-Cr-Mo-B ultra-heavy-plate steel was investigated by conducting hot compressive deformation tests on a Gleeble-3800 thermo-mechanical simulator at a temperature range of 1123 K–1423 K with a strain rate range from 0.01 s‑1 to10 s‑1 and a height reduction of 70%. Based on the experimental results, classic strain-compensated Arrhenius-type, a new revised strain-compensated Arrhenius-type and classic modified Johnson-Cook constitutive models were developed for predicting the high-temperature deformation behavior of the steel. The predictability of these models were comparatively evaluated in terms of statistical parameters including correlation coefficient (R), average absolute relative error (AARE), average root mean square error (RMSE), normalized mean bias error (NMBE) and relative error. The statistical results indicate that the new revised strain-compensated Arrhenius-type model could give prediction of elevated-temperature flow stress for the steel accurately under the entire process conditions. However, the predicted values by the classic modified Johnson-Cook model could not agree well with the experimental values, and the classic strain-compensated Arrhenius-type model could track the deformation behavior more accurately compared with the modified Johnson-Cook model, but less accurately with the new revised strain-compensated Arrhenius-type model. In addition, reasons of differences in predictability of these models were discussed in detail.

  14. Effects of free-air CO2 and temperature enrichment on soybean growth and development

    NASA Astrophysics Data System (ADS)

    Ruiz Vera, U. M.; Bernacchi, C. J.

    2012-12-01

    According to the growing degree days approach, the progression of plant developmental stages requires certain accumulation of heat; therefore greenhouse gas-induced warming of the atmosphere could contribute to more rapid plant development. However, the influence of rising carbon dioxide concentration ([CO2]) on development of crops is uncertain, accelerating and other times delaying certain developmental stages. In soybean, the increase of [CO2] is shown to delay reproductive development, which is attributed to a higher investment of resources into extra nodes. The combined effects of elevated temperature and [CO2] can have significant changes in the progression through development that can influence on total grain production, carbon uptake, and susceptibility to early end-of-season frosts. We designed the Temperature by Free Air CO2 Enrichment (T-FACE) experiment to test over two growing seasons (2009 and 2011) and under field conditions the impact of increased temperature and/or [CO2] on soybean. The heated T-FACE subplots were situated in the larger FACE plots at 385 or 585 ppm of [CO2] and subjected to either ambient or heated (+~3.5°C) temperatures. The experiment is full factorial with ambient temperature and [CO2] (control), elevated temperature (eT), elevated [CO2] (eC) and combined (eT+eC) treatments. We hypothesized that soybean grown (1) under elevated [CO2] will produce more nodes than control, (2) under high temperature will produce nodes faster than control and (3) under both elevated temperature and [CO2] will produce more nodes in less time than control. For reproductive development, we hypothesized that (1) reproductive development will initiate simultaneously regardless of increased [CO2] or temperature because soybean reproduction is triggered by day length, (2) elevated temperature will accelerate the progression through key reproductive stages and (3) the delay in soybean reproductive development by elevated [CO2] will be ameliorated by the raise in temperature. Soybean developmental stages were recorded on six plants per subplot three times per week from emergence to senescence. In 2009, no temperature effect was detected on the vegetative development, but in 2011 temperature accelerates node formation. Elevated [CO2] was not significant on vegetative development, however plants under this effect produced more nodes than control. Reproductive development was delayed by elevated [CO2]. High temperature accelerated reproductive stages only in 2009, ameliorating the effect of elevated [CO2] in eT+eC. In 2011 elevated temperature delayed reproductive stages, a response that could be related with stress imposed by the weather conditions of that season. In the Midwest, the soybean cultivars generally mature before the first frost of the year avoiding seed damage. The delayed in soybean maturation by the increasing of [CO2] could potentially reduce yield; however the increase of temperature could diminish this risk by mitigating this delay. Alternatively, the more rapid progression through the reproductive stages could decrease the translocation of resources to pods, thereby negatively impacting yields. Using soybean as a model for leguminous C3 species suggested implications could arise for yield in crop plants and reproductive fitness in native vegetation.

  15. To Demonstrate an Integrated Solution for Plasma-Material Interfaces Compatible with an Optimized Core Plasma

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Brooks, Jeffrey; Hubbard, Amanda; Leonard, Anthony; Lipschultz, Bruce; Maingi, Rajesh; Ulrickson, Michael; Whyte, Dennis

    2009-11-01

    The plasma facing components in a Demo reactor will face much more extreme boundary plasma conditions and operating requirements than any present or planned experiment. These include 1) Power density a factor of four or more greater than in ITER, 2) Continuous operation resulting in annual energy and particle throughput 100-200 times larger than ITER, 3) Elevated surface operating temperature for efficient electricity production, 4) Tritium fuel cycle control for safety and breeding requirements, and 5) Steady state plasma confinement and control. Consistent with ReNeW Thrust 12, design options are being explored for a new moderate-scale facility to assess core-edge interaction issues and solutions. Key desired features include high power density, sufficient pulse length and duty cycle, elevated wall temperature, steady-state control of an optimized core plasma, and flexibility in changing boundary components as well as access for comprehensive measurements.

  16. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora.

    PubMed

    Rocker, Melissa M; Noonan, Sam; Humphrey, Craig; Moya, Aurelie; Willis, Bette L; Bay, Line K

    2015-12-01

    Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 μatm) and ambient temperature (27°C), and 2) elevated pCO2 (490 and 822 μatm) and temperature (28 and 31 °C). After 14 days of exposure to elevated pCO2 and ambient temperatures, no evidence of differential expression of either calcification or metabolism genes was detected between control and elevated pCO2 treatments. After 37 days of exposure to control and elevated pCO2, Ubiquinol-Cytochrome-C Reductase Subunit 2 gene (QCR2; a gene involved in complex III of the electron chain transport within the mitochondria and critical for generation of ATP) was significantly down-regulated in the elevated pCO2 treatment in both ambient and elevated temperature treatments. Overall, the general absence of a strong response to elevated pCO2 and temperature by the other 19 targeted calcification and metabolism genes suggests that corals may not be affected by these stressors on longer time scales (37 days). These results also highlight the potential for QCR2 to act as a biomarker of coral genomic responses to changing environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Stress-induced behaviour in adult and old rats: effects of neonatal asphyxia, body temperature and chelation of iron.

    PubMed

    Rogalska, J; Caputa, M; Wentowska, K; Nowakowska, A

    2006-11-01

    Perinatal asphyxia in mammals leads to iron accumulation in the brain, which results in delayed neurobehavioural disturbances, including impaired learning and abnormal alertness over their entire life span. The aim of this investigation was to verify our hypothesis that newborn rats, showing reduced normal body temperature, are protected against neurotoxicity of the asphyxia up to senescence. Alertness was studied in adult and old male Wistar rats after exposure to critical neonatal anoxia: (i) at physiological neonatal body temperature of 33 degrees C, (ii) at body temperature elevated to 37 degrees C, or (iii) at body temperature elevated to 39 degrees C (the thermal conditions remained unchanged both during anoxia and for 2 h postanoxia). To elucidate the effect of iron-dependent postanoxic oxidative damage to the brain, half of the group (iii) was injected with deferoxamine, a chelator of iron. Postanoxic behavioural disturbances were recorded in open-field, elevated plus-maze, and sudden silence tests when the rats reached the age of 12 and 24 months. Open-field stress-induced motor activity was reduced in rats subjected to neonatal anoxia under hyperthermic conditions. In contrast, these rats were hyperactive in the plus-maze test. Both the plus-maze and sudden silence tests show reduced alertness of these rats to external stimuli signalling potential dangers. The behavioural disturbances were prevented by body temperature of 33 degrees C and by administration of deferoxamine.

  18. Comparison of the effects of symmetric and asymmetric temperature elevation and CO2 enrichment on yield and evapotranspiration of winter wheat (Triticum aestivum L.)

    PubMed Central

    Qiao, Yunzhou; Liu, Huiling; Kellomäki, Seppo; Peltola, Heli; Liu, Yueyan; Dong, Baodi; Shi, Changhai; Zhang, Huizhen; Zhang, Chao; Gong, Jinnan; Si, Fuyan; Li, Dongxiao; Zheng, Xin; Liu, Mengyu

    2014-01-01

    Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed-top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration. PMID:24963392

  19. Comparison of the effects of symmetric and asymmetric temperature elevation and CO2 enrichment on yield and evapotranspiration of winter wheat (Triticum aestivum L.).

    PubMed

    Qiao, Yunzhou; Liu, Huiling; Kellomäki, Seppo; Peltola, Heli; Liu, Yueyan; Dong, Baodi; Shi, Changhai; Zhang, Huizhen; Zhang, Chao; Gong, Jinnan; Si, Fuyan; Li, Dongxiao; Zheng, Xin; Liu, Mengyu

    2014-05-01

    Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed-top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration.

  20. Elevated temperature deformation of TD-nickel base alloys

    NASA Technical Reports Server (NTRS)

    Petrovic, J. J.; Kane, R. D.; Ebert, L. J.

    1972-01-01

    Sensitivity of the elevated temperature deformation of TD-nickel to grain size and shape was examined in both tension and creep. Elevated temperature strength increased with increasing grain diameter and increasing L/D ratio. Measured activation enthalpies in tension and creep were not the same. In tension, the internal stress was not proportional to the shear modulus. Creep activation enthalpies increased with increasing L/D ratio and increasing grain diameter, to high values compared with that of the self diffusion enthalpy. It has been postulated that two concurrent processes contribute to the elevated temperature deformation of polycrystalline TD-nickel: (1) diffusion controlled grain boundary sliding, and (2) dislocation motion.

  1. Comparing aging of graphite/LiFePO4 cells at 22 °C and 55 °C - Electrochemical and photoelectron spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Hellqvist Kjell, Maria; Malmgren, Sara; Ciosek, Katarzyna; Behm, Mårten; Edström, Kristina; Lindbergh, Göran

    2013-12-01

    Accelerated aging at elevated temperature is commonly used to test lithium-ion battery lifetime, but the effect of an elevated temperature is still not well understood. If aging at elevated temperature would only be faster, but in all other respects equivalent to aging at ambient temperature, cells aged to end-of-life (EOL) at different temperatures would be very similar. The present study compares graphite/LiFePO4-based cells either cycle- or calendar-aged to EOL at 22 °C and 55 °C. Cells cycled at the two temperatures show differences in electrochemical impedance spectra as well as in X-ray photoelectron spectroscopy (XPS) spectra. These results show that lithium-ion cell aging is a complex set of processes. At elevated temperature, the aging is accelerated in process-specific ways. Furthermore, the XPS results of cycle-aged samples indicate increased deposition of oxygenated LiPF6 decomposition products in both the negative and positive electrode/electrolyte interfaces. The decomposition seems more pronounced at elevated temperature, and largely accelerated by cycling, which could contribute to the observed cell impedance increase.

  2. Elevated body temperature is linked to fatigue in an Italian sample of relapsing-remitting multiple sclerosis patients.

    PubMed

    Leavitt, V M; De Meo, E; Riccitelli, G; Rocca, M A; Comi, G; Filippi, M; Sumowski, J F

    2015-11-01

    Elevated body temperature was recently reported for the first time in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy controls. In addition, warmer body temperature was associated with worse fatigue. These findings are highly novel, may indicate a novel pathophysiology for MS fatigue, and therefore warrant replication in a geographically separate sample. Here, we investigated body temperature and its association to fatigue in an Italian sample of 44 RRMS patients and 44 age- and sex-matched healthy controls. Consistent with our original report, we found elevated body temperature in the RRMS sample compared to healthy controls. Warmer body temperature was associated with worse fatigue, thereby supporting the notion of endogenous temperature elevations in patients with RRMS as a novel pathophysiological factor underlying fatigue. Our findings highlight a paradigm shift in our understanding of the effect of heat in RRMS, from exogenous (i.e., Uhthoff's phenomenon) to endogenous. Although randomized controlled trials of cooling treatments (i.e., aspirin, cooling garments) to reduce fatigue in RRMS have been successful, consideration of endogenously elevated body temperature as the underlying target will enhance our development of novel treatments.

  3. Toxicity of chromium (VI) to two mussels and an amphipod in water-only exposures with or without a co-stressor of elevated temperature, zinc, or nitrate

    USGS Publications Warehouse

    Wang, Ning; Kunz, James L.; Ivey, Chris D.; Ingersoll, Christopher G.; Barnhart, M. Christopher; Glidewell, Elizabeth A.

    2017-01-01

    The objectives of the present study were to develop methods for propagating western pearlshell (Margaritifera falcata) for laboratory toxicity testing and evaluate acute and chronic toxicity of chromium VI [Cr(VI)] to the pearlshell and a commonly tested mussel (fatmucket, Lampsilis siliquoidea at 20 °C or in association with a co-stressor of elevated temperature (27 °C), zinc (50 µg Zn/L), or nitrate (35 mg NO3/L). A commonly tested invertebrate (amphipod, Hyalella azteca) also was tested in chronic exposures. Newly transformed pearlshell (~1 week old) were successfully cultured and tested in acute 96 h Cr exposures (control survival 100%). However, the grow-out of juveniles in culture for chronic toxicity testing was less successful and chronic 28-day Cr toxicity tests started with 4 month-old pearlshell failed due to low control survival (39–68%). Acute median effect concentration (EC50) for the pearlshell (919 µg Cr/L) and fatmucket (456 µg Cr/L) tested at 20 °C without a co-stressor decreased by a factor of > 2 at elevated temperature but did not decrease at elevated Zn or elevated NO3. Chronic 28-day Cr tests were completed successfully with the fatmucket and amphipod (control survival 83–98%). Chronic maximum acceptable toxicant concentration (MATC) for fatmucket at 20 °C (26 µg Cr/L) decreased by a factor of 2 at elevated temperature or NO3 but did not decrease at elevated Zn. However, chronic MATC for amphipod at 20 °C (13 µg Cr/L) did not decrease at elevated temperature, Zn, or NO3. Acute EC50s for both mussels tested with or without a co-stressor were above the final acute value used to derive United States Environmental Protection Agency acute water quality criterion (WQC) for Cr(VI); however, chronic MATCs for fatmucket at elevated temperature or NO3 and chronic MATCs for the amphipod at 20 °C with or without elevated Zn or NO3 were about equal to the chronic WQC. The results indicate that (1) the elevated temperature increased the acute Cr toxicity to both mussel species, (2) fatmucket was acutely more sensitive to Cr than the pearlshell, (3) elevated temperature or NO3 increased chronic Cr toxicity to fatmucket, and (4) acute WQC are protective of tested mussels with or without a co-stressor; however, the chronic WQC might not protect fatmucket at elevated temperature or NO3 and might not protect the amphipod at 20 °C with or without elevated Zn or NO3.

  4. Determination of design allowable strength properties of elevated-temperature alloys. Part 1: Coated columbium alloys

    NASA Technical Reports Server (NTRS)

    Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.

    1972-01-01

    A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.

  5. N cycling in SPRUCE (Spruce Peatlands Response Under ...

    EPA Pesticide Factsheets

    Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in the nitrogen cycle can have consequences on NO3, NH4 availability or pollution, and potentially increase nitrous oxide (N2O) emissions, a persistent greenhouse gas (GHG). These consequences can cascade to altering whole ecosystem functions and effecting human health.We are investigating nitrogen cycling response to elevated temperature and CO2 in a boreal peatland. Spruce and Peatland Responses Under Climate and Environmental Change (SPRUCE) project initiated soil warming in 2014 in ten peatland mesocosms (five temperature treatments from ambient (+0°C) to +9°C) and elevated CO2 in half of the mesocosms in 2016. Peat cores at three depths (acrotelm, catotelm, deep peat) were analyzed in the laboratory for denitrification, nitrification, and ammonification. We expect denitrification, nitrification, and ammonification rates to increase, and denitrification efficiency to decrease with rising temperatures- potentially contaminating water resources with NO3, NH4 and increase N2O concentrations in our atmosphere. This research will enhance the scientific understanding of how nitrogen cycling, an important functional eco-service, responds under environmental conditions including elevated CO2

  6. Influence of temperature changes on multiple sclerosis: critical review of mechanisms and research potential.

    PubMed

    Guthrie, T C; Nelson, D A

    1995-03-01

    In 1890, Uhthoff studied multiple sclerosis (MS) patients who developed amblyopia following exercise, a phenomenon later discovered to be secondary to elevated body temperature from muscular activity. Six decades later, the hot bath test and various other heating reactions (HR) began to be used diagnostically. They were essentially discontinued after 1983, being replaced by more specific and safer tests and procedures. Over 80% of MS patients develop a panoply of neurological signs during hyperthermia, 60% of which are "new" to that patient. The literature contains a number of unexplained paradoxical responses of MS patients during induced hyperthermia. These challenge the current hypothesis that, in MS, hyperthermia induces a heat-linked neuro-blockade of partially demyelinated axons. Some MS patients developed signs before temperature elevations occurred; others showed clearing of signs while temperatures were elevated or were ascending. Several MS patients improved for about 3 hours after being tested, a rebound phenomenon known as "overshoot." Conversely, other MS patients developed persistent neurological deficits after hyperthermia. The etiology of HR may be multifactorial. This includes heat itself, effects of serum calcium, blockade of ion channels, circulatory changes, heat shock proteins, and unidentified humoral substances. Research techniques are suggested to continue investigations into the enigma of HR, hopefully to widen knowledge of demyelination.

  7. The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps

    NASA Astrophysics Data System (ADS)

    Nigrelli, Guido; Fratianni, Simona; Zampollo, Arianna; Turconi, Laura; Chiarle, Marta

    2018-02-01

    Temperature is one of the most important aspects of mountain climates. The relationships between air temperature and rockfalls at high-elevation sites are very important to know, but are also very difficult to study. In relation to this, a reliable method to estimate air temperatures at high-elevation sites is to apply the altitudinal temperature lapse rates (ATLR). The aims of this work are to quantify the values and the variability of the hourly ATLR and to apply this to estimated temperatures at high-elevation sites for rockfalls studies. To calculate ATLR prior the rockfalls, we used data acquired from two automatic weather stations that are located at an elevation above 2500 m. The sensors/instruments of these two stations are reliable because subjected to an accurate control and calibration once for year and the raw data have passed two automatic quality controls. Our study has yielded the following main results: (i) hourly ATLR increases slightly with increasing altitude, (ii) it is possible to estimate temperature at high-elevation sites with a good level of accuracy using ATLR, and (iii) temperature plays an important role on slope failures that occur at high-elevation sites and its importance is much more evident if the values oscillate around 0 °C with an amplitude of ±5 °C during the previous time-period. For these studies, it is not enough to improve the knowledge on air temperature, but it is necessary to develop an integrated knowledge of the thermal conditions of different materials involved in these processes (rock, debris, ice, water). Moreover, this integrated knowledge must be acquired by means of sensors and acquisition chains with known metrological traceability and uncertainty of measurements.

  8. Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change

    PubMed Central

    La Sorte, Frank A.; Butchart, Stuart H. M.; Jetz, Walter; Böhning-Gaese, Katrin

    2014-01-01

    Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change. PMID:24852009

  9. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.

    PubMed

    Arend, M; Brem, A; Kuster, T M; Günthardt-Goerg, M S

    2013-01-01

    Oaks are commonly considered as drought- and heat-tolerant trees that might benefit from a warmer and drier climate. Their tolerance to drought has been frequently studied in the past, whereas studies dealing with elevated temperature or its combination with drought are very limited in number. In this study we investigated seasonal photosynthetic patterns in three European oak species (Quercus robur, Q. petraea, Q. pubescens) exposed in lysimeter-based open-top chambers (OTC) to elevated daytime temperature, drought and their combination. Stomatal and non-stomatal traits of photosynthesis were followed over an entire growing season and related to changes in daytime temperature, soil moisture and pre-dawn leaf water potential (Ψ(PD) ). Elevated daytime temperature enhanced net photosynthesis (P(N) ) in a season-dependent manner, with higher mid-summer rates than in controls exposed to ambient temperature. Drought imposed in early and mid-summer reduced the soil moisture content and caused a gradual decline in Ψ(PD) , stomatal conductance (g(S) ) and P(N) . Drought effects on Ψ(PD) and P(N) were exacerbated when drought was combined with elevated daytime temperature. In general, P(N) tended to be more affected by low soil moisture content or low Ψ(PD) in Q. robur than in Q. petraea and Q. pubescens. Non-stomatal limitations may have contributed to the drought-induced decline of P(N) in Q. robur, as indicated by a down-regulation of PSII photochemistry (F(V) /F(M) ) and decreased chlorophyll content. Taken together, our findings show that European oaks may benefit from elevated temperature, but detrimental effects can be expected when elevated temperature occurs simultaneously with drought. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. ELEVATED CO2 AND ELEVATED TEMPERATURE AFFECT CARBON AND NITROGEN CONCENTRATIONS BUT NOT ACCUMULATION IN PSEUDOTSUGA MENZIESII SEEDLINGS

    EPA Science Inventory

    To determine the impact of climate change on concentrations and accumulation of C and N in trees, we grew Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir) seedlings treated with ambient or elevated (+180 mol mol-1) CO2, and with ambient or elevated (+3.5 C) temperature for f...

  11. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{submore » 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.« less

  12. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland

    USDA-ARS?s Scientific Manuscript database

    Concurrent changes in temperature, atmospheric CO2, and precipitation regimes are altering ecosystems globally, and may be especially important in water-limited ecosystems. Such ecosystems include the semi-arid grasslands of western North America which provide critical ecosystem services, including ...

  13. The response of a boreal deep-sea sponge holobiont to acute thermal stress.

    PubMed

    Strand, R; Whalan, S; Webster, N S; Kutti, T; Fang, J K H; Luter, H M; Bannister, R J

    2017-05-22

    Effects of elevated seawater temperatures on deep-water benthos has been poorly studied, despite reports of increased seawater temperature (up to 4 °C over 24 hrs) coinciding with mass mortality events of the sponge Geodia barretti at Tisler Reef, Norway. While the mechanisms driving these mortality events are unclear, manipulative laboratory experiments were conducted to quantify the effects of elevated temperature (up to 5 °C, above ambient levels) on the ecophysiology (respiration rate, nutrient uptake, cellular integrity and sponge microbiome) of G. barretti. No visible signs of stress (tissue necrosis or discolouration) were evident across experimental treatments; however, significant interactive effects of time and treatment on respiration, nutrient production and cellular stress were detected. Respiration rates and nitrogen effluxes doubled in responses to elevated temperatures (11 °C & 12 °C) compared to control temperatures (7 °C). Cellular stress, as measured through lysosomal destabilisation, was 2-5 times higher at elevated temperatures than for control temperatures. However, the microbiome of G. barretti remained stable throughout the experiment, irrespective of temperature treatment. Mortality was not evident and respiration rates returned to pre-experimental levels during recovery. These results suggest other environmental processes, either alone or in combination with elevated temperature, contributed to the mortality of G. barretti at Tisler reef.

  14. Literature survey on oxidations and fatigue lives at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1984-01-01

    Nickel-base superalloys are the most complex and the most widely used for high temperature applications such as aircraft engine components. The desirable properties of nickel-base superalloys at high temperatures are tensile strength, thermomechanical fatigue resistance, low thermal expansion, as well as oxidation resistance. At elevated temperature, fatigue cracks are often initiated by grain boundary oxidation, and fatigue cracks often propagate along grain boundaries, where the oxidation rate is higher. Oxidation takes place at the interface between metal and gas. Properties of the metal substrate, the gaseous environment, as well as the oxides formed all interact to make the oxidation behavior of nickel-base superalloys extremely complicated. The important topics include general oxidation, selective oxidation, internal oxidation, grain boundary oxidation, multilayer oxide structure, accelerated oxidation under stress, stress-generation during oxidation, composition and substrate microstructural changes due to prolonged oxidation, fatigue crack initiation at oxidized grain boundaries and the oxidation accelerated fatigue crack propagation along grain boundaries.

  15. Cooling systems for ultra-high temperature turbines.

    PubMed

    Yoshida, T

    2001-05-01

    This paper describes an introduction of research and development activities on steam cooling in gas turbines at elevated temperature of 1500 C and 1700 C level, partially including those on water cooling. Descriptions of a new cooling system that employs heat pipes are also made. From the view point of heat transfer, its promising applicability is shown with experimental data and engine performance numerical evaluation.

  16. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    DOEpatents

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  17. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.

    PubMed

    Ryan, Michael G

    2013-11-01

    Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway spruce site with nutrient-poor soil. This special section on research at Flakaliden presents five papers that explore different facets of nutrition, atmospheric CO2 concentration, [CO2], and increased temperature treatments, using the original experiment as a base. Research at Flakaliden shows the dominant role of nutrition in controlling the response of growth to the increased photosynthesis promoted by elevated [CO2] and temperature. Experiments with whole-tree chambers showed that all treatments (air temperature warming, elevated [CO2] and optimum nutrition) increased shoot photosynthesis by 30-50%, but growth only increased with [CO2] when combined with the optimum nutrition treatment. Elevated [CO2] and temperature increased shoot photosynthesis by increasing the slope between light-saturated photosynthesis and foliar nitrogen by 122%, the initial slope of the light response curve by 52% and apparent quantum yield by 10%. Optimum nutrition also decreased photosynthetic capacity by 17%, but increased it by 62% in elevated [CO2], as estimated from wood δ(13)C. Elevated air temperature advanced spring recovery of photosynthesis by 37%, but spring frost events remained the controlling factor for photosynthetic recovery, and elevated [CO2] did not affect this. Increased nutrient availability increased wood growth primarily through a 50% increase in tracheid formation, mostly during the peak growth season. Other notable contributions of research at Flakaliden include exploring the role of optimal nutrition in large-scale field trials with foliar analysis, using an ecosystem approach for multifactor experiments, development of whole-tree chambers allowing inexpensive environmental manipulations, long-term deployment of shoot chambers for continuous measurements of gas exchange and exploring the ecosystem response to soil and aboveground tree warming. The enduring legacy of Flakaliden will be the rich data set of long-term, multifactor experiments that has been and will continue to be used in many modeling and cross-site comparison studies.

  18. Simulation analysis of temperature control on RCC arch dam of hydropower station

    NASA Astrophysics Data System (ADS)

    XIA, Shi-fa

    2017-12-01

    The temperature analysis of roller compacted concrete (RCC) dam plays an important role in their design and construction. Based on three-dimensional finite element method, in the computation of temperature field, many cases are included, such as air temperature, elevated temperature by cement hydration heat, concrete temperature during placing, the influence of water in the reservoir, and boundary temperature. According to the corresponding parameters of RCC arch dam, the analysis of temperature field and stress field during the period of construction and operation is performed. The study demonstrates that detailed thermal stress analysis should be performed for RCC dams to provide a basis to minimize and control the occurrence of thermal cracking.

  19. Warming has a greater effect than elevated CO2 on predator-prey interactions in coral reef fish.

    PubMed

    Allan, Bridie J M; Domenici, Paolo; Watson, Sue Ann; Munday, Philip L; McCormick, Mark I

    2017-06-28

    Ocean acidification and warming, driven by anthropogenic CO 2 emissions, are considered to be among the greatest threats facing marine organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects, which could impact key ecological processes. We tested the independent and combined effects of short-term exposure to elevated CO 2 and temperature on the predator-prey interactions of a common pair of coral reef fishes ( Pomacentrus wardi and its predator, Pseudochromis fuscus ). We found that predator success increased following independent exposure to high temperature and elevated CO 2 Overall, high temperature had an overwhelming effect on the escape behaviour of the prey compared with the combined exposure to elevated CO 2 and high temperature or the independent effect of elevated CO 2 Exposure to high temperatures led to an increase in attack and predation rates. By contrast, we observed little influence of elevated CO 2 on the behaviour of the predator, suggesting that the attack behaviour of P. fuscus was robust to this environmental change. This is the first study to address how the kinematics and swimming performance at the basis of predator-prey interactions may change in response to concurrent exposure to elevated CO 2 and high temperatures and represents an important step to forecasting the responses of interacting species to climate change. © 2017 The Author(s).

  20. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa

    PubMed Central

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-01-01

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO2 concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO2 concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO2 glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods. PMID:17535920

  1. Dominant factors controlling glacial and interglacial variations in the treeline elevation in tropical Africa.

    PubMed

    Wu, Haibin; Guiot, Joël; Brewer, Simon; Guo, Zhengtang; Peng, Changhui

    2007-06-05

    The knowledge of tropical palaeoclimates is crucial for understanding global climate change, because it is a test bench for general circulation models that are ultimately used to predict future global warming. A longstanding issue concerning the last glacial maximum in the tropics is the discrepancy between the decrease in sea-surface temperatures reconstructed from marine proxies and the high-elevation decrease in land temperatures estimated from indicators of treeline elevation. In this study, an improved inverse vegetation modeling approach is used to quantitatively reconstruct palaeoclimate and to estimate the effects of different factors (temperature, precipitation, and atmospheric CO(2) concentration) on changes in treeline elevation based on a set of pollen data covering an altitudinal range from 100 to 3,140 m above sea level in Africa. We show that lowering of the African treeline during the last glacial maximum was primarily triggered by regional drying, especially at upper elevations, and was amplified by decreases in atmospheric CO(2) concentration and perhaps temperature. This contrasts with scenarios for the Holocene and future climates, in which the increase in treeline elevation will be dominated by temperature. Our results suggest that previous temperature changes inferred from tropical treeline shifts may have been overestimated for low-CO(2) glacial periods, because the limiting factors that control changes in treeline elevation differ between glacial and interglacial periods.

  2. The Effect of Elevation Bias in Interpolated Air Temperature Data Sets on Surface Warming in China During 1951-2015

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Sun, Fubao; Ge, Quansheng; Kleidon, Axel; Liu, Wenbin

    2018-02-01

    Although gridded air temperature data sets share much of the same observations, different rates of warming can be detected due to different approaches employed for considering elevation signatures in the interpolation processes. Here we examine the influence of varying spatiotemporal distribution of sites on surface warming in the long-term trend and over the recent warming hiatus period in China during 1951-2015. A suspicious cooling trend in raw interpolated air temperature time series is found in the 1950s, and 91% of which can be explained by the artificial elevation changes introduced by the interpolation process. We define the regression slope relating temperature difference and elevation difference as the bulk lapse rate of -5.6°C/km, which tends to be higher (-8.7°C/km) in dry regions but lower (-2.4°C/km) in wet regions. Compared to independent experimental observations, we find that the estimated monthly bulk lapse rates work well to capture the elevation bias. Significant improvement can be achieved in adjusting the interpolated original temperature time series using the bulk lapse rate. The results highlight that the developed bulk lapse rate is useful to account for the elevation signature in the interpolation of site-based surface air temperature to gridded data sets and is necessary for avoiding elevation bias in climate change studies.

