Science.gov

Sample records for including functional annotations

  1. Algal functional annotation tool

    SciTech Connect

    Lopez, D.; Casero, D.; Cokus, S. J.; Merchant, S. S.; Pellegrini, M.

    2012-07-01

    The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion.

  2. Algal functional annotation tool

    SciTech Connect

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG

  3. Phylogenetic molecular function annotation

    NASA Astrophysics Data System (ADS)

    Engelhardt, Barbara E.; Jordan, Michael I.; Repo, Susanna T.; Brenner, Steven E.

    2009-07-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called "phylogenomics") is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  4. FunctionAnnotator, a versatile and efficient web tool for non-model organism annotation.

    PubMed

    Chen, Ting-Wen; Gan, Ruei-Chi; Fang, Yi-Kai; Chien, Kun-Yi; Liao, Wei-Chao; Chen, Chia-Chun; Wu, Timothy H; Chang, Ian Yi-Feng; Yang, Chi; Huang, Po-Jung; Yeh, Yuan-Ming; Chiu, Cheng-Hsun; Huang, Tzu-Wen; Tang, Petrus

    2017-09-05

    Along with the constant improvement in high-throughput sequencing technology, an increasing number of transcriptome sequencing projects are carried out in organisms without decoded genome information and even on environmental biological samples. To study the biological functions of novel transcripts, the very first task is to identify their potential functions. We present a web-based annotation tool, FunctionAnnotator, which offers comprehensive annotations, including GO term assignment, enzyme annotation, domain/motif identification and predictions for subcellular localization. To accelerate the annotation process, we have optimized the computation processes and used parallel computing for all annotation steps. Moreover, FunctionAnnotator is designed to be versatile, and it generates a variety of useful outputs for facilitating other analyses. Here, we demonstrate how FunctionAnnotator can be helpful in annotating non-model organisms. We further illustrate that FunctionAnnotator can estimate the taxonomic composition of environmental samples and assist in the identification of novel proteins by combining RNA-Seq data with proteomics technology. In summary, FunctionAnnotator can efficiently annotate transcriptomes and greatly benefits studies focusing on non-model organisms or metatranscriptomes. FunctionAnnotator, a comprehensive annotation web-service tool, is freely available online at: http://fa.cgu.edu.tw/ . This new web-based annotator will shed light on field studies involving organisms without a reference genome.

  5. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes.

    PubMed

    Simmons, Shaneka S; Isokpehi, Raphael D; Brown, Shyretha D; McAllister, Donee L; Hall, Charnia C; McDuffy, Wanaki M; Medley, Tamara L; Udensi, Udensi K; Rajnarayanan, Rajendram V; Ayensu, Wellington K; Cohly, Hari H P

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  6. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    PubMed Central

    Simmons, Shaneka S.; Isokpehi, Raphael D.; Brown, Shyretha D.; McAllister, Donee L.; Hall, Charnia C.; McDuffy, Wanaki M.; Medley, Tamara L.; Udensi, Udensi K.; Rajnarayanan, Rajendram V.; Ayensu, Wellington K.; Cohly, Hari H.P.

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  7. Ontology-Based Prediction and Prioritization of Gene Functional Annotations.

    PubMed

    Chicco, Davide; Masseroli, Marco

    2016-01-01

    Genes and their protein products are essential molecular units of a living organism. The knowledge of their functions is key for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. The association of a gene or protein with its functions, described by controlled terms of biomolecular terminologies or ontologies, is named gene functional annotation. Very many and valuable gene annotations expressed through terminologies and ontologies are available. Nevertheless, they might include some erroneous information, since only a subset of annotations are reviewed by curators. Furthermore, they are incomplete by definition, given the rapidly evolving pace of biomolecular knowledge. In this scenario, computational methods that are able to quicken the annotation curation process and reliably suggest new annotations are very important. Here, we first propose a computational pipeline that uses different semantic and machine learning methods to predict novel ontology-based gene functional annotations; then, we introduce a new semantic prioritization rule to categorize the predicted annotations by their likelihood of being correct. Our tests and validations proved the effectiveness of our pipeline and prioritization of predicted annotations, by selecting as most likely manifold predicted annotations that were later confirmed.

  8. Structural and functional annotation of the porcine immunome

    PubMed Central

    2013-01-01

    Background The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. Results The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated

  9. Towards site-based protein functional annotations.

    PubMed

    Lei, Seak Fei; Huan, Jun

    2010-01-01

    The exact relationship between protein active centres and protein functions is unclear even after decades of intensive study. To improve functional prediction ability based on the local structures, we proposed three different methods. 1. We used Markov Random Field (MRF) to describe protein active region. 2. We developed filtering method that considers the local environment around the active sites. 3. We created multiple structure motifs by extending the motif to neighbouring residues. Our experiment results with enzyme families < 40% sequence identity demonstrated that our methods reduced random matches and could improve up to 70% of the functional annotation ability (using area under curve).

  10. Evolutionary Trace Annotation of Protein Function in the Structural Proteome

    PubMed Central

    Erdin, Serkan; Ward, R. Matthew; Venner, Eric

    2010-01-01

    By design, structural genomics (SG) solves many structures that cannot be assigned function based on homology to known proteins. Alternative function annotation methods are therefore needed and this study focuses on function prediction with three-dimensional (3D) templates: small structural motifs built of just a few functionally critical residues. Although experimentally proven functional residues are scarce, we show here that Evolutionary Trace (ET) rankings of residue importance are sufficient to build 3D templates, match them, and then assign Gene Ontology (GO) functions in enzymes and non-enzymes alike. In a high specificity mode, this Evolutionary Trace Annotation (ETA) method covered half (53%) of the 2384 annotated SG protein controls. Three-quarters (76%) of predictions were both correct and complete. The positive predictive value for all GO depths (all-depth PPV) was 84%, and it rose to 94% over GO depths 1– 3 (depth 3 PPV). In a high sensitivity mode coverage rose significantly (84%) while accuracy fell moderately: 68% of predictions were both correct and complete, all-depth PPV was 75%, and depth 3 PPV was 86%. These data concur with prior mutational experiments showing that ET rank information identifies key functional determinants in proteins. In practice, ETA predicted functions in 42% of 3461 un-annotated SG proteins. In 529 cases—including 280 non-enzymes and 21 for metal ion ligands—the expected accuracy is 84% at any GO depth and 94% down to GO depth 3, while for the remaining 931 the expected accuracies are 60% and 71%, respectively. Thus local structural comparisons of evolutionarily important residues can help decipher protein functions to known reliability levels and without prior assumption on functional mechanisms. ETA is available at http://mammoth.bcm.tmc.edu/eta. PMID:20036248

  11. IntelliGO: a new vector-based semantic similarity measure including annotation origin

    PubMed Central

    2010-01-01

    Background The Gene Ontology (GO) is a well known controlled vocabulary describing the biological process, molecular function and cellular component aspects of gene annotation. It has become a widely used knowledge source in bioinformatics for annotating genes and measuring their semantic similarity. These measures generally involve the GO graph structure, the information content of GO aspects, or a combination of both. However, only a few of the semantic similarity measures described so far can handle GO annotations differently according to their origin (i.e. their evidence codes). Results We present here a new semantic similarity measure called IntelliGO which integrates several complementary properties in a novel vector space model. The coefficients associated with each GO term that annotates a given gene or protein include its information content as well as a customized value for each type of GO evidence code. The generalized cosine similarity measure, used for calculating the dot product between two vectors, has been rigorously adapted to the context of the GO graph. The IntelliGO similarity measure is tested on two benchmark datasets consisting of KEGG pathways and Pfam domains grouped as clans, considering the GO biological process and molecular function terms, respectively, for a total of 683 yeast and human genes and involving more than 67,900 pair-wise comparisons. The ability of the IntelliGO similarity measure to express the biological cohesion of sets of genes compares favourably to four existing similarity measures. For inter-set comparison, it consistently discriminates between distinct sets of genes. Furthermore, the IntelliGO similarity measure allows the influence of weights assigned to evidence codes to be checked. Finally, the results obtained with a complementary reference technique give intermediate but correct correlation values with the sequence similarity, Pfam, and Enzyme classifications when compared to previously published measures

  12. A computational interactome and functional annotation for the human proteome

    PubMed Central

    Garzón, José Ignacio; Deng, Lei; Murray, Diana; Shapira, Sagi; Petrey, Donald; Honig, Barry

    2016-01-01

    We present a database, PrePPI (Predicting Protein-Protein Interactions), of more than 1.35 million predicted protein-protein interactions (PPIs). Of these at least 127,000 are expected to constitute direct physical interactions although the actual number may be much larger (~500,000). The current PrePPI, which contains predicted interactions for about 85% of the human proteome, is related to an earlier version but is based on additional sources of interaction evidence and is far larger in scope. The use of structural relationships allows PrePPI to infer numerous previously unreported interactions. PrePPI has been subjected to a series of validation tests including reproducing known interactions, recapitulating multi-protein complexes, analysis of disease associated SNPs, and identifying functional relationships between interacting proteins. We show, using Gene Set Enrichment Analysis (GSEA), that predicted interaction partners can be used to annotate a protein’s function. We provide annotations for most human proteins, including many annotated as having unknown function. DOI: http://dx.doi.org/10.7554/eLife.18715.001 PMID:27770567

  13. Functional annotation of deubiquitinating enzymes using RNA interference.

    PubMed

    Dirac, Annette M G; Nijman, Sebastian M B; Brummelkamp, Thijn R; Bernards, René

    2005-01-01

    Protein ubiquitination is a dynamic process, depending on a tightly regulated balance between the activity of ubiquitin ligases and their antagonists, the ubiquitin-specific proteases or deubiquitinating enzymes. The family of ubiquitin ligases has been studied intensively and it is well established that their deregulation contributes to diverse disease processes, including cancer. Much less is known about the function and regulation of the large group of deubiquitinating enzymes. This chapter describes how RNA interference against deubiquitinating enzymes can be used to elucidate their function. The application of this technology will greatly improve the functional annotation of this family of proteases.

  14. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium

    PubMed Central

    Livstone, Michael S.; Lewis, Suzanna E.; Thomas, Paul D.

    2011-01-01

    The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods. PMID:21873635

  15. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium.

    PubMed

    Gaudet, Pascale; Livstone, Michael S; Lewis, Suzanna E; Thomas, Paul D

    2011-09-01

    The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods.

  16. Neurolinguistic Annotated Bibliography (Brain Research and Language Function) with Implications for Education.

    ERIC Educational Resources Information Center

    Davis, Wesley K.

    This bibliography presents annotations of 91 journal articles, books, chapters in books, and conference papers dating from 1967 to 1984 concerning neurolinguistics, language processing, and educational implications of brain research. The annotated bibliography includes eight items on neuroanatomy and language function; 20 items on neurolinguistics…

  17. How can functional annotations be derived from profiles of phenotypic annotations?

    PubMed

    Serrano-Solano, Beatriz; Díaz Ramos, Antonio; Hériché, Jean-Karim; Ranea, Juan A G

    2017-02-10

    Loss-of-function phenotypes are widely used to infer gene function using the principle that similar phenotypes are indicative of similar functions. However, converting phenotypic to functional annotations requires careful interpretation of phenotypic descriptions and assessment of phenotypic similarity. Understanding how functions and phenotypes are linked will be crucial for the development of methods for the automatic conversion of gene loss-of-function phenotypes to gene functional annotations. We explored the relation between cellular phenotypes from RNAi-based screens in human cells and gene annotations of cellular functions as provided by the Gene Ontology (GO). Comparing different similarity measures, we found that information content-based measures of phenotypic similarity were the best at capturing gene functional similarity. However, phenotypic similarities did not map to the Gene Ontology organization of gene function but to functions defined as groups of GO terms with shared gene annotations. Our observations have implications for the use and interpretation of phenotypic similarities as a proxy for gene functions both in RNAi screen data analysis and curation and in the prediction of disease genes.

  18. Considerations to improve functional annotations in biological databases.

    PubMed

    Benítez-Páez, Alfonso

    2009-12-01

    Despite the great effort to design efficient systems allowing the electronic indexation of information concerning genes, proteins, structures, and interactions published daily in scientific journals, some problems are still observed in specific tasks such as functional annotation. The annotation of function is a critical issue for bioinformatic routines, such as for instance, in functional genomics and the further prediction of unknown protein function, which are highly dependent of the quality of existing annotations. Some information management systems evolve to efficiently incorporate information from large-scale projects, but often, annotation of single records from the literature is difficult and slow. In this short report, functional characterizations of a representative sample of the entire set of uncharacterized proteins from Escherichia coli K12 was compiled from Swiss-Prot, PubMed, and EcoCyc and demonstrate a functional annotation deficit in biological databases. Some issues are postulated as causes of the lack of annotation, and different solutions are evaluated and proposed to avoid them. The hope is that as a consequence of these observations, there will be new impetus to improve the speed and quality of functional annotation and ultimately provide updated, reliable information to the scientific community.

  19. A spectral approach integrating functional genomic annotations for coding and noncoding variants.

    PubMed

    Ionita-Laza, Iuliana; McCallum, Kenneth; Xu, Bin; Buxbaum, Joseph D

    2016-02-01

    Over the past few years, substantial effort has been put into the functional annotation of variation in human genome sequences. Such annotations can have a critical role in identifying putatively causal variants for a disease or trait among the abundant natural variation that occurs at a locus of interest. The main challenges in using these various annotations include their large numbers and their diversity. Here we develop an unsupervised approach to integrate these different annotations into one measure of functional importance (Eigen) that, unlike most existing methods, is not based on any labeled training data. We show that the resulting meta-score has better discriminatory ability using disease-associated and putatively benign variants from published studies (in both coding and noncoding regions) than the recently proposed CADD score. Across varied scenarios, the Eigen score performs generally better than any single individual annotation, representing a powerful single functional score that can be incorporated in fine-mapping studies.

  20. Gene Functional Annotation with Dynamic Hierarchical Classification Guided by Orthologs

    NASA Astrophysics Data System (ADS)

    Seki, Kazuhiro; Kino, Yoshihiro; Uehara, Kuniaki

    This paper proposes an approach to automating Gene Ontology (GO) annotation in the framework of hierarchical classification that uses known, already annotated functions of the orthologs of a given gene. The proposed approach exploits such known functions as constraints and dynamically builds classifiers based on the training data available under the constraints. In addition, two unsupervised approaches are applied to complement the classification framework. The validity and effectiveness of the proposed approach are empirically demonstrated.

  1. AutoFACT: An Automatic Functional Annotation and Classification Tool

    PubMed Central

    Koski, Liisa B; Gray, Michael W; Lang, B Franz; Burger, Gertraud

    2005-01-01

    Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1) analyzes nucleotide and protein sequence data; (2) determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3) assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4) generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at . PMID:15960857

  2. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.

    PubMed

    Singh, Nagendra Kumar

    2017-09-01

    microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.

  3. SUS-BAR: a database of pig proteins with statistically validated structural and functional annotation

    PubMed Central

    Piovesan, Damiano; Profiti, Giuseppe; Martelli, Pier Luigi; Fariselli, Piero; Fontanesi, Luca; Casadio, Rita

    2013-01-01

    Given the relevance of the pig proteome in different studies, including human complex maladies, a statistical validation of the annotation is required for a better understanding of the role of specific genes and proteins in the complex networks underlying biological processes in the animal. Presently, approximately 80% of the pig proteome is still poorly annotated, and the existence of protein sequences is routinely inferred automatically by sequence alignment towards preexisting sequences. In this article, we introduce SUS-BAR, a database that derives information mainly from UniProt Knowledgebase and that includes 26 206 pig protein sequences. In SUS-BAR, 16 675 of the pig protein sequences are endowed with statistically validated functional and structural annotation. Our statistical validation is determined by adopting a cluster-centric annotation procedure that allows transfer of different types of annotation, including structure and function. Each sequence in the database can be associated with a set of statistically validated Gene Ontologies (GOs) of the three main sub-ontologies (Molecular Function, Biological Process and Cellular Component), with Pfam functional domains, and when possible, with a cluster Hidden Markov Model that allows modelling the 3D structure of the protein. A database search allows some statistics demonstrating the enrichment in both GO and Pfam annotations of the pig proteins as compared with UniProt Knowledgebase annotation. Searching in SUS-BAR allows retrieval of the pig protein annotation for further analysis. The search is also possible on the basis of specific GO terms and this allows retrieval of all the pig sequences participating into a given biological process, after annotation with our system. Alternatively, the search is possible on the basis of structural information, allowing retrieval of all the pig sequences with the same structural characteristics. Database URL: http://bar.biocomp.unibo.it/pig/ PMID:24065691

  4. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  5. Functional annotation of rare gene aberration drivers of pancreatic cancer

    PubMed Central

    Tsang, Yiu Huen; Dogruluk, Turgut; Tedeschi, Philip M.; Wardwell-Ozgo, Joanna; Lu, Hengyu; Espitia, Maribel; Nair, Nikitha; Minelli, Rosalba; Chong, Zechen; Chen, Fengju; Chang, Qing Edward; Dennison, Jennifer B.; Dogruluk, Armel; Li, Min; Ying, Haoqiang; Bertino, Joseph R.; Gingras, Marie-Claude; Ittmann, Michael; Kerrigan, John; Chen, Ken; Creighton, Chad J.; Eterovic, Karina; Mills, Gordon B.; Scott, Kenneth L.

    2016-01-01

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets. PMID:26806015

  6. Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data

    PubMed Central

    2011-01-01

    Background Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. Description The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps

  7. Evaluating Functional Annotations of Enzymes Using the Gene Ontology.

    PubMed

    Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C

    2017-01-01

    The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.

  8. dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts

    PubMed Central

    Vincent, Jonathan; Dai, Zhanwu; Ravel, Catherine; Choulet, Frédéric; Mouzeyar, Said; Bouzidi, M. Fouad; Agier, Marie; Martre, Pierre

    2013-01-01

    The functional annotation of genes based on sequence homology with genes from model species genomes is time-consuming because it is necessary to mine several unrelated databases. The aim of the present work was to develop a functional annotation database for common wheat Triticum aestivum (L.). The database, named dbWFA, is based on the reference NCBI UniGene set, an expressed gene catalogue built by expressed sequence tag clustering, and on full-length coding sequences retrieved from the TriFLDB database. Information from good-quality heterogeneous sources, including annotations for model plant species Arabidopsis thaliana (L.) Heynh. and Oryza sativa L., was gathered and linked to T. aestivum sequences through BLAST-based homology searches. Even though the complexity of the transcriptome cannot yet be fully appreciated, we developed a tool to easily and promptly obtain information from multiple functional annotation systems (Gene Ontology, MapMan bin codes, MIPS Functional Categories, PlantCyc pathway reactions and TAIR gene families). The use of dbWFA is illustrated here with several query examples. We were able to assign a putative function to 45% of the UniGenes and 81% of the full-length coding sequences from TriFLDB. Moreover, comparison of the annotation of the whole T. aestivum UniGene set along with curated annotations of the two model species assessed the accuracy of the annotation provided by dbWFA. To further illustrate the use of dbWFA, genes specifically expressed during the early cell division or late storage polymer accumulation phases of T. aestivum grain development were identified using a clustering analysis and then annotated using dbWFA. The annotation of these two sets of genes was consistent with previous analyses of T. aestivum grain transcriptomes and proteomes. Database URL: urgi.versailles.inra.fr/dbWFA/ PMID:23660284

  9. Functional Annotations of Paralogs: A Blessing and a Curse

    PubMed Central

    Zallot, Rémi; Harrison, Katherine J.; Kolaczkowski, Bryan; de Crécy-Lagard, Valérie

    2016-01-01

    Gene duplication followed by mutation is a classic mechanism of neofunctionalization, producing gene families with functional diversity. In some cases, a single point mutation is sufficient to change the substrate specificity and/or the chemistry performed by an enzyme, making it difficult to accurately separate enzymes with identical functions from homologs with different functions. Because sequence similarity is often used as a basis for assigning functional annotations to genes, non-isofunctional gene families pose a great challenge for genome annotation pipelines. Here we describe how integrating evolutionary and functional information such as genome context, phylogeny, metabolic reconstruction and signature motifs may be required to correctly annotate multifunctional families. These integrative analyses can also lead to the discovery of novel gene functions, as hints from specific subgroups can guide the functional characterization of other members of the family. We demonstrate how careful manual curation processes using comparative genomics can disambiguate subgroups within large multifunctional families and discover their functions. We present the COG0720 protein family as a case study. We also discuss strategies to automate this process to improve the accuracy of genome functional annotation pipelines. PMID:27618105

  10. Functional annotation of the human retinal pigment epithelium transcriptome

    PubMed Central

    Booij, Judith C; van Soest, Simone; Swagemakers, Sigrid MA; Essing, Anke HW; Verkerk, Annemieke JMH; van der Spek, Peter J; Gorgels, Theo GMF; Bergen, Arthur AB

    2009-01-01

    Background To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE), the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes (aged 63–78 years) were laser dissected and used for 22k microarray studies (Agilent technologies). Data were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software. Results In total, we identified 19,746 array entries with significant expression in the RPE. Gene expression was analyzed according to expression levels, interindividual variability and functionality. A group of highly (n = 2,194) expressed RPE genes showed an overrepresentation of genes of the oxidative phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n = 8,776) genes of the phosphatidylinositol signaling system and aminosugars metabolism were overrepresented. As expected, the top 10 percent (n = 2,194) of genes with the highest interindividual differences in expression showed functional overrepresentation of the complement cascade, essential in inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same category also includes the genes involved in Bruch's membrane (BM) composition. Among the top 10 percent of genes with low interindividual differences, there was an overrepresentation of genes involved in local glycosaminoglycan turnover. Conclusion Our study expands current knowledge of the RPE transcriptome by assigning new genes, and adding data about expression level and interindividual variation. Functional annotation suggests that the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular composition of BM, adjacent to the RPE, and is useful for

  11. Biocuration of functional annotation at the European nucleotide archive

    PubMed Central

    Gibson, Richard; Alako, Blaise; Amid, Clara; Cerdeño-Tárraga, Ana; Cleland, Iain; Goodgame, Neil; ten Hoopen, Petra; Jayathilaka, Suran; Kay, Simon; Leinonen, Rasko; Liu, Xin; Pallreddy, Swapna; Pakseresht, Nima; Rajan, Jeena; Rosselló, Marc; Silvester, Nicole; Smirnov, Dmitriy; Toribio, Ana Luisa; Vaughan, Daniel; Zalunin, Vadim; Cochrane, Guy

    2016-01-01

    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is a repository for the submission, maintenance and presentation of nucleotide sequence data and related sample and experimental information. In this article we report on ENA in 2015 regarding general activity, notable published data sets and major achievements. This is followed by a focus on sustainable biocuration of functional annotation, an area which has particularly felt the pressure of sequencing growth. The importance of functional annotation, how it can be submitted and the shifting role of the biocurator in the context of increasing volumes of data are all discussed. PMID:26615190

  12. Protein function annotation by homology-based inference

    PubMed Central

    Loewenstein, Yaniv; Raimondo, Domenico; Redfern, Oliver C; Watson, James; Frishman, Dmitrij; Linial, Michal; Orengo, Christine; Thornton, Janet; Tramontano, Anna

    2009-01-01

    With many genomes now sequenced, computational annotation methods to characterize genes and proteins from their sequence are increasingly important. The BioSapiens Network has developed tools to address all stages of this process, and here we review progress in the automated prediction of protein function based on protein sequence and structure. PMID:19226439

  13. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

  14. Functional Region Annotation of Liver CT Image Based on Vascular Tree

    PubMed Central

    Chen, Yufei; Wang, Gang

    2016-01-01

    Anatomical analysis of liver region is critical in diagnosis and treatment of liver diseases. The reports of liver region annotation are helpful for doctors to precisely evaluate liver system. One of the challenging issues is to annotate the functional regions of liver through analyzing Computed Tomography (CT) images. In this paper, we propose a vessel-tree-based liver annotation method for CT images. The first step of the proposed annotation method is to extract the liver region including vessels and tumors from the CT scans. And then a 3-dimensional thinning algorithm is applied to obtain the spatial skeleton and geometric structure of liver vessels. With the vessel skeleton, the topology of portal veins is further formulated by a directed acyclic graph with geometrical attributes. Finally, based on the topological graph, a hierarchical vascular tree is constructed to divide the liver into eight segments according to Couinaud classification theory and thereby annotate the functional regions. Abundant experimental results demonstrate that the proposed method is effective for precise liver annotation and helpful to support liver disease diagnosis. PMID:27891516

  15. Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates

    PubMed Central

    Matthew Ward, R.; Venner, Eric; Daines, Bryce; Murray, Stephen; Erdin, Serkan; Kristensen, David M.; Lichtarge, Olivier

    2009-01-01

    Summary:The Evolutionary Trace Annotation (ETA) Server predicts enzymatic activity. ETA starts with a structure of unknown function, such as those from structural genomics, and with no prior knowledge of its mechanism uses the phylogenetic Evolutionary Trace (ET) method to extract key functional residues and propose a function-associated 3D motif, called a 3D template. ETA then searches previously annotated structures for geometric template matches that suggest molecular and thus functional mimicry. In order to maximize the predictive value of these matches, ETA next applies distinctive specificity filters—evolutionary similarity, function plurality and match reciprocity. In large scale controls on enzymes, prediction coverage is 43% but the positive predictive value rises to 92%, thus minimizing false annotations. Users may modify any search parameter, including the template. ETA thus expands the ET suite for protein structure annotation, and can contribute to the annotation efforts of metaservers. Availability:The ETA Server is a web application available at http://mammoth.bcm.tmc.edu/eta/. Contact: lichtarge@bcm.edu PMID:19307237

  16. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.

  17. Optimizing high performance computing workflow for protein functional annotation

    PubMed Central

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-01-01

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296

  18. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes

    PubMed Central

    Mende, Daniel R.; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S.; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-01

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de. PMID:28053165

  19. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes.

    PubMed

    Mende, Daniel R; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-04

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de.

  20. Eliciting the Functional Taxonomy from protein annotations and taxa.

    PubMed

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-08-18

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules.

  1. Eliciting the Functional Taxonomy from protein annotations and taxa

    PubMed Central

    Falda, Marco; Lavezzo, Enrico; Fontana, Paolo; Bianco, Luca; Berselli, Michele; Formentin, Elide; Toppo, Stefano

    2016-01-01

    The advances of omics technologies have triggered the production of an enormous volume of data coming from thousands of species. Meanwhile, joint international efforts like the Gene Ontology (GO) consortium have worked to provide functional information for a vast amount of proteins. With these data available, we have developed FunTaxIS, a tool that is the first attempt to infer functional taxonomy (i.e. how functions are distributed over taxa) combining functional and taxonomic information. FunTaxIS is able to define a taxon specific functional space by exploiting annotation frequencies in order to establish if a function can or cannot be used to annotate a certain species. The tool generates constraints between GO terms and taxa and then propagates these relations over the taxonomic tree and the GO graph. Since these constraints nearly cover the whole taxonomy, it is possible to obtain the mapping of a function over the taxonomy. FunTaxIS can be used to make functional comparative analyses among taxa, to detect improper associations between taxa and functions, and to discover how functional knowledge is either distributed or missing. A benchmark test set based on six different model species has been devised to get useful insights on the generated taxonomic rules. PMID:27534507

  2. Bio301: A Web-Based EST Annotation Pipeline That Facilitates Functional Comparison Studies.

    PubMed

    Chen, Yen-Chen; Chen, Yun-Ching; Lin, Wen-Dar; Hsiao, Chung-Der; Chiu, Hung-Wen; Ho, Jan-Ming

    2012-01-01

    In this postgenomic era, a huge volume of information derived from expressed sequence tags (ESTs) has been constructed for functional description of gene expression profiles. Comparative studies have become more and more important to researchers of biology. In order to facilitate these comparative studies, we have constructed a user-friendly EST annotation pipeline with comparison tools on an integrated EST service website, Bio301. Bio301 includes regular EST preprocessing, BLAST similarity search, gene ontology (GO) annotation, statistics reporting, a graphical GO browsing interface, and microarray probe selection tools. In addition, Bio301 is equipped with statistical library comparison functions using multiple EST libraries based on GO annotations for mining meaningful biological information.

  3. Comprehensive functional annotation of 77 prostate cancer risk loci.

    PubMed

    Hazelett, Dennis J; Rhie, Suhn Kyong; Gaddis, Malaina; Yan, Chunli; Lakeland, Daniel L; Coetzee, Simon G; Henderson, Brian E; Noushmehr, Houtan; Cozen, Wendy; Kote-Jarai, Zsofia; Eeles, Rosalind A; Easton, Douglas F; Haiman, Christopher A; Lu, Wange; Farnham, Peggy J; Coetzee, Gerhard A

    2014-01-01

    Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations--we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at r(2) ≥ 0.88%. 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium (r(2) = 0.91) with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a

  4. Visual annotation display (VLAD): a tool for finding functional themes in lists of genes.

    PubMed

    Richardson, Joel E; Bult, Carol J

    2015-10-01

    Experiments that employ genome scale technology platforms frequently result in lists of tens to thousands of genes with potential significance to a specific biological process or disease. Searching for biologically relevant connections among the genes or gene products in these lists is a common data analysis task. We have implemented a software application for uncovering functional themes in sets of genes based on their annotations to bio-ontologies, such as the gene ontology and the mammalian phenotype ontology. The application, called VisuaL Annotation Display (VLAD), performs a statistical analysis to test for the enrichment of ontology terms in a set of genes submitted by a researcher. The results for each analysis using VLAD includes a table of ontology terms, sorted in decreasing order of significance. Each row contains the term, statistics such as the number of annotated terms, the p value, etc., and the symbols of annotated genes. An accompanying graphical display shows portions of the ontology hierarchy, where node sizes are scaled based on p values. Although numerous ontology term enrichment programs already exist, VLAD is unique in that it allows users to upload their own annotation files and ontologies for customized term enrichment analyses, supports the analysis of multiple gene sets at once, provides interfaces to customize graphical output, and is tightly integrated with functional and biological details about mouse genes in the Mouse Genome Informatics (MGI) database. VLAD is available as a web-based application from the MGI web site (http://proto.informatics.jax.org/prototypes/vlad/).

  5. Automatic annotation of protein motif function with Gene Ontology terms

    PubMed Central

    Lu, Xinghua; Zhai, Chengxiang; Gopalakrishnan, Vanathi; Buchanan, Bruce G

    2004-01-01

    Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs. PMID:15345032

  6. Protein function annotation by local binding site surface similarity.

    PubMed

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  7. Application of comparative biology in GO functional annotation: the mouse model.

    PubMed

    Drabkin, Harold J; Christie, Karen R; Dolan, Mary E; Hill, David P; Ni, Li; Sitnikov, Dmitry; Blake, Judith A

    2015-10-01

    The Gene Ontology (GO) is an important component of modern biological knowledge representation with great utility for computational analysis of genomic and genetic data. The Gene Ontology Consortium (GOC) consists of a large team of contributors including curation teams from most model organism database groups as well as curation teams focused on representation of data relevant to specific human diseases. Key to the generation of consistent and comprehensive annotations is the development and use of shared standards and measures of curation quality. The GOC engages all contributors to work to a defined standard of curation that is presented here in the context of annotation of genes in the laboratory mouse. Comprehensive understanding of the origin, epistemology, and coverage of GO annotations is essential for most effective use of GO resources. Here the application of comparative approaches to capturing functional data in the mouse system is described.

  8. Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach

    PubMed Central

    Andorf, Carson; Dobbs, Drena; Honavar, Vasant

    2007-01-01

    Background Incorrectly annotated sequence data are becoming more commonplace as databases increasingly rely on automated techniques for annotation. Hence, there is an urgent need for computational methods for checking consistency of such annotations against independent sources of evidence and detecting potential annotation errors. We show how a machine learning approach designed to automatically predict a protein's Gene Ontology (GO) functional class can be employed to identify potential gene annotation errors. Results In a set of 211 previously annotated mouse protein kinases, we found that 201 of the GO annotations returned by AmiGO appear to be inconsistent with the UniProt functions assigned to their human counterparts. In contrast, 97% of the predicted annotations generated using a machine learning approach were consistent with the UniProt annotations of the human counterparts, as well as with available annotations for these mouse protein kinases in the Mouse Kinome database. Conclusion We conjecture that most of our predicted annotations are, therefore, correct and suggest that the machine learning approach developed here could be routinely used to detect potential errors in GO annotations generated by high-throughput gene annotation projects. Editors Note : Authors from the original publication (Okazaki et al.: Nature 2002, 420:563–73) have provided their response to Andorf et al, directly following the correspondence. PMID:17683567

  9. Guidelines for the functional annotation of microRNAs using the Gene Ontology.

    PubMed

    Huntley, Rachael P; Sitnikov, Dmitry; Orlic-Milacic, Marija; Balakrishnan, Rama; D'Eustachio, Peter; Gillespie, Marc E; Howe, Doug; Kalea, Anastasia Z; Maegdefessel, Lars; Osumi-Sutherland, David; Petri, Victoria; Smith, Jennifer R; Van Auken, Kimberly; Wood, Valerie; Zampetaki, Anna; Mayr, Manuel; Lovering, Ruth C

    2016-05-01

    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). © 2016 Huntley et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. MetAnnotate: function-specific taxonomic profiling and comparison of metagenomes.

    PubMed

    Petrenko, Pavel; Lobb, Briallen; Kurtz, Daniel A; Neufeld, Josh D; Doxey, Andrew C

    2015-11-05

    Metagenomes provide access to the taxonomic composition and functional capabilities of microbial communities. Although metagenomic analysis methods exist for estimating overall community composition or metabolic potential, identifying specific taxa that encode specific functions or pathways of interest can be more challenging. Here we present MetAnnotate, which addresses the common question: "which organisms perform my function of interest within my metagenome(s) of interest?" MetAnnotate uses profile hidden Markov models to analyze shotgun metagenomes for genes and pathways of interest, classifies retrieved sequences either through a phylogenetic placement or best hit approach, and enables comparison of these profiles between metagenomes. Based on a simulated metagenome dataset, the tool achieves high taxonomic classification accuracy for a broad range of genes, including both markers of community abundance and specific biological pathways. Lastly, we demonstrate MetAnnotate by analyzing for cobalamin (vitamin B12) synthesis genes across hundreds of aquatic metagenomes in a fraction of the time required by the commonly used Basic Local Alignment Search Tool top hit approach. MetAnnotate is multi-threaded and installable as a local web application or command-line tool on Linux systems. Metannotate is a useful framework for general and/or function-specific taxonomic profiling and comparison of metagenomes.

  11. Guidelines for the functional annotation of microRNAs using the Gene Ontology

    PubMed Central

    D'Eustachio, Peter; Smith, Jennifer R.; Zampetaki, Anna

    2016-01-01

    MicroRNA regulation of developmental and cellular processes is a relatively new field of study, and the available research data have not been organized to enable its inclusion in pathway and network analysis tools. The association of gene products with terms from the Gene Ontology is an effective method to analyze functional data, but until recently there has been no substantial effort dedicated to applying Gene Ontology terms to microRNAs. Consequently, when performing functional analysis of microRNA data sets, researchers have had to rely instead on the functional annotations associated with the genes encoding microRNA targets. In consultation with experts in the field of microRNA research, we have created comprehensive recommendations for the Gene Ontology curation of microRNAs. This curation manual will enable provision of a high-quality, reliable set of functional annotations for the advancement of microRNA research. Here we describe the key aspects of the work, including development of the Gene Ontology to represent this data, standards for describing the data, and guidelines to support curators making these annotations. The full microRNA curation guidelines are available on the GO Consortium wiki (http://wiki.geneontology.org/index.php/MicroRNA_GO_annotation_manual). PMID:26917558

  12. Molecular Dynamics Information Improves cis-Peptide-Based Function Annotation of Proteins.

    PubMed

    Das, Sreetama; Bhadra, Pratiti; Ramakumar, Suryanarayanarao; Pal, Debnath

    2017-08-04

    cis-Peptide bonds, whose occurrence in proteins is rare but evolutionarily conserved, are implicated to play an important role in protein function. This has led to their previous use in a homology-independent, fragment-match-based protein function annotation method. However, proteins are not static molecules; dynamics is integral to their activity. This is nicely epitomized by the geometric isomerization of cis-peptide to trans form for molecular activity. Hence we have incorporated both static (cis-peptide) and dynamics information to improve the prediction of protein molecular function. Our results show that cis-peptide information alone cannot detect functional matches in cases where cis-trans isomerization exists but 3D coordinates have been obtained for only the trans isomer or when the cis-peptide bond is incorrectly assigned as trans. On the contrary, use of dynamics information alone includes false-positive matches for cases where fragments with similar secondary structure show similar dynamics, but the proteins do not share a common function. Combining the two methods reduces errors while detecting the true matches, thereby enhancing the utility of our method in function annotation. A combined approach, therefore, opens up new avenues of improving existing automated function annotation methodologies.

  13. Annotation of Proteins of Unknown Function: Initial Enzyme Results

    PubMed Central

    McKay, Talia; Hart, Kaitlin; Horn, Alison; Kessler, Haeja; Dodge, Greg; Bardhi, Keti; Bardhi, Kostandina; Mills, Jeffrey L.; Bernstein, Herbert J.; Craig, Paul A.

    2015-01-01

    Working with a combination of ProMOL (a plugin for PyMOL that searches a library of enzymatic motifs for local structural homologs), BLAST and Pfam (servers that identify global sequence homologs), and Dali (a server that identifies global structural homologs), we have begun the process of assigning functional annotations to the approximately 3,500 structures in the Protein Data Bank that are currently classified as having “unknown function”. Using a limited template library of 388 motifs, over 500 promising in silico matches have been identified by ProMOL, among which 65 exceptionally good matches have been identified. The characteristics of the exceptionally good matches are discussed. PMID:25630330

  14. FlyTF: improved annotation and enhanced functionality of the Drosophila transcription factor database

    PubMed Central

    Pfreundt, Ulrike; James, Daniel P.; Tweedie, Susan; Wilson, Derek; Teichmann, Sarah A.; Adryan, Boris

    2010-01-01

    FlyTF (http://www.flytf.org) is a database of computationally predicted and/or experimentally verified site-specific transcription factors (TFs) in the fruit fly Drosophila melanogaster. The manual classification of TFs in the initial version of FlyTF that concentrated primarily on the DNA-binding characteristics of the proteins has now been extended to a more fine-grained annotation of both DNA binding and regulatory properties in the new release. Furthermore, experimental evidence from the literature was classified into a defined vocabulary, and in collaboration with FlyBase, translated into Gene Ontology (GO) annotation. While our GO annotations will also be available through FlyBase as they will be incorporated into the genes’ official GO annotation in the future, the entire evidence used for classification including computational predictions and quotes from the literature can be accessed through FlyTF. The FlyTF website now builds upon the InterMine framework, which provides experimental and computational biologists with powerful search and filter functionality, list management tools and access to genomic information associated with the TFs. PMID:19884132

  15. FlyTF: improved annotation and enhanced functionality of the Drosophila transcription factor database.

    PubMed

    Pfreundt, Ulrike; James, Daniel P; Tweedie, Susan; Wilson, Derek; Teichmann, Sarah A; Adryan, Boris

    2010-01-01

    FlyTF (http://www.flytf.org) is a database of computationally predicted and/or experimentally verified site-specific transcription factors (TFs) in the fruit fly Drosophila melanogaster. The manual classification of TFs in the initial version of FlyTF that concentrated primarily on the DNA-binding characteristics of the proteins has now been extended to a more fine-grained annotation of both DNA binding and regulatory properties in the new release. Furthermore, experimental evidence from the literature was classified into a defined vocabulary, and in collaboration with FlyBase, translated into Gene Ontology (GO) annotation. While our GO annotations will also be available through FlyBase as they will be incorporated into the genes' official GO annotation in the future, the entire evidence used for classification including computational predictions and quotes from the literature can be accessed through FlyTF. The FlyTF website now builds upon the InterMine framework, which provides experimental and computational biologists with powerful search and filter functionality, list management tools and access to genomic information associated with the TFs.

  16. miRDB: an online resource for microRNA target prediction and functional annotations.

    PubMed

    Wong, Nathan; Wang, Xiaowei

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in many physiological and disease processes. One major challenge in miRNA studies is the identification of genes regulated by miRNAs. To this end, we have developed an online resource, miRDB (http://mirdb.org), for miRNA target prediction and functional annotations. Here, we describe recently updated features of miRDB, including 2.1 million predicted gene targets regulated by 6709 miRNAs. In addition to presenting precompiled prediction data, a new feature is the web server interface that allows submission of user-provided sequences for miRNA target prediction. In this way, users have the flexibility to study any custom miRNAs or target genes of interest. Another major update of miRDB is related to functional miRNA annotations. Although thousands of miRNAs have been identified, many of the reported miRNAs are not likely to play active functional roles or may even have been falsely identified as miRNAs from high-throughput studies. To address this issue, we have performed combined computational analyses and literature mining, and identified 568 and 452 functional miRNAs in humans and mice, respectively. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB.

  17. DoriTool: A Bioinformatics Integrative Tool for Post-Association Functional Annotation.

    PubMed

    Martín-Antoniano, Isabel; Alonso, Lola; Madrid, Miguel; López de Maturana, Evangelina; Malats, Núria

    2017-07-13

    The emergence of high-throughput data in biology has increased the need for functional in silico analysis and prompted the development of integrative bioinformatics tools to facilitate the obtainment of biologically meaningful data. In this paper, we present DoriTool, a comprehensive, easy, and friendly pipeline integrating biological data from different functional tools. The tool was designed with the aim to maximize reproducibility and reduce the working time of the researchers, especially of those with limited bioinformatics skills, and to help them with the interpretation of the results. DoriTool is based upon an integrative strategy implemented following a modular design pattern. Using scripts written in Bash, Perl and R, it performs a functional in silico analysis annotation at mutation/variant level, gene level, pathway level and network level by combining up-to-date functional and genomic data and integrating also third-party bioinformatics tools in a pipeline. DoriTool uses GRCh37 human assembly and online mode. DoriTool provides nice visual reports including variant annotation, linkage disequilibrium proxies, gene annotation, gene ontology analysis, expression quantitative trait loci results from Genotype-Tissue Expression (GTEx) and coloured pathways. Here, we also show DoriTool functionalities by applying it to a dataset of 13 variants associated with prostate cancer. Project development, released code libraries, GitHub repository (https://github.com/doritool) and documentation are hosted at https://doritool.github.io/. DoriTool is, to our knowledge, the most complete bioinformatics tool offering functional in silico annotation of variants previously associated with a trait of interest, shedding light on the underlying biology and helping the researchers in the interpretation and discussion of the results. © 2017 S. Karger AG, Basel.

  18. The Saccharomyces Genome Database: Gene Product Annotation of Function, Process, and Component.

    PubMed

    Cherry, J Michael

    2015-12-02

    An ontology is a highly structured form of controlled vocabulary. Each entry in the ontology is commonly called a term. These terms are used when talking about an annotation. However, each term has a definition that, like the definition of a word found within a dictionary, provides the complete usage and detailed explanation of the term. It is critical to consult a term's definition because the distinction between terms can be subtle. The use of ontologies in biology started as a way of unifying communication between scientific communities and to provide a standard dictionary for different topics, including molecular functions, biological processes, mutant phenotypes, chemical properties and structures. The creation of ontology terms and their definitions often requires debate to reach agreement but the result has been a unified descriptive language used to communicate knowledge. In addition to terms and definitions, ontologies require a relationship used to define the type of connection between terms. In an ontology, a term can have more than one parent term, the term above it in an ontology, as well as more than one child, the term below it in the ontology. Many ontologies are used to construct annotations in the Saccharomyces Genome Database (SGD), as in all modern biological databases; however, Gene Ontology (GO), a descriptive system used to categorize gene function, is the most extensively used ontology in SGD annotations. Examples included in this protocol illustrate the structure and features of this ontology.

  19. Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes.

    PubMed

    Casimiro-Soriguer, Carlos S; Muñoz-Mérida, Antonio; Pérez-Pulido, Antonio J

    2017-06-01

    The current cheapening of next-generation sequencing has led to an enormous growth in the number of sequenced genomes and transcriptomes, allowing wet labs to get the sequences from their organisms of study. To make the most of these data, one of the first things that should be done is the functional annotation of the protein-coding genes. But it used to be a slow and tedious step that can involve the characterization of thousands of sequences. Sma3s is an accurate computational tool for annotating proteins in an unattended way. Now, we have developed a completely new version, which includes functionalities that will be of utility for fundamental and applied science. Currently, the results provide functional categories such as biological processes, which become useful for both characterizing particular sequence datasets and comparing results from different projects. But one of the most important implemented innovations is that it has now low computational requirements, and the complete annotation of a simple proteome or transcriptome usually takes around 24 hours in a personal computer. Sma3s has been tested with a large amount of complete proteomes and transcriptomes, and it has demonstrated its potential in health science and other specific projects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gene Expression and Functional Annotation of the Human and Mouse Choroid Plexus Epithelium

    PubMed Central

    Janssen, Sarah F.; van der Spek, Sophie J. F.; ten Brink, Jacoline B.; Essing, Anke H. W.; Gorgels, Theo G. M. F.; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2013-01-01

    Background The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. Methods We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. Results Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. Conclusion Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and

  1. The Protein Information Resource: an integrated public resource of functional annotation of proteins

    PubMed Central

    Wu, Cathy H.; Huang, Hongzhan; Arminski, Leslie; Castro-Alvear, Jorge; Chen, Yongxing; Hu, Zhang-Zhi; Ledley, Robert S.; Lewis, Kali C.; Mewes, Hans-Werner; Orcutt, Bruce C.; Suzek, Baris E.; Tsugita, Akira; Vinayaka, C. R.; Yeh, Lai-Su L.; Zhang, Jian; Barker, Winona C.

    2002-01-01

    The Protein Information Resource (PIR) serves as an integrated public resource of functional annotation of protein data to support genomic/proteomic research and scientific discovery. The PIR, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the PIR-International Protein Sequence Database (PSD), the major annotated protein sequence database in the public domain, containing about 250 000 proteins. To improve protein annotation and the coverage of experimentally validated data, a bibliography submission system is developed for scientists to submit, categorize and retrieve literature information. Comprehensive protein information is available from iProClass, which includes family classification at the superfamily, domain and motif levels, structural and functional features of proteins, as well as cross-references to over 40 biological databases. To provide timely and comprehensive protein data with source attribution, we have introduced a non-redundant reference protein database, PIR-NREF. The database consists of about 800 000 proteins collected from PIR-PSD, SWISS-PROT, TrEMBL, GenPept, RefSeq and PDB, with composite protein names and literature data. To promote database interoperability, we provide XML data distribution and open database schema, and adopt common ontologies. The PIR web site (http://pir.georgetown.edu/) features data mining and sequence analysis tools for information retrieval and functional identification of proteins based on both sequence and annotation information. The PIR databases and other files are also available by FTP (ftp://nbrfa.georgetown.edu/pir_databases). PMID:11752247

  2. Improving functional annotation for industrial microbes: a case study with Pichia pastoris

    PubMed Central

    Dikicioglu, Duygu; Wood, Valerie; Rutherford, Kim M.; McDowall, Mark D.; Oliver, Stephen G.

