Sample records for including image preprocessing

  1. High-throughput imaging of heterogeneous cell organelles with an X-ray laser (CXIDB ID 25)

    DOE Data Explorer

    Hantke, Max, F.

    2014-11-17

    Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

  2. Retinex Preprocessing for Improved Multi-Spectral Image Classification

    NASA Technical Reports Server (NTRS)

    Thompson, B.; Rahman, Z.; Park, S.

    2000-01-01

    The goal of multi-image classification is to identify and label "similar regions" within a scene. The ability to correctly classify a remotely sensed multi-image of a scene is affected by the ability of the classification process to adequately compensate for the effects of atmospheric variations and sensor anomalies. Better classification may be obtained if the multi-image is preprocessed before classification, so as to reduce the adverse effects of image formation. In this paper, we discuss the overall impact on multi-spectral image classification when the retinex image enhancement algorithm is used to preprocess multi-spectral images. The retinex is a multi-purpose image enhancement algorithm that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The retinex has been successfully applied to the enhancement of many different types of grayscale and color images. We show in this paper that retinex preprocessing improves the spatial structure of multi-spectral images and thus provides better within-class variations than would otherwise be obtained without the preprocessing. For a series of multi-spectral images obtained with diffuse and direct lighting, we show that without retinex preprocessing the class spectral signatures vary substantially with the lighting conditions. Whereas multi-dimensional clustering without preprocessing produced one-class homogeneous regions, the classification on the preprocessed images produced multi-class non-homogeneous regions. This lack of homogeneity is explained by the interaction between different agronomic treatments applied to the regions: the preprocessed images are closer to ground truth. The principle advantage that the retinex offers is that for different lighting conditions classifications derived from the retinex preprocessed images look remarkably "similar", and thus more consistent, whereas classifications derived from the original images, without preprocessing, are much less similar.

  3. Processing method of images obtained during the TESIS/CORONAS-PHOTON experiment

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Shestov, S. V.; Bogachev, S. A.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.

    2011-04-01

    In January 2009, the CORONAS-PHOTON spacecraft was successfully launched. It includes a set of telescopes and spectroheliometers—TESIS—designed to image the solar corona in soft X-ray and EUV spectral ranges. Due to features of the reading system, to obtain physical information from these images, it is necessary to preprocess them, i.e., to remove the background, correct the white field, level, and clean. The paper discusses the algorithms and software developed and used for the preprocessing of images.

  4. The 3-D image recognition based on fuzzy neural network technology

    NASA Technical Reports Server (NTRS)

    Hirota, Kaoru; Yamauchi, Kenichi; Murakami, Jun; Tanaka, Kei

    1993-01-01

    Three dimensional stereoscopic image recognition system based on fuzzy-neural network technology was developed. The system consists of three parts; preprocessing part, feature extraction part, and matching part. Two CCD color camera image are fed to the preprocessing part, where several operations including RGB-HSV transformation are done. A multi-layer perception is used for the line detection in the feature extraction part. Then fuzzy matching technique is introduced in the matching part. The system is realized on SUN spark station and special image input hardware system. An experimental result on bottle images is also presented.

  5. An image analysis of TLC patterns for quality control of saffron based on soil salinity effect: A strategy for data (pre)-processing.

    PubMed

    Sereshti, Hassan; Poursorkh, Zahra; Aliakbarzadeh, Ghazaleh; Zarre, Shahin; Ataolahi, Sahar

    2018-01-15

    Quality of saffron, a valuable food additive, could considerably affect the consumers' health. In this work, a novel preprocessing strategy for image analysis of saffron thin layer chromatographic (TLC) patterns was introduced. This includes performing a series of image pre-processing techniques on TLC images such as compression, inversion, elimination of general baseline (using asymmetric least squares (AsLS)), removing spots shift and concavity (by correlation optimization warping (COW)), and finally conversion to RGB chromatograms. Subsequently, an unsupervised multivariate data analysis including principal component analysis (PCA) and k-means clustering was utilized to investigate the soil salinity effect, as a cultivation parameter, on saffron TLC patterns. This method was used as a rapid and simple technique to obtain the chemical fingerprints of saffron TLC images. Finally, the separated TLC spots were chemically identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). Accordingly, the saffron quality from different areas of Iran was evaluated and classified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pre-Processes for Urban Areas Detection in SAR Images

    NASA Astrophysics Data System (ADS)

    Altay Açar, S.; Bayır, Ş.