  3. REGIONAL MONITORING OF CORAL CONDITION IN THE FLORIDA KEYS

    EPA Science Inventory

    Tropical reef corals have experienced unprecedented levels of bleaching and disease during the last three decades. Declining health has been attributed to several stressors, including exposures to elevated water temperature, increased solar radiation, and degraded water quality. ...

  4. INNOVATIVE APPROACHES TO TMDLS-PART 2

    EPA Science Inventory

    This study will to sort out the natural factors that tend to be associated with different assemblages of fishes in shallow streams in West Virginia. These environmental factors include seasonal stream temperature, site elevation, stream gradient, quantity of water, and geology. ...

  5. Some considerations for various positioning systems and their science capabilities

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.; Merkley, D. R.; Danley, T. J.

    1990-01-01

    Containerless processing of materials at elevated temperatures is discussed with emphasis on high temperature chemistry, thermophysical properties, materials science, and materials processing. Acoustic and electromagnetic positioning of high temperature melts are discussed. Results from recent ground based experiments, including KC-135 testing of an acoustic levitator, are presented. Some current positioning technologies and the potential for enhancing them are considered. Further, a summary of these technologies and their science capabilities for the development of future experiments is given.

  6. Long Range Materials Research. Appendix 1. Synthesis and Characterization of Supported Organometallic Rhodium (I) Catalysts

    DTIC Science & Technology

    1974-06-30

    hydrosilates, 130 including irradiation by ultraviolet light, elevated temperatures (up to 3500) in sealed tubes, and free radical initiators (up to 10 mol...to 160 ml dry pyridine and stirred at 00 in a 250 ml Erlenmeyer flask fitted with a septum. After the temperature had equilibrated, p-toluene sulfonyl...chloride (80 g, 0.41 mol) was added slowly, carefully maintaining the temperature below 100. The vessel was tightly capped, the mixture stirred an

  7. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam -- Annual Report -- October 2007-September 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, Evan V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations----a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated, potentially influencingmore » alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezo¬meters. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet.« less

  8. Imaging Ultrasound Guidance and on-line Estimation of Thermal Behavior in HIFU Exposed Targets

    NASA Astrophysics Data System (ADS)

    Chauhan, Sunita; Haryanto, Amir

    2006-05-01

    Elevated temperatures have been used for many years to combat several diseases including treatment of certain types of cancers/tumors. High Intensity Focused Ultrasound (HIFU) has emerged as a potential non-invasive modality for trackless targeting of deep-seated cancers of human body. For the procedures which require thermal elevation such as hyperthermia and tissue ablation, temperature becomes a parameter of vital importance in order to monitor the treatment on-line. Also, embedding invasive temperature probes for this purpose beats the supremacy of the non-invasive ablating modality. In this paper, we describe the use of a non-invasive and inexpensive conventional imaging ultrasound modality for lesion positioning and estimation of thermal behavior of the tissue on exposure to HIFU. Representative results of our online lesion tracking algorithm for discerning lesioning behavior using image capture, processing and phase-shift measurements are presented.

  9. Destabilization of emulsions by natural minerals.

    PubMed

    Yuan, Songhu; Tong, Man; Wu, Gaoming

    2011-09-15

    This study developed a novel method to destabilize emulsions and recycle oils, particularly for emulsified wastewater treatment. Natural minerals were used as demulsifying agents, two kinds of emulsions collected from medical and steel industry were treated. The addition of natural minerals, including artificial zeolite, natural zeolite, diatomite, bentonite and natural soil, could effectively destabilize both emulsions at pH 1 and 60 °C. Over 90% of chemical oxygen demand (COD) can be removed after treatment. Medical emulsion can be even destabilized by artificial zeolite at ambient temperature. The mechanism for emulsion destabilization by minerals was suggested as the decreased electrostatic repulsion at low pH, the enhanced gathering of oil microdroplets at elevated temperature, and the further decreased surface potential by the addition of minerals. Both flocculation and coalescence were enhanced by the addition of minerals at low pH and elevated temperature. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Improved TIG weld joint strength in aluminum alloy 2219-T87 by filler metal substitution

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.; Lovoy, C. V.

    1972-01-01

    The results of an investigation on weld joint characteristics of aluminum alloy 2219-T87 are given. Five different alloys were utilized as filler material. The mechanical properties of the joints were determined at ambient and cryogenic temperatures for weldments in the as-welded condition and also, for weldments after elevated temperature exposures. Other evaluations included hardness surveys, stress corrosion susceptibility, and to a limited extent, the internal metallurgical weld structures. The overall results indicate that M-943 filler weldments are superior in strength to weldments containing either the standard 2319 filler or fillers 2014, 2020, and a dual wire feed consisting of three parts 2319 and one part 5652. In addition, no deficiencies were evident in M-934 filler weldments with regard to ductility, joint strength after elevated temperature exposure, weld hardness, metallographic structures, or stress corrosion susceptibility.

  11. Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves

    NASA Astrophysics Data System (ADS)

    Ghebreegziabher, Amanuel T.

    Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.

  12. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.

    PubMed

    Salazar-Parra, Carolina; Aranjuelo, Iker; Pascual, Inmaculada; Erice, Gorka; Sanz-Sáez, Álvaro; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Araus, José Luis; Morales, Fermín

    2015-02-01

    Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700ppm vs. ambient, ca. 400ppm), temperature (ambient vs. elevated, ambient +4°C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment (13)C isotopic composition (δ(13)C) under elevated CO2 (from -10.30 to -24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  14. Are there evidences of altitudinal effects of air temperature trends in the European Alps 1820-2013?

    NASA Astrophysics Data System (ADS)

    Schoener, W.; Auer, I.; Chimani, B.; Garnekind, M.; Haslinger, K.

    2013-12-01

    We use the HISTALP data set (www.zamg.ac.at/histalp) in order to assess the elevation dependency of air temperature trends within the European Alps. The evidence of altitudinal effects of the climate warming (with higher sensitivity of high mountain regions to warming) is a key statement, or at least key hypothesis, in many studies. The high relevance of such statement resp. hypothesis is obvious if one consider the impacts resulting from such fact, such as snow- and glacier melting and related effects for mountain hydrology. The HISTALP data set stands out with respect to its series lengths and its high level of homogenisation. Interestingly, the HISTALP temperature data show no clear altitudinal dependency of warming or cooling trends within the period 1820-2013. Additionally, a rather homogenous temporal trend could be observed within the entire Greater Alpine Region (GAR). Because HISTALP include also air pressure and vapour pressure series, we could compare our measured air temperatures with mean-column air temperatures, computed by the barometric formula, which were derived from the independently measured air pressure data (using vapour pressure to account for the atmospheric water content) at low resp. high elevations. Computed mean column temperatures are in good agreement with observed temperatures, indicating generally homogenous temporal temperature trend behaviour at different elevations. Our finding contradicts several results from climate modelling attempts and also other studies investigating Alpine temperature trends. We conclude that, whereas modelling results are still limited in the assessment of altitudinal effect of temperature trends from missing atmospheric processes captured by the models, the difference of the trend behaviour compared to other analyses of instrumental air temperatures comes from the seasonal base taken as the basis for trend estimation. It appears that opposite trend in spring and autumn for the period 1980-2000, respectively, levels each other out for the annual temperature trend.

  15. A three-stage hybrid model for regionalization, trends and sensitivity analyses of temperature anomalies in China from 1966 to 2015

    NASA Astrophysics Data System (ADS)

    Wu, Feifei; Yang, XiaoHua; Shen, Zhenyao

    2018-06-01

    Temperature anomalies have received increasing attention due to their potentially severe impacts on ecosystems, economy and human health. To facilitate objective regionalization and examine regional temperature anomalies, a three-stage hybrid model with stages of regionalization, trends and sensitivity analyses was developed. Annual mean and extreme temperatures were analyzed using the daily data collected from 537 stations in China from 1966 to 2015, including the annual mean, minimum and maximum temperatures (Tm, TNm and TXm) as well as the extreme minimum and maximum temperatures (TNe and TXe). The results showed the following: (1) subregions with coherent temperature changes were identified using the rotated empirical orthogonal function analysis and K-means clustering algorithm. The numbers of subregions were 6, 7, 8, 9 and 8 for Tm, TNm, TXm, TNe and TXe, respectively. (2) Significant increases in temperature were observed in most regions of China from 1966 to 2015, although warming slowed down over the last decade. This warming primarily featured a remarkable increase in its minimum temperature. For Tm and TNm, 95% of the stations showed a significant upward trend at the 99% confidence level. TNe increased the fastest, at a rate of 0.56 °C/decade, whereas 21% of the stations in TXe showed a downward trend. (3) The mean temperatures (Tm, TNm and TXm) in the high-latitude regions increased more quickly than those in the low-latitude regions. The maximum temperature increased significantly at high elevations, whereas the minimum temperature increased greatly at middle-low elevations. The most pronounced warming occurred in eastern China in TNe and northwestern China in TXe, with mean elevations of 51 m and 2098 m, respectively. A cooling trend in TXe was observed at the northwestern end of China. The warming rate in TNe varied the most among the subregions (0.63 °C/decade).

  16. Direct numerical simulations of temporally developing hydrocarbon shear flames at elevated pressure: effects of the equation of state and the unity Lewis number assumption

    NASA Astrophysics Data System (ADS)

    Korucu, Ayse; Miller, Richard

    2016-11-01

    Direct numerical simulations (DNS) of temporally developing shear flames are used to investigate both equation of state (EOS) and unity-Lewis (Le) number assumption effects in hydrocarbon flames at elevated pressure. A reduced Kerosene / Air mechanism including a semi-global soot formation/oxidation model is used to study soot formation/oxidation processes in a temporarlly developing hydrocarbon shear flame operating at both atmospheric and elevated pressures for the cubic Peng-Robinson real fluid EOS. Results are compared to simulations using the ideal gas law (IGL). The results show that while the unity-Le number assumption with the IGL EOS under-predicts the flame temperature for all pressures, with the real fluid EOS it under-predicts the flame temperature for 1 and 35 atm and over-predicts the rest. The soot mass fraction, Ys, is only under-predicted for the 1 atm flame for both IGL and real gas fluid EOS models. While Ys is over-predicted for elevated pressures with IGL EOS, for the real gas EOS Ys's predictions are similar to results using a non-unity Le model derived from non-equilibrium thermodynamics and real diffusivities. Adopting the unity Le assumption is shown to cause misprediction of Ys, the flame temperature, and the mass fractions of CO, H and OH.

  17. Effects of drilling parameters in numerical simulation to the bone temperature elevation

    NASA Astrophysics Data System (ADS)

    Akhbar, Mohd Faizal Ali; Malik, Mukhtar; Yusoff, Ahmad Razlan

    2018-04-01

    Drilling into the bone can produce significant amount of heat which can cause bone necrosis. Understanding the drilling parameters influence to the heat generation is necessary to prevent thermal necrosis to the bone. The aim of this study is to investigate the influence of drilling parameters on bone temperature elevation. Drilling simulations of various combinations of drill bit diameter, rotational speed and feed rate were performed using finite element software DEFORM-3D. Full-factorial design of experiments (DOE) and two way analysis of variance (ANOVA) were utilised to examine the effect of drilling parameters and their interaction influence on the bone temperature. The maximum bone temperature elevation of 58% was demonstrated within the range in this study. Feed rate was found to be the main parameter to influence the bone temperature elevation during the drilling process followed by drill diameter and rotational speed. The interaction between drill bit diameter and feed rate was found to be significantly influence the bone temperature. It is discovered that the use of low rotational speed, small drill bit diameter and high feed rate are able to minimize the elevation of bone temperature for safer surgical operations.

  18. Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination.

    PubMed

    Flores-Rentería, Lluvia; Whipple, Amy V; Benally, Gilbert J; Patterson, Adair; Canyon, Brandon; Gehring, Catherine A

    2018-01-01

    High temperatures associated with climate change are expected to be detrimental for aspects of plant reproduction, such as pollen viability. We hypothesized that (1) higher peak temperatures predicted with climate change would have a minimal effect on pollen viability, while high temperatures during pollen germination would negatively affect pollen viability, (2) high temperatures during pollen dispersal would facilitate acclimation to high temperatures during pollen germination, and (3) pollen from populations at sites with warmer average temperatures would be better adapted to high temperature peaks. We tested these hypotheses in Pinus edulis , a species with demonstrated sensitivity to climate change, using populations along an elevational gradient. We tested for acclimation to high temperatures by measuring pollen viability during dispersal and germination stages in pollen subjected to 30, 35, and 40°C in a factorial design. We also characterized pollen phenology and measured pollen heat tolerance using trees from nine sites along a 200 m elevational gradient that varied 4°C in temperature. We demonstrated that this gradient is biologically meaningful by evaluating variation in vegetation composition and P. edulis performance. Male reproduction was negatively affected by high temperatures, with stronger effects during pollen germination than pollen dispersal. Populations along the elevational gradient varied in pollen phenology, vegetation composition, plant water stress, nutrient availability, and plant growth. In contrast to our hypothesis, pollen viability was highest in pinyons from mid-elevation sites rather than from lower elevation sites. We found no evidence of acclimation or adaptation of pollen to high temperatures. Maximal plant performance as measured by growth did not occur at the same elevation as maximal pollen viability. These results indicate that periods of high temperature negatively affected sexual reproduction, such that even high pollen production may not result in successful fertilization due to low germination. Acquired thermotolerance might not limit these impacts, but pinyon could avoid heat stress by phenological adjustment of pollen development. Higher pollen viability at the core of the distribution could be explained by an optimal combination of biotic and abiotic environmental factors. The disconnect between measures of growth and pollen production suggests that vigor metrics may not accurately estimate reproduction.

  19. Rapid warming forces contrasting growth trends of subalpine fir ( Abies fabri ) at higher- and lower-elevations in the eastern Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenzhi; Jia, Min; Wang, Genxu

    Tree radial growth is expected to increase at higher elevations under climate warming, while lower elevation tree growth is expected to decline. However, numerous studies have found tree radial growth responds consistently to climate along elevational gradients. Here, we sampled five plots across the subalpine Abies fabri forest belt on Gongga Mountain in the eastern Tibetan Plateau to determine tree radial growth trends and responses to climate. Three commonly used detrending methods all consistently showed that tree radial growth at high elevation (> 3100 m) increased, while tree growth declined at the lower elevations (2700 m–2900 m) over the lastmore » three decades. Increasing late-growing season temperature positively (p < 0.05) correlated to tree radial growth at higher elevations, but the sign of this relationship reversed to become negative at lower elevations. Moving-window correlation analyses indicated the difference between high and low elevations response to temperature variation increased strongly with warming. Placing our result into the global context, 62% of 39 published studies found that trees along elevation gradients respond divergently to warming, and that these are located in warmer and wetter regions of the Earth. Notably, 28% of studies found non-significant responses to temperature at both high and low elevations. Our findings in the subalpine mountain forest in the eastern Tibetan Plateau were consistent with the majority of published datasets, and imply increasing temperature benefit for tree populations at higher elevation, while warming dampens growth at lower elevations.« less

  20. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    USGS Publications Warehouse

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  1. Sensors for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Koller, A. C.; Bennethum, W. H.; Burkholder, S. D.; Brackett, R. R.; Harris, J. P.

    1995-01-01

    This report includes: (1) a survey of the current methods for the measurement of surface temperature of ceramic materials suitable for use as hot section flowpath components in aircraft gas turbine engines; (2) analysis and selection of three sensing techniques with potential to extend surface temperature measurement capability beyond current limits; and (3) design, manufacture, and evaluation of the three selected techniques which include the following: platinum rhodium thin film thermocouple on alumina and mullite substrates; doped silicon carbide thin film thermocouple on silicon carbide, silicon nitride, and aluminum nitride substrates; and long and short wavelength radiation pyrometry on the substrates listed above plus yttria stabilized zirconia. Measurement of surface emittance of these materials at elevated temperature was included as part of this effort.

  2. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants.

    PubMed

    Munson, Seth M; Sher, Anna A

    2015-08-01

    • Mountainous regions support high plant productivity, diversity, and endemism, yet are highly vulnerable to climate change. Historical records and model predictions show increasing temperatures across high elevation regions including the Southern Rocky Mountains, which can have a strong influence on the performance and distribution of montane plant species. Rare plant species can be particularly vulnerable to climate change because of their limited abundance and distribution.• We tracked the phenology of rare and endemic species, which are identified as imperiled, across three different habitat types with herbarium records to determine if flowering time has changed over the last century, and if phenological change was related to shifts in climate.• We found that the flowering date of rare species has accelerated 3.1 d every decade (42 d total) since the late 1800s, with plants in sagebrush interbasins showing the strongest accelerations in phenology. High winter temperatures were associated with the acceleration of phenology in low elevation sagebrush and barren river habitats, whereas high spring temperatures explained accelerated phenology in the high elevation alpine habitat. In contrast, high spring temperatures delayed the phenology of plant species in the two low-elevation habitats and precipitation had mixed effects depending on the season.• These results provide evidence for large shifts in the phenology of rare Rocky Mountain plants related to climate, which can have strong effects on plant fitness, the abundance of associated wildlife, and the future of plant conservation in mountainous regions. © 2015 Botanical Society of America, Inc.

  3. The Effect of Elevated CO2 and Temperature on the Hatch Rate and Survival of Estuarine Forage Fish

    NASA Astrophysics Data System (ADS)

    Merlo, L. R.; Gobler, C.

    2016-02-01

    The World Oceans are acidifying and warming, yet little is known regarding how these processes will combine to impact fish populations. In estuaries, microbial respiration of eutrophication-enhanced organic matter can create elevated CO2 levels during late spring and summer seasons when thermal extremes can occur and temperate fish spawn. Here, we report on experiments that exposed fish embryos (e.g. Menidia beryllina, inland silverside) to normal and elevated CO2 (400 and 2,000 ppm) and the range of temperatures experienced within temperate estuaries during the spawning season (16 - 30C). Fish survival and growth rates were quantified from hatching through early life, larval stages. Temperature controlled egg hatching times, with elevated temperatures leading to more rapid hatch rates. Elevated levels of CO2 significantly depressed post-hatch survival of fish. Survival rates of fish exposed to elevated CO2 at lower than ideal temperatures were significantly lower than predicted by either variable individually indicating the ability of these stressors to synergistically interact. Since embryonic stages have been identified as being highly sensitive to acidification, this finding may be associated with the extended exposure of eggs to high CO2 at lower temperatures. The physiological mechanisms driving experimental trends and broader ecological implications of the study will be discussed.

  4. STRESS PROTEINS IN AQUATIC ORGANISMS: AN ENVIRONMENTAL PERSPECTIVE

    EPA Science Inventory

    The cellular stress response protects organisms from damage resulting from exposure to a wide variety of stressors, including elevated temperatures, ultraviolet (UV) light, trace metals, and xenobiotics. he stress response entails the rapid synthesis of a suite of proteins referr...

  5. Single and fused transgenic Bacillus thuringiensis rice alter the species-specific responses of non-target planthoppers to elevated carbon dioxide and temperature.

    PubMed

    Wan, Guijun; Dang, Zhihao; Wu, Gang; Parajulee, Megha N; Ge, Feng; Chen, Fajun

    2014-05-01

    The approval of transgenic Bacillus thuringiensis (Bt) rice by China was momentous for biotech crops, although it has yet to be approved for commercial production. Non-target pest problems in rice paddies, such as the three ecologically similar species of planthoppers Nilaparvata lugens, Laodelphax striatellus and Sogatella furcifera, could become increasingly serious under global climate change. Fused (Cry1Ab/Cry1Ac) and single (Cry1Ab) transgenic Bt rice were evaluated for effects on species-specific responses of planthoppers to elevated carbon dioxide (CO2) and temperature. Transgenic Bt rice lines significantly modified species-specific responses of the planthoppers to elevated CO2 and temperature. High temperature appears to favour outbreaks of S. furcifera relative to N. lugens and L. striatellus when feeding upon fused transgenic Bt rice, especially at elevated CO2 . Elevated CO2 at high temperature appears to be a factor reducing S. furcifera occurrence when feeding upon single transgenic Bt rice. Different types of transgenic Bt rice alter the species-specific responses of non-target planthoppers to elevated CO2 and temperature. Compared with their non-transgenic parental lines, the single transgenic Bt rice shows better performance in controlling the non-target planthopper S. furcifera by comparison with the fused transgenic Bt rice under elevated CO2 and temperature. It is suggested that multitypes of transgenic Bt rice be used in the field simultaneously in order to take advantage of high transgenic diversity for optimal performance against all pests in paddy fields. © 2013 Society of Chemical Industry.

  6. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters.

    PubMed

    Zhang, Jia; Zhang, Biao; Wang, Dongmei; Gao, Xiaolian; Hong, Jiong

    2015-01-01

    Three transporter genes including Kluyveromyces marxianus aquaglyceroporin gene (KmFPS1), Candida intermedia glucose/xylose facilitator gene (CiGXF1) or glucose/xylose symporter gene (CiGXS1) were over-expressed in K. marxianus YZJ017 to improve xylitol production at elevated temperatures. The xylitol production of YZJ074 that harbored CiGXF1 was improved to 147.62g/L in Erlenmeyer flask at 42°C. In fermenter, 99.29 and 149.60g/L xylitol were produced from 99.55 and 151.91g/L xylose with productivity of 4.14 and 3.40g/L/h respectively at 42°C. Even at 45°C, YZJ074 could produce 101.30g/L xylitol from 101.41g/L xylose with productivity of 2.81g/L/h. Using fed-batch fermentation through repeatedly adding non-sterilized substrate directly, YZJ074 could produce 312.05g/L xylitol which is the highest yield reported to date. The engineered strains YZJ074 which can produce xylitol at elevated temperatures is an excellent foundation for xylitol bioconversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1989-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber; Nippon Carbon, Ltd., (Dow Corning) nicalon NLM-102 silicon carbide fiber; and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 C to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  8. Static tensile and tensile creep testing of five ceramic fibers at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    Static tensile and tensile creep testing of five ceramic fibers at elevated temperature was performed. J.P. Stevens, Co., Astroquartz 9288 glass fiber, Nippon Carbon, Ltd., (Dow Corning) Nicalon NLM-102 silicon carbide fiber, and 3M Company Nextel 312, 380, and 480 alumina/silica/boria fibers were supplied in unsized tows. Single fibers were separated from the tows and tested in static tension and tensile creep. Elevated test temperatures ranged from 400 to 1300 C and varied for each fiber. Room temperature static tension was also performed. Computer software was written to reduce all single fiber test data into engineering constants using ASTM Standard Test Method D3379-75 as a reference. A high temperature furnace was designed and built to perform the single fiber elevated temperature testing up to 1300 C. A computerized single fiber creep apparatus was designed and constructed to perform four fiber creep tests simultaneously at temperatures up to 1300 C. Computer software was written to acquire and reduce all creep data.

  9. Topography and age mediate the growth responses of Smith fir to climate warming in the southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, B.; Wang, Y.; Zhu, H.; Liang, E.; Camarero, J. J.

    2016-10-01

    The Tibetan Plateau holds some of the world's highest undisturbed natural treelines and timberlines. Such extreme environments constitute potentially valuable monitoring sites of the effects of climate warming on high-elevation forests. Here, we analyze a network of 21 Smith fir forests situated in the Sygera Mountains, southeastern Tibetan Plateau, using tree-ring width (TRW) and basal area increment (BAI) chronologies. Sampled sites encompassed a wide elevation gradient, from 3600 to 4400 m, including some treeline sites and diverse aspects and tree ages. In comparison with TRW series, BAI series better capture the long-term warming signal. Previous November and current April and summer temperatures are the dominant climatic factors controlling Smith fir radial growth. The mean inter-series correlations of TRW increased upwards, but the forest limit presented the highest potential to reconstruct past temperature variability. Moreover, the growth responses of young trees were less stable than those of trees older than 100 years. Climate warming is accelerating radial growth of Smith fir forest subjected to mesic conditions. Collectively, these findings confirm that the effects of site elevation and tree age should be considered when quantifying climate-growth relationships. The type of tree-ring data (BAI vs. TRW) is also relevant since BAI indices seem to be a better climatic proxy of low-frequency temperature signals than TRW indices. Therefore, site (e.g., elevation) and tree (e.g., age) features should be considered to properly evaluate the effects of climate warming on growth of high-elevation forests.

  10. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria.

    PubMed

    Schuster, C; Estrella, N; Menzel, A

    2014-03-01

    The impact of global warming on phenology has been widely studied, and almost consistently advancing spring events have been reported. Especially in alpine regions, an extraordinary rapid warming has been observed in the last decades. However, little is known about phenological phases over the whole vegetation period at high elevations. We observed 12 phenological phases of seven tree species and measured air temperature at 42 sites along four transects of about 1000 m elevational range in the years 2010 and 2011 near Garmisch-Partenkirchen, Germany. Site- and species-specific onset dates for the phenological phases were determined and related to elevation, temperature lapse rates and site-specific temperature sums. Increasing temperatures induced advanced spring and delayed autumn phases, in which both yielded similar magnitudes. Delayed leaf senescence could therefore have been underestimated until now in extending the vegetation period. Not only the vegetation period, but also phenological periods extended with increasing temperature. Moreover, sensitivity to elevation and temperature strongly depends on the specific phenological phase. Differences between species and groups of species (deciduous, evergreen, high elevation) were found in onset dates, phenological response rates and also in the effect of chilling and forcing temperatures. Increased chilling days highly reduced forcing temperature requirements for deciduous trees, but less for evergreen trees. The problem of shifted species associations and phenological mismatches due to species-specific responses to increasing temperature is a recent topic in ecological research. Therefore, we consider our findings from this novel, dense observation network in an alpine area of particular importance to deepen knowledge on phenological responses to climate change. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene-ethylene/butylene-styrene triblock copolymer (sSEBS) was investigated as an alternate membrane candidate. sSEBS was modified through introduction of polymer crosslinks using benzephenone as a photoinitiator and addition of a titania co-phase. A photocrosslinked membrane initially containing 15% benzophenone and 3% titania laminated with a 10 mum Nafion layer was found to produce the best PEMFC performance (120°C, 50%RH).

  12. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Collins, TImothy J.

    2006-01-01

    Considerable efforts have been underway to develop multidisciplinary technologies for aeroshell structures that will significantly increase the allowable working temperature for the aeroshell components, and enable the system to operate at higher temperatures while sustaining performance and durability. As part of these efforts, high temperature polymer matrix composites and fabrication technologies are being developed for the primary load bearing structure (heat shield) of the spacecraft. New high-temperature resins and composite material manufacturing techniques are available that have the potential to significantly improve current aeroshell design. In order to qualify a polymer matrix composite (PMC) material as a candidate aeroshell structural material, its performance must be evaluated under realistic environments. Thus, verification testing of lightweight PMC's at aeroshell entry temperatures is needed to ensure that they will perform successfully in high-temperature environments. Towards this end, a test program was developed to characterize the mechanical properties of two candidate material systems, T650-35/AFR-PE-4 and T650-35/RP46. The two candidate high-temperature polyimide resins, AFR-PE-4 and RP46, were developed at the Air Force Research Laboratory and NASA Langley Research Center, respectively. This paper presents experimental methods, strength, and stiffness data of the T650-35/AFR-PE-4 material as a function of elevated temperatures. The properties determined during the research test program herein, included tensile strength, tensile stiffness, Poisson s ratio, compressive strength, compressive stiffness, shear modulus, and shear strength. Unidirectional laminates, a cross-ply laminate and two eight-harness satin (8HS)-weave laminates (4-ply and 10-ply) were tested according to ASTM standard methods at room and elevated temperatures (23, 316, and 343 C). All of the relevant test methods and data reduction schemes are outlined along with mechanical data. These data contribute to a database of material properties for high-temperature polyimide composites that will be used to identify the material characteristics of potential candidate materials for aeroshell structure applications.

  13. Why Does Rhinopithecus bieti Prefer the Highest Elevation Range in Winter? A Test of the Sunshine Hypothesis

    PubMed Central

    Behm, Jocelyn E.; Wang, Lin; Huang, Yong; Long, Yongcheng; Zhu, Jianguo

    2011-01-01

    Environmental factors that affect spatiotemporal distribution patterns of animals usually include resource availability, temperature, and the risk of predation. However, they do not explain the counterintuitive preference of high elevation range in winter by the black-and-white snub-nosed monkey (Rhinopithecus bieti). We asked whether variation of sunshine along with elevations is the key driving force. To test this hypothesis, we conducted field surveys to demonstrate that there was a statistically significant pattern of high elevation use during winter. We then asked whether this pattern can be explained by certain environmental factors, namely temperature, sunshine duration and solar radiation. Finally, we concluded with a possible ecological mechanism for this pattern. In this study, we employed GIS technology to quantify solar radiation and sunshine duration across the monkey's range. Our results showed that: 1) R. bieti used the high altitude range between 4100–4400 m in winter although the yearly home range spanned from 3500–4500 m; 2) both solar radiation and sunshine duration increased with elevation while temperature decreased with elevation; 3) within the winter range, the use of range was significantly correlated with solar radiation and sunshine duration; 4) monkeys moved to the areas with high solar radiation and duration following a snowfall, where the snow melts faster and food is exposed earlier. We concluded that sunshine was the main factor that influences selection of high elevation habitat for R. bieti in winter. Since some other endotherms in the area exhibit similar winter distributional patterns, we developed a sunshine hypothesis to explain this phenomenon. In addition, our work also represented a new method of integrating GIS models into traditional field ecology research to study spatiotemporal distribution pattern of wildlife. We suggest that further theoretical and empirical studies are necessary for better understanding of sunshine influence on wildlife range use. PMID:21915329

  14. Elevated CO2-mitigation of high temperature stress associated with maintenance of positive carbon balance and carbohydrate accumulation in Kentucky bluegrass.

    PubMed

    Song, Yali; Yu, Jingjin; Huang, Bingru

    2014-01-01

    Elevated CO2 concentration may promote plant growth while high temperature is inhibitory for C3 plant species. The interactive effects of elevated CO2 and high temperatures on C3 perennial grass growth and carbon metabolism are not well documented. Kentucky bluegrass (Poa pratensis) plants were exposed to two CO2 levels (400 and 800 μmol mol-1) and five temperatures (15/12, 20/17, 25/22, 30/27, 35/32°C, day/night) in growth chambers. Increasing temperatures to 25°C and above inhibited leaf photosynthetic rate (Pn) and shoot and root growth, but increased leaf respiration rate (R), leading to a negative carbon balance and a decline in soluble sugar content under ambient CO2. Elevated CO2 did not cause shift of optimal temperatures in Kentucky bluegrass, but promoted Pn, shoot and root growth under all levels of temperature (15, 20, 25, 30, and 35°C) and mitigated the adverse effects of severe high temperatures (30 and 35°C). Elevated CO2-mitigation of adverse effects of high temperatures on Kentucky bluegrass growth could be associated with the maintenance of a positive carbon balance and the accumulation of soluble sugars and total nonstructural carbohydrates through stimulation of Pn and suppression of R and respiratory organic acid metabolism.