    2014-01-01

    The research communities studying microbial model organisms, such as Escherichia coli or Saccharomyces cerevisiae, are well served by model organism databases that have extensive functional annotation. However, this is not true of many industrial microbes that are used widely in biotechnology. In this Opinion piece, we use Pichia (Komagataella) pastoris to illustrate the limitations of the available annotation. We consider the resources that can be implemented in the short term both to improve Gene Ontology (GO) annotation coverage based on annotation transfer, and to establish curation pipelines for the literature corpus of this organism. PMID:24929579

  3. Integrated tools for biomolecular sequence-based function prediction as exemplified by the ANNOTATOR software environment.

    PubMed

    Schneider, Georg; Wildpaner, Michael; Sirota, Fernanda L; Maurer-Stroh, Sebastian; Eisenhaber, Birgit; Eisenhaber, Frank

    2010-01-01

    Given the amount of sequence data available today, in silico function prediction, which often includes detecting distant evolutionary relationships, requires sophisticated bioinformatic workflows. The algorithms behind these workflows exhibit complex data structures; they need the ability to spawn subtasks and tend to demand large amounts of resources. Performing sequence analytic tasks by manually invoking individual function prediction algorithms having to transform between differing input and output formats has become increasingly obsolete. After a period of linking individual predictors using ad hoc scripts, a number of integrated platforms are finally emerging. We present the ANNOTATOR software environment as an advanced example of such a platform.

  4. Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics.

    PubMed

    Chen, Wenan; McDonnell, Shannon K; Thibodeau, Stephen N; Tillmans, Lori S; Schaid, Daniel J

    2016-11-01

    Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in identifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities.

  5. CATH FunFHMMer web server: protein functional annotations using functional family assignments.

    PubMed

    Das, Sayoni; Sillitoe, Ian; Lee, David; Lees, Jonathan G; Dawson, Natalie L; Ward, John; Orengo, Christine A

    2015-07-01

    The widening function annotation gap in protein databases and the increasing number and diversity of the proteins being sequenced presents new challenges to protein function prediction methods. Multidomain proteins complicate the protein sequence-structure-function relationship further as new combinations of domains can expand the functional repertoire, creating new proteins and functions. Here, we present the FunFHMMer web server, which provides Gene Ontology (GO) annotations for query protein sequences based on the functional classification of the domain-based CATH-Gene3D resource. Our server also provides valuable information for the prediction of functional sites. The predictive power of FunFHMMer has been validated on a set of 95 proteins where FunFHMMer performs better than BLAST, Pfam and CDD. Recent validation by an independent international competition ranks FunFHMMer as one of the top function prediction methods in predicting GO annotations for both the Biological Process and Molecular Function Ontology. The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer.

  6. Protein function prediction and annotation in an integrated environment powered by web services (AFAWE).

    PubMed

    Jöcker, Anika; Hoffmann, Fabian; Groscurth, Andreas; Schoof, Heiko

    2008-10-15

    Many sequenced genes are mainly annotated through automatic transfer of annotation from similar sequences. Manual comparison of results or intermediate results from different tools can help avoid wrong annotations and give hints to the function of a gene even if none of the automated tools could return any result. AFAWE simplifies the task of manual functional annotation by running different tools and workflows for automatic function prediction and displaying the results in a way that facilitates comparison. Because all programs are executed as web services, AFAWE is easily extensible and can directly query primary databases, thereby always using the most up-to-date data sources. Visual filters help to distinguish trustworthy results from non-significant results. Furthermore, an interface to add detailed manual annotation to each gene is provided, which can be displayed to other users.

  7. GO-FAANG meeting: A gathering on functional annotation of animal genomes

    USDA-ARS?s Scientific Manuscript database

    The FAANG (Functional Annotation of Animal Genomes) Consortium recently held a Gathering On FAANG (GO-FAANG) Workshop in Washington, DC on October 7-8, 2015. This consortium is a grass-roots organization formed to advance the annotation of newly assembled genomes of non-model organisms (www.faang.or...

  8. Identifying functionally important cis-peptide containing segments in proteins and their utility in molecular function annotation.

    PubMed

    Das, Sreetama; Ramakumar, Suryanarayanarao; Pal, Debnath

    2014-12-01

    Cis-peptide embedded segments are rare in proteins but often highlight their important role in molecular function when they do occur. The high evolutionary conservation of these segments illustrates this observation almost universally, although no attempt has been made to systematically use this information for the purpose of function annotation. In the present study, we demonstrate how geometric clustering and level-specific Gene Ontology molecular-function terms (also known as annotations) can be used in a statistically significant manner to identify cis-embedded segments in a protein linked to its molecular function. The present study identifies novel cis-peptide fragments, which are subsequently used for fragment-based function annotation. Annotation recall benchmarks interpreted using the receiver-operator characteristic plot returned an area-under-curve > 0.9, corroborating the utility of the annotation method. In addition, we identified cis-peptide fragments occurring in conjunction with functionally important trans-peptide fragments, providing additional insights into molecular function. We further illustrate the applicability of our method in function annotation where homology-based annotation transfer is not possible. The findings of the present study add to the repertoire of function annotation approaches and also facilitate engineering, design and allied studies around the cis-peptide neighborhood of proteins.

  9. Expression profiling and functional annotation of noncoding genes across 11 distinct organs in rat development

    PubMed Central

    Wen, Zhuo; Chen, Geng; Zhu, Sibo; Zhu, Jinhang; Li, Bin; Song, Yunjie; Li, Suqing; Shi, Leming; Zheng, Yuanting; Li, Menglong

    2016-01-01

    Accumulating evidence suggests that noncoding RNAs (ncRNAs) have important regulatory functions. However, lacking of functional annotations for ncRNAs hampered us from carrying out the subsequent functional or predictive research. Here we dissected the expression profiles of 3,458 rat noncoding genes using rat bodymap RNA-sequencing data consisting of 11 solid organs over four developmental stages (juvenile, adolescent, adult and aged) from both sexes, and conducted a comprehensive analysis of differentially expressed noncoding genes (DEnGs) between various conditions. We then constructed a co-expression network between protein-coding and noncoding genes to infer biological functions of noncoding genes. Modules of interest were linked to online databases including DAVID for functional annotation and pathway analysis. Our results indicated that noncoding genes are functionally enriched through pathways similar to those of protein-coding genes. Terms about development of the immune system were enriched with genes from age-related modules, whereas terms about sexual reproduction were enriched with genes in sex-related modules. We also built connection networks on some significant modules to visualize the interactions and regulatory relationship between protein-coding and noncoding genes. Our study could improve our understanding and facilitate a deeper investigation on organ/age/sex-related regulatory events of noncoding genes, which may lead to a superior preclinical model for drug development and translational medicine. PMID:27934932

  10. Recurrent use of evolutionary importance for functional annotation of proteins based on local structural similarity.

    PubMed

    Kristensen, David M; Chen, Brian Y; Fofanov, Viacheslav Y; Ward, R Matthew; Lisewski, Andreas Martin; Kimmel, Marek; Kavraki, Lydia E; Lichtarge, Olivier

    2006-06-01

    The annotation of protein function has not kept pace with the exponential growth of raw sequence and structure data. An emerging solution to this problem is to identify 3D motifs or templates in protein structures that are necessary and sufficient determinants of function. Here, we demonstrate the recurrent use of evolutionary trace information to construct such 3D templates for enzymes, search for them in other structures, and distinguish true from spurious matches. Serine protease templates built from evolutionarily important residues distinguish between proteases and other proteins nearly as well as the classic Ser-His-Asp catalytic triad. In 53 enzymes spanning 33 distinct functions, an automated pipeline identifies functionally related proteins with an average positive predictive power of 62%, including correct matches to proteins with the same function but with low sequence identity (the average identity for some templates is only 17%). Although these template building, searching, and match classification strategies are not yet optimized, their sequential implementation demonstrates a functional annotation pipeline which does not require experimental information, but only local molecular mimicry among a small number of evolutionarily important residues.

  11. Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2010-12-01

    Rice is the first cereal genome to be completely sequenced. Since the completion of its genome sequencing, considerable progress has been made in multiple areas including the whole genome annotation, gene expression profiling, mutant collection, etc. Here, we summarize the current status of rice genome annotation and review the methodology of assigning biological functions to hundreds of thousands of rice genes as well as discuss the major limitations and the future perspective in rice functional genomics. Available data analysis shows that the rice genome encodes around 32,000 protein-coding genes. Expression analysis revealed at least 31,000 genes with expression evidence from full-length cDNA/EST collection or other transcript profiling. In addition, we have summarized various strategies to generate mutant population including natural, physical, chemical, T-DNA, transposon/retrotransposon or gene silencing based mutagenesis. Currently, more than 1 million of mutants have been generated and 27,551 of them have their flanking sequence tags. To assign biological functions to hundreds of thousands of rice genes, global co-operations are required, various genetic resources should be more easily accessible and diverse data from transcriptomics, proteomics, epigenetics, comparative genomics and bioinformatics should be integrated to better understand the functions of these genes and their regulatory mechanisms.

  12. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology

    PubMed Central

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e − 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e − 14) in GeneRIFs and GOA shows our annotation resource is very reliable. PMID:27635398

  13. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    PubMed

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  14. High-throughput functional annotation and data mining with the Blast2GO suite

    PubMed Central

    Götz, Stefan; García-Gómez, Juan Miguel; Terol, Javier; Williams, Tim D.; Nagaraj, Shivashankar H.; Nueda, María José; Robles, Montserrat; Talón, Manuel; Dopazo, Joaquín; Conesa, Ana

    2008-01-01

    Functional genomics technologies have been widely adopted in the biological research of both model and non-model species. An efficient functional annotation of DNA or protein sequences is a major requirement for the successful application of these approaches as functional information on gene products is often the key to the interpretation of experimental results. Therefore, there is an increasing need for bioinformatics resources which are able to cope with large amount of sequence data, produce valuable annotation results and are easily accessible to laboratories where functional genomics projects are being undertaken. We present the Blast2GO suite as an integrated and biologist-oriented solution for the high-throughput and automatic functional annotation of DNA or protein sequences based on the Gene Ontology vocabulary. The most outstanding Blast2GO features are: (i) the combination of various annotation strategies and tools controlling type and intensity of annotation, (ii) the numerous graphical features such as the interactive GO-graph visualization for gene-set function profiling or descriptive charts, (iii) the general sequence management features and (iv) high-throughput capabilities. We used the Blast2GO framework to carry out a detailed analysis of annotation behaviour through homology transfer and its impact in functional genomics research. Our aim is to offer biologists useful information to take into account when addressing the task of functionally characterizing their sequence data. PMID:18445632

  15. High-throughput functional annotation and data mining with the Blast2GO suite.

    PubMed

    Götz, Stefan; García-Gómez, Juan Miguel; Terol, Javier; Williams, Tim D; Nagaraj, Shivashankar H; Nueda, María José; Robles, Montserrat; Talón, Manuel; Dopazo, Joaquín; Conesa, Ana

    2008-06-01

    Functional genomics technologies have been widely adopted in the biological research of both model and non-model species. An efficient functional annotation of DNA or protein sequences is a major requirement for the successful application of these approaches as functional information on gene products is often the key to the interpretation of experimental results. Therefore, there is an increasing need for bioinformatics resources which are able to cope with large amount of sequence data, produce valuable annotation results and are easily accessible to laboratories where functional genomics projects are being undertaken. We present the Blast2GO suite as an integrated and biologist-oriented solution for the high-throughput and automatic functional annotation of DNA or protein sequences based on the Gene Ontology vocabulary. The most outstanding Blast2GO features are: (i) the combination of various annotation strategies and tools controlling type and intensity of annotation, (ii) the numerous graphical features such as the interactive GO-graph visualization for gene-set function profiling or descriptive charts, (iii) the general sequence management features and (iv) high-throughput capabilities. We used the Blast2GO framework to carry out a detailed analysis of annotation behaviour through homology transfer and its impact in functional genomics research. Our aim is to offer biologists useful information to take into account when addressing the task of functionally characterizing their sequence data.

  16. Information theory applied to the sparse gene ontology annotation network to predict novel gene function

    PubMed Central

    Tao, Ying; Li, Jianrong

    2010-01-01

    Motivation Despite advances in the gene annotation process, the functions of a large portion of the gene products remain insufficiently characterized. In addition, the “in silico” prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or function genomics approaches. Results We propose a novel approach, Information Theory-based Semantic Similarity (ITSS), to automatically predict molecular functions of genes based on Gene Ontology annotations. We have demonstrated using a 10-fold cross-validation that the ITSS algorithm obtains prediction accuracies (Precision 97%, Recall 77%) comparable to other machine learning algorithms when applied to similarly dense annotated portions of the GO datasets. In addition, such method can generate highly accurate predictions in sparsely annotated portions of GO, in which previous algorithm failed to do so. As a result, our technique generates an order of magnitude more gene function predictions than previous methods. Further, this paper presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions for an evaluation than generally used cross-validations type of evaluations. By manually assessing a random sample of 100 predictions conducted in a historical roll-back evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43%–58%) can be achieved for the human GO Annotation file dated 2003. Availability The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset are available at http://phenos.bsd.uchicago.edu/mphenogo/prediction_result_2005.txt. PMID:17646340

  17. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    SciTech Connect

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.

  18. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE PAGES

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; ...

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  19. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.

    PubMed

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y; Chen, Jin

    2015-02-14

    Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited. Supplementary information and software are available at http://www.msu.edu/~jinchen/NETSIM .

  20. New in protein structure and function annotation: hotspots, single nucleotide polymorphisms and the 'Deep Web'.

    PubMed

    Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard

    2009-05-01

    The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.

  1. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation

    PubMed Central

    O'Leary, Nuala A.; Wright, Mathew W.; Brister, J. Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M.; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S.; Kodali, Vamsi K.; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M.; Murphy, Michael R.; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H.; Rausch, Daniel; Riddick, Lillian D.; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S.; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E.; Vatsan, Anjana R.; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J.; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D.; Pruitt, Kim D.

    2016-01-01

    The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55 000 organisms (>4800 viruses, >40 000 prokaryotes and >10 000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management. PMID:26553804

  2. Gene Coexpression Network Analysis as a Source of Functional Annotation for Rice Genes

    PubMed Central

    Childs, Kevin L.; Davidson, Rebecca M.; Buell, C. Robin

    2011-01-01

    With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa) gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional annotation of those

  3. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data.

    PubMed

    Lohse, Marc; Nagel, Axel; Herter, Thomas; May, Patrick; Schroda, Michael; Zrenner, Rita; Tohge, Takayuki; Fernie, Alisdair R; Stitt, Mark; Usadel, Björn

    2014-05-01

    Next-generation technologies generate an overwhelming amount of gene sequence data. Efficient annotation tools are required to make these data amenable to functional genomics analyses. The Mercator pipeline automatically assigns functional terms to protein or nucleotide sequences. It uses the MapMan 'BIN' ontology, which is tailored for functional annotation of plant 'omics' data. The classification procedure performs parallel sequence searches against reference databases, compiles the results and computes the most likely MapMan BINs for each query. In the current version, the pipeline relies on manually curated reference classifications originating from the three reference organisms (Arabidopsis, Chlamydomonas, rice), various other plant species that have a reviewed SwissProt annotation, and more than 2000 protein domain and family profiles at InterPro, CDD and KOG. Functional annotations predicted by Mercator achieve accuracies above 90% when benchmarked against manual annotation. In addition to mapping files for direct use in the visualization software MapMan, Mercator provides graphical overview charts, detailed annotation information in a convenient web browser interface and a MapMan-to-GO translation table to export results as GO terms. Mercator is available free of charge via http://mapman.gabipd.org/web/guest/app/Mercator.

  4. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies

    PubMed Central

    Wang, Qian; He, Beixin Julie; Zhao, Hongyu

    2016-01-01

    Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:27058395

  5. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies.

    PubMed

    Lu, Qiongshi; Powles, Ryan Lee; Wang, Qian; He, Beixin Julie; Zhao, Hongyu

    2016-04-01

    Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline.

  6. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    PubMed Central

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  7. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences.

    PubMed

    Huerta-Cepas, Jaime; Szklarczyk, Damian; Forslund, Kristoffer; Cook, Helen; Heller, Davide; Walter, Mathias C; Rattei, Thomas; Mende, Daniel R; Sunagawa, Shinichi; Kuhn, Michael; Jensen, Lars Juhl; von Mering, Christian; Bork, Peer

    2016-01-04

    eggNOG is a public resource that provides Orthologous Groups (OGs) of proteins at different taxonomic levels, each with integrated and summarized functional annotations. Developments since the latest public release include changes to the algorithm for creating OGs across taxonomic levels, making nested groups hierarchically consistent. This allows for a better propagation of functional terms across nested OGs and led to the novel annotation of 95 890 previously uncharacterized OGs, increasing overall annotation coverage from 67% to 72%. The functional annotations of OGs have been expanded to also provide Gene Ontology terms, KEGG pathways and SMART/Pfam domains for each group. Moreover, eggNOG now provides pairwise orthology relationships within OGs based on analysis of phylogenetic trees. We have also incorporated a framework for quickly mapping novel sequences to OGs based on precomputed HMM profiles. Finally, eggNOG version 4.5 incorporates a novel data set spanning 2605 viral OGs, covering 5228 proteins from 352 viral proteomes. All data are accessible for bulk downloading, as a web-service, and through a completely redesigned web interface. The new access points provide faster searches and a number of new browsing and visualization capabilities, facilitating the needs of both experts and less experienced users. eggNOG v4.5 is available at http://eggnog.embl.de.

  8. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    SciTech Connect

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  9. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    PubMed Central

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2009-01-01

    Hypothetical (HyP) and conserved HyP genes account for >30% of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved HyP (9.5%) along with 887 HyP genes (24.4%). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 HyP and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC–MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. One thousand two hundred and twelve of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations. PMID:19293273

  10. Annotator: Post-processing Software for generating function-based signatures from quantitative mass spectrometry

    PubMed Central

    Sylvester, Juliesta E.; Bray, Tyler S.; Kron, Stephen J.

    2012-01-01

    Mass spectrometry is used to investigate global changes in protein abundance in cell lysates. Increasingly powerful methods of data collection have emerged over the past decade, but this has left researchers with the task of sifting through mountains of data for biologically significant results. Often, the end result is a list of proteins with no obvious quantitative relationships to define the larger context of changes in cell behavior. Researchers are often forced to perform a manual analysis from this list or to fall back on a range of disparate tools, which can hinder the communication of results and their reproducibility. To address these methodological problems we developed Annotator, an application that filters validated mass spectrometry data and applies a battery of standardized heuristic and statistical tests to determine significance. To address systems-level interpretations we incorporated UniProt and Gene Ontology keywords as statistical units of analysis, yielding quantitative information about changes in abundance for an entire functional category. This provides a consistent and quantitative method for formulating conclusions about cellular behavior, independent of network models or standard enrichment analyses. Annotator allows for “bottom-up” annotations that are based on experimental data and not inferred by comparison to external or hypothetical models. Annotator was developed as an independent post-processing platform that runs on all common operating systems, thereby providing a useful tool for establishing the inherently dynamic nature of functional annotations, which depend on results from on-going proteomic experiments. Annotator is available for download at http://people.cs.uchicago.edu/~tyler/annotator/annotator_desktop_0.1.tar.gz. PMID:22224429

  11. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    PubMed Central

    Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting

    2016-01-01

    ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181

  12. Structure and functional annotation of hypothetical proteins having putative Rubisco activase function from Vitis vinifera.

    PubMed

    Kumar, Suresh

    2015-01-01

    Rubisco is a very large, complex and one of the most abundant proteins in the world and comprises up to 50% of all soluble protein in plants. The activity of Rubisco, the enzyme that catalyzes CO2 assimilation in photosynthesis, is regulated by Rubisco activase (Rca). In the present study, we searched for hypothetical protein of Vitis vinifera which has putative Rubisco activase function. The Arabidopsis and tobacco Rubisco activase protein sequences were used as seed sequences to search against Vitis vinifera in UniprotKB database. The selected hypothetical proteins of Vitis vinifera were subjected to sequence, structural and functional annotation. Subcellular localization predictions suggested it to be cytoplasmic protein. Homology modelling was used to define the three-dimensional (3D) structure of selected hypothetical proteins of Vitis vinifera. Template search revealed that all the hypothetical proteins share more than 80% sequence identity with structure of green-type Rubisco activase from tobacco, indicating proteins are evolutionary conserved. The homology modelling was generated using SWISS-MODEL. Several quality assessment and validation parameters computed indicated that homology models are reliable. Further, functional annotation through PFAM, CATH, SUPERFAMILY, CDART suggested that selected hypothetical proteins of Vitis vinifera contain ATPase family associated with various cellular activities (AAA) and belong to the AAA+ super family of ring-shaped P-loop containing nucleoside triphosphate hydrolases. This study will lead to research in the optimization of the functionality of Rubisco which has large implication in the improvement of plant productivity and resource use efficiency.

  13. Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)

    NASA Technical Reports Server (NTRS)

    Holley, D. C.; Winger, C. M.; Deroshia, C. W.; Heinold, M. P.; Edgar, D. M.; Kinney, N. E.; Langston, S. E.; Markley, C. L.; Anthony, J. A.

    1981-01-01

    The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations.

  14. Assessing functional annotation transfers with inter-species conserved coexpression: application to Plasmodium falciparum

    PubMed Central

    2010-01-01

    Background Plasmodium falciparum is the main causative agent of malaria. Of the 5 484 predicted genes of P. falciparum, about 57% do not have sufficient sequence similarity to characterized genes in other species to warrant functional assignments. Non-homology methods are thus needed to obtain functional clues for these uncharacterized genes. Gene expression data have been widely used in the recent years to help functional annotation in an intra-species way via the so-called Guilt By Association (GBA) principle. Results We propose a new method that uses gene expression data to assess inter-species annotation transfers. Our approach starts from a set of likely orthologs between a reference species (here S. cerevisiae and D. melanogaster) and a query species (P. falciparum). It aims at identifying clusters of coexpressed genes in the query species whose coexpression has been conserved in the reference species. These conserved clusters of coexpressed genes are then used to assess annotation transfers between genes with low sequence similarity, enabling reliable transfers of annotations from the reference to the query species. The approach was used with transcriptomic data sets of P. falciparum, S. cerevisiae and D. melanogaster, and enabled us to propose with high confidence new/refined annotations for several dozens hypothetical/putative P. falciparum genes. Notably, we revised the annotation of genes involved in ribosomal proteins and ribosome biogenesis and assembly, thus highlighting several potential drug targets. Conclusions Our approach uses both sequence similarity and gene expression data to help inter-species gene annotation transfers. Experiments show that this strategy improves the accuracy achieved when using solely sequence similarity and outperforms the accuracy of the GBA approach. In addition, our experiments with P. falciparum show that it can infer a function for numerous hypothetical genes. PMID:20078859

  15. GHOSTX: A Fast Sequence Homology Search Tool for Functional Annotation of Metagenomic Data.

    PubMed

    Suzuki, Shuji; Ishida, Takashi; Ohue, Masahito; Kakuta, Masanori; Akiyama, Yutaka

    2017-01-01

    Metagenomic analysis based on whole genome shotgun sequencing data requires fast protein sequence homology searches for predicting the function of proteins coded on metagenome short reads. However, huge amounts of sequence data cause even general homology search analyses using BLASTX to become difficult in terms of computational cost. GHOSTX is a sequence homology search tool specifically developed for functional annotation of metagenome sequences. The tool is more than 160 times faster than BLASTX and has sufficient search sensitivity for metagenomic analysis. Using this tool, user can perform functional annotation of metagenomic data within a short time and infer metabolic pathways within an environment.

  16. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    PubMed

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  17. Comparative Analysis of Chloroplast Genomes: Functional Annotation, Genome-Based Phylogeny, and Deduced Evolutionary Patterns

    PubMed Central

    Rivas, Javier De Las; Lozano, Juan Jose; Ortiz, Angel R.

    2002-01-01

    All protein sequences from 19 complete chloroplast genomes (cpDNA) have been studied using a new computational method able to analyze functional correlations among series of protein sequences contained in complete proteomes. First, all open reading frames (ORFs) from the cpDNAs, comprising a total of 2266 protein sequences, were compared against the 3168 proteins from Synechocystis PCC6803 complete genome to find functionally related orthologous proteins. Additionally, all cpDNA genomes were pairwise compared to find orthologous groups not present in cyanobacteria. Annotations in the cluster of othologous proteins database and CyanoBase were used as reference for the functional assignments. Following this protocol, new functional assignments were made for ORFs of unknown function and for ycfs (hypothetical chloroplast frames), which still lack a functional assignment. Using this information, a matrix of functional relationships was derived from profiles of the presence and/or absence of orthologous proteins; the matrix included 1837 proteins in 277 orthologous clusters. A factor analysis study of this matrix, followed by cluster analysis, allowed us to obtain accurate phylogenetic reconstructions and the detection of genes probably involved in speciation as phylogenetic correlates. Finally, by grouping common evolutionary patterns, we show that it is possible to determine functionally linked protein networks. This has allowed us to suggest putative associations for some unknown ORFs. PMID:11932241

  18. BioBuilder as a database development and functional annotation platform for proteins

    PubMed Central

    Navarro, J Daniel; Talreja, Naveen; Peri, Suraj; Vrushabendra, BM; Rashmi, BP; Padma, N; Surendranath, Vineeth; Jonnalagadda, Chandra Kiran; Kousthub, PS; Deshpande, Nandan; Shanker, K; Pandey, Akhilesh

    2004-01-01

    Background The explosion in biological information creates the need for databases that are easy to develop, easy to maintain and can be easily manipulated by annotators who are most likely to be biologists. However, deployment of scalable and extensible databases is not an easy task and generally requires substantial expertise in database development. Results BioBuilder is a Zope-based software tool that was developed to facilitate intuitive creation of protein databases. Protein data can be entered and annotated through web forms along with the flexibility to add customized annotation features to protein entries. A built-in review system permits a global team of scientists to coordinate their annotation efforts. We have already used BioBuilder to develop Human Protein Reference Database , a comprehensive annotated repository of the human proteome. The data can be exported in the extensible markup language (XML) format, which is rapidly becoming as the standard format for data exchange. Conclusions As the proteomic data for several organisms begins to accumulate, BioBuilder will prove to be an invaluable platform for functional annotation and development of customizable protein centric databases. BioBuilder is open source and is available under the terms of LGPL. PMID:15099404

  19. Biases in the experimental annotations of protein function and their effect on our understanding of protein function space.

    PubMed

    Schnoes, Alexandra M; Ream, David C; Thorman, Alexander W; Babbitt, Patricia C; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the "few articles - many proteins" phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments.

  20. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    PubMed Central

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  1. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms

    PubMed Central

    Chelala, Claude; Khan, Arshad; Lemoine, Nicholas R

    2009-01-01

    Motivation: Design a new computational tool allowing scientists to functionally annotate newly discovered and public domain single nucleotide polymorphisms in order to help in prioritizing targets in further disease studies and large-scale genotyping projects. Summary: SNPnexus database provides functional annotation for both novel and public SNPs. Possible effects on the transcriptome and proteome levels are characterized and reported from five major annotation systems providing the most extensive information on alternative splicing. Additional information on HapMap genotype and allele frequency, overlaps with potential regulatory elements or structural variations as well as related genetic diseases can be also retrieved. The SNPnexus database has a user-friendly web interface, providing single or batch query options using SNP identifiers from dbSNP as well as genomic location on clones, contigs or chromosomes. Therefore, SNPnexus is the only database currently providing a complete set of functional annotations of SNPs in public databases and newly detected from sequencing projects. Hence, we describe SNPnexus, provide details of the query options, the annotation categories as well as biological examples of use. Availability: The SNPnexus database is freely available at http://www.snp-nexus.org. Contact: claude.chelala@cancer.org.uk PMID:19098027

  2. A computational platform to maintain and migrate manual functional annotations for BioCyc databases.

    PubMed

    Walsh, Jesse R; Sen, Taner Z; Dickerson, Julie A

    2014-10-12

    BioCyc databases are an important resource for information on biological pathways and genomic data. Such databases represent the accumulation of biological data, some of which has been manually curated from literature. An essential feature of these databases is the continuing data integration as new knowledge is discovered. As functional annotations are improved, scalable methods are needed for curators to manage annotations without detailed knowledge of the specific design of the BioCyc database. We have developed CycTools, a software tool which allows curators to maintain functional annotations in a model organism database. This tool builds on existing software to improve and simplify annotation data imports of user provided data into BioCyc databases. Additionally, CycTools automatically resolves synonyms and alternate identifiers contained within the database into the appropriate internal identifiers. Automating steps in the manual data entry process can improve curation efforts for major biological databases. The functionality of CycTools is demonstrated by transferring GO term annotations from MaizeCyc to matching proteins in CornCyc, both maize metabolic pathway databases available at MaizeGDB, and by creating strain specific databases for metabolic engineering.

  3. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.

    PubMed

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Fineschi, Silvia; Fini, Alessio; Ferrini, Francesco; Sebastiani, Federico

    2014-01-01

    Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG) resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs) were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences.

  4. RNA-Seq Analysis of Quercus pubescens Leaves: De Novo Transcriptome Assembly, Annotation and Functional Markers Development

    PubMed Central

    Torre, Sara; Tattini, Massimiliano; Brunetti, Cecilia; Fineschi, Silvia; Fini, Alessio; Ferrini, Francesco; Sebastiani, Federico

    2014-01-01

    Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG) resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs) were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences. PMID:25393112

  5. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.

    PubMed

    O'Leary, Nuala A; Wright, Mathew W; Brister, J Rodney; Ciufo, Stacy; Haddad, Diana; McVeigh, Rich; Rajput, Bhanu; Robbertse, Barbara; Smith-White, Brian; Ako-Adjei, Danso; Astashyn, Alexander; Badretdin, Azat; Bao, Yiming; Blinkova, Olga; Brover, Vyacheslav; Chetvernin, Vyacheslav; Choi, Jinna; Cox, Eric; Ermolaeva, Olga; Farrell, Catherine M; Goldfarb, Tamara; Gupta, Tripti; Haft, Daniel; Hatcher, Eneida; Hlavina, Wratko; Joardar, Vinita S; Kodali, Vamsi K; Li, Wenjun; Maglott, Donna; Masterson, Patrick; McGarvey, Kelly M; Murphy, Michael R; O'Neill, Kathleen; Pujar, Shashikant; Rangwala, Sanjida H; Rausch, Daniel; Riddick, Lillian D; Schoch, Conrad; Shkeda, Andrei; Storz, Susan S; Sun, Hanzhen; Thibaud-Nissen, Francoise; Tolstoy, Igor; Tully, Raymond E; Vatsan, Anjana R; Wallin, Craig; Webb, David; Wu, Wendy; Landrum, Melissa J; Kimchi, Avi; Tatusova, Tatiana; DiCuccio, Michael; Kitts, Paul; Murphy, Terence D; Pruitt, Kim D

    2016-01-04

    The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Homology to peptide pattern for annotation of carbohydrate-active enzymes and prediction of function.

    PubMed

    Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L

    2017-04-12

    Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.

  7. Approaching the Functional Annotation of Fungal Virulence Factors Using Cross-Species Genetic Interaction Profiling

    PubMed Central

    Brown, Jessica C. S.; Madhani, Hiten D.

    2012-01-01

    In many human fungal pathogens, genes required for disease remain largely unannotated, limiting the impact of virulence gene discovery efforts. We tested the utility of a cross-species genetic interaction profiling approach to obtain clues to the molecular function of unannotated pathogenicity factors in the human pathogen Cryptococcus neoformans. This approach involves expression of C. neoformans genes of interest in each member of the Saccharomyces cerevisiae gene deletion library, quantification of their impact on growth, and calculation of the cross-species genetic interaction profiles. To develop functional predictions, we computed and analyzed the correlations of these profiles with existing genetic interaction profiles of S. cerevisiae deletion mutants. For C. neoformans LIV7, which has no S. cerevisiae ortholog, this profiling approach predicted an unanticipated role in the Golgi apparatus. Validation studies in C. neoformans demonstrated that Liv7 is a functional Golgi factor where it promotes the suppression of the exposure of a specific immunostimulatory molecule, mannose, on the cell surface, thereby inhibiting phagocytosis. The genetic interaction profile of another pathogenicity gene that lacks an S. cerevisiae ortholog, LIV6, strongly predicted a role in endosome function. This prediction was also supported by studies of the corresponding C. neoformans null mutant. Our results demonstrate the utility of quantitative cross-species genetic interaction profiling for the functional annotation of fungal pathogenicity proteins of unknown function including, surprisingly, those that are not conserved in sequence across fungi. PMID:23300468

  8. Approaching the functional annotation of fungal virulence factors using cross-species genetic interaction profiling.

    PubMed

    Brown, Jessica C S; Madhani, Hiten D

    2012-01-01

    In many human fungal pathogens, genes required for disease remain largely unannotated, limiting the impact of virulence gene discovery efforts. We tested the utility of a cross-species genetic interaction profiling approach to obtain clues to the molecular function of unannotated pathogenicity factors in the human pathogen Cryptococcus neoformans. This approach involves expression of C. neoformans genes of interest in each member of the Saccharomyces cerevisiae gene deletion library, quantification of their impact on growth, and calculation of the cross-species genetic interaction profiles. To develop functional predictions, we computed and analyzed the correlations of these profiles with existing genetic interaction profiles of S. cerevisiae deletion mutants. For C. neoformans LIV7, which has no S. cerevisiae ortholog, this profiling approach predicted an unanticipated role in the Golgi apparatus. Validation studies in C. neoformans demonstrated that Liv7 is a functional Golgi factor where it promotes the suppression of the exposure of a specific immunostimulatory molecule, mannose, on the cell surface, thereby inhibiting phagocytosis. The genetic interaction profile of another pathogenicity gene that lacks an S. cerevisiae ortholog, LIV6, strongly predicted a role in endosome function. This prediction was also supported by studies of the corresponding C. neoformans null mutant. Our results demonstrate the utility of quantitative cross-species genetic interaction profiling for the functional annotation of fungal pathogenicity proteins of unknown function including, surprisingly, those that are not conserved in sequence across fungi.

  9. GeneTools--application for functional annotation and statistical hypothesis testing.

    PubMed

    Beisvag, Vidar; Jünge, Frode K R; Bergum, Hallgeir; Jølsum, Lars; Lydersen, Stian; Günther, Clara-Cecilie; Ramampiaro, Heri; Langaas, Mette; Sandvik, Arne K; Laegreid, Astrid

    2006-10-24

    Modern biology has shifted from "one gene" approaches to methods for genomic-scale analysis like microarray technology, which allow simultaneous measurement of thousands of genes. This has created a need for tools facilitating interpretation of biological data in "batch" mode. However, such tools often leave the investigator with large volumes of apparently unorganized information. To meet this interpretation challenge, gene-set, or cluster testing has become a popular analytical tool. Many gene-set testing methods and software packages are now available, most of which use a variety of statistical tests to assess the genes in a set for biological information. However, the field is still evolving, and there is a great need for "integrated" solutions. GeneTools is a web-service providing access to a database that brings together information from a broad range of resources. The annotation data are updated weekly, guaranteeing that users get data most recently available. Data submitted by the user are stored in the database, where it can easily be updated, shared between users and exported in various formats. GeneTools provides three different tools: i) NMC Annotation Tool, which offers annotations from several databases like UniGene, Entrez Gene, SwissProt and GeneOntology, in both single- and batch search mode. ii) GO Annotator Tool, where users can add new gene ontology (GO) annotations to genes of interest. These user defined GO annotations can be used in further analysis or exported for public distribution. iii) eGOn, a tool for visualization and statistical hypothesis testing of GO category representation. As the first GO tool, eGOn supports hypothesis testing for three different situations (master-target situation, mutually exclusive target-target situation and intersecting target-target situation). An important additional function is an evidence-code filter that allows users, to select the GO annotations for the analysis. GeneTools is the first "all in one

  10. GeneTools – application for functional annotation and statistical hypothesis testing

    PubMed Central

    Beisvag, Vidar; Jünge, Frode KR; Bergum, Hallgeir; Jølsum, Lars; Lydersen, Stian; Günther, Clara-Cecilie; Ramampiaro, Heri; Langaas, Mette; Sandvik, Arne K; Lægreid, Astrid

    2006-01-01

    Background Modern biology has shifted from "one gene" approaches to methods for genomic-scale analysis like microarray technology, which allow simultaneous measurement of thousands of genes. This has created a need for tools facilitating interpretation of biological data in "batch" mode. However, such tools often leave the investigator with large volumes of apparently unorganized information. To meet this interpretation challenge, gene-set, or cluster testing has become a popular analytical tool. Many gene-set testing methods and software packages are now available, most of which use a variety of statistical tests to assess the genes in a set for biological information. However, the field is still evolving, and there is a great need for "integrated" solutions. Results GeneTools is a web-service providing access to a database that brings together information from a broad range of resources. The annotation data are updated weekly, guaranteeing that users get data most recently available. Data submitted by the user are stored in the database, where it can easily be updated, shared between users and exported in various formats. GeneTools provides three different tools: i) NMC Annotation Tool, which offers annotations from several databases like UniGene, Entrez Gene, SwissProt and GeneOntology, in both single- and batch search mode. ii) GO Annotator Tool, where users can add new gene ontology (GO) annotations to genes of interest. These user defined GO annotations can be used in further analysis or exported for public distribution. iii) eGOn, a tool for visualization and statistical hypothesis testing of GO category representation. As the first GO tool, eGOn supports hypothesis testing for three different situations (master-target situation, mutually exclusive target-target situation and intersecting target-target situation). An important additional function is an evidence-code filter that allows users, to select the GO annotations for the analysis. Conclusion Gene

  11. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes.

    PubMed

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R

    2015-09-01

    Human cell adhesion molecules (CAMs) are essential for proper development, modulation, and maintenance of interactions between cells and cell-to-cell (and matrix-to-cell) communication about these interactions. Despite the differential functional significance of these roles, there have been surprisingly few systematic studies to enumerate the universe of CAMs and identify specific CAMs in distinct functions. In this paper, we update and review the set of human genes likely to encode CAMs with searches of databases, literature reviews, and annotations. We describe likely CAMs and functional subclasses, including CAMs that have a primary function in information exchange (iCAMs), CAMs involved in focal adhesions, CAM gene products that are preferentially involved with stereotyped and morphologically identifiable connections between cells (e.g., adherens junctions, gap junctions), and smaller numbers of CAM genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing iCAM binding partners. We also discuss data from genetic and genomic studies of addiction in humans and mouse models to highlight the ways in which CAM variation may contribute to a specific brain-based disorder such as addiction. Specific examples include changes in CAM mRNA splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 and CAM expression in dopamine neurons. © 2015 New York Academy of Sciences.

  12. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis

    PubMed Central

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-01-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or ‘expressology’, thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). PMID:24147765

  13. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    PubMed

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. TheViral MetaGenome Annotation Pipeline(VMGAP):an automated tool for the functional annotation of viral Metagenomic shotgun sequencing data

    PubMed Central

    Lorenzi, Hernan A.; Hoover, Jeff; Inman, Jason; Safford, Todd; Murphy, Sean; Kagan, Leonid; Williamson, Shannon J.

    2011-01-01

    In the past few years, the field of metagenomics has been growing at an accelerated pace, particularly in response to advancements in new sequencing technologies. The large volume of sequence data from novel organisms generated by metagenomic projects has triggered the development of specialized databases and tools focused on particular groups of organisms or data types. Here we describe a pipeline for the functional annotation of viral metagenomic sequence data. The Viral MetaGenome Annotation Pipeline (VMGAP) pipeline takes advantage of a number of specialized databases, such as collections of mobile genetic elements and environmental metagenomes to improve the classification and functional prediction of viral gene products. The pipeline assigns a functional term to each predicted protein sequence following a suite of comprehensive analyses whose results are ranked according to a priority rules hierarchy. Additional annotation is provided in the form of enzyme commission (EC) numbers, GO/MeGO terms and Hidden Markov Models together with supporting evidence. PMID:21886867

  15. Genome-wide functional annotation of Phomopsis longicolla isolate MSPL 10-6.

    PubMed

    Darwish, Omar; Li, Shuxian; Matthews, Benjamin; Alkharouf, Nadim

    2016-06-01

    Phomopsis seed decay of soybean is caused primarily by the seed-borne fungal pathogen Phomopsis longicolla (syn. Diaporthe longicolla). This disease severely decreases soybean seed quality, reduces seedling vigor and stand establishment, and suppresses yield. It is one of the most economically important soybean diseases. In this study we annotated the entire genome of P. longicolla isolate MSPL 10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome-wide functional annotation of a seed borne fungal pathogen in the Diaporthe-Phomopsis complex. The P. longicolla genome annotation will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean-fungal interactions. The genome annotation will also be a valuable resource for the research and agricultural communities. It will aid in the development of new control strategies for this pathogen. The annotations can be found from: http://bioinformatics.towson.edu/phomopsis_longicolla/download.html. NCBI accession number is: AYRD00000000.

  16. Functional modelling of an equine bronchoalveolar lavage fluid proteome provides experimental confirmation and functional annotation of equine genome sequences.

    PubMed

    Bright, L A; Mujahid, N; Nanduri, B; McCarthy, F M; Costa, L R R; Burgess, S C; Swiderski, C E

    2011-08-01

    The equine genome sequence enables the use of high-throughput genomic technologies in equine research, but accurate identification of expressed gene products and interpreting their biological relevance require additional structural and functional genome annotation. Here, we employ the equine genome sequence to identify predicted and known proteins using proteomics and model these proteins into biological pathways, identifying 582 proteins in normal cell-free equine bronchoalveolar lavage fluid (BALF). We improved structural and functional annotation by directly confirming the in vivo expression of 558 (96%) proteins, which were computationally predicted previously, and adding Gene Ontology (GO) annotations for 174 proteins, 108 of which lacked functional annotation. Bronchoalveolar lavage is commonly used to investigate equine respiratory disease, leading us to model the associated proteome and its biological functions. Modelling of protein functions using Ingenuity Pathway Analysis identified carbohydrate metabolism, cell-to-cell signalling, cellular function, inflammatory response, organ morphology, lipid metabolism and cellular movement as key biological processes in normal equine BALF. Comparative modelling of protein functions in normal cell-free bronchoalveolar lavage proteomes from horse, human, and mouse, performed by grouping GO terms sharing common ancestor terms, confirms conservation of functions across species. Ninety-one of 92 human GO categories and 105 of 109 mouse GO categories were conserved in the horse. Our approach confirms the utility of the equine genome sequence to characterize protein networks without antibodies or mRNA quantification, highlights the need for continued structural and functional annotation of the equine genome and provides a framework for equine researchers to aid in the annotation effort.

  17. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.

    PubMed

    Conesa, Ana; Götz, Stefan; García-Gómez, Juan Miguel; Terol, Javier; Talón, Manuel; Robles, Montserrat

    2005-09-15

    We present here Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available. B2G joints in one application GO annotation based on similarity searches with statistical analysis and highlighted visualization on directed acyclic graphs. This tool offers a suitable platform for functional genomics research in non-model species. B2G is an intuitive and interactive desktop application that allows monitoring and comprehension of the whole annotation and analysis process. Blast2GO is freely available via Java Web Start at http://www.blast2go.de. http://www.blast2go.de -> Evaluation.

  18. Functional annotation from the genome sequence of the giant panda.

    PubMed

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  19. AIGO: Towards a unified framework for the Analysis and the Inter-comparison of GO functional annotations

    PubMed Central

    2011-01-01

    Background In response to the rapid growth of available genome sequences, efforts have been made to develop automatic inference methods to functionally characterize them. Pipelines that infer functional annotation are now routinely used to produce new annotations at a genome scale and for a broad variety of species. These pipelines differ widely in their inference algorithms, confidence thresholds and data sources for reasoning. This heterogeneity makes a comparison of the relative merits of each approach extremely complex. The evaluation of the quality of the resultant annotations is also challenging given there is often no existing gold-standard against which to evaluate precision and recall. Results In this paper, we present a pragmatic approach to the study of functional annotations. An ensemble of 12 metrics, describing various aspects of functional annotations, is defined and implemented in a unified framework, which facilitates their systematic analysis and inter-comparison. The use of this framework is demonstrated on three illustrative examples: analysing the outputs of state-of-the-art inference pipelines, comparing electronic versus manual annotation methods, and monitoring the evolution of publicly available functional annotations. The framework is part of the AIGO library (http://code.google.com/p/aigo) for the Analysis and the Inter-comparison of the products of Gene Ontology (GO) annotation pipelines. The AIGO library also provides functionalities to easily load, analyse, manipulate and compare functional annotations and also to plot and export the results of the analysis in various formats. Conclusions This work is a step toward developing a unified framework for the systematic study of GO functional annotations. This framework has been designed so that new metrics on GO functional annotations can be added in a very straightforward way. PMID:22054122

  20. AIGO: towards a unified framework for the analysis and the inter-comparison of GO functional annotations.

    PubMed

    Defoin-Platel, Michael; Hindle, Matthew M; Lysenko, Artem; Powers, Stephen J; Habash, Dimah Z; Rawlings, Christopher J; Saqi, Mansoor

    2011-11-03

    In response to the rapid growth of available genome sequences, efforts have been made to develop automatic inference methods to functionally characterize them. Pipelines that infer functional annotation are now routinely used to produce new annotations at a genome scale and for a broad variety of species. These pipelines differ widely in their inference algorithms, confidence thresholds and data sources for reasoning. This heterogeneity makes a comparison of the relative merits of each approach extremely complex. The evaluation of the quality of the resultant annotations is also challenging given there is often no existing gold-standard against which to evaluate precision and recall. In this paper, we present a pragmatic approach to the study of functional annotations. An ensemble of 12 metrics, describing various aspects of functional annotations, is defined and implemented in a unified framework, which facilitates their systematic analysis and inter-comparison. The use of this framework is demonstrated on three illustrative examples: analysing the outputs of state-of-the-art inference pipelines, comparing electronic versus manual annotation methods, and monitoring the evolution of publicly available functional annotations. The framework is part of the AIGO library (http://code.google.com/p/aigo) for the Analysis and the Inter-comparison of the products of Gene Ontology (GO) annotation pipelines. The AIGO library also provides functionalities to easily load, analyse, manipulate and compare functional annotations and also to plot and export the results of the analysis in various formats. This work is a step toward developing a unified framework for the systematic study of GO functional annotations. This framework has been designed so that new metrics on GO functional annotations can be added in a very straightforward way.