    2017-11-01

    In this study, pre-processes for urban areas detection in synthetic aperture radar (SAR) images are examined. These pre-processes are image smoothing, thresholding and white coloured regions determination. Image smoothing is carried out to remove noises then thresholding is applied to obtain binary image. Finally, candidate urban areas are detected by using white coloured regions determination. All pre-processes are applied by utilizing the developed software. Two different SAR images which are acquired by TerraSAR-X are used in experimental study. Obtained results are shown visually.

  7. Image preprocessing study on KPCA-based face recognition

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Li, Dehua

    2015-12-01

    Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.

  8. Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis.

    PubMed

    Zhang, Chu; Liu, Fei; He, Yong

    2018-02-01

    Hyperspectral imaging was used to identify and to visualize the coffee bean varieties. Spectral preprocessing of pixel-wise spectra was conducted by different methods, including moving average smoothing (MA), wavelet transform (WT) and empirical mode decomposition (EMD). Meanwhile, spatial preprocessing of the gray-scale image at each wavelength was conducted by median filter (MF). Support vector machine (SVM) models using full sample average spectra and pixel-wise spectra, and the selected optimal wavelengths by second derivative spectra all achieved classification accuracy over 80%. Primarily, the SVM models using pixel-wise spectra were used to predict the sample average spectra, and these models obtained over 80% of the classification accuracy. Secondly, the SVM models using sample average spectra were used to predict pixel-wise spectra, but achieved with lower than 50% of classification accuracy. The results indicated that WT and EMD were suitable for pixel-wise spectra preprocessing. The use of pixel-wise spectra could extend the calibration set, and resulted in the good prediction results for pixel-wise spectra and sample average spectra. The overall results indicated the effectiveness of using spectral preprocessing and the adoption of pixel-wise spectra. The results provided an alternative way of data processing for applications of hyperspectral imaging in food industry.

  9. Automated X-ray image analysis for cargo security: Critical review and future promise.

    PubMed

    Rogers, Thomas W; Jaccard, Nicolas; Morton, Edward J; Griffin, Lewis D

    2017-01-01

    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo.

  10. A linear shift-invariant image preprocessing technique for multispectral scanner systems

    NASA Technical Reports Server (NTRS)

    Mcgillem, C. D.; Riemer, T. E.

    1973-01-01

    A linear shift-invariant image preprocessing technique is examined which requires no specific knowledge of any parameter of the original image and which is sufficiently general to allow the effective radius of the composite imaging system to be arbitrarily shaped and reduced, subject primarily to the noise power constraint. In addition, the size of the point-spread function of the preprocessing filter can be arbitrarily controlled, thus minimizing truncation errors.

  11. Diabetic Rethinopathy Screening by Bright Lesions Extraction from Fundus Images

    NASA Astrophysics Data System (ADS)

    Hanđsková, Veronika; Pavlovičova, Jarmila; Oravec, Miloš; Blaško, Radoslav

    2013-09-01

    Retinal images are nowadays widely used to diagnose many diseases, for example diabetic retinopathy. In our work, we propose the algorithm for the screening application, which identifies the patients with such severe diabetic complication as diabetic retinopathy is, in early phase. In the application we use the patient's fundus photography without any additional examination by an ophtalmologist. After this screening identification, other examination methods should be considered and the patient's follow-up by a doctor is necessary. Our application is composed of three principal modules including fundus image preprocessing, feature extraction and feature classification. Image preprocessing module has the role of luminance normalization, contrast enhancement and optical disk masking. Feature extraction module includes two stages: bright lesions candidates localization and candidates feature extraction. We selected 16 statistical and structural features. For feature classification, we use multilayer perceptron (MLP) with one hidden layer. We classify images into two classes. Feature classification efficiency is about 93 percent.

  12. The Minimal Preprocessing Pipelines for the Human Connectome Project

    PubMed Central

    Glasser, Matthew F.; Sotiropoulos, Stamatios N; Wilson, J Anthony; Coalson, Timothy S; Fischl, Bruce; Andersson, Jesper L; Xu, Junqian; Jbabdi, Saad; Webster, Matthew; Polimeni, Jonathan R; Van Essen, David C; Jenkinson, Mark

    2013-01-01

    The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic resonance imaging (MRI) modalities together in a common automated preprocessing framework across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing methods. We describe the minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space. These pipelines are specially designed to capitalize on the high quality data offered by the HCP. The final standard space makes use of a recently introduced CIFTI file format and the associated grayordinates spatial coordinate system. This allows for combined cortical surface and subcortical volume analyses while reducing the storage and processing requirements for high spatial and temporal resolution data. Here, we provide the minimum image acquisition requirements for the HCP minimal preprocessing pipelines and additional advice for investigators interested in replicating the HCP’s acquisition protocols or using these pipelines. Finally, we discuss some potential future improvements for the pipelines. PMID:23668970