  15. Examining mechanisms in the final stages of the elimination of boreal tree species on vulnerable sites in boreal Alaska

    NASA Astrophysics Data System (ADS)

    Juday, G. P.; Jess, R.; Alix, C. M.; Verbyla, D.

    2015-12-01

    The boreal forest of Alaska and western Canada exist in a complex mosaic of environments determined by elevation, aspect of exposure, and longitudinal and latitudinal gradients of change from warm, dry continental to maritime-influenced conditions. This forest region is largely made up of trees with two growth responses to temperature increases. Trees that decrease in growth are termed negative responders, and occupy warm, dry sites at low elevations. Trees that increase in radial growth are termed positive responders, and are largely in western Alaska, and at high elevation of the Brooks and Alaska Ranges. Since the Pacific climate regime shift of the 1970s, mature trees at low elevation sites have experienced increasing climate stress in several quasi-decadal cycles of intensifying drought stress. NDVI trends and tree ring records demonstrating radial growth decline are coherent. Phenological monitoring of spruce height growth also indicates that depletion of spring soil moisture is a critical process driven by the interaction of early warm season temperatures and precipitation. Novel biotic disturbance agents including spruce budworm, outbreaks of which are triggered by warm temperature anomalies related to its biology, and aspen leaf miner are depressing realized growth below climatically predicted levels, suggesting a pathway by which tree death is likely to occur before absolute temperature limits. As a result, insect outbreaks are degrading the otherwise strong long-term climate signal in Alaska boreal trees. However, young tree (> 40 yrs.) regeneration generally does not yet display the symptoms of acute high temperature stress. Overall, on these vulnerable sites, if temperature increases similar to the past 40 years continue, long term survival prospects are questionable because the climate conditions would be outside the limits that have historically defined the species ranges of aspen, Alaska birch, and black and white spruce.

  16. Modeling the potential effects of climate change on high elevation vegetation in the Olympic Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolbrod, A.N.; Peterson, D.L.

    1995-06-01

    Subalpine and alpine vegetation may be particularly sensitive to climatic change, such as expected temperature increases and altered precipitation patterns with global warming. The gap replacement model ZELIG was modified and used to examine transient and steady-state changes in altitudinal treeline, tree species distribution, and forest structure and composition along elevation gradients in the Olympic Mountains, Washington, under a range of temperature and precipitation changes. Changes in vegetation pattern were examined for north vs. south aspects, and wet (southwest) vs. dry (northeast) regions of the mountains. The seedling establishment subroutine in ZELIG was improved to specifically model the complexities ofmore » tree invasion in subalpine meadows and include empirical data. A function allowing for stand replacement fire was also added in order to examine the role of altered disturbance regimes on vegetation change. Results indicate that distribution of tree species will change under various climate change scenarios, but future elevation of treeline depends greatly on precipitation levels, disturbance frequency, and aspect.« less

  17. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    PubMed

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps

    PubMed Central

    Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas

    2011-01-01

    Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism. We focused on the effects of air and soil temperature on net photosynthesis (Pn) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall. In general, Pn was significantly lower in fall as compared to summer. Nevertheless, independent from season mean Pn values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement. Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime. PMID:21379394

  19. The role of water in gas hydrate dissociation

    USGS Publications Warehouse

    Circone, S.; Stern, L.A.; Kirby, S.H.

    2004-01-01

    When raised to temperatures above the ice melting point, gas hydrates release their gas in well-defined, reproducible events that occur within self-maintained temperature ranges slightly below the ice point. This behavior is observed for structure I (carbon dioxide, methane) and structure II gas hydrates (methane-ethane, and propane), including those formed with either H2O- or D2O-host frameworks, and dissociated at either ambient or elevated pressure conditions. We hypothesize that at temperatures above the H2O (or D2O) melting point: (1) hydrate dissociation produces water + gas instead of ice + gas, (2) the endothermic dissociation reaction lowers the temperature of the sample, causing the water product to freeze, (3) this phase transition buffers the sample temperatures within a narrow temperature range just below the ice point until dissociation goes to completion, and (4) the temperature depression below the pure ice melting point correlates with the average rate of dissociation and arises from solution of the hydrate-forming gas, released by dissociation, in the water phase at elevated concentrations. In addition, for hydrate that is partially dissociated to ice + gas at lower temperatures and then heated to temperatures above the ice point, all remaining hydrate dissociates to gas + liquid water as existing barriers to dissociation disappear. The enhanced dissociation rates at warmer temperatures are probably associated with faster gas transport pathways arising from the formation of water product.

  20. An Observational and Analytical Study of Marginal Ice Zone Atmospheric Jets

    DTIC Science & Technology

    2016-12-01

    layer or in the capping temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m...geostrophic wind due to horizontal temperature changes in the atmospheric boundary layer and capping inversion . The jets were detected using...temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m elevation; one of these jets had a

  1. Novel development of the micro-tensile test at elevated temperature using a test structure with integrated micro-heater

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Kropelnicki, P.; Soe, Oak; Ling, J. H. L.; Randles, A. B.; Hum, A. J. W.; Tsai, J. M. L.; Tay, A. A. O.; Leong, K. C.; Tan, C. S.

    2012-08-01

    This paper describes the novel development of a micro-tensile testing method that allows testing at elevated temperatures. Instead of using a furnace, a titanium/platinum thin film micro-heater was fabricated on a conventional dog-bone-shaped test structure to heat up its gauge section locally. An infrared (IR) camera with 5 µm resolution was employed to verify the temperature uniformity across the gauge section of the test structure. With this micro-heater-integrated test structure, micro-tensile tests can be performed at elevated temperatures using any conventional tensile testing system without any major modification to the system. In this study, the tensile test of the single crystal silicon (SCS) thin film with (1 0 0) surface orientation and <1 1 0> tensile direction was performed at room temperature and elevated temperatures, up to 300 °C. Experimental results for Young's modulus as a function of temperature are presented. A micro-sized SCS film showed a low dependence of mechanical properties on temperature up to 300 °C.

  2. MONOTERPENE LEVELS IN NEEDLES OF DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE

    EPA Science Inventory

    Levels of monoterpenes in current year needles of douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were measured at the conclusion of four years of exposure to ambient or elevated CO2 (+ 179 mmol.mol-1), and ambient or elevated temperature (+ 3.5 C). Eleven monoterpen...

  3. Interactive effects of elevated temperature and ozone on soybean biomass production and seed yield

    USDA-ARS?s Scientific Manuscript database

    Predicting the impacts of air pollution and climate change on vegetation requires understanding of the interactions between elevated air temperature and atmospheric gases such as ozone. The air exclusion system (AES) developed by our group was used to expose soybean plants to combinations of elevate...

  4. Heat Stress Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.

  5. Development of a Hydrodynamic and Transport model of Bellingham Bay in Support of Nearshore Habitat Restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Taiping; Yang, Zhaoqing; Khangaonkar, Tarang

    2010-04-22

    In this study, a hydrodynamic model based on the unstructured-grid finite volume coastal ocean model (FVCOM) was developed for Bellingham Bay, Washington. The model simulates water surface elevation, velocity, temperature, and salinity in a three-dimensional domain that covers the entire Bellingham Bay and adjacent water bodies, including Lummi Bay, Samish Bay, Padilla Bay, and Rosario Strait. The model was developed using Pacific Northwest National Laboratory’s high-resolution Puget Sound and Northwest Straits circulation and transport model. A sub-model grid for Bellingham Bay and adjacent coastal waters was extracted from the Puget Sound model and refined in Bellingham Bay using bathymetric lightmore » detection and ranging (LIDAR) and river channel cross-section data. The model uses tides, river inflows, and meteorological inputs to predict water surface elevations, currents, salinity, and temperature. A tidal open boundary condition was specified using standard National Oceanic and Atmospheric Administration (NOAA) predictions. Temperature and salinity open boundary conditions were specified based on observed data. Meteorological forcing (wind, solar radiation, and net surface heat flux) was obtained from NOAA real observations and National Center for Environmental Prediction North American Regional Analysis outputs. The model was run in parallel with 48 cores using a time step of 2.5 seconds. It took 18 hours of cpu time to complete 26 days of simulation. The model was calibrated with oceanographic field data for the period of 6/1/2009 to 6/26/2009. These data were collected specifically for the purpose of model development and calibration. They include time series of water-surface elevation, currents, temperature, and salinity as well as temperature and salinity profiles during instrument deployment and retrieval. Comparisons between model predictions and field observations show an overall reasonable agreement in both temporal and spatial scales. Comparisons of root mean square error values for surface elevation, velocity, temperature, and salinity time series are 0.11 m, 0.10 m/s, 1.28oC, and 1.91 ppt, respectively. The model was able to reproduce the salinity and temperature stratifications inside Bellingham Bay. Wetting and drying processes in tidal flats in Bellingham Bay, Samish Bay, and Padilla Bay were also successfully simulated. Both model results and observed data indicated that water surface elevations inside Bellingham Bay are highly correlated to tides. Circulation inside the bay is weak and complex and is affected by various forcing mechanisms, including tides, winds, freshwater inflows, and other local forcing factors. The Bellingham Bay model solution was successfully linked to the NOAA oil spill trajectory simulation model “General NOAA Operational Modeling Environment (GNOME).” Overall, the Bellingham Bay model has been calibrated reasonably well and can be used to provide detailed hydrodynamic information in the bay and adjacent water bodies. While there is room for further improvement with more available data, the calibrated hydrodynamic model provides useful hydrodynamic information in Bellingham Bay and can be used to support sediment transport and water quality modeling as well as assist in the design of nearshore restoration scenarios.« less

  6. 2014 and 2015 anomalies in temperature and the epipelagic fish community in the eastern Gulf of Alaska and implications for juvenile fish.

    NASA Astrophysics Data System (ADS)

    Rhea-Fournier, W.

    2016-02-01

    Summer eastern Gulf of Alaska fisheries oceanography surveys of the epipelagic in 2014 and 2015 indicated elevated near surface temperatures, changes in the fish community, and variability in prey quality. The Alaska Fisheries Science Center deployed CTDs to observe temperature profiles, surface trawls to collect fish, and plankton nets to collect zooplankton from 2010 to 2015 along the coast and offshore of Baranof and Chichagof Island . Average near surface temperature for 2014 and 2015 were significantly higher than previous years with an increase of over 3.5 degrees relative to 2012. Young of the year groundfish that occupy the epipelagic in the summer prior to pelagic and demersal migration experienced changes in relative abundance that included a decrease in pollock, Pacific cod, and arrowtooth flounder and an increase in sablefish. The warmer temperatures allowed Elasmobranchs from tropical regions to migrate north including blue sharks and Thresher sharks which represented a northern range extension. Other anomalous fish catches in the nearshore in 2014 and 2015 included multiple ocean sunfish, Mola mola, and the abundance of Pacific pomfret, a piscivorous species usually found in offshore waters. Zooplankton collections analyzed for caloric content and lipid allocation indicated interannual variability with an increase of condition in 2014 and a significant decrease in 2015. While the elevated temperatures of 2014 and 2015 may have provided suitable habitat and range extensions for lower latitude and offshore species, the combination of accelerated metabolism due to higher thermal experience, depleted energetic input from prey, and increase in predators has the potential to decrease survival of juvenile fish in the epipelagic.

  7. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    PubMed

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  8. Subalpine forests

    Treesearch

    C.I. Millar; P.W. Rundel

    2016-01-01

    The subalpine forests of California comprise the highest elevation ecosystems that are dominated by upright trees. They are defined as a zone influenced primarily by abiotic controls, including persistent snowpack, desiccating winds, acute and chronic extreme temperatures, soil moisture and evapotranspirative stresses, and short growing seasons. Bounded at the...

  9. EVALUATION OF PERSONAL COOLING DEVICES FOR A DIOXIN CLEAN-UP OPERATION

    EPA Science Inventory

    The study investigated the use of personal coolers to increase worker productivity and safety while working at elevated, ambient temperatures cleaning up dioxin contaminated soil.^The study included laboratory tests to measure the thermal characteristics of the chemical protectiv...

  10. Rhode Island Salt Marshes: Elevation Capital and Resilience to Sea Level Rise

    EPA Science Inventory

    Tidal salt marsh is especially sensitive to deterioration due to the effects of accelerated sea level rise when combined with other anthropogenically linked stressors, including crab herbivory, changes in tidal hydrology, nutrient loading, dam construction, changes in temperature...

  11. Transcriptome profiling in fast versus slow-growing rainbow trout across seasonal gradients

    USDA-ARS?s Scientific Manuscript database

    Background: Circannual rhythms in vertebrates can influence a wide variety of physiological processes. Some notable examples include annual reproductive cycles and for poikilotherms, seasonal changes modulating growth. Increasing water temperature elevates growth rates in fishes, but increases i...

  12. Global Warming Can Negate the Expected CO2 Stimulation in Photosynthesis and Productivity for Soybean Grown in the Midwestern United States1[W][OA

    PubMed Central

    Ruiz-Vera, Ursula M.; Siebers, Matthew; Gray, Sharon B.; Drag, David W.; Rosenthal, David M.; Kimball, Bruce A.; Ort, Donald R.; Bernacchi, Carl J.

    2013-01-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol−1) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops. PMID:23512883

  13. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States.

    PubMed

    Ruiz-Vera, Ursula M; Siebers, Matthew; Gray, Sharon B; Drag, David W; Rosenthal, David M; Kimball, Bruce A; Ort, Donald R; Bernacchi, Carl J

    2013-05-01

    Extensive evidence shows that increasing carbon dioxide concentration ([CO2]) stimulates, and increasing temperature decreases, both net photosynthetic carbon assimilation (A) and biomass production for C3 plants. However the [CO2]-induced stimulation in A is projected to increase further with warmer temperature. While the influence of increasing temperature and [CO2], independent of each other, on A and biomass production have been widely investigated, the interaction between these two major global changes has not been tested on field-grown crops. Here, the interactive effect of both elevated [CO2] (approximately 585 μmol mol(-1)) and temperature (+3.5°C) on soybean (Glycine max) A, biomass, and yield were tested over two growing seasons in the Temperature by Free-Air CO2 Enrichment experiment at the Soybean Free Air CO2 Enrichment facility. Measurements of A, stomatal conductance, and intercellular [CO2] were collected along with meteorological, water potential, and growth data. Elevated temperatures caused lower A, which was largely attributed to declines in stomatal conductance and intercellular [CO2] and led in turn to lower yields. Increasing both [CO2] and temperature stimulated A relative to elevated [CO2] alone on only two sampling days during 2009 and on no days in 2011. In 2011, the warmer of the two years, there were no observed increases in yield in the elevated temperature plots regardless of whether [CO2] was elevated. All treatments lowered the harvest index for soybean, although the effect of elevated [CO2] in 2011 was not statistically significant. These results provide a better understanding of the physiological responses of soybean to future climate change conditions and suggest that the potential is limited for elevated [CO2] to mitigate the influence of rising temperatures on photosynthesis, growth, and yields of C3 crops.

  14. Thermal study of bare tips with various system parameters and incision sizes.

    PubMed

    Osher, Robert H; Injev, Valentine P

    2006-05-01

    To identify major and minor surgeon-controlled parameters that affect incision temperature when performing microincision lens removal using the Alcon Infiniti Vision System. In vitro research and development laboratory, Alcon Research, Irvine, California, USA. Phacoemulsification was performed in eye-bank cadaver eyes and the following parameters evaluated: incision, duty cycle, ultrasound (US) power, aspiration flow rate (AFR), vacuum, pulse, bottle height and balanced salt solution temperature, and tip design/size. Each parameter was varied while the others remained constant. The resulting temperature of the incision and US tip was measured using a thermal camera. Major contributors to elevated incision temperature included incision size, US power, duty cycle, AFR, vacuum setting, tip design, and presence of an ophthalmic viscosurgical device (OVD). Minor contributors included pulse frequency, bottle height, and temperature of the infusate. Microincision lens removal can be performed at safe temperatures with the knowledgeable selection of surgeon-controlled parameters.

  15. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, David O.

    1998-01-01

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

  16. Temperature and Water Depth Monitoring Within Chum Salmon Spawning Habitat Below Bonneville Dam : Annual Report October 2007-September 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, E.V.

    2009-07-14

    The overall goal of the project described in this report is to provide a sound scientific basis for operation of the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance chum salmon populations - a species listed in March 1999 as threatened under the Endangered Species Act of 1973 (ESA). The study objective during fiscal year 2008 was to provide real-time data on Ives Island area water temperature and water surface elevations from the onset of chum salmon spawning through the end of chum salmon emergence. Sampling locations included areas where riverbed temperatures were elevated,more » potentially influencing alevin development and emergence timing. In these locations, hydrosystem operation caused large, frequent changes in river discharge that affected salmon habitat by dewatering redds and altering egg pocket temperatures. The 2008 objective was accomplished using temperature and water-level sensors deployed inside piezometers. Sensors were integrated with a radio telemetry system such that real-time data could be downloaded remotely and posted hourly on the Internet. During our overall monitoring period (October 2007 through June 2008), mean temperature in chum spawning areas was nearly 2 C warmer within the riverbed than in the overlying river. During chum salmon spawning (mid-November 2007 through December2007), mean riverbed temperature in the Ives Island area was 14.5 C, more than 5 C higher than in the river, where mean temperature was 9.4 C. During the incubation period (January 2008 through mid-May 2008), riverbed temperature was approximately 3 C greater than in the overlying river (10.5 C and 7.2 C, respectively). Chum salmon preferentially select spawning locations where riverbed temperatures are elevated; consequently the incubation time of alevin is shortened before they emerge in the spring.« less

  17. Acetone photophysics at 282 nm excitation at elevated pressure and temperature. II: Fluorescence modeling

    NASA Astrophysics Data System (ADS)

    Hartwig, Jason; Raju, Mandhapati; Sung, Chih-Jen

    2017-07-01

    This is the second in a series of two papers that presents an updated fluorescence model and compares with the new experimental data reported in the first paper, as well as the available literature data, to extend the range of acetone photophysics to elevated pressure and temperature conditions. This work elucidates the complete acetone photophysical model in terms of each and every competing radiative and non-radiative rate. The acetone fluorescence model is then thoroughly examined and optimized based on disparity with recently conducted elevated pressure and temperature photophysical calibration experiments. The current work offers insight into the competition between non-radiative and vibrational energy decay rates at elevated temperature and pressure and proposes a global optimization of model parameters from the photophysical model developed by Thurber (Acetone Laser-Induced Fluorescence for Temperature and Multiparameter Imaging in Gaseous Flows. PhD thesis, Stanford University Mechanical Engineering Department, 1999). The collisional constants of proportionality, which govern vibrational relaxation, are shown to be temperature dependent at elevated pressures. A new oxygen quenching rate is proposed which takes into account collisions with oxygen as well as the oxygen-assisted intersystem crossing component. Additionally, global trends in ketone photophysics are presented and discussed.

  18. Monte Carlo simulations of skin exposure to electromagnetic field from 10 GHz to 1 THz

    NASA Astrophysics Data System (ADS)

    Sasaki, Kensuke; Mizuno, Maya; Wake, Kanako; Watanabe, Soichi

    2017-09-01

    In this study, we present an assessment of human-body exposure to an electromagnetic field at frequencies ranging from 10 GHz to 1 THz. The energy absorption and temperature elevation were assessed by solving boundary value problems of the one-dimensional Maxwell equations and a bioheat equation for a multilayer plane model. Dielectric properties were measured in~vitro at frequencies of up to 1 THz at body temperature. A Monte Carlo simulation was conducted to assess variations of the transmittance into a skin surface and temperature elevation inside a body by considering the variation of the tissue thickness due to individual differences among human bodies. Furthermore, the impact of the dielectric properties of adipose tissue on temperature elevation, for which large discrepancies between our present measurement results and those in past works were observed, was also examined. We found that the dielectric properties of adipose tissue do not impact on temperature elevation at frequencies over 30 GHz. The potential risk of skin burn was discussed on the basis of the temperature elevation in millimeter-wave and terahertz-wave exposure. Furthermore, the consistency of the basic restrictions in the international guidelines set by ICNIRP was discussed.

  19. [Clinical significance of peak body temperature, white blood cell count, and C-reactive protein level in febrile episodes among geriatric inpatients].

    PubMed

    Ikematsu, H; Nabeshima, A; Yamaga, S; Yamaji, K; Kakuda, K; Ueno, K; Hayashi, J; Shirai, T; Hara, H; Kashiwagi, S

    1997-06-01

    To investigate the clinical implication of peak body temperature, peripheral blood white blood cell (WBC) count, and serum C-reactive protein (CRP) level in febrile symptoms among geriatric hospitalized patients, they were analyzed in 968 febrile episodes obtained from 433 hospitalized patients in the referred hospital. Episodes of one day duration were most frequent (41.6%). WBC count was elevated over 8000/microliters in 475 episodes (49.1%) and CRP exceeded 1.0 mg/dl in 770 episodes (79.5%). Frequency of WBC elevation decreased and frequency of CRP elevation increased according to the time course. The mean value of CRP increased significantly according to the time course. The frequency of WBC count increase and CRP elevation and their averages correlated to the peak body temperature. The peak body temperature displayed the most striking correlation to the length of febrile episodes among three clinical indicators, peak body temperature, WBC count, and CRP level. These results indicate that the elevation of WBC count and/or CRP level is frequent in geriatric patients with febrile symptoms. Peak body temperature may serve as a clinical indicator of the severy of the febrile disease occurring in geriatric patients.

  20. Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula.

    PubMed

    Mäenpää, Maarit; Riikonen, Johanna; Kontunen-Soppela, Sari; Rousi, Matti; Oksanen, Elina

    2011-08-01

    Rising temperature and tropospheric ozone (O(3)) concentrations are likely to affect carbon assimilation processes and thus the carbon sink strength of trees. In this study, we investigated the joint action of elevated ozone and temperature on silver birch (Betula pendula) and European aspen (Populus tremula) saplings in field conditions by combining free-air ozone exposure (1.2 × ambient) and infrared heaters (ambient +1.2 °C). At leaf level measurements, elevated ozone decreased leaf net photosynthesis (P(n)), while the response to elevated temperature was dependent on leaf position within the foliage. This indicates that leaf position has to be taken into account when leaf level data are collected and applied. The ozone effect on P(n) was partly compensated for at elevated temperature, showing an interactive effect of the treatments. In addition, the ratio of photosynthesis to stomatal conductance (P(n)/g(s) ratio) was decreased by ozone, which suggests decreasing water use efficiency. At the plant level, the increasing leaf area at elevated temperature resulted in a considerable increase in photosynthesis and growth in both species.

  1. Room Temperature and Elevated Temperature Composite Sandwich Joint Testing

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.

  2. Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster Pinctada fucata

    PubMed Central

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2012-01-01

    Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983

  3. Thermal Stress and Toxicity | Science Inventory | US EPA

    EPA Pesticide Factsheets

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at subthermoneutral temperatures of —22 °C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress tan nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable

  4. Acoustic testing of high temperature panels

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.

    1990-01-01

    Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.

  5. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  6. Solid state thin film battery having a high temperature lithium alloy anode

    DOEpatents

    Hobson, D.O.

    1998-01-06

    An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

  7. Response of sugarcane to carbon dioxide enrichment and elevated temperature

    USDA-ARS?s Scientific Manuscript database

    Four sugarcane cultivars (CP72-2086, CP73-1547, CP88-1508, and CP80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air, respectively. Each TGG maintained temperatures in four zones at Base temperature wit...

  8. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2.

    PubMed

    Leakey, Andrew D B; Bishop, Kristen A; Ainsworth, Elizabeth A

    2012-06-01

    A key finding from elevated [CO(2)] field experiments is that the impact of elevated [CO(2)] on plant and ecosystem function is highly dependent upon other environmental conditions, namely temperature and the availability of nutrients and soil moisture. In addition, there is significant variation in the response to elevated [CO(2)] among plant functional types, species and crop varieties. However, experimental data on plant and ecosystem responses to elevated [CO(2)] are strongly biased to economically and ecologically important systems in the temperate zone. There is a multi-biome gap in experimental data that is most severe in the tropics and subtropics, but also includes high latitudes. Physiological understanding of the environmental conditions and species found at high and low latitudes suggest they may respond differently to elevated [CO(2)] than well-studied temperate systems. Addressing this knowledge gap should be a high priority as it is vital to understanding 21st century food supply and ecosystem feedbacks on climate change. Published by Elsevier Ltd.

  9. Elevated temperature mechanical properties of line pipe steels

    NASA Astrophysics Data System (ADS)

    Jacobs, Taylor Roth

    The effects of test temperature on the tensile properties of four line pipe steels were evaluated. The four materials include a ferrite-pearlite line pipe steel with a yield strength specification of 359 MPa (52 ksi) and three 485 MPa (70 ksi) yield strength acicular ferrite line pipe steels. Deformation behavior, ductility, strength, strain hardening rate, strain rate sensitivity, and fracture behavior were characterized at room temperature and in the temperature range of 200--350 °C, the potential operating range for steels used in oil production by the steam assisted gravity drainage process. Elevated temperature tensile testing was conducted on commercially produced as-received plates at engineering strain rates of 1.67 x 10 -4, 8.33 x 10-4, and 1.67 x 10-3 s-1. The acicular ferrite (X70) line pipe steels were also tested at elevated temperatures after aging at 200, 275, and 350 °C for 100 h under a tensile load of 419 MPa. The presence of serrated yielding depended on temperature and strain rate, and the upper bound of the temperature range where serrated yielding was observed was independent of microstructure between the ferrite-pearlite (X52) steel and the X70 steels. Serrated yielding was observed at intermediate temperatures and continuous plastic deformation was observed at room temperature and high temperatures. All steels exhibited a minimum in ductility as a function of temperature at testing conditions where serrated yielding was observed. At the higher temperatures (>275 °C) the X52 steel exhibited an increase in ductility with an increase in temperature and the X70 steels exhibited a maximum in ductility as a function of temperature. All steels exhibited a maximum in flow strength and average strain hardening rate as a function of temperature. The X52 steel exhibited maxima in flow strength and average strain hardening rate at lower temperatures than observed for the X70 steels. For all steels, the temperature where the maximum in both flow strength and strain hardening occurred increased with increasing strain rate. Strain rate sensitivities were measured using flow stress data from multiple tensile tests and strain rate jump tests on single tensile samples. In flow stress strain rate sensitivity measurements, a transition from negative to positive strain rate sensitivity was observed in the X52 steel at approximately 275--300 °C, and negative strain rate sensitivity was observed at all elevated temperature testing conditions in the X70 steels. In jump test strain rate sensitivity measurements, all four steels exhibited a transition from negative to positive strain rate sensitivity at approximately 250--275 °C. Anisotropic deformation in the X70 steels was observed by measuring the geometry of the fracture surfaces of the tensile samples. The degree of anisotropy changed as a function of temperature and minima in the degree of anisotropy was observed at approximately 300 °C for all three X70 steels. DSA was verified as an active strengthening mechanism at elevated temperatures for all line pipe steels tested resulting in serrated yielding, a minimum in ductility as a function of temperature, a maximum in flow strength as a function of temperature, a maximum in average strain hardening rate as a function of temperature, and negative strain rate sensitivities. Mechanical properties of the X70 steels exhibited different functionality with respect to temperature compared to the X52 steels at temperatures greater than 250 ºC. Changes in the acicular ferrite microstructure during deformation such as precipitate coarsening, dynamic precipitation, tempering of martensite in martensite-austenite islands, or transformation of retained austenite could account for differences in tensile property functionality between the X52 and X70 steels. Long term aging under load (LTA) testing of the X70 steels resulted in increased yield strength compared to standard elevated temperature tensile tests at all temperatures as a result of static strain aging. LTA specimen ultimate tensile strengths (UTS) increased slightly at 200 °C, were comparable at 275 °C, and decreased significantly at 350 °C when compared to as-received (standard) tests at 350 °C. Observed reductions in UTS were a result of decreased strain hardening in the LTA specimens compared to standard tensile specimens. Ideal elevated temperature operating conditions (based on tensile properties) for the X70 line pipe steels in the temperature range relevant to the steam assisted gravity drainage process are around 275--325 °C at the strain rates tested. In the temperature range of 275--325 °C the X70 steels exhibited continuous plastic deformation, a maximum in ductility, a maximum in flow stress, improved strain hardening compared to intermediate temperatures, reduced anisotropic deformation, and after extended use at elevated temperatures, yield strength increases with little change in UTS.

  10. High temperature support apparatus and method of use for casting materials

    DOEpatents

    Clark, Roger F; Cliber, James A; Stoddard, Nathan G; Gerber, Jesse I; Roberts, Raymond J; Wilmerton, Mark A

    2015-02-10

    This invention relates to a system and a method of use for large ceramic member support and manipulation at elevated temperatures in non-oxidizing atmospheres, such as using carbon-carbon composite materials for producing high purity silicon in the manufacture of solar modules. The high temperature apparatus of this invention includes one or more support ribs, one or more cross braces in combination with the one or more support ribs, and a shaped support liner positionable upon the one or more support ribs and the one or more cross braces.

  11. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1989-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen, and switching means such as a photoelectric switch for turning off the heater during dark periods.

  12. Predictive aging of polymers

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F. (Inventor); Willis, Paul B. (Inventor)

    1990-01-01

    A method of predicting aging of polymers operates by heating a polymer in the outdoors to an elevated temperature until a change of property is induced. The test is conducted at a plurality of temperatures to establish a linear Arrhenius plot which is extrapolated to predict the induction period for failure of the polymer at ambient temperature. An Outdoor Photo Thermal Aging Reactor (OPTAR) is also described including a heatable platen for receiving a sheet of polymer, means to heat the platen and switching means such as a photoelectric switch for turning off the heater during dark periods.

  13. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature.

    PubMed

    Duan, Honglang; O'Grady, Anthony P; Duursma, Remko A; Choat, Brendan; Huang, Guomin; Smith, Renee A; Jiang, Yanan; Tissue, David T

    2015-07-01

    Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (C(a) (ambient, 400 μl l(-1)) and C(e) (elevated, 640 μl l(-1))) and two temperature (T(a) (ambient) and T(e) (ambient +4 °C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. C(e) did not delay the time-to-mortality in either species under drought or T(e) treatments. In summary, elevated temperature (+4 °C) had greater influence than elevated [CO2] (+240 μl l(-1)) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Materials data handbook: Aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 6061 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  15. Materials data handbook: Stainless steel type 301

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel type 301 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  16. Materials data handbook: Aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum 2219 alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  17. Materials data handbook: Aluminum alloy 7075

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information on aluminum alloy 7075 is presented. The scope of the information includes physical and mechanical properties of the alloy at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  18. Materials data handbooks on stainless steels

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1973-01-01

    Two handbooks which summarize latest available data have been published. Two types of stainless steels, alloy A-286 and Type 301, are described. Each handbook is divided into twelve chapters. Scope of information presented includes physical- and mechanical-property data at cryogenic, ambient, and elevated temperatures.