  1. Disentangling the Effects of Colocalizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci.

    PubMed

    Trynka, Gosia; Westra, Harm-Jan; Slowikowski, Kamil; Hu, Xinli; Xu, Han; Stranger, Barbara E; Klein, Robert J; Han, Buhm; Raychaudhuri, Soumya

    2015-07-02

    Identifying genomic annotations that differentiate causal from trait-associated variants is essential to fine mapping disease loci. Although many studies have identified non-coding functional annotations that overlap disease-associated variants, these annotations often colocalize, complicating the ability to use these annotations for fine mapping causal variation. We developed a statistical approach (Genomic Annotation Shifter [GoShifter]) to assess whether enriched annotations are able to prioritize causal variation. GoShifter defines the null distribution of an annotation overlapping an allele by locally shifting annotations; this approach is less sensitive to biases arising from local genomic structure than commonly used enrichment methods that depend on SNP matching. Local shifting also allows GoShifter to identify independent causal effects from colocalizing annotations. Using GoShifter, we confirmed that variants in expression quantitative trail loci drive gene-expression changes though DNase-I hypersensitive sites (DHSs) near transcription start sites and independently through 3' UTR regulation. We also showed that (1) 15%-36% of trait-associated loci map to DHSs independently of other annotations; (2) loci associated with breast cancer and rheumatoid arthritis harbor potentially causal variants near the summits of histone marks rather than full peak bodies; (3) variants associated with height are highly enriched in embryonic stem cell DHSs; and (4) we can effectively prioritize causal variation at specific loci.

  2. Structural and Functional Annotation of the Porcine Immunome

    USDA-ARS?s Scientific Manuscript database

    The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. H...

  3. The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus

    PubMed Central

    Sayadi, Ahmed; Immonen, Elina; Bayram, Helen

    2016-01-01

    Despite their unparalleled biodiversity, the genomic resources available for beetles (Coleoptera) remain relatively scarce. We present an integrative and high quality annotated transcriptome of the beetle Callosobruchus maculatus, an important and cosmopolitan agricultural pest as well as an emerging model species in ecology and evolutionary biology. Using Illumina sequencing technology, we sequenced 492 million read pairs generated from 51 samples of different developmental stages (larvae, pupae and adults) of C. maculatus. Reads were de novo assembled using the Trinity software, into a single combined assembly as well as into three separate assemblies based on data from the different developmental stages. The combined assembly generated 218,192 transcripts and 145,883 putative genes. Putative genes were annotated with the Blast2GO software and the Trinotate pipeline. In total, 33,216 putative genes were successfully annotated using Blastx against the Nr (non-redundant) database and 13,382 were assigned to 34,100 Gene Ontology (GO) terms. We classified 5,475 putative genes into Clusters of Orthologous Groups (COG) and 116 metabolic pathways maps were predicted based on the annotation. Our analyses suggested that the transcriptional specificity increases with ontogeny. For example, out of 33,216 annotated putative genes, 51 were only expressed in larvae, 63 only in pupae and 171 only in adults. Our study illustrates the importance of including samples from several developmental stages when the aim is to provide an integrative and high quality annotated transcriptome. Our results will represent an invaluable resource for those working with the ecology, evolution and pest control of C. maculatus, as well for comparative studies of the transcriptomics and genomics of beetles more generally. PMID:27442123

  4. The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus.

    PubMed

    Sayadi, Ahmed; Immonen, Elina; Bayram, Helen; Arnqvist, Göran

    2016-01-01

    Despite their unparalleled biodiversity, the genomic resources available for beetles (Coleoptera) remain relatively scarce. We present an integrative and high quality annotated transcriptome of the beetle Callosobruchus maculatus, an important and cosmopolitan agricultural pest as well as an emerging model species in ecology and evolutionary biology. Using Illumina sequencing technology, we sequenced 492 million read pairs generated from 51 samples of different developmental stages (larvae, pupae and adults) of C. maculatus. Reads were de novo assembled using the Trinity software, into a single combined assembly as well as into three separate assemblies based on data from the different developmental stages. The combined assembly generated 218,192 transcripts and 145,883 putative genes. Putative genes were annotated with the Blast2GO software and the Trinotate pipeline. In total, 33,216 putative genes were successfully annotated using Blastx against the Nr (non-redundant) database and 13,382 were assigned to 34,100 Gene Ontology (GO) terms. We classified 5,475 putative genes into Clusters of Orthologous Groups (COG) and 116 metabolic pathways maps were predicted based on the annotation. Our analyses suggested that the transcriptional specificity increases with ontogeny. For example, out of 33,216 annotated putative genes, 51 were only expressed in larvae, 63 only in pupae and 171 only in adults. Our study illustrates the importance of including samples from several developmental stages when the aim is to provide an integrative and high quality annotated transcriptome. Our results will represent an invaluable resource for those working with the ecology, evolution and pest control of C. maculatus, as well for comparative studies of the transcriptomics and genomics of beetles more generally.

  5. SARA: a server for function annotation of RNA structures.

    PubMed

    Capriotti, Emidio; Marti-Renom, Marc A

    2009-07-01

    Recent interest in non-coding RNA transcripts has resulted in a rapid increase of deposited RNA structures in the Protein Data Bank. However, a characterization and functional classification of the RNA structure and function space have only been partially addressed. Here, we introduce the SARA program for pair-wise alignment of RNA structures as a web server for structure-based RNA function assignment. The SARA server relies on the SARA program, which aligns two RNA structures based on a unit-vector root-mean-square approach. The likely accuracy of the SARA alignments is assessed by three different P-values estimating the statistical significance of the sequence, secondary structure and tertiary structure identity scores, respectively. Our benchmarks, which relied on a set of 419 RNA structures with known SCOR structural class, indicate that at a negative logarithm of mean P-value higher or equal than 2.5, SARA can assign the correct or a similar SCOR class to 81.4% and 95.3% of the benchmark set, respectively. The SARA server is freely accessible via the World Wide Web at http://sgu.bioinfo.cipf.es/services/SARA/.

  6. The development of PIPA: an integrated and automated pipeline for genome-wide protein function annotation

    PubMed Central

    Yu, Chenggang; Zavaljevski, Nela; Desai, Valmik; Johnson, Seth; Stevens, Fred J; Reifman, Jaques

    2008-01-01

    Background Automated protein function prediction methods are needed to keep pace with high-throughput sequencing. With the existence of many programs and databases for inferring different protein functions, a pipeline that properly integrates these resources will benefit from the advantages of each method. However, integrated systems usually do not provide mechanisms to generate customized databases to predict particular protein functions. Here, we describe a tool termed PIPA (Pipeline for Protein Annotation) that has these capabilities. Results PIPA annotates protein functions by combining the results of multiple programs and databases, such as InterPro and the Conserved Domains Database, into common Gene Ontology (GO) terms. The major algorithms implemented in PIPA are: (1) a profile database generation algorithm, which generates customized profile databases to predict particular protein functions, (2) an automated ontology mapping generation algorithm, which maps various classification schemes into GO, and (3) a consensus algorithm to reconcile annotations from the integrated programs and databases. PIPA's profile generation algorithm is employed to construct the enzyme profile database CatFam, which predicts catalytic functions described by Enzyme Commission (EC) numbers. Validation tests show that CatFam yields average recall and precision larger than 95.0%. CatFam is integrated with PIPA. We use an association rule mining algorithm to automatically generate mappings between terms of two ontologies from annotated sample proteins. Incorporating the ontologies' hierarchical topology into the algorithm increases the number of generated mappings. In particular, it generates 40.0% additional mappings from the Clusters of Orthologous Groups (COG) to EC numbers and a six-fold increase in mappings from COG to GO terms. The mappings to EC numbers show a very high precision (99.8%) and recall (96.6%), while the mappings to GO terms show moderate precision (80.0%) and

  7. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function.

    PubMed

    Valli, Minoska; Tatto, Nadine E; Peymann, Armin; Gruber, Clemens; Landes, Nils; Ekker, Heinz; Thallinger, Gerhard G; Mattanovich, Diethard; Gasser, Brigitte; Graf, Alexandra B

    2016-09-01

    As manually curated and non-automated BLAST analysis of the published Pichia pastoris genome sequences revealed many differences between the gene annotations of the strains GS115 and CBS7435, RNA-Seq analysis, supported by proteomics, was performed to improve the genome annotation. Detailed analysis of sequence alignment and protein domain predictions were made to extend the functional genome annotation to all P. pastoris sequences. This allowed the identification of 492 new ORFs, 4916 hypothetical UTRs and the correction of 341 incorrect ORF predictions, which were mainly due to the presence of upstream ATG or erroneous intron predictions. Moreover, 175 previously erroneously annotated ORFs need to be removed from the annotation. In total, we have annotated 5325 ORFs. Regarding the functionality of those genes, we improved all gene and protein descriptions. Thereby, the percentage of ORFs with functional annotation was increased from 48% to 73%. Furthermore, we defined functional groups, covering 25 biological cellular processes of interest, by grouping all genes that are part of the defined process. All data are presented in the newly launched genome browser and database available at www.pichiagenome.org In summary, we present a wide spectrum of curation of the P. pastoris genome annotation from gene level to protein function.

  8. Algal Functional Annotation Tool from the DOE-UCLA Institute for Genomics and Proteomics

    DOE Data Explorer

    Lopez, David

    The Algal Functional Annotation Tool is a bioinformatics resource to visualize pathway maps, identify enriched biological terms, or convert gene identifiers to elucidate biological function in silico. These types of analysis have been catered to support lists of gene identifiers, such as those coming from transcriptome gene expression analysis. By analyzing the functional annotation of an interesting set of genes, common biological motifs may be elucidated and a first-pass analysis can point further research in the right direction. Currently, the following databases have been parsed, processed, and added to the tool: 1( Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Database, 2) MetaCyc Encyclopedia of Metabolic Pathways, 3) Panther Pathways Database, 4) Reactome Pathways Database, 5) Gene Ontology, 6) MapMan Ontology, 7) KOG (Eukaryotic Clusters of Orthologous Groups), 5)Pfam, 6) InterPro.

  9. Coordinated international action to accelerate genome-to-phenome with FAANG, The Functional Annotation of Animal Genomes project

    USDA-ARS?s Scientific Manuscript database

    We describe the organization of a nascent international effort - the "Functional Annotation of ANimal Genomes" project - whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species....

  10. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation.

    PubMed

    Charon, Justine; Theil, Sébastien; Nicaise, Valérie; Michon, Thierry

    2016-02-01

    Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs.

  11. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms.

    PubMed

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Nicora, Horacio D Lopez; Caetano-Anollés, Gustavo

    2011-11-08

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  12. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  13. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    SciTech Connect

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk; Hyatt, Doug; Pan, Chongle

    2014-01-01

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accurate comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.

  14. Functional phylogenomics analysis of bacteria and archaea using consistent genome annotation with UniFam

    DOE PAGES

    Chai, Juanjuan; Kora, Guruprasad; Ahn, Tae-Hyuk; ...

    2014-01-01

    To supply some background, phylogenetic studies have provided detailed knowledge on the evolutionary mechanisms of genes and species in Bacteria and Archaea. However, the evolution of cellular functions, represented by metabolic pathways and biological processes, has not been systematically characterized. Many clades in the prokaryotic tree of life have now been covered by sequenced genomes in GenBank. This enables a large-scale functional phylogenomics study of many computationally inferred cellular functions across all sequenced prokaryotes. Our results show a total of 14,727 GenBank prokaryotic genomes were re-annotated using a new protein family database, UniFam, to obtain consistent functional annotations for accuratemore » comparison. The functional profile of a genome was represented by the biological process Gene Ontology (GO) terms in its annotation. The GO term enrichment analysis differentiated the functional profiles between selected archaeal taxa. 706 prokaryotic metabolic pathways were inferred from these genomes using Pathway Tools and MetaCyc. The consistency between the distribution of metabolic pathways in the genomes and the phylogenetic tree of the genomes was measured using parsimony scores and retention indices. The ancestral functional profiles at the internal nodes of the phylogenetic tree were reconstructed to track the gains and losses of metabolic pathways in evolutionary history. In conclusion, our functional phylogenomics analysis shows divergent functional profiles of taxa and clades. Such function-phylogeny correlation stems from a set of clade-specific cellular functions with low parsimony scores. On the other hand, many cellular functions are sparsely dispersed across many clades with high parsimony scores. These different types of cellular functions have distinct evolutionary patterns reconstructed from the prokaryotic tree.« less

  15. In Silico Functional Pathway Annotation of 86 Established Prostate Cancer Risk Variants

    PubMed Central

    Loo, Lenora W. M.; Fong, Aaron Y. W.; Cheng, Iona; Le Marchand, Loïc

    2015-01-01

    Heritability is one of the strongest risk factors of prostate cancer, emphasizing the importance of the genetic contribution towards prostate cancer risk. To date, 86 established prostate cancer risk variants have been identified by genome-wide association studies (GWAS). To determine if these risk variants are located near genes that interact together in biological networks or pathways contributing to prostate cancer initiation or progression, we generated gene sets based on proximity to the 86 prostate cancer risk variants. We took two approaches to generate gene lists. The first strategy included all immediate flanking genes, up- and downstream of the risk variant, regardless of distance from the index variant, and the second strategy included genes closest to the index GWAS marker and to variants in high LD (r2 ≥0.8 in Europeans) with the index variant, within a 100 kb window up- and downstream. Pathway mapping of the two gene sets supported the importance of the androgen receptor-mediated signaling in prostate cancer biology. In addition, the hedgehog and Wnt/β-catenin signaling pathways were identified in pathway mapping for the flanking gene set. We also used the HaploReg resource to examine the 86 risk loci and variants high LD (r2 ≥0.8) for functional elements. We found that there was a 12.8 fold (p = 2.9 x 10-4) enrichment for enhancer motifs in a stem cell line and a 4.4 fold (p = 1.1 x 10-3) enrichment of DNase hypersensitivity in a prostate adenocarcinoma cell line, indicating that the risk and correlated variants are enriched for transcriptional regulatory motifs. Our pathway-based functional annotation of the prostate cancer risk variants highlights the potential regulatory function that GWAS risk markers, and their highly correlated variants, exert on genes. Our study also shows that these genes may function cooperatively in key signaling pathways in prostate cancer biology. PMID:25658610

  16. De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome

    PubMed Central

    Muñoz-Mérida, Antonio; González-Plaza, Juan José; Cañada, Andrés; Blanco, Ana María; García-López, Maria del Carmen; Rodríguez, José Manuel; Pedrola, Laia; Sicardo, M. Dolores; Hernández, M. Luisa; De la Rosa, Raúl; Belaj, Angjelina; Gil-Borja, Mayte; Luque, Francisco; Martínez-Rivas, José Manuel; Pisano, David G.; Trelles, Oswaldo; Valpuesta, Victoriano; Beuzón, Carmen R.

    2013-01-01

    Olive breeding programmes are focused on selecting for traits as short juvenile period, plant architecture suited for mechanical harvest, or oil characteristics, including fatty acid composition, phenolic, and volatile compounds to suit new markets. Understanding the molecular basis of these characteristics and improving the efficiency of such breeding programmes require the development of genomic information and tools. However, despite its economic relevance, genomic information on olive or closely related species is still scarce. We have applied Sanger and 454 pyrosequencing technologies to generate close to 2 million reads from 12 cDNA libraries obtained from the Picual, Arbequina, and Lechin de Sevilla cultivars and seedlings from a segregating progeny of a Picual × Arbequina cross. The libraries include fruit mesocarp and seeds at three relevant developmental stages, young stems and leaves, active juvenile and adult buds as well as dormant buds, and juvenile and adult roots. The reads were assembled by library or tissue and then assembled together into 81 020 unigenes with an average size of 496 bases. Here, we report their assembly and their functional annotation. PMID:23297299

  17. Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome

    PubMed Central

    Bergman, Casey M; Pfeiffer, Barret D; Rincón-Limas, Diego E; Hoskins, Roger A; Gnirke, Andreas; Mungall, Chris J; Wang, Adrienne M; Kronmiller, Brent; Pacleb, Joanne; Park, Soo; Stapleton, Mark; Wan, Kenneth; George, Reed A; de Jong, Pieter J; Botas, Juan; Rubin, Gerald M; Celniker, Susan E

    2002-01-01

    Background It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined. Results We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences. Conclusions Our results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone. PMID:12537575

  18. Report on the 2011 Critical Assessment of Function Annotation (CAFA) meeting

    SciTech Connect

    Friedberg, Iddo

    2015-01-21

    The Critical Assessment of Function Annotation meeting was held July 14-15, 2011 at the Austria Conference Center in Vienna, Austria. There were 73 registered delegates at the meeting. We thank the DOE for this award. It helped us organize and support a scientific meeting AFP 2011 as a special interest group (SIG) meeting associated with the ISMB 2011 conference. The conference was held in Vienna, Austria, in July 2011. The AFP SIG was held on July 15-16, 2011 (immediately preceding the conference). The meeting consisted of two components, the first being a series of talks (invited and contributed) and discussion sections dedicated to protein function research, with an emphasis on the theory and practice of computational methods utilized in functional annotation. The second component provided a large-scale assessment of computational methods through participation in the Critical Assessment of Functional Annotation (CAFA). The meeting was exciting and, based on feedback, quite successful. There were 73 registered participants. The schedule was only slightly different from the one proposed, due to two cancellations. Dr. Olga Troyanskaya has canceled and we invited Dr. David Jones instead. Similarly, instead of Dr. Richard Roberts, Dr. Simon Kasif gave a closing keynote. The remaining invited speakers were Janet Thornton (EBI) and Amos Bairoch (University of Geneva).

  19. Functional annotation and kinetic characterization of PhnO from Salmonella enterica.

    PubMed Central

    Errey, James C.; Blanchard, John S.

    2008-01-01

    Phosphorus is an essential nutrient for all living organisms. Under conditions of inorganic phosphate starvation, genes from the Pho regulon are induced allowing microorganisms to use phosphonates as a source of phosphorus. The phnO gene was previously annotated as a transcriptional regulator of unknown function due to sequence homology with members of the GCN5-related N-acyltransferase family (GNAT). PhnO can now be functionally annotated as an aminoalkylphosphonic acid N-acetyltransferase which is able to acetylate a range of aminoalkylphosphonic acids. Studies revealed that PhnO proceeds via an ordered, sequential kinetic mechanism with acetyl-CoA binding first followed by aminoalkylphosphonate. Attack by the amine on the thioester of AcCoA generates the tetrahedral intermediate that collapses to generate the products. The enzyme also requires a divalent metal ion for activity, which is the first example of this requirement for a GNAT family member. PMID:16503658

  20. Genome-scale phylogenetic function annotation of large and diverse protein families.

    PubMed

    Engelhardt, Barbara E; Jordan, Michael I; Srouji, John R; Brenner, Steven E

    2011-11-01

    The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function prediction. Here we present a revised approach (SIFTER version 2.0) that enables annotations on a genomic scale. SIFTER 2.0 produces equivalently precise predictions compared to the earlier version on a carefully studied family and on a collection of 100 protein families. We have added an approximation method to SIFTER 2.0 and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family. On the Nudix protein family, previously inaccessible to the SIFTER framework because of the 66 possible molecular functions, SIFTER achieved 47.4% accuracy on experimental data (where BLAST achieved 34.0%). Finally, we used SIFTER to annotate all of the Schizosaccharomyces pombe proteins with experimental functional characterizations, based on annotations from proteins in 46 fungal genomes. SIFTER precisely predicted molecular function for 45.5% of the characterized proteins in this genome, as compared with four current function prediction methods that precisely predicted function for 62.6%, 30.6%, 6.0%, and 5.7% of these proteins. We use both precision-recall curves and ROC analyses to compare these genome-scale predictions across the different methods and to assess performance on different types of applications. SIFTER 2.0 is capable of predicting protein molecular function for large and functionally diverse protein families using an approximate statistical model, enabling phylogenetics-based protein function prediction for genome-wide analyses. The code for SIFTER and protein family data are available at http://sifter.berkeley.edu.

  1. Genome-scale phylogenetic function annotation of large and diverse protein families

    PubMed Central

    Engelhardt, Barbara E.; Jordan, Michael I.; Srouji, John R.; Brenner, Steven E.

    2011-01-01

    The Statistical Inference of Function Through Evolutionary Relationships (SIFTER) framework uses a statistical graphical model that applies phylogenetic principles to automate precise protein function prediction. Here we present a revised approach (SIFTER version 2.0) that enables annotations on a genomic scale. SIFTER 2.0 produces equivalently precise predictions compared to the earlier version on a carefully studied family and on a collection of 100 protein families. We have added an approximation method to SIFTER 2.0 and show a 500-fold improvement in speed with minimal impact on prediction results in the functionally diverse sulfotransferase protein family. On the Nudix protein family, previously inaccessible to the SIFTER framework because of the 66 possible molecular functions, SIFTER achieved 47.4% accuracy on experimental data (where BLAST achieved 34.0%). Finally, we used SIFTER to annotate all of the Schizosaccharomyces pombe proteins with experimental functional characterizations, based on annotations from proteins in 46 fungal genomes. SIFTER precisely predicted molecular function for 45.5% of the characterized proteins in this genome, as compared with four current function prediction methods that precisely predicted function for 62.6%, 30.6%, 6.0%, and 5.7% of these proteins. We use both precision-recall curves and ROC analyses to compare these genome-scale predictions across the different methods and to assess performance on different types of applications. SIFTER 2.0 is capable of predicting protein molecular function for large and functionally diverse protein families using an approximate statistical model, enabling phylogenetics-based protein function prediction for genome-wide analyses. The code for SIFTER and protein family data are available at http://sifter.berkeley.edu. PMID:21784873

  2. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function.

    PubMed

    Ramakrishnan, Gayatri; Ochoa-Montaño, Bernardo; Raghavender, Upadhyayula S; Mudgal, Richa; Joshi, Adwait G; Chandra, Nagasuma R; Sowdhamini, Ramanathan; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better

  3. Annotation of plant gene function via combined genomics, metabolomics and informatics.

    PubMed

    Tohge, Takayuki; Fernie, Alisdair R

    2012-06-17

    Given the ever expanding number of model plant species for which complete genome sequences are available and the abundance of bio-resources such as knockout mutants, wild accessions and advanced breeding populations, there is a rising burden for gene functional annotation. In this protocol, annotation of plant gene function using combined co-expression gene analysis, metabolomics and informatics is provided (Figure 1). This approach is based on the theory of using target genes of known function to allow the identification of non-annotated genes likely to be involved in a certain metabolic process, with the identification of target compounds via metabolomics. Strategies are put forward for applying this information on populations generated by both forward and reverse genetics approaches in spite of none of these are effortless. By corollary this approach can also be used as an approach to characterise unknown peaks representing new or specific secondary metabolites in the limited tissues, plant species or stress treatment, which is currently the important trial to understanding plant metabolism.

  4. ORCAN-a web-based meta-server for real-time detection and functional annotation of orthologs.

    PubMed

    Zielezinski, Andrzej; Dziubek, Michal; Sliski, Jan; Karlowski, Wojciech M

    2017-04-15

    ORCAN (ORtholog sCANner) is a web-based meta-server for one-click evolutionary and functional annotation of protein sequences. The server combines information from the most popular orthology-prediction resources, including four tools and four online databases. Functional annotation utilizes five additional comparisons between the query and identified homologs, including: sequence similarity, protein domain architectures, functional motifs, Gene Ontology term assignments and a list of associated articles. Furthermore, the server uses a plurality-based rating system to evaluate the orthology relationships and to rank the reference proteins by their evolutionary and functional relevance to the query. Using a dataset of ∼1 million true yeast orthologs as a sample reference set, we show that combining multiple orthology-prediction tools in ORCAN increases the sensitivity and precision by 1-2 percent points. The service is available for free at http://www.combio.pl/orcan/ . wmk@amu.edu.pl. Supplementary data are available at Bioinformatics online.

  5. Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences

    PubMed Central

    Hughes, Jim R.; Cheng, Jan-Fang; Ventress, Nicki; Prabhakar, Shyam; Clark, Kevin; Anguita, Eduardo; De Gobbi, Marco; de Jong, Pieter; Rubin, Eddy; Higgs, Douglas R.

    2005-01-01

    An important step toward improving the annotation of the human genome is to identify cis-acting regulatory elements from primary DNA sequence. One approach is to compare sequences from multiple, divergent species. This approach distinguishes multispecies conserved sequences (MCS) in noncoding regions from more rapidly evolving neutral DNA. Here, we have analyzed a region of ≈238kb containing the human α globin cluster that was sequenced and/or annotated across the syntenic region in 22 species spanning 500 million years of evolution. Using a variety of bioinformatic approaches and correlating the results with many aspects of chromosome structure and function in this region, we were able to identify and evaluate the importance of 24 individual MCSs. This approach sensitively and accurately identified previously characterized regulatory elements but also discovered unidentified promoters, exons, splicing, and transcriptional regulatory elements. Together, these studies demonstrate an integrated approach by which to identify, subclassify, and predict the potential importance of MCSs. PMID:15998734

  6. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes

    PubMed Central

    Zhong, Xiaoming; Drgonova, Jana; Li, Chuan-Yun; Uhl, George R.

    2015-01-01

    Human cell adhesion molecules (CAMs) are essential both for a) proper development, modulation and maintenance of interactions between cells and for b) cell-to-cell (and matrix-to-cell) communication about these interactions. CAMs are thus key to proper development and plasticity of organs and tissues that include the brain. Despite recognition of the existence of these dual CAM roles and appreciation of the differential functional significance of these roles, there have been surprisingly few systematic studies that have carefully enumerated the universe of CAMs, identified the preferred roles for specific CAMs in distinct types of cellular connections and communication, or related these issues to specific brain disorders or brain circuits. In this paper, we substantially update and review the set of human genes that are likely to encode CAMs based on searches of databases, literature reviews and annotations. We describe the likely CAMs and the functional CAM subclasses into which they fall. These include “iCAMs”, whose contacts largely mediate cell to cell communication, those involved in focal adhesions, CAM genes whose products are preferentially involved with stereotyped and morphologically-identifiable connections between cells (adherens junctions, gap junctions) and smaller numbers of genes in other classes. We discuss a novel proposed mechanism involving selective anchoring of the constituents of iCAM-containing lipid rafts in zones of close neuronal apposition to membranes expressing binding partners of these iCAMs. CAM data from genetic and genomic studies of addiction in humans and mouse models provide examples of the ways in which CAM variation is likely to contribute to a specific brain-based disorder. We discuss how differences in CAM splicing mediated by differences in the addiction-associated splicing regulator RBFOX1/A2BP1 could enrich this picture. CAM expression in dopamine neurons provides one of the ways in which variations in cell adhesion

  7. Bacterial genome annotation.

    PubMed

    Beckloff, Nicholas; Starkenburg, Shawn; Freitas, Tracey; Chain, Patrick

    2012-01-01

    Annotation of prokaryotic sequences can be separated into structural and functional annotation. Structural annotation is dependent on algorithmic interrogation of experimental evidence to discover the physical characteristics of a gene. This is done in an effort to construct accurate gene models, so understanding function or evolution of genes among organisms is not impeded. Functional annotation is dependent on sequence similarity to other known genes or proteins in an effort to assess the function of the gene. Combining structural and functional annotation across genomes in a comparative manner promotes higher levels of accurate annotation as well as an advanced understanding of genome evolution. As the availability of bacterial sequences increases and annotation methods improve, the value of comparative annotation will increase.

  8. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.

    PubMed

    Venner, Eric; Lisewski, Andreas Martin; Erdin, Serkan; Ward, R Matthew; Amin, Shivas R; Lichtarge, Olivier

    2010-12-13

    High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC) levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks.

  9. Annotation inconsistencies beyond sequence similarity-based function prediction - phylogeny and genome structure.

    PubMed

    Promponas, Vasilis J; Iliopoulos, Ioannis; Ouzounis, Christos A

    2015-01-01

    The function annotation process in computational biology has increasingly shifted from the traditional characterization of individual biochemical roles of protein molecules to the system-wide detection of entire metabolic pathways and genomic structures. The so-called genome-aware methods broaden misannotation inconsistencies in genome sequences beyond protein function assignments, encompassing phylogenetic anomalies and artifactual genomic regions. We outline three categories of error propagation in databases by providing striking examples - at various levels of appreciation by the community from traditional to emerging, thus raising awareness for future solutions.

  10. Functional characterization of two M42 aminopeptidases erroneously annotated as cellulases.

    PubMed

    Dutoit, Raphaël; Brandt, Nathalie; Legrain, Christianne; Bauvois, Cédric

    2012-01-01

    Several aminopeptidases of the M42 family have been described as tetrahedral-shaped dodecameric (TET) aminopeptidases. A current hypothesis suggests that these enzymes are involved, along with the tricorn peptidase, in degrading peptides produced by the proteasome. Yet the M42 family remains ill defined, as some members have been annotated as cellulases because of their homology with CelM, formerly described as an endoglucanase of Clostridium thermocellum. Here we describe the catalytic functions and substrate profiles CelM and of TmPep1050, the latter having been annotated as an endoglucanase of Thermotoga maritima. Both enzymes were shown to catalyze hydrolysis of nonpolar aliphatic L-amino acid-pNA substrates, the L-leucine derivative appearing as the best substrate. No significant endoglucanase activity was measured, either for TmPep1050 or CelM. Addition of cobalt ions enhanced the activity of both enzymes significantly, while both the chelating agent EDTA and bestatin, a specific inhibitor of metalloaminopeptidases, proved inhibitory. Our results strongly suggest that one should avoid annotating members of the M42 aminopeptidase family as cellulases. In an updated assessment of the distribution of M42 aminopeptidases, we found TET aminopeptidases to be distributed widely amongst archaea and bacteria. We additionally observed that several phyla lack both TET and tricorn. This suggests that other complexes may act downstream from the proteasome.

  11. On the detection of functionally coherent groups of protein domains with an extension to protein annotation

    PubMed Central

    McLaughlin, William A; Chen, Ken; Hou, Tingjun; Wang, Wei

    2007-01-01

    Background Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation. Results Using a new computational method, we have identified 114 groups of domains, referred to as domain assembly units (DASSEM units), in the proteome of budding yeast Saccharomyces cerevisiae. The units participate in many important cellular processes such as transcription regulation, translation initiation, and mRNA splicing. Within the units the domains were found to function in a cooperative manner; and each domain contributed to a different aspect of the unit's overall function. The member domains of DASSEM units were found to be significantly enriched among proteins contained in transcription modules, defined as genes sharing similar expression profiles and presumably similar functions. The observation further confirmed the functional coherence of DASSEM units. The functional linkages of units were found in both functionally characterized and uncharacterized proteins, which enabled the assessment of protein function based on domain composition. Conclusion A new computational method was developed to identify groups of domains that are linked by a common function in the proteome of Saccharomyces cerevisiae. These groups can either lie within individual proteins or span across different proteins. We propose that the functional linkages among the domains within the DASSEM units can be used as a non-homology based tool to annotate uncharacterized proteins. PMID:17937820

  12. Genome-Wide Functional Annotation of Human Protein-Coding Splice Variants Using Multiple Instance Learning.

    PubMed

    Panwar, Bharat; Menon, Rajasree; Eksi, Ridvan; Li, Hong-Dong; Omenn, Gilbert S; Guan, Yuanfang

    2016-06-03

    The vast majority of human multiexon genes undergo alternative splicing and produce a variety of splice variant transcripts and proteins, which can perform different functions. These protein-coding splice variants (PCSVs) greatly increase the functional diversity of proteins. Most functional annotation algorithms have been developed at the gene level; the lack of isoform-level gold standards is an important intellectual limitation for currently available machine learning algorithms. The accumulation of a large amount of RNA-seq data in the public domain greatly increases our ability to examine the functional annotation of genes at isoform level. In the present study, we used a multiple instance learning (MIL)-based approach for predicting the function of PCSVs. We used transcript-level expression values and gene-level functional associations from the Gene Ontology database. A support vector machine (SVM)-based 5-fold cross-validation technique was applied. Comparatively, genes with multiple PCSVs performed better than single PCSV genes, and performance also improved when more examples were available to train the models. We demonstrated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. All predictions have been implemented in a web resource called "IsoFunc", which is freely available for the global scientific community through http://guanlab.ccmb.med.umich.edu/isofunc .

  13. Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    PubMed Central

    2011-01-01

    Background Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought. Results RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed. Conclusions The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional

  14. Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs).

    PubMed

    Wang, Zhouxi; Yin, Pengcheng; Lee, Joslynn S; Parasuram, Ramya; Somarowthu, Srinivas; Ondrechen, Mary Jo

    2013-01-01

    The prediction of biochemical function from the 3D structure of a protein has proved to be much more difficult than was originally foreseen. A reliable method to test the likelihood of putative annotations and to predict function from structure would add tremendous value to structural genomics data. We report on a new method, Structurally Aligned Local Sites of Activity (SALSA), for the prediction of biochemical function based on a local structural match at the predicted catalytic or binding site. Implementation of the SALSA method is described. For the structural genomics protein PY01515 (PDB ID 2aqw) from Plasmodium yoelii, it is shown that the putative annotation, Orotidine 5'-monophosphate decarboxylase (OMPDC), is most likely correct. SALSA analysis of YP_001304206.1 (PDB ID 3h3l), a putative sugar hydrolase from Parabacteroides distasonis, shows that its active site does not bear close resemblance to any previously characterized member of its superfamily, the Concanavalin A-like lectins/glucanases. It is noted that three residues in the active site of the thermophilic beta-1,4-xylanase from Nonomuraea flexuosa (PDB ID 1m4w), Y78, E87, and E176, overlap with POOL-predicted residues of similar type, Y168, D153, and E232, in YP_001304206.1. The substrate recognition regions of the two proteins are rather different, suggesting that YP_001304206.1 is a new functional type within the superfamily. A structural genomics protein from Mycobacterium avium (PDB ID 3q1t) has been reported to be an enoyl-CoA hydratase (ECH), but SALSA analysis shows a poor match between the predicted residues for the SG protein and those of known ECHs. A better local structural match is obtained with Anabaena beta-diketone hydrolase (ABDH), a known β-diketone hydrolase from Cyanobacterium anabaena (PDB ID 2j5s). This suggests that the reported ECH function of the SG protein is incorrect and that it is more likely a β-diketone hydrolase. A local site match provides a more compelling

  15. Protein function annotation with Structurally Aligned Local Sites of Activity (SALSAs)

    PubMed Central

    2013-01-01

    Background The prediction of biochemical function from the 3D structure of a protein has proved to be much more difficult than was originally foreseen. A reliable method to test the likelihood of putative annotations and to predict function from structure would add tremendous value to structural genomics data. We report on a new method, Structurally Aligned Local Sites of Activity (SALSA), for the prediction of biochemical function based on a local structural match at the predicted catalytic or binding site. Results Implementation of the SALSA method is described. For the structural genomics protein PY01515 (PDB ID 2aqw) from Plasmodium yoelii, it is shown that the putative annotation, Orotidine 5'-monophosphate decarboxylase (OMPDC), is most likely correct. SALSA analysis of YP_001304206.1 (PDB ID 3h3l), a putative sugar hydrolase from Parabacteroides distasonis, shows that its active site does not bear close resemblance to any previously characterized member of its superfamily, the Concanavalin A-like lectins/glucanases. It is noted that three residues in the active site of the thermophilic beta-1,4-xylanase from Nonomuraea flexuosa (PDB ID 1m4w), Y78, E87, and E176, overlap with POOL-predicted residues of similar type, Y168, D153, and E232, in YP_001304206.1. The substrate recognition regions of the two proteins are rather different, suggesting that YP_001304206.1 is a new functional type within the superfamily. A structural genomics protein from Mycobacterium avium (PDB ID 3q1t) has been reported to be an enoyl-CoA hydratase (ECH), but SALSA analysis shows a poor match between the predicted residues for the SG protein and those of known ECHs. A better local structural match is obtained with Anabaena beta-diketone hydrolase (ABDH), a known β-diketone hydrolase from Cyanobacterium anabaena (PDB ID 2j5s). This suggests that the reported ECH function of the SG protein is incorrect and that it is more likely a β-diketone hydrolase. Conclusions A local site match

  16. Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: an important conifer genomic resource

    PubMed Central

    2013-01-01

    Background EST (expressed sequence tag) sequences and their annotation provide a highly valuable resource for gene discovery, genome sequence annotation, and other genomics studies that can be applied in genetics, breeding and conservation programs for non-model organisms. Conifers are long-lived plants that are ecologically and economically important globally, and have a large genome size. Black spruce (Picea mariana), is a transcontinental species of the North American boreal and temperate forests. However, there are limited transcriptomic and genomic resources for this species. The primary objective of our study was to develop a black spruce transcriptomic resource to facilitate on-going functional genomics projects related to growth and adaptation to climate change. Results We conducted bidirectional sequencing of cDNA clones from a standard cDNA library constructed from black spruce needle tissues. We obtained 4,594 high quality (2,455 5' end and 2,139 3' end) sequence reads, with an average read-length of 532 bp. Clustering and assembly of ESTs resulted in 2,731 unique sequences, consisting of 2,234 singletons and 497 contigs. Approximately two-thirds (63%) of unique sequences were functionally annotated. Genes involved in 36 molecular functions and 90 biological processes were discovered, including 24 putative transcription factors and 232 genes involved in photosynthesis. Most abundantly expressed transcripts were associated with photosynthesis, growth factors, stress and disease response, and transcription factors. A total of 216 full-length genes were identified. About 18% (493) of the transcripts were novel, representing an important addition to the Genbank EST database (dbEST). Fifty-seven di-, tri-, tetra- and penta-nucleotide simple sequence repeats were identified. Conclusions We have developed the first high quality EST resource for black spruce and identified 493 novel transcripts, which may be species-specific related to life history and

  17. Generation, functional annotation and comparative analysis of black spruce (Picea mariana) ESTs: an important conifer genomic resource.

    PubMed

    Mann, Ishminder K; Wegrzyn, Jill L; Rajora, Om P

    2013-10-11

    EST (expressed sequence tag) sequences and their annotation provide a highly valuable resource for gene discovery, genome sequence annotation, and other genomics studies that can be applied in genetics, breeding and conservation programs for non-model organisms. Conifers are long-lived plants that are ecologically and economically important globally, and have a large genome size. Black spruce (Picea mariana), is a transcontinental species of the North American boreal and temperate forests. However, there are limited transcriptomic and genomic resources for this species. The primary objective of our study was to develop a black spruce transcriptomic resource to facilitate on-going functional genomics projects related to growth and adaptation to climate change. We conducted bidirectional sequencing of cDNA clones from a standard cDNA library constructed from black spruce needle tissues. We obtained 4,594 high quality (2,455 5' end and 2,139 3' end) sequence reads, with an average read-length of 532 bp. Clustering and assembly of ESTs resulted in 2,731 unique sequences, consisting of 2,234 singletons and 497 contigs. Approximately two-thirds (63%) of unique sequences were functionally annotated. Genes involved in 36 molecular functions and 90 biological processes were discovered, including 24 putative transcription factors and 232 genes involved in photosynthesis. Most abundantly expressed transcripts were associated with photosynthesis, growth factors, stress and disease response, and transcription factors. A total of 216 full-length genes were identified. About 18% (493) of the transcripts were novel, representing an important addition to the Genbank EST database (dbEST). Fifty-seven di-, tri-, tetra- and penta-nucleotide simple sequence repeats were identified. We have developed the first high quality EST resource for black spruce and identified 493 novel transcripts, which may be species-specific related to life history and ecological traits. We have also

  18. M-Finder: Uncovering functionally associated proteins from interactome data integrated with GO annotations

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale. Results We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters. Conclusions M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http

  19. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    PubMed Central

    Seaver, Samuel M. D.; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M. T.; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D.; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D.; Henry, Christopher S.

    2014-01-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today’s annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599

  20. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.

    PubMed

    Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S

    2014-07-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.

  1. BambooGDB: a bamboo genome database with functional annotation and an analysis platform

    PubMed Central

    Zhao, Hansheng; Peng, Zhenhua; Fei, Benhua; Li, Lubin; Hu, Tao; Gao, Zhimin; Jiang, Zehui

    2014-01-01

    Bamboo, as one of the most important non-timber forest products and fastest-growing plants in the world, represents the only major lineage of grasses that is native to forests. Recent success on the first high-quality draft genome sequence of moso bamboo (Phyllostachys edulis) provides new insights on bamboo genetics and evolution. To further extend our understanding on bamboo genome and facilitate future studies on the basis of previous achievements, here we have developed BambooGDB, a bamboo genome database with functional annotation and analysis platform. The de novo sequencing data, together with the full-length complementary DNA and RNA-seq data of moso bamboo composed the main contents of this database. Based on these sequence data, a comprehensively functional annotation for bamboo genome was made. Besides, an analytical platform composed of comparative genomic analysis, protein–protein interactions network, pathway analysis and visualization of genomic data was also constructed. As discovery tools to understand and identify biological mechanisms of bamboo, the platform can be used as a systematic framework for helping and designing experiments for further validation. Moreover, diverse and powerful search tools and a convenient browser were incorporated to facilitate the navigation of these data. As far as we know, this is the first genome database for bamboo. Through integrating high-throughput sequencing data, a full functional annotation and several analysis modules, BambooGDB aims to provide worldwide researchers with a central genomic resource and an extensible analysis platform for bamboo genome. BambooGDB is freely available at http://www.bamboogdb.org/. Database URL: http://www.bamboogdb.org PMID:24602877

  2. BambooGDB: a bamboo genome database with functional annotation and an analysis platform.

    PubMed

    Zhao, Hansheng; Peng, Zhenhua; Fei, Benhua; Li, Lubin; Hu, Tao; Gao, Zhimin; Jiang, Zehui

    2014-01-01

    Bamboo, as one of the most important non-timber forest products and fastest-growing plants in the world, represents the only major lineage of grasses that is native to forests. Recent success on the first high-quality draft genome sequence of moso bamboo (Phyllostachys edulis) provides new insights on bamboo genetics and evolution. To further extend our understanding on bamboo genome and facilitate future studies on the basis of previous achievements, here we have developed BambooGDB, a bamboo genome database with functional annotation and analysis platform. The de novo sequencing data, together with the full-length complementary DNA and RNA-seq data of moso bamboo composed the main contents of this database. Based on these sequence data, a comprehensively functional annotation for bamboo genome was made. Besides, an analytical platform composed of comparative genomic analysis, protein-protein interactions network, pathway analysis and visualization of genomic data was also constructed. As discovery tools to understand and identify biological mechanisms of bamboo, the platform can be used as a systematic framework for helping and designing experiments for further validation. Moreover, diverse and powerful search tools and a convenient browser were incorporated to facilitate the navigation of these data. As far as we know, this is the first genome database for bamboo. Through integrating high-throughput sequencing data, a full functional annotation and several analysis modules, BambooGDB aims to provide worldwide researchers with a central genomic resource and an extensible analysis platform for bamboo genome. BambooGDB is freely available at http://www.bamboogdb.org/. Database URL: http://www.bamboogdb.org.

  3. The SOFG Anatomy Entry List (SAEL): An Annotation Tool for Functional Genomics Data

    PubMed Central

    Parkinson, Helen; Aitken, Stuart; Baldock, Richard A.; Bard, Jonathan B. L.; Burger, Albert; Hayamizu, Terry F.; Rector, Alan; Ringwald, Martin; Rogers, Jeremy; Rosse, Cornelius; Stoeckert, Christian J.

    2004-01-01

    A great deal of data in functional genomics studies needs to be annotated with low-resolution anatomical terms. For example, gene expression assays based on manually dissected samples (microarray, SAGE, etc.) need high-level anatomical terms to describe sample origin. First-pass annotation in high-throughput assays (e.g. large-scale in situ gene expression screens or phenotype screens) and bibliographic applications, such as selection of keywords, would also benefit from a minimum set of standard anatomical terms. Although only simple terms are required, the researcher faces serious practical problems of inconsistency and confusion, given the different aims and the range of complexity of existing anatomy ontologies. A Standards and Ontologies for Functional Genomics (SOFG) group therefore initiated discussions between several of the major anatomical ontologies for higher vertebrates. As we report here, one result of these discussions is a simple, accessible, controlled vocabulary of gross anatomical terms, the SOFG Anatomy Entry List (SAEL). The SAEL is available from http://www.sofg.org and is intended as a resource for biologists, curators, bioinformaticians and developers of software supporting functional genomics. It can be used directly for annotation in the contexts described above. Importantly, each term is linked to the corresponding term in each of the major anatomy ontologies. Where the simple list does not provide enough detail or sophistication, therefore, the researcher can use the SAEL to choose the appropriate ontology and move directly to the relevant term as an entry point. The SAEL links will also be used to support computational access to the respective ontologies. PMID:18629134

  4. TreeQ-VISTA: an interactive tree visualization tool with functional annotation query capabilities.

    PubMed

    Gu, Shengyin; Anderson, Iain; Kunin, Victor; Cipriano, Michael; Minovitsky, Simon; Weber, Gunther; Amenta, Nina; Hamann, Bernd; Dubchak, Inna

    2007-03-15

    We describe a general multiplatform exploratory tool called TreeQ-Vista, designed for presenting functional annotations in a phylogenetic context. Traits, such as phenotypic and genomic properties, are interactively queried from a user-provided relational database with a user-friendly interface which provides a set of tools for users with or without SQL knowledge. The query results are projected onto a phylogenetic tree and can be displayed in multiple color groups. A rich set of browsing, grouping and query tools are provided to facilitate trait exploration, comparison and analysis. The program, detailed tutorial and examples are available online (http:/genome.lbl.gov/vista/TreeQVista).

  5. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    PubMed Central

    Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J.; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J.; Campbell, Michael S.; Cavalier, David; Childs, Kevin L.; Clark, Teresa J.; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L.; Sanjaya; Simpson, Jeffrey P.; TerBush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M.; Hegg, Eric L.; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K.; Ohlrogge, John; Osteryoung, Katherine W.; Shachar-Hill, Yair; Sears, Barbara B.; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  6. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    PubMed

    Vieler, Astrid; Wu, Guangxi; Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J; Campbell, Michael S; Cavalier, David; Childs, Kevin L; Clark, Teresa J; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L; Sanjaya; Simpson, Jeffrey P; Terbush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M; Hegg, Eric L; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K; Ohlrogge, John; Osteryoung, Katherine W; Shachar-Hill, Yair; Sears, Barbara B; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  7. Annotated Videography.

    ERIC Educational Resources Information Center

    United States Holocaust Memorial Museum, Washington, DC.