  19. Materials data handbook: Aluminum alloy 5456

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for aluminum alloy 5456 is presented. The scope of the information includes physical and mechanical property data at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  20. Materials data handbook: Inconel alloy 718

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for Inconel alloy 718 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and joining techniques is developed.

  1. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less

  2. Cryogenic and elevated temperature strengths of an Al-Zn-Mg-Cu alloy modified with Sc and Zr

    NASA Astrophysics Data System (ADS)

    Senkova, S. V.; Senkov, O. N.; Miracle, D. B.

    2006-12-01

    The effect of minor additions of Sc and Zr on tensile properties of two developmental Al-Zn-Mg-Cu alloys was studied in the temperature range -196°C to 300°C. Due to the presence of Sc and Zr in a fine dispersoid form, both low-temperature and elevated temperature strengths of these alloys are much higher than those of similar 7000 series alloys that do not contain these elements. After short holding times (up to 10 hours) at 205°C, the strength of these alloys is higher than those of high-temperature Al alloys 2219-T6 and 2618-T6; however, the latter alloys show better strength after longer holding times. It is suggested that additional alloying of the Sc-containing Al-Zn-Mg-Cu alloys with other dispersoid-forming elements, such as Ni, Fe, Mn, and Si, with a respective decrease in the amounts of Zn and Mg may further improve the elevated temperature strength and decrease the loss of strength with extended elevated temperature exposure.

  3. Elevation alters ecosystem properties across temperate treelines globally

    NASA Astrophysics Data System (ADS)

    Mayor, Jordan R.; Sanders, Nathan J.; Classen, Aimée T.; Bardgett, Richard D.; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K.; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'Ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L.; Wardle, David A.

    2017-01-01

    Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.

  4. Elevation alters ecosystem properties across temperate treelines globally.

    PubMed

    Mayor, Jordan R; Sanders, Nathan J; Classen, Aimée T; Bardgett, Richard D; Clément, Jean-Christophe; Fajardo, Alex; Lavorel, Sandra; Sundqvist, Maja K; Bahn, Michael; Chisholm, Chelsea; Cieraad, Ellen; Gedalof, Ze'ev; Grigulis, Karl; Kudo, Gaku; Oberski, Daniel L; Wardle, David A

    2017-02-02

    Temperature is a primary driver of the distribution of biodiversity as well as of ecosystem boundaries. Declining temperature with increasing elevation in montane systems has long been recognized as a major factor shaping plant community biodiversity, metabolic processes, and ecosystem dynamics. Elevational gradients, as thermoclines, also enable prediction of long-term ecological responses to climate warming. One of the most striking manifestations of increasing elevation is the abrupt transitions from forest to treeless alpine tundra. However, whether there are globally consistent above- and belowground responses to these transitions remains an open question. To disentangle the direct and indirect effects of temperature on ecosystem properties, here we evaluate replicate treeline ecotones in seven temperate regions of the world. We find that declining temperatures with increasing elevation did not affect tree leaf nutrient concentrations, but did reduce ground-layer community-weighted plant nitrogen, leading to the strong stoichiometric convergence of ground-layer plant community nitrogen to phosphorus ratios across all regions. Further, elevation-driven changes in plant nutrients were associated with changes in soil organic matter content and quality (carbon to nitrogen ratios) and microbial properties. Combined, our identification of direct and indirect temperature controls over plant communities and soil properties in seven contrasting regions suggests that future warming may disrupt the functional properties of montane ecosystems, particularly where plant community reorganization outpaces treeline advance.

  5. Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal

    NASA Astrophysics Data System (ADS)

    Aryal, Achyut; Brunton, Dianne; Raubenheimer, David

    2014-02-01

    The Trans-Himalaya region boasts an immense biodiversity which includes several threatened species and supports the livelihood of local human populations. Our aim in this study was to evaluate the impact of recent climate change on the biodiversity and human inhabitants of the upper Mustang region of the Trans-Himalaya, Nepal. We found that the average annual temperature in the upper Mustang region has increased by 0.13 °C per year over the last 23 years; a higher annual temperature increase than experienced in other parts of Himalaya. A predictive model suggested that the mean annual temperature will double by 2161 to reach 20 °C in the upper Mustang region. The combined effects of increased temperature and diminished snowfall have resulted in a reduction in the area of land suitable for agriculture. Most seriously affected are Samjung village (at 4,100 m altitude) and Dhey village (at 3,800 m) in upper Mustang, where villagers have been forced to relocate to an area with better water availability. Concurrent with the recent change in climate, there have been substantial changes in vegetation communities. Between 1979 and 2009, grasslands and forests in the Mustang district have diminished by 11 and 42 %, respectively, with the tree line having shifted towards higher elevation. Further, grasses and many shrub species are no longer found in abundance at higher elevations and consequently blue sheep ( Pseduois nayaur) move to forage at lower elevations where they encounter and raid human crops. The movement of blue sheep attracts snow leopard ( Panthera uncia) from their higher-elevation habitats to lower sites, where they encounter and depredate livestock. Increased crop raiding by blue sheep and depredations of livestock by snow leopard have impacted adversely on the livelihoods of local people.

  6. Drought stress and carbon assimilation in a warming climate: Reversible and irreversible impacts.

    PubMed

    Feller, Urs

    2016-09-20

    Global change is characterized by increased CO 2 concentration in the atmosphere, increasing average temperature and more frequent extreme events including drought periods, heat waves and flooding. Especially the impacts of drought and of elevated temperature on carbon assimilation are considered in this review. Effects of extreme events on the subcellular level as well as on the whole plant level may be reversible, partially reversible or irreversible. The photosynthetically active biomass depends on the number and the size of mature leaves and the photosynthetic activity in this biomass during stress and subsequent recovery phases. The total area of active leaves is determined by leaf expansion and senescence, while net photosynthesis per leaf area is primarily influenced by stomatal opening (stomatal conductance), mesophyll conductance, activity of the photosynthetic apparatus (light absorption and electron transport, activity of the Calvin cycle) and CO 2 release by decarboxylation reactions (photorespiration, dark respiration). Water status, stomatal opening and leaf temperature represent a "magic triangle" of three strongly interacting parameters. The response of stomata to altered environmental conditions is important for stomatal limitations. Rubisco protein is quite thermotolerant, but the enzyme becomes at elevated temperature more rapidly inactivated (decarbamylation, reversible effect) and must be reactivated by Rubisco activase (carbamylation of a lysine residue). Rubisco activase is present under two forms (encoded by separate genes or products of alternative splicing of the pre-mRNA from one gene) and is very thermosensitive. Rubisco activase was identified as a key protein for photosynthesis at elevated temperature (non-stomatal limitation). During a moderate heat stress Rubisco activase is reversibly inactivated, but during a more severe stress (higher temperature and/or longer exposure) the protein is irreversibly inactivated, insolubilized and finally degraded. On the level of the leaf, this loss of photosynthetic activity may still be reversible when new Rubisco activase is produced by protein synthesis. Rubisco activase as well as enzymes involved in the detoxification of reactive oxygen species or in osmoregulation are considered as important targets for breeding crop plants which are still productive under drought and/or at elevated leaf temperature in a changing climate. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Temperature-profile detector

    DOEpatents

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  8. Temperature profile detector

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  9. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study

    PubMed Central

    Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie

    2017-01-01

    The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433

  10. Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study.

    PubMed

    Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie

    2017-01-18

    The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.

  11. Photosynthetic temperature adaptation of Pinus cembra within the timberline ecotone of the Central Austrian Alps.

    PubMed

    Wieser, Gerhard; Oberhuber, Walter; Walder, Lisa; Spieler, Daniela; Gruber, Andreas

    2010-04-01

    Temperature is suggested to determine the upper limit of tree life. Therefore, future climate warming may be of importance for tree distribution within the European Alps, where low temperatures limit carbon metabolism.We focused on the effects of air and soil temperature on net photosynthesis (P(n)) of Pinus cembra an evergreen climax species of the timberline ecotone of the Central Austrian Alps. Light response and temperature response curves were estimated along an altitudinal gradient ranging from the forest limit up to the krummholz limit in both summer and fall.In general, P(n) was significantly lower in fall as compared to summer. Nevertheless, independent from season mean P(n) values tended to increase with elevation and were positively correlated with root zone temperatures. The specific leaf area by contrast declined with increasing elevation. Furthermore, the temperature optimum of net photosynthesis declined with increasing elevation and was positively correlated with the mean maximum air temperature of the 10 days prior the date of measurement.Thus, our findings appear to reflect a long-term adaptation of the photosynthetic apparatus of Pinus cembra to the general temperature conditions with respect to elevation combined with a short term acclimation to the prevailing temperature regime.

  12. Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1991-01-01

    To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.

  13. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure

    PubMed Central

    Sumowski, James F.; Leavitt, Victoria M.

    2014-01-01

    Objective To investigate whether resting body temperature is elevated and linked to fatigue in patients with relapsing-remitting multiple sclerosis (RRMS). Design Cross-sectional study investigating (a) differences in resting body temperature across RRMS, SPMS, and healthy groups, and (b) the relationship between body temperature and fatigue in RRMS patients. Setting Climate-controlled laboratory (~22°C) within a non-profit medical rehabilitation research center. Participants Fifty patients with RRMS, 40 matched healthy controls, and 22 patients with secondary-progressive MS (SPMS). Intervention None. Main Outcome Measure(s) Body temperature was measured with an aural infrared thermometer (normal body temperature for this thermometer is 36.75°C), and differences were compared across RRMS, SPMS, and healthy persons. RRMS patients completed measures of general fatigue (Fatigue Severity Scale; FSS), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale; MFIS). Results There was a large effect of group (p<.001, ηp2=.132) whereby body temperature was higher in RRMS patients (37.04°C±0.27) relative to healthy controls (36.83 ± 0.33; p = .009) and SPMS patients (36.75°C±0.39; p=.001). Warmer body temperature in RRMS patients was associated with worse general fatigue (FSS; rp=.315, p=.028) and physical fatigue (pMFIS; rp=.318, p=.026), but not cognitive fatigue (cMIFS; rp=−.017, p=.909). Conclusions These are the first-ever demonstrations that body temperature is elevated endogenously in RRMS patients, and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. PMID:24561056

  14. Development of advanced material composites for use as internal insulation for LH2 tanks (gas layer concept)

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1972-01-01

    A program is described that was conducted to develop an internal insulation system for potential application to the liquid hydrogen tanks of a reusable booster, where the tanks would be subjected to repeated high temperatures. The design of the internal insulation is based on a unique gas layer concept, in which capillary or surface tension effects are used to maintain a stable gas layer, within a cellular core structure, between the tank wall and the contained liquid hydrogen. Specific objectives were to select materials for insulation systems that would be compatible with wall temperatures of 350 F and 650 F during reentry into the earth's atmosphere, and to fabricate and test insulation systems under conditions simulating the operating environment. A materials test program was conducted to evaluate the properties of candidate materials at elevated temperatures and at the temperature of liquid hydrogen, and to determine the compatibility of the materials with a hydrogen atmosphere at the appropriate elevated temperature. The materials that were finally selected included Kapton polyimide films, silicone adhesives, fiber glass batting, and in the case of the 350 F system, Teflon film.

  15. Effect of Elevated Atmospheric CO2 and Temperature on Leaf Optical Properties and Chlorophyll Content in Acer saccharum (Marsh.)

    NASA Technical Reports Server (NTRS)

    Carter, Gregory A.; Bahadur, Raj; Norby, Richard J.

    1999-01-01

    Elevated atmospheric CO2 pressure and numerous causes of plant stress often result in decreased leaf chlorophyll contents and thus would be expected to alter leaf optical properties. Hypotheses that elevated carbon dioxide pressure and air temperature would alter leaf optical properties were tested for sugar maple (Acer saccharum Marsh.) in the middle of its fourth growing season under treatment. The saplings had been growing since 1994 in open-top chambers at Oak Ridge, Tennessee under the following treatments: 1) Ambient CO2 pressure and air temperature (control); 2) CO2 pressure approximately 30 Pa above ambient; 3) Air temperatures 3 C above ambient; 4) Elevated CO2 and air temperature. Spectral reflectance, transmittance, and absorptance in the visible spectrum (400-720 nm) did not change significantly (rho = 0.05) in response to any treatment compared with control values. Although reflectance, transmittance, and absorptance at 700 nm correlated strongly with leaf chlorophyll content, chlorophyll content was not altered significantly by the treatments. The lack of treatment effects on pigmentation explained the non-significant change in optical properties in the visible spectrum. Optical properties in the near-infrared (721-850 nm) were similarly unresponsive to treatment with the exception of an increased absorptance in leaves that developed under elevated air temperature alone. This response could not be explained by the data, but might have resulted from effects of air temperature on leaf internal structure. Results indicated no significant potential for detecting leaf optical responses to elevated CO2 or temperature by the remote sensing of reflected radiation in the 400-850 nm spectrum.

  16. Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: implications for disease in a warming climate.

    PubMed

    Zamora-Vilchis, Itzel; Williams, Stephen E; Johnson, Christopher N

    2012-01-01

    The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change.

  17. Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate

    PubMed Central

    Zamora-Vilchis, Itzel; Williams, Stephen E.; Johnson, Christopher N.

    2012-01-01

    Background The rising global temperature is predicted to expand the distribution of vector-borne diseases both in latitude and altitude. Many host communities could be affected by increased prevalence of disease, heightening the risk of extinction for many already threatened species. To understand how host communities could be affected by changing parasite distributions, we need information on the distribution of parasites in relation to variables like temperature and rainfall that are predicted to be affected by climate change. Methodology/Principal Findings We determined relations between prevalence of blood parasites, temperature, and seasonal rainfall in a bird community of the Australian Wet Tropics along an elevation gradient. We used PCR screening to investigate the prevalence and lineage diversity of four genera of blood parasites (Plasmodium, Haemoproteus, Leucocytozoon and Trypanosoma) in 403 birds. The overall prevalence of the four genera of blood parasites was 32.3%, with Haemoproteus the predominant genus. A total of 48 unique lineages were detected. Independent of elevation, parasite prevalence was positively and strongly associated with annual temperature. Parasite prevalence was elevated during the dry season. Conclusions/Significance Low temperatures of the higher elevations can help to reduce both the development of avian haematozoa and the abundance of parasite vectors, and hence parasite prevalence. In contrast, high temperatures of the lowland areas provide an excellent environment for the development and transmission of haematozoa. We showed that rising temperatures are likely to lead to increased prevalence of parasites in birds, and may force shifts of bird distribution to higher elevations. We found that upland tropical areas are currently a low-disease habitat and their conservation should be given high priority in management plans under climate change. PMID:22723966

  18. Changes in life history parameters of corn leaf aphid, Rhopalosiphum maidus (Homoptera: Aphididae), under four different elevated temperature and CO2 combinations

    USDA-ARS?s Scientific Manuscript database

    Biological characteristics of corn leaf aphid, Rhopalosiphum maidis (Fitch), on barley, Hordeum vulgare L., were examined for two generations under four different elevated temperature and CO2 combinations. The developmental duration for each life stage was significantly reduced under the elevated te...

  19. Response of sugarcane to carbon dioxide enrichment and elevated air temperature

    USDA-ARS?s Scientific Manuscript database

    Four sugarcane cultivars (CP 72-2086, CP 73-1547, CP 88-1508, and CP 80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air (ppm, mole fraction basis), respectively. Elevated CO2 was maintained by injection...

  20. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.

    PubMed

    García-Robledo, Carlos; Kuprewicz, Erin K; Staines, Charles L; Erwin, Terry L; Kress, W John

    2016-01-19

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming.

  1. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction

    PubMed Central

    García-Robledo, Carlos; Kuprewicz, Erin K.; Staines, Charles L.; Erwin, Terry L.; Kress, W. John

    2016-01-01

    The critical thermal maximum (CTmax), the temperature at which motor control is lost in animals, has the potential to determine if species will tolerate global warming. For insects, tolerance to high temperatures decreases with latitude, suggesting that similar patterns may exist along elevational gradients as well. This study explored how CTmax varies among species and populations of a group of diverse tropical insect herbivores, the rolled-leaf beetles, across both broad and narrow elevational gradients. Data from 6,948 field observations and 8,700 museum specimens were used to map the elevational distributions of rolled-leaf beetles on two mountains in Costa Rica. CTmax was determined for 1,252 individual beetles representing all populations across the gradients. Initial morphological identifications suggested a total of 26 species with populations at different elevations displaying contrasting upper thermal limits. However, compared with morphological identifications, DNA barcodes (cytochrome oxidase I) revealed significant cryptic species diversity. DNA barcodes identified 42 species and haplotypes across 11 species complexes. These 42 species displayed much narrower elevational distributions and values of CTmax than the 26 morphologically defined species. In general, species found at middle elevations and on mountaintops are less tolerant to high temperatures than species restricted to lowland habitats. Species with broad elevational distributions display high CTmax throughout their ranges. We found no significant phylogenetic signal in CTmax, geography, or elevational range. The narrow variance in CTmax values for most rolled-leaf beetles, especially high-elevation species, suggests that the risk of extinction of insects may be substantial under some projected rates of global warming. PMID:26729867

  2. Bryophyte Species Richness and Composition along an Altitudinal Gradient in Gongga Mountain, China

    PubMed Central

    Sun, Shou-Qin; Wu, Yan-Hong; Wang, Gen-Xu; Zhou, Jun; Yu, Dong; Bing, Hai-Jian; Luo, Ji

    2013-01-01

    An investigation of terrestrial bryophyte species diversity and community structure along an altitudinal gradient from 2,001 to 4,221 m a.s.l. in Gongga Mountain in Sichuan, China was carried out in June 2010. Factors which might affect bryophyte species composition and diversity, including climate, elevation, slope, depth of litter, vegetation type, soil pH and soil Eh, were examined to understand the altitudinal feature of bryophyte distribution. A total of 14 representative elevations were chosen along an altitudinal gradient, with study sites at each elevation chosen according to habitat type (forests, grasslands) and accessibility. At each elevation, three 100 m × 2 m transects that are 50 m apart were set along the contour line, and three 50 cm × 50 cm quadrats were set along each transect at an interval of 30 m. Species diversity, cover, biomass, and thickness of terrestrial bryophytes were examined. A total of 165 species, including 42 liverworts and 123 mosses, are recorded in Gongga mountain. Ground bryophyte species richness does not show any clear elevation trend. The terrestrial bryophyte cover increases with elevation. The terrestrial bryophyte biomass and thickness display a clear humped relationship with the elevation, with the maximum around 3,758 m. At this altitude, biomass is 700.3 g m−2 and the maximum thickness is 8 cm. Bryophyte distribution is primarily associated with the depth of litter, the air temperature and the precipitation. Further studies are necessary to include other epiphytes types and vascular vegetation in a larger altitudinal range. PMID:23472146

  3. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites.

    PubMed

    Vickers, Les; Pan, Zhu; Tao, Zhong; van Riessen, Arie

    2016-06-03

    In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress). Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen.

  4. Modeling hydrodynamics, water quality, and benthic processes to predict ecological effects in Narragansett Bay

    EPA Science Inventory

    The environmental fluid dynamics code (EFDC) was used to study the three dimensional (3D) circulation, water quality, and ecology in Narragansett Bay, RI. Predictions of the Bay hydrodynamics included the behavior of the water surface elevation, currents, salinity, and temperatur...

  5. Materials data handbook: Stainless steel alloy A-286

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for stainless steel alloy A-286 is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  6. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking,more » delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.« less

  7. CO 2 elevation improves photosynthetic performance in progressive warming environment in white birch seedlings.

    PubMed

    Zhang, Shouren; Dang, Qing-Lai

    2013-01-01

    White birch (Betula paperifera Mash) seedlings were exposed to progressively warming in greenhouses under ambient and elevated CO 2 concentrations for 5 months to explore boreal tree species' potential capacity to acclimate to global climate warming and CO 2 elevation. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured at temperatures of 26 (o)C and 37 (o)C. Elevated CO 2 significantly increased net photosynthetic rate (Pn) at both measurement temperatures, and Pn at 37 (o)C was higher than that at 26 (o)C under elevated CO 2. Stomatal conductance (gs) was lower at 37 (o)C than at 26 (o)C, while transpiration rate (E) was higher at 37 (o)C than that at 26 (o)C. Elevated CO 2 significantly increased instantaneous water-use efficiency (WUE) at both 26 (o)C and 37 (o)C, but WUE was markedly enhanced at 37 (o)C under elevated CO 2. The effect of temperature on maximal carboxylation rate (Vcmax), PAR-saturated electron transport rate (Jmax) and triose phosphate utilization (TPU) varied with CO 2, and the Vcmax and Jmax were significantly higher at 37 (o)C than at 26 (o)C under elevated CO 2. However, there were no significant interactive effects of CO 2 and temperature on TPU. The actual photochemical efficiency of PSII (DF/ Fm'), total photosynthetic linear electron transport rate through PSII (JT) and the partitioning of JT to carboxylation (Jc) were higher at 37 (o)C than at 26 (o)C under elevated CO 2. Elevated CO 2 significantly suppressed the partitioning of JT to oxygenation (Jo/JT). The data suggest that the CO 2 elevation and progressive warming greatly enhanced photosynthesis in white birch seedlings in an interactive fashion.

  8. Development of silicon carbide semiconductor devices for high temperature applications

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony; Petit, Jeremy B.

    1991-01-01

    The semiconducting properties of electronic grade silicon carbide crystals, such as wide energy bandgap, make it particularly attractive for high temperature applications. Applications for high temperature electronic devices include instrumentation for engines under development, engine control and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Discrete prototype SiC devices were fabricated and tested at elevated temperatures. Grown p-n junction diodes demonstrated very good rectification characteristics at 870 K. A depletion-mode metal-oxide-semiconductor field-effect transistor was also successfully fabricated and tested at 770 K. While optimization of SiC fabrication processes remain, it is believed that SiC is an enabling high temperature electronic technology.

  9. Behavioural adaptations of Rana temporaria to cold climates.

    PubMed

    Ludwig, Gerda; Sinsch, Ulrich; Pelster, Bernd

    2015-01-01

    Environmental conditions at the edge of a species' ecological optimum can exert great ecological or evolutionary pressure at local populations. For ectotherms like amphibians temperature is one of the most important abiotic factors of their environment as it influences directly their metabolism and sets limits to their distribution. Amphibians have evolved three ways to cope with sub-zero temperatures: freeze tolerance, freeze protection, freeze avoidance. The aim of this study was to assess which strategy common frogs at mid and high elevation use to survive and thrive in cold climates. In particular we (1) tested for the presence of physiological freeze protection, (2) evaluated autumnal activity and overwintering behaviour with respect to freeze avoidance and (3) assessed the importance of different high-elevation microhabitats for behavioural thermoregulation. Common frogs did not exhibit any signs of freeze protection when experiencing temperatures around 0 °C. Instead they retreated to open water for protection and overwintering. High elevation common frogs remained active for around the same period of time than their conspecifics at lower elevation. Our results suggest that at mid and high elevation common frogs use freeze avoidance alone to survive temperatures below 0 °C. The availability of warm microhabitats, such as rock or pasture, provides high elevation frogs with the opportunity of behavioural thermoregulation and thus allows them to remain active at temperatures at which common frogs at lower elevation cease activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ma, Daoyuan; Xiao, Zhizhong; Xu, Shihong; Wang, Yanfeng; Wang, Yufu; Xiao, Yongshuang; Song, Zongcheng; Teng, Zhaojun; Liu, Qinghua; Li, Jun

    2015-01-01

    High temperature influences the homeostasis of fish. We investigated the effects of elevated temperature on tissues of Japanese flounder ( Paralichthys olivaceus) by analyzing the histology and heat shock protein 70 ( hsp70) expression of fish reared in warm conditions. In this study, temperature was increased at 1±0.5°C/day starting at 24±0.5°C, and was kept at that temperature for 5 days before the next rise. After raising temperature at the rate up to 32±0.5°C, tissue samples from midgut, spleen, stomach, liver, muscle, gill, heart, trunk kidney and brain were collected for histological analysis and mRNA assay. Almost all the tissues showed changes in morphological structure and hsp70 level at 32±0.5°C. Histological assessment of the tissues indicated that the gill had the most serious damage, including highly severe epithelial lifting and edema, curved tips and hyperemia at the ending of the lamellars, desquamation and necrosis. The next most severe damage was found in liver and kidney. The hsp70 levels in all the tissues first increased and then decreased. The gut, stomach, muscle, heart, and brain had the highest expressions in 6 h, whereas the spleen, liver, gill and kidney had the highest expressions in 2 h. Therefore, tissues with the most significant lesions (especially gill and liver) responded much earlier (2 h) in hsp70 expression than other tissues, and these tissues demonstrated the most marked histological disruption and elevated mRNA levels, making them ideal candidates for further studies on the thermal physiology of this species.

  11. Elevation in Body Temperature to Fever Range Enhances and Prolongs Subsequent Responsiveness of Macrophages to Endotoxin Challenge

    PubMed Central

    Lee, Chen-Ting; Zhong, Lingwen; Mace, Thomas A.; Repasky, Elizabeth A.

    2012-01-01

    Macrophages are often considered the sentries in innate immunity, sounding early immunological alarms, a function which speeds the response to infection. Compared to the large volume of studies on regulation of macrophage function by pathogens or cytokines, relatively little attention has been devoted to the role of physical parameters such as temperature. Given that temperature is elevated during fever, a long-recognized cardinal feature of inflammation, it is possible that macrophage function is responsive to thermal signals. To explore this idea, we used LPS to model an aseptic endotoxin-induced inflammatory response in BALB/c mice and found that raising mouse body temperature by mild external heat treatment significantly enhances subsequent LPS-induced release of TNF-α into the peritoneal fluid. It also reprograms macrophages, resulting in sustained subsequent responsiveness to LPS, i.e., this treatment reduces “endotoxin tolerance” in vitro and in vivo. At the molecular level, elevating body temperature of mice results in a increase in LPS-induced downstream signaling including enhanced phosphorylation of IKK and IκB, NF-κB nuclear translocation and binding to the TNF-α promoter in macrophages upon secondary stimulation. Mild heat treatment also induces expression of HSP70 and use of HSP70 inhibitors (KNK437 or Pifithrin-µ) largely abrogates the ability of the thermal treatment to enhance TNF-α, suggesting that the induction of HSP70 is important for mediation of thermal effects on macrophage function. Collectively, these results support the idea that there has been integration between the evolution of body temperature regulation and macrophage function that could help to explain the known survival benefits of fever in organisms following infection. PMID:22253887

  12. Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin).

    PubMed

    Lannig, Gisela; Cherkasov, Anton S; Pörtner, Hans-O; Bock, Christian; Sokolova, Inna M

    2008-04-01

    Marine ectotherms, including oysters are exposed to variable environmental conditions in coastal shallow waters and estuaries. In the light of global climate change, additional stressors like pollution might pose higher risk to populations. On the basis of the concept of oxygen- and capacity-limited thermal tolerance in aquatic ectotherms (40), we show that a persistent pollutant, cadmium, can have detrimental effects on oysters (Crassostrea virginica). During acute warming from 20 to 28 degrees C (4 degrees C/48 h) standard metabolic rate (SMR) rose in control and cadmium-exposed (50 microg Cd2+/l) animals, with a consistently higher SMR in Cd-exposed oysters. Additionally, Cd-exposed oysters showed a stronger temperature-dependent decrease in hemolymph oxygen partial pressures. This observation indicates that the effect of temperature on aerobic metabolism was exacerbated due to the additional Cd stress. The oxygen delivery systems could not provide enough oxygen to cover Cd-induced elevated metabolic demands at high temperatures. Interestingly, cardiac performance (measured as the heart rate and hemolymph supply to tissues) rose to a similar extent in control and Cd-exposed oysters with warming indicating that cardiac output was unable to compensate for elevated energy demand in Cd-exposed oysters. Together with the literature data on metal-induced reduction of ventilatory capacity, these findings suggest that synergistic effects of elevated temperatures and cadmium exposure led to oxygen limitation by impaired performance in oxygen supply through ventilation and circulation. Overall, cadmium exposure resulted in progressive hypoxemia in oysters at high temperatures, suggesting that the thermal tolerance window is narrowed in marine ectotherms inhabiting polluted areas compared with pristine environments.

  13. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  14. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  15. Elevated-temperature tensile and creep properties of several ferritic stainless steels

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The elevated-temperature mechanical properties of several ferritic stainless steels were determined. The alloys evaluated included Armco 18SR, GE 1541, and NASA-18T-A. Tensile and creep strength properties at 1073 and 1273 K and residual room temperature tensile properties after creep testing were measured. In addition, 1273 K tensile and creep tests and residual property testing were conducted with Armco 18SR and GE 1541 which were exposed for 200 hours to a severe oxidizing environment in automotive thermal reactors. Aside from the residual tensile properties for Armco 18SR, prior exposure did not affect the mechanical properties of either alloy. The 1273 K creep strength parallel to the sheet-rolling direction was similar for all three alloys. At 1073 K, NASA-18T-A had better creep strength than either Armco 18SR or GE 1541. NASA-18T-A possesses better residual properties after creep testing than either Armco 18SR or Ge 1541.

  16. Flexural stiffness of the composite steel and fibre-reinforced concrete circular hollow section column

    NASA Astrophysics Data System (ADS)

    Tretyakov, A.; Tkalenko, I.; Wald, F.; Novak, J.; Stefan, R.; Kohoutková, A.

    2017-09-01

    The recent development in technology of production and transportation of steel fibre-reinforced concrete enables its utilization in composite steel-concrete structures. This work is a part of a project which focuses on development of mechanical behaviour of circular hollow section (CHS) composite steel and fibre-concrete (SFRC) columns at elevate temperature. Research includes two levels of accuracy/complexity, allowing simplified or advanced approach for design that follows upcoming changes in European standard for composite member design in fire EN1994-1-2 [1]. One part is dedicated to determination and description of flexural stiffness of the SFRC CHS columns. To determinate flexural stiffness were prepared series of pure bending tests at elevated and ambient temperature. Presented paper focuses on the results of the tests and determination of flexural stiffness at ambient temperature. Obtained outputs were compared to data of existing studies about concrete-filled tube members with plain concrete and values analytically calculated according to the existing European standard EN1994-1-1 [2].