    This annotated list of 43 videotapes recommended for classroom use addresses various themes for teaching about the Holocaust, including: (1) overviews of the Holocaust; (2) life before the Holocaust; (3) propaganda; (4) racism, anti-Semitism; (5) "enemies of the state"; (6) ghettos; (7) camps; (8) genocide; (9) rescue; (10) resistance;…

  8. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach

    PubMed Central

    2014-01-01

    Background Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. β-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. Results Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. Conclusions BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world. PMID:24773703

  9. Integrating biological knowledge based on functional annotations for biclustering of gene expression data.

    PubMed

    Nepomuceno, Juan A; Troncoso, Alicia; Nepomuceno-Chamorro, Isabel A; Aguilar-Ruiz, Jesús S

    2015-05-01

    Gene expression data analysis is based on the assumption that co-expressed genes imply co-regulated genes. This assumption is being reformulated because the co-expression of a group of genes may be the result of an independent activation with respect to the same experimental condition and not due to the same regulatory regime. For this reason, traditional techniques are recently being improved with the use of prior biological knowledge from open-access repositories together with gene expression data. Biclustering is an unsupervised machine learning technique that searches patterns in gene expression data matrices. A scatter search-based biclustering algorithm that integrates biological information is proposed in this paper. In addition to the gene expression data matrix, the input of the algorithm is only a direct annotation file that relates each gene to a set of terms from a biological repository where genes are annotated. Two different biological measures, FracGO and SimNTO, are proposed to integrate this information by means of its addition to-be-optimized fitness function in the scatter search scheme. The measure FracGO is based on the biological enrichment and SimNTO is based on the overlapping among GO annotations of pairs of genes. Experimental results evaluate the proposed algorithm for two datasets and show the algorithm performs better when biological knowledge is integrated. Moreover, the analysis and comparison between the two different biological measures is presented and it is concluded that the differences depend on both the data source and how the annotation file has been built in the case GO is used. It is also shown that the proposed algorithm obtains a greater number of enriched biclusters than other classical biclustering algorithms typically used as benchmark and an analysis of the overlapping among biclusters reveals that the biclusters obtained present a low overlapping. The proposed methodology is a general-purpose algorithm which allows

  10. miRNAs target databases: developmental methods and target identification techniques with functional annotations.

    PubMed

    Singh, Nagendra Kumar

    2017-06-01

    microRNA (miRNA) regulates diverse biological mechanisms and metabolisms in plants and animals. Thus, the discoveries of miRNA has revolutionized the life sciences and medical research.The miRNA represses and cleaves the targeted mRNA by binding perfect or near perfect or imperfect complementary base pairs by RNA-induced silencing complex (RISC) formation during biogenesis process. One miRNA interacts with one or more mRNA genes and vice versa, hence takes part in causing various diseases. In this paper, the different microRNA target databases and their functional annotations developed by various researchers have been reviewed. The concurrent research review aims at comprehending the significance of miRNA and presenting the existing status of annotated miRNA target resources built by researchers henceforth discovering the knowledge for diagnosis and prognosis. This review discusses the applications and developmental methodologies for constructing target database as well as the utility of user interface design. An integrated architecture is drawn and a graphically comparative study of present status of miRNA targets in diverse diseases and various biological processes is performed. These databases comprise of information such as miRNA target-associated disease, transcription factor binding sites (TFBSs) in miRNA genomic locations, polymorphism in miRNA target, A-to-I edited target, Gene Ontology (GO), genome annotations, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, target expression analysis, TF-miRNA and miRNA-mRNA interaction networks, drugs-targets interactions, etc. miRNA target databases contain diverse experimentally and computationally predicted target through various algorithms. The comparison of various miRNA target database has been performed on various parameters. The computationally predicted target databases suffer from false positive information as there is no common theory for prediction of miRNA targets. The review conclusion emphasizes

  11. Insyght: navigating amongst abundant homologues, syntenies and gene functional annotations in bacteria, it's that symbol!

    PubMed Central

    Lacroix, Thomas; Loux, Valentin; Gendrault, Annie; Hoebeke, Mark; Gibrat, Jean-François

    2014-01-01

    High-throughput techniques have considerably increased the potential of comparative genomics whilst simultaneously posing many new challenges. One of those challenges involves efficiently mining the large amount of data produced and exploring the landscape of both conserved and idiosyncratic genomic regions across multiple genomes. Domains of application of these analyses are diverse: identification of evolutionary events, inference of gene functions, detection of niche-specific genes or phylogenetic profiling. Insyght is a comparative genomic visualization tool that combines three complementary displays: (i) a table for thoroughly browsing amongst homologues, (ii) a comparator of orthologue functional annotations and (iii) a genomic organization view designed to improve the legibility of rearrangements and distinctive loci. The latter display combines symbolic and proportional graphical paradigms. Synchronized navigation across multiple species and interoperability between the views are core features of Insyght. A gene filter mechanism is provided that helps the user to build a biologically relevant gene set according to multiple criteria such as presence/absence of homologues and/or various annotations. We illustrate the use of Insyght with scenarios. Currently, only Bacteria and Archaea are supported. A public instance is available at http://genome.jouy.inra.fr/Insyght. The tool is freely downloadable for private data set analysis. PMID:25249626

  12. Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus.

    PubMed

    Singh, Arjun; Singh, Dushyant P; Tiwari, Rameshwar; Kumar, Kanika; Singh, Ran Vir; Singh, Surender; Prasanna, Radha; Saxena, Anil K; Nain, Lata

    2015-06-01

    Epigeic earthworms can significantly hasten the decomposition of organic matter, which is known to be mediated by gut associated microflora. However, there is scanty information on the abundance and diversity of the gut bacterial flora in different earthworm genera fed with a similar diet, particularly Eisenia foetida and Perionyx excavatus. In this context, 16S rDNA based clonal survey of gut metagenomic DNA was assessed after growth of these two earthworms on lignocellulosic biomass. A set of 67 clonal sequences belonging to E. foetida and 75 to P. excavatus were taxonomically annotated using MG-RAST and RDP pipeline servers. Highest number of sequences were annotated to Proteobacteria (38-44%), followed by unclassified bacteria (14-18%) and Firmicutes (9.3-11%). Comparative analyses revealed significantly higher abundance of Actinobacteria and Firmicutes in the gut of P. excavatus. The functional annotation for the 16S rDNA clonal libraries of both the metagenomes revealed a high abundance of xylan degraders (12.1-24.1%). However, chitin degraders (16.7%), ammonia oxidizers (24.1%) and nitrogen fixers (7.4%) were relatively higher in E. foetida, while in P. excavatus; sulphate reducers and sulphate oxidizers (12.1-29.6%) were more abundant. Lignin degradation was detected in 3.7% clones of E. foetida, while cellulose degraders represented 1.7%. The gut microbiomes showed relative abundance of dehalogenators (17.2-22.2%) and aromatic hydrocarbon degraders (1.7-5.6%), illustrating their role in bioremediation. This study highlights the significance of differences in the inherent microbiome of these two earthworms in shaping the metagenome for effective degradation of different types of biomass under tropical conditions. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. BIOFILTER AS A FUNCTIONAL ANNOTATION PIPELINE FOR COMMON AND RARE COPY NUMBER BURDEN

    PubMed Central

    KIM, DOKYOON; LUCAS, ANASTASIA; GLESSNER, JOSEPH; VERMA, SHEFALI S.; BRADFORD, YUKI; LI, RUOWANG; FRASE, ALEX T.; HAKONARSON, HAKON; PEISSIG, PEGGY; BRILLIANT, MURRAY; RITCHIE, MARYLYN D.

    2015-01-01

    Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy number change, is a meaningful measure of genomic instability to identify the association between global genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to interpret biological meaning based on the accumulation of copy number change across the genome associated with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic regions and subsequently pathways and other gene groups using Biofilter – a bioinformatics tool that aggregates over a dozen publicly available databases of prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait phenotype derived from the electronic health record – total cholesterol. We identified several significant pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation p-value < 0.01). Based on the copy number burden analysis, it follows that the more and larger the copy number changes, the more likely that one or more target genes that influence disease risk and phenotypic severity will be affected. Thus, our study suggests the proposed enrichment pipeline could improve the

  14. BIOFILTER AS A FUNCTIONAL ANNOTATION PIPELINE FOR COMMON AND RARE COPY NUMBER BURDEN.

    PubMed

    Kim, Dokyoon; Lucas, Anastasia; Glessner, Joseph; Verma, Shefali S; Bradford, Yuki; Li, Ruowang; Frase, Alex T; Hakonarson, Hakon; Peissig, Peggy; Brilliant, Murray; Ritchie, Marylyn D

    2016-01-01

    Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy number change, is a meaningful measure of genomic instability to identify the association between global genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to interpret biological meaning based on the accumulation of copy number change across the genome associated with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic regions and subsequently pathways and other gene groups using Biofilter - a bioinformatics tool that aggregates over a dozen publicly available databases of prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait phenotype derived from the electronic health record - total cholesterol. We identified several significant pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation p-value < 0.01). Based on the copy number burden analysis, it follows that the more and larger the copy number changes, the more likely that one or more target genes that influence disease risk and phenotypic severity will be affected. Thus, our study suggests the proposed enrichment pipeline could improve the interpretability of

  15. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    PubMed

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA

  16. Experimental Strategies for Functional Annotation and Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased Panning of Metabolomes

    PubMed Central

    2015-01-01

    The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. We describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of the library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of d-Ala-d-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data. PMID:25540822

  17. Experimental Strategies for Functional Annotation and Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased Panning of Metabolomes

    SciTech Connect

    Vetting, Matthew W.; Al-Obaidi, Nawar; Zhao, Suwen; San Francisco, Brian; Kim, Jungwook; Wichelecki, Daniel J.; Bouvier, Jason T.; Solbiati, Jose O.; Vu, Hoan; Zhang, Xinshuai; Rodionov, Dmitry A.; Love, James D.; Hillerich, Brandan S.; Seidel, Ronald D.; Quinn, Ronald J.; Osterman, Andrei L.; Cronan, John E.; Jacobson, Matthew P.; Gerlt, John A.; Almo, Steven C.

    2014-12-25

    The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. Here in this paper, we describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of the library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of D-Ala-D-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.

  18. Experimental Strategies for Functional Annotation and Metabolism Discovery: Targeted Screening of Solute Binding Proteins and Unbiased Panning of Metabolomes

    DOE PAGES

    Vetting, Matthew W.; Al-Obaidi, Nawar; Zhao, Suwen; ...

    2014-12-25

    The rate at which genome sequencing data is accruing demands enhanced methods for functional annotation and metabolism discovery. Solute binding proteins (SBPs) facilitate the transport of the first reactant in a metabolic pathway, thereby constraining the regions of chemical space and the chemistries that must be considered for pathway reconstruction. Here in this paper, we describe high-throughput protein production and differential scanning fluorimetry platforms, which enabled the screening of 158 SBPs against a 189 component library specifically tailored for this class of proteins. Like all screening efforts, this approach is limited by the practical constraints imposed by construction of themore » library, i.e., we can study only those metabolites that are known to exist and which can be made in sufficient quantities for experimentation. To move beyond these inherent limitations, we illustrate the promise of crystallographic- and mass spectrometric-based approaches for the unbiased use of entire metabolomes as screening libraries. Together, our approaches identified 40 new SBP ligands, generated experiment-based annotations for 2084 SBPs in 71 isofunctional clusters, and defined numerous metabolic pathways, including novel catabolic pathways for the utilization of ethanolamine as sole nitrogen source and the use of D-Ala-D-Ala as sole carbon source. These efforts begin to define an integrated strategy for realizing the full value of amassing genome sequence data.« less

  19. EUCLID: automatic classification of proteins in functional classes by their database annotations.

    PubMed

    Tamames, J; Ouzounis, C; Casari, G; Sander, C; Valencia, A

    1998-01-01

    A tool is described for the automatic classification of sequences in functional classes using their database annotations. The Euclid system is based on a simple learning procedure from examples provided by human experts. Euclid is freely available for academics at http://www.gredos.cnb.uam.es/EUCLID, with the corresponding dictionaries for the generation of three, eight and 14 functional classes. E-mail: valencia@cnb.uam.es The results of the EUCLID classification of different genomes are available at http://www.sander.ebi.ac. uk/genequiz/. A detailed description of the different applications mentioned in the text is available at http://www.gredos.cnb.uam. es/EUCLID/Full_Paper

  20. On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report

    PubMed Central

    Thomas, Paul D.; Wood, Valerie; Mungall, Christopher J.; Lewis, Suzanna E.; Blake, Judith A.

    2012-01-01

    A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the “functional similarity” between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the “ortholog conjecture” (or, more properly, the “ortholog functional conservation hypothesis”). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an “open world assumption” (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the

  1. On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report.

    PubMed

    Thomas, Paul D; Wood, Valerie; Mungall, Christopher J; Lewis, Suzanna E; Blake, Judith A

    2012-01-01

    A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the "functional similarity" between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the "ortholog conjecture" (or, more properly, the "ortholog functional conservation hypothesis"). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an "open world assumption" (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a

  2. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    SciTech Connect

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcine P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2009-03-17

    Hypothetical (HyP) and conserved HyP genes account for >30% of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved HyP (9.5%) along with 887 HyP genes (24.4%). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 HyP and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC–MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. One thousand two hundred and twelve of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes.

  3. GO-FAANG meeting: a Gathering On Functional Annotation of Animal Genomes.

    PubMed

    Tuggle, Christopher K; Giuffra, Elisabetta; White, Stephen N; Clarke, Laura; Zhou, Huaijun; Ross, Pablo J; Acloque, Hervé; Reecy, James M; Archibald, Alan; Bellone, Rebecca R; Boichard, Michèle; Chamberlain, Amanda; Cheng, Hans; Crooijmans, Richard P M A; Delany, Mary E; Finno, Carrie J; Groenen, Martien A M; Hayes, Ben; Lunney, Joan K; Petersen, Jessica L; Plastow, Graham S; Schmidt, Carl J; Song, Jiuzhou; Watson, Mick

    2016-10-01

    The Functional Annotation of Animal Genomes (FAANG) Consortium recently held a Gathering On FAANG (GO-FAANG) Workshop in Washington, DC on October 7-8, 2015. This consortium is a grass-roots organization formed to advance the annotation of newly assembled genomes of domesticated and non-model organisms (www.faang.org). The workshop gathered together from around the world a group of 100+ genome scientists, administrators, representatives of funding agencies and commodity groups to discuss the latest advancements of the consortium, new perspectives, next steps and implementation plans. The workshop was streamed live and recorded, and all talks, along with speaker slide presentations, are available at www.faang.org. In this report, we describe the major activities and outcomes of this meeting. We also provide updates on ongoing efforts to implement discussions and decisions taken at GO-FAANG to guide future FAANG activities. In summary, reference datasets are being established under pilot projects; plans for tissue sets, morphological classification and methods of sample collection for different tissues were organized; and core assays and data and meta-data analysis standards were established.

  4. WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation

    PubMed Central

    2013-01-01

    Background SNPs&GO is a method for the prediction of deleterious Single Amino acid Polymorphisms (SAPs) using protein functional annotation. In this work, we present the web server implementation of SNPs&GO (WS-SNPs&GO). The server is based on Support Vector Machines (SVM) and for a given protein, its input comprises: the sequence and/or its three-dimensional structure (when available), a set of target variations and its functional Gene Ontology (GO) terms. The output of the server provides, for each protein variation, the probabilities to be associated to human diseases. Results The server consists of two main components, including updated versions of the sequence-based SNPs&GO (recently scored as one of the best algorithms for predicting deleterious SAPs) and of the structure-based SNPs&GO3d programs. Sequence and structure based algorithms are extensively tested on a large set of annotated variations extracted from the SwissVar database. Selecting a balanced dataset with more than 38,000 SAPs, the sequence-based approach achieves 81% overall accuracy, 0.61 correlation coefficient and an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.88. For the subset of ~6,600 variations mapped on protein structures available at the Protein Data Bank (PDB), the structure-based method scores with 84% overall accuracy, 0.68 correlation coefficient, and 0.91 AUC. When tested on a new blind set of variations, the results of the server are 79% and 83% overall accuracy for the sequence-based and structure-based inputs, respectively. Conclusions WS-SNPs&GO is a valuable tool that includes in a unique framework information derived from protein sequence, structure, evolutionary profile, and protein function. WS-SNPs&GO is freely available at http://snps.biofold.org/snps-and-go. PMID:23819482

  5. Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions

    PubMed Central

    Deutschbauer, Adam; Price, Morgan N.; Wetmore, Kelly M.; Shao, Wenjun; Baumohl, Jason K.; Xu, Zhuchen; Nguyen, Michelle; Tamse, Raquel; Davis, Ronald W.; Arkin, Adam P.

    2011-01-01

    Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. PMID:22125499

  6. Mining GO annotations for improving annotation consistency.

    PubMed

    Faria, Daniel; Schlicker, Andreas; Pesquita, Catia; Bastos, Hugo; Ferreira, António E N; Albrecht, Mario; Falcão, André O

    2012-01-01

    Despite the structure and objectivity provided by the Gene Ontology (GO), the annotation of proteins is a complex task that is subject to errors and inconsistencies. Electronically inferred annotations in particular are widely considered unreliable. However, given that manual curation of all GO annotations is unfeasible, it is imperative to improve the quality of electronically inferred annotations. In this work, we analyze the full GO molecular function annotation of UniProtKB proteins, and discuss some of the issues that affect their quality, focusing particularly on the lack of annotation consistency. Based on our analysis, we estimate that 64% of the UniProtKB proteins are incompletely annotated, and that inconsistent annotations affect 83% of the protein functions and at least 23% of the proteins. Additionally, we present and evaluate a data mining algorithm, based on the association rule learning methodology, for identifying implicit relationships between molecular function terms. The goal of this algorithm is to assist GO curators in updating GO and correcting and preventing inconsistent annotations. Our algorithm predicted 501 relationships with an estimated precision of 94%, whereas the basic association rule learning methodology predicted 12,352 relationships with a precision below 9%.

  7. WNP: A Novel Algorithm for Gene Products Annotation from Weighted Functional Networks

    PubMed Central

    Magi, Alberto; Tattini, Lorenzo; Benelli, Matteo; Giusti, Betti; Abbate, Rosanna; Ruffo, Stefano

    2012-01-01

    Predicting the biological function of all the genes of an organism is one of the fundamental goals of computational system biology. In the last decade, high-throughput experimental methods for studying the functional interactions between gene products (GPs) have been combined with computational approaches based on Bayesian networks for data integration. The result of these computational approaches is an interaction network with weighted links representing connectivity likelihood between two functionally related GPs. The weighted network generated by these computational approaches can be used to predict annotations for functionally uncharacterized GPs. Here we introduce Weighted Network Predictor (WNP), a novel algorithm for function prediction of biologically uncharacterized GPs. Tests conducted on simulated data show that WNP outperforms other 5 state-of-the-art methods in terms of both specificity and sensitivity and that it is able to better exploit and propagate the functional and topological information of the network. We apply our method to Saccharomyces cerevisiae yeast and Arabidopsis thaliana networks and we predict Gene Ontology function for about 500 and 10000 uncharacterized GPs respectively. PMID:22761703

  8. Functional Annotation of Conserved Hypothetical Proteins from Haemophilus influenzae Rd KW20

    PubMed Central

    Shahbaaz, Mohd; Md. ImtaiyazHassan; Ahmad, Faizan

    2013-01-01

    Haemophilus influenzae is a Gram negative bacterium that belongs to the family Pasteurellaceae, causes bacteremia, pneumonia and acute bacterial meningitis in infants. The emergence of multi-drug resistance H. influenzae strain in clinical isolates demands the development of better/new drugs against this pathogen. Our study combines a number of bioinformatics tools for function predictions of previously not assigned proteins in the genome of H. influenzae. This genome was extensively analyzed and found 1,657 functional proteins in which function of 429 proteins are unknown, termed as hypothetical proteins (HPs). Amino acid sequences of all 429 HPs were extensively annotated and we successfully assigned the function to 296 HPs with high confidence. We also characterized the function of 124 HPs precisely, but with less confidence. We believed that sequence of a protein can be used as a framework to explain known functional properties. Here we have combined the latest versions of protein family databases, protein motifs, intrinsic features from the amino acid sequence, pathway and genome context methods to assign a precise function to hypothetical proteins for which no experimental information is available. We found these HPs belong to various classes of proteins such as enzymes, transporters, carriers, receptors, signal transducers, binding proteins, virulence and other proteins. The outcome of this work will be helpful for a better understanding of the mechanism of pathogenesis and in finding novel therapeutic targets for H. influenzae. PMID:24391926

  9. Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts.

    PubMed

    Roy, Sujoy; Curry, Brandon C; Madahian, Behrouz; Homayouni, Ramin

    2016-10-06

    The amount of scientific information about MicroRNAs (miRNAs) is growing exponentially, making it difficult for researchers to interpret experimental results. In this study, we present an automated text mining approach using Latent Semantic Indexing (LSI) for prioritization, clustering and functional annotation of miRNAs. For approximately 900 human miRNAs indexed in miRBase, text documents were created by concatenating titles and abstracts of MEDLINE citations which refer to the miRNAs. The documents were parsed and a weighted term-by-miRNA frequency matrix was created, which was subsequently factorized via singular value decomposition to extract pair-wise cosine values between the term (keyword) and miRNA vectors in reduced rank semantic space. LSI enables derivation of both explicit and implicit associations between entities based on word usage patterns. Using miR2Disease as a gold standard, we found that LSI identified keyword-to-miRNA relationships with high accuracy. In addition, we demonstrate that pair-wise associations between miRNAs can be used to group them into categories which are functionally aligned. Finally, term ranking by querying the LSI space with a group of miRNAs enabled annotation of the clusters with functionally related terms. LSI modeling of MEDLINE abstracts provides a robust and automated method for miRNA related knowledge discovery. The latest collection of miRNA abstracts and LSI model can be accessed through the web tool miRNA Literature Network (miRLiN) at http://bioinfo.memphis.edu/mirlin .

  10. Parallel-META 2.0: enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization.

    PubMed

    Su, Xiaoquan; Pan, Weihua; Song, Baoxing; Xu, Jian; Ning, Kang

    2014-01-01

    The metagenomic method directly sequences and analyses genome information from microbial communities. The main computational tasks for metagenomic analyses include taxonomical and functional structure analysis for all genomes in a microbial community (also referred to as a metagenomic sample). With the advancement of Next Generation Sequencing (NGS) techniques, the number of metagenomic samples and the data size for each sample are increasing rapidly. Current metagenomic analysis is both data- and computation- intensive, especially when there are many species in a metagenomic sample, and each has a large number of sequences. As such, metagenomic analyses require extensive computational power. The increasing analytical requirements further augment the challenges for computation analysis. In this work, we have proposed Parallel-META 2.0, a metagenomic analysis software package, to cope with such needs for efficient and fast analyses of taxonomical and functional structures for microbial communities. Parallel-META 2.0 is an extended and improved version of Parallel-META 1.0, which enhances the taxonomical analysis using multiple databases, improves computation efficiency by optimized parallel computing, and supports interactive visualization of results in multiple views. Furthermore, it enables functional analysis for metagenomic samples including short-reads assembly, gene prediction and functional annotation. Therefore, it could provide accurate taxonomical and functional analyses of the metagenomic samples in high-throughput manner and on large scale.

  11. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach

    PubMed Central

    Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-01-01

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  12. Towards Functional Annotation of the Preimplantation Transcriptome: An RNAi Screen in Mammalian Embryos

    PubMed Central

    Cui, Wei; Dai, Xiangpeng; Marcho, Chelsea; Han, Zhengbin; Zhang, Kun; Tremblay, Kimberly D.; Mager, Jesse

    2016-01-01

    With readily available transcriptome-wide data, understanding the role of each expressed gene is an essential next step. Although RNAi technologies allow for genome-wide screens in cell culture, these approaches cannot replace strategies for discovery in the embryo. Here we present, for the first time, a knockdown screen in mouse preimplantation embryos. Early mammalian development encompasses dynamic cellular, molecular and epigenetic events that are largely conserved from mouse to man. We assayed 712 genes for requirements during preimplantation. We identified 59 genes required for successful development or outgrowth and implantation. We have characterized each phenotype and revealed cellular, molecular, and lineage specific defects following knockdown of transcript. Induced network analyses demonstrate this as a valid approach to identify networks of genes that play important roles during preimplantation. Our approach provides a robust and efficient strategy towards identification of novel phenotypes during mouse preimplantation and facilitates functional annotation of the mammalian transcriptome. PMID:27869233

  13. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies.

    PubMed

    Schnoes, Alexandra M; Brown, Shoshana D; Dodevski, Igor; Babbitt, Patricia C

    2009-12-01

    Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG) for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families); the two other protein sequence databases (GenBank NR and TrEMBL) and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%-63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with "overprediction" of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation.

  14. Development and Evaluation of an Automated Annotation Pipeline and cDNA Annotation System

    PubMed Central

    Kasukawa, Takeya; Furuno, Masaaki; Nikaido, Itoshi; Bono, Hidemasa; Hume, David A.; Bult, Carol; Hill, David P.; Baldarelli, Richard; Gough, Julian; Kanapin, Alexander; Matsuda, Hideo; Schriml, Lynn M.; Hayashizaki, Yoshihide; Okazaki, Yasushi; Quackenbush, John

    2003-01-01

    Manual curation has long been held to be the “gold standard” for functional annotation of DNA sequence. Our experience with the annotation of more than 20,000 full-length cDNA sequences revealed problems with this approach, including inaccurate and inconsistent assignment of gene names, as well as many good assignments that were difficult to reproduce using only computational methods. For the FANTOM2 annotation of more than 60,000 cDNA clones, we developed a number of methods and tools to circumvent some of these problems, including an automated annotation pipeline that provides high-quality preliminary annotation for each sequence by introducing an “uninformative filter” that eliminates uninformative annotations, controlled vocabularies to accurately reflect both the functional assignments and the evidence supporting them, and a highly refined, Web-based manual annotation tool that allows users to view a wide array of sequence analyses and to assign gene names and putative functions using a consistent nomenclature. The ultimate utility of our approach is reflected in the low rate of reassignment of automated assignments by manual curation. Based on these results, we propose a new standard for large-scale annotation, in which the initial automated annotations are manually investigated and then computational methods are iteratively modified and improved based on the results of manual curation. PMID:12819153

  15. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis.

    PubMed

    Sherman, Brad T; Huang, Da Wei; Tan, Qina; Guo, Yongjian; Bour, Stephan; Liu, David; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A

    2007-11-02

    Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at http://david.abcc.ncifcrf.gov/knowledgebase/.

  16. Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment.

    PubMed

    Shameer, Khader; Tripathi, Lokesh P; Kalari, Krishna R; Dudley, Joel T; Sowdhamini, Ramanathan

    2016-09-01

    Accurate assessment of genetic variation in human DNA sequencing studies remains a nontrivial challenge in clinical genomics and genome informatics. Ascribing functional roles and/or clinical significances to single nucleotide variants identified from a next-generation sequencing study is an important step in genome interpretation. Experimental characterization of all the observed functional variants is yet impractical; thus, the prediction of functional and/or regulatory impacts of the various mutations using in silico approaches is an important step toward the identification of functionally significant or clinically actionable variants. The relationships between genotypes and the expressed phenotypes are multilayered and biologically complex; such relationships present numerous challenges and at the same time offer various opportunities for the design of in silico variant assessment strategies. Over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants in the protein coding regions. In this review, we provide an overview of the bioinformatics resources for the prediction, annotation and visualization of coding single nucleotide variants. We discuss the currently available approaches and major challenges from the perspective of protein sequence, structure, function and interactions that require consideration when interpreting the impact of putatively functional variants. We also discuss the relevance of incorporating integrated workflows for predicting the biomedical impact of the functionally important variations encoded in a genome, exome or transcriptome. Finally, we propose a framework to classify variant assessment approaches and strategies for incorporation of variant assessment within electronic health records. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Functional Annotation Analytics of Bacillus Genomes Reveals Stress Responsive Acetate Utilization and Sulfate Uptake in the Biotechnologically Relevant Bacillus megaterium.

    PubMed

    Williams, Baraka S; Isokpehi, Raphael D; Mbah, Andreas N; Hollman, Antoinesha L; Bernard, Christina O; Simmons, Shaneka S; Ayensu, Wellington K; Garner, Bianca L

    2012-01-01

    Bacillus species form an heterogeneous group of Gram-positive bacteria that include members that are disease-causing, biotechnologically-relevant, and can serve as biological research tools. A common feature of Bacillus species is their ability to survive in harsh environmental conditions by formation of resistant endospores. Genes encoding the universal stress protein (USP) domain confer cellular and organismal survival during unfavorable conditions such as nutrient depletion. As of February 2012, the genome sequences and a variety of functional annotations for at least 123 Bacillus isolates including 45 Bacillus cereus isolates were available in public domain bioinformatics resources. Additionally, the genome sequencing status of 10 of the B. cereus isolates were annotated as finished with each genome encoded 3 USP genes. The conservation of gene neighborhood of the 140 aa universal stress protein in the B. cereus genomes led to the identification of a predicted plasmid-encoded transcriptional unit that includes a USP gene and a sulfate uptake gene in the soil-inhabiting Bacillus megaterium. Gene neighborhood analysis combined with visual analytics of chemical ligand binding sites data provided knowledge-building biological insights on possible cellular functions of B. megaterium universal stress proteins. These functions include sulfate and potassium uptake, acid extrusion, cellular energy-level sensing, survival in high oxygen conditions and acetate utilization. Of particular interest was a two-gene transcriptional unit that consisted of genes for a universal stress protein and a sirtuin Sir2 (deacetylase enzyme for NAD+-dependent acetate utilization). The predicted transcriptional units for stress responsive inorganic sulfate uptake and acetate utilization could explain biological mechanisms for survival of soil-inhabiting Bacillus species in sulfate and acetate limiting conditions. Considering the key role of sirtuins in mammalian physiology additional

  18. Functional Annotation Analytics of Bacillus Genomes Reveals Stress Responsive Acetate Utilization and Sulfate Uptake in the Biotechnologically Relevant Bacillus megaterium

    PubMed Central

    Williams, Baraka S.; Isokpehi, Raphael D.; Mbah, Andreas N.; Hollman, Antoinesha L.; Bernard, Christina O.; Simmons, Shaneka S.; Ayensu, Wellington K.; Garner, Bianca L.

    2012-01-01

    Bacillus species form an heterogeneous group of Gram-positive bacteria that include members that are disease-causing, biotechnologically-relevant, and can serve as biological research tools. A common feature of Bacillus species is their ability to survive in harsh environmental conditions by formation of resistant endospores. Genes encoding the universal stress protein (USP) domain confer cellular and organismal survival during unfavorable conditions such as nutrient depletion. As of February 2012, the genome sequences and a variety of functional annotations for at least 123 Bacillus isolates including 45 Bacillus cereus isolates were available in public domain bioinformatics resources. Additionally, the genome sequencing status of 10 of the B. cereus isolates were annotated as finished with each genome encoded 3 USP genes. The conservation of gene neighborhood of the 140 aa universal stress protein in the B. cereus genomes led to the identification of a predicted plasmid-encoded transcriptional unit that includes a USP gene and a sulfate uptake gene in the soil-inhabiting Bacillus megaterium. Gene neighborhood analysis combined with visual analytics of chemical ligand binding sites data provided knowledge-building biological insights on possible cellular functions of B. megaterium universal stress proteins. These functions include sulfate and potassium uptake, acid extrusion, cellular energy-level sensing, survival in high oxygen conditions and acetate utilization. Of particular interest was a two-gene transcriptional unit that consisted of genes for a universal stress protein and a sirtuin Sir2 (deacetylase enzyme for NAD+-dependent acetate utilization). The predicted transcriptional units for stress responsive inorganic sulfate uptake and acetate utilization could explain biological mechanisms for survival of soil-inhabiting Bacillus species in sulfate and acetate limiting conditions. Considering the key role of sirtuins in mammalian physiology additional

  19. Heterologous expression of plasmodial proteins for structural studies and functional annotation

    PubMed Central

    Birkholtz, Lyn-Marie; Blatch, Gregory; Coetzer, Theresa L; Hoppe, Heinrich C; Human, Esmaré; Morris, Elizabeth J; Ngcete, Zoleka; Oldfield, Lyndon; Roth, Robyn; Shonhai, Addmore; Stephens, Linda; Louw, Abraham I

    2008-01-01

    Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed. PMID:18828893

  20. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization)

    PubMed Central

    2010-01-01

    Background Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. Results In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. Conclusions FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments. PMID:20946597

  1. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization).

    PubMed

    Tjioe, Elina; Berry, Michael W; Homayouni, Ramin

    2010-10-07

    Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments.

  2. Homology modeling and assigned functional annotation of an uncharacterized antitoxin protein from Streptomyces xinghaiensis

    PubMed Central

    Oany, Arafat Rahman; Ahmed, Md Shahabuddin; Jahan, Nasreen; Latif, Md Abdul; Mahmud, Shahin; Hossain, Md. Ahmed; Akter, Fatema; Rakib, Hasibul Haque; Islam, Md. Shariful

    2015-01-01

    Streptomyces xinghaiensis is a Gram-positive, aerobic and non-motile bacterium. The bacterial genome is known. Therefore, it is of interest to study the uncharacterized proteins in the genome. An uncharacterized protein (gi|518540893|86 residues) in the genome was selected for a comprehensive computational sequence-structure-function analysis using available data and tools. Subcellular localization of the targeted protein with conserved residues and assigned secondary structures is documented. Sequence homology search against the protein data bank (PDB) and non-redundant GenBank proteins using BLASTp showed different homologous proteins with known antitoxin function. A homology model of the target protein was developed using a known template (PDB ID: 3CTO:A) with 62% sequence similarity in HHpred after assessment using programs PROCHECK and QMEAN6. The predicted active site using CASTp is analyzed for assigned anti-toxin function. This information finds specific utility in annotating the said uncharacterized protein in the bacterial genome. PMID:26912949

  3. Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences

    PubMed Central

    2012-01-01

    Background The first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced. Results In order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, “Can we uniquely map 8X predicted genes to 12X predicted genes?” The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated. Conclusions The outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm). PMID:22554261

  4. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes

    PubMed Central

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E.; Thomas, Paul D.

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This ‘GO Phylogenetic Annotation’ approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations. Database URL: http://amigo.geneontology.org/amigo PMID:28025345

  5. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  6. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  7. ARC: automated resource classifier for agglomerative functional classification of prokaryotic proteins using annotation texts.

    PubMed

    Gnanamani, Muthiah; Kumar, Naveen; Ramachandran, Srinivasan

    2007-08-01

    Functional classification of proteins is central to comparative genomics. The need for algorithms tuned to enable integrative interpretation of analytical data is felt globally. The availability of a general,automated software with built-in flexibility will significantly aid this activity. We have prepared ARC (Automated Resource Classifier), which is an open source software meeting the user requirements of flexibility. The default classification scheme based on keyword match is agglomerative and directs entries into any of the 7 basic non-overlapping functional classes: Cell wall, Cell membrane and Transporters (C), Cell division (D), Information (I), Translocation (L), Metabolism (M), Stress(R), Signal and communication (S) and 2 ancillary classes: Others (O) and Hypothetical (H). The keyword library of ARC was built serially by first drawing keywords from Bacillus subtilis and Escherichia coli K12. In subsequent steps,this library was further enriched by collecting terms from archaeal representative Archaeoglobus fulgidus, Gene Ontology, and Gene Symbols. ARC is 94.04% successful on 6,75,663 annotated proteins from 348 prokaryotes. Three examples are provided to illuminate the current perspectives on mycobacterial physiology and costs of proteins in 333 prokaryotes. ARC is available at http://arc.igib.res.in.

  8. Comparison of Functional Gene Annotation of Toxascaris leonina and Toxocara canis using CLC Genomics Workbench

    PubMed Central

    Kim, Ki Uk; Park, Sang Kyun; Kang, Shin Ae; Park, Mi Kyung; Cho, Min Kyoung; Jung, Ho-jin; Kim, Kyung-Yun

    2013-01-01

    The ascarids, Toxocara canis and Toxascaris leonina, are probably the most common gastrointestinal helminths encountered in dogs. In order to understand biological differences of 2 ascarids, we analyzed gene expression profiles of female adults of T. canis and T. leonina using CLC Genomics Workbench, and the results were compared with those of free-living nematode Caenorhabditis elegans. A total of 2,880 and 7,949 ESTs were collected from T. leonina and T. canis, respectively. The length of ESTs ranged from 106 to 4,637 bp with an average insert size of 820 bp. Overall, our results showed that most functional gene annotations of 2 ascarids were quite similar to each other in 3 major categories, i.e., cellular component, biological process, and molecular function. Although some different transcript expression categories were found, the distance was short and it was not enough to explain their different lifestyles. However, we found distinguished transcript differences between ascarid parasites and free-living nematodes. Understanding evolutionary genetic changes might be helpful for studies of the lifestyle and evolution of parasites. PMID:24327777

  9. Comparison of functional gene annotation of Toxascaris leonina and Toxocara canis using CLC genomics workbench.

    PubMed

    Kim, Ki Uk; Park, Sang Kyun; Kang, Shin Ae; Park, Mi Kyung; Cho, Min Kyoung; Jung, Ho-Jin; Kim, Kyung-Yun; Yu, Hak Sun

    2013-10-01

    The ascarids, Toxocara canis and Toxascaris leonina, are probably the most common gastrointestinal helminths encountered in dogs. In order to understand biological differences of 2 ascarids, we analyzed gene expression profiles of female adults of T. canis and T. leonina using CLC Genomics Workbench, and the results were compared with those of free-living nematode Caenorhabditis elegans. A total of 2,880 and 7,949 ESTs were collected from T. leonina and T. canis, respectively. The length of ESTs ranged from 106 to 4,637 bp with an average insert size of 820 bp. Overall, our results showed that most functional gene annotations of 2 ascarids were quite similar to each other in 3 major categories, i.e., cellular component, biological process, and molecular function. Although some different transcript expression categories were found, the distance was short and it was not enough to explain their different lifestyles. However, we found distinguished transcript differences between ascarid parasites and free-living nematodes. Understanding evolutionary genetic changes might be helpful for studies of the lifestyle and evolution of parasites.

  10. Functional annotation of proteomic data from chicken heterophils and macrophages induced by carbon nanotube exposure.

    PubMed

    Li, Yun-Ze; Cheng, Chung-Shi; Chen, Chao-Jung; Li, Zi-Lin; Lin, Yao-Tung; Chen, Shuen-Ei; Huang, San-Yuan

    2014-05-12

    With the expanding applications of carbon nanotubes (CNT) in biomedicine and agriculture, questions about the toxicity and biocompatibility of CNT in humans and domestic animals are becoming matters of serious concern. This study used proteomic methods to profile gene expression in chicken macrophages and heterophils in response to CNT exposure. Two-dimensional gel electrophoresis identified 12 proteins in macrophages and 15 in heterophils, with differential expression patterns in response to CNT co-incubation (0, 1, 10, and 100 µg/mL of CNT for 6 h) (p < 0.05). Gene ontology analysis showed that most of the differentially expressed proteins are associated with protein interactions, cellular metabolic processes, and cell mobility, suggesting activation of innate immune functions. Western blot analysis with heat shock protein 70, high mobility group protein, and peptidylprolyl isomerase A confirmed the alterations of the profiled proteins. The functional annotations were further confirmed by effective cell migration, promoted interleukin-1β secretion, and more cell death in both macrophages and heterophils exposed to CNT (p < 0.05). In conclusion, results of this study suggest that CNT exposure affects protein expression, leading to activation of macrophages and heterophils, resulting in altered cytoskeleton remodeling, cell migration, and cytokine production, and thereby mediates tissue immune responses.

  11. Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia

    PubMed Central

    Janssen, Sarah F.; Gorgels, Theo G. M. F.; Bossers, Koen; ten Brink, Jacoline B.; Essing, Anke H. W.; Nagtegaal, Martijn; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2012-01-01

    Purpose The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma. Methods We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity. Results The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (N)PE of 35 genes previously implicated in molecular mechanisms related to glaucoma. Conclusion Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma. PMID:23028713

  12. Comprehensive functional annotation of 18 missense mutations found in suspected hemochromatosis type 4 patients.

    PubMed

    Callebaut, Isabelle; Joubrel, Rozenn; Pissard, Serge; Kannengiesser, Caroline; Gérolami, Victoria; Ged, Cécile; Cadet, Estelle; Cartault, François; Ka, Chandran; Gourlaouen, Isabelle; Gourhant, Lénaick; Oudin, Claire; Goossens, Michel; Grandchamp, Bernard; De Verneuil, Hubert; Rochette, Jacques; Férec, Claude; Le Gac, Gérald

    2014-09-01

    Hemochromatosis type 4 is a rare form of primary iron overload transmitted as an autosomal dominant trait caused by mutations in the gene encoding the iron transport protein ferroportin 1 (SLC40A1). SLC40A1 mutations fall into two functional categories (loss- versus gain-of-function) underlying two distinct clinical entities (hemochromatosis type 4A versus type 4B). However, the vast majority of SLC40A1 mutations are rare missense variations, with only a few showing strong evidence of causality. The present study reports the results of an integrated approach collecting genetic and phenotypic data from 44 suspected hemochromatosis type 4 patients, with comprehensive structural and functional annotations. Causality was demonstrated for 10 missense variants, showing a clear dichotomy between the two hemochromatosis type 4 subtypes. Two subgroups of loss-of-function mutations were distinguished: one impairing cell-surface expression and one altering only iron egress. Additionally, a new gain-of-function mutation was identified, and the degradation of ferroportin on hepcidin binding was shown to probably depend on the integrity of a large extracellular loop outside of the hepcidin-binding domain. Eight further missense variations, on the other hand, were shown to have no discernible effects at either protein or RNA level; these were found in apparently isolated patients and were associated with a less severe phenotype. The present findings illustrate the importance of combining in silico and biochemical approaches to fully distinguish pathogenic SLC40A1 mutations from benign variants. This has profound implications for patient management.

  13. First survey and functional annotation of prohormone and convertase genes in the pig

    PubMed Central

    2012-01-01

    Background The pig is a biomedical model to study human and livestock traits. Many of these traits are controlled by neuropeptides that result from the cleavage of prohormones by prohormone convertases. Only 45 prohormones have been confirmed in the pig. Sequence homology can be ineffective to annotate prohormone genes in sequenced species like the pig due to the multifactorial nature of the prohormone processing. The goal of this study is to undertake the first complete survey of prohormone and prohormone convertases genes in the pig genome. These genes were functionally annotated based on 35 gene expression microarray experiments. The cleavage sites of prohormone sequences into potentially active neuropeptides were predicted. Results We identified 95 unique prohormone genes, 2 alternative calcitonin-related sequences, 8 prohormone convertases and 1 cleavage facilitator in the pig genome 10.2 assembly and trace archives. Of these, 11 pig prohormone genes have not been reported in the UniProt, UniGene or Gene databases. These genes are intermedin, cortistatin, insulin-like 5, orexigenic neuropeptide QRFP, prokineticin 2, prolactin-releasing peptide, parathyroid hormone 2, urocortin, urocortin 2, urocortin 3, and urotensin 2-related peptide. In addition, a novel neuropeptide S was identified in the pig genome correcting the previously reported pig sequence that is identical to the rabbit sequence. Most differentially expressed prohormone genes were under-expressed in pigs experiencing immune challenge relative to the un-challenged controls, in non-pregnant relative to pregnant sows, in old relative to young embryos, and in non-neural relative to neural tissues. The cleavage prediction based on human sequences had the best performance with a correct classification rate of cleaved and non-cleaved sites of 92% suggesting that the processing of prohormones in pigs is similar to humans. The cleavage prediction models did not find conclusive evidence supporting the

  14. A Systematic Bioinformatics Approach to Identify High Quality Mass Spectrometry Data and Functionally Annotate Proteins and Proteomes.

    PubMed

    Islam, Mohammad Tawhidul; Mohamedali, Abidali; Ahn, Seong Beom; Nawar, Ishmam; Baker, Mark S; Ranganathan, Shoba

    2017-01-01

    In the past decade, proteomics and mass spectrometry have taken tremendous strides forward, particularly in the life sciences, spurred on by rapid advances in technology resulting in generation and conglomeration of vast amounts of data. Though this has led to tremendous advancements in biology, the interpretation of the data poses serious challenges for many practitioners due to the immense size and complexity of the data. Furthermore, the lack of annotation means that a potential gold mine of relevant biological information may be hiding within this data. We present here a simple and intuitive workflow for the research community to investigate and mine this data, not only to extract relevant data but also to segregate usable, quality data to develop hypotheses for investigation and validation. We apply an MS evidence workflow for verifying peptides of proteins from one's own data as well as publicly available databases. We then integrate a suite of freely available bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology and biochemical pathways. We also provide an example of the functional annotation of missing proteins in human chromosome 7 data from the NeXtProt database, where no evidence is available at the proteomic, antibody, or structural levels. We give examples of protocols, tools and detailed flowcharts that can be extended or tailored to interpret and annotate the proteome of any novel organism.

  15. GOsummaries: an R Package for Visual Functional Annotation of Experimental Data.

    PubMed

    Kolde, Raivo; Vilo, Jaak

    2015-01-01

    Functional characterisation of gene lists using Gene Ontology (GO) enrichment analysis is a common approach in computational biology, since many analysis methods end up with a list of genes as a result. Often there can be hundreds of functional terms that are significantly associated with a single list of genes and proper interpretation of such results can be a challenging endeavour. There are methods to visualise and aid the interpretation of these results, but most of them are limited to the results associated with one list of genes. However, in practice the number of gene lists can be considerably higher and common tools are not effective in such situations. We introduce a novel R package, 'GOsummaries' that visualises the GO enrichment results as concise word clouds that can be combined together if the number of gene lists is larger. By also adding the graphs of corresponding raw experimental data, GOsummaries can create informative summary plots for various analyses such as differential expression or clustering. The case studies show that the GOsummaries plots allow rapid functional characterisation of complex sets of gene lists. The GOsummaries approach is particularly effective for Principal Component Analysis (PCA). By adding functional annotation to the principal components, GOsummaries improves  significantly the interpretability of PCA results. The GOsummaries layout for PCA can be effective even in situations where we cannot directly apply the GO analysis. For example, in case of metabolomics or metagenomics data it is possible to show the features with significant associations to the components instead of GO terms.   The GOsummaries package is available under GPL-2 licence at Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/GOsummaries.html).

  16. Widowed Persons Service: Selected Annotated Bibliography.

    ERIC Educational Resources Information Center

    Bressler, Dawn, Comp.; And Others

    This document presents an annotated bibliography of books and articles on topics relevant to widowhood. These annotations are included: (1) 21 annotations on the grief process; (2) 11 annotations on personal observations about widowhood; (3) 16 annotations on practical problems surrounding widowhood, including legal and financial problems and job…

  17. Automated annotation of functional imaging experiments via multi-label classification

    PubMed Central

    Turner, Matthew D.; Chakrabarti, Chayan; Jones, Thomas B.; Xu, Jiawei F.; Fox, Peter T.; Luger, George F.; Laird, Angela R.; Turner, Jessica A.