  17. A 400-Year Ice Core Melt Layer Record of Summertime Warming in the Alaska Range

    NASA Astrophysics Data System (ADS)

    Winski, Dominic; Osterberg, Erich; Kreutz, Karl; Wake, Cameron; Ferris, David; Campbell, Seth; Baum, Mark; Bailey, Adriana; Birkel, Sean; Introne, Douglas; Handley, Mike

    2018-04-01

    Warming in high-elevation regions has societally important impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While a variety of paleoproxy records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually resolved temperature records from high elevations. Here we present a 400-year temperature proxy record based on the melt layer stratigraphy of two ice cores collected from Mt. Hunter in Denali National Park in the central Alaska Range. The ice core record shows a sixtyfold increase in water equivalent total annual melt between the preindustrial period (before 1850 Common Era) and present day. We calibrate the melt record to summer temperatures based on weather station data from the ice core drill site and find that the increase in melt production represents a summer warming rate of at least 1.92 ± 0.31°C per century during the last 100 years, exceeding rates of temperature increase at most low-elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p < 0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby wave-like pattern that enhances high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century and that conditions in the tropical oceans contribute to this warming.

  18. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature.

    PubMed

    Zhao, Hongxia; Li, Yongping; Zhang, Xiaolu; Korpelainen, Helena; Li, Chunyang

    2012-11-01

    Dioecious plants, which comprise more than 14,620 species, account for an important component of terrestrial ecosystems. Hence, understanding the sexually dimorphic responses in balancing carbon (C) supply and demand under elevated CO(2) is important for understanding leaf sink-to-source transitions. Here we investigate sex-related responses of the dioecious Populus cathayana Rehd. to elevated CO(2) and elevated temperature. The plants were grown in environmentally controlled growth chambers at two CO(2) enrichment regimes (350 ± 20 and 700 ± 20 μmol mol(-1)) with two temperature levels, elevated by 0 and 2 ± 0.2 °C (compared with the out-of-chamber environment). Plant growth characteristics, carbohydrate accumulation, C and nitrogen (N) allocation, photosynthetic capacity, N use efficiency and the morphology of mesophyll cells were investigated in the developing leaves (DLs) and expanded leaves (ELs) of both males and females. Elevated CO(2) enhanced plant growth and photosynthetic capacity in DLs of both males and females, and induced the male ELs to have a greater leaf mass production, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b), soluble protein level (SP), photosynthetic N use efficiency and soluble sugar level compared with females at the same leaf stage. Elevated temperature enhanced source activities and N uptake status during CO(2) enrichment, and the combined treatment induced males to be more responsive than females in sink capacities, especially in ELs, probably due to greater N acquisition from other plant parts. Our findings showed that elevated CO(2) increases the sink capacities of P. cathayana seedlings, and elevated temperature enhances the stimulation effect of elevated CO(2) on plant growth. Male ELs were found to play an important role in N acquisition from roots and stems under decreasing N in total leaves under elevated CO(2). Knowledge of the sex-specific leaf adaptability to warming climate can help us to understand sex-related source-to-sink transitions in dioecious plant species.

  19. Evaluation of NLDAS 12-km and downscaled 1-km temperature products in New York State for potential use in health exposure response studies

    NASA Astrophysics Data System (ADS)

    Estes, M. G., Jr.; Insaf, T.; Crosson, W. L.; Al-Hamdan, M. Z.

    2017-12-01

    Heat exposure metrics (maximum and minimum daily temperatures,) have a close relationship with human health. While meteorological station data provide a good source of point measurements, temporal and spatially consistent temperature data are needed for health studies. Reanalysis data such as the North American Land Data Assimilation System's (NLDAS) 12-km gridded product are an effort to resolve spatio-temporal environmental data issues; the resolution may be too coarse to accurately capture the effects of elevation, mixed land/water areas, and urbanization. As part of this NASA Applied Sciences Program funded project, the NLDAS 12-km air temperature product has been downscaled to 1-km using MODIS Land Surface Temperature patterns. Limited validation of the native 12-km NLDAS reanalysis data has been undertaken. Our objective is to evaluate the accuracy of both the 12-km and 1-km downscaled products using the US Historical Climatology Network station data geographically dispersed across New York State. Statistical methods including correlation, scatterplots, time series and summary statistics were used to determine the accuracy of the remotely-sensed maximum and minimum temperature products. The specific effects of elevation and slope on remotely-sensed temperature product accuracy were determined with 10-m digital elevation data that were used to calculate percent slope and link with the temperature products at multiple scales. Preliminary results indicate the downscaled temperature product improves accuracy over the native 12-km temperature product with average correlation improvements from 0.81 to 0.85 for minimum and 0.71 to 0.79 for maximum temperatures in 2009. However, the benefits vary temporally and geographically. Our results will inform health studies using remotely-sensed temperature products to determine health risk from excessive heat by providing a more robust assessment of the accuracy of the 12-km NLDAS product and additional accuracy gained from the 1-km downscaled product. Also, the results will be shared with the National Weather Service to determine potential benefits to heat warning systems and evaluated for inclusion in the Centers of Disease Control and Prevention (CDC) Environmental Public Health Tracking Network as a resource for the health community.

  20. Factors affecting the geographic distribution of West Nile virus in Georgia, USA: 2002-2004.

    PubMed

    Gibbs, Samantha E J; Wimberly, Michael C; Madden, Marguerite; Masour, Janna; Yabsley, Michael J; Stallknecht, David E

    2006-01-01

    The distribution of West Nile virus (WNV) is dependent on the occurrence of both susceptible avian reservoir hosts and competent mosquito vectors. Both factors can be influenced by geographic variables such as land use/landcover, elevation, human population density, physiographic region, and temperature. The current study uses geographic information systems (GIS) and logistic regression analyses to model the distribution of WNV in the state of Georgia based on a wild bird indicator system, and to identify human and environmental predictor variables that are important in the determination of WNV distribution. A database for Georgia was constructed that included (1) location points of all the avian samples tested for WNV, (2) local land use classifications, including temperature, physiographic divisions, land use/landcover, and elevation, (3) human demographic data from the U.S. Census, and (4) statistics summarizing land cover, elevation, and climate within a 1-km-radius landscape around each sample point. Logistic regression analysis was carried out using the serostatus of avian collection sites as the dependent variable. Temperature, housing density, urban/suburban land use, and mountain physiographic region were important variables in predicting the distribution of WNV in the state of Georgia. While weak, the positive correlation between WNV-antibody positive sites and the urban/suburban environment was consistent throughout the study period. The risks associated with WNV endemicity appear to be increased in urban/ suburban areas and decreased in the mountainous region of the state. This information may be used in addressing regional public health needs and mosquito control programs.

  1. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  2. Comparison of 2 protocols to increase circulating progesterone concentration before timed artificial insemination in lactating dairy cows with or without elevated body temperature.

    PubMed

    Pereira, M H C; Wiltbank, M C; Guida, T G; Lopes, F R; Vasconcelos, J L M

    2017-10-01

    Two treatments designed to increase circulating progesterone concentration (P4) during preovulatory follicle development were compared. One treatment used 2 intravaginal P4 implants (controlled internal drug-releasing inserts; CIDR) and the other used a GnRH treatment at beginning of the protocol. Lactating Holstein cows that had been diagnosed as nonpregnant were randomly assigned to receive timed artificial insemination (TAI) following 1 of 2 treatments (n = 1,638 breedings): (1) GnRH: CIDR+ 2 mg of estradiol (E2) benzoate + 100 µg of GnRH on d -11, PGF 2α on d -4, CIDR withdrawal + 1.0 mg of E2-cypionate + PGF 2α ) on d -2, and TAI on d 0; or (2) 2CIDR: 2 CIDR + 2 mg of E2-benzoate on d -11, 1 CIDR withdrawn + PGF 2α on d -4, second CIDR withdrawn + 1.0 mg of E2-cypionate + PGF 2α on d -2, and TAI on d 0. Milk yield was measured daily between d 0 and d 7. Rectal temperature was measured using a digital thermometer at d 0 and 7, and elevated body temperature was defined as an average rectal temperature ≥39.1°C. Pregnancy diagnoses were performed on d 32 and 60 after TAI. We detected no effect of treatments on pregnancy per AI or pregnancy loss regardless of elevated body temperature, body condition score, parity, milk yield, or presence or absence of a corpus luteum (CL) on d -11 or d -4. Pregnancy per AI at 60 d was reduced [elevated body temperature = 22.8% (162/709), no elevated body temperature 34.1% (279/817)] and pregnancy loss tended to increase [elevated body temperature = 20.2% (41/203), no elevated body temperature 14.4% (47/326)] in cows with elevated body temperature. Various physiological measurements associated with greater fertility were also reduced in cows with elevated body temperature, such as percentage of cows with a CL at PGF 2α (decreased 7.9%), ovulatory follicle diameter (decreased 0.51 mm), expression of estrus (decreased 5.1%), and ovulation near TAI (decreased 2.8%) compared with cows without elevated body temperature. A greater proportion of cows (30.2%) had a CL at PGF 2α in the GnRH treatment [74.1% (570/763)] than in the 2CIDR treatment [56.9% (434/763)]; however, circulating P4 concentration was greater at the time of PGF 2α treatment (d -4) for cows 2CIDR (4.26 ± 0.13 ng/mL) than in cows in GnRH (3.99 ± 0.14 ng/mL). Thus, these 2 protocols yield similar fertility results that might be due to somewhat different physiological alterations. Treatment with GnRH increased the proportion of cows with a CL at PGF 2α ; however, the 2CIDR protocol increased circulating P4 under all circumstances. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Elevated temperature and temperature programming in conventional liquid chromatography--fundamentals and applications.

    PubMed

    Vanhoenacker, Gerd; Sandra, Pat

    2006-08-01

    Temperature, as a powerful variable in conventional LC is discussed from a fundamental point of view and illustrated with applications from the author's laboratory. Emphasis is given to the influence of temperature on speed, selectivity, efficiency, detectability, and mobile phase composition (green chromatography). The problems accompanying the use of elevated temperature and temperature programming in LC are reviewed and solutions are described. The available stationary phases for high temperature operation are summarized and a brief overview of recent applications reported in the literature is given.

  4. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON COLD HARDINESS AND SPRING BUD BURST AND GROWTH IN DOUGLAS-FIR (PSEUDOTSUGA MENZIESII)

    EPA Science Inventory

    We examined effects of elevated CO2 and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient+apprxeq 4deg...

  5. A STABLE ISOTOPE ANALYSIS OF SOIL CARBON DENSITY FRACTIONS FOLLOWING 4 YEARS OF CONTINUOUS CLIMATE CHANGE EXPOSURE IN A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year full-factorial study of the effects of elevated atmospheric CO2 and temperature on Douglas fir seedlings growing in reconstructed native forest soils in mesocosms. The elevated CO2 treatment was ambient CO2 plus 200 ppm CO2. The elevated temperature treatm...

  6. EFFECTS OF ELEVATED CO2 AND TEMPERATURE ON SOIL C AND N: RESULTS OF A DOUGLAS FIR MESOCOSM STUDY

    EPA Science Inventory

    We conducted a 4-year study on the effects of elevated CO2 and elevated air temperature on Douglas fir seedlings growing under controlled exposure conditions in outdoor sun-lit mesocosms. 1+1 seedlings were planted in mesocosms in Corvallis, OR in the spring of 1993 in a reconstr...

  7. Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO2 -acidification.

    PubMed

    Davis, Brittany E; Flynn, Erin E; Miller, Nathan A; Nelson, Frederick A; Fangue, Nann A; Todgham, Anne E

    2018-02-01

    Increases in atmospheric CO 2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade-offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO 2 treatments (~450, ~850, and ~1,200 μatm PCO 2 ) at two temperatures (-1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [f H ] and ventilation rate [f V ]), metabolic rate (M˙O2), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO 2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, f H , f V and M˙O2 significantly increased with warming, but not with elevated PCO 2 . Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade-offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as f V , M˙O2, and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO 2 . Sustained increases in f V and M˙O2 after 28 days exposure to elevated PCO 2 indicate additive (f V ) and synergistic (M˙O2) interactions occurred in combination with warming. Stressor-induced energetic trade-offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change. © 2017 John Wiley & Sons Ltd.

  8. Changes in host-parasitoid food web structure with elevation.

    PubMed

    Maunsell, Sarah C; Kitching, Roger L; Burwell, Chris J; Morris, Rebecca J

    2015-03-01

    Gradients in elevation are increasingly used to investigate how species respond to changes in local climatic conditions. Whilst many studies have shown elevational patterns in species richness and turnover, little is known about how food web structure is affected by elevation. Contrasting responses of predator and prey species to elevation may lead to changes in food web structure. We investigated how the quantitative structure of a herbivore-parasitoid food web changes with elevation in an Australian subtropical rain forest. On four occasions, spread over 1 year, we hand-collected leaf miners at twelve sites, along three elevational gradients (between 493 m and 1159 m a.s.l). A total of 5030 insects, including 603 parasitoids, were reared, and summary food webs were created for each site. We also carried out a replicated manipulative experiment by translocating an abundant leaf-mining weevil Platynotocis sp., which largely escaped parasitism at high elevations (≥ 900 m a.s.l.), to lower, warmer elevations, to test if it would experience higher parasitism pressure. We found strong evidence that the environmental change that occurs with increasing elevation affects food web structure. Quantitative measures of generality, vulnerability and interaction evenness decreased significantly with increasing elevation (and decreasing temperature), whilst elevation did not have a significant effect on connectance. Mined plant composition also had a significant effect on generality and vulnerability, but not on interaction evenness. Several relatively abundant species of leaf miner appeared to escape parasitism at higher elevations, but contrary to our prediction, Platynotocis sp. did not experience greater levels of parasitism when translocated to lower elevations. Our study indicates that leaf-mining herbivores and their parasitoids respond differently to environmental conditions imposed by elevation, thus producing structural changes in their food webs. Increasing temperatures and changes in vegetation communities that are likely to result from climate change may have a restructuring effect on host-parasitoid food webs. Our translocation experiment, however, indicated that leaf miners currently escaping parasitism at high elevations may not automatically experience higher parasitism under warmer conditions and future changes in food web structure may depend on the ability of parasitoids to adapt to novel hosts. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  9. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    NASA Astrophysics Data System (ADS)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  10. Interaction between muscle temperature and contraction velocity affects mechanical efficiency during moderate-intensity cycling exercise in young and older women.

    PubMed

    Bell, Martin P; Ferguson, Richard A

    2009-09-01

    The effect of elevated muscle temperature on mechanical efficiency was investigated during exercise at different pedal frequencies in young and older women. Eight young (24 +/- 3 yr) and eight older (70 +/- 4 yr) women performed 6-min periods of cycling at 75% ventilatory threshold at pedal frequencies of 45, 60, 75, and 90 rpm under control and passively elevated local muscle temperature conditions. Mechanical efficiency was calculated from the ratio of energy turnover (pulmonary O(2) uptake) and mechanical power output. Overall, elevating muscle temperature increased (P < 0.05) mechanical efficiency in young (32.0 +/- 3.1 to 34.0 +/- 5.5%) and decreased (P < 0.05) efficiency in older women (30.2 +/- 5.6 to 27.9 +/- 4.1%). The different effect of elevated muscle temperature in young and older women reflects a shift in the efficiency-velocity relationship of skeletal muscle. These effects may be due to differences in recruitment patterns, as well as sarcopenic and fiber-type changes with age.

  11. Nanostructure-based proton exchange membrane for fuel cell applications at high temperature.

    PubMed

    Li, Junsheng; Wang, Zhengbang; Li, Junrui; Pan, Mu; Tang, Haolin

    2014-02-01

    As a clean and highly efficient energy source, the proton exchange membrane fuel cell (PEMFC) has been considered an ideal alternative to traditional fossil energy sources. Great efforts have been devoted to realizing the commercialization of the PEMFC in the past decade. To eliminate some technical problems that are associated with the low-temperature operation (such as catalyst poisoning and poor water management), PEMFCs are usually operated at elevated temperatures (e.g., > 100 degrees C). However, traditional proton exchange membrane (PEM) shows poor performance at elevated temperature. To achieve a high-performance PEM for high temperature fuel cell applications, novel PEMs, which are based on nanostructures, have been developed recently. In this review, we discuss and summarize the methods for fabricating the nanostructure-based PEMs for PEMFC operated at elevated temperatures and the high temperature performance of these PEMs. We also give an outlook on the rational design and development of the nanostructure-based PEMs.

  12. Body temperature is elevated and linked to fatigue in relapsing-remitting multiple sclerosis, even without heat exposure.

    PubMed

    Sumowski, James F; Leavitt, Victoria M

    2014-07-01

    To investigate whether (1) resting body temperature is elevated in patients with relapsing-remitting multiple sclerosis (RRMS) relative to healthy individuals and patients with secondary progressive multiple sclerosis (SPMS), and (2) warmer body temperature is linked to worse fatigue in patients with RRMS. Cross-sectional study. Climate-controlled laboratory (∼22°C) within a nonprofit medical rehabilitation research center. Patients with RRMS (n=50), matched healthy controls (n=40), and patients with SPMS (n=22). Not applicable. Body temperature was measured with an aural infrared thermometer (normative body temperature for this thermometer, 36.75°C), and differences were compared across patients with RRMS and SPMS and healthy persons. Patients with RRMS completed measures of general fatigue (Fatigue Severity Scale [FSS]), as well as physical and cognitive fatigue (Modified Fatigue Impact Scale [MFIS]). There was a large effect of group (P<.001, ηp(2)=.132) whereby body temperature was higher in patients with RRMS (37.04°±.27°C) relative to healthy controls (36.83°±.33°C; P=.009) and patients with SPMS (36.75°±.39°C; P=.001). Warmer body temperature in patients with RRMS was associated with worse general fatigue (FSS; rp=.315, P=.028) and physical fatigue (physical fatigue subscale of the MFIS; rp=.318, P=.026), but not cognitive fatigue (cognitive fatigue subscale of the MIFS; rp=-.017, P=.909). These are the first-ever demonstrations that body temperature is elevated endogenously in patients with RRMS and linked to worse fatigue. We discuss these findings in the context of failed treatments for fatigue in RRMS, including several failed randomized controlled trials (RCTs) of stimulants (modafinil). In contrast, our findings may help explain how RCTs of cooling garments and antipyretics (aspirin) have effectively reduced MS fatigue, and encourage further research on cooling/antipyretic treatments of fatigue in RRMS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Regional Monitoring of Coral Condition in the Florida Keys

    Treesearch

    William S. Fisher; Deborah L. Santavy; William P. Davis; Lee A. Courtney

    2006-01-01

    Tropical reef corals have experienced unprecedented levels of bleaching and disease during the last three decades. Declining health has been attributed to several stressors, including exposures to elevated water temperature, increased solar radiation, and degraded water quality. Consequences of coral bleaching and disease vary; some recover, while others lose tissue,...

  14. Southern Nevada ecosystem stressors [Chapter 2

    Treesearch

    Burton K. Pendleton; Jeanne C. Chambers; Mathew L. Brooks; Steven M. Ostoja

    2013-01-01

    Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amounts, solar radiation, and nutrient cycles (Smith and...

  15. The Impact of Hexametaphosphate, Orthophosphate, and Temperature on Copper Corrosion and Release

    EPA Science Inventory

    Excessive corrosion of copper plumbing can lead to elevated copper levels at consumer’s tap or pinhole leaks. Corrosion control solutions include pH adjustment or phosphate addition. Orthophosphate has been shown to reduce copper levels in some cases while the role of polyphosp...

  16. Sundangrass reproductive biomass responses under climate change scenarios in oak savannah and mesic prairie mesocosm communities

    EPA Science Inventory

    Potential climate change effects include shifts in the distribution of plant species and changes in reproductive output. We tested the hypothesis that environmental stressors such as elevated temperature and drought that are associated with climate change would increase the repr...

  17. Quality of whey powders stored under adverse conditions

    USDA-ARS?s Scientific Manuscript database

    Whey protein concentrate powder (WPC) is exported by the U.S. and is included in emergency aid foods, but the bags sent overseas are usually stored without refrigeration and under elevated temperature and relative humidity (RH). The shelf life of WPC under adverse conditions must be known to preven...

  18. Materials data handbook. Titanium 6Al-4V

    NASA Technical Reports Server (NTRS)

    Muraca, R. F.; Whittick, J. S.

    1972-01-01

    A summary of the materials property information for Titanium 6Al-4V alloy is presented. The scope of the information includes physical and mechanical properties at cryogenic, ambient, and elevated temperatures. Information on material procurement, metallurgy of the alloy, corrosion, environmental effects, fabrication, and bonding is developed.

  19. Relation of structure to mechanical properties of thin thoria dispersion strengthened nickel-chromium (TD-NiCr alloy sheet

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1975-01-01

    A study of the relation between structure and mechanical properties of thin TD-NiCr sheet indicated that the elevated temperature tensile, stress-rupture, and creep strength properties depend primarily on the grain aspect ratio and sheet thickness. In general, the strength properties increased with increasing grain aspect ratio and sheet thickness. Tensile testing revealed an absence of ductility at elevated temperatures. A threshold stress for creep appears to exist. Even small amounts of prior creep deformation at elevated temperatures can produce severe creep damage.

  20. Elevated-temperature fracture resistances of monolithic and composite ceramics using chevron-notched bend tests

    NASA Technical Reports Server (NTRS)

    Ghosh, Asish; Jenkins, Michael G.; Ferber, Mattison K.; Peussa, Jouko; Salem, Jonathan A.

    1992-01-01

    The quasi-static fracture behaviors of monolithic ceramics (SiC, Si3N4, MgAl2O4), self-reinforced monoliths (acicular grained Si3N4, acicular grained mullite), and ceramic matrix composites (SiC whisker/Al2O3 matrix, TiB2 particulate/SiC matrix, SiC fiber/CVI SiC matrix, Al2O3 fiber/CVI SiC matrix) were measured over the temperature range of 20 to 1400 C. The chevron notched, bend bar test geometry was essential for characterizing the elevated temperature fracture resistances of this wide range of quasi-brittle materials during stable crack growth. Fractography revealed the differences in the fracture behavior of the different materials at the various temperatures. The fracture resistances of the self-reinforced monoliths were comparable to those of the composites and the fracture mechanisms were found to be similar at room temperature. However at elevated temperatures the differences of the fracture behavior became apparent where the superior fracture resistance of the self-reinforced monoliths were attributed to the minor amounts of glassy, intergranular phases which were often more abundant in the composites and affected the fracture behavior when softened by elevated temperatures.

  1. Impact of long-term moderate hypercapnia and elevated temperature on the energy budget of isolated gills of Atlantic cod (Gadus morhua).

    PubMed

    Kreiss, Cornelia M; Michael, Katharina; Bock, Christian; Lucassen, Magnus; Pörtner, Hans-O

    2015-04-01

    Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 μatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The relationship of meteorological patterns with changes in floristic richness along a large elevational gradient in a seasonally dry region of southern Mexico.

    PubMed

    Salas-Morales, Silvia H; Meave, Jorge A; Trejo, Irma

    2015-12-01

    Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m(-1)). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor driving elevational variation of plant species richness in this region.

  3. The role of climate in the dynamics of a hybrid zone in Appalachian salamanders

    USGS Publications Warehouse

    Walls, Susan

    2009-01-01

    I examined the potential influence of climate change on the dynamics of a previously studied hybrid zone between a pair of terrestrial salamanders at the Coweeta Hydrologic Laboratory, U.S. Forest Service, in the Nantahala Mountains of North Carolina, USA. A 16-year study led by Nelson G. Hairston, Sr. revealed that Plethodon teyahalee and Plethodon shermani hybridized at intermediate elevations, forming a cline between 'pure' parental P. teyahalee at lower elevations and 'pure' parental P. shermani at higher elevations. From 1974 to 1990 the proportion of salamanders at the higher elevation scored as 'pure' P. shermani declined significantly, indicating that the hybrid zone was spreading upward. To date there have been no rigorous tests of hypotheses for the movement of this hybrid zone. Using temperature and precipitation data from Coweeta, I re-analyzed Hairston's data to examine whether the observed elevational shift was correlated with variation in either air temperature or precipitation from the same time period. For temperature, my analysis tracked the results of the original study: the proportion of 'pure' P. shermani at the higher elevation declined significantly with increasing mean annual temperature, whereas the proportion of 'pure' P. teyahalee at lower elevations did not. There was no discernable relationship between proportions of 'pure' individuals of either species with variation in precipitation. From 1974 to 1990, low-elevation air temperatures at the Coweeta Laboratory ranged from annual means of 11.8 to 14.2 °C, compared with a 55-year average (1936-1990) of 12.6 °C. My re-analyses indicate that the upward spread of the hybrid zone is correlated with increasing air temperatures, but not precipitation, and provide an empirical test of a hypothesis for one factor that may have influenced this movement. My results aid in understanding the potential impact that climate change may have on the ecology and evolution of terrestrial salamanders in montane regions.

  4. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    PubMed

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  5. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites

    PubMed Central

    Vickers, Les; Pan, Zhu; Tao, Zhong; van Riessen, Arie

    2016-01-01

    In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress). Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen. PMID:28773568

  6. Reptile thermogenesis and the origins of endothermy.

    PubMed

    Tattersall, Glenn J

    2016-10-01

    Extant endotherms have high rates of metabolism, elevated body temperatures, usually tight control over body temperature, and a reasonable scope for further increases in metabolism through locomotor activity. Vertebrate ectotherms, on the other hand, rely on behavioural thermoregulation and cardiovascular adjustments to facilitate warming, and generally lack specific biochemical and cellular mechanisms for sustained, elevated metabolism. Nevertheless, the ancestral condition to endothermy is thought to resemble that of many extant reptiles, which raises the question of the origins and selection pressures relevant to the transitional state. Numerous hypotheses have emerged to explain the multiple origins of endothermy in vertebrates, including thermoregulatory, locomotory, and reproductive activity as possible drivers for these sustained and elevated metabolic rates. In this article, I discuss recent evidence for facultative endothermy in an extant lepidosaur, the tegu lizard. Since lepidosaurs are a sister group to the archosaurs, understanding how a novel form of endothermy evolved will open up opportunities to test the compatibility or incompatibility of the various endothermy hypotheses, with potential to elucidate and resolve long contentious ideas in evolutionary physiology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Biodegradable and Multifunctional Polymer Micro-Tubes for Targeting Photothermal Therapy

    PubMed Central

    Wang, Xin; Yu, Guoping; Han, Xiyu; Zhang, Hua; Ren, Jing; Wu, Xia; Qu, Yanfeng

    2014-01-01

    We describe an innovative form of polymer micro-tubes with diverse functions including biodegradation, magnetic manipulation, and photothermal effect that employs and activates photothermal therapy to target cancer cells. The micro-tube comprised soybean protein isolate, poly-l-glutamic acid, magnetite nanoparticles, plus gold nanoparticles. Through electrostatic force, these components, with opposite charges, formed pairs of layers in the pores of the template, various bilayers of soybean protein isolate and poly-l-glutamic acid served as the biodegradable building wall to each micro-tube. The layers of magnetite nanoparticle functionalized micro-tubes enabled the micro-tube manipulate to target the cancer cells by using an external magnetic field. The photo-thermal effect of the layer of gold nanoparticles on the outer surface of the micro-tubes, when under irradiation and when brought about by the near infrared radiation, elevated each sample’s temperature. In addition, and when under the exposure of the near infrared radiation, the elevated temperature of the suspension of the micro-tubes, likewise with a concentration of 0.2 mg/mL, and similarly with a power of 2 W and as well maintained for 10 min, elevated the temperature of the suspension beyond 42 °C. Such temperatures induced apoptosis of target cancer cells through the effect of photothermal therapy. The findings assert that structured micro-tubes have a promising application as a photothermal agent. From this assertion, the implications are that this multifunctional agent will significantly improve the methodology for cancer diagnosis and therapy. PMID:24992593

  8. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature.

    PubMed

    Gajigan, Andrian P; Diaz, Leomir A; Conaco, Cecilia

    2017-08-01

    The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Effects of thermal treatment on halogenated disinfection by-products in drinking water.

    PubMed

    Wu, W W; Benjamin, M M; Korshin, G V

    2001-10-01

    The influence of heating or boiling on the formation and behavior of disinfection by-products (DBPs) was investigated in DBP-spiked reagent water, municipal tap water, and synthetic water containing chlorinated aquatic humic substances. Thermal cleavage of larger halogenated species leads to both formation of smaller chlorinated molecules (including THMs and HAAs) and dechlorination of organics. In parallel with their formation from larger molecules, THMs can be volatilized, and this latter process dominates the change in their concentration when water is boiled. HAAs are not volatile, but they can be destroyed by chemical reactions at elevated temperatures, with the net effect being loss of trihalogenated HAAs and either formation or loss of less chlorinated HAAs. Although other identifiable DBPs can be generated at slightly elevated temperatures, in most cases their concentrations decline dramatically when the solution is heated.

  10. Destabilized and catalyzed borohydride for reversible hydrogen storage

    DOEpatents

    Mohtadi, Rana F [Northville, MI; Nakamura, Kenji [Toyota, JP; Au, Ming [Martinez, GA; Zidan, Ragaiy [Alken, SC

    2012-01-31

    A process of forming a hydrogen storage material, including the steps of: providing a first material of the formula M(BH.sub.4).sub.X, where M is an alkali metal or an alkali earth metal, providing a second material selected from M(AlH.sub.4).sub.x, a mixture of M(AlH.sub.4).sub.x and MCl.sub.x, a mixture of MCl.sub.x and Al, a mixture of MCl.sub.x and AlH.sub.3, a mixture of MH.sub.x and Al, Al, and AlH.sub.3. The first and second materials are combined at an elevated temperature and at an elevated hydrogen pressure for a time period forming a third material having a lower hydrogen release temperature than the first material and a higher hydrogen gravimetric density than the second material.

  11. Soil respiration patterns and rates at three Taiwanese forest plantations: dependence on elevation, temperature, precipitation, and litterfall.