    2013-01-01

    Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text. PMID:24409112

  18. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    PubMed

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  19. Cross-Population Joint Analysis of eQTLs: Fine Mapping and Functional Annotation

    PubMed Central

    Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-01-01

    Mapping expression quantitative trait loci (eQTLs) has been shown as a powerful tool to uncover the genetic underpinnings of many complex traits at molecular level. In this paper, we present an integrative analysis approach that leverages eQTL data collected from multiple population groups. In particular, our approach effectively identifies multiple independent cis-eQTL signals that are consistent across populations, accounting for population heterogeneity in allele frequencies and linkage disequilibrium patterns. Furthermore, by integrating genomic annotations, our analysis framework enables high-resolution functional analysis of eQTLs. We applied our statistical approach to analyze the GEUVADIS data consisting of samples from five population groups. From this analysis, we concluded that i) jointly analysis across population groups greatly improves the power of eQTL discovery and the resolution of fine mapping of causal eQTL ii) many genes harbor multiple independent eQTLs in their cis regions iii) genetic variants that disrupt transcription factor binding are significantly enriched in eQTLs (p-value = 4.93 × 10-22). PMID:25906321

  20. Automated annotation of functional imaging experiments via multi-label classification.

    PubMed

    Turner, Matthew D; Chakrabarti, Chayan; Jones, Thomas B; Xu, Jiawei F; Fox, Peter T; Luger, George F; Laird, Angela R; Turner, Jessica A

    2013-01-01

    Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text.

  1. Cross-population joint analysis of eQTLs: fine mapping and functional annotation.

    PubMed

    Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-04-01

    Mapping expression quantitative trait loci (eQTLs) has been shown as a powerful tool to uncover the genetic underpinnings of many complex traits at molecular level. In this paper, we present an integrative analysis approach that leverages eQTL data collected from multiple population groups. In particular, our approach effectively identifies multiple independent cis-eQTL signals that are consistent across populations, accounting for population heterogeneity in allele frequencies and linkage disequilibrium patterns. Furthermore, by integrating genomic annotations, our analysis framework enables high-resolution functional analysis of eQTLs. We applied our statistical approach to analyze the GEUVADIS data consisting of samples from five population groups. From this analysis, we concluded that i) jointly analysis across population groups greatly improves the power of eQTL discovery and the resolution of fine mapping of causal eQTL ii) many genes harbor multiple independent eQTLs in their cis regions iii) genetic variants that disrupt transcription factor binding are significantly enriched in eQTLs (p-value = 4.93 × 10(-22)).

  2. GenoQuery: a new querying module for functional annotation in a genomic warehouse

    PubMed Central

    Lemoine, Frédéric; Labedan, Bernard; Froidevaux, Christine

    2008-01-01

    Motivation: We have to cope with both a deluge of new genome sequences and a huge amount of data produced by high-throughput approaches used to exploit these genomic features. Crossing and comparing such heterogeneous and disparate data will help improving functional annotation of genomes. This requires designing elaborate integration systems such as warehouses for storing and querying these data. Results: We have designed a relational genomic warehouse with an original multi-layer architecture made of a databases layer and an entities layer. We describe a new querying module, GenoQuery, which is based on this architecture. We use the entities layer to define mixed queries. These mixed queries allow searching for instances of biological entities and their properties in the different databases, without specifying in which database they should be found. Accordingly, we further introduce the central notion of alternative queries. Such queries have the same meaning as the original mixed queries, while exploiting complementarities yielded by the various integrated databases of the warehouse. We explain how GenoQuery computes all the alternative queries of a given mixed query. We illustrate how useful this querying module is by means of a thorough example. Availability: http://www.lri.fr/~lemoine/GenoQuery/ Contact: chris@lri.fr, lemoine@lri.fr PMID:18586731

  3. Cellular Functions of Genetically Imprinted Genes in Human and Mouse as Annotated in the Gene Ontology

    PubMed Central

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1. PMID:23226257

  4. Dynamic multimedia annotation tool

    NASA Astrophysics Data System (ADS)

    Pfund, Thomas; Marchand-Maillet, Stephane

    2001-12-01

    Annotating image collections is crucial for different multimedia applications. Not only this provides an alternative access to visual information but it is a critical step to perform the evaluation of content-based image retrieval systems. Annotation is a tedious task so that there is a real need for developing tools that lighten the work of annotators. The tool should be flexible and offer customization so as to make the annotator the most comfortable. It should also automate the most tasks as possible. In this paper, we present a still image annotation tool that has been developed with the aim of being flexible and adaptive. The principle is to create a set of dynamic web pages that are an interface to a SQL database. The keyword set is fixed and every image receives from concurrent annotators a set of keywords along with time stamps and annotator Ids. Each annotator has the possibility of going back and forth within the collection and its previous annotations. He is helped by a number of search services and customization options. An administrative section allows the supervisor to control the parameter of the annotation, including the keyword set, given via an XML structure. The architecture of the tool is made flexible so as to accommodate further options through its development.

  5. Commonality of functional annotation: a method for prioritization of candidate genes from genome-wide linkage studies†

    PubMed Central

    Shriner, Daniel; Baye, Tesfaye M.; Padilla, Miguel A.; Zhang, Shiju; Vaughan, Laura K.; Loraine, Ann E.

    2008-01-01

    Linkage studies of complex traits frequently yield multiple linkage regions covering hundreds of genes. Testing each candidate gene from every region is prohibitively expensive and computational methods that simplify this process would benefit genetic research. We present a new method based on commonality of functional annotation (CFA) that aids dissection of complex traits for which multiple causal genes act in a single pathway or process. CFA works by testing individual Gene Ontology (GO) terms for enrichment among candidate gene pools, performs multiple hypothesis testing adjustment using an estimate of independent tests based on correlation of GO terms, and then scores and ranks genes annotated with significantly-enriched terms based on the number of quantitative trait loci regions in which genes bearing those annotations appear. We evaluate CFA using simulated linkage data and show that CFA has good power despite being conservative. We apply CFA to published linkage studies investigating age-of-onset of Alzheimer's disease and body mass index and obtain previously known and new candidate genes. CFA provides a new tool for studies in which causal genes are expected to participate in a common pathway or process and can easily be extended to utilize annotation schemes in addition to the GO. PMID:18263617

  6. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  7. Model dielectric function for 2D semiconductors including substrate screening

    PubMed Central

    Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie

    2017-01-01

    Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN. PMID:28117326

  8. Semantic Annotation of Mutable Data

    PubMed Central

    Morris, Robert A.; Dou, Lei; Hanken, James; Kelly, Maureen; Lowery, David B.; Ludäscher, Bertram; Macklin, James A.; Morris, Paul J.

    2013-01-01

    Electronic annotation of scientific data is very similar to annotation of documents. Both types of annotation amplify the original object, add related knowledge to it, and dispute or support assertions in it. In each case, annotation is a framework for discourse about the original object, and, in each case, an annotation needs to clearly identify its scope and its own terminology. However, electronic annotation of data differs from annotation of documents: the content of the annotations, including expectations and supporting evidence, is more often shared among members of networks. Any consequent actions taken by the holders of the annotated data could be shared as well. But even those current annotation systems that admit data as their subject often make it difficult or impossible to annotate at fine-enough granularity to use the results in this way for data quality control. We address these kinds of issues by offering simple extensions to an existing annotation ontology and describe how the results support an interest-based distribution of annotations. We are using the result to design and deploy a platform that supports annotation services overlaid on networks of distributed data, with particular application to data quality control. Our initial instance supports a set of natural science collection metadata services. An important application is the support for data quality control and provision of missing data. A previous proof of concept demonstrated such use based on data annotations modeled with XML-Schema. PMID:24223697

  9. Genome-wide metabolic (re-) annotation of Kluyveromyces lactis

    PubMed Central

    2012-01-01

    Background Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is

  10. Evaluating Computational Gene Ontology Annotations.

    PubMed

    Škunca, Nives; Roberts, Richard J; Steffen, Martin

    2017-01-01

    Two avenues to understanding gene function are complementary and often overlapping: experimental work and computational prediction. While experimental annotation generally produces high-quality annotations, it is low throughput. Conversely, computational annotations have broad coverage, but the quality of annotations may be variable, and therefore evaluating the quality of computational annotations is a critical concern.In this chapter, we provide an overview of strategies to evaluate the quality of computational annotations. First, we discuss why evaluating quality in this setting is not trivial. We highlight the various issues that threaten to bias the evaluation of computational annotations, most of which stem from the incompleteness of biological databases. Second, we discuss solutions that address these issues, for example, targeted selection of new experimental annotations and leveraging the existing experimental annotations.

  11. Genome-wide annotation and functional identification of aphid GLUT-like sugar transporters.

    PubMed

    Price, Daniel R G; Gatehouse, John A

    2014-08-04

    Phloem feeding insects, such as aphids, feed almost continuously on plant phloem sap, a liquid diet that contains high concentrations of sucrose (a disaccharide comprising of glucose and fructose). To access the available carbon, aphids hydrolyze sucrose in the gut lumen and transport its constituent monosaccharides, glucose and fructose. Although sugar transport plays a critical role in aphid nutrition, the molecular basis of sugar transport in aphids, and more generally across all insects, remains poorly characterized. Here, using the latest release of the pea aphid, Acyrthosiphon pisum, genome we provide an updated gene annotation and expression profile of putative sugar transporters. Finally, gut expressed sugar transporters are functionally expressed in yeast and screened for glucose and fructose transport activity. In this study, using a de novo approach, we identified 19 sugar porter (SP) family transporters in the A. pisum genome. Gene expression analysis, based on 214, 834 A. pisum expressed sequence tags, supports 17 sugar porter family transporters being actively expressed in adult female aphids. Further analysis, using quantitative PCR identifies 4 transporters, A. pisum sugar transporter 1, 3, 4 and 9 (ApST1, ApST3, ApST4 and ApST9) as highly expressed and/or enriched in gut tissue. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST3 (previously characterized) and ApST4 (reported here) transport glucose and fructose resulting in functional rescue of the yeast mutant. Here we characterize ApST4, a 491 amino acid protein, with 12 predicted transmembrane regions, as a facilitative glucose/fructose transporter. Finally, phylogenetic reconstruction reveals that ApST4, and related, as yet uncharacterized insect transporters are phylogenetically closely related to human GLUT (SLC2A) class I facilitative glucose/fructose transporters. The gut enhanced expression of ApST4, and the transport specificity

  12. Transferring functional annotations of membrane transporters on the basis of sequence similarity and sequence motifs

    PubMed Central

    2013-01-01

    Background Membrane transporters catalyze the transport of small solute molecules across biological barriers such as lipid bilayer membranes. Experimental identification of the transported substrates is very tedious. Once a particular transport mechanism has been identified in one organism, it is thus highly desirable to transfer this information to related transporter sequences in different organisms based on bioinformatics evidence. Results We present a thorough benchmark at which level of sequence identity membrane transporters from Escherichia coli, Saccharomyces cerevisiae, and Arabidopsis thaliana belong to the same families of the Transporter Classification (TC) system, and at what level these membrane transporters mediate the transport of the same substrate. We found that two membrane transporter sequences from different organisms that are aligned with normalized BLAST expectation value better than E-value 1e-8 are highly likely to belong to the same TC family (F-measure around 90%). Enriched sequence motifs identified by MEME at thresholds below 1e-12 support accurate classification into TC families for about two thirds of the sequences (F-measure 80% and higher). For the comparison of transported substrates, we focused on the four largest substrate classes of amino acids, sugars, metal ions, and phosphate. At similar identity thresholds, the nature of the transported substrates was more divergent (F-measure 40 - 75% at the same thresholds) than the TC family membership. Conclusions We suggest an acceptable threshold of 1e-8 for BLAST and HMMER where at least three quarters of the sequences are classified according to the TC system with a reasonably high accuracy. Researchers who wish to apply these thresholds in their studies should multiply these thresholds by the size of the database they search against. Our findings should be useful to those who wish to transfer transporter functional annotations across species. PMID:24283849

  13. Annotating user-defined abstractions for optimization

    SciTech Connect

    Quinlan, D; Schordan, M; Vuduc, R; Yi, Q

    2005-12-05

    This paper discusses the features of an annotation language that we believe to be essential for optimizing user-defined abstractions. These features should capture semantics of function, data, and object-oriented abstractions, express abstraction equivalence (e.g., a class represents an array abstraction), and permit extension of traditional compiler optimizations to user-defined abstractions. Our future work will include developing a comprehensive annotation language for describing the semantics of general object-oriented abstractions, as well as automatically verifying and inferring the annotated semantics.

  14. A Coding System with Independent Annotations of Gesture Forms and Functions during Verbal Communication: Development of a Database of Speech and GEsture (DoSaGE).

    PubMed

    Kong, Anthony Pak-Hin; Law, Sam-Po; Kwan, Connie Ching-Yin; Lai, Christy; Lam, Vivian

    2015-03-01

    Gestures are commonly used together with spoken language in human communication. One major limitation of gesture investigations in the existing literature lies in the fact that the coding of forms and functions of gestures has not been clearly differentiated. This paper first described a recently developed Database of Speech and GEsture (DoSaGE) based on independent annotation of gesture forms and functions among 119 neurologically unimpaired right-handed native speakers of Cantonese (divided into three age and two education levels), and presented findings of an investigation examining how gesture use was related to age and linguistic performance. Consideration of these two factors, for which normative data are currently very limited or lacking in the literature, is relevant and necessary when one evaluates gesture employment among individuals with and without language impairment. Three speech tasks, including monologue of a personally important event, sequential description, and story-telling, were used for elicitation. The EUDICO Linguistic ANnotator (ELAN) software was used to independently annotate each participant's linguistic information of the transcript, forms of gestures used, and the function for each gesture. About one-third of the subjects did not use any co-verbal gestures. While the majority of gestures were non-content-carrying, which functioned mainly for reinforcing speech intonation or controlling speech flow, the content-carrying ones were used to enhance speech content. Furthermore, individuals who are younger or linguistically more proficient tended to use fewer gestures, suggesting that normal speakers gesture differently as a function of age and linguistic performance.

  15. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    PubMed

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  16. A Coding System with Independent Annotations of Gesture Forms and Functions during Verbal Communication: Development of a Database of Speech and GEsture (DoSaGE)

    PubMed Central

    Kong, Anthony Pak-Hin; Law, Sam-Po; Kwan, Connie Ching-Yin; Lai, Christy; Lam, Vivian

    2014-01-01

    Gestures are commonly used together with spoken language in human communication. One major limitation of gesture investigations in the existing literature lies in the fact that the coding of forms and functions of gestures has not been clearly differentiated. This paper first described a recently developed Database of Speech and GEsture (DoSaGE) based on independent annotation of gesture forms and functions among 119 neurologically unimpaired right-handed native speakers of Cantonese (divided into three age and two education levels), and presented findings of an investigation examining how gesture use was related to age and linguistic performance. Consideration of these two factors, for which normative data are currently very limited or lacking in the literature, is relevant and necessary when one evaluates gesture employment among individuals with and without language impairment. Three speech tasks, including monologue of a personally important event, sequential description, and story-telling, were used for elicitation. The EUDICO Linguistic ANnotator (ELAN) software was used to independently annotate each participant’s linguistic information of the transcript, forms of gestures used, and the function for each gesture. About one-third of the subjects did not use any co-verbal gestures. While the majority of gestures were non-content-carrying, which functioned mainly for reinforcing speech intonation or controlling speech flow, the content-carrying ones were used to enhance speech content. Furthermore, individuals who are younger or linguistically more proficient tended to use fewer gestures, suggesting that normal speakers gesture differently as a function of age and linguistic performance. PMID:25667563

  17. Annotated Humanities Programs.

    ERIC Educational Resources Information Center

    Adler, Richard R.; Applebee, Arthur

    The humanities programs offered in 1968 by 227 United States secondary schools are listed alphabetically by state, including almost 100 new programs not annotated in the 1967 listing (see TE 000 224). Each annotation presents a brief description of the approach to study used in the particular humanities course (e.g., American Studies, Culture…

  18. The power of EST sequence data: Relation to Acyrthosiphon pisum genome annotation and functional genomics initiatives

    USDA-ARS?s Scientific Manuscript database

    Genes important to aphid biology, survival and reproduction were successfully identified by use of a genomics approach. We created and described the Sequencing, compilation, and annotation of the approxiamtely 525Mb nuclear genome of the pea aphid, Acyrthosiphon pisum, which represents an important ...

  19. An Annotated Bibliography of Resources on Educational Linking Agents: Roles, Functions, and Training Materials.

    ERIC Educational Resources Information Center

    Barth, Rodney J., Comp.

    The resources cited in this selected annotated bibliography are intended for linking agents, trainers of linking agents, managers of linking agents and their support systems, and educational policy makers. These resources, which date from 1975 to the present, variously refer to linking agents, change agents, extension agents, field agents, field…

  20. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  1. Trans-ethnic Meta-analysis and Functional Annotation Illuminates the Genetic Architecture of Fasting Glucose and Insulin.

    PubMed

    Liu, Ching-Ti; Raghavan, Sridharan; Maruthur, Nisa; Kabagambe, Edmond Kato; Hong, Jaeyoung; Ng, Maggie C Y; Hivert, Marie-France; Lu, Yingchang; An, Ping; Bentley, Amy R; Drolet, Anne M; Gaulton, Kyle J; Guo, Xiuqing; Armstrong, Loren L; Irvin, Marguerite R; Li, Man; Lipovich, Leonard; Rybin, Denis V; Taylor, Kent D; Agyemang, Charles; Palmer, Nicholette D; Cade, Brian E; Chen, Wei-Min; Dauriz, Marco; Delaney, Joseph A C; Edwards, Todd L; Evans, Daniel S; Evans, Michele K; Lange, Leslie A; Leong, Aaron; Liu, Jingmin; Liu, Yongmei; Nayak, Uma; Patel, Sanjay R; Porneala, Bianca C; Rasmussen-Torvik, Laura J; Snijder, Marieke B; Stallings, Sarah C; Tanaka, Toshiko; Yanek, Lisa R; Zhao, Wei; Becker, Diane M; Bielak, Lawrence F; Biggs, Mary L; Bottinger, Erwin P; Bowden, Donald W; Chen, Guanjie; Correa, Adolfo; Couper, David J; Crawford, Dana C; Cushman, Mary; Eicher, John D; Fornage, Myriam; Franceschini, Nora; Fu, Yi-Ping; Goodarzi, Mark O; Gottesman, Omri; Hara, Kazuo; Harris, Tamara B; Jensen, Richard A; Johnson, Andrew D; Jhun, Min A; Karter, Andrew J; Keller, Margaux F; Kho, Abel N; Kizer, Jorge R; Krauss, Ronald M; Langefeld, Carl D; Li, Xiaohui; Liang, Jingling; Liu, Simin; Lowe, William L; Mosley, Thomas H; North, Kari E; Pacheco, Jennifer A; Peyser, Patricia A; Patrick, Alan L; Rice, Kenneth M; Selvin, Elizabeth; Sims, Mario; Smith, Jennifer A; Tajuddin, Salman M; Vaidya, Dhananjay; Wren, Mary P; Yao, Jie; Zhu, Xiaofeng; Ziegler, Julie T; Zmuda, Joseph M; Zonderman, Alan B; Zwinderman, Aeilko H; Adeyemo, Adebowale; Boerwinkle, Eric; Ferrucci, Luigi; Hayes, M Geoffrey; Kardia, Sharon L R; Miljkovic, Iva; Pankow, James S; Rotimi, Charles N; Sale, Michele M; Wagenknecht, Lynne E; Arnett, Donna K; Chen, Yii-Der Ida; Nalls, Michael A; Province, Michael A; Kao, W H Linda; Siscovick, David S; Psaty, Bruce M; Wilson, James G; Loos, Ruth J F; Dupuis, Josée; Rich, Stephen S; Florez, Jose C; Rotter, Jerome I; Morris, Andrew P; Meigs, James B

    2016-07-07

    Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n = 20,209) and European ancestry (EA; n = 57,292), we performed trans-ethnic (AA+EA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their relevance in AA individuals, and sought previously undescribed loci through trans-ethnic (AA+EA) meta-analysis. We narrowed credible sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlapped with active islet-specific enhancers or transcription factor (TF) binding sites, and 21/22 contained at least one TF motif. Of the 54 EA-associated loci, 23 were shared between EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A (rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up and characterization of GWAS signals of complex trait loci.

  2. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs.

    PubMed

    Liu, Xiaoming; Wu, Chunlei; Li, Chang; Boerwinkle, Eric

    2016-03-01

    The purpose of the dbNSFP is to provide a one-stop resource for functional predictions and annotations for human nonsynonymous single-nucleotide variants (nsSNVs) and splice-site variants (ssSNVs), and to facilitate the steps of filtering and prioritizing SNVs from a large list of SNVs discovered in an exome-sequencing study. A list of all potential nsSNVs and ssSNVs based on the human reference sequence were created and functional predictions and annotations were curated and compiled for each SNV. Here, we report a recent major update of the database to version 3.0. The SNV list has been rebuilt based on GENCODE 22 and currently the database includes 82,832,027 nsSNVs and ssSNVs. An attached database dbscSNV, which compiled all potential human SNVs within splicing consensus regions and their deleteriousness predictions, add another 15,030,459 potentially functional SNVs. Eleven prediction scores (MetaSVM, MetaLR, CADD, VEST3, PROVEAN, 4× fitCons, fathmm-MKL, and DANN) and allele frequencies from the UK10K cohorts and the Exome Aggregation Consortium (ExAC), among others, have been added. The original seven prediction scores in v2.0 (SIFT, 2× Polyphen2, LRT, MutationTaster, MutationAssessor, and FATHMM) as well as many SNV and gene functional annotations have been updated. dbNSFP v3.0 is freely available at http://sites.google.com/site/jpopgen/dbNSFP.

  3. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture.

    PubMed

    Macqueen, Daniel J; Primmer, Craig R; Houston, Ross D; Nowak, Barbara F; Bernatchez, Louis; Bergseth, Steinar; Davidson, William S; Gallardo-Escárate, Cristian; Goldammer, Tom; Guiguen, Yann; Iturra, Patricia; Kijas, James W; Koop, Ben F; Lien, Sigbjørn; Maass, Alejandro; Martin, Samuel A M; McGinnity, Philip; Montecino, Martin; Naish, Kerry A; Nichols, Krista M; Ólafsson, Kristinn; Omholt, Stig W; Palti, Yniv; Plastow, Graham S; Rexroad, Caird E; Rise, Matthew L; Ritchie, Rachael J; Sandve, Simen R; Schulte, Patricia M; Tello, Alfredo; Vidal, Rodrigo; Vik, Jon Olav; Wargelius, Anna; Yáñez, José Manuel

    2017-06-27

    We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.

  4. Smoking Gun or Circumstantial Evidence? Comparison of Statistical Learning Methods using Functional Annotations for Prioritizing Risk Variants.

    PubMed

    Gagliano, Sarah A; Ravji, Reena; Barnes, Michael R; Weale, Michael E; Knight, Jo

    2015-08-24

    Although technology has triumphed in facilitating routine genome sequencing, new challenges have been created for the data-analyst. Genome-scale surveys of human variation generate volumes of data that far exceed capabilities for laboratory characterization. By incorporating functional annotations as predictors, statistical learning has been widely investigated for prioritizing genetic variants likely to be associated with complex disease. We compared three published prioritization procedures, which use different statistical learning algorithms and different predictors with regard to the quantity, type and coding. We also explored different combinations of algorithm and annotation set. As an application, we tested which methodology performed best for prioritizing variants using data from a large schizophrenia meta-analysis by the Psychiatric Genomics Consortium. Results suggest that all methods have considerable (and similar) predictive accuracies (AUCs 0.64-0.71) in test set data, but there is more variability in the application to the schizophrenia GWAS. In conclusion, a variety of algorithms and annotations seem to have a similar potential to effectively enrich true risk variants in genome-scale datasets, however none offer more than incremental improvement in prediction. We discuss how methods might be evolved for risk variant prediction to address the impending bottleneck of the new generation of genome re-sequencing studies.

  5. Large-scale gene co-expression network as a source of functional annotation for cattle genes.

    PubMed

    Beiki, Hamid; Nejati-Javaremi, Ardeshir; Pakdel, Abbas; Masoudi-Nejad, Ali; Hu, Zhi-Liang; Reecy, James M

    2016-11-02

    Genome sequencing and subsequent gene annotation of genomes has led to the elucidation of many genes, but in vertebrates the actual number of protein coding genes are very consistent across species (~20,000). Seven years after sequencing the cattle genome, there are still genes that have limited annotation and the function of many genes are still not understood, or partly understood at best. Based on the assumption that genes with similar patterns of expression across a vast array of tissues and experimental conditions are likely to encode proteins with related functions or participate within a given pathway, we constructed a genome-wide Cattle Gene Co-expression Network (CGCN) using 72 microarray datasets that contained a total of 1470 Affymetrix Genechip Bovine Genome Arrays that were retrieved from either NCBI GEO or EBI ArrayExpress. The total of 16,607 probe sets, which represented 11,397 genes, with unique Entrez ID were consolidated into 32 co-expression modules that contained between 29 and 2569 probe sets. All of the identified modules showed strong functional enrichment for gene ontology (GO) terms and Reactome pathways. For example, modules with important biological functions such as response to virus, response to bacteria, energy metabolism, cell signaling and cell cycle have been identified. Moreover, gene co-expression networks using "guilt-by-association" principle have been used to predict the potential function of 132 genes with no functional annotation. Four unknown Hub genes were identified in modules highly enriched for GO terms related to leukocyte activation (LOC509513), RNA processing (LOC100848208), nucleic acid metabolic process (LOC100850151) and organic-acid metabolic process (MGC137211). Such highly connected genes should be investigated more closely as they likely to have key regulatory roles. We have demonstrated that the CGCN and its corresponding regulons provides rich information for experimental biologists to design experiments

  6. The Subsystems Approach to Genome Annotation and its Use in the Project to Annotate 1000 Genomes

    PubMed Central

    Overbeek, Ross; Begley, Tadhg; Butler, Ralph M.; Choudhuri, Jomuna V.; Chuang, Han-Yu; Cohoon, Matthew; de Crécy-Lagard, Valérie; Diaz, Naryttza; Disz, Terry; Edwards, Robert; Fonstein, Michael; Frank, Ed D.; Gerdes, Svetlana; Glass, Elizabeth M.; Goesmann, Alexander; Hanson, Andrew; Iwata-Reuyl, Dirk; Jensen, Roy; Jamshidi, Neema; Krause, Lutz; Kubal, Michael; Larsen, Niels; Linke, Burkhard; McHardy, Alice C.; Meyer, Folker; Neuweger, Heiko; Olsen, Gary; Olson, Robert; Osterman, Andrei; Portnoy, Vasiliy; Pusch, Gordon D.; Rodionov, Dmitry A.; Rückert, Christian; Steiner, Jason; Stevens, Rick; Thiele, Ines; Vassieva, Olga; Ye, Yuzhen; Zagnitko, Olga; Vonstein, Veronika

    2005-01-01

    The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms. PMID:16214803

  7. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes.

    PubMed

    Overbeek, Ross; Begley, Tadhg; Butler, Ralph M; Choudhuri, Jomuna V; Chuang, Han-Yu; Cohoon, Matthew; de Crécy-Lagard, Valérie; Diaz, Naryttza; Disz, Terry; Edwards, Robert; Fonstein, Michael; Frank, Ed D; Gerdes, Svetlana; Glass, Elizabeth M; Goesmann, Alexander; Hanson, Andrew; Iwata-Reuyl, Dirk; Jensen, Roy; Jamshidi, Neema; Krause, Lutz; Kubal, Michael; Larsen, Niels; Linke, Burkhard; McHardy, Alice C; Meyer, Folker; Neuweger, Heiko; Olsen, Gary; Olson, Robert; Osterman, Andrei; Portnoy, Vasiliy; Pusch, Gordon D; Rodionov, Dmitry A; Rückert, Christian; Steiner, Jason; Stevens, Rick; Thiele, Ines; Vassieva, Olga; Ye, Yuzhen; Zagnitko, Olga; Vonstein, Veronika

    2005-01-01

    The release of the 1000th complete microbial genome will occur in the next two to three years. In anticipation of this milestone, the Fellowship for Interpretation of Genomes (FIG) launched the Project to Annotate 1000 Genomes. The project is built around the principle that the key to improved accuracy in high-throughput annotation technology is to have experts annotate single subsystems over the complete collection of genomes, rather than having an annotation expert attempt to annotate all of the genes in a single genome. Using the subsystems approach, all of the genes implementing the subsystem are analyzed by an expert in that subsystem. An annotation environment was created where populated subsystems are curated and projected to new genomes. A portable notion of a populated subsystem was defined, and tools developed for exchanging and curating these objects. Tools were also developed to resolve conflicts between populated subsystems. The SEED is the first annotation environment that supports this model of annotation. Here, we describe the subsystem approach, and offer the first release of our growing library of populated subsystems. The initial release of data includes 180 177 distinct proteins with 2133 distinct functional roles. This data comes from 173 subsystems and 383 different organisms.

  8. PTSD and cognitive functioning: importance of including performance validity testing.

    PubMed

    Wisdom, Nick M; Pastorek, Nicholas J; Miller, Brian I; Booth, Jane E; Romesser, Jennifer M; Linck, John F; Sim, Anita H

    2014-01-01

    Many studies have observed an association between post-traumatic stress disorder (PTSD) and cognitive deficits across several domains including memory, attention, and executive functioning. The inclusion of response bias measures in these studies, however, remains largely unaddressed. The purpose of this study was to identify possible cognitive impairments correlated with PTSD in returning OEF/OIF/OND veterans after excluding individuals failing a well-validated performance validity test. Participants included 126 men and 8 women with a history of mild traumatic brain injury (TBI) referred for a comprehensive neuropsychological evaluation as part of a consortium of five Veterans Affairs hospitals. The PTSD CheckList (PCL) and Word Memory Test (WMT) were used to establish symptoms of PTSD and invalid performance, respectively. Groups were categorized as follows: Control (PCL < 50, pass WMT), PTSD-pass (PCL ≥ 50, pass WMT), and PTSD-fail (PCL ≥ 50, fail WMT). As hypothesized, failure on the WMT was associated with significantly poorer performance on almost all cognitive tests administered; however, no significant differences were detected between individuals with and without PTSD symptoms after separating out veterans failing the WMT. These findings highlight the importance of assessing respondent validity in future research examining cognitive functioning in psychiatric illness and warrant further consideration of prior studies reporting PTSD-associated cognitive deficits.

  9. ProSAT2—Protein Structure Annotation Server

    PubMed Central

    Gabdoulline, R. R.; Ulbrich, S.; Richter, S.; Wade, R. C.

    2006-01-01

    ProSAT2 is a server to facilitate interactive visualization of sequence-based, residue-specific annotations mapped onto 3D protein structures. As the successor of ProSAT (Protein Structure Annotation Tool), it includes its features for visualizing SwissProt and PROSITE functional annotations. Currently, the ProSAT2 server can perform automated mapping of information on variants and mutations from the UniProt KnowledgeBase and the BRENDA enzyme information system onto protein structures. It also accepts and maps user-prepared annotations. By means of an annotation selector, the user can interactively select and group residue-based information according to criteria such as whether a mutation affects enzyme activity. The visualization of the protein structures is based on the WebMol Java molecular viewer and permits simultaneous highlighting of annotated residues and viewing of the corresponding descriptive texts. ProSAT2 is available at . PMID:16845114

  10. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments

    PubMed Central

    Al-Shahrour, Fátima; Minguez, Pablo; Tárraga, Joaquín; Montaner, David; Alloza, Eva; Vaquerizas, Juan M.; Conde, Lucía; Blaschke, Christian; Vera, Javier; Dopazo, Joaquín

    2006-01-01

    We present a new version of Babelomics, a complete suite of web tools for functional analysis of genome-scale experiments, with new and improved tools. New functionally relevant terms have been included such as CisRed motifs or bioentities obtained by text-mining procedures. An improved indexing has considerably speeded up several of the modules. An improved version of the FatiScan method for studying the coordinate behaviour of groups of functionally related genes is presented, along with a similar tool, the Gene Set Enrichment Analysis. Babelomics is now more oriented to test systems biology inspired hypotheses. Babelomics can be found at . PMID:16845052

  11. Non-Gaussian Distributions Affect Identification of Expression Patterns, Functional Annotation, and Prospective Classification in Human Cancer Genomes

    PubMed Central

    Marko, Nicholas F.; Weil, Robert J.

    2012-01-01

    Introduction Gene expression data is often assumed to be normally-distributed, but this assumption has not been tested rigorously. We investigate the distribution of expression data in human cancer genomes and study the implications of deviations from the normal distribution for translational molecular oncology research. Methods We conducted a central moments analysis of five cancer genomes and performed empiric distribution fitting to examine the true distribution of expression data both on the complete-experiment and on the individual-gene levels. We used a variety of parametric and nonparametric methods to test the effects of deviations from normality on gene calling, functional annotation, and prospective molecular classification using a sixth cancer genome. Results Central moments analyses reveal statistically-significant deviations from normality in all of the analyzed cancer genomes. We observe as much as 37% variability in gene calling, 39% variability in functional annotation, and 30% variability in prospective, molecular tumor subclassification associated with this effect. Conclusions Cancer gene expression profiles are not normally-distributed, either on the complete-experiment or on the individual-gene level. Instead, they exhibit complex, heavy-tailed distributions characterized by statistically-significant skewness and kurtosis. The non-Gaussian distribution of this data affects identification of differentially-expressed genes, functional annotation, and prospective molecular classification. These effects may be reduced in some circumstances, although not completely eliminated, by using nonparametric analytics. This analysis highlights two unreliable assumptions of translational cancer gene expression analysis: that “small” departures from normality in the expression data distributions are analytically-insignificant and that “robust” gene-calling algorithms can fully compensate for these effects. PMID:23118863

  12. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis.

    PubMed

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J; Quan, Guoxing

    2015-01-01

    The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects.

  13. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis

    PubMed Central

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J.; Quan, Guoxing

    2015-01-01

    Background The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. Methodology and Principal Findings High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. Conclusions and Significance This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects. PMID:26244979

  14. Morgan’s Legacy: Fruit Flies and the Functional Annotation of Conserved Genes

    PubMed Central

    Bellen, Hugo J.; Yamamoto, Shinya

    2016-01-01

    In 1915, “The Mechanism of Mendelian Heredity” was published by four prominent Drosophila geneticists. They discovered that genes form linkage groups on chromosomes inherited in a Mendelian fashion and laid the genetic foundation that promoted Drosophila as a model organism. Flies continue to offer great opportunities, including studies in the field of functional genomics. PMID:26406362

  15. Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Rex, M.; Löwen, H.

    2009-02-01

    A dynamical density functional theory (DDFT) for translational Brownian dynamics is derived which includes hydrodynamic interactions. The theory reduces to the simple Brownian DDFT proposed by Marconi and Tarazona (U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999); J. Phys.: Condens. Matter 12, A413 (2000)) when hydrodynamic interactions are neglected. The derivation is based on Smoluchowski’s equation for the time evolution of the probability density with pairwise hydrodynamic interactions. The theory is applied to hard-sphere colloids in an oscillating spherical optical trap which switches periodically in time from a stable confining to an unstable potential. Rosenfeld’s fundamental measure theory for the equilibrium density functional is used and hydrodynamics are incorporated on the Rotne-Prager level. The results for the time-dependent density profiles are compared to extensive Brownian dynamics simulations which are performed on the same Rotne-Prager level and excellent agreement is obtained. It is further found that hydrodynamic interactions damp and slow the dynamics of the confined colloid cluster in comparison to the same situation with neglected hydrodynamic interactions.

  16. Partitioning heritability by functional annotation using genome-wide association summary statistics

    PubMed Central

    Finucane, Hilary K.; Bulik-Sullivan, Brendan; Gusev, Alexander; Trynka, Gosia; Reshef, Yakir; Loh, Po-Ru; Anttila, Verneri; Xu, Han; Zang, Chongzhi; Farh, Kyle; Ripke, Stephan; Day, Felix R.; Consortium, ReproGen; Purcell, Shaun; Stahl, Eli; Lindstrom, Sara; Perry, John R. B.; Okada, Yukinori; Raychaudhuri, Soumya; Daly, Mark; Patterson, Nick; Neale, Benjamin M.; Price, Alkes L.

    2015-01-01

    Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here, we analyze a broad set of functional elements, including cell-type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes, and leverages genome-wide information. Our results include a large enrichment of heritability in conserved regions across many traits; a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers; and many cell-type-specific enrichments including significant enrichment of central nervous system cell types in body mass index, age at menarche, educational attainment, and smoking behavior. PMID:26414678

  17. Functional annotation of the microRNA-mediated network in gigantomastia by integrating microRNA and mRNA expression profiling.

    PubMed

    Li, Jing-yi; Mu, Da-li; Mu, Lan-hua; Xin, Min-qiang; Luan, Jie

    2013-02-01

    Gigantomastia is the overdevelopment of the female mammary gland, and it causes great physiological and psychological burdens to patients. A better understanding of the molecular mechanisms involved in gigantomastia is needed to develop less invasive and more effective medical treatments. MicroRNA (miRNA) is a class of small noncoding RNAs that play an important regulatory role at the post-transcriptional level. These miRNAs are known to be involved in many diseases, including breast cancer; however, the relationship between miRNA and gigantomastia is largely unknown. Whole genome-wide expression of miRNA and mRNA in gigantomastia was detected using microarray and functional annotation was performed based on the altered expression of miRNAs and mRNAs. We found many miRNAs and mRNAs to be significantly differentially expressed in gigantomastia compared with normal breast tissues. Functional annotation analysis indicated that APK, Wnt, and Neurotrophin signaling pathways may participate in gigantomastia. This study addresses the need for better diagnosis and treatment of gigantomastia by providing new insight into the molecular mechanisms underlying this disease.

  18. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    PubMed

    Lu, Qiongshi; Powles, Ryan L; Abdallah, Sarah; Ou, Derek; Wang, Qian; Hu, Yiming; Lu, Yisi; Liu, Wei; Li, Boyang; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-07-01

    Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  19. Functional annotation of sixty-five type-2 diabetes risk SNPs and its application in risk prediction

    PubMed Central

    Wu, Yiming; Jing, Runyu; Dong, Yongcheng; Kuang, Qifan; Li, Yan; Huang, Ziyan; Gan, Wei; Xue, Yue; Li, Yizhou; Li, Menglong

    2017-01-01

    Genome-wide association studies (GWAS) have identified more than sixty single nucleotide polymorphisms (SNPs) associated with increased risk for type 2 diabetes (T2D). However, the identification of causal risk SNPs for T2D pathogenesis was complicated by the factor that each risk SNP is a surrogate for the hundreds of SNPs, most of which reside in non-coding regions. Here we provide a comprehensive annotation of 65 known T2D related SNPs and inspect putative functional SNPs probably causing protein dysfunction, response element disruptions of known transcription factors related to T2D genes and regulatory response element disruption of four histone marks in pancreas and pancreas islet. In new identified risk SNPs, some of them were reported as T2D related SNPs in recent studies. Further, we found that accumulation of modest effects of single sites markedly enhanced the risk prediction based on 1989 T2D samples and 3000 healthy controls. The AROC value increased from 0.58 to 0.62 by only using genotype score when putative risk SNPs were added. Besides, the net reclassification improvement is 10.03% on the addition of new risk SNPs. Taken together, functional annotation could provide a list of prioritized potential risk SNPs for the further estimation on the T2D susceptibility of individuals. PMID:28262806

  20. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    PubMed

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  1. Conservation and function of Rab small GTPases in Entamoeba: annotation of E. invadens Rab and its use for the understanding of Entamoeba biology.

    PubMed

    Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Husain, Afzal; Nozaki, Tomoyoshi

    2010-11-01

    Entamoeba invadens is a reptilian enteric protozoan parasite closely related to the human pathogen Entamoeba histolytica and a good model organism of encystation. To understand the molecular mechanism of vesicular trafficking involved in the encystation of Entamoeba, we examined the conservation of Rab small GTPases between the two species. E. invadens has over 100 Rab genes, similar to E. histolytica. Most of the Rab subfamilies are conserved between the two species, while a number of species-specific Rabs are also present. We annotated all E. invadens Rabs according to the previous nomenclature [Saito-Nakano, Y., Loftus, B.J., Hall, N., Nozaki, T., 2005. The diversity of Rab GTPases in Entamoeba histolytica. Experimental Parasitology 110, 244-252]. Comparative genomic analysis suggested that the fundamental vesicular traffic machinery is well conserved, while there are species-specific protein transport mechanisms. We also reviewed the function of Rabs in Entamoeba, and proposed the use of the annotation of E. invadens Rab genes to understand the ubiquitous importance of Rab-mediated membrane trafficking during important biological processes including differentiation in Entamoeba. (c) 2010 Elsevier Inc. All rights reserved.

  2. Functional Genomic Annotation of Genetic Risk Loci Highlights Inflammation and Epithelial Biology Networks in CKD

    PubMed Central

    Ledo, Nora; Ko, Yi-An; Park, Ae-Seo Deok; Kang, Hyun-Mi; Han, Sang-Youb; Choi, Peter

    2015-01-01

    Genome-wide association studies (GWASs) have identified multiple loci associated with the risk of CKD. Almost all risk variants are localized to the noncoding region of the genome; therefore, the role of these variants in CKD development is largely unknown. We hypothesized that polymorphisms alter transcription factor binding, thereby influencing the expression of nearby genes. Here, we examined the regulation of transcripts in the vicinity of CKD-associated polymorphisms in control and diseased human kidney samples and used systems biology approaches to identify potentially causal genes for prioritization. We interrogated the expression and regulation of 226 transcripts in the vicinity of 44 single nucleotide polymorphisms using RNA sequencing and gene expression arrays from 95 microdissected control and diseased tubule samples and 51 glomerular samples. Gene expression analysis from 41 tubule samples served for external validation. 92 transcripts in the tubule compartment and 34 transcripts in glomeruli showed statistically significant correlation with eGFR. Many novel genes, including ACSM2A/2B, FAM47E, and PLXDC1, were identified. We observed that the expression of multiple genes in the vicinity of any single CKD risk allele correlated with renal function, potentially indicating that genetic variants influence multiple transcripts. Network analysis of GFR-correlating transcripts highlighted two major clusters; a positive correlation with epithelial and vascular functions and an inverse correlation with inflammatory gene cluster. In summary, our functional genomics analysis highlighted novel genes and critical pathways associated with kidney function for future analysis. PMID:25231882

  3. Solving the Problem: Genome Annotation Standards before the Data Deluge

    PubMed Central

    Klimke, William; O'Donovan, Claire; White, Owen; Brister, J. Rodney; Clark, Karen; Fedorov, Boris; Mizrachi, Ilene; Pruitt, Kim D.; Tatusova, Tatiana

    2011-01-01

    The promise of genome sequencing was that the vast undiscovered country would be mapped out by comparison of the multitude of sequences available and would aid researchers in deciphering the role of each gene in every organism. Researchers recognize that there is a need for high quality data. However, different annotation procedures, numerous databases, and a diminishing percentage of experimentally determined gene functions have resulted in a spectrum of annotation quality. NCBI in collaboration with sequencing centers, archival databases, and researchers, has developed the first international annotation standards, a fundamental step in ensuring that high quality complete prokaryotic genomes are available as gold standard references. Highlights include the development of annotation assessment tools, community acceptance of protein naming standards, comparison of annotation resources to provide consistent annotation, and improved tracking of the evidence used to generate a particular annotation. The development of a set of minimal standards, including the requirement for annotated complete prokaryotic genomes to contain a full set of ribosomal RNAs, transfer RNAs, and proteins encoding core conserved functions, is an historic milestone. The use of these standards in existing genomes and future submissions will increase the quality of databases, enabling researchers to make accurate biological discoveries. PMID:22180819

  4. Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions

    PubMed Central

    Han, Ying; Hazelett, Dennis J.; Wiklund, Fredrik; Schumacher, Fredrick R.; Stram, Daniel O.; Berndt, Sonja I.; Wang, Zhaoming; Rand, Kristin A.; Hoover, Robert N.; Machiela, Mitchell J.; Yeager, Merideth; Burdette, Laurie; Chung, Charles C.; Hutchinson, Amy; Yu, Kai; Xu, Jianfeng; Travis, Ruth C.; Key, Timothy J.; Siddiq, Afshan; Canzian, Federico; Takahashi, Atsushi; Kubo, Michiaki; Stanford, Janet L.; Kolb, Suzanne; Gapstur, Susan M.; Diver, W. Ryan; Stevens, Victoria L.; Strom, Sara S.; Pettaway, Curtis A.; Al Olama, Ali Amin; Kote-Jarai, Zsofia; Eeles, Rosalind A.; Yeboah, Edward D.; Tettey, Yao; Biritwum, Richard B.; Adjei, Andrew A.; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P.; Isaacs, William B.; Chen, Constance; Lindstrom, Sara; Le Marchand, Loic; Giovannucci, Edward L.; Pomerantz, Mark; Long, Henry; Li, Fugen; Ma, Jing; Stampfer, Meir; John, Esther M.; Ingles, Sue A.; Kittles, Rick A.; Murphy, Adam B.; Blot, William J.; Signorello, Lisa B.; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, M. Cristina; Wu, Suh-Yuh; Hennis, Anselm J. M.; Rybicki, Benjamin A.; Neslund-Dudas, Christine; Hsing, Ann W.; Chu, Lisa; Goodman, Phyllis J.; Klein, Eric A.; Zheng, S. Lilly; Witte, John S.; Casey, Graham; Riboli, Elio; Li, Qiyuan; Freedman, Matthew L.; Hunter, David J.; Gronberg, Henrik; Cook, Michael B.; Nakagawa, Hidewaki; Kraft, Peter; Chanock, Stephen J.; Easton, Douglas F.; Henderson, Brian E.; Coetzee, Gerhard A.; Conti, David V.; Haiman, Christopher A.

    2015-01-01

    Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genome-encoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10−4–5.6 × 10−3) and in 30 regions we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10−6) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation. PMID:26162851

  5. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae

    PubMed Central

    Meng, Shaowu; Brown, Douglas E; Ebbole, Daniel J; Torto-Alalibo, Trudy; Oh, Yeon Yee; Deng, Jixin; Mitchell, Thomas K; Dean, Ralph A

    2009-01-01

    Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 . However, a comprehensive manual curation remains to be performed. Gene Ontology (GO) annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational) GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO). In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57%) being annotated with 1,957 distinct and specific GO terms. Unannotated proteins were assigned to the 3 root terms. The Version 5 GO annotation is publically queryable via the GO site

  6. MetaSAMS--a novel software platform for taxonomic classification, functional annotation and comparative analysis of metagenome datasets.

    PubMed

    Zakrzewski, Martha; Bekel, Thomas; Ander, Christina; Pühler, Alfred; Rupp, Oliver; Stoye, Jens; Schlüter, Andreas; Goesmann, Alexander

    2013-08-20

    Metagenomics aims at exploring microbial communities concerning their composition and functioning. Application of high-throughput sequencing technologies for the analysis of environmental DNA-preparations can generate large sets of metagenome sequence data which have to be analyzed by means of bioinformatics tools to unveil the taxonomic composition of the analyzed community as well as the repertoire of genes and gene functions. A bioinformatics software platform is required that allows the automated taxonomic and functional analysis and interpretation of metagenome datasets without manual effort. To address current demands in metagenome data analyses, the novel platform MetaSAMS was developed. MetaSAMS automatically accomplishes the tasks necessary for analyzing the composition and functional repertoire of a given microbial community from metagenome sequence data by implementing two software pipelines: (i) the first pipeline consists of three different classifiers performing the taxonomic profiling of metagenome sequences and (ii) the second functional pipeline accomplishes region predictions on assembled contigs and assigns functional information to predicted coding sequences. Moreover, MetaSAMS provides tools for statistical and comparative analyses based on the taxonomic and functional annotations. The capabilities of MetaSAMS are demonstrated for two metagenome datasets obtained from a biogas-producing microbial community of a production-scale biogas plant. The MetaSAMS web interface is available at https://metasams.cebitec.uni-bielefeld.de. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  8. Annotation of gene function in citrus using gene expression information and co-expression networks.