    PubMed

    Huang, Yu-Hsuan; Hung, Chih-Yu; Lin, I-Rhy; Kume, Tomonori; Menyailo, Oleg V; Cheng, Chih-Hsin

    2017-11-15

    Soil respiration contributes to a large quantity of carbon emissions in the forest ecosystem. In this study, the soil respiration rates at three Taiwanese forest plantations (two lowland and one mid-elevation) were investigated. We aimed to determine how soil respiration varies between lowland and mid-elevation forest plantations and identify the relative importance of biotic and abiotic factors affecting soil respiration. The results showed that the temporal patterns of soil respiration rates were mainly influenced by soil temperature and soil water content, and a combined soil temperature and soil water content model explained 54-80% of the variation. However, these two factors affected soil respiration differently. Soil temperature positively contributed to soil respiration, but a bidirectional relationship between soil respiration and soil water content was revealed. Higher soil moisture content resulted in higher soil respiration rates at the lowland plantations but led to adverse effects at the mid-elevation plantation. The annual soil respiration rates were estimated as 14.3-20.0 Mg C ha -1  year -1 at the lowland plantations and 7.0-12.2 Mg C ha -1  year -1 at the mid-elevation plantation. When assembled with the findings of previous studies, the annual soil respiration rates increased with the mean annual temperature and litterfall but decreased with elevation and the mean annual precipitation. A conceptual model of the biotic and abiotic factors affecting the spatial and temporal patterns of the soil respiration rate was developed. Three determinant factors were proposed: (i) elevation, (ii) stand characteristics, and (iii) soil temperature and soil moisture. The results indicated that changes in temperature and precipitation significantly affect soil respiration. Because of the high variability of soil respiration, more studies and data syntheses are required to accurately predict soil respiration in Taiwanese forests.

  12. Late Pleistocene temperature, hydrology, and glaciation in equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Verschuren, D.; Kelly, M. A.; Loomis, S. E.; Jackson, M. S.; Morrill, C.; S Sinninghe Damsté, J.; Doughty, A. M.; De Cort, G.; Olago, D.; Street-Perrott, F. A.

    2016-12-01

    In the coming century the world's high tropical mountains are predicted to experience a magnitude of climate change second only to the Arctic due to amplification of warming with elevation in the tropics. Proxy data suggest that substantial changes in tropical temperature and hydroclimate also occurred during the last deglaciation, the most recent time period when rising atmospheric CO2 concentrations caused large changes in global climate. Determining whether the rate of temperature change with elevation (the lapse rate) was different from today during the Last Glacial Maximum (LGM) is therefore critical to understanding the future of tropical mountain environments and resources. Here we present a new 25,000-year temperature reconstruction based upon organic geochemical analyses of sediment cores from Lake Rutundu (3,078 m asl), Mount Kenya, East Africa. Through comparison with regional reconstructions of lower elevation temperature, we show that LGM cooling was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our lapse rate reconstructions with equilibrium line altitude reconstructions from glacial moraines indicates that temperature, rather than precipitation, was the dominant control on tropical alpine glacier fluctuations at this time scale. Nevertheless, our results have important implications for the tropical hydrological cycle, as changes in the lapse rate are intimately linked with changes in atmospheric water vapour concentrations. Indeed, we attribute the steeper lapse rate to drying of the tropical ice-age atmosphere, a hypothesis supported by palaeoclimate models. However, comparison of our data to these simulations indicates that state-of-the-art models significantly underestimate tropical temperature changes at high elevation and therefore the lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than currently predicted.

  13. Elevational diversity and distribution of ammonia-oxidizing archaea community in meadow soils on the Tibetan Plateau.

    PubMed

    Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin

    2017-09-01

    Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.

  14. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    NASA Astrophysics Data System (ADS)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  15. Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients.

    PubMed

    Fajardo, Alex; Piper, Frida I; Hoch, Günter

    2013-08-01

    The most plausible explanation for treeline formation so far is provided by the growth limitation hypothesis (GLH), which proposes that carbon sinks are more restricted by low temperatures than by carbon sources. Evidence supporting the GLH has been strong in evergreen, but less and weaker in deciduous treeline species. Here a test is made of the GLH in deciduous-evergreen mixed species forests across elevational gradients, with the hypothesis that deciduous treeline species show a different carbon storage trend from that shown by evergreen species across elevations. Tree growth and concentrations of non-structural carbohydrates (NSCs) in foliage, branch sapwood and stem sapwood tissues were measured at four elevations in six deciduous-evergreen treeline ecotones (including treeline) in the southern Andes of Chile (40°S, Nothofagus pumilio and Nothofagus betuloides; 46°S, Nothofagus pumilio and Pinus sylvestris) and in the Swiss Alps (46°N, Larix decidua and Pinus cembra). Tree growth (basal area increment) decreased with elevation for all species. Regardless of foliar habit, NSCs did not deplete across elevations, indicating no shortage of carbon storage in any of the investigated tissues. Rather, NSCs increased significantly with elevation in leaves (P < 0·001) and branch sapwood (P = 0·012) tissues. Deciduous species showed significantly higher NSCs than evergreens for all tissues; on average, the former had 11 % (leaves), 158 % (branch) and 103 % (sapwood) significantly (P < 0·001) higher NSCs than the latter. Finally, deciduous species had higher NSC (particularly starch) increases with elevation than evergreens for stem sapwood, but the opposite was true for leaves and branch sapwood. Considering the observed decrease in tree growth and increase in NSCs with elevation, it is concluded that both deciduous and evergreen treeline species are sink limited when faced with decreasing temperatures. Despite the overall higher requirements of deciduous tree species for carbon storage, no indication was found of carbon limitation in deciduous species in the alpine treeline ecotone.

  16. Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra.

    PubMed

    Sundqvist, Maja K; Liu, Zhanfeng; Giesler, Reiner; Wardle, David A

    2014-07-01

    Temperature and nutrients are major limiting factors in subarctic tundra. Experimental manipulation of nutrient availability along elevational gradients (and thus temperature) can improve our understanding of ecological responses to climate change. However, no study to date has explored impacts of nutrient addition along a tundra elevational gradient, or across contrasting vegetation types along any elevational gradient. We set up a full factorial nitrogen (N) and phosphorus (P) fertilization experiment in each of two vegetation types (heath and meadow) at 500 m, 800 m, and 1000 m elevation in northern Swedish tundra. We predicted that plant and microbial communities in heath or at lower elevations would be more responsive to N addition while communities in meadow or at higher elevations would be more responsive to P addition, and that fertilizer effects would vary more with elevation for the heath than for the meadow. Although our results provided little support for these predictions, the relationship between nutrient limitation and elevation differed between vegetation types. Most plant and microbial properties were responsive to N and/or P fertilization, but responses often varied with elevation and/or vegetation type. For instance, vegetation density significantly increased with N + P fertilization relative to the other fertilizer treatments, and this increase was greatest at the lowest elevation for the heath but at the highest elevation for the meadow. Arbuscular mycorrhizae decreased with P fertilization at 500 m for the meadow, but with all fertilizer treatments in both vegetation types at 800 m. Fungal to bacterial ratios were enhanced by N+ P fertilization for the two highest elevations in the meadow only. Additionally, microbial responses to fertilization were primarily direct rather than indirect via plant responses, pointing to a decoupled response of plant and microbial communities to nutrient addition and elevation. Because our study shows how two community types differ in their responses to fertilization and elevation, and because the temperature range across this gradient is approximately 3 degrees C, our study is informative about how nutrient limitation in tundra may be influenced by temperature shifts that are comparable to those expected under climate change during this century.

  17. Effects of elevated water temperature on physiological responses in adult freshwater mussels

    USGS Publications Warehouse

    Ganser, Alissa M.; Newton, Teresa J.; Haro, Roger J.

    2015-01-01

    These data suggest that elevated temperatures can alter metabolic rates in native mussels and may decrease the amount of energy that is available for key biological processes, such as survival, growth and reproduction.

  18. Estimation of surface temperature variations due to changes in sky and solar flux with elevation

    NASA Technical Reports Server (NTRS)

    Hummer-Miller, S.

    1981-01-01

    The magnitude of elevation effects due to changes in solar and sky fluxes, on interpretation of single thermal images and composite products such as temperature difference and thermal inertia, are examined. Simple expressions are derived for the diurnal behavior of the two parameters, by fitting field observations in one tropic (Hawaii) and two semi-arid climates (Wyoming and Colorado) (Hummer-Miller, 1981). It is shown that flux variations with elevation can cause changes in the mean diurnal temperature gradient from -4 to -14 degrees C/km, evaluated at 2000 m. Changes in the temperature-difference gradient of 1 to 2 degrees C/km are also produced which is equivalent to an effective thermal-inertia gradient of 100 W s(exp 1/2)/sq m-K-km. An example is presented showing an elevation effect of 12 degrees C on the day and night thermal scenes of a test site in Arizona.

  19. New membranes based on ionic liquids for PEM fuel cells at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Ye, H.; Huang, J.; Xu, J. J.; Kodiweera, N. K. A. C.; Jayakody, J. R. P.; Greenbaum, S. G.

    Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H 3PO 4, the protic ionic liquid PMIH 2PO 4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120-150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H 3PO 4/PMIH 2PO 4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods.

  20. West Flank Coso, CA FORGE 3D temperature model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104˚C was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20˚C was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73˚C/km (4˚F/100’) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20˚C surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6˚C (20˚F), or one contour interval, of the observed data within the Coso geothermal field. Based on a lack of temperature data west of 74-2TCH, the edges of this model still seem to have an effect on West Flank modeled temperatures.

  1. Factors contributing to the temperature beneath plaster or fiberglass cast material

    PubMed Central

    Hutchinson, Michael J; Hutchinson, Mark R

    2008-01-01

    Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20 minutes. Conclusion Clinicians should be cautious when applying thick casts with warm dip water. Fast setting plasters have increased risk of thermal injury while brand does not appear to play a significant role. Prefabricated fiberglass splints appear to be safer than circumferential casts. The greatest risk of thermal injury occurs when thick casts are allowed to mature while resting on pillow. PMID:18298851

  2. Sex-related responses of European aspen (Populus tremula L.) to combined stress: TiO2 nanoparticles, elevated temperature and CO2 concentration.

    PubMed

    Zhang, Yaodan; Virjamo, Virpi; Sobuj, Norul; Du, Wenchao; Yin, Ying; Nybakken, Line; Guo, Hongyan; Julkunen-Tiitto, Riitta

    2018-06-15

    The combined effects of climate change and chemical contaminants on plant performance are still not well understood. Especially, whether different sexes of dioecious plants respond differently to combined stresses is unknown. In order to study the sex-related responses of European aspen to soil nTiO 2 contamination (0, 50, 300 mg kg -1 ) under elevated temperature (+1.6 °C) and CO 2 (730 ppm), we conducted a study in greenhouses. Ti accumulated in roots exposed to nTiO 2 (1.1-3.3 and 2.7-21.1 mg kg -1 in 50 and 300 mg kg -1 treatments, respectively). Elevated CO 2 had no effects on Ti uptake, while elevated temperature increased it in the 300 mg kg -1 treatment. Males grew taller than females under ambient conditions, but females had greater height and biomass increment under elevated temperature. In all climate treatments, nTiO 2 increased leaf phenolics in females by 12-19% and 15-26% at 50 and 300 mg kg -1 , respectively. Leaf phenolics decreased under elevated temperature, but increased under elevated CO 2 in both sexes. Results suggest that females have better chemical defense against nTiO 2 than males under future climate conditions. In the longer run, this may cause changes in the competitive abilities of both sexes, which again may affect sex ratios and genetic variation in nature. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Volatile Analysis by Pyrolysis of Regolith for Planetary Resource Exploration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Malespin, Charles; ten Kate, Inge L.; Getty, Stephanie A.; Holmes, Vincent E.; Mumm, Erik; Franz, Heather B.; Noreiga, Marvin; Dobson, Nick; Southard, Adrian E.; hide

    2012-01-01

    The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400 C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300 C and determining the composition of volatiles released as a function of temperature.

  4. Warming and increased precipitation frequency on the Colorado Plateau: Implications for biological soil crusts and soil processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zelikova TJ; Hosman DC; Grote EE

    2011-03-21

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundancemore » of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.« less

  5. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress.

    PubMed

    Hansen, P J

    2007-09-01

    Heat stress causes large reductions in fertility in lactating dairy cows. The magnitude and geographical extent of this problem is increasing because improvements in milk yield have made it more difficult for cows to regulate body temperature during warm weather. There have been efforts to improve fertility during heat stress by exploiting determinants of oocyte and embryonic responses to elevated temperature. Among these determinants are genotype, stage of development, and presence of cytoprotective molecules in the reproductive tract. One effective strategy for increasing pregnancy rate during heat stress is to use embryo transfer to bypass effects of elevated temperature on the oocyte and early embryo. Pregnancy success to embryo transfer in the summer can be further improved by exposure of embryos to insulin-like growth factor-I during culture before transfer. Among the cytoprotective molecules that have been examined for enhancing fertility during heat stress are bovine somatotropin and various antioxidants. To date, an effective method for delivery of these molecules to increase fertility during heat stress has not been identified. Genes in cattle exist for regulation of body temperature and for cellular resistance to elevated temperature. Although largely unidentified, the existence of these genes offers the possibility for their incorporation into dairy breeds through crossbreeding or on an individual-gene basis. In summary, physiological or genetic manipulation of the cow to improve embryonic resistance to elevated temperature is a promising approach for enhancing fertility of lactating dairy cows.

  6. Durability and Damage Development in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Tyson, O. Z.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Damage development in woven SiC/SiNC ceramic matrix composites (CMC's) under tensile and cyclic loading both at room and elevated temperatures have been investigated for the exhaust nozzle of high-efficient turbine engines. The ultimate strength, failure strain, proportional limit and modulus data at a temperature range of 23 to 1250 C are generated. The tensile strength of SiC/SiNC woven composites have been observed to increase with increased temperatures up to 1000 C. The stress/strain plot shows a pseudo-yield point at 25 percent of the failure strain (epsilon(sub r)) which indicates damage initiation in the form of matrix cracking. The evolution of damage beyond 0.25 epsilon(sub f), both at room and elevated temperature comprises multiple matrix cracking, interfacial debonding, and fiber pullout. Although the nature of the stress/strain plot shows damage-tolerant behavior under static loading both at room and elevated temperature, the life expectancy of SiC/SiNC composites degrades significantly under cyclic loading at elevated temperature. This is mostly due to the interactions of fatigue damage caused by the mechanically induced plastic strain and the damage developed by the creep strain. The in situ damage evolutions are monitored by acoustic event parameters, ultrasonic C-scan and stiffness degradation. Rate equations for modulus degradation and fatigue life prediction of ceramic matrix composites both at room and elevated temperatures are developed. These rate equations are observed to show reasonable agreement with experimental results.

  7. Physiological Limits along an Elevational Gradient in a Radiation of Montane Ground Beetles

    PubMed Central

    Slatyer, Rachel A.; Schoville, Sean D.

    2016-01-01

    A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system. PMID:27043311

  8. Microstructural stability of wrought, laser and electron beam glazed NARloy-Z alloy at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.

    1993-01-01

    Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.

  9. Influence of high pressure hydrogen environment on creep deformation of Mo-Re, Haynes 188, and NARloy-Z alloys

    NASA Technical Reports Server (NTRS)

    Sastry, S. M. L.; Yang, Charles C.; Ouyang, Shewang; Jerina, K. L.; Schwartz, D. S.

    1994-01-01

    The present study focuses on the investigation of the influence of hydrogen on the mechanical properties of three types of alloys at elevated temperatures. The reasons for the consideration of hydrogen effects are the potential use of hydrogen as a coolant in gas-cooled reactors and fuel in advanced hypersonic vehicles. The materials used in hydrogen atmosphere must not be embrittled by hydrogen at ambient temperature and should have good strength in hydrogen atmosphere at elevated temperature. The paucity of information concerning the mechanical performance in hydrogen atmosphere at elevated temperature has been a limiting factor in the selection and design of structural components for operation in hydrogen environment.

  10. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    PubMed

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  11. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Lyman, Seth; Tran, Trang

    2015-12-01

    The Uintah Basin in Utah, U.S.A. experiences high concentrations of ozone during some winters due to strong, multi-day temperature inversions that facilitate the buildup of pollution from local sources, including the oil and gas industry. Together, elevation of monitoring sites and proximity to oil and gas wells explain as much as 90% of spatial variability in surface ozone concentrations during inversion episodes (i.e., R2 = 0.90). Inversion conditions start earlier and last longer at lower elevations, at least in part because lower elevations are more insulated from winds aloft that degrade inversion conditions and dilute produced ozone. Surface air transport under inversions is dominated by light, diurnal upslope-downslope flow that limits net transport distances. Thus, different areas of the Basin are relatively isolated from each other, allowing spatial factors like elevation and proximity to sources to strongly influence ozone concentrations at individual sites.

  12. Interleukin-1β and interleukin-6 enhance thermal prolongation of the LCR in decerebrate piglets.

    PubMed

    Xia, Luxi; Bartlett, Donald; Leiter, J C

    2016-08-01

    Thermal stress and prior upper respiratory tract infection are risk factors for the Sudden Infant Death Syndrome. The adverse effects of prior infection are likely mediated by interleukin-1β (IL-1β). Therefore, we examined the single and combined effects of IL-1β and elevated body temperature on the duration of the Laryngeal Chemoreflex (LCR) in decerebrate neonatal piglets ranging in age from post-natal day (P) 3 to P7. We examined the effects of intraperitoneal (I.P.) injections of 0.3mg/Kg IL-1β with or without I.P. 10mg/Kg indomethacin pretreatment on the duration of the LCR, and in the same animals we also examined the duration of the LCR when body temperature was elevated approximately 2°C. We found that IL-1β significantly increased the duration of the LCR even when body temperature was held constant. There was a significant multiplicative effect when elevated body temperature was combined with IL-1β treatment: prolongation of the LCR was significantly greater than the sum of independent thermal and IL-1β-induced prolongations of the LCR. The effects of IL-1β, but not elevated body temperature, were blocked by pretreatment with indomethacin alone. We also tested the interaction between IL-6 given directly into the nucleus of the solitary tract (NTS) bilaterally in 100ngm microinjections of 50μL and pretreatment with indomethacin. Here again, there was a multiplicative effect of IL-6 treatment and elevated body temperature, which significantly prolonged the LCR. The effect of IL-6 on the LCR, but not elevated body temperature, was blocked by pretreatment with indomethacin. We conclude that cytokines interact with elevated body temperature, probably through direct thermal effects on TRPV1 receptors expressed pre-synaptically in the NTS and through cytokine-dependent sensitization of the TRPV1 receptor. This sensitization is likely initiated by cyclo-oxygenase-2 dependent synthesis of prostaglandin E2, which is stimulated by elevated levels of IL-1β or IL-6. Inflammatory sensitization of the LCR coupled with thermal prolongation of the LCR may increase the propensity for apnea and Sudden Infant Death Syndrome. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Interleukin-1β and interleukin-6 enhance thermal prolongation of the LCR in decerebrate piglets

    PubMed Central

    Xia, Luxi; Bartlett, Donald; Leiter, J.C.

    2017-01-01

    Thermal stress and prior upper respiratory tract infection are risk factors for the Sudden Infant Death Syndrome. The adverse effects of prior infection are likely mediated by interleukin-1β (IL-1β). Therefore, we examined the single and combined effects of IL-1β and elevated body temperature on the duration of the Laryngeal Chemoreflex (LCR) in decerebrate neonatal piglets ranging in age from post-natal day (P) 3 to P7. We examined the effects of intraperitoneal (I.P.) injections of 0.3 mg/Kg IL-1β with or without I.P. 10 mg/Kg indomethacin pretreatment on the duration of the LCR, and in the same animals we also examined the duration of the LCR when body temperature was elevated approximately 2 °C. We found that IL-1β significantly increased the duration of the LCR even when body temperature was held constant. There was a significant multiplicative effect when elevated body temperature was combined with IL-1β treatment: prolongation of the LCR was significantly greater than the sum of independent thermal and IL-1β-induced prolongations of the LCR. The effects of IL-1β, but not elevated body temperature, were blocked by pretreatment with indomethacin alone. We also tested the interaction between IL-6 given directly into the nucleus of the solitary tract (NTS) bilaterally in 100 ngm microinjections of 50 μL and pre-treatment with indomethacin. Here again, there was a multiplicative effect of IL-6 treatment and elevated body temperature, which significantly prolonged the LCR. The effect of IL-6 on the LCR, but not elevated body temperature, was blocked by pretreatment with indomethacin. We conclude that cytokines interact with elevated body temperature, probably through direct thermal effects on TRPV1 receptors expressed pre-synaptically in the NTS and through cytokine-dependent sensitization of the TRPV1 receptor. This sensitization is likely initiated by cyclo-oxygenase-2 dependent synthesis of prostaglandin E2, which is stimulated by elevated levels of IL-1β or IL-6. Inflammatory sensitization of the LCR coupled with thermal prolongation of the LCR may increase the propensity for apnea and Sudden Infant Death Syndrome. PMID:27181326

  14. Daily air temperature interpolated at high spatial resolution over a large mountainous region

    USGS Publications Warehouse

    Dodson, R.; Marks, D.

    1997-01-01

    Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.

  15. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  16. Characteristics of Extrinsic Fabry-Perot Interferometric (EFPI) Fiber-Optic Strain Gages

    NASA Technical Reports Server (NTRS)

    Hare, David A.; Moore, Thomas C., Sr.

    2000-01-01

    The focus of this paper is a comparison of the strain-measuring characteristics of one type of commercially available fiber-optic strain sensor with the performance of conventional resistance strain gages. Fabry-Perot type fiber-optic strain sensors were selected for this testing program. Comparative testing is emphasized and includes load testing at room temperature with apparent strain characterization cryogenically and at elevated temperatures. The absolute accuracy of either of these types of strain gages is not addressed.

  17. Resistance of a northwestern crayfish, Pacifastacus leniusculus (Dana), to elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, C.D.; Genoway, R.G.; Merrill, J.A.

    1975-04-01

    Pacifastacus leniusculus from two populations in Washington State, the central Columbia River and a small tributary, were acclimated at 5/sup 0/C intervals and exposed to elevated temperatures in 48 hour thermal bioassays. The upper lethal temperature for both crayfish populations increased relatively slightly, from about 28.5 to 31.5/sup 0/C, over the entire acclimation range. A rise of 1/sup 0/C in test temperature often represented the difference between zero and total mortality when lethal limits were approached. The ultimate upper lethal temperature was near 32 to 33/sup 0/C. Statistically significant differences in thermal resistance patterns (slope and spacing of regression lines)more » occurred between the two crayfish populations at all acclimation levels, but resistance in terms of eventual mortality was similar for practical purposes. Moulting individuals were particularly susceptible to high temperature stress. Mature, pre-breeding female crayfish from the Columbia River during fall appeared less resistant, and egg-bearing females during winter more resistant, than other individuals. Larger crayfish from the Columbia River were slightly less resistant to elevated temperatures than smaller ones, and females were more resistant than males. The upper temperature triangle for P. leniusculus encompasses an area of 424/sup 0/C/sup 2/. This freshwater decapod is more tolerant of elevated temperatures than native salmonids, but less tolerant than some introduced ''warmwater'' fish.« less

  18. The incidence of fever in US Critical Care Air Transport Team combat trauma patients evacuated from the theater between March 2009 and March 2010.

    PubMed

    Minnick, Joanne M; Bebarta, Vikhyat S; Stanton, Marietta; Lairet, Julio R; King, James; Torres, Pedro; Aden, James; Ramirez, Rosemarie

    2013-11-01

    Most critically ill injured patients are transported out of the theater by Critical Care Air Transport Teams (CCATTs). Fever after trauma is correlated with surgical complications and infection. The purposes of this study are to identify the incidence of elevated temperature in patients managed in the CCATT environment and to describe the complications reported and the treatments used in these patients. We performed a retrospective review of available records of trauma patients from the combat theater between March 1, 2009, and March 31, 2010, who were transported by the US Air Force CCATT and had an incidence of hyperthermia. We then divided the cohort into 2 groups, patients transported with an elevation in temperature greater than 100.4°F and patients with no documented elevation in temperature. We used a standardized, secure electronic data collection form to abstract the outcomes. Descriptive data collected included injury type, temperature, use of a mechanical ventilator, cooling treatment modalities, antipyretics, intravenous fluid administration, and use of blood products. We also evaluated the incidence of complications during the transport in patients who had a recorded elevation in temperature greater than 100.4°F. A total of 248 trauma patients met the inclusion criteria, and 101 trauma patients (40%) had fever. The mean age was 28 years, and 98% of patients were men. The mechanism of injury was an explosion in 156 patients (63%), blunt injury in 11 (4%), and penetrating injury in 45 (18%), whereas other trauma-related injuries accounted for 36 patients (15%). Of the patients, 209 (84%) had battle-related injuries and 39 (16%) had non-battle-related injuries. Traumatic brain injury was found in 24 patients (24%) with an incidence of elevated temperature. The mean temperature was 101.6°F (range, 100.5°F-103.9°F). After evaluation of therapies and treatments, 80 trauma patients (51%) were intubated on a mechanical ventilator (P < .001). Of the trauma patients with documented fever, 22 (22%) received administration of blood products. Nineteen patients received antipyretics during their flight (19%), 9 received intravenous fluids (9%), and 2 received nonpharmacologic cooling interventions, such as cooling blankets or icepacks. We identified 1 trauma patient with neurologic changes (1%), 6 with hypotension (6%), 48 with tachycardia (48%), 33 with decreased urinary output (33%), and 1 with an episode of shivering or sweating (1%). We did not detect any transfusion reactions or deaths during flight. Fever occurred in 41% of critically ill combat-injured patients evacuated out of the combat theater in Iraq and Afghanistan. Fewer than 20% of patients with a documented elevated temperature received treatments to reduce the temperature. Intubation of patients with ventilators in use during the transport was the only factor significantly associated with fever. Serious complications were rare, and there were no deaths during these transports. Copyright © 2013 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.

  19. Elevated body temperature in ischemic stroke associated with neurological improvement.

    PubMed

    Khanevski, A N; Naess, H; Thomassen, L; Waje-Andreassen, U; Nacu, A; Kvistad, C E

    2017-11-01

    Some studies suggest that high body temperature within the first few hours of ischemic stroke onset is associated with improved outcome. We hypothesized an association between high body temperature on admission and detectable improvement within 6-9 hours of stroke onset. Consecutive ischemic stroke patients with NIHSS scores obtained within 3 hours and in the interval 6-9 hours after stroke onset were included. Body temperature was measured on admission. A total of 315 patients with ischemic stroke were included. Median NIHSS score on admission was 6. Linear regression showed that NIHSS score 6-9 hours after stroke onset was inversely associated with body temperature on admission after adjusting for confounders including NIHSS score <3 hours after stroke onset (P<.001). The same result was found in patients with proximal middle cerebral occlusion on admission. We found an inverse association between admission body temperature and neurological improvement within few hours after admission. This finding may be limited to patients with documented proximal middle cerebral artery occlusion on admission and suggests a beneficial effect of higher body temperature on clot lysis within the first three hours. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Aspect has a greater impact on alpine soil bacterial community structure than elevation.

    PubMed

    Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin

    2017-03-01

    Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Effect of high altitude on blood glucose meter performance.

    PubMed

    Fink, Kenneth S; Christensen, Dale B; Ellsworth, Allan

    2002-01-01

    Participation in high-altitude wilderness activities may expose persons to extreme environmental conditions, and for those with diabetes mellitus, euglycemia is important to ensure safe travel. We conducted a field assessment of the precision and accuracy of seven commonly used blood glucose meters while mountaineering on Mount Rainier, located in Washington State (elevation 14,410 ft). At various elevations each climber-subject used the randomly assigned device to measure the glucose level of capillary blood and three different concentrations of standardized control solutions, and a venous sample was also collected for later glucose analysis. Ordinary least squares regression was used to assess the effect of elevation and of other environmental potential covariates on the precision and accuracy of blood glucose meters. Elevation affects glucometer precision (p = 0.08), but becomes less significant (p = 0.21) when adjusted for temperature and relative humidity. The overall effect of elevation was to underestimate glucose levels by approximately 1-2% (unadjusted) for each 1,000 ft gain in elevation. Blood glucose meter accuracy was affected by elevation (p = 0.03), temperature (p < 0.01), and relative humidity (p = 0.04) after adjustment for the other variables. The interaction between elevation and relative humidity had a meaningful but not statistically significant effect on accuracy (p = 0.07). Thus, elevation, temperature, and relative humidity affect blood glucose meter performance, and elevated glucose levels are more greatly underestimated at higher elevations. Further research will help to identify which blood glucose meters are best suited for specific environments.

  2. High-temperature fiber-optic lever microphone

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.; Nguyen, Trung D.; Rizzi, Stephen A.; Clevenson, Sherman A.

    1995-01-01

    The design and construction of a fiber-optic lever microphone, capable of operating continuously at temperatures up to 538 C (1000 F) are described. The design is based on the theoretical sensitivities of each of the microphone system components, namely, a cartridge containing a stretched membrane, an optical fiber probe, and an optoelectronic amplifier. Laboratory calibrations include the pistonphone sensitivity and harmonic distortion at ambient temperature, and frequency response, background noise, and optical power transmission at both ambient and elevated temperatures. A field test in the Thermal Acoustic Fatigue Apparatus at Langley Research Center, in which the microphone was subjected to overall sound-pressure levels in the range of 130-160 dB and at temperatures from ambient to 538 C, revealed good agreement with a standard probe microphone.

  3. Tungsten-nickel-cobalt alloy and method of producing same

    DOEpatents

    Dickinson, James M.; Riley, Robert E.

    1977-03-15

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing said tungsten-nickel-cobalt alloy is further described and comprises (a) coating the tungsten particles with a nickel-cobalt alloy, (b) pressing the coated particles into a compact shape, (c) heating said compact in hydrogen to a temperature in the range of 1400.degree. C and holding at this elevated temperature for a period of about 2 hours, (d) increasing this elevated temperature to about 1500.degree. C and holding for 1 hour at this temperature, (e) cooling to about 1200.degree. C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1/2 hour, and (f) cooling the resulting alloy to room temperature in this argon atmosphere.

  4. Study on cord/rubber interface at elevated temperatures by H-pull test method

    NASA Astrophysics Data System (ADS)

    Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S.

    2005-08-01

    Cords are used as reinforcing materials in rubber compounds. To increase cord/rubber interfacial adhesion, they are coated by an adhesive (usually based on resorcinol-formaldehyde-latex). These composites are used in many sectors such as tire and belt industries. Cord/rubber adhesion strength is an important aspect to determine the durability of system. Due to temperature increase during running tires, the adhesion energy becomes different from initial one. To study cord/rubber interface at elevated temperatures, H-adhesion test method was used. H-pull test is a simple method for adhesion evaluation at ambient temperature, so it is usually used for material quality control. In this research, cord/rubber systems were vulcanized at different temperatures and H-adhesion of samples were evaluated at elevated temperatures. Also cord/rubber interface was studied by ATR analyze to determine interfacial interactions kind.

  5. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-12-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  6. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.

  7. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  8. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity

    PubMed Central

    Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun

    2016-01-01

    To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems. PMID:27098761

  9. Computational modeling of temperature elevation and thermoregulatory response in the brains of anesthetized rats locally exposed at 1.5 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Masuda, Hiroshi; Kanai, Yuya; Asai, Ryuichi; Fujiwara, Osamu; Arima, Takuji; Kawai, Hiroki; Watanabe, Soichi; Lagroye, Isabelle; Veyret, Bernard

    2011-12-01

    The dominant effect of human exposures to microwaves is caused by temperature elevation ('thermal effect'). In the safety guidelines/standards, the specific absorption rate averaged over a specific volume is used as a metric for human protection from localized exposure. Further investigation on the use of this metric is required, especially in terms of thermophysiology. The World Health Organization (2006 RF research agenda) has given high priority to research into the extent and consequences of microwave-induced temperature elevation in children. In this study, an electromagnetic-thermal computational code was developed to model electromagnetic power absorption and resulting temperature elevation leading to changes in active blood flow in response to localized 1.457 GHz exposure in rat heads. Both juvenile (4 week old) and young adult (8 week old) rats were considered. The computational code was validated against measurements for 4 and 8 week old rats. Our computational results suggest that the blood flow rate depends on both brain and core temperature elevations. No significant difference was observed between thermophysiological responses in 4 and 8 week old rats under these exposure conditions. The computational model developed herein is thus applicable to set exposure conditions for rats in laboratory investigations, as well as in planning treatment protocols in the thermal therapy.

  10. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun

    2016-04-01

    To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems.

  11. Development of rabbit embryos during a 96-h period of in vitro culture after superovulatory treatment under conditions of elevated ambient temperature.

    PubMed

    Cheng, H; Dooley, M P; Hopkins, S M; Anderson, L L; Yibchok-anun, S; Hsu, W H

    1999-08-16

    The effects of elevated ambient temperature on the response to exogenous gonadotropins were evaluated in female New Zealand White rabbits exposed to 33+/-1 degrees C (mean +/- SE) and 10-30% relative humidity (8 h/day) during a 5-day period. Does were treated with pFSH (0.3 mg/0.3 ml Standard Armour) twice daily during three consecutive days with a minimum interval of 8 h between injections. Six hours after the last FSH injection all does were removed from the experimental chamber, given hCG (25 IU/kg) and paired overnight. Nineteen hours after pairing, embryos were flushed from the reproductive tracts, evaluated, and subjected to in vitro culture during a 96-h period. The ovulatory responses to exogenous gonadotropins and fertilization rates did not differ significantly under conditions of elevated ambient temperature, whereas fewer blastocysts and increased number of degenerate embryos were observed after culture. We conclude that although hyperthermia was induced during exposure to elevated ambient temperature, it did not alter the ovulatory responses to gonadotropin treatment and plasma concentrations of FSH and LH compared with does in a thermoneutral environment. Exposure of donor rabbits to elevated ambient temperature before mating, however, increased embryonic degeneration.

  12. Thermoelectric properties by high temperature annealing

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Kumar, Shankar (Inventor); Ren, Zhifeng (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  13. Examination of elevation dependency in observed and projected temperature change in the Upper Indus Basin and Western Himalaya

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Forsythe, N. D.; Blenkinsop, S.; Archer, D.; Hardy, A.; Janes, T.; Jones, R. G.; Holderness, T.

    2013-12-01

    We present results of two distinct, complementary analyses to assess evidence of elevation dependency in temperature change in the UIB (Karakoram, Eastern Hindu Kush) and wider WH. The first analysis component examines historical remotely-sensed land surface temperature (LST) from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA satellite platforms since the mid-1980s through present day. The high spatial resolution (<4km) from AVHRR instrument enables precise consideration of the relationship between estimated LST and surface topography. The LST data product was developed as part of initiative to produce continuous time-series for key remotely sensed spatial products (LST, snow covered area, cloud cover, NDVI) extending as far back into the historical record as feasible. Context for the AVHRR LST data product is provided by results of bias assessment and validation procedures against both available local observations, both manned and automatic weather stations. Local observations provide meaningful validation and bias assessment of the vertical gradients found in the AVHRR LST as the elevation range from the lowest manned meteorological station (at 1460m asl) to the highest automatic weather station (4733m asl) covers much of the key range yielding runoff from seasonal snowmelt. Furthermore the common available record period of these stations (1995 to 2007) enables assessment not only of the AVHRR LST but also performance comparisons with the more recent MODIS LST data product. A range of spatial aggregations (from minor tributary catchments to primary basin headwaters) is performed to assess regional homogeneity and identify potential latitudinal or longitudinal gradients in elevation dependency. The second analysis component investigates elevation dependency, including its uncertainty, in projected temperature change trajectories in the downscaling of a seventeen member Global Climate Model (GCM) perturbed physics ensemble (PPE) of transient (130-year) simulations using a moderate resolution (25km) regional climate model (RCM). The GCM ensemble is the17-member QUMP (Quantifying Uncertainty in Model Projections) ensemble and the downscaling is done using HadRM3P, part of the PRECIS regional climate modelling system. Both the RCM and GCMs are models developed the UK Met Office Hadley Centre and are based on the HadCM3 GCM. Use of the multi-member PPE enables quantification of uncertainty in projected temperature change while the spatial resolution of RCM improves insight into the role of elevation in projected rates of change. Furthermore comparison with the results of the remote sensing analysis component - considered to provide an 'observed climatology' - permits evaluation of individual ensemble members with regards to biases in spatial gradients in temperature as well timing and magnitude of annual cycles.

  14. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  15. Assessing trait-based scaling theory in tropical and temperate forests spanning a broad temperature gradients

    NASA Astrophysics Data System (ADS)

    Enquist, B. J.

    2017-12-01

    Tropical and temperate elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based metabolic scaling theory including whether observed shifts in forest traits across a broad tropical temperature gradient is consistent with local phenotypic optima and adaptive compensation for temperature. We tested a new anaytical theory - Trait Driver Theory - that is capable of scaling from traits to entire stands and ecosystems across several elevation gradients spanning 3300m. Each gradient consists of thousands of tropical and temperate tree trait measures taken from forest plots. In several of these plots, in particular in southern Perú, gross and net primary productivity (GPP and NPP) were measured. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within forests with simultaneous measures of ecosystem net and gross primary productivity. Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependency appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. The observed shift in traits of trees that dominant more cold environments appear to reflect `adaptive/acclimatory' compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance due to warming from climate change. Trait-based metabolic scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of temperate and tropical forests.

  16. Microstructural effects on the deformation and fracture of the alloy Ti-25Al-10Nb-3B-1Mo. Final report, 1 July 1988-15 December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.H.

    1992-12-01

    The effects of microstructure and temperature on tensile and fracture behavior were explored for the titanium aluminide alloy Ti-25Al-lONb-3V-lMo (atomic percent). Three microstructures were selected for this study in an attempt to determine the role of the individual microstructural constituents. the three microstructures studied were an alpha-2 + beta processed microstructure with a fine Widmanstaetten microstructure, a beta processed microstructure with a fine Widmanstaetten microstructure, and a beta processed microstructure with a coarse Widmanstaetten microstructure. Tensile testing of both round and flat specimens was conducted in vacuum at elevated temperature and in air at room and elevated temperatures. Extensive fractographymore » and specimen sectioning were used to study tensile deformation and the effects of environment on this alloy. Room temperature fracture toughness testing using compact tension specimens was conducted. Elevated temperature toughness testing was performed using J-bend bar specimens in an air environment. Again, extensive fractography and specimen sectioning were used to study the elevated temperature toughening mechanisms of this alloy.... Titanium, Titanium aluminide, Intermetallic, Fracture toughness, Tensile behavior, Fractography environmental interaction.« less

  17. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    PubMed

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  18. Effects of Cultivar and Maternal Environment on Seed Quality in Vicia sativa

    PubMed Central

    Li, Rong; Chen, Lijun; Wu, Yanpei; Zhang, Rui; Baskin, Carol C.; Baskin, Jerry M.; Hu, Xiaowen

    2017-01-01

    Production of high quality seeds is of fundamental importance for successful crop production. However, knowledge of the effects of increased temperature resulting from global warming on seed quality of alpine species is limited. We investigated the effect of maternal environment on seed quality of three cultivars of the leguminous forage species Vicia sativa, giving particular attention to temperature. Plants of each cultivar were grown at 1700 and 3000 m a.s.l., and mass, germination, electrical conductivity (EC) of leakage and longevity were determined for mature seeds. Seeds of all three cultivars produced at the low elevation had a significantly lower mass and longevity but higher EC of leachate than those produced at the high elevation, suggesting that increased temperatures decreased seed quality. However, seed viability did not differ between elevations. The effects of maternal environment on seed germination strongly depended on cultivar and germination temperature. At 10 and 15°C, seeds of “Lanjian 3” produced at high elevation germinated to higher percentages and rates than those produced at low elevation, but the opposite trend was observed at 20°C. However, for seeds of “Lanjian 1” and “Lanjian 2,” no significant effect of elevation was observed in germination percentage. Our results indicate that the best environment for the production of high quality seeds (e.g., high seed mass, low EC, high seed longevity) of V. sativa is one in which temperatures are relatively low during seed development. PMID:28861096

  19. Cold air drainage flows subsidize montane valley ecosystem productivity

    Treesearch

    Kimberly A. Novick; Andrew C. Oishi; Chelcy Ford Miniat

    2016-01-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate...

  20. Oxygenation-Enhanced Radiation Therapy of Breast Tumors

    DTIC Science & Technology

    2011-11-01

    development of stabilized perfluorocarbon emulsions as oxygen carriers, their characterization, and response to external triggers, including...elevated temperature, reduced pressure, and dwell time. Targeted oxygenation, perfluorocarbon emulsions, breast cancer 29 The University of Utah Salt...investigation of the proposed novel strategy of radio sensitization of hypoxic breast tumors by targeted oxygen release from perfluorocarbon oxygen

  1. Integrated research in constitutive modelling at elevated temperatures, part 2

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.; Allen, D. H.

    1986-01-01

    Four current viscoplastic models are compared experimentally with Inconel 718 at 1100 F. A series of tests were performed to create a sufficient data base from which to evaluate material constants. The models used include Bodner's anisotropic model; Krieg, Swearengen, and Rhode's model; Schmidt and Miller's model; and Walker's exponential model.

  2. New optical and radio frequency angular tropospheric refraction models for deep space applications

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1976-01-01

    The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.

  3. A Study on Temperature and Precipitation Variability in Pre-monsoon Period of 2016 in the Dudh Khola River Valley, Manang, Nepal

    NASA Astrophysics Data System (ADS)

    Kayastha, R.; Kayastha, R. B.; Chand, M. B.; Armstrong, R. L.

    2016-12-01

    Meteorological data are the key parameter for deeper and better understanding the local to regional climate variability. Temperature and precipitation are highly dependent on elevation and it is foremost important in water resource management. The runoff from glacierized catchments is greatly influenced by the variation in temperature and precipitation. However, inaccessibility limits the hydro-meteorological data observation in high altitudes. In this study, temperature and precipitation data are observed and analyzed from six stations including two weather stations in different elevation ranging from 1926 to 3908 m a.s.l. in the Dudh Khola River basin, a sub basin of Marsyangdi River basin from March to June 2016 (pre-monsoon period). Clear spatial and temporal variability of temperature lapse rate (TLR) is observed which is related to the extent of humid air. The hourly mean TLR shows highly heterogeneous between the different elevations from - 0.72 o C, -0.51 o C, -0.77 o C, -0.68 to +0.42 o C per 100 m and the hourly linear regression of TLR is - 0.54 o C per 100 m. Similarly, vertical precipitation gradients (PG) between Dharapani & Goa, Goa & Yak Kharka, and Yak Kharka & glacier station are 0.040, 0.037 and 0.032 per meter respectively. Horizontal precipitation gradient from lower station to the higher station in a distance of 16 km is 0.0015 mm per meter. The TLR from the recorded period are less than the environmental lapse rate in the Dudh Khola Valley in pre-monsoon season. From this study it can be concluded that hourly and daily lapse rates and PGs can be used to improve the output of the glacio-hydrological and energy balance modelling in glacierized river basin.

  4. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.

    PubMed

    Bilyk, Kevin T; Cheng, C-H Christina

    2014-12-01

    Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Developmental Effects of Ocean Acidification Conditions and Elevated Temperature on Homarus Americanus Larvae

    NASA Astrophysics Data System (ADS)

    Mcveigh, H.; Waller, J. D.

    2016-02-01

    The Gulf of Maine is experiencing a rapid warming in sea surface temperature and a marked decrease in pH. This study aimed to quantify the impact of elevated temperature and acidification on the larval development of the iconic American lobster (Homarus americanus). Experimental conditions were reflective of current and IPCC predicted levels of temperature and pCO2 to be reached by the end of the century. Larvae were measured for growth (carapace length), development time, and survivorship over the larval duration. Treatments of elevated temperatures experienced decreased development time across the larval stages of H. americanus. Consequently mortality increased at a significantly higher rate under elevated temperature. An increase in larval mortality may decrease recruitment to the commercial fishery, thus impacting the most valuable single species in the state of Maine. Furthermore, experimental pCO2 treatments yielded a significantly decreased development time between larval stages II and III, yet did not have a significant impact on carapace length or mortality. This study indicates that warmer temperatures may have a greater influence than decreased pH on larval development and survival. Determining how this species may respond to changing climactic conditions will better inform the sustainability efforts of such a critical marine fishery.

  6. Estimation of Axial Fretting Fatigue Life at Elevated Temperatures Using Critical Distance Theory

    NASA Astrophysics Data System (ADS)

    Majzoobi, G. H.; Azhdarzadeh, P.

    Fretting fatigue life is traditionally estimated by experiment. The objective of this work is to introduce a special approach for estimation of axial fretting fatigue life at elevated temperatures from plain fatigue test based on the critical distance theory. The method uses Fatemi-Socie parameter as a multiaxial criterion to compute the stress multiaxiality on focus path. This method considers only elastic behavior for materials, and two characteristic diagrams are obtained from plain fatigue tests on two U-shaped and V-shaped notched specimens. The results showed reasonable agreement between the predictions by the proposed method and the experiments for ambient temperature. For elevated temperatures, the results indicated that the predicted fretting fatigue life was considerably overestimated in the low cycle fatigue (LCF) regime and underestimated in the high cycle fatigue (HCF) region with respect to experimental measurements. The reason for such discrepancy is believed to be due to the complex behavior of AL 7075-T6, which exhibits at elevated temperatures because of the problems such as aging, oxidation and reduction of strength.

  7. Protection of 310l Stainless Steel from Wear at Elevated Temperatures using Conicraly Thermal Spray Coatings with and without Sic Addition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhang, Tao; Li, Kaiyang; Li, Dongyang

    2017-10-01

    Due to its high oxidation resistance, 310L stainless steel is often used for thermal facilities working at high-temperatures. However, the steel may fail prematurely at elevated temperatures when encounter surface mechanical attacks such as wear. Thermal spray coatings have been demonstrated to be effective in protecting the steel from wear at elevated temperatures. In this study, we investigated the effectiveness of high velocity oxy-fuel(HVOF) spraying CoNiCrAlY/SiC coatings in resisting wear of 310L stainless steel at elevated temperature using a pin-on-disc wear tester. In order to further improve the performance of the coating, 5%SiC was added to the coating. It was demonstrated that the CoNiCrAlY/SiC coating after heat treatment markedly suppressed wear. However, the added SiC particles did not show benefits to the wear resistance of the coating. Microstructures of CoNiCrAlY coatings with and without the SiC addition were characterized in order to understand the mechanism responsible for the observed phenomena.

  8. Ecological complexity buffers the impacts of future climate on marine consumers

    NASA Astrophysics Data System (ADS)

    Goldenberg, Silvan U.; Nagelkerken, Ivan; Marangon, Emma; Bonnet, Angélique; Ferreira, Camilo M.; Connell, Sean D.

    2018-03-01

    Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities1-3. Yet, our understanding of the ecological imprint of ocean acidification (elevated CO2) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems4,5. By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO2. While individual behaviours were impaired by elevated CO2, consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities.

  9. Climate change (elevated CO₂, elevated temperature and moderate drought) triggers the antioxidant enzymes' response of grapevine cv. Tempranillo, avoiding oxidative damage.

    PubMed

    Salazar-Parra, Carolina; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Irigoyen, Juan José; Morales, Fermín

    2012-02-01

    Photosynthetic carbon fixation (A(N) ) and photosynthetic electron transport rate (ETR) are affected by different environmental stress factors, such as those associated with climate change. Under stress conditions, it can be generated an electron excess that cannot be consumed, which can react with O₂, producing reactive oxygen species. This work was aimed to evaluate the influence of climate change (elevated CO₂, elevated temperature and moderate drought) on the antioxidant status of grapevine (Vitis vinifera) cv. Tempranillo leaves, from veraison to ripeness. The lowest ratios between electrons generated (ETR) and consumed (A(N) + respiration + photorespiration) were observed in plants treated with elevated CO₂ and elevated temperature. In partially irrigated plants under current ambient conditions, electrons not consumed seemed to be diverted to alternative ways. Oxidative damage to chlorophylls and carotenoids was not observed. However, these plants had increases in thiobarbituric acid reacting substances, an indication of lipid peroxidation. These increases matched well with an early rise of H₂O₂ and antioxidant enzyme activities, superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6). Enzymatic activities were maintained high until ripeness. In conclusion, plants grown under current ambient conditions and moderate drought were less efficient to cope with oxidative damage than well-irrigated plants, and more interestingly, plants grown under moderate drought but treated with elevated CO₂ and elevated temperature were not affected by oxidative damage, mainly because of higher rates of electrons consumed in photosynthetic carbon fixation. Copyright © Physiologia Plantarum 2011.

  10. Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Yaney, D. L.; Nix, W. D.

    1988-01-01

    A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.

  11. Development of powder metallurgy Al alloys for high temperature aircraft structural applications, phase 2

    NASA Technical Reports Server (NTRS)

    Chellman, D. J.

    1982-01-01

    In this continuing study, the development of mechanically alloyed heat resistant aluminum alloys for aircraft were studied to develop higher strength targets and higher service temperatures. The use of higher alloy additions to MA Al-Fe-Co alloys, employment of prealloyed starting materials, and higher extrusion temperatures were investigated. While the MA Al-Fe-Co alloys exhibited good retention of strength and ductility properties at elevated temperatures and excellent stability of properties after 1000 hour exposure at elevated temperatures, a sensitivity of this system to low extrusion strain rates adversely affected the level of strength achieved. MA alloys in the Al-Li family showed excellent notched toughness and property stability after long time exposures at elevated temperatures. A loss of Li during processing and the higher extrusion temperature 482 K (900 F) resulted in low mechanical strengths. Subsequent hot and cold working of the MA Al-Li had only a mild influence on properties.

  12. Buffer strips in composites at elevated temperature

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1983-01-01

    The composite material 'buffer strip' concept is presently investigated at elevated temperatures for the case of graphite/polyimide buffer strip panels using a (45/0/45/90)2S layup, where the buffer strip material was 0-deg S-glass/polyimide. Each panel was loaded in tension until it failed, and radiographs and crack opening displacements were recorded during the tests to determine fracture onset, fracture arrest, and the extent of damage in the buffer strip after crack arrest. At 177 + or - 3 C, the buffer strips increased the panel strength by at least 40 percent in comparison with panels without buffer strips. Compared to similar panels tested at room temperature, those tested at elevated temperature had lower residual strengths, but higher failure strains.

  13. Fission Product Sorptivity in Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodatemore » the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one graduate student meant that data acquisition with the packed bed systems ended up competing for the graduate student’s available time with the electrodynamic balance redesign and assembly portions of the project. This competition for available time was eventually mitigated to some extent by the later recruitment of an undergraduate student to help with data collection using the packed bed system. It was only the recruitment of the second student that allowed the single particle balance design and construction efforts to proceed as far as they did during the project period. It should be added that some significant time was also spent by the graduate student cataloging previous work involving graphite. This eventually resulted in a review paper being submitted and accepted (“Adsorption of Iodine on Graphite in High Temperature Gas-Cooled Reactor Systems: A Review,” Kyle L. Walton, Tushar K. Ghosh, Dabir S. Viswanath, Sudarshan K. Loyalka, Robert V. Tompson). Our specific revised objectives in this project were as follows: Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using an EDB and a temperature controlled EDB; Experimentally obtain isotherms of Iodine for reactor grade IG-110 samples of graphite particles over a range of temperatures and pressures using a packed column bed apparatus; Explore the effect that charge has on the adsorption isotherms of iodine by varying the charges on and the voltages used to suspend the microscopic particles in the EDB; and To interpret these results in terms of the existing models (Langmuir, BET, Freundlich, and others) which we will modify as necessary to include charge related effects.« less

  14. Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2

    PubMed Central

    2012-01-01

    Introduction Ongoing ocean warming and acidification increasingly affect marine ecosystems, in particular around the Antarctic Peninsula. Yet little is known about the capability of Antarctic notothenioid fish to cope with rising temperature in acidifying seawater. While the whole animal level is expected to be more sensitive towards hypercapnia and temperature, the basis of thermal tolerance is set at the cellular level, with a putative key role for mitochondria. This study therefore investigates the physiological responses of the Antarctic Notothenia rossii after long-term acclimation to increased temperatures (7°C) and elevated PCO2 (0.2 kPa CO2) at different levels of physiological organisation. Results For an integrated picture, we analysed the acclimation capacities of N. rossii by measuring routine metabolic rate (RMR), mitochondrial capacities (state III respiration) as well as intra- and extracellular acid–base status during acute thermal challenges and after long-term acclimation to changing temperature and hypercapnia. RMR was partially compensated during warm- acclimation (decreased below the rate observed after acute warming), while elevated PCO2 had no effect on cold or warm acclimated RMR. Mitochondrial state III respiration was unaffected by temperature acclimation but depressed in cold and warm hypercapnia-acclimated fish. In both cold- and warm-exposed N. rossii, hypercapnia acclimation resulted in a shift of extracellular pH (pHe) towards more alkaline values. A similar overcompensation was visible in muscle intracellular pH (pHi). pHi in liver displayed a slight acidosis after warm normo- or hypercapnia acclimation, nevertheless, long-term exposure to higher PCO2 was compensated for by intracellular bicarbonate accumulation. Conclusion The partial warm compensation in whole animal metabolic rate indicates beginning limitations in tissue oxygen supply after warm-acclimation of N. rossii. Compensatory mechanisms of the reduced mitochondrial capacities under chronic hypercapnia may include a new metabolic equilibrium to meet the elevated energy demand for acid–base regulation. New set points of acid–base regulation under hypercapnia, visible at the systemic and intracellular level, indicate that N. rossii can at least in part acclimate to ocean warming and acidification. It remains open whether the reduced capacities of mitochondrial energy metabolism are adaptive or would impair population fitness over longer timescales under chronically elevated temperature and PCO2. PMID:23075125

  15. Method and apparatus for producing pyrolysis oil having improved stability

    DOEpatents

    Baird, Lance A.; Brandvold, Timothy A.; Muller, Stefan

    2016-12-27

    Methods and apparatus to improve hot gas filtration to reduce the liquid fuel loss caused by prolonged residence time at high temperatures are described. The improvement can be obtained by reducing the residence time at elevated temperature by reducing the temperature of the pyrolysis vapor, by reducing the volume of the pyrolysis vapor at the elevated temperature, by increasing the volumetric flow rate at constant volume of the pyrolysis vapor, or by doing a combination of these.

  16. Influence of growth temperature on the amounts of tocopherols, tocotrienols, and gamma-oryzanol in brown rice.

    PubMed

    Britz, Steven J; Prasad, P V V; Moreau, Robert A; Allen, L Hartwell; Kremer, Diane F; Boote, Kenneth J

    2007-09-05

    Brown rice is a valuable source of lipid-soluble antioxidants including ferulated phytosterols (i.e., gamma-oryzanol), tocopherols, and tocotrienols. To evaluate the impact of temperature on the accumulation of these compounds, seeds from six different rice lines grown to maturity in replicate greenhouses in Gainesville, FL, were analyzed. The lines represented Oryza sativa indica, O. sativa japonica, and Oryza glaberrima of different origins. Temperatures were maintained near ambient at one end of each greenhouse and at approximately 4.5 degrees C above ambient at the other end. gamma-Oryzanols, tocopherols, and tocotrienols were extracted from whole seed (i.e., brown rice) and analyzed by HPLC. Tocotrienols and tocopherols varied widely between lines but changed only slightly with respect to temperature. In general, the proportions of alpha-tocotrienol and/or alpha-tocopherol increased at elevated temperature, whereas gamma-tocopherol and gamma-tocotrienol decreased. Six gamma-oryzanol peaks, identified on the basis of absorbance maxima at 330 nm and HPLC-mass spectrometry, were quantified. The most abundant component was 24-methylenecycloartanyl ferulate, present at 40-62% of total. Its levels increased 35-57% at elevated temperature in five of six lines, accounting for most of the change in total gamma-oryzanol. The results suggest that the physiological action of individual ferulated phytosterols should be investigated because their relative proportions in gamma-oryzanol can change.

  17. Dynamic Fracture Initiation Toughness at Elevated Temperatures With Application to the New Generation of Titanium Aluminide Alloys. Chapter 8

    NASA Technical Reports Server (NTRS)

    Shazly, Mostafa; Prakash, Vikas; Draper, Susan; Shukla, Arun (Editor)

    2006-01-01

    Recently, a new generation of titanium aluminide alloy, named Gamma-Met PX, has been developed with better rolling and post-rolling characteristics. I'revious work on this alloy has shown the material to have higher strengths at room and elevated temperatures when compared with other gamma titanium aluminides. In particular, this new alloy has shown increased ductility at elevated temperatures under both quasi-static and high strain rate uniaxial compressive loading. However, its high strain rate tensile ductility at room and elevated temperatures is limited to approx. 1%. In the present chapter, results of a study to investigate the effects of loading rate and test temperature on the dynamic fracture initiation toughness in Gamma-Met PX are presented. Modified split Hopkinson pressure bar was used along with high-speed photography to determine the crack initiation time. Three-point bend dynamic fracture experiments were conducted at impact speeds of approx. 1 m/s and tests temperatures of up-to 1200 C. The results show that thc dynamic fracture initiation toughness decreases with increasing test temperatures beyond 600 C. Furthermore, thc effect of long time high temperature air exposure on the fracture toughness was investigated. The dynamic fracture initiation toughness was found to decrease with increasing exposure time. The reasons behind this drop are analyzed and discussed.

  18. Accelerated warming at high elevations: a review of the current evidence and proposals for future research (Invited)

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.

    2013-12-01

    Arctic amplification, whereby enhanced warming is evident at high latitudes, is well accepted amongst the scientific community. Increased warming at high elevations is more controversial and is often given the more vague term 'elevational dependency'. The way in which different approaches (mountain surface data, radiosondes, satellite data and models) often yield different results is discussed, along with the differences between these approaches. Analyses of surface data differ in the stations chosen for comparison, the time period, elevational range, and methods of trend identification. An analysis of global datasets using over a thousand stations (GHCN, CRU) and defining change by the most common method of calculating the linear gradient of a best fit line (linear regression) shows no simple relationship between warming rate and elevation. There are however feedback mechanisms in the mountain environment (e.g. cryospheric change, water vapor and treelines) which, although they may enhance warming at certain elevations, are fairly poorly understood. Warming rates are also shown to be influenced by factors in the mountain environment other than elevation, including topography (aspect, slope, topographic exposure) as well as mean annual temperature, but the relative influences of such controls have yet to be disentangled from those that show a more simple elevationally-dependent signal. Mountain summits and exposed ridge sites are shown to show least variability in warming rates, rising up above a sea of noise. Radiosondes and satellite data are further removed from changes on the ground (surface temperatures) and studies using such data tend to be rather divorced from the mountain environment and need calibration/comparison with surface datasets. Reanalyses such as NCEP/NCAR and ERA, although having good spatial coverage, tend to suffer from the same problems. Following a discussion of differences between all these approaches, a plan to develop an integrated global approach to this issue will be discussed.

  19. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes

    PubMed Central

    Salzer, Matthew W.; Hughes, Malcolm K.; Bunn, Andrew G.; Kipfmueller, Kurt F.

    2009-01-01

    Great Basin bristlecone pine (Pinus longaeva) at 3 sites in western North America near the upper elevation limit of tree growth showed ring growth in the second half of the 20th century that was greater than during any other 50-year period in the last 3,700 years. The accelerated growth is suggestive of an environmental change unprecedented in millennia. The high growth is not overestimated because of standardization techniques, and it is unlikely that it is a result of a change in tree growth form or that it is predominantly caused by CO2 fertilization. The growth surge has occurred only in a limited elevational band within ≈150 m of upper treeline, regardless of treeline elevation. Both an independent proxy record of temperature and high-elevation meteorological temperature data are positively and significantly correlated with upper-treeline ring width both before and during the high-growth interval. Increasing temperature at high elevations is likely a prominent factor in the modern unprecedented level of growth for Pinus longaeva at these sites. PMID:19918054

  20. Analytical simulation of weld effects in creep range

    NASA Technical Reports Server (NTRS)

    Dhalla, A. K.

    1985-01-01

    The inelastic analysis procedure used to investigate the effect of welding on the creep rupture strength of a typical Liquid Metal Fast Breeder Reactor (LMFBR) nozzle is discussed. The current study is part of an overall experimental and analytical investigation to verify the inelastic analysis procedure now being used to design LMFBR structural components operating at elevated temperatures. Two important weld effects included in the numerical analysis are: (1) the residual stress introduced in the fabrication process; and (2) the time-independent and the time-dependent material property variations. Finite element inelastic analysis was performed on a CRAY-1S computer using the ABAQUS program with the constitutive equations developed for the design of LMFBR structural components. The predicted peak weld residual stresses relax by as much as 40% during elevated temperature operation, and their effect on creep-rupture cracking of the nozzle is considered of secondary importance.

  1. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field

    PubMed Central

    Locke, Anna M.; Sack, Lawren; Bernacchi, Carl J.; Ort, Donald R.

    2013-01-01

    Background and Aims Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Methods Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. Key results In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Conclusions Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change. PMID:23864003

  2. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis

    PubMed Central

    Zhou, Rong; Wang, Qian; Jiang, Fangling; Cao, Xue; Sun, Mintao; Liu, Min; Wu, Zhen

    2016-01-01

    MicroRNAs (miRNAs) are 19–24 nucleotide (nt) noncoding RNAs that play important roles in abiotic stress responses in plants. High temperatures have been the subject of considerable attention due to their negative effects on plant growth and development. Heat-responsive miRNAs have been identified in some plants. However, there have been no reports on the global identification of miRNAs and their targets in tomato at high temperatures, especially at different elevated temperatures. Here, three small-RNA libraries and three degradome libraries were constructed from the leaves of the heat-tolerant tomato at normal, moderately and acutely elevated temperatures (26/18 °C, 33/33 °C and 40/40 °C, respectively). Following high-throughput sequencing, 662 conserved and 97 novel miRNAs were identified in total with 469 conserved and 91 novel miRNAs shared in the three small-RNA libraries. Of these miRNAs, 96 and 150 miRNAs were responsive to the moderately and acutely elevated temperature, respectively. Following degradome sequencing, 349 sequences were identified as targets of 138 conserved miRNAs, and 13 sequences were identified as targets of eight novel miRNAs. The expression levels of seven miRNAs and six target genes obtained by quantitative real-time PCR (qRT-PCR) were largely consistent with the sequencing results. This study enriches the number of heat-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in tomatoes at elevated temperatures. PMID:27653374

  3. Altitude test of several afterburner configurations on a turbofan engine with a hydrogen heater to simulate an elevated turbine discharge temperature

    NASA Technical Reports Server (NTRS)

    Johnsen, R. L.; Cullom, R. R.