    PubMed

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  9. Comparative omics-driven genome annotation refinement: application across Yersiniae.

    PubMed

    Schrimpe-Rutledge, Alexandra C; Jones, Marcus B; Chauhan, Sadhana; Purvine, Samuel O; Sanford, James A; Monroe, Matthew E; Brewer, Heather M; Payne, Samuel H; Ansong, Charles; Frank, Bryan C; Smith, Richard D; Peterson, Scott N; Motin, Vladimir L; Adkins, Joshua N

    2012-01-01

    Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation.

  10. Quality of computationally inferred gene ontology annotations.

    PubMed

    Skunca, Nives; Altenhoff, Adrian; Dessimoz, Christophe

    2012-05-01

    Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms. Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when they use evidence other than experiments from primary literature. This work provides the means to identify the subset of electronic annotations that can be relied upon-an important outcome given that >98% of all annotations are inferred without direct curation.

  11. Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane

    PubMed Central

    Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo

    2003-01-01

    To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979

  12. The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

    PubMed Central

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; e Ferreira, Renata Carmona; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-01-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. PMID:23857904

  13. Dictionary-driven protein annotation

    PubMed Central

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-01-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were

  14. Dictionary-driven protein annotation.

    PubMed

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-09-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were

  15. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4).

    PubMed

    Huntemann, Marcel; Ivanova, Natalia N; Mavromatis, Konstantinos; Tripp, H James; Paez-Espino, David; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M; Kyrpides, Nikos C

    2015-01-01

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. Structural annotation is followed by assignment of protein product names and functions.

  16. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4)

    SciTech Connect

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos; Tripp, H. James; Paez-Espino, David; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A.; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M.; Kyrpides, Nikos C.

    2015-10-26

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. In conclusion, structural annotation is followed by assignment of protein product names and functions.

  17. A scattering function of star polymers including excluded volume effects

    DOE PAGES

    Li, Xin; Do, Changwoo; Liu, Yun; ...

    2014-11-04

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffnessmore » of its constituent branch.« less

  18. A scattering function of star polymers including excluded volume effects

    SciTech Connect

    Li, Xin; Do, Changwoo; Liu, Yun; Sánchez-Diáz, Luis; Smith, Gregory; Chen, Wei-Ren

    2014-11-04

    In this work we present a new model for the form factor of a star polymer consisting of self-avoiding branches. This new model incorporates excluded volume effects and is derived from the two point correlation function for a star polymer.. We compare this model to small angle neutron scattering (SANS) measurements from polystyrene (PS) stars immersed in a good solvent, tetrahydrofuran (THF). It is shown that this model provides a good description of the scattering signature originating from the excluded volume effect and it explicitly elucidates the connection between the global conformation of a star polymer and the local stiffness of its constituent branch.

  19. A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes.

    PubMed

    Yelton, Alexis P; Thomas, Brian C; Simmons, Sheri L; Wilmes, Paul; Zemla, Adam; Thelen, Michael P; Justice, Nicholas; Banfield, Jillian F

    2011-10-01

    During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application.

  20. RATT: Rapid Annotation Transfer Tool

    PubMed Central

    Otto, Thomas D.; Dillon, Gary P.; Degrave, Wim S.; Berriman, Matthew

    2011-01-01

    Second-generation sequencing technologies have made large-scale sequencing projects commonplace. However, making use of these datasets often requires gene function to be ascribed genome wide. Although tool development has kept pace with the changes in sequence production, for tasks such as mapping, de novo assembly or visualization, genome annotation remains a challenge. We have developed a method to rapidly provide accurate annotation for new genomes using previously annotated genomes as a reference. The method, implemented in a tool called RATT (Rapid Annotation Transfer Tool), transfers annotations from a high-quality reference to a new genome on the basis of conserved synteny. We demonstrate that a Mycobacterium tuberculosis genome or a single 2.5 Mb chromosome from a malaria parasite can be annotated in less than five minutes with only modest computational resources. RATT is available at http://ratt.sourceforge.net. PMID:21306991

  1. Valuing preferences over stormwater management outcomes including improved hydrologic function

    NASA Astrophysics Data System (ADS)

    LondoñO Cadavid, Catalina; Ando, Amy W.

    2013-07-01

    Stormwater runoff causes environmental problems such as flooding, soil erosion, and water pollution. Conventional stormwater management has focused primarily on flood reduction, while a new generation of decentralized stormwater solutions yields ancillary benefits such as healthier aquatic habitat, improved surface water quality, and increased water table recharge. Previous research has estimated values for flood reduction from stormwater management, but no estimates exist for the willingness to pay (WTP) for some of the other environmental benefits of alternative approaches to stormwater control. This paper uses a choice experiment survey of households in Champaign-Urbana, Illinois, to estimate the values of several attributes of stormwater management outcomes. We analyzed data from 131 surveyed households in randomly selected neighborhoods. We find that people value reduced basement flooding more than reductions in yard or street flooding, but WTP for basement flood reduction in the area only exists if individuals are currently experiencing significant flooding themselves. Citizens value both improved water quality and improved hydrologic function and aquatic habitat from runoff reduction. Thus, widespread investment in low impact development stormwater solutions could have very large total benefits, and stormwater managers should be wary of policies and infrastructure plans that reduce flooding at the expense of water quality and aquatic habitat.

  2. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    USDA-ARS?s Scientific Manuscript database

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic mode...

  3. Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions.

    PubMed

    Han, Ying; Hazelett, Dennis J; Wiklund, Fredrik; Schumacher, Fredrick R; Stram, Daniel O; Berndt, Sonja I; Wang, Zhaoming; Rand, Kristin A; Hoover, Robert N; Machiela, Mitchell J; Yeager, Merideth; Burdette, Laurie; Chung, Charles C; Hutchinson, Amy; Yu, Kai; Xu, Jianfeng; Travis, Ruth C; Key, Timothy J; Siddiq, Afshan; Canzian, Federico; Takahashi, Atsushi; Kubo, Michiaki; Stanford, Janet L; Kolb, Suzanne; Gapstur, Susan M; Diver, W Ryan; Stevens, Victoria L; Strom, Sara S; Pettaway, Curtis A; Al Olama, Ali Amin; Kote-Jarai, Zsofia; Eeles, Rosalind A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; Isaacs, William B; Chen, Constance; Lindstrom, Sara; Le Marchand, Loic; Giovannucci, Edward L; Pomerantz, Mark; Long, Henry; Li, Fugen; Ma, Jing; Stampfer, Meir; John, Esther M; Ingles, Sue A; Kittles, Rick A; Murphy, Adam B; Blot, William J; Signorello, Lisa B; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anselm J M; Rybicki, Benjamin A; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Zheng, S Lilly; Witte, John S; Casey, Graham; Riboli, Elio; Li, Qiyuan; Freedman, Matthew L; Hunter, David J; Gronberg, Henrik; Cook, Michael B; Nakagawa, Hidewaki; Kraft, Peter; Chanock, Stephen J; Easton, Douglas F; Henderson, Brian E; Coetzee, Gerhard A; Conti, David V; Haiman, Christopher A

    2015-10-01

    Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genome-encoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10(-4)-5.6 × 10(-3)) and in 30 regions we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10(-6)) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    PubMed Central

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and

  5. The Development of PIPA: An Integrated and Automated Pipeline for Genome-Wide Protein Function Annotation

    DTIC Science & Technology

    2008-01-25

    specific protein functions. For exam- ple, PRIAM [10] and EFICAz [11] provide profile data- bases for protein catalytic function predictions. They have...yield more reliable predictions. Most established profile databases, such as ProDom and EFICAz , are generated using complex procedures based on either...common function. This approach has been used to build the ProDom and the PRIAM data- bases. Conversely, EFICAz builds multiple profiles simul

  6. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  7. Functional annotation of proteomic sequences based on consensus of sequence and structural analysis.

    PubMed

    Kitson, David H; Badretdinov, Azat; Zhu, Zhan-yang; Velikanov, Mikhail; Edwards, David J; Olszewski, Krzysztof; Szalma, Sándor; Yan, Lisa

    2002-03-01

    To maximise the assignment of function of the proteins encoded by a genome and to aid the search for novel drug targets, there is an emerging need for sensitive methods of predicting protein function on a genome-wide basis. GeneAtlas is an automated, high-throughput pipeline for the prediction of protein structure and function using sequence similarity detection, homology modelling and fold recognition methods. GeneAtlas is described in detail here. To test GeneAtlas, a 'virtual' genome was used, a subset of PDB structures from the SCOP database, in which the functional relationships are known. GeneAtlas detects additional relationships by building 3D models in comparison with the sequence searching method PSI-BLAST. Functionally related proteins with sequence identity below the twilight zone can be recognised correctly.

  8. Next-Generation High-Throughput Functional Annotation of Microbial Genomes

    PubMed Central

    Baric, Ralph S.; Damania, Blossom; Miller, Samuel I.; Rubin, Eric J.

    2016-01-01

    ABSTRACT Host infection by microbial pathogens cues global changes in microbial and host cell biology that facilitate microbial replication and disease. The complete maps of thousands of bacterial and viral genomes have recently been defined; however, the rate at which physiological or biochemical functions have been assigned to genes has greatly lagged. The National Institute of Allergy and Infectious Diseases (NIAID) addressed this gap by creating functional genomics centers dedicated to developing high-throughput approaches to assign gene function. These centers require broad-based and collaborative research programs to generate and integrate diverse data to achieve a comprehensive understanding of microbial pathogenesis. High-throughput functional genomics can lead to new therapeutics and better understanding of the next generation of emerging pathogens by rapidly defining new general mechanisms by which organisms cause disease and replicate in host tissues and by facilitating the rate at which functional data reach the scientific community. PMID:27703071

  9. A guide to best practices for Gene Ontology (GO) manual annotation

    PubMed Central

    Balakrishnan, Rama; Harris, Midori A.; Huntley, Rachael; Van Auken, Kimberly; Cherry, J. Michael

    2013-01-01

    The Gene Ontology Consortium (GOC) is a community-based bioinformatics project that classifies gene product function through the use of structured controlled vocabularies. A fundamental application of the Gene Ontology (GO) is in the creation of gene product annotations, evidence-based associations between GO definitions and experimental or sequence-based analysis. Currently, the GOC disseminates 126 million annotations covering >374 000 species including all the kingdoms of life. This number includes two classes of GO annotations: those created manually by experienced biocurators reviewing the literature or by examination of biological data (1.1 million annotations covering 2226 species) and those generated computationally via automated methods. As manual annotations are often used to propagate functional predictions between related proteins within and between genomes, it is critical to provide accurate consistent manual annotations. Toward this goal, we present here the conventions defined by the GOC for the creation of manual annotation. This guide represents the best practices for manual annotation as established by the GOC project over the past 12 years. We hope this guide will encourage research communities to annotate gene products of their interest to enhance the corpus of GO annotations available to all. Database URL: http://www.geneontology.org PMID:23842463

  10. Injectors and Annotations

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    In a previous paper, we presented the Object Infrastructure Framework. The goal of that system is to simplify the creation of distributed applications. The primary claim of that work is that non-functional 'ilities' could be achieved by controlling and manipulating the communications between components, thereby simplifying the development of distributed systems. A secondary element of that paper is to argue for extending the conventional distributed objects model in two important ways: 1) The ability to insert injectors (filters, wrappers) into the communication path between components; 2) The ability to annotate communications with additional information, and to propagate these annotations through an application. Here we express the descriptions of that paper.

  11. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis

    PubMed Central

    2010-01-01

    Background The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs) from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs) using co-expression, promoter, pathway and network analysis. Results Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. Conclusions The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution. PMID:20214810

  12. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis.

    PubMed

    Kumar, Charu G; Everts, Robin E; Loor, Juan J; Lewin, Harris A

    2010-03-09

    The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs) from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs) using co-expression, promoter, pathway and network analysis. Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution.

  13. Transcriptomic Analysis of the Endangered Neritid Species Clithon retropictus: De Novo Assembly, Functional Annotation, and Marker Discovery

    PubMed Central

    Park, So Young; Patnaik, Bharat Bhusan; Kang, Se Won; Hwang, Hee-Ju; Chung, Jong Min; Song, Dae Kwon; Sang, Min Kyu; Patnaik, Hongray Howrelia; Lee, Jae Bong; Noh, Mi Young; Kim, Changmu; Kim, Soonok; Park, Hong Seog; Lee, Jun Sang; Han, Yeon Soo; Lee, Yong Seok

    2016-01-01

    An aquatic gastropod belonging to the family Neritidae, Clithon retropictus is listed as an endangered class II species in South Korea. The lack of information on its genomic background limits the ability to obtain functional data resources and inhibits informed conservation planning for this species. In the present study, the transcriptomic sequencing and de novo assembly of C. retropictus generated a total of 241,696,750 high-quality reads. These assembled to 282,838 unigenes with mean and N50 lengths of 736.9 and 1201 base pairs, respectively. Of these, 125,616 unigenes were subjected to annotation analysis with known proteins in Protostome DB, COG, GO, and KEGG protein databases (BLASTX; E ≤ 0.00001) and with known nucleotides in the Unigene database (BLASTN; E ≤ 0.00001). The GO analysis indicated that cellular process, cell, and catalytic activity are the predominant GO terms in the biological process, cellular component, and molecular function categories, respectively. In addition, 2093 unigenes were distributed in 107 different KEGG pathways. Furthermore, 49,280 simple sequence repeats were identified in the unigenes (>1 kilobase sequences). This is the first report on the identification of transcriptomic and microsatellite resources for C. retropictus, which opens up the possibility of exploring traits related to the adaptation and acclimatization of this species. PMID:27455329

  14. The DOE-JGI Standard Operating Procedure for the Annotations of Microbial Genomes.

    PubMed

    Mavromatis, Konstantinos; Ivanova, Natalia N; Chen, I-Min A; Szeto, Ernest; Markowitz, Victor M; Kyrpides, Nikos C

    2009-07-20

    The DOE-JGI Microbial Annotation Pipeline (DOE-JGI MAP) supports gene prediction and/or functional annotation of microbial genomes towards comparative analysis with the Integrated Microbial Genome (IMG) system. DOE-JGI MAP annotation is applied on nucleotide sequence datasets included in the IMG-ER (Expert Review) version of IMG via the IMG ER submission site. Users can submit the sequence datasets consisting of one or more contigs in a multi-fasta file. DOE-JGI MAP annotation includes prediction of protein coding and RNA genes, as well as repeats and assignment of product names to these genes.

  15. The DOE-JGI Standard Operating Procedure for the Annotations of the Microbial Genomes

    SciTech Connect

    Mavromatis, Konstantinos; Ivanova, Natalia; Chen, I-Min A.; Szeto, Ernest; Markowitz, Victor; Kyrpides, Nikos C.

    2009-05-20

    The DOE-JGI Microbial Annotation Pipeline (DOE-JGI MAP) supports gene prediction and/or functional annotation of microbial genomes towards comparative analysis with the Integrated Microbial Genome (IMG) system. DOE-JGI MAP annotation is applied on nucleotide sequence datasets included in the IMG-ER (Expert Review) version of IMG via the IMG ER submission site. Users can submit the sequence datasets consisting of one or more contigs in a multi-fasta file. DOE-JGI MAP annotation includes prediction of protein coding and RNA genes, as well as repeats and assignment of product names to these genes.

  16. Drug Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Mathieson, Moira B.

    This bibliography consists of a total of 215 entries dealing with drug education, including curriculum guides, and drawn from documents in the ERIC system. There are two sections, the first containing 130 annotated citations of documents and journal articles, and the second containing 85 citations of journal articles without annotations, but with…

  17. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Cancer.gov

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  18. Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    PubMed Central

    Maeda, Norihiro; Kasukawa, Takeya; Oyama, Rieko; Gough, Julian; Frith, Martin; Engström, Pär G; Lenhard, Boris; Aturaliya, Rajith N; Batalov, Serge; Beisel, Kirk W; Bult, Carol J; Fletcher, Colin F; Forrest, Alistair R. R; Furuno, Masaaki; Hill, David; Itoh, Masayoshi; Kanamori-Katayama, Mutsumi; Katayama, Shintaro; Katoh, Masaru; Kawashima, Tsugumi; Quackenbush, John; Ravasi, Timothy; Ring, Brian Z; Shibata, Kazuhiro; Sugiura, Koji; Takenaka, Yoichi; Teasdale, Rohan D; Wells, Christine A; Zhu, Yunxia; Kai, Chikatoshi; Kawai, Jun; Hume, David A; Carninci, Piero; Hayashizaki, Yoshihide

    2006-01-01

    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species. PMID:16683036

  19. Bioinformatic approaches for functional annotation and pathway inference in metagenomics data

    PubMed Central

    De Filippo, Carlotta; Ramazzotti, Matteo; Fontana, Paolo; Cavalieri, Duccio

    2012-01-01

    Metagenomic approaches are increasingly recognized as a baseline for understanding the ecology and evolution of microbial ecosystems. The development of methods for pathway inference from metagenomics data is of paramount importance to link a phenotype to a cascade of events stemming from a series of connected sets of genes or proteins. Biochemical and regulatory pathways have until recently been thought and modelled within one cell type, one organism, one species. This vision is being dramatically changed by the advent of whole microbiome sequencing studies, revealing the role of symbiotic microbial populations in fundamental biochemical functions. The new landscape we face requires a clear picture of the potentialities of existing tools and development of new tools to characterize, reconstruct and model biochemical and regulatory pathways as the result of integration of function in complex symbiotic interactions of ontologically and evolutionary distinct cell types. PMID:23175748

  20. Comparison of protein active site structures for functional annotation of proteins and drug design.

    PubMed

    Powers, Robert; Copeland, Jennifer C; Germer, Katherine; Mercier, Kelly A; Ramanathan, Viswanathan; Revesz, Peter

    2006-10-01

    Rapid and accurate functional assignment of novel proteins is increasing in importance, given the completion of numerous genome sequencing projects and the vastly expanding list of unannotated proteins. Traditionally, global primary-sequence and structure comparisons have been used to determine putative function. These approaches, however, do not emphasize similarities in active site configurations that are fundamental to a protein's activity and highly conserved relative to the global and more variable structural features. The Comparison of Protein Active Site Structures (CPASS) database and software enable the comparison of experimentally identified ligand-binding sites to infer biological function and aid in drug discovery. The CPASS database comprises the ligand-defined active sites identified in the protein data bank, where the CPASS program compares these ligand-defined active sites to determine sequence and structural similarity without maintaining sequence connectivity. CPASS will compare any set of ligand-defined protein active sites, irrespective of the identity of the bound ligand. Proteins 2006. (c) 2006 Wiley-Liss, Inc.

  1. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.

    PubMed

    Piro, Rosario Michael; Ala, Ugo; Molineris, Ivan; Grassi, Elena; Bracco, Chiara; Perego, Gian Paolo; Provero, Paolo; Di Cunto, Ferdinando

    2011-11-01

    Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism. Therefore, systematic analysis of tissue-specific coexpression could be, in principle, a very powerful strategy to dissect those functional relationships among genes that emerge only in particular tissues or organs. In this report, we show that, in fact, conserved coexpression as determined from tissue-specific and condition-specific data sets can predict many functional relationships that are not detected by analyzing heterogeneous microarray data sets. More importantly, we find that, when combined with disease networks, the simultaneous use of both generic (multi-tissue) and tissue-specific conserved coexpression allows a more efficient prediction of human disease genes than the use of generic conserved coexpression alone. Using this strategy, we were able to identify high-probability candidates for 238 orphan disease loci. We provide proof of concept that this combined use of generic and tissue-specific conserved coexpression can be very useful to prioritize the mutational candidates obtained from deep-sequencing projects, even in the case of genetic disorders as heterogeneous as XLMR.

  2. IsoSeq analysis and functional annotation of the infratentorial ependymoma tumor tissue on PacBio RSII platform.

    PubMed

    Singh, Neetu; Sahu, Dinesh Kumar; Chowdhry, Rebecca; Mishra, Archana; Goel, Madhu Mati; Faheem, Mohd; Srivastava, Chhitij; Ojha, Bal Krishna; Gupta, Devendra Kumar; Kant, Ravi

    2016-02-01

    Here, we sequenced and functionally annotated the long reads (1-2 kb) cDNAs library of an infratentorial ependymoma tumor tissue on PacBio RSII by Iso-Seq protocol using SMRT technology. 577 MB, data was generated from the brain tissues of ependymoma tumor patient, producing 1,19,313 high-quality reads assembled into 19,878 contigs using Celera assembler followed by Quiver pipelines, which produced 2952 unique protein accessions in the nr protein database and 307 KEGG pathways. Additionally, when we compared GO terms of second and third level with alternative splicing data obtained through HTA Array2.0. We identified four and twelve transcript cluster IDs in Level-2 and Level-3 scores respectively with alternative splicing index predicting mainly the major pathways of hallmarks of cancer. Out of these transcript cluster IDs only transcript cluster IDs of gene PNMT, SNN and LAMB1 showed Reads Per Kilobase of exon model per Million mapped reads (RPKM) values at gene-level expression (GE) and transcript-level (TE) track. Most importantly, brain-specific genes--PNMT, SNN and LAMB1 show their involvement in Ependymoma.

  3. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs.

    PubMed

    Okazaki, Y; Furuno, M; Kasukawa, T; Adachi, J; Bono, H; Kondo, S; Nikaido, I; Osato, N; Saito, R; Suzuki, H; Yamanaka, I; Kiyosawa, H; Yagi, K; Tomaru, Y; Hasegawa, Y; Nogami, A; Schönbach, C; Gojobori, T; Baldarelli, R; Hill, D P; Bult, C; Hume, D A; Quackenbush, J; Schriml, L M; Kanapin, A; Matsuda, H; Batalov, S; Beisel, K W; Blake, J A; Bradt, D; Brusic, V; Chothia, C; Corbani, L E; Cousins, S; Dalla, E; Dragani, T A; Fletcher, C F; Forrest, A; Frazer, K S; Gaasterland, T; Gariboldi, M; Gissi, C; Godzik, A; Gough, J; Grimmond, S; Gustincich, S; Hirokawa, N; Jackson, I J; Jarvis, E D; Kanai, A; Kawaji, H; Kawasawa, Y; Kedzierski, R M; King, B L; Konagaya, A; Kurochkin, I V; Lee, Y; Lenhard, B; Lyons, P A; Maglott, D R; Maltais, L; Marchionni, L; McKenzie, L; Miki, H; Nagashima, T; Numata, K; Okido, T; Pavan, W J; Pertea, G; Pesole, G; Petrovsky, N; Pillai, R; Pontius, J U; Qi, D; Ramachandran, S; Ravasi, T; Reed, J C; Reed, D J; Reid, J; Ring, B Z; Ringwald, M; Sandelin, A; Schneider, C; Semple, C A M; Setou, M; Shimada, K; Sultana, R; Takenaka, Y; Taylor, M S; Teasdale, R D; Tomita, M; Verardo, R; Wagner, L; Wahlestedt, C; Wang, Y; Watanabe, Y; Wells, C; Wilming, L G; Wynshaw-Boris, A; Yanagisawa, M; Yang, I; Yang, L; Yuan, Z; Zavolan, M; Zhu, Y; Zimmer, A; Carninci, P; Hayatsu, N; Hirozane-Kishikawa, T; Konno, H; Nakamura, M; Sakazume, N; Sato, K; Shiraki, T; Waki, K; Kawai, J; Aizawa, K; Arakawa, T; Fukuda, S; Hara, A; Hashizume, W; Imotani, K; Ishii, Y; Itoh, M; Kagawa, I; Miyazaki, A; Sakai, K; Sasaki, D; Shibata, K; Shinagawa, A; Yasunishi, A; Yoshino, M; Waterston, R; Lander, E S; Rogers, J; Birney, E; Hayashizaki, Y

    2002-12-05

    Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.

  4. IsoSeq analysis and functional annotation of the infratentorial ependymoma tumor tissue on PacBio RSII platform

    PubMed Central

    Singh, Neetu; Sahu, Dinesh Kumar; Chowdhry, Rebecca; Mishra, Archana; Goel, Madhu Mati; Faheem, Mohd; Srivastava, Chhitij; Ojha, Bal Krishna; Gupta, Devendra Kumar; Kant, Ravi

    2015-01-01

    Here, we sequenced and functionally annotated the long reads (1–2 kb) cDNAs library of an infratentorial ependymoma tumor tissue on PacBio RSII by Iso-Seq protocol using SMRT technology. 577 MB, data was generated from the brain tissues of ependymoma tumor patient, producing 1,19,313 high-quality reads assembled into 19,878 contigs using Celera assembler followed by Quiver pipelines, which produced 2952 unique protein accessions in the nr protein database and 307 KEGG pathways. Additionally, when we compared GO terms of second and third level with alternative splicing data obtained through HTA Array2.0. We identified four and twelve transcript cluster IDs in Level-2 and Level-3 scores respectively with alternative splicing index predicting mainly the major pathways of hallmarks of cancer. Out of these transcript cluster IDs only transcript cluster IDs of gene PNMT, SNN and LAMB1 showed Reads Per Kilobase of exon model per Million mapped reads (RPKM) values at gene-level expression (GE) and transcript-level (TE) track. Most importantly, brain-specific genes–—PNMT, SNN and LAMB1 show their involvement in Ependymoma. PMID:26862483

  5. TreeQ-VISTA: An Interactive Tree Visualization Tool withFunctional Annotation Query Capabilities

    SciTech Connect

    Gu, Shengyin; Anderson, Iain; Kunin, Victor; Cipriano, Michael; Minovitsky, Simon; Weber, Gunther; Amenta, Nina; Hamann, Bernd; Dubchak,Inna

    2007-05-07

    Summary: We describe a general multiplatform exploratorytool called TreeQ-Vista, designed for presenting functional annotationsin a phylogenetic context. Traits, such as phenotypic and genomicproperties, are interactively queried from a relational database with auser-friendly interface which provides a set of tools for users with orwithout SQL knowledge. The query results are projected onto aphylogenetic tree and can be displayed in multiple color groups. A richset of browsing, grouping and query tools are provided to facilitatetrait exploration, comparison and analysis.Availability: The program,detailed tutorial and examples are available online athttp://genome-test.lbl.gov/vista/TreeQVista.

  6. Butternut (Juglans cinerea) annotated bibliography.

    Treesearch

    M.E. Ostry; M.J. Moore; S.A.N. Worrall

    2003-01-01

    An annotated bibliography of the major literature related to butternut (Juglans cinerea) from 1890 to 2002. Includes 230 citations and a topical index. Topics include diseases, conservation, genetics, insect pests, silvics, nut production, propagation, silviculture, and utilization.

  7. Functional annotation of the T-cell immunoglobulin mucin family in birds.

    PubMed

    Hu, Tuanjun; Wu, Zhiguang; Vervelde, Lonneke; Rothwell, Lisa; Hume, David A; Kaiser, Pete

    2016-07-01

    T-cell immunoglobulin and mucin (TIM) family molecules are cell membrane proteins, preferentially expressed on various immune cells and implicated in recognition and clearance of apoptotic cells. Little is known of their function outside human and mouse, and nothing outside mammals. We identified only two TIM genes (chTIM) in the chicken genome, putative orthologues of mammalian TIM1 and TIM4, and cloned the respective cDNAs. Like mammalian TIM1, chTIM1 expression was restricted to lymphoid tissues and immune cells. The gene chTIM4 encodes at least five splice variants with distinct expression profiles that also varied between strains of chicken. Expression of chTIM4 was detected in myeloid antigen-presenting cells, and in γδ T cells, whereas mammalian TIM4 is not expressed in T cells. Like the mammalian proteins, chTIM1 and chTIM4 fusion proteins bind to phosphatidylserine, and are thereby implicated in recognition of apoptotic cells. The chTIM4-immunoglobulin fusion protein also had co-stimulatory activity on chicken T cells, suggesting a function in antigen presentation.

  8. Analysis and functional annotation of expressed sequence tags from the fall armyworm Spodoptera frugiperda.

    PubMed

    Deng, Youping; Dong, Yinghua; Thodima, Venkata; Clem, Rollie J; Passarelli, A Lorena

    2006-10-19

    Little is known about the genome sequences of lepidopteran insects, although this group of insects has been studied extensively in the fields of endocrinology, development, immunity, and pathogen-host interactions. In addition, cell lines derived from Spodoptera frugiperda and other lepidopteran insects are routinely used for baculovirus foreign gene expression. This study reports the results of an expressed sequence tag (EST) sequencing project in cells from the lepidopteran insect S. frugiperda, the fall armyworm. We have constructed an EST database using two cDNA libraries from the S. frugiperda-derived cell line, SF-21. The database consists of 2,367 ESTs which were assembled into 244 contigs and 951 singlets for a total of 1,195 unique sequences. S. frugiperda is an agriculturally important pest insect and genomic information will be instrumental for establishing initial transcriptional profiling and gene function studies, and for obtaining information about genes manipulated during infections by insect pathogens such as baculoviruses.

  9. Discovery, Annotation, and Functional Analysis of Long Noncoding RNAs Controlling Cell-Cycle Gene Expression and Proliferation in Breast Cancer Cells.

    PubMed

    Sun, Miao; Gadad, Shrikanth S; Kim, Dae-Seok; Kraus, W Lee

    2015-08-20

    We describe a computational approach that integrates GRO-seq and RNA-seq data to annotate long noncoding RNAs (lncRNAs), with increased sensitivity for low-abundance lncRNAs. We used this approach to characterize the lncRNA transcriptome in MCF-7 human breast cancer cells, including >700 previously unannotated lncRNAs. We then used information about the (1) transcription of lncRNA genes from GRO-seq, (2) steady-state levels of lncRNA transcripts in cell lines and patient samples from RNA-seq, and (3) histone modifications and factor binding at lncRNA gene promoters from ChIP-seq to explore lncRNA gene structure and regulation, as well as lncRNA transcript stability, regulation, and function. Functional analysis of selected lncRNAs with altered expression in breast cancers revealed roles in cell proliferation, regulation of an E2F-dependent cell-cycle gene expression program, and estrogen-dependent mitogenic growth. Collectively, our studies demonstrate the use of an integrated genomic and molecular approach to identify and characterize growth-regulating lncRNAs in cancers.

  10. Structure and sequence based functional annotation of Zika virus NS2b protein: Computational insights.

    PubMed

    Aguilera-Pesantes, Daniel; Méndez, Miguel A

    2017-02-08

    While Zika virus (ZIKV) outbreaks are a growing concern for global health, a deep understanding about the virus is lacking. Here we report a contribution to the basic science on the virus- a detailed computational analysis of the non structural protein NS2b. This protein acts as a cofactor for the NS3 protease (NS3Pro) domain that is important on the viral life cycle, and is an interesting target for drug development. We found that ZIKV NS2b cofactor is highly similar to other virus within the Flavivirus genus, especially to West Nile Virus, suggesting that it is completely necessary for the protease complex activity. Furthermore, the ZIKV NS2b has an important role to the function and stability of the ZIKV NS3 protease domain even when presents a low conservation score. In addition, ZIKV NS2b is mostly rigid, which could imply a non dynamic nature in substrate recognition. Finally, by performing a computational alanine scanning mutagenesis, we found that residues Gly 52 and Asp 83 in the NS2b could be important in substrate recognition.

  11. Analysis and functional annotation of expressed sequence tags from the fall armyworm Spodoptera frugiperda

    PubMed Central

    Deng, Youping; Dong, Yinghua; Thodima, Venkata; Clem, Rollie J; Passarelli, A Lorena

    2006-01-01

    Background Little is known about the genome sequences of lepidopteran insects, although this group of insects has been studied extensively in the fields of endocrinology, development, immunity, and pathogen-host interactions. In addition, cell lines derived from Spodoptera frugiperda and other lepidopteran insects are routinely used for baculovirus foreign gene expression. This study reports the results of an expressed sequence tag (EST) sequencing project in cells from the lepidopteran insect S. frugiperda, the fall armyworm. Results We have constructed an EST database using two cDNA libraries from the S. frugiperda-derived cell line, SF-21. The database consists of 2,367 ESTs which were assembled into 244 contigs and 951 singlets for a total of 1,195 unique sequences. Conclusion S. frugiperda is an agriculturally important pest insect and genomic information will be instrumental for establishing initial transcriptional profiling and gene function studies, and for obtaining information about genes manipulated during infections by insect pathogens such as baculoviruses. PMID:17052344

  12. A prioritization analysis of disease association by data-mining of functional annotation of human genes.

    PubMed

    Taniya, Takayuki; Tanaka, Susumu; Yamaguchi-Kabata, Yumi; Hanaoka, Hideki; Yamasaki, Chisato; Maekawa, Harutoshi; Barrero, Roberto A; Lenhard, Boris; Datta, Milton W; Shimoyama, Mary; Bumgarner, Roger; Chakraborty, Ranajit; Hopkinson, Ian; Jia, Libin; Hide, Winston; Auffray, Charles; Minoshima, Shinsei; Imanishi, Tadashi; Gojobori, Takashi

    2012-01-01

    Complex diseases result from contributions of multiple genes that act in concert through pathways. Here we present a method to prioritize novel candidates of disease-susceptibility genes depending on the biological similarities to the known disease-related genes. The extent of disease-susceptibility of a gene is prioritized by analyzing seven features of human genes captured in H-InvDB. Taking rheumatoid arthritis (RA) and prostate cancer (PC) as two examples, we evaluated the efficiency of our method. Highly scored genes obtained included TNFSF12 and OSM as candidate disease genes for RA and PC, respectively. Subsequent characterization of these genes based upon an extensive literature survey reinforced the validity of these highly scored genes as possible disease-susceptibility genes. Our approach, Prioritization ANalysis of Disease Association (PANDA), is an efficient and cost-effective method to narrow down a large set of genes into smaller subsets that are most likely to be involved in the disease pathogenesis.

  13. Functional Annotation of Metastasis-associated MicroRNAs of Melanoma: A Meta-analysis of Expression Profiles

    PubMed Central

    Li, Jing-Yi; Zheng, Li-Li; Wang, Ting-Ting; Hu, Min

    2016-01-01

    Background: Melanoma is a type of cancer that develops from the pigment-containing cells. Until now, its pathological mechanisms remain largely unknown. The aim of this study was to identify metastasis-related microRNA (miRNAs) and gain an understanding of the biological functions in the metastasis of melanoma. Methods: We searched the PubMed and Gene Expression Omnibus database to collect miRNA expression profiling datasets about melanoma, with key words of “melanoma”, “miRNA”, “microarray”, and “gene expression profiling”. Only the original experimental works published before June 2016 for analyzing the metastasis of melanoma were retained, other nonhuman studies, reviews, and meta-analyses were removed. We performed a meta-analysis to explore the differentially expressed miRNA between metastatic and nonmetastatic samples. Moreover, we predicted target genes of the miRNAs to study their biological roles for these miRNAs. Results: We identified a total of 63 significantly differentially expressed miRNAs by meta-analysis of the melanoma expression profiling data. The regulatory network constructed by using these miRNAs and the predicted targets identified several key genes involved in the metastasis of melanoma. Functional annotation of these genes indicated that they are mainly enriched in some biological pathways such as mitogen-activated protein kinase signaling pathway, cell junction, and focal adhesion. Conclusions: By collecting the miRNA expression datasets from different platforms, multiple biological markers were identified for the metastasis of melanoma. This study provided novel insights into the molecular mechanisms underlying this disease, thereby aiding the diagnosis and treatment of the disease. PMID:27748342

  14. An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics.

    PubMed

    Chávez-Fumagalli, Miguel A; Schneider, Mônica S; Lage, Daniela P; Machado-de-Ávila, Ricardo A; Coelho, Eduardo A F

    2017-05-01

    Leishmaniasis is a parasitic disease caused by the protozoan of the Leishmania genus. While no human vaccine is available, drugs such as pentavalent antimonials, pentamidine and amphotericin B are used for treat the patients. However, the high toxicity of these pharmaceutics, the emergence of parasite resistance and/or their high cost have showed to the urgent need of identify new targets to be employed in the improvement of the treatment against leishmaniasis. In a recent immunoproteomics approach performed in the Leishmania infantum species, 104 antigenic proteins were recognized by antibodies in sera of visceral leishmaniasis (VL) dogs. Some of them were later showed to be effective diagnostic markers and/or vaccine candidates against the disease. Between these proteins, 24 considered as hypothetical were identified in the promastigote and amastigote-like extracts of the parasites. The present study aimed to use bioinformatics tools to select new drug targets between these hypothetical proteins. Their cellular localization was predicted to be seven membrane proteins, as well as eight cytoplasmic, three nuclear, one mitochondrial and five proteins remained unclassified. Their functions were predicted as being two transport proteins, as well as five with metabolic activity, three as cell signaling and fourteen proteins remained unclassified. Ten hypothetical proteins were well-annotated and compared to their homology regarding to human proteins. Two proteins, a calpain-like and clavaminate synthase-like proteins were selected by using Docking analysis as being possible drug targets. In this sense, the present study showed the employ of new strategies to select possible drug candidates, according their localization and biological function in Leishmania parasites, aiming to treat against VL. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. AGeS: A Software System for Microbial Genome Sequence Annotation

    PubMed Central

    Kumar, Kamal; Desai, Valmik; Cheng, Li; Khitrov, Maxim; Grover, Deepak; Satya, Ravi Vijaya; Yu, Chenggang; Zavaljevski, Nela; Reifman, Jaques

    2011-01-01

    Background The annotation of genomes from next-generation sequencing platforms needs to be rapid, high-throughput, and fully integrated and automated. Although a few Web-based annotation services have recently become available, they may not be the best solution for researchers that need to annotate a large number of genomes, possibly including proprietary data, and store them locally for further analysis. To address this need, we developed a standalone software application, the Annotation of microbial Genome Sequences (AGeS) system, which incorporates publicly available and in-house-developed bioinformatics tools and databases, many of which are parallelized for high-throughput performance. Methodology The AGeS system supports three main capabilities. The first is the storage of input contig sequences and the resulting annotation data in a central, customized database. The second is the annotation of microbial genomes using an integrated software pipeline, which first analyzes contigs from high-throughput sequencing by locating genomic regions that code for proteins, RNA, and other genomic elements through the Do-It-Yourself Annotation (DIYA) framework. The identified protein-coding regions are then functionally annotated using the in-house-developed Pipeline for Protein Annotation (PIPA). The third capability is the visualization of annotated sequences using GBrowse. To date, we have implemented these capabilities for bacterial genomes. AGeS was evaluated by comparing its genome annotations with those provided by three other methods. Our results indicate that the software tools integrated into AGeS provide annotations that are in general agreement with those provided by the compared methods. This is demonstrated by a >94% overlap in the number of identified genes, a significant number of identical annotated features, and a >90% agreement in enzyme function predictions. PMID:21408217

  16. AGeS: a software system for microbial genome sequence annotation.

    PubMed

    Kumar, Kamal; Desai, Valmik; Cheng, Li; Khitrov, Maxim; Grover, Deepak; Satya, Ravi Vijaya; Yu, Chenggang; Zavaljevski, Nela; Reifman, Jaques

    2011-03-07

    The annotation of genomes from next-generation sequencing platforms needs to be rapid, high-throughput, and fully integrated and automated. Although a few Web-based annotation services have recently become available, they may not be the best solution for researchers that need to annotate a large number of genomes, possibly including proprietary data, and store them locally for further analysis. To address this need, we developed a standalone software application, the Annotation of microbial Genome Sequences (AGeS) system, which incorporates publicly available and in-house-developed bioinformatics tools and databases, many of which are parallelized for high-throughput performance. The AGeS system supports three main capabilities. The first is the storage of input contig sequences and the resulting annotation data in a central, customized database. The second is the annotation of microbial genomes using an integrated software pipeline, which first analyzes contigs from high-throughput sequencing by locating genomic regions that code for proteins, RNA, and other genomic elements through the Do-It-Yourself Annotation (DIYA) framework. The identified protein-coding regions are then functionally annotated using the in-house-developed Pipeline for Protein Annotation (PIPA). The third capability is the visualization of annotated sequences using GBrowse. To date, we have implemented these capabilities for bacterial genomes. AGeS was evaluated by comparing its genome annotations with those provided by three other methods. Our results indicate that the software tools integrated into AGeS provide annotations that are in general agreement with those provided by the compared methods. This is demonstrated by a >94% overlap in the number of identified genes, a significant number of identical annotated features, and a >90% agreement in enzyme function predictions.

  17. Ranking Biomedical Annotations with Annotator's Semantic Relevancy

    PubMed Central

    2014-01-01

    Biomedical annotation is a common and affective artifact for researchers to discuss, show opinion, and share discoveries. It becomes increasing popular in many online research communities, and implies much useful information. Ranking biomedical annotations is a critical problem for data user to efficiently get information. As the annotator's knowledge about the annotated entity normally determines quality of the annotations, we evaluate the knowledge, that is, semantic relationship between them, in two ways. The first is extracting relational information from credible websites by mining association rules between an annotator and a biomedical entity. The second way is frequent pattern mining from historical annotations, which reveals common features of biomedical entities that an annotator can annotate with high quality. We propose a weighted and concept-extended RDF model to represent an annotator, a biomedical entity, and their background attributes and merge information from the two ways as the context of an annotator. Based on that, we present a method to rank the annotations by evaluating their correctness according to user's vote and the semantic relevancy between the annotator and the annotated entity. The experimental results show that the approach is applicable and efficient even when data set is large. PMID:24899918

  18. Ranking biomedical annotations with annotator's semantic relevancy.

    PubMed

    Wu, Aihua

    2014-01-01

    Biomedical annotation is a common and affective artifact for researchers to discuss, show opinion, and share discoveries. It becomes increasing popular in many online research communities, and implies much useful information. Ranking biomedical annotations is a critical problem for data user to efficiently get information. As the annotator's knowledge about the annotated entity normally determines quality of the annotations, we evaluate the knowledge, that is, semantic relationship between them, in two ways. The first is extracting relational information from credible websites by mining association rules between an annotator and a biomedical entity. The second way is frequent pattern mining from historical annotations, which reveals common features of biomedical entities that an annotator can annotate with high quality. We propose a weighted and concept-extended RDF model to represent an annotator, a biomedical entity, and their background attributes and merge information from the two ways as the context of an annotator. Based on that, we present a method to rank the annotations by evaluating their correctness according to user's vote and the semantic relevancy between the annotator and the annotated entity. The experimental results show that the approach is applicable and efficient even when data set is large.

  19. Functional Annotation of Two New Carboxypeptidases from the Amidohydrolase Superfamily of Enzymes†

    PubMed Central

    Xiang, Dao Feng; Xu, Chengfu; Kumaran, Desigan; Brown, Ann C.; Sauder, J. Michael; Burley, Stephen K.; Swaminathan, Subramanyam; Raushel, Frank M.

    2009-01-01

    Two proteins from the amidohydrolase superfamily of enzymes were cloned, expressed and purified to homogeneity. The first protein, Cc0300, was from Caulobacter crescentus CB-15 (Cc0300) while the second one (Sgx9355e) was derived from an environmental DNA sequence originally isolated from the Sargasso Sea (gi| 44371129). The catalytic functions and the substrate profiles for the two enzymes were determined with the aid of combinatorial dipeptide libraries. Both enzymes were shown to catalyze the hydrolysis of L-Xaa-L-Xaa dipeptides where the amino acid at the N-terminus was relatively unimportant. These enzymes were specific for hydrophobic amino acids at the C-terminus. With Cc0300, substrates terminating in isoleucine, leucine, phenylalanine, tyrosine, valine, methionine, and tryptophan were hydrolyzed. The same specificity was observed with Sgx9355e but this protein was also able to hydrolyze peptides terminating in threonine. Both enzymes were able to hydrolyze N-acetyl and N-formyl derivatives of the hydrophobic amino acids and tripeptides. The best substrates identified for Cc0300 were L-Ala-L-Leu with values of kcat and kcat/Km of 37 s−1 and 1.1 × 105 M−1 s−1, respectively, and N-formyl-L-Tyr with values of kcat and kcat/Km of 33 s−1 and 3.9 × 105 M−1 s−1, respectively. The best substrate identified for Sgx9355e was L-Ala-L-Phe will values of kcat and kcat/Km of 0.41 s−1 and 5.8 × 103 M−1 s−1. The three-dimensional structure of Sgx9355e was determined to a resolution of 2.33 Å with L-methionine bound in the active site. The α-carboxylate of the methionine is ion-paired to His-237 and also hydrogen bonded to the backbone amide groups of Val-201 and Leu-202. The α-amino group of the bound methionine interacts with Asp-328. The structural determinants for substrate recognition were identified and compared with other enzymes in this superfamily that hydrolyze dipeptides with different specificities. PMID:19358546

  20. Functional Annotation of Two New Carboxypeptidases from the Amidohydrolase Superfamily of Enzymes

    SciTech Connect

    Xiang, D.; Xu, C; Kumaran, D; Brown, A; Sauder, M; Burley, S; Swaminathan, S; Raushel, F

    2009-01-01

    Two proteins from the amidohydrolase superfamily of enzymes were cloned, expressed, and purified to homogeneity. The first protein, Cc0300, was from Caulobacter crescentus CB-15 (Cc0300), while the second one (Sgx9355e) was derived from an environmental DNA sequence originally isolated from the Sargasso Sea (gi|44371129). The catalytic functions and the substrate profiles for the two enzymes were determined with the aid of combinatorial dipeptide libraries. Both enzymes were shown to catalyze the hydrolysis of l-Xaa-l-Xaa dipeptides in which the amino acid at the N-terminus was relatively unimportant. These enzymes were specific for hydrophobic amino acids at the C-terminus. With Cc0300, substrates terminating in isoleucine, leucine, phenylalanine, tyrosine, valine, methionine, and tryptophan were hydrolyzed. The same specificity was observed with Sgx9355e, but this protein was also able to hydrolyze peptides terminating in threonine. Both enzymes were able to hydrolyze N-acetyl and N-formyl derivatives of the hydrophobic amino acids and tripeptides. The best substrates identified for Cc0300 were l-Ala-l-Leu with kcat and kcat/Km values of 37 s-1 and 1.1 x 105 M-1 s-1, respectively, and N-formyl-l-Tyr with kcat and kcat/Km values of 33 s-1 and 3.9 x 105 M-1 s-1, respectively. The best substrate identified for Sgx9355e was l-Ala-l-Phe with kcat and kcat/Km values of 0.41 s-1 and 5.8 x 103 M-1 s-1. The three-dimensional structure of Sgx9355e was determined to a resolution of 2.33 Angstroms with l-methionine bound in the active site. The a-carboxylate of the methionine is ion-paired to His-237 and also hydrogen bonded to the backbone amide groups of Val-201 and Leu-202. The a-amino group of the bound methionine interacts with Asp-328. The structural determinants for substrate recognition were identified and compared with other enzymes in this superfamily that hydrolyze dipeptides with different specificities.

  1. Discovery and Functional Annotation of SIX6 Variants in Primary Open-Angle Glaucoma

    PubMed Central

    Allingham, R. Rand; Whigham, Benjamin T.; Havens, Shane; Garrett, Melanie E.; Qiao, Chunyan; Katsanis, Nicholas; Wiggs, Janey L.; Pasquale, Louis R.; Ashley-Koch, Allison; Oh, Edwin C.; Hauser, Michael A.

    2014-01-01

    Glaucoma is a leading cause of blindness worldwide. Primary open-angle glaucoma (POAG) is the most common subtype and is a complex trait with multigenic inheritance. Genome-wide association studies have previously identified a significant association between POAG and the SIX6 locus (rs10483727, odds ratio (OR) = 1.32, p = 3.87×10−11). SIX6 plays a role in ocular development and has been associated with the morphology of the optic nerve. We sequenced the SIX6 coding and regulatory regions in 262 POAG cases and 256 controls and identified six nonsynonymous coding variants, including five rare and one common variant, Asn141His (rs33912345), which was associated significantly with POAG (OR = 1.27, p = 4.2×10−10) in the NEIGHBOR/GLAUGEN datasets. These variants were tested in an in vivo Danio rerio (zebrafish) complementation assay to evaluate ocular metrics such as eye size and optic nerve structure. Five variants, found primarily in POAG cases, were hypomorphic or null, while the sixth variant, found only in controls, was benign. One variant in the SIX6 enhancer increased expression of SIX6 and disrupted its regulation. Finally, to our knowledge for the first time, we have identified a clinical feature in POAG patients that appears to be dependent upon SIX6 genotype: patients who are homozygous for the SIX6 risk allele (His141) have a statistically thinner retinal nerve fiber layer than patients homozygous for the SIX6 non-risk allele (Asn141). Our results, in combination with previous SIX6 work, lead us to hypothesize that SIX6 risk variants disrupt the development of the neural retina, leading to a reduced number of retinal ganglion cells, thereby increasing the risk of glaucoma-associated vision loss. PMID:24875647

  2. Genix: a new online automated pipeline for bacterial genome annotation.

    PubMed

    Kremer, Frederico Schmitt; Eslabão, Marcus Redü; Dellagostin, Odir Antônio; Pinto, Luciano da Silva

    2016-12-01

    Next-generation sequencing has significantly reduced the cost of genome-sequencing projects, resulting in an expressive increase in the availability of genomic data in public databases. The cheaper and easier is to sequence new genomes, the more accurate the annotation steps have to be to avoid both the loss of information and the accumulation of erroneous features that may affect the accuracy of further analysis. In the case of bacteria genomes, a range of web annotation software has been developed; however, many applications have yet to incorporate the steps required to improve their result, including the removal of false-positive/spurious and a more complete identification of non-coding features. We present Genix, a new web-based bacterial genome annotation pipeline. A comparison of the results generated by Genix for four reference genomes against those generated by other annotation tools indicated that our pipeline is able to provide results that are closer to the reference genome annotation, with a smaller amount of false-positive proteins and missing functional annotated proteins. Additionally, the metrics obtained by Genix were slightly better than those obtained by Prokka, a state-of-art standalone annotation system. Our results indicate that Genix is a useful tool that is able to provide a more refined result, and may be a user-friendly way to obtain high-quality results.

  3. Sequence-function-stability relationships in proteins from datasets of functionally annotated variants: the case of TEM β-lactamases.

    PubMed

    Abriata, Luciano A; Salverda, Merijn L M; Tomatis, Pablo E

    2012-09-21

    A dataset of TEM lactamase variants with different substrate and inhibition profiles was compiled and analyzed. Trends show that loops are the main evolvable regions in these enzymes, gradually accumulating mutations to generate increasingly complex functions. Notably, many mutations present in evolved enzymes are also found in simpler variants, probably originating functional promiscuity. Following a function-stability tradeoff, the increase in functional complexity driven by accumulation of mutations fosters the incorporation of other stability-restoring substitutions, although our analysis suggests they might not be as "global" as generally accepted and seem instead specific to different networks of protein sites. Finally, we show how this dataset can be used to model functional changes in TEMs based on the physicochemical properties of the amino acids. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Managing the data deluge: data-driven GO category assignment improves while complexity of functional annotation increases.

    PubMed

    Gobeill, Julien; Pasche, Emilie; Vishnyakova, Dina; Ruch, Patrick

    2013-01-01

    The available curated data lag behind current biological knowledge contained in the literature. Text mining can assist biologists and curators to locate and access this knowledge, for instance by characterizing the functional profile of publications. Gene Ontology (GO) category assignment in free text already supports various applications, such as powering ontology-based search engines, finding curation-relevant articles (triage) or helping the curator to identify and encode functions. Popular text mining tools for GO classification are based on so called thesaurus-based--or dictionary-based--approaches, which exploit similarities between the input text and GO terms themselves. But their effectiveness remains limited owing to the complex nature of GO terms, which rarely occur in text. In contrast, machine learning approaches exploit similarities between the input text and already curated instances contained in a knowledge base to infer a functional profile. GO Annotations (GOA) and MEDLINE make possible to exploit a growing amount of curated abstracts (97 000 in November 2012) for populating this knowledge base. Our study compares a state-of-the-art thesaurus-based system with a machine learning system (based on a k-Nearest Neighbours algorithm) for the task of proposing a functional profile for unseen MEDLINE abstracts, and shows how resources and performances have evolved. Systems are evaluated on their ability to propose for a given abstract the GO terms (2.8 on average) used for curation in GOA. We show that since 2006, although a massive effort was put into adding synonyms in GO (+300%), our thesaurus-based system effectiveness is rather constant, reaching from 0.28 to 0.31 for Recall at 20 (R20). In contrast, thanks to its knowledge base growth, our machine learning system has steadily improved, reaching from 0.38 in 2006 to 0.56 for R20 in 2012. Integrated in semi-automatic workflows or in fully automatic pipelines, such systems are more and more efficient

  5. Sequencing, De novo Assembly, Functional Annotation and Analysis of Phyllanthus amarus Leaf Transcriptome Using the Illumina Platform

    PubMed Central

    Bose Mazumdar, Aparupa; Chattopadhyay, Sharmila

    2016-01-01

    Phyllanthus amarus Schum. and Thonn., a widely distributed annual medicinal herb has a long history of use in the traditional system of medicine for over 2000 years. However, the lack of genomic data for P. amarus, a non-model organism hinders research at the molecular level. In the present study, high-throughput sequencing technology has been employed to enhance better understanding of this herb and provide comprehensive genomic information for future work. Here P. amarus leaf transcriptome was sequenced using the Illumina Miseq platform. We assembled 85,927 non-redundant (nr) “unitranscript” sequences with an average length of 1548 bp, from 18,060,997 raw reads. Sequence similarity analyses and annotation of these unitranscripts were performed against databases like green plants nr protein database, Gene Ontology (GO), Clusters of Orthologous Groups (COG), PlnTFDB, KEGG databases. As a result, 69,394 GO terms, 583 enzyme codes (EC), 134 KEGG maps, and 59 Transcription Factor (TF) families were generated. Functional and comparative analyses of assembled unitranscripts were also performed with the most closely related species like Populus trichocarpa and Ricinus communis using TRAPID. KEGG analysis showed that a number of assembled unitranscripts were involved in secondary metabolites, mainly phenylpropanoid, flavonoid, terpenoids, alkaloids, and lignan biosynthetic pathways that have significant medicinal attributes. Further, Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values of the identified secondary metabolite pathway genes were determined and Reverse Transcription PCR (RT-PCR) of a few of these genes were performed to validate the de novo assembled leaf transcriptome dataset. In addition 65,273 simple sequence repeats (SSRs) were also identified. To the best of our knowledge, this is the first transcriptomic dataset of P. amarus till date. Our study provides the largest genetic resource that will lead to drug development and pave

  6. Current and future trends in marine image annotation software

    NASA Astrophysics Data System (ADS)

    Gomes-Pereira, Jose Nuno; Auger, Vincent; Beisiegel, Kolja; Benjamin, Robert; Bergmann, Melanie; Bowden, David; Buhl-Mortensen, Pal; De Leo, Fabio C.; Dionísio, Gisela; Durden, Jennifer M.; Edwards, Luke; Friedman, Ariell; Greinert, Jens; Jacobsen-Stout, Nancy; Lerner, Steve; Leslie, Murray; Nattkemper, Tim W.; Sameoto, Jessica A.; Schoening, Timm; Schouten, Ronald; Seager, James; Singh, Hanumant; Soubigou, Olivier; Tojeira, Inês; van den Beld, Inge; Dias, Frederico; Tempera, Fernando; Santos, Ricardo S.

    2016-12-01

    Given the need to describe, analyze and index large quantities of marine imagery data for exploration and monitoring activities, a range of specialized image annotation tools have been developed worldwide. Image annotation - the process of transposing objects or events represented in a video or still image to the semantic level, may involve human interactions and computer-assisted solutions. Marine image annotation software (MIAS) have enabled over 500 publications to date. We review the functioning, application trends and developments, by comparing general and advanced features of 23 different tools utilized in underwater image analysis. MIAS requiring human input are basically a graphical user interface, with a video player or image browser that recognizes a specific time code or image code, allowing to log events in a time-stamped (and/or geo-referenced) manner. MIAS differ from similar software by the capability of integrating data associated to video collection, the most simple being the position coordinates of the video recording platform. MIAS have three main characteristics: annotating events in real time, posteriorly to annotation and interact with a database. These range from simple annotation interfaces, to full onboard data management systems, with a variety of toolboxes. Advanced packages allow to input and display data from multiple sensors or multiple annotators via intranet or internet. Posterior human-mediated annotation often include tools for data display and image analysis, e.g. length, area, image segmentation, point count; and in a few cases the possibility of browsing and editing previous dive logs or to analyze the annotations. The interaction with a database allows the automatic integration of annotations from different surveys, repeated annotation and collaborative annotation of shared datasets, browsing and querying of data. Progress in the field of automated annotation is mostly in post processing, for stable platforms or still images

  7. Annotated bibliography and index map of sulfur and pyrites deposits in the United States and Alaska (including references to July 1, 1951)

    USGS Publications Warehouse

    Espenshade, Gilbert H.; Broedel, Carl H.

    1952-01-01

    Since the end of World War II, the pattern of sulfur production and consumption in the United States and abroad has changed markedly from the pattern that existed before the war. Although production of sulfur in the United States in 1950 was more than double the average annual production for the 1935-39 period, consumption had increased at such a rate that current domestic and foreign demand for U. S. sulfur exceeds the productive capacity of the industry. Production of sulfur (including brimstone, pyrites, and all other forms) in the 1935-39 period and in 1950 are compared in the table below.

  8. An annotated checklist of the praying mantises (Mantodea) of Borneo, including the results of the 2008 scientific expedition to Lanjak Entimau Wildlife Sanctuary, Sarawak .

    PubMed

    Schwarz, Christian J; Konopik, Oliver

    2014-05-21

    We present the first checklist of praying mantids (Mantodea) of Borneo, with special reference to the specimens collected during the Scientific Expedition to Lanjak Entimau Wildlife Sanctuary 2008. With 118 confirmed species in 56 genera (including subgenera), Borneo is the island with the highest mantodean diversity known to date. In Lanjak Entimau 38 specimens representing 17 genera and 18 species were collected around the station lights and in surrounding secondary and primary forest. A new synonymy in the genus Deroplatys is established. The observed diversity patterns among Bornean mantids are discussed with reference to the biogeographic history of the Sunda Shelf since the Miocene.

  9. Patient Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Simmons, Jeannette

    Topics included in this annotated bibliography on patient education are (1) background on development of patient education programs, (2) patient education interventions, (3) references for health professionals, and (4) research and evaluation in patient education. (TA)

  10. Hopi Linguistics: An Annotated Bibliography

    ERIC Educational Resources Information Center

    Seaman, P. David

    1977-01-01

    This is a preliminary research-oriented bibliography on the Hopi language. All known items, through mid-1976, are included, with an annotation for each item sketching its nature and/or possible value. (Author/RM)

  11. Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae

    SciTech Connect

    Rutledge, Alexandra C.; Jones, Marcus B.; Chauhan, Sadhana; Purvine, Samuel O.; Sanford, James; Monroe, Matthew E.; Brewer, Heather M.; Payne, Samuel H.; Ansong, Charles; Frank, Bryan C.; Smith, Richard D.; Peterson, Scott; Motin, Vladimir L.; Adkins, Joshua N.

    2012-03-27

    the discovery of many translated pseudogenes underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, and a transcriptional regulator, among other proteins, most of which are annotated as hypothetical, that were missed during annotation.

  12. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    PubMed Central

    Araújo, Wagner L.; Nunes-Nesi, Adriano; Williams, Thomas C. R.

    2012-01-01

    The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics, and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review, we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g., photosynthesis, photorespiration, and nitrogen metabolism). We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications. PMID:22973288

  13. MEGANTE: a web-based system for integrated plant genome annotation.

    PubMed

    Numa, Hisataka; Itoh, Takeshi

    2014-01-01

    The recent advancement of high-throughput genome sequencing technologies has resulted in a considerable increase in demands for large-scale genome annotation. While annotation is a crucial step for downstream data analyses and experimental studies, this process requires substantial expertise and knowledge of bioinformatics. Here we present MEGANTE, a web-based annotation system that makes plant genome annotation easy for researchers unfamiliar with bioinformatics. Without any complicated configuration, users can perform genomic sequence annotations simply by uploading a sequence and selecting the species to query. MEGANTE automatically runs several analysis programs and integrates the results to select the appropriate consensus exon-intron structures and to predict open reading frames (ORFs) at each locus. Functional annotation, including a similarity search against known proteins and a functional domain search, are also performed for the predicted ORFs. The resultant annotation information is visualized with a widely used genome browser, GBrowse. For ease of analysis, the results can be downloaded in Microsoft Excel format. All of the query sequences and annotation results are stored on the server side so that users can access their own data from virtually anywhere on the web. The current release of MEGANTE targets 24 plant species from the Brassicaceae, Fabaceae, Musaceae, Poaceae, Salicaceae, Solanaceae, Rosaceae and Vitaceae families, and it allows users to submit a sequence up to 10 Mb in length and to save up to 100 sequences with the annotation information on the server. The MEGANTE web service is available at https://megante.dna.affrc.go.jp/.

  14. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs.

    PubMed

    Zdobnov, Evgeny M; Tegenfeldt, Fredrik; Kuznetsov, Dmitry; Waterhouse, Robert M; Simão, Felipe A; Ioannidis, Panagiotis; Seppey, Mathieu; Loetscher, Alexis; Kriventseva, Evgenia V

    2017-01-04

    OrthoDB is a comprehensive catalog of orthologs, genes inherited by extant species from a single gene in their last common ancestor. In 2016 OrthoDB reached its 9th release, growing to over 22 million genes from over 5000 species, now adding plants, archaea and viruses. In this update we focused on usability of this fast-growing wealth of data: updating the user and programmatic interfaces to browse and query the data, and further enhancing the already extensive integration of available gene functional annotations. Collating functional annotations from over 100 resources, and enabled us to propose descriptive titles for 87% of ortholog groups. Additionally, OrthoDB continues to provide computed evolutionary annotations and to allow user queries by sequence homology. The OrthoDB resource now enables users to generate publication-quality comparative genomics charts, as well as to upload, analyze and interactively explore their own private data. OrthoDB is available from http://orthodb.org.

  15. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs

    PubMed Central

    Zdobnov, Evgeny M.; Tegenfeldt, Fredrik; Kuznetsov, Dmitry; Waterhouse, Robert M.; Simão, Felipe A.; Ioannidis, Panagiotis; Seppey, Mathieu; Loetscher, Alexis; Kriventseva, Evgenia V.

    2017-01-01

    OrthoDB is a comprehensive catalog of orthologs, genes inherited by extant species from a single gene in their last common ancestor. In 2016 OrthoDB reached its 9th release, growing to over 22 million genes from over 5000 species, now adding plants, archaea and viruses. In this update we focused on usability of this fast-growing wealth of data: updating the user and programmatic interfaces to browse and query the data, and further enhancing the already extensive integration of available gene functional annotations. Collating functional annotations from over 100 resources, and enabled us to propose descriptive titles for 87% of ortholog groups. Additionally, OrthoDB continues to provide computed evolutionary annotations and to allow user queries by sequence homology. The OrthoDB resource now enables users to generate publication-quality comparative genomics charts, as well as to upload, analyze and interactively explore their own private data. OrthoDB is available from http://orthodb.org. PMID:27899580

  16. Sequencing, De Novo Assembly, and Annotation of the Transcriptome of the Endangered Freshwater Pearl Bivalve, Cristaria plicata, Provides Novel Insights into Functional Genes and Marker Discovery.

    PubMed

    Patnaik, Bharat Bhusan; Wang, Tae Hun; Kang, Se Won; Hwang, Hee-Ju; Park, So Young; Park, Eun Bi; Chung, Jong Min; Song, Dae Kwon; Kim, Changmu; Kim, Soonok; Lee, Jun Sang; Han, Yeon Soo; Park, Hong Seog; Lee, Yong Seok

    2016-01-01

    The freshwater mussel Cristaria plicata (Bivalvia: Eulamellibranchia: Unionidae), is an economically important species in molluscan aquaculture due to its use in pearl farming. The species have been listed as endangered in South Korea due to the loss of natural habitats caused by anthropogenic activities. The decreasing population and a lack of genomic information on the species is concerning for environmentalists and conservationists. In this study, we conducted a de novo transcriptome sequencing and annotation analysis of C. plicata using Illumina HiSeq 2500 next-generation sequencing (NGS) technology, the Trinity assembler, and bioinformatics databases to prepare a sustainable resource for the identification of candidate genes involved in immunity, defense, and reproduction. The C. plicata transcriptome analysis included a total of 286,152,584 raw reads and 281,322,837 clean reads. The de novo assembly identified a total of 453,931 contigs and 374,794 non-redundant unigenes with average lengths of 731.2 and 737.1 bp, respectively. Furthermore, 100% coverage of C. plicata mitochondrial genes within two unigenes supported the quality of the assembler. In total, 84,274 unigenes showed homology to entries in at least one database, and 23,246 unigenes were allocated to one or more Gene Ontology (GO) terms. The most prominent GO biological process, cellular component, and molecular function categories (level 2) were cellular process, membrane, and binding, respectively. A total of 4,776 unigenes were mapped to 123 biological pathways in the KEGG database. Based on the GO terms and KEGG annotation, the unigenes were suggested to be involved in immunity, stress responses, sex-determination, and reproduction. A total of 17,251 cDNA simple sequence repeats (cSSRs) were identified from 61,141 unigenes (size of >1 kb) with the most abundant being dinucleotide repeats. This dataset represents the first transcriptome analysis of the endangered mollusc, C. plicata. The

  17. Sequencing, De Novo Assembly, and Annotation of the Transcriptome of the Endangered Freshwater Pearl Bivalve, Cristaria plicata, Provides Novel Insights into Functional Genes and Marker Discovery

    PubMed Central

    Kang, Se Won; Hwang, Hee-Ju; Park, So Young; Park, Eun Bi; Chung, Jong Min; Song, Dae Kwon; Kim, Changmu; Kim, Soonok; Lee, Jun Sang; Han, Yeon Soo; Park, Hong Seog; Lee, Yong Seok

    2016-01-01

    Background The freshwater mussel Cristaria plicata (Bivalvia: Eulamellibranchia: Unionidae), is an economically important species in molluscan aquaculture due to its use in pearl farming. The species have been listed as endangered in South Korea due to the loss of natural habitats caused by anthropogenic activities. The decreasing population and a lack of genomic information on the species is concerning for environmentalists and conservationists. In this study, we conducted a de novo transcriptome sequencing and annotation analysis of C. plicata using Illumina HiSeq 2500 next-generation sequencing (NGS) technology, the Trinity assembler, and bioinformatics databases to prepare a sustainable resource for the identification of candidate genes involved in immunity, defense, and reproduction. Results The C. plicata transcriptome analysis included a total of 286,152,584 raw reads and 281,322,837 clean reads. The de novo assembly identified a total of 453,931 contigs and 374,794 non-redundant unigenes with average lengths of 731.2 and 737.1 bp, respectively. Furthermore, 100% coverage of C. plicata mitochondrial genes within two unigenes supported the quality of the assembler. In total, 84,274 unigenes showed homology to entries in at least one database, and 23,246 unigenes were allocated to one or more Gene Ontology (GO) terms. The most prominent GO biological process, cellular component, and molecular function categories (level 2) were cellular process, membrane, and binding, respectively. A total of 4,776 unigenes were mapped to 123 biological pathways in the KEGG database. Based on the GO terms and KEGG annotation, the unigenes were suggested to be involved in immunity, stress responses, sex-determination, and reproduction. A total of 17,251 cDNA simple sequence repeats (cSSRs) were identified from 61,141 unigenes (size of >1 kb) with the most abundant being dinucleotide repeats. Conclusions This dataset represents the first transcriptome analysis of the endangered

  18. Gene Ontology annotations and resources.

    PubMed

    Blake, J A; Dolan, M; Drabkin, H; Hill, D P; Li, Ni; Sitnikov, D; Bridges, S; Burgess, S; Buza, T; McCarthy, F; Peddinti, D; Pillai, L; Carbon, S; Dietze, H; Ireland, A; Lewis, S E; Mungall, C J; Gaudet, P; Chrisholm, R L; Fey, P; Kibbe, W A; Basu, S; Siegele, D A; McIntosh, B K; Renfro, D P; Zweifel, A E; Hu, J C; Brown, N H; Tweedie, S; Alam-Faruque, Y; Apweiler, R; Auchinchloss, A; Axelsen, K; Bely, B; Blatter, M -C; Bonilla, C; Bouguerleret, L; Boutet, E; Breuza, L; Bridge, A; Chan, W M; Chavali, G; Coudert, E; Dimmer, E; Estreicher, A; Famiglietti, L; Feuermann, M; Gos, A; Gruaz-Gumowski, N; Hieta, R; Hinz, C; Hulo, C; Huntley, R; James, J; Jungo, F; Keller, G; Laiho, K; Legge, D; Lemercier, P; Lieberherr, D; Magrane, M; Martin, M J; Masson, P; Mutowo-Muellenet, P; O'Donovan, C; Pedruzzi, I; Pichler, K; Poggioli, D; Porras Millán, P; Poux, S; Rivoire, C; Roechert, B; Sawford, T; Schneider, M; Stutz, A; Sundaram, S; Tognolli, M; Xenarios, I; Foulgar, R; Lomax, J; Roncaglia, P; Khodiyar, V K; Lovering, R C; Talmud, P J; Chibucos, M; Giglio, M Gwinn; Chang, H -Y; Hunter, S; McAnulla, C; Mitchell, A; Sangrador, A; Stephan, R; Harris, M A; Oliver, S G; Rutherford, K; Wood, V; Bahler, J; Lock, A; Kersey, P J; McDowall, D M; Staines, D M; Dwinell, M; Shimoyama, M; Laulederkind, S; Hayman, T; Wang, S -J; Petri, V; Lowry, T; D'Eustachio, P; Matthews, L; Balakrishnan, R; Binkley, G; Cherry, J M; Costanzo, M C; Dwight, S S; Engel, S R; Fisk, D G; Hitz, B C; Hong, E L; Karra, K; Miyasato, S R; Nash, R S; Park, J; Skrzypek, M S; Weng, S; Wong, E D; Berardini, T Z; Huala, E; Mi, H; Thomas, P D; Chan, J; Kishore, R; Sternberg, P; Van Auken, K; Howe, D; Westerfield, M

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources.

  19. IMG ER: A System for Microbial Genome Annotation Expert Review and Curation

    SciTech Connect

    Markowitz, Victor M.; Mavromatis, Konstantinos; Ivanova, Natalia N.; Chen, I-Min A.; Chu, Ken; Kyrpides, Nikos C.

    2009-05-25

    A rapidly increasing number of microbial genomes are sequenced by organizations worldwide and are eventually included into various public genome data resources. The quality of the annotations depends largely on the original dataset providers, with erroneous or incomplete annotations often carried over into the public resources and difficult to correct. We have developed an Expert Review (ER) version of the Integrated Microbial Genomes (IMG) system, with the goal of supporting systematic and efficient revision of microbial genome annotations. IMG ER provides tools for the review and curation of annotations of both new and publicly available microbial genomes within IMG's rich integrated genome framework. New genome datasets are included into IMG ER prior to their public release either with their native annotations or with annotations generated by IMG ER's annotation pipeline. IMG ER tools allow addressing annotation problems detected with IMG's comparative analysis tools, such as genes missed by gene prediction pipelines or genes without an associated function. Over the past year, IMG ER was used for improving the annotations of about 150 microbial genomes.

  20. Evaluating Hierarchical Structure in Music Annotations

    PubMed Central

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M.; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement. PMID:28824514

  1. Evaluating Hierarchical Structure in Music Annotations.

    PubMed

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  2. NCBI prokaryotic genome annotation pipeline.

    PubMed

    Tatusova, Tatiana; DiCuccio, Michael; Badretdin, Azat; Chetvernin, Vyacheslav; Nawrocki, Eric P; Zaslavsky, Leonid; Lomsadze, Alexandre; Pruitt, Kim D; Borodovsky, Mark; Ostell, James

    2016-08-19

    Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic information, a comprehensive approach to automatic genome annotation is critically needed. In collaboration with Georgia Tech, NCBI has developed a new approach to genome annotation that combines alignment based methods with methods of predicting protein-coding and RNA genes and other functional elements directly from sequence. A new gene finding tool, GeneMarkS+, uses the combined evidence of protein and RNA placement by homology as an initial map of annotation to generate and modify ab initio gene predictions across the whole genome. Thus, the new NCBI's Prokaryotic Genome Annotation Pipeline (PGAP) relies more on sequence similarity when confident comparative data are available, while it relies more on statistical predictions in the absence of external evidence. The pipeline provides a framework for generation and analysis of annotation on the full breadth of prokaryotic taxonomy. For additional information on PGAP see https://www.ncbi.nlm.nih.gov/genome/annotation_prok/ and the NCBI Handbook, https://www.ncbi.nlm.nih.gov/books/NBK174280/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes

    PubMed Central

    Leroy, Philippe; Guilhot, Nicolas; Sakai, Hiroaki; Bernard, Aurélien; Choulet, Frédéric; Theil, Sébastien; Reboux, Sébastien; Amano, Naoki; Flutre, Timothée; Pelegrin, Céline; Ohyanagi, Hajime; Seidel, Michael; Giacomoni, Franck; Reichstadt, Mathieu; Alaux, Michael; Gicquello, Emmanuelle; Legeai, Fabrice; Cerutti, Lorenzo; Numa, Hisataka; Tanaka, Tsuyoshi; Mayer, Klaus; Itoh, Takeshi; Quesneville, Hadi; Feuillet, Catherine

    2012-01-01

    In support of the international effort to obtain a reference sequence of the bread wheat genome and to provide plant communities dealing with large and complex genomes with a versatile, easy-to-use online automated tool for annotation, we have developed the TriAnnot pipeline. Its modular architecture allows for the annotation and masking of transposable elements, the structural, and functional annotation of protein-coding genes with an evidence-based quality indexing, and the identification of conserved non-coding sequences and molecular markers. The TriAnnot pipeline is parallelized on a 712 CPU computing cluster that can run a 1-Gb sequence annotation in less than 5 days. It is accessible through a web interface for small scale analyses or through a server for large scale annotations. The performance of TriAnnot was evaluated in terms of sensitivity, specificity, and general fitness using curated reference sequence sets from rice and wheat. In less than 8 h, TriAnnot was able to predict more than 83% of the 3,748 CDS from rice chromosome 1 with a fitness of 67.4%. On a set of 12 reference Mb-sized contigs from wheat chromosome 3B, TriAnnot predicted and annotated 93.3% of the genes among which 54% were perfectly identified in accordance with the reference annotation. It also allowed the curation of 12 genes based on new biological evidences, increasing the percentage of perfect gene prediction to 63%. TriAnnot systematically showed a higher fitness than other annotation pipelines that are not improved for wheat. As it is easily adaptable to the annotation of other plant genomes, TriAnnot should become a useful resource for the annotation of large and complex genomes in the future. PMID:22645565

  4. Assessing the impact of human genome annotation choice on RNA-seq expression estimates.

    PubMed

    Wu, Po-Yen; Phan, John H; Wang, May D

    2013-01-01

    Genome annotation is a crucial component of RNA-seq data analysis. Much effort has been devoted to producing an accurate and rational annotation of the human genome. An annotated genome provides a comprehensive catalogue of genomic functional elements. Currently, at least six human genome annotations are publicly available, including AceView Genes, Ensembl Genes, H-InvDB Genes, RefSeq Genes, UCSC Known Genes, and Vega Genes. Characteristics of these annotations differ because of variations in annotation strategies and information sources. When performing RNA-seq data analysis, researchers need to choose a genome annotation. However, the effect of genome annotation choice on downstream RNA-seq expression estimates is still unclear. This study (1) investigates the effect of different genome annotations on RNA-seq quantification and (2) provides guidelines for choosing a genome annotation based on research focus. We define the complexity of human genome annotations in terms of the number of genes, isoforms, and exons. This definition facilitates an investigation of potential relationships between complexity and variations in RNA-seq quantification. We apply several evaluation metrics to demonstrate the impact of genome annotation choice on RNA-seq expression estimates. In the mapping stage, the least complex genome annotation, RefSeq Genes, appears to have the highest percentage of uniquely mapped short sequence reads. In the quantification stage, RefSeq Genes results in the most stable expression estimates in terms of the average coefficient of variation over all genes. Stable expression estimates in the quantification stage translate to accurate statistics for detecting differentially expressed genes. We observe that RefSeq Genes produces the most accurate fold-change measures with respect to a ground truth of RT-qPCR gene expression estimates. Based on the observed variations in the mapping, quantification, and differential expression calling stages, we demonstrate

  5. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells.

    PubMed

    Pollack, J D; Williams, M V; McElhaney, R N

    1997-01-01

    discriminating. The arrangements attempt to follow phylogenetic relationships. The relationships of putative gene assignments and enzymatic function in My. genitalium, My. pneumoniae, and My. capricolum subsp. capricolum are specially analyzed. The data are arranged in four tables. One associates gene annotations with congruent reports of the enzymatic activity in these same Mollicutes, and hence confirms the annotations. Another associates putative annotations with reports of the enzyme activity but from different Mollicutes. A third identifies the discrepancies represented by those enzymatic activities found in Mollicutes with sequenced genomes but without any similarly annotated ORF. This suggests that the gene sequence is significantly different from those already deposited in the databanks and putatively annotated with the same function. Another comparison lists those enzymatic activities that are both undetected in Mollicutes and not associated with any ORF. Evidence is presented supporting the theory that there are relatively small gene sequences that code for functional centers of multiple enzymatic activity. This property is seemingly advantageous for an organism with a small genome and perhaps under some coding restraint. The data suggest that a concept of "remnant" or "useless genes" or "useless enzymes" should be considered when examining the relationship of gene annotation and enzymatic function. It also suggests that genes in addition to representing what cells are doing or what they may do, may also identify what they once might have done and may never do again.

  6. Computational algorithms to predict Gene Ontology annotations

    PubMed Central

    2015-01-01

    Background Gene function annotations, which are associations between a gene and a term of a controlled vocabulary describing gene functional features, are of paramount importance in modern biology. Datasets of these annotations, such as the ones provided by the Gene Ontology Consortium, are used to design novel biological experiments and interpret their results. Despite their importance, these sources of information have some known issues. They are incomplete, since biological knowledge is far from being definitive and it rapidly evolves, and some erroneous annotations may be present. Since the curation process of novel annotations is a costly procedure, both in economical and time terms, computational tools that can reliably predict likely annotations, and thus quicken the discovery of new gene annotations, are very useful. Methods We used a set of computational algorithms and weighting schemes to infer novel gene annotations from a set of known ones. We used the latent semantic analysis approach, implementing two popular algorithms (Latent Semantic Indexing and Probabilistic Latent Semantic Analysis) and propose a novel method, the Semantic IMproved Latent Semantic Analysis, which adds a clustering step on the set of considered genes. Furthermore, we propose the improvement of these algorithms by weighting the annotations in the input set. Results We tested our methods and their weighted variants on the Gene Ontology annotation sets of three model organism genes (Bos taurus, Danio rerio and Drosophila melanogaster ). The methods showed their ability in predicting novel gene annotations and the weighting procedures demonstrated to lead to a valuable improvement, although the obtained results vary according to the dimension of the input annotation set and the considered algorithm. Conclusions Out of the three considered methods, the Semantic IMproved Latent Semantic Analysis is the one that provides better results. In particular, when coupled with a proper

  7. A survey on annotation tools for the biomedical literature.

    PubMed

    Neves, Mariana; Leser, Ulf

    2014-03-01

    New approaches to biomedical text mining crucially depend on the existence of comprehensive annotated corpora. Such corpora, commonly called gold standards, are important for learning patterns or models during the training phase, for evaluating and comparing the performance of algorithms and also for better understanding the information sought for by means of examples. Gold standards depend on human understanding and manual annotation of natural language text. This process is very time-consuming and expensive because it requires high intellectual effort from domain experts. Accordingly, the lack of gold standards is considered as one of the main bottlenecks for developing novel text mining methods. This situation led the development of tools that support humans in annotating texts. Such tools should be intuitive to use, should support a range of different input formats, should include visualization of annotated texts and should generate an easy-to-parse output format. Today, a range of tools which implement some of these functionalities are available. In this survey, we present a comprehensive survey of tools for supporting annotation of biomedical texts. Altogether, we considered almost 30 tools, 13 of which were selected for an in-depth comparison. The comparison was performed using predefined criteria and was accompanied by hands-on experiences whenever possible. Our survey shows that current tools can support many of the tasks in biomedical text annotation in a satisfying manner, but also that no tool can be considered as a true comprehensive solution.

  8. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.

    PubMed

    Castro, Juan C; Maddox, J Dylan; Cobos, Marianela; Requena, David; Zimic, Mirko; Bombarely, Aureliano; Imán, Sixto A; Cerdeira, Luis A; Medina, Andersson E

    2015-11-24

    Myrciaria dubia is an Amazonian fruit shrub that produces numerous bioactive phytochemicals, but is best known by its high L-ascorbic acid (AsA) content in fruits. Pronounced variation in AsA content has been observed both within and among individuals, but the genetic factors responsible for this variation are largely unknown. The goals of this research, therefore, were to assemble, characterize, and annotate the fruit transcriptome of M. dubia in order to reconstruct metabolic pathways and determine if multiple pathways contribute to AsA biosynthesis. In total 24,551,882 high-quality sequence reads were de novo assembled into 70,048 unigenes (mean length = 1150 bp, N50 = 1775 bp). Assembled sequences were annotated using BLASTX against public databases such as TAIR, GR-protein, FB, MGI, RGD, ZFIN, SGN, WB, TIGR_CMR, and JCVI-CMR with 75.2 % of unigenes having annotations. Of the three core GO annotation categories, biological processes comprised 53.6 % of the total assigned annotations, whereas cellular components and molecular functions comprised 23.3 and 23.1 %, respectively. Based on the KEGG pathway assignment of the functionally annotated transcripts, five metabolic pathways for AsA biosynthesis were identified: animal-like pathway, myo-inositol pathway, L-gulose pathway, D-mannose/L-galactose pathway, and uronic acid pathway. All transcripts coding enzymes involved in the ascorbate-glutathione cycle were also identified. Finally, we used the assembly to identified 6314 genic microsatellites and 23,481 high quality SNPs. This study describes the first next-generation sequencing effort and transcriptome annotation of a non-model Amazonian plant that is relevant for AsA production and other bioactive phytochemicals. Genes encoding key enzymes were successfully identified and metabolic pathways involved in biosynthesis of AsA, anthocyanins, and other metabolic pathways have been reconstructed. The identification of these genes and pathways is in agreement with

  9. Gene Ontology Annotations and Resources

    PubMed Central

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new ‘phylogenetic annotation’ process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources. PMID:23161678

  10. De novo transcriptome assembly, functional annotation and differential gene expression analysis of juvenile and adult E. fetida, a model oligochaete used in ecotoxicological studies.

    PubMed

    Thunders, Michelle; Cavanagh, Jo; Li, Yinsheng

    2017-02-27

    Earthworms are sensitive to toxic chemicals present in the soil and so are useful indicator organisms for soil health. Eisenia fetida are commonly used in ecotoxicological studies; therefore the assembly of a baseline transcriptome is important for subsequent analyses exploring the impact of toxin exposure on genome wide gene expression. This paper reports on the de novo transcriptome assembly of E. fetida using Trinity, a freely available software tool. Trinotate was used to carry out functional annotation of the Trinity generated transcriptome file and the transdecoder generated peptide sequence file along with BLASTX, BLASTP and HMMER searches and were loaded into a Sqlite3 database. To identify differentially expressed transcripts; each of the original sequence files were aligned to the de novo assembled transcriptome using Bowtie and then RSEM was used to estimate expression values based on the alignment. EdgeR was used to calculate differential expression between the two conditions, with an FDR corrected P value cut off of 0.001, this returned six significantly differentially expressed genes. Initial BLASTX hits of these putative genes included hits with annelid ferritin and lysozyme proteins, as well as fungal NADH cytochrome b5 reductase and senescence associated proteins. At a cut off of P = 0.01 there were a further 26 differentially expressed genes. These data have been made publicly available, and to our knowledge represent the most comprehensive available transcriptome for E. fetida assembled from RNA sequencing data. This provides important groundwork for subsequent ecotoxicogenomic studies exploring the impact of the environment on global gene expression in E. fetida and other earthworm species.

  11. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop.

    PubMed

    Brister, James Rodney; Bao, Yiming; Kuiken, Carla; Lefkowitz, Elliot J; Le Mercier, Philippe; Leplae, Raphael; Madupu, Ramana; Scheuermann, Richard H; Schobel, Seth; Seto, Donald; Shrivastava, Susmita; Sterk, Peter; Zeng, Qiandong; Klimke, William; Tatusova, Tatiana

    2010-10-01

    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world's biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  12. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop

    PubMed Central

    Brister, James Rodney; Bao, Yiming; Kuiken, Carla; Lefkowitz, Elliot J.; Le Mercier, Philippe; Leplae, Raphael; Madupu, Ramana; Scheuermann, Richard H.; Schobel, Seth; Seto, Donald; Shrivastava, Susmita; Sterk, Peter; Zeng, Qiandong; Klimke, William; Tatusova, Tatiana

    2010-01-01

    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world’s biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop. PMID:21994619

  13. Quality of Computationally Inferred Gene Ontology Annotations

    PubMed Central

    Škunca, Nives; Altenhoff, Adrian; Dessimoz, Christophe

    2012-01-01

    Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms. Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when they use evidence other than experiments from primary literature. This work provides the means to identify the subset of electronic annotations that can be relied upon—an important outcome given that >98% of all annotations are inferred without direct curation. PMID:22693439

  14. The Management of Higher Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Schofield, Allan, Ed.

    This document provides an annotated bibliography of Commonwealth (formerly the British Commonwealth) university management functions. Selection criteria included the following: items had to be practical and designed to support institutional management, be applicable to most Commonwealth higher education systems, and wherever possible be available…

  15. An Atlas of annotations of Hydra vulgaris transcriptome.

    PubMed

    Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario

    2016-09-22

    RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .

  16. Annotated Bibliographies.

    ERIC Educational Resources Information Center

    Totten, Sam; Alexander, Susan

    1985-01-01

    Intended for elementary, secondary, and college teachers, this listing cites print materials dealing with nuclear warfare. Included are nonfiction, fiction, journals, newsletters, curriculum materials, and organizations. (RM)

  17. The past, present and future of genome-wide re-annotation

    PubMed Central

    Ouzounis, Christos A; Karp, Peter D

    2002-01-01

    Annotation, the process by which structural or functional information is inferred for genes or proteins, is crucial for obtaining value from genome sequences. We define the process of annotating a previously annotated genome sequence as 're-annotation', and examine the strengths and weaknesses of current manual and automatic genome-wide re-annotation approaches. PMID:11864365

  18. Prediction driven functional annotation of hypothetical proteins in the major facilitator superfamily of S. aureus NCTC 8325

    PubMed Central

    Marklevitz, Jessica; Harris, Laura K.

    2016-01-01

    Antibiotic resistance Staphylococcus aureus strains cause several life threatening infections. New drug treatment options are needed, but are slow to develop because 50% of the S. aureus genome is hypothetical. The goal of this is to aid in the annotation of the S. aureus NCTC 8325 genome by identifying hypothetical proteins related to the Major Facilitator Superfamily (MFS). The MFS is a broad protein group with members involved in drug efflux mechanisms causing resistance. To do this, sequences for three MFS proteins with x-ray crystal structures in E. coli were PSI-BLASTed against the S. aureus NCTC 8325 genome to identify homologs. Eleven identified hypothetical protein homologs underwent BLASTP against the non-redundant NCBI database to fit homologs specific to each hypothetical protein. ExPASy characterized the physiochemical features, CDD-BLAST and Pfam identified domains, and the SOSUI server defined transmembrane helices of each hypothetical protein. Based on size (300 – 700 amino acids), number of transmembrane helices (>7), CD06174 and MFS domains in CDD-BLAST and Pfam, respectively, and close relation to well-defined homologs, SAOUHSC_00058, SAOUHSC_00078, SAOUHSC_00952, SAOUHSC_02435, SAOUHSC_02752, and ABD31642.1 are members of the MFS. Further multiple-alignment and phylogeny analyses show SAOUHSC_00058 to be a quinolone resistance protein (NorB), SAOUHSC_00058 a siderophore biosynthesis protein (SbnD), SAOUHSC_00952 a glycolipid permease (LtaA), SAOUHSC_02435 a macrolide MFS transporter, SAOUHSC_02752 a chloramphenicol resistance (DHA1), and ABD31642.1 is a Bcr/CflA family drug resistance efflux transporter. These findings provide better annotation for the existing genome, and identify proteins related to antibiotic resistance in S. aureus NCTC 8325. PMID:28197063

  19. Prediction driven functional annotation of hypothetical proteins in the major facilitator superfamily of S. aureus NCTC 8325.

    PubMed

    Marklevitz, Jessica; Harris, Laura K

    2016-01-01

    Antibiotic resistance Staphylococcus aureus strains cause several life threatening infections. New drug treatment options are needed, but are slow to develop because 50% of the S. aureus genome is hypothetical. The goal of this is to aid in the annotation of the S. aureus NCTC 8325 genome by identifying hypothetical proteins related to the Major Facilitator Superfamily (MFS). The MFS is a broad protein group with members involved in drug efflux mechanisms causing resistance. To do this, sequences for three MFS proteins with x-ray crystal structures in E. coli were PSI-BLASTed against the S. aureus NCTC 8325 genome to identify homologs. Eleven identified hypothetical protein homologs underwent BLASTP against the non-redundant NCBI database to fit homologs specific to each hypothetical protein. ExPASy characterized the physiochemical features, CDD-BLAST and Pfam identified domains, and the SOSUI server defined transmembrane helices of each hypothetical protein. Based on size (300 - 700 amino acids), number of transmembrane helices (>7), CD06174 and MFS domains in CDD-BLAST and Pfam, respectively, and close relation to well-defined homologs, SAOUHSC_00058, SAOUHSC_00078, SAOUHSC_00952, SAOUHSC_02435, SAOUHSC_02752, and ABD31642.1 are members of the MFS. Further multiple-alignment and phylogeny analyses show SAOUHSC_00058 to be a quinolone resistance protein (NorB), SAOUHSC_00058 a siderophore biosynthesis protein (SbnD), SAOUHSC_00952 a glycolipid permease (LtaA), SAOUHSC_02435 a macrolide MFS transporter, SAOUHSC_02752 a chloramphenicol resistance (DHA1), and ABD31642.1 is a Bcr/CflA family drug resistance efflux transporter. These findings provide better annotation for the existing genome, and identify proteins related to antibiotic resistance in S. aureus NCTC 8325.

  20. UCSC Data Integrator and Variant Annotation Integrator

    PubMed Central

    Hinrichs, Angie S.; Raney, Brian J.; Speir, Matthew L.; Rhead, Brooke; Casper, Jonathan; Karolchik, Donna; Kuhn, Robert M.; Rosenbloom, Kate R.; Zweig, Ann S.; Haussler, David; Kent, W. James

    2016-01-01

    Summary: Two new tools on the UCSC Genome Browser web site provide improved ways of combining information from multiple datasets, optionally including the user's own custom track data and/or data from track hubs. The Data Integrator combines columns from multiple data tracks, showing all items from the first track along with overlapping items from the other tracks. The Variant Annotation Integrator is tailored to adding functional annotations to variant calls; it offers a more restricted set of underlying data tracks but adds predictions of each variant's consequences for any overlapping or nearby gene transcript. When available, it optionally adds additional annotations including effect prediction scores from dbNSFP for missense mutations, ENCODE regulatory summary tracks and conservation scores. Availability and implementation: The web tools are freely available at http://genome.ucsc.edu/ and the underlying database is available for download at http://hgdownload.cse.ucsc.edu/. The software (written in C and Javascript) is available from https://genome-store.ucsc.edu/ and is freely available for academic and non-profit usage; commercial users must obtain a license. Contact: angie@soe.ucsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26740527

  1. Annotation: the savant syndrome.

    PubMed

    Heaton, Pamela; Wallace, Gregory L

    2004-07-01

    Whilst interest has focused on the origin and nature of the savant syndrome for over a century, it is only within the past two decades that empirical group studies have been carried out. The following annotation briefly reviews relevant research and also attempts to address outstanding issues in this research area. Traditionally, savants have been defined as intellectually impaired individuals who nevertheless display exceptional skills within specific domains. However, within the extant literature, cases of savants with developmental and other clinical disorders, but with average intellectual functioning, are increasingly reported. We thus propose that focus should diverge away from IQ scores to encompass discrepancies between functional impairments and unexpected skills. It has long been observed that savant skills are more prevalent in individuals with autism than in those with other disorders. Therefore, in this annotation we seek to explore the parameters of the savant syndrome by considering these skills within the context of neuropsychological accounts of autism. A striking finding amongst those with savant skills, but without the diagnosis of autism, is the presence of cognitive features and behavioural traits associated with the disorder. We thus conclude that autism (or autistic traits) and savant skills are inextricably linked and we should therefore look to autism in our quest to solve the puzzle of the savant syndrome. Copyright 2004 Association for Child Psychology and Psychiatry

  2. Visualizing GO Annotations.

    PubMed

    Supek, Fran; Škunca, Nives

    2017-01-01

    Contemporary techniques in biology produce readouts for large numbers of genes simultaneously, the typical example being differential gene expression measurements. Moreover, those genes are often richly annotated using GO terms that describe gene function and that can be used to summarize the results of the genome-scale experiments. However, making sense of such GO enrichment analyses may be challenging. For instance, overrepresented GO functions in a set of differentially expressed genes are typically output as a flat list, a format not adequate to capture the complexities of the hierarchical structure of the GO annotation labels.In this chapter, we survey various methods to visualize large, difficult-to-interpret lists of GO terms. We catalog their availability-Web-based or standalone, the main principles they employ in summarizing large lists of GO terms, and the visualization styles they support. These brief commentaries on each software are intended as a helpful inventory, rather than comprehensive descriptions of the underlying algorithms. Instead, we show examples of their use and suggest that the choice of an appropriate visualization tool may be crucial to the utility of GO in biological discovery.