    1977-01-01

    A performance test of several experimental afterburner configurations was conducted with a mixed-flow turbofan engine in an altitude facility. The simulated flight conditions were for Mach 1.4 at two altitudes, 12,190 and 14,630 meters. Turbine discharge temperatures of 889 and 1056 K were used. A production afterburner was tested for comparison. The research afterburners included partial forced mixers with V-gutter flameholders, a carburetted V-gutter flameholder, and a triple ring V-gutter flameholder with four swirl-can fuel mixers. Fuel injection variations were included. Performance data shown include augmented thrust ratio, thrust specific fuel consumption, combustion efficiency, and total pressure drop across the afterburner.

  4. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  5. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    NASA Astrophysics Data System (ADS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-08-01

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  6. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  7. Mediating water temperature increases due to livestock and global change in high elevation meadow streams of the Golden Trout Wilderness

    Treesearch

    Sebastien Nussle; Kathleen R. Matthews; Stephanie M. Carlson

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout...

  8. Stream Temperature Climate in a Set of Southern Appalachian Streams

    Treesearch

    Lloyd W. Swift; Patsy P. Clinton

    1997-01-01

    Water temperature patterns are described for five streams on forested watersheds in western North Carolina as part of stream monitoring in the Wine Spring Ecosystem Management Area. Elevation ranged from 918 m at Nantahaia Lake to 1660 m at Wine Spring Bald with, four temperature measurement sites Itied between 1145 m and 1200 m elevation, and one site at 925 m. Summer...

  9. Fatigue behavior of AAR Class A railroad wheel steel at ambient and elevated temperatures.

    DOT National Transportation Integrated Search

    2006-12-01

    This report documents a test program to determine the material properties (chemical composition, tensile, and fatigue) at ambient and elevated temperatures of a Class A wheel steel as designated by the Association of American Railroads. The 3 tempera...

  10. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.

    PubMed

    Chui, Apple Pui Yi; Ang, Put

    2017-01-01

    With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial. Therefore, corals that are currently present in marginal environments like Hong Kong, as exemplified by the dominant P. acuta, are likely to persist in a warmer and intermittently less saline, future ocean.

  11. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change

    PubMed Central

    Chui, Apple Pui Yi; Ang, Put

    2017-01-01

    With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient), 30, 32°C] and salinity [33 psu (ambient), 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient) did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu) on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu) could even be beneficial. Therefore, corals that are currently present in marginal environments like Hong Kong, as exemplified by the dominant P. acuta, are likely to persist in a warmer and intermittently less saline, future ocean. PMID:28622371

  12. Study on Strengthening and Toughening Mechanisms of Aluminum Alloy 2618-Ti at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Kun, Ma; Tingting, Liu; Ya, Liu; Xuping, Su; Jianhua, Wang

    2018-01-01

    The tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.

  13. Elevated temperature causes metabolic trade-offs at the whole-organism level in the Antarctic fish Trematomus bernacchii.

    PubMed

    Sandersfeld, Tina; Davison, William; Lamare, Miles D; Knust, Rainer; Richter, Claudio

    2015-08-01

    As a response to ocean warming, shifts in fish species distribution and changes in production have been reported that have been partly attributed to temperature effects on the physiology of animals. The Southern Ocean hosts some of the most rapidly warming regions on earth and Antarctic organisms are reported to be especially temperature sensitive. While cellular and molecular organismic levels appear, at least partially, to compensate for elevated temperatures, the consequences of acclimation to elevated temperature for the whole organism are often less clear. Growth and reproduction are the driving factors for population structure and abundance. The aim of this study was to assess the effect of long-term acclimation to elevated temperature on energy budget parameters in the high-Antarctic fish Trematomus bernacchii. Our results show a complete temperature compensation for routine metabolic costs after 9 weeks of acclimation to 4°C. However, an up to 84% reduction in mass growth was measured at 2 and 4°C compared with the control group at 0°C, which is best explained by reduced food assimilation rates at warmer temperatures. With regard to a predicted temperature increase of up to 1.4°C in the Ross Sea by 2200, such a significant reduction in growth is likely to affect population structures in nature, for example by delaying sexual maturity and reducing production, with severe impacts on Antarctic fish communities and ecosystems. © 2015. Published by The Company of Biologists Ltd.

  14. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions.

    PubMed

    Jing, Liquan; Wang, Juan; Shen, Shibo; Wang, Yunxia; Zhu, Jianguo; Wang, Yulong; Yang, Lianxin

    2016-08-01

    Rising atmospheric CO2 is accompanied by global warming. However, interactive effects of elevated CO2 and temperature have not been well studied on grain quality of rice. A japonica cultivar was grown in the field using a free-air CO2 enrichment facility in combination with a canopy air temperature increase system in 2014. The gas fumigation (200 µmol mol(-1) above ambient CO2 ) and temperature increase (1 °C above ambient air temperature) were performed from tillering until maturity. Compared with the control (ambient CO2 and air temperature), elevated CO2 increased grain length and width as well as grain chalkiness but decreased protein concentrations. In contrast, the increase in canopy air temperature had less effect on these parameters except for grain chalkiness. The starch pasting properties of rice flour and taste analysis of cooked rice indicated that the palatability of rice was improved by CO2 and/or temperature elevation, with the combination of the two treatments showing the most significant changes compared with ambient rice. It is concluded that projected CO2 in 2050 may have larger effects on rice grain quality than the projected temperature increase. Although deterioration in milling suitability, grain appearance and nutritional quality can be expected, the taste of cooked rice might be better in the future environment. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    NASA Astrophysics Data System (ADS)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland Tropical Rainforest), a new soil warming experiment being undertaken on Barro Colorado Island, Panama, designed to improve our understanding of biogeochemical feedbacks to climate warming in lowland tropical forests.

  16. Phase dependent fracture and damage evolution of polytetrafluoroethylene (PTFE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, E. N.; Rae, P.; Orler, E. B.

    2004-01-01

    Compared with other polymers, polytetrafluoroethylene (PTFE) presents several advantages for load-bearing structural components including higher strength at elevated temperatures and higher toughness at lowered temperatures. Failure sensitive applications of PTFE include surgical implants, aerospace components, and chemical barriers. Polytetrafluoroethylene is semicrystalline in nature with their linear chains forming complicated phases near room temperature and ambient pressure. The presence of three unique phases near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a comprehensive and systematic study of fracture and damage evolution in PTFE to elicit the effects of temperature-inducedmore » phase on fracture mechanisms. The fracture behavior of PTFE is observed to undergo transitions from brittle-fracture below 19 C to ductile-fracture with crazing and some stable crack growth to plastic flow aver 30 C. The bulk failure properties are correlated to failure mechanisms through fractography and analysis of the crystalline structure.« less

  17. Elevation-dependent temperature trends in the Rocky Mountain Front Range: changes over a 56- and 20-year record.

    PubMed

    McGuire, Chris R; Nufio, César R; Bowers, M Deane; Guralnick, Robert P

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953-2008) and a shorter 20-year (1989-2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change.

  18. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record

    PubMed Central

    McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change. PMID:22970205

  19. Phenylethynyl Terminated Imide (PETI) Composites Made by High Temperature Vartm

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Lineberry, Quentin J.

    2010-01-01

    The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade. As these advanced structures increase in size and complexity, their production costs have grown significantly. A major contributor to these manufacturing costs is the requirement of elevated pressures, during high temperature processing, to create fully consolidated composite parts. Recently, NASA Langley has licensed a series of low viscosity Phenyl Ethynyl Terminated Imide, PETI, oligomers that possess a wide processing window to allow for Resin Transfer Molding, RTM, processing. These resins, PETI-8 and PETI-330, demonstrate void fractions of approx.1% under elevated pressure consolidation. However, when used with a standardized thermal curing cycle in a High Temperature Vacuum Assisted RTM (HT-VARTM) process, they display undesirable void contents in excess of 7%. It was determined previously that under the thermal cycles used for laminate fabrication, the phenylethynyl endcap underwent degradation leading to volatile evolution. Modifications to the processing cycle used in the laminate fabrication have reduced the void content significantly (typically less than 3%) for carbon fiber biaxially woven fabric. For carbon fiber uniaxial fabric, void contents of less than 2% have been obtained using both PETI-8 and PETI-330. The resins were infused into carbon fiber preforms at 260 C and cured between 316 C and 371 C. Photomicrographs of the panels were taken and void contents were determined by acid digestion. Mechanical properties of the panels were determined at both room and elevated temperatures. These include short beam shear and flexure tests. The results of this work are presented herein.

  20. Ocean acidification alters temperature and salinity preferences in larval fish.

    PubMed

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Connell, Sean D

    2017-02-01

    Ocean acidification alters the way in which animals perceive and respond to their world by affecting a variety of senses such as audition, olfaction, vision and pH sensing. Marine species rely on other senses as well, but we know little of how these might be affected by ocean acidification. We tested whether ocean acidification can alter the preference for physicochemical cues used for dispersal between ocean and estuarine environments. We experimentally assessed the behavioural response of a larval fish (Lates calcarifer) to elevated temperature and reduced salinity, including estuarine water of multiple cues for detecting settlement habitat. Larval fish raised under elevated CO 2 concentrations were attracted by warmer water, but temperature had no effect on fish raised in contemporary CO 2 concentrations. In contrast, contemporary larvae were deterred by lower salinity water, where CO 2 -treated fish showed no such response. Natural estuarine water-of higher temperature, lower salinity, and containing estuarine olfactory cues-was only preferred by fish treated under forecasted high CO 2 conditions. We show for the first time that attraction by larval fish towards physicochemical cues can be altered by ocean acidification. Such alterations to perception and evaluation of environmental cues during the critical process of dispersal can potentially have implications for ensuing recruitment and population replenishment. Our study not only shows that freshwater species that spend part of their life cycle in the ocean might also be affected by ocean acidification, but that behavioural responses towards key physicochemical cues can also be negated through elevated CO 2 from human emissions.

  1. Effects of post-hatch brooding temperature on broiler behavior, welfare, and growth.

    PubMed

    Henriksen, S; Bilde, T; Riber, A B

    2016-10-01

    An elevated brooding temperature during the first wk post hatch of broilers may potentially increase activity levels and reduce welfare problems in terms of non- and slow-starters, lameness, and contact dermatitis. The effects of an elevated brooding temperature the first 7 d post hatch on behavior, welfare, and growth of Ross 308 broilers were investigated. Groups of 28 broilers (14 males and 14 females) were distributed in a balanced way according to their hatching weight (below or above mean), the age of parent breeders (28 or 50 wk of age), and initial brooding temperature (normal 33°C; warm: 37°C) resulting in 8 different treatment groups. Behavioral data were collected on d zero to 6 of age, data on body weight on d zero, 7, 21, and 34 of age, and data on gait and contact dermatitis on d 21 and 34 of age. An elevated brooding temperature resulted in increased body temperature of broilers 5 h after placement (39.9 ± 0.04°C vs. 39.1 ± 0.04°C; P < 0.0001) whereas no difference was found 24 h after placement (P = 0.35). Broilers reared with elevated brooding temperature initiated feeding and drinking earlier, apart from broilers with low hatching weight from old parent breeders (P < 0.0001). They also showed higher activity levels from d one to 6 of age (P < 0.0001) and a higher inter-individual distance at d zero and one of age (P < 0.0001). Broilers with a high hatching weight reared at normal brooding temperature had a higher prevalence of hock burns at d 34 of age (P = 0.001). Broilers reared at elevated brooding temperature had lower body weight at d 7 of age (P < 0.0001); however, no difference appeared from d 21 of age (P = 0.58). No effect of brooding temperature was found on body weight uniformity (P = 0.81). In conclusion, the welfare of broilers may be improved from an elevated brooding temperature the first 7 d post hatch without affecting body weight uniformity and final body weight. © 2016 Poultry Science Association Inc.

  2. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia

    NASA Astrophysics Data System (ADS)

    Xu, Min; Kang, Shichang; Wu, Hao; Yuan, Xu

    2018-05-01

    As abundant distribution of glaciers and snow, the Tianshan Mountains are highly vulnerable to changes in climate. Based on meteorological station records during 1960-2016, we detected the variations of air temperature and precipitation by using non-parametric method in the different sub-regions and different elevations of the Tianshan Mountains. The mutations of climate were investigated by Mann-Kendall abrupt change test in the sub-regions. The periodicity is examined by wavelet analysis employing a chi-square test and detecting significant time sections. The results show that the Tianshan Mountains experienced an overall rapid warming and wetting during study period, with average warming rate of 0.32 °C/10a and wet rate of 5.82 mm/10a, respectively. The annual and seasonal spatial variation of temperature showed different scales in different regions. The annual precipitation showed non-significant upward trend in 20 stations, and 6 stations showed a significant upward trend. The temperatures in the East Tianshan increased most rapidly at rates of 0.41 °C/10a. The increasing magnitudes of annual precipitation were highest in the Boertala Vally (8.07 mm/10a) and lowest in the East Tianshan (2.64 mm/10a). The greatest and weakest warming was below 500 m (0.42 °C/10a) and elevation of 1000-1500 m (0.23 °C/10a), respectively. The increasing magnitudes of annual precipitation were highest in the elevation of 1500 m-2000 m (9.22 mm/10a) and lowest in the elevation of below 500 m (3.45 mm/10a). The mutations of annual air temperature and precipitation occurred in 1995 and 1990, respectively. The large atmospheric circulation influenced on the mutations of climate. The significant periods of air temperature were 2.4-4.1 years, and annual precipitation was 2.5-7.4 years. Elevation dependency of temperature trend magnitude was not evidently in the Tianshan Mountains. The annual precipitation wetting trend was amplified with elevation in summer and autumn. The strong elevation dependence of precipitation increasing trend appeared in summer.

  3. Ocean warming has a greater effect than acidification on the early life history development and swimming performance of a large circumglobal pelagic fish.

    PubMed

    Watson, Sue-Ann; Allan, Bridie J M; McQueen, David E; Nicol, Simon; Parsons, Darren M; Pether, Stephen M J; Pope, Stephen; Setiawan, Alvin N; Smith, Neville; Wilson, Carly; Munday, Philip L

    2018-05-22

    Ocean warming and acidification are serious threats to marine life; however, their individual and combined effects on large pelagic and predatory fishes are poorly understood. We determined the effects of projected future temperature and carbon dioxide (CO 2 ) levels on survival, growth, morphological development and swimming performance on the early life stages of a large circumglobal pelagic fish, the yellowtail kingfish Seriola lalandi. Eggs, larvae and juveniles were reared in cross-factored treatments of temperature (21 and 25°C) and pCO 2 (500 and 985 μatm) from fertilisation to 25 days post hatching (dph). Temperature had the greatest effect on survival, growth and development. Survivorship was lower, but growth and morphological development were faster at 25°C, with surviving fish larger and more developed at 1, 11 and 21 dph. Elevated pCO 2 affected size at 1 dph, but not at 11 or 21 dph, and did not affect survival or morphological development. Elevated temperature and pCO 2 had opposing effects on swimming performance at 21 dph. Critical swimming speed (U crit ) was increased by elevated temperature but reduced by elevated pCO 2 . Additionally, elevated temperature increased the proportion of individuals that responded to a startle stimulus, reduced latency to respond and increased maximum escape speed, potentially due to the more advanced developmental stage of juveniles at 25°C. By contrast, elevated pCO 2 reduced the distance moved and average speed in response to a startle stimulus. Our results show that higher temperature is likely to be the primary driver of global change impacts on kingfish early life history; however, elevated pCO 2 could affect critical aspects of swimming performance in this pelagic species. Our findings will help parameterise and structure fisheries population dynamics models and improve projections of impacts to large pelagic fishes under climate change scenarios to better inform adaptation and mitigation responses. © 2018 John Wiley & Sons Ltd.

  4. Ocean acidification and global warming impair shark hunting behaviour and growth.

    PubMed

    Pistevos, Jennifer C A; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D

    2015-11-12

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs.

  5. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  6. Ocean acidification and global warming impair shark hunting behaviour and growth

    PubMed Central

    Pistevos, Jennifer C. A.; Nagelkerken, Ivan; Rossi, Tullio; Olmos, Maxime; Connell, Sean D.

    2015-01-01

    Alterations in predation pressure can have large effects on trophically-structured systems. Modification of predator behaviour via ocean warming has been assessed by laboratory experimentation and metabolic theory. However, the influence of ocean acidification with ocean warming remains largely unexplored for mesopredators, including experimental assessments that incorporate key components of the assemblages in which animals naturally live. We employ a combination of long-term laboratory and mesocosm experiments containing natural prey and habitat to assess how warming and acidification affect the development, growth, and hunting behaviour in sharks. Although embryonic development was faster due to temperature, elevated temperature and CO2 had detrimental effects on sharks by not only increasing energetic demands, but also by decreasing metabolic efficiency and reducing their ability to locate food through olfaction. The combination of these effects led to considerable reductions in growth rates of sharks held in natural mesocosms with elevated CO2, either alone or in combination with higher temperature. Our results suggest a more complex reality for predators, where ocean acidification reduces their ability to effectively hunt and exert strong top-down control over food webs. PMID:26559327

  7. The Effects of Elevated Temperatures on the Response of Resins Under Dynamic and Static Loadings

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2005-01-01

    The overall objective of the research is to experimentally study the combined effects of temperature and strain rate on the response of two resins that are commonly used for the matrix material in composites. The resins are loaded at various temperatures in shear and in tension over a wide range of strain rates. These two types of loadings provide an opportunity to examine also the effect that temperature might have on the effects of the hydrostatic stress component on the material response. The experimental data provide the information needed for NASA scientists for the development of a nonlinear, strain rate, and temperature dependent deformation and strength models for composites that can subsequently be used in design. This year effort was directed into the development and testing of the epoxy resin at elevated temperatures. Two types of epoxy resins were tested in shear at high strain rates of about 10(exp-4)/s and elevated temperatures of 50 and 8OC. The results show that the temperature significantly affects the response of epoxy.

  8. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOEpatents

    Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  9. Processing study of a high temperature adhesive

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1984-01-01

    An adhesive-bonding process cycle study was performed for a polyimidesulphone. The high molecular weight, linear aromatic system possesses properties which make it attractive as a processable, low-cost material for elevated temperature applications. The results of a study to better understand the parameters that affect the adhesive properties of the polymer for titanium alloy adherends are presented. These include the tape preparation, the use of a primer and press and simulated autoclave processing conditions. The polymer was characterized using Fourier transform infrared spectroscopy, glass transition temperature determination, flow measurements, and weight loss measurements. The lap shear strength of the adhesive was used to evaluate the effects of the bonding process variations.

  10. Feasibility of Kevlar 49/PMR-15 polyimide for high temperature applications

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.

    1980-01-01

    Kevlar 49 aramid organic fiber reinforced PMR-15 polyimide laminates were characterized to determine the applicability of the material to high temperature aerospace structures. Kevlar 49/3501-6 epoxy laminates were fabricated and characterized for comparison with the Kevlar 49/PMR-15 polyimide material. Flexural strengths and moduli and interlaminar shear strengths were determined from 75 to 600 F for the PMR-15 and from 75 to 450 F for the Kevlar 49/3501-6 epoxy material. The study also included the effects of hydrothermal and long-term elevated temperature exposures on the flexural strengths and moduli and the interlaminar shear strengths.

  11. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  12. The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO2 Nanoparticles

    PubMed Central

    Pimenta Teixeira, Karine; Perdigão Rocha, Isadora; De Sá Carneiro, Leticia; Flores, Jessica; Dauer, Edward A.; Ghahremaninezhad, Ali

    2016-01-01

    This paper investigates the effect of curing temperature on the hydration, microstructure, compressive strength, and transport of cement pastes modified with TiO2 nanoparticles. These characteristics of cement pastes were studied using non-evaporable water content measurement, X-ray diffraction (XRD), compressive strength test, electrical resistivity and porosity measurements, and scanning electron microscopy (SEM). It was shown that temperature enhanced the early hydration. The cement pastes cured at elevated temperatures generally showed an increase in compressive strength at an early age compared to the cement paste cured at room temperature, but the strength gain decreased at later ages. The electrical resistivity of the cement pastes cured at elevated temperatures was found to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at elevated temperatures. It was observed that high temperature curing decreased the compressive strength and electrical resistivity of the cement pastes at late ages in a more pronounced manner when higher levels of TiO2 nanoparticles were added. PMID:28774073

  13. Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation

    USGS Publications Warehouse

    Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul

    2013-01-01

    Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.

  14. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere

    NASA Astrophysics Data System (ADS)

    Hanson, Paul J.; Riggs, Jeffery S.; Nettles, W. Robert; Phillips, Jana R.; Krassovski, Misha B.; Hook, Leslie A.; Gu, Lianhong; Richardson, Andrew D.; Aubrecht, Donald M.; Ricciuto, Daniel M.; Warren, Jeffrey M.; Barbier, Charlotte

    2017-02-01

    This paper describes the operational methods to achieve and measure both deep-soil heating (0-3 m) and whole-ecosystem warming (WEW) appropriate to the scale of tall-stature, high-carbon, boreal forest peatlands. The methods were developed to allow scientists to provide a plausible set of ecosystem-warming scenarios within which immediate and longer-term (1 decade) responses of organisms (microbes to trees) and ecosystem functions (carbon, water and nutrient cycles) could be measured. Elevated CO2 was also incorporated to test how temperature responses may be modified by atmospheric CO2 effects on carbon cycle processes. The WEW approach was successful in sustaining a wide range of aboveground and belowground temperature treatments (+0, +2.25, +4.5, +6.75 and +9 °C) in large 115 m2 open-topped enclosures with elevated CO2 treatments (+0 to +500 ppm). Air warming across the entire 10 enclosure study required ˜ 90 % of the total energy for WEW ranging from 64 283 mega Joules (MJ) d-1 during the warm season to 80 102 MJ d-1 during cold months. Soil warming across the study required only 1.3 to 1.9 % of the energy used ranging from 954 to 1782 MJ d-1 of energy in the warm and cold seasons, respectively. The residual energy was consumed by measurement and communication systems. Sustained temperature and elevated CO2 treatments were only constrained by occasional high external winds. This paper contrasts the in situ WEW method with closely related field-warming approaches using both aboveground (air or infrared heating) and belowground-warming methods. It also includes a full discussion of confounding factors that need to be considered carefully in the interpretation of experimental results. The WEW method combining aboveground and deep-soil heating approaches enables observations of future temperature conditions not available in the current observational record, and therefore provides a plausible glimpse of future environmental conditions.

  15. Tribological Performance of Duplex-Annealed Ti-6Al-2Sn-4Zr-2Mo Titanium Alloy at Elevated Temperatures Under Dry Sliding Condition

    NASA Astrophysics Data System (ADS)

    Heilig, Sebastian; Ramezani, Maziar; Neitzert, Thomas; Liewald, Mathias

    2018-03-01

    Ti-6Al-2Sn-4Zr-2Mo (Ti-6-2-4-2) is a typical near-α titanium alloy developed for high-temperature applications. It offers numerous enhanced properties like an outstanding strength-to-weight ratio, a low Young's modulus and exceptional creep and corrosion resistance. On the other hand, titanium alloys are known for their weak resistance to wear. Ti-6-2-4-2 is mainly applied in aero engine component parts, which are exposed to temperatures up to 565 °C. Through an increasing demand on efficiency, engine components are exposed to higher combustion pressures and temperatures. Elevated temperature tribology tests were conducted on a pin-on-disk tribometer equipped with a heating chamber. The tests were carried out under dry conditions with a constant sliding distance of 600 m with a speed of 0.16 m/s at the ball point. The sliding partner was AISI E52100 steel ball with the hardness of 58HRC. The varied input variables are normal load and temperature. It can be concluded that the coefficient of friction (CoF) increases with increasing temperature, while the wear rate decreases to its minimum at 600 °C due to increasing adhesion and oxidation mechanisms. Wear track observations using a scanning electron microscope (SEM) including energy-dispersive x-ray spectroscopy (EDS) were used to determine the occurring wear mechanisms.

  16. System noise temperature investigation of the DSN S-band polarization diverse systems for the Galileo S-band Contingency Mission

    NASA Technical Reports Server (NTRS)

    Fernandez, J. E.; Trowbridge, D. L.

    1995-01-01

    This article describes measurements made at all three Deep Space Network 70-m S-band polarization diverse (SPD) systems to determine and eliminate the cause of the 1-K elevation in follow-up noise temperature in the listen-only mode of the SPD systems at DSS 43 and DSS 63. The system noise temperatures obtained after finding and correcting the cause of the elevated follow-up noise temperature are also reported.

  17. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  18. Long-term exposure to slightly elevated air temperature alleviates the negative impacts of short term waterlogging stress by altering nitrogen metabolism in cotton leaves.

    PubMed

    Wang, Haimiao; Chen, Yinglong; Xu, Bingjie; Hu, Wei; Snider, John L; Meng, Yali; Chen, Binglin; Wang, Youhua; Zhao, Wenqing; Wang, Shanshan; Zhou, Zhiguo

    2018-02-01

    Short-term waterlogging and chronic elevated temperature occur frequently in the Yangtze River Valley, yet the effects of these co-occurring environments on nitrogen metabolism of the subtending leaf (a major source leaf for boll development) have received little attention. In this study, plants were exposed to two temperature regimes (31.6/26.5 °C and 34.1/29.0 °C) and waterlogging events (0 d, 3 d, 6 d) during flowering and boll development. The results showed that the effects of waterlogging stress and elevated temperature in isolation on nitrogen metabolism were quite different. Waterlogging stress not only limited NR (EC 1.6.6.1) and GS (EC 6.3.1.2) activities through the down-regulation of GhNR and GhGS expression for amino acid synthesis, but also promoted protein degradation by enhanced protease activity and peptidase activity, leading to lower organ and total biomass (reduced by 12.01%-27.63%), whereas elevated temperature inhibited protein degradation by limited protease activity and peptidase activity, promoting plant biomass accumulation. Furthermore, 2-3 °C chronic elevated temperature alleviated the negative impacts of a brief (3 d) waterlogging stress on cotton leaves, with the expression of GhNiR up-regulated, the activities of NR, GS and GOGAT (EC 1.4.7.1) increased and the activities of protease and peptidase decreased, leading to higher protein concentration and enhanced leaf biomass for EW 3 relative to AW 3 . The results of the study suggested that exposure to slightly elevated air temperature improves the cotton plants' ability to recover from short-term (3 d) waterlogging stress by sustaining processes associated with nitrogen assimilation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Influence of elevated temperature, pCO2, and nutrients on larva-biofilm interaction: Elucidation with acorn barnacle, Balanus amphitrite Darwin (Cirripedia: Thoracica)

    NASA Astrophysics Data System (ADS)

    Baragi, Lalita V.; Anil, Arga Chandrashekar

    2017-02-01

    Selection of optimal habitat by larvae of sessile organism is influenced by cues offered by the biofilm. Ocean warming and acidification are likely to enforce changes in the biofilm community and inturn influence the settlement process. Hence, we evaluated the influence of biofilm (multispecies and unialgal) and diet-mediated changes on the settlement of Balanus amphitrite cyprids (presettlement non-feeding larval stage) under different combinations of temperature (28, 30, 32 and 34 °C), pCO2 (400, 750 and 1500 μatm) and nutrient (unenriched and f/2 enriched). Nutrient enrichment enhanced the diatom and bacterial abundance at ambient temperature (30 °C) and pCO2 (400 μatm), which inturn increased larval settlement. Elevated pCO2 (750 and 1500 μatm) had no direct effect but a variable cascading effect on the settlement via biofilm-mediated changes was observed, depending on the type of biofilm. In contrast, elevated temperature (32 and 34 °C), either individually or in combination with elevated pCO2 had direct negative effect on settlement. However, biofilm-mediated changes compensated this negative effect. The larval settlement was also influenced by changes in the larval diet. Under elevated temperature and pCO2, cyprids raised with a feed (Chaetoceros calcitrans) from ambient temperature and pCO2 were of poor quality (lower RNA:DNA ratio, lower protein synthetic capacity) and yielded lower settlement. However, cyprids raised with a feed from elevated temperature and pCO2 were of better quality (higher RNA:DNA ratio, higher protein synthetic capacity) and yielded higher settlement. Overall, the observations from the present study provide insights into the significance of biotic interactions on the coastal biofouling communities under future climatic scenario and emphasise the need for future experiments on these aspects.

  20. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains.

    PubMed

    Tague, Christina L; McDowell, Nathan G; Allen, Craig D

    2013-01-01

    Climate-induced tree mortality is an increasing concern for forest managers around the world. We used a coupled hydrologic and ecosystem carbon cycling model to assess temperature and precipitation impacts on productivity and survival of ponderosa pine (Pinus ponderosa). Model predictions were evaluated using observations of productivity and survival for three ponderosa pine stands located across an 800 m elevation gradient in the southern Rocky Mountains, USA, during a 10-year period that ended in a severe drought and extensive tree mortality at the lowest elevation site. We demonstrate the utility of a relatively simple representation of declines in non-structural carbohydrate (NSC) as an approach for estimating patterns of ponderosa pine vulnerability to drought and the likelihood of survival along an elevation gradient. We assess the sensitivity of simulated net primary production, NSC storage dynamics, and mortality to site climate and soil characteristics as well as uncertainty in the allocation of carbon to the NSC pool. For a fairly wide set of assumptions, the model estimates captured elevational gradients and temporal patterns in growth and biomass. Model results that best predict mortality risk also yield productivity, leaf area, and biomass estimates that are qualitatively consistent with observations across the sites. Using this constrained set of parameters, we found that productivity and likelihood of survival were equally dependent on elevation-driven variation in temperature and precipitation. Our results demonstrate the potential for a coupled hydrology-ecosystem carbon cycling model that includes a simple model of NSC dynamics to predict drought-related mortality. Given that increases in temperature and in the frequency and severity of drought are predicted for a broad range of ponderosa pine and other western North America conifer forest habitats, the model potentially has broad utility for assessing ecosystem vulnerabilities.

Top