  3. Annotated chemical patent corpus: a gold standard for text mining.

    PubMed

    Akhondi, Saber A; Klenner, Alexander G; Tyrchan, Christian; Manchala, Anil K; Boppana, Kiran; Lowe, Daniel; Zimmermann, Marc; Jagarlapudi, Sarma A R P; Sayle, Roger; Kors, Jan A; Muresan, Sorel

    2014-01-01

    Exploring the chemical and biological space covered by patent applications is crucial in early-stage medicinal chemistry activities. Patent analysis can provide understanding of compound prior art, novelty checking, validation of biological assays, and identification of new starting points for chemical exploration. Extracting chemical and biological entities from patents through manual extraction by expert curators can take substantial amount of time and resources. Text mining methods can help to ease this process. To validate the performance of such methods, a manually annotated patent corpus is essential. In this study we have produced a large gold standard chemical patent corpus. We developed annotation guidelines and selected 200 full patents from the World Intellectual Property Organization, United States Patent and Trademark Office, and European Patent Office. The patents were pre-annotated automatically and made available to four independent annotator groups each consisting of two to ten annotators. The annotators marked chemicals in different subclasses, diseases, targets, and modes of action. Spelling mistakes and spurious line break due to optical character recognition errors were also annotated. A subset of 47 patents was annotated by at least three annotator groups, from which harmonized annotations and inter-annotator agreement scores were derived. One group annotated the full set. The patent corpus includes 400,125 annotations for the full set and 36,537 annotations for the harmonized set. All patents and annotated entities are publicly available at www.biosemantics.org.

  4. Annotated Chemical Patent Corpus: A Gold Standard for Text Mining

    PubMed Central

    Akhondi, Saber A.; Klenner, Alexander G.; Tyrchan, Christian; Manchala, Anil K.; Boppana, Kiran; Lowe, Daniel; Zimmermann, Marc; Jagarlapudi, Sarma A. R. P.; Sayle, Roger; Kors, Jan A.; Muresan, Sorel

    2014-01-01

    Exploring the chemical and biological space covered by patent applications is crucial in early-stage medicinal chemistry activities. Patent analysis can provide understanding of compound prior art, novelty checking, validation of biological assays, and identification of new starting points for chemical exploration. Extracting chemical and biological entities from patents through manual extraction by expert curators can take substantial amount of time and resources. Text mining methods can help to ease this process. To validate the performance of such methods, a manually annotated patent corpus is essential. In this study we have produced a large gold standard chemical patent corpus. We developed annotation guidelines and selected 200 full patents from the World Intellectual Property Organization, United States Patent and Trademark Office, and European Patent Office. The patents were pre-annotated automatically and made available to four independent annotator groups each consisting of two to ten annotators. The annotators marked chemicals in different subclasses, diseases, targets, and modes of action. Spelling mistakes and spurious line break due to optical character recognition errors were also annotated. A subset of 47 patents was annotated by at least three annotator groups, from which harmonized annotations and inter-annotator agreement scores were derived. One group annotated the full set. The patent corpus includes 400,125 annotations for the full set and 36,537 annotations for the harmonized set. All patents and annotated entities are publicly available at www.biosemantics.org. PMID:25268232

  5. Bovine Genome Database: integrated tools for genome annotation and discovery.

    PubMed

    Childers, Christopher P; Reese, Justin T; Sundaram, Jaideep P; Vile, Donald C; Dickens, C Michael; Childs, Kevin L; Salih, Hanni; Bennett, Anna K; Hagen, Darren E; Adelson, David L; Elsik, Christine G

    2011-01-01

    The Bovine Genome Database (BGD; http://BovineGenome.org) strives to improve annotation of the bovine genome and to integrate the genome sequence with other genomics data. BGD includes GBrowse genome browsers, the Apollo Annotation Editor, a quantitative trait loci (QTL) viewer, BLAST databases and gene pages. Genome browsers, available for both scaffold and chromosome coordinate systems, display the bovine Official Gene Set (OGS), RefSeq and Ensembl gene models, non-coding RNA, repeats, pseudogenes, single-nucleotide polymorphism, markers, QTL and alignments to complementary DNAs, ESTs and protein homologs. The Bovine QTL viewer is connected to the BGD Chromosome GBrowse, allowing for the identification of candidate genes underlying QTL. The Apollo Annotation Editor connects directly to the BGD Chado database to provide researchers with remote access to gene evidence in a graphical interface that allows editing and creating new gene models. Researchers may upload their annotations to the BGD server for review and integration into the subsequent release of the OGS. Gene pages display information for individual OGS gene models, including gene structure, transcript variants, functional descriptions, gene symbols, Gene Ontology terms, annotator comments and links to National Center for Biotechnology Information and Ensembl. Each gene page is linked to a wiki page to allow input from the research community.

  6. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    PubMed

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  7. Teacher Aides; An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Marin County Public Schools, Corte Madera, CA.

    This annotated bibliography lists 40 items, published between 1966 and 1971, that have to do with teacher aides. The listing is arranged alphabetically by author. In addition to the abstract and standard bibliographic information, addresses where the material can be purchased are often included. The items cited include handbooks, research studies,…

  8. Evaluation of training with an annotation schema for manual annotation of clinical conditions from emergency department reports.

    PubMed

    Chapman, Wendy W; Dowling, John N; Hripcsak, George

    2008-02-01

    Determine whether agreement among annotators improves after being trained to use an annotation schema that specifies: what types of clinical conditions to annotate, the linguistic form of the annotations, and which modifiers to include. Three physicians and 3 lay people individually annotated all clinical conditions in 23 emergency department reports. For annotations made using a Baseline Schema and annotations made after training on a detailed annotation schema, we compared: (1) variability of annotation length and number and (2) annotator agreement, using the F-measure. Physicians showed higher agreement and lower variability after training on the detailed annotation schema than when applying the Baseline Schema. Lay people agreed with physicians almost as well as other physicians did but showed a slower learning curve. Training annotators on the annotation schema we developed increased agreement among annotators and should be useful in generating reference standard sets for natural language processing studies. The methodology we used to evaluate the schema could be applied to other types of annotation or classification tasks in biomedical informatics.

  9. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4).

    PubMed

    Huntemann, Marcel; Ivanova, Natalia N; Mavromatis, Konstantinos; Tripp, H James; Paez-Espino, David; Tennessen, Kristin; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M; Kyrpides, Nikos C

    2016-01-01

    The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provided via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the associated sequence datasets consisting of scaffolds/contigs with optional coverage information and/or unassembled reads in fasta and fastq file formats. The MAP processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNAs, as well as CRISPR elements. Structural annotation is followed by functional annotation including assignment of protein product names and connection to various protein family databases.

  10. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4)

    DOE PAGES

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos; ...

    2016-02-24

    The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provide d via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the associated sequence datasets consisting of scaffolds/contigs with optional coverage information and/or unassembled reads in fasta and fastq file formats. The MAP processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNAs, as well as CRISPR elements. Structural annotation ismore » followed by functional annotation including assignment of protein product names and connection to various protein family databases.« less

  11. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4)

    SciTech Connect

    Huntemann, Marcel; Ivanova, Natalia N.; Mavromatis, Konstantinos; Tripp, H. James; Paez-Espino, David; Tennessen, Kristin; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A.; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M.; Kyrpides, Nikos C.

    2016-02-24

    The DOE-JGI Metagenome Annotation Pipeline (MAP v.4) performs structural and functional annotation for metagenomic sequences that are submitted to the Integrated Microbial Genomes with Microbiomes (IMG/M) system for comparative analysis. The pipeline runs on nucleotide sequences provide d via the IMG submission site. Users must first define their analysis projects in GOLD and then submit the associated sequence datasets consisting of scaffolds/contigs with optional coverage information and/or unassembled reads in fasta and fastq file formats. The MAP processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNAs, as well as CRISPR elements. Structural annotation is followed by functional annotation including assignment of protein product names and connection to various protein family databases.

  12. Entire functions whose Julia sets include any finitely many copies of quadratic Julia sets

    NASA Astrophysics Data System (ADS)

    Katagata, Koh

    2017-06-01

    We prove that for any finite collection of quadratic Julia sets, a polynomial and a transcendental entire function exist whose Julia sets include copies of the given quadratic Julia sets. In order to prove the result, we construct quasiregular maps with required dynamics and employ the quasiconformal surgery to obtain the desired functions.

  13. Understanding how and why the Gene Ontology and its annotations evolve: the GO within UniProt.

    PubMed

    Huntley, Rachael P; Sawford, Tony; Martin, Maria J; O'Donovan, Claire

    2014-03-18

    The Gene Ontology Consortium (GOC) is a major bioinformatics project that provides structured controlled vocabularies to classify gene product function and location. GOC members create annotations to gene products using the Gene Ontology (GO) vocabularies, thus providing an extensive, publicly available resource. The GO and its annotations to gene products are now an integral part of functional analysis, and statistical tests using GO data are becoming routine for researchers to include when publishing functional information. While many helpful articles about the GOC are available, there are certain updates to the ontology and annotation sets that sometimes go unobserved. Here we describe some of the ways in which GO can change that should be carefully considered by all users of GO as they may have a significant impact on the resulting gene product annotations, and therefore the functional description of the gene product, or the interpretation of analyses performed on GO datasets. GO annotations for gene products change for many reasons, and while these changes generally improve the accuracy of the representation of the underlying biology, they do not necessarily imply that previous annotations were incorrect. We additionally describe the quality assurance mechanisms we employ to improve the accuracy of annotations, which necessarily changes the composition of the annotation sets we provide. We use the Universal Protein Resource (UniProt) for illustrative purposes of how the GO Consortium, as a whole, manages these changes.

  14. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily

    SciTech Connect

    Cummings, J.; Fedorov, A; Xu, C; Brown, S; Fedorov, E; Babbitt, P; Almo, S; Raushel, F

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxidans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22-34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, N-succinyl-d-Xaa, and l-Xaa-d-Xaa were used to establish the substrate profiles for these enzymes. It was demonstrated that Bb3285 is restricted to the hydrolysis of N-acyl-substituted derivatives of d-glutamate. The best substrates for this enzyme are N-formyl-d-glutamate (k{sub cat}/K{sub m} = 5.8 x 10{sup 6} M{sup -1} s{sup -1}), N-acetyl-d-glutamate (k{sub cat}/K{sub m} = 5.2 x 10{sup 6} M{sup -1} s{sup -1}), and l-methionine-d-glutamate (k{sub cat}/K{sub m} = 3.4 x 10{sup 5} M{sup -1} s{sup -1}). Gox1177 and Sco4986 preferentially hydrolyze N-acyl-substituted derivatives of hydrophobic d-amino acids. The best substrates for Gox1177 are N-acetyl-d-leucine (k{sub cat}/K{sub m} = 3.2 x 104 M{sup -1} s-1), N-acetyl-d-tryptophan (kcat/Km = 4.1 x 104 M-1 s-1), and l-tyrosine-d-leucine (kcat/Km = 1.5 x 104 M-1 s-1). A fourth protein, Bb2785 from B. bronchiseptica, did not have d-aminoacylase activity. The best substrates for Sco4986 are N-acetyl-d-phenylalanine and N-acetyl-d-tryptophan. The three-dimensional structures of Bb3285 in the presence of the product acetate or a potent mimic of the tetrahedral intermediate were determined by X-ray diffraction methods. The side chain of the d-glutamate moiety of the inhibitor is ion-paired to Arg-295, while the {alpha}-carboxylate is ion-paired with Lys-250 and Arg-376. These results have revealed the chemical and structural determinants for substrate specificity in this protein. Bioinformatic analyses of an additional {approx}250

  15. Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato.

    PubMed

    Fukuoka, Hiroyuki; Yamaguchi, Hirotaka; Nunome, Tsukasa; Negoro, Satomi; Miyatake, Koji; Ohyama, Akio

    2010-01-15

    Eggplant (Solanum melongena L.) is a widely grown vegetable crop that belongs to the genus Solanum, which is comprised of more than 1000 species of wide genetic and phenotypic variation. Unlike tomato and potato, Solanum crops that belong to subgenus Potatoe and have been targets for comprehensive genomic studies, eggplant is endemic to the Old World and belongs to a different subgenus, Leptostemonum, and therefore, would be a unique member for comparative molecular biology in Solanum. In this study, more than 60,000 eggplant cDNA clones from various tissues and treatments were sequenced from both the 5'- and 3'-ends, and a unigene set consisting of 16,245 unique sequences was constructed. Functional annotations based on sequence similarity to known plant reference datasets revealed a distribution of functional categories almost similar to that of tomato, while 1316 unigenes were suggested to be eggplant-specific. Sequence-based comparative analysis using putative orthologous gene groups setup by reciprocal sequence comparison among six solanaceous species suggested that eggplant and its wild ally Solanum torvum were clustered separately from subgenus Potatoe species, and then, all Solanum species were clustered separately from the genus Capsicum. Microsatellite motif distribution was different among species and likely to be coincident with the phylogenetic relationships. Furthermore, the eggplant unigene dataset exhibited its utility in transcriptome analysis by the SAGE strategy where a considerable number of short tag sequences of interest were successfully assigned to unigenes and their functional annotations. The eggplant ESTs and 16k unigene set developed in this study would be a useful resource not only for molecular genetics and breeding in eggplant itself, but for expanding the scope of comparative biology in Solanum species.

  16. 24 CFR 943.120 - What programs of a PHA are included in a consortium's functions?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false What programs of a PHA are included... Consortia § 943.120 What programs of a PHA are included in a consortium's functions? (a) A PHA may enter a consortium under this subpart for administration of any of the following program categories: (1) The PHA's...

  17. 24 CFR 943.120 - What programs of a PHA are included in a consortium's functions?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 4 2013-04-01 2013-04-01 false What programs of a PHA are included... Consortia § 943.120 What programs of a PHA are included in a consortium's functions? (a) A PHA may enter a consortium under this subpart for administration of any of the following program categories: (1) The PHA's...

  18. 24 CFR 943.120 - What programs of a PHA are included in a consortium's functions?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 4 2014-04-01 2014-04-01 false What programs of a PHA are included... Consortia § 943.120 What programs of a PHA are included in a consortium's functions? (a) A PHA may enter a consortium under this subpart for administration of any of the following program categories: (1) The PHA's...

  19. 24 CFR 943.120 - What programs of a PHA are included in a consortium's functions?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 4 2012-04-01 2012-04-01 false What programs of a PHA are included... Consortia § 943.120 What programs of a PHA are included in a consortium's functions? (a) A PHA may enter a consortium under this subpart for administration of any of the following program categories: (1) The PHA's...

  20. 24 CFR 943.120 - What programs of a PHA are included in a consortium's functions?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false What programs of a PHA are included... Consortia § 943.120 What programs of a PHA are included in a consortium's functions? (a) A PHA may enter a consortium under this subpart for administration of any of the following program categories: (1) The PHA's...

  1. Statistical algorithms for ontology-based annotation of scientific literature

    PubMed Central

    2014-01-01

    Background Ontologies encode relationships within a domain in robust data structures that can be used to annotate data objects, including scientific papers, in ways that ease tasks such as search and meta-analysis. However, the annotation process requires significant time and effort when performed by humans. Text mining algorithms can facilitate this process, but they render an analysis mainly based upon keyword, synonym and semantic matching. They do not leverage information embedded in an ontology's structure. Methods We present a probabilistic framework that facilitates the automatic annotation of literature by indirectly modeling the restrictions among the different classes in the ontology. Our research focuses on annotating human functional neuroimaging literature within the Cognitive Paradigm Ontology (CogPO). We use an approach that combines the stochastic simplicity of naïve Bayes with the formal transparency of decision trees. Our data structure is easily modifiable to reflect changing domain knowledge. Results We compare our results across naïve Bayes, Bayesian Decision Trees, and Constrained Decision Tree classifiers that keep a human expert in the loop, in terms of the quality measure of the F1-mirco score. Conclusions Unlike traditional text mining algorithms, our framework can model the knowledge encoded by the dependencies in an ontology, albeit indirectly. We successfully exploit the fact that CogPO has explicitly stated restrictions, and implicit dependencies in the form of patterns in the expert curated annotations. PMID:25093071

  2. Updating annotations with the distributed annotation system and the automated sequence annotation pipeline

    PubMed Central

    Speier, William; Ochs, Michael F.

    2012-01-01

    Summary: The integration between BioDAS ProServer and Automated Sequence Annotation Pipeline (ASAP) provides an interface for querying diverse annotation sources, chaining and linking results, and standardizing the output using the Distributed Annotation System (DAS) protocol. This interface allows pipeline plans in ASAP to be integrated into any system using HTTP and also allows the information returned by ASAP to be included in the DAS registry for use in any DAS-aware system. Three example implementations have been developed: the first accesses TRANSFAC information to automatically create gene sets for the Coordinated Gene Activity in Pattern Sets (CoGAPS) algorithm; the second integrates annotations from multiple array platforms and provides unified annotations in an R environment; and the third wraps the UniProt database for integration with the SPICE DAS client. Availability: Source code for ASAP 2.7 and the DAS 1.6 interface is available under the GNU public license. Proserver 2.20 is free software available from SourceForge. Scripts for installation and configuration on Linux are provided at our website: http://www.rits.onc.jhmi.edu/dbb/custom/A6/ Contact: Speier@mii.ucla.edu or mfo@jhu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22945787

  3. MSDAC Resource Library Annotated Bibliography.

    ERIC Educational Resources Information Center

    Schlee, Phillip F., Comp.; And Others

    The Midwest Sex Discrimination Assistance Center presents an annotated bibliography of 56 monographs and 11 other media materials relating to women and sex discrimination for use in public schools. Media materials include slides, films, filmstrips, audio recordings, and posters. The bibliography is organized by subject and each annotation…

  4. Meaningful Assessment: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Thrond, Mary A.

    The annotated bibliography contains citations of nine references on alternative student assessment methods in second language programs, particularly at the secondary school level. The references include a critique of conventional reading comprehension assessment, a discussion of performance assessment, a proposal for a multi-trait, multi-method…

  5. Annotated Videography. Part 3. [Revised].

    ERIC Educational Resources Information Center

    United States Holocaust Memorial Museum, Washington, DC.

    This annotated videography has been designed to identify videotapes addressing Holocaust history that have been used effectively in classrooms and are available readily to most communities. The guide is divided into 15 topical categories, including: life before the Holocaust; perpetrators; propaganda; racism; antisemitism; mosaic of victims;…

  6. Migrant Education: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Palmer, Barbara C., Comp.

    Materials selected for inclusion in the annotated bibliography of 139 publications from 1970 to 1980 give a general understanding of the lives of migrant children, their educational needs and problems, and various attempts made to meet those needs. The bibliography, a valuable tool for researchers and teachers in migrant education, includes books,…

  7. Radiocarbon Dating: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Fortine, Suellen

    This selective annotated bibliography covers various sources of information on the radiocarbon dating method, including journal articles, conference proceedings, and reports, reflecting the most important and useful sources of the last 25 years. The bibliography is divided into five parts--general background on radiocarbon, radiocarbon dating,…

  8. MSDAC Resource Library Annotated Bibliography.

    ERIC Educational Resources Information Center

    Watson, Cristel; And Others

    This annotated bibliography lists books, films, filmstrips, recordings, and booklets on sex equity. Entries are arranged according to the following topics: career resources, curriculum resources, management, sex equity, sex roles, women's studies, student activities, and sex-fair fiction. Included in each entry are name of author, editor or…

  9. Radiocarbon Dating: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Fortine, Suellen

    This selective annotated bibliography covers various sources of information on the radiocarbon dating method, including journal articles, conference proceedings, and reports, reflecting the most important and useful sources of the last 25 years. The bibliography is divided into five parts--general background on radiocarbon, radiocarbon dating,…

  10. Peaceful Peoples: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Bonta, Bruce D.

    This annotated bibliography includes 438 selected references to books, journal articles, essays within edited volumes, and dissertations that provide significant information about peaceful societies. Peaceful societies are groups that have developed harmonious social structures that allow them to get along with each other, and with outsiders,…

  11. Staff Differentiation. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Marin County Superintendent of Schools, Corte Madera, CA.

    This annotated bibliography reviews selected literature focusing on the concept of staff differentiation. Included are 62 items (dated 1966-1970), along with a list of mailing addresses where copies of individual items can be obtained. Also a list of 31 staff differentiation projects receiving financial assistance from the U.S. Office of Education…

  12. Vietnamese Amerasians: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Johnson, Mark C.; And Others

    This annotated bibliography on Vietnamese Amerasians includes primary and secondary sources as well as reviews of three documentary films. Sources were selected in order to provide an overview of the historical and political context of Amerasian resettlement and a review of the scant available research on coping and adaptation with this…

  13. Vietnamese Amerasians: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Johnson, Mark C.; And Others

    This annotated bibliography on Vietnamese Amerasians includes primary and secondary sources as well as reviews of three documentary films. Sources were selected in order to provide an overview of the historical and political context of Amerasian resettlement and a review of the scant available research on coping and adaptation with this…

  14. ANNOTATED BIBLIOGRAPHY OF GEOLOGICAL EDUCATION.

    ERIC Educational Resources Information Center

    BERG, J. ROBERT; AND OTHERS

    ARTICLES ABOUT GEOLOGICAL EDUCATION WRITTEN DURING THE PERIOD 1919-62 ARE INCLUDED IN THIS ANNOTATED BIBLIOGRAPHY. RECOMMENDATIONS OF INDIVIDUAL EDUCATORS AND PROFESSIONAL GROUPS FOR THE UNDERGRADUATE AND GRADUATE PREPARATION OF GEOLOGISTS ARE CONTAINED IN MOST OF THE ITEMS. THE ARTICLES WERE ORIGINALLY PUBLISHED IN PROFESSIONAL JOURNALS OR…

  15. Pooling annotated corpora for clinical concept extraction

    PubMed Central

    2013-01-01

    Background The availability of annotated corpora has facilitated the application of machine learning algorithms to concept extraction from clinical notes. However, high expenditure and labor are required for creating the annotations. A potential alternative is to reuse existing corpora from other institutions by pooling with local corpora, for training machine taggers. In this paper we have investigated the latter approach by pooling corpora from 2010 i2b2/VA NLP challenge and Mayo Clinic Rochester, to evaluate taggers for recognition of medical problems. The corpora were annotated for medical problems, but with different guidelines. The taggers were constructed using an existing tagging system MedTagger that consisted of dictionary lookup, part of speech (POS) tagging and machine learning for named entity prediction and concept extraction. We hope that our current work will be a useful case study for facilitating reuse of annotated corpora across institutions. Results We found that pooling was effective when the size of the local corpus was small and after some of the guideline differences were reconciled. The benefits of pooling, however, diminished as more locally annotated documents were included in the training data. We examined the annotation guidelines to identify factors that determine the effect of pooling. Conclusions The effectiveness of pooling corpora, is dependent on several factors, which include compatibility of annotation guidelines, distribution of report types and size of local and foreign corpora. Simple methods to rectify some of the guideline differences can facilitate pooling. Our findings need to be confirmed with further studies on different corpora. To facilitate the pooling and reuse of annotated corpora, we suggest that – i) the NLP community should develop a standard annotation guideline that addresses the potential areas of guideline differences that are partly identified in this paper; ii) corpora should be annotated with a two

  16. Computing human image annotation.

    PubMed

    Channin, David S; Mongkolwat, Pattanasak; Kleper, Vladimir; Rubin, Daniel L

    2009-01-01

    An image annotation is the explanatory or descriptive information about the pixel data of an image that is generated by a human (or machine) observer. An image markup is the graphical symbols placed over the image to depict an annotation. In the majority of current, clinical and research imaging practice, markup is captured in proprietary formats and annotations are referenced only in free text radiology reports. This makes these annotations difficult to query, retrieve and compute upon, hampering their integration into other data mining and analysis efforts. This paper describes the National Cancer Institute's Cancer Biomedical Informatics Grid's (caBIG) Annotation and Image Markup (AIM) project, focusing on how to use AIM to query for annotations. The AIM project delivers an information model for image annotation and markup. The model uses controlled terminologies for important concepts. All of the classes and attributes of the model have been harmonized with the other models and common data elements in use at the National Cancer Institute. The project also delivers XML schemata necessary to instantiate AIMs in XML as well as a software application for translating AIM XML into DICOM S/R and HL7 CDA. Large collections of AIM annotations can be built and then queried as Grid or Web services. Using the tools of the AIM project, image annotations and their markup can be captured and stored in human and machine readable formats. This enables the inclusion of human image observation and inference as part of larger data mining and analysis activities.

  17. Galileo Reader and Annotator

    NASA Astrophysics Data System (ADS)

    Besomi, O.

    2011-06-01

    In his readings, Galileo made frequent use of annotations. Here, I will offer a general glance at them by discussing the case of the annotations to the Libra astronomica published in 1619 by Orazio Grassi, a Jesuit mathematician of the Collegio Romano. The annotations directly reflect Galileo's reaction to Grassi's book in a heated debate between the two astronomers. Galileo and Grassi had opposite ideas about the nature of the comets, which resulted in different scientific and theological implications. The annotations represent the starting point for Galileo's reply to the Libra, namely Il Saggiatore, which was published four years later and dedicated to the new pope Urban VIII.

  18. On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation.

    PubMed

    Wong, Wing-Cheong; Maurer-Stroh, Sebastian; Eisenhaber, Birgit; Eisenhaber, Frank

    2014-06-02

    Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt. Sequence similarity core dissection with regard to fold-critical and other contributions systematically suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between aquaporins and formate/nitrite transporters that, so far, was only supported by structure comparison.

  19. On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation

    PubMed Central

    2014-01-01

    Background Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. Results The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt. Conclusions Sequence similarity core dissection with regard to fold-critical and other contributions systematically suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between aquaporins and formate/nitrite transporters that, so far, was only

  20. Functional gains of including non-commercial epibenthic taxa in coastal beam trawl surveys: A note

    NASA Astrophysics Data System (ADS)

    Brind'Amour, Anik; Rouyer, Armelle; Martin, Jocelyne

    2009-05-01

    The development of ecosystem-based indicators requires the broadening of a view of the community, from fish species to all the species (macrobenthic and fish) correctly captured by a given sampling gear. Many scientific surveys already have such integrated databases. The present note aims to demonstrate that existing databases, herein from dedicated coastal nursery surveys, are actually underexploited. Such databases contain information on non-commercial taxa, which could greatly improve our knowledge on the organisation and functioning of coastal ecosystems. Using two datasets, a "complete" dataset composed of commercial and not-commercial epibenthic trawled species (fish and invertebrate) and a "subset" dataset characterized by commercial and routinely surveyed species (mainly fish and cephalopods), different measures of functional diversity are compared to identify the functional gains of including epibenthic species. The results show that, when included in the analyses, epibenthic taxa provide gains of functional information, associated mainly with the community feeding traits, i.e. organisms composing the primary and secondary consumer levels of the coastal nursery food web. Failure to include some of the primary (zooplanktivores and suspension feeders) and secondary consumers (detritivores-scavengers) in coastal survey analyses may, for instance, hamper our understanding of energy flux between the benthic and water column compartments of these ecosystems. The results also suggest that the exclusion of some taxa associated with these two food web compartments, may lead to the underestimation of the functional redundancy in coastal ecosystems.

  1. Cognitive Functioning after Medial Frontal Lobe Damage Including the Anterior Cingulate Cortex: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa

    2006-01-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…

  2. Cognitive Functioning after Medial Frontal Lobe Damage Including the Anterior Cingulate Cortex: A Preliminary Investigation

    ERIC Educational Resources Information Center

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J.; Dolan, Raymond J.; Cipolotti, Lisa

    2006-01-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was…

  3. Determining similarity of scientific entities in annotation datasets.

    PubMed

    Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas

    2015-01-01

    Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug-drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called 'AnnSim' that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1-1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/

  4. Determining similarity of scientific entities in annotation datasets

    PubMed Central

    Palma, Guillermo; Vidal, Maria-Esther; Haag, Eric; Raschid, Louiqa; Thor, Andreas

    2015-01-01

    Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug–drug relationships may depend on the similarity of the targets that interact with each drug. A diversity of similarity measures has been proposed in the literature to compute relatedness between a pair of entities. Each measure exploits some knowledge including the name, function, relationships with other entities, taxonomic neighborhood and semantic knowledge. We propose a novel general-purpose annotation similarity measure called ‘AnnSim’ that measures the relatedness between two entities based on the similarity of their annotations. We model AnnSim as a 1–1 maximum weight bipartite match and exploit properties of existing solvers to provide an efficient solution. We empirically study the performance of AnnSim on real-world datasets of drugs and disease associations from clinical trials and relationships between drugs and (genomic) targets. Using baselines that include a variety of measures, we identify where AnnSim can provide a deeper understanding of the semantics underlying the relatedness of a pair of entities or where it could lead to predicting new links or identifying potential novel patterns. Although AnnSim does not exploit knowledge or properties of a particular domain, its performance compares well with a variety of state-of-the-art domain-specific measures. Database URL: http://www.yeastgenome.org/ PMID:25725057

  5. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  6. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  7. Annotation of Fusarium graminearum (PH-1) Version 5.0

    PubMed Central

    Hammond-Kosack, Kim E.

    2017-01-01

    ABSTRACT Fusarium graminearum floral infections are a major risk to the global supply of safe cereal grains. We report updates to the PH-1 reference genome and significant improvements to the annotation. Changes include introduction of legacy annotation identifiers, new gene models, secretome and effectorP predictions, and inclusion of extensive untranslated region (UTR) annotations. PMID:28082505

  8. Alignment-Annotator web server: rendering and annotating sequence alignments.

    PubMed

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  10. Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system

    SciTech Connect

    Chen, I-Min A.; Markowitz, Victor M.; Palaniappan, Krishna; Szeto, Ernest; Chu, Ken; Huang, Jinghua; Ratner, Anna; Pillay, Manoj; Hadjithomas, Michalis; Huntemann, Marcel; Mikhailova, Natalia; Ovchinnikova, Galina; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2016-04-26

    Background: The exponential growth of genomic data from next generation technologies renders traditional manual expert curation effort unsustainable. Many genomic systems have included community annotation tools to address the problem. Most of these systems adopted a "Wiki-based" approach to take advantage of existing wiki technologies, but encountered obstacles in issues such as usability, authorship recognition, information reliability and incentive for community participation. Results: Here, we present a different approach, relying on tightly integrated method rather than "Wiki-based" method, to support community annotation and user collaboration in the Integrated Microbial Genomes (IMG) system. The IMG approach allows users to use existing IMG data warehouse and analysis tools to add gene, pathway and biosynthetic cluster annotations, to analyze/reorganize contigs, genes and functions using workspace datasets, and to share private user annotations and workspace datasets with collaborators. We show that the annotation effort using IMG can be part of the research process to overcome the user incentive and authorship recognition problems thus fostering collaboration among domain experts. The usability and reliability issues are addressed by the integration of curated information and analysis tools in IMG, together with DOE Joint Genome Institute (JGI) expert review. Conclusion: By incorporating annotation operations into IMG, we provide an integrated environment for users to perform deeper and extended data analysis and annotation in a single system that can lead to publications and community knowledge sharing as shown in the case studies.

  11. Supporting community annotation and user collaboration in the integrated microbial genomes (IMG) system

    DOE PAGES

    Chen, I-Min A.; Markowitz, Victor M.; Palaniappan, Krishna; ...

    2016-04-26

    Background: The exponential growth of genomic data from next generation technologies renders traditional manual expert curation effort unsustainable. Many genomic systems have included community annotation tools to address the problem. Most of these systems adopted a "Wiki-based" approach to take advantage of existing wiki technologies, but encountered obstacles in issues such as usability, authorship recognition, information reliability and incentive for community participation. Results: Here, we present a different approach, relying on tightly integrated method rather than "Wiki-based" method, to support community annotation and user collaboration in the Integrated Microbial Genomes (IMG) system. The IMG approach allows users to use existingmore » IMG data warehouse and analysis tools to add gene, pathway and biosynthetic cluster annotations, to analyze/reorganize contigs, genes and functions using workspace datasets, and to share private user annotations and workspace datasets with collaborators. We show that the annotation effort using IMG can be part of the research process to overcome the user incentive and authorship recognition problems thus fostering collaboration among domain experts. The usability and reliability issues are addressed by the integration of curated information and analysis tools in IMG, together with DOE Joint Genome Institute (JGI) expert review. Conclusion: By incorporating annotation operations into IMG, we provide an integrated environment for users to perform deeper and extended data analysis and annotation in a single system that can lead to publications and community knowledge sharing as shown in the case studies.« less

  12. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes.

    PubMed

    Brettin, Thomas; Davis, James J; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Olsen, Gary J; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D; Shukla, Maulik; Thomason, James A; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  13. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    PubMed Central

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-01-01

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception. PMID:25666585

  14. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    SciTech Connect

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, III, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  15. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data

    PubMed Central

    Matthews, Beverley B.; dos Santos, Gilberto; Crosby, Madeline A.; Emmert, David B.; St. Pierre, Susan E.; Gramates, L. Sian; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Strelets, Victor; Russo, Susan M.; Gelbart, William M.

    2015-01-01

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3′ UTRs (up to 15–18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts. PMID:26109357

  16. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data.

    PubMed

    Matthews, Beverley B; Dos Santos, Gilberto; Crosby, Madeline A; Emmert, David B; St Pierre, Susan E; Gramates, L Sian; Zhou, Pinglei; Schroeder, Andrew J; Falls, Kathleen; Strelets, Victor; Russo, Susan M; Gelbart, William M

    2015-06-24

    We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.

  17. Association between functional performance and executive cognitive functions in an elderly population including patients with low ankle–brachial index

    PubMed Central

    Ferreira, Naomi Vidal; Cunha, Paulo Jannuzzi; da Costa, Danielle Irigoyen; dos Santos, Fernando; Costa, Fernando Oliveira; Consolim-Colombo, Fernanda; Irigoyen, Maria Cláudia

    2015-01-01

    Introduction Peripheral arterial disease, as measured by the ankle–brachial index (ABI), is prevalent among the elderly, and is associated with functional performance, assessed by the 6-minute walk test (6MWT). Executive cognitive function (ECF) impairments are also prevalent in this population, but no existing study has investigated the association between ECF and functional performance in an elderly population including individuals with low ABI. Aim To investigate the association between functional performance, as measured by the 6MWT, and loss in ECF, in an elderly sample including individuals with low ABI. Method The ABI group was formed by 26 elderly individuals with low ABI (mean ABI: 0.63±0.19), and the control group was formed by 40 elderly individuals with normal ABI (mean ABI: 1.08±0.07). We analyzed functional performance using the 6MWT, global cognition using the Mini-Mental State Examination (MMSE), and ECF using the Digit Span for assessing attention span and working memory, the Stroop Color Word Test (SCWT) for assessing information processing speed and inhibitory control/impulsivity, and the Controlled Oral Word Association Test (COWAT) for assessing semantic verbal fluency and phonemic verbal fluency. We also used a factor analysis on all of the ECF tests (global ECF). Results Before adjustment, the ABI group performed worse on global cognition, attention span, working memory, inhibitory control/impulsivity, semantic verbal fluency, and phonemic verbal fluency. After adjustment, the ABI group performance remained worse for working memory and semantic verbal fluency. In a simple correlation analysis including all of the subjects, the 6MWT was associated with global cognition, attention span, working memory, information processing speed, inhibitory control/impulsivity, semantic verbal fluency, and global ECF. After adjustment, all the associations remained statistically significant. Conclusion This study found an independent association between

  18. Teaching and Learning Communities through Online Annotation

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B.

    2016-12-01

    What do colleagues do with your assigned textbook? What they say or think about the material? Want students to be more engaged in their learning experience? If so, online materials that complement standard lecture format provide new opportunity through managed, online group annotation that leverages the ubiquity of internet access, while personalizing learning. The concept is illustrated with the new online textbook "Processes in Structural Geology and Tectonics", by Ben van der Pluijm and Stephen Marshak, which offers a platform for sharing of experiences, supplementary materials and approaches, including readings, mathematical applications, exercises, challenge questions, quizzes, alternative explanations, and more. The annotation framework used is Hypothes.is, which offers a free, open platform markup environment for annotation of websites and PDF postings. The annotations can be public, grouped or individualized, as desired, including export access and download of annotations. A teacher group, hosted by a moderator/owner, limits access to members of a user group of teachers, so that its members can use, copy or transcribe annotations for their own lesson material. Likewise, an instructor can host a student group that encourages sharing of observations, questions and answers among students and instructor. Also, the instructor can create one or more closed groups that offers study help and hints to students. Options galore, all of which aim to engage students and to promote greater responsibility for their learning experience. Beyond new capacity, the ability to analyze student annotation supports individual learners and their needs. For example, student notes can be analyzed for key phrases and concepts, and identify misunderstandings, omissions and problems. Also, example annotations can be shared to enhance notetaking skills and to help with studying. Lastly, online annotation allows active application to lecture posted slides, supporting real-time notetaking

  19. Computer systems for annotation of single molecule fragments

    DOEpatents

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  20. SEED Software Annotations.

    ERIC Educational Resources Information Center

    Bethke, Dee; And Others

    This document provides a composite index of the first five sets of software annotations produced by Project SEED. The software has been indexed by title, subject area, and grade level, and it covers sets of annotations distributed in September 1986, April 1987, September 1987, November 1987, and February 1988. The date column in the index…

  1. Community annotation and bioinformatics workforce development in concert--Little Skate Genome Annotation Workshops and Jamborees.

    PubMed

    Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.

  2. Satellite Cell Functional Alterations Following Cutaneous Burn in rats Include an Increase in Their Osteogenic Potential

    DTIC Science & Technology

    2013-10-07

    have yet to be identified. Interestingly, a therapeutic strategy for the treatment of HO for both nerve injury and burn is radiation , a methodology...Satellite cell functional alterations following cutaneous burn in rats include an increase in their osteogenic potential Xiaowu Wu, MD,* and...Skeletal muscle Muscle precursor cell Thermal injury Atrophy Heterotopic ossification a b s t r a c t Background: Significant consequences of severe burn

  3. Intra-species sequence comparisons for annotating genomes

    SciTech Connect

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  4. Communication and Gender: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Shermis, Michael

    1990-01-01

    Presents an 18-item annotated bibliography of recent research reports and conference papers concerning the role gender plays in communication. Includes aspects of organizational communication, interpersonal communication, and communication in the media. (SR)

  5. An Informally Annotated Bibliography of Sociolinguistics.

    ERIC Educational Resources Information Center

    Tannen, Deborah

    This annotated bibliography of sociolinguistics is divided into the following sections: speech events, ethnography of speaking and anthropological approaches to analysis of conversation; discourse analysis (including analysis of conversation and narrative), ethnomethodology and nonverbal communication; sociolinguistics; pragmatics (including…

  6. A cerebrovascular response model for functional neuroimaging including dynamic cerebral autoregulation

    PubMed Central

    Diamond, Solomon Gilbert; Perdue, Katherine L.; Boas, David A.

    2009-01-01

    Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) can be used to isolate an evoked response to a stimulus from significant background physiological fluctuations. Data analysis approaches typically use averaging or linear regression to remove this physiological baseline with varying degrees of success. Biophysical model-based analysis of the functional hemodynamic response has also been advanced previously with the Balloon and Windkessel models. In the present work, a biophysical model of systemic and cerebral circulation and gas exchange is applied to resting state NIRS neuroimaging data from 10 human subjects. The model further includes dynamic cerebral autoregulation, which modulates the cerebral arteriole compliance to control cerebral blood flow. This biophysical model allows for prediction, from noninvasive blood pressure measurements, of the background hemodynamic fluctuations in the systemic and cerebral circulations. Significantly higher correlations with the NIRS data were found using the biophysical model predictions compared to blood pressure regression and compared to transfer function analysis (multifactor ANOVA, p<0.0001). This finding supports the further development and use of biophysical models for removing baseline activity in functional neuroimaging analysis. Future extensions of this work could model changes in cerebrovascular physiology that occur during development, aging and disease. PMID:19442671

  7. Cognitive functioning after medial frontal lobe damage including the anterior cingulate cortex: a preliminary investigation.

    PubMed

    Baird, Amee; Dewar, Bonnie-Kate; Critchley, Hugo; Gilbert, Sam J; Dolan, Raymond J; Cipolotti, Lisa

    2006-03-01

    Two patients with medial frontal lobe damage involving the anterior cingulate cortex (ACC) performed a range of cognitive tasks, including tests of executive function and anterior attention. Both patients lesions extended beyond the ACC, therefore caution needs to be exerted in ascribing observed deficits to the ACC alone. Patient performance was compared with age and education matched healthy controls. Both patients showed intact intellectual, memory, and language abilities. No clear-cut abnormalities were noted in visuoperceptual functions. Speed of information processing was mildly reduced only in Patient 2 (bilateral ACC lesion). The patients demonstrated weak or impaired performance only on selective executive function tests. Performance on anterior attention tasks was satisfactory. We tentatively suggest that our findings are inconsistent with anterior attention theories of ACC function based on neuroimaging findings. We propose that the data may imply that the ACC does not have a central role in cognition. We speculate that our findings may be compatible with the view that the ACC integrates cognitive processing with autonomic functioning to guide behaviour.

  8. Concept annotation in the CRAFT corpus

    PubMed Central

    2012-01-01

    Background Manually annotated corpora are critical for the training and evaluation of automated methods to identify concepts in biomedical text. Results This paper presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community. CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies: the Cell Type Ontology, the Chemical Entities of Biological Interest ontology, the NCBI Taxonomy, the Protein Ontology, the Sequence Ontology, the entries of the Entrez Gene database, and the three subontologies of the Gene Ontology. The first public release includes the annotations for 67 of the 97 articles, reserving two sets of 15 articles for future text-mining competitions (after which these too will be released). Concept annotations were created based on a single set of guidelines, which has enabled us to achieve consistently high interannotator agreement. Conclusions As the initial 67-article release contains more than 560,000 tokens (and the full set more than 790,000 tokens), our corpus is among the largest gold-standard annotated biomedical corpora. Unlike most others, the journal articles that comprise the corpus are drawn from diverse biomedical disciplines and are marked up in their entirety. Additionally, with a concept-annotation count of nearly 100,000 in the 67-article subset (and more than 140,000 in the full collection), the scale of conceptual markup is also among the largest of comparable corpora. The concept annotations of the CRAFT Corpus have the potential to significantly advance biomedical text mining by providing a high-quality gold standard for NLP systems. The corpus, annotation guidelines, and other associated resources are freely available at http

  9. AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations

    PubMed Central

    Kucera, Mike; Isserlin, Ruth; Arkhangorodsky, Arkady; Bader, Gary D.

    2016-01-01

    Networks often contain regions of tightly connected nodes, or clusters, that highlight their shared relationships. An effective way to create a visual summary of a network is to identify clusters and annotate them with an enclosing shape and a summarizing label. Cytoscape provides the ability to annotate a network with shapes and labels, however these annotations must be created manually one at a time, which can be a laborious process. AutoAnnotate is a Cytoscape 3 App that automates the process of identifying clusters and visually annotating them. It greatly reduces the time and effort required to fully annotate clusters in a network, and provides freedom to experiment with different strategies for identifying and labelling clusters. Many customization options are available that enable the user to refine the generated annotations as required. Annotated clusters may be collapsed into single nodes using the Cytoscape groups feature, which helps simplify a network by making its overall structure more visible. AutoAnnotate is applicable to any type of network, including enrichment maps, protein-protein interactions, pathways, or social networks. PMID:27830058

  10. AutoAnnotate: A Cytoscape app for summarizing networks with semantic annotations.

    PubMed

    Kucera, Mike; Isserlin, Ruth; Arkhangorodsky, Arkady; Bader, Gary D

    2016-01-01

    Networks often contain regions of tightly connected nodes, or clusters, that highlight their shared relationships. An effective way to create a visual summary of a network is to identify clusters and annotate them with an enclosing shape and a summarizing label. Cytoscape provides the ability to annotate a network with shapes and labels, however these annotations must be created manually one at a time, which can be a laborious process. AutoAnnotate is a Cytoscape 3 App that automates the process of identifying clusters and visually annotating them. It greatly reduces the time and effort required to fully annotate clusters in a network, and provides freedom to experiment with different strategies for identifying and labelling clusters. Many customization options are available that enable the user to refine the generated annotations as required. Annotated clusters may be collapsed into single nodes using the Cytoscape groups feature, which helps simplify a network by making its overall structure more visible. AutoAnnotate is applicable to any type of network, including enrichment maps, protein-protein interactions, pathways, or social networks.

  11. Non-Formal Education and Radio: A Selected, Annotated Bibliography. Annotated Bibliography #14.

    ERIC Educational Resources Information Center

    Vergeldt, Vicki; And Others

    Materials concerning the use of radio and mass communications for non-formal education and development are listed in a selected annotated bibliography, intended for those actively involved in non-formal education and development. Three sections contain annotated entries (which range from 1972-1983), each of which includes source information and…

  12. Genotator: A Workbench for Sequence Annotation

    SciTech Connect

    Harris, N.L.

    1997-05-01

    Sequencing centers such as the Human Genome Center at LBNL are producing an ever-increasing flood of genetic data. Annotation can greatly enhance the biological value of these sequences. Useful annotations include possible gene locations, homologies to known genes, and gene signals such as promoters and splice sites. Genotator is a workbench for automated sequence annotation and annotation browsing. The back end runs a series of sequence analysis tools on a DNA sequence, handling the various input and output formats required by the tools. Genotator currently runs five different gene finding programs, three homology searches, and searches for promoters, splice sites, and ORFs. The results of the analyses run by Genotator can be viewed with the interactive graphical browser. The browser displays color-coded sequence annotations on a canvas that can be scrolled and zoomed, allowing the annotated sequence to be explored at multiple levels of detail. The user can view the actual DNA sequence in a separate window; when a region is selected in the map display, it is automatically highlighted in the sequence display, and vice-versa. By displaying the output of all of the sequence analyses, Genotator provides an intuitive way to identify the significant regions (for example, probable exons) in a sequence. Users can interactively add personal annotations to label regions of interest. Additional capabilities of Genotator include primer design and pattern searching.

  13. Genotator: A Workbench for Sequence Annotation

    PubMed Central