  13. Optimum parameters of image preprocessing method for Shack-Hartmann wavefront sensor in different SNR condition

    NASA Astrophysics Data System (ADS)

    Wei, Ping; Li, Xinyang; Luo, Xi; Li, Jianfeng

    2018-02-01

    The centroid method is commonly adopted to locate the spot in the sub-apertures in the Shack-Hartmann wavefront sensor (SH-WFS), in which preprocessing image is required before calculating the spot location due to that the centroid method is extremely sensitive to noises. In this paper, the SH-WFS image was simulated according to the characteristics of the noises, background and intensity distribution. The Optimal parameters of SH-WFS image preprocessing method were put forward, in different signal-to-noise ratio (SNR) conditions, where the wavefront reconstruction error was considered as the evaluation index. Two methods of image preprocessing, thresholding method and windowing combing with thresholding method, were compared by studying the applicable range of SNR and analyzing the stability of the two methods, respectively.

  14. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications

    NASA Astrophysics Data System (ADS)

    Zhu, Zhe

    2017-08-01

    The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.

  15. Comparative performance evaluation of transform coding in image pre-processing

    NASA Astrophysics Data System (ADS)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  16. Multiwavelet grading of prostate pathological images

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Jafari-Khouzani, Kourosh

    2002-05-01

    We have developed image analysis methods to automatically grade pathological images of prostate. The proposed method generates Gleason grades to images, where each image is assigned a grade between 1 and 5. This is done using features extracted from multiwavelet transformations. We extract energy and entropy features from submatrices obtained in the decomposition. Next, we apply a k-NN classifier to grade the image. To find optimal multiwavelet basis, preprocessing, and classifier, we use features extracted by different multiwavelets with either critically sampled preprocessing or repeated row preprocessing and different k-NN classifiers and compare their performances, evaluated by total misclassification rate (TMR). To evaluate sensitivity to noise, we add white Gaussian noise to images and compare the results (TMR's). We applied proposed methods to 100 images. We evaluated the first and second levels of decomposition using Geronimo, Hardin, and Massopust (GHM), Chui and Lian (CL), and Shen (SA4) multiwavelets. We also evaluated k-NN classifier for k=1,2,3,4,5. Experimental results illustrate that first level of decomposition is quite noisy. They also show that critically sampled preprocessing outperforms repeated row preprocessing and has less sensitivity to noise. Finally, comparison studies indicate that SA4 multiwavelet and k-NN classifier (k=1) generates optimal results (with smallest TMR of 3%).

  17. Comparison of classification algorithms for various methods of preprocessing radar images of the MSTAR base

    NASA Astrophysics Data System (ADS)

    Borodinov, A. A.; Myasnikov, V. V.

    2018-04-01

    The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.

  18. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  19. Research on pre-processing of QR Code

    NASA Astrophysics Data System (ADS)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  20. Preprocessing with image denoising and histogram equalization for endoscopy image analysis using texture analysis.

    PubMed

    Hiroyasu, Tomoyuki; Hayashinuma, Katsutoshi; Ichikawa, Hiroshi; Yagi, Nobuaki

    2015-08-01

    A preprocessing method for endoscopy image analysis using texture analysis is proposed. In a previous study, we proposed a feature value that combines a co-occurrence matrix and a run-length matrix to analyze the extent of early gastric cancer from images taken with narrow-band imaging endoscopy. However, the obtained feature value does not identify lesion zones correctly due to the influence of noise and halation. Therefore, we propose a new preprocessing method with a non-local means filter for de-noising and contrast limited adaptive histogram equalization. We have confirmed that the pattern of gastric mucosa in images can be improved by the proposed method. Furthermore, the lesion zone is shown more correctly by the obtained color map.

  1. Evaluation of the robustness of the preprocessing technique improving reversible compressibility of CT images: Tested on various CT examinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Chang Ho; Kim, Bohyoung; Gu, Bon Seung

    2013-10-15

    Purpose: To modify the preprocessing technique, which was previously proposed, improving compressibility of computed tomography (CT) images to cover the diversity of three dimensional configurations of different body parts and to evaluate the robustness of the technique in terms of segmentation correctness and increase in reversible compression ratio (CR) for various CT examinations.Methods: This study had institutional review board approval with waiver of informed patient consent. A preprocessing technique was previously proposed to improve the compressibility of CT images by replacing pixel values outside the body region with a constant value resulting in maximizing data redundancy. Since the technique wasmore » developed aiming at only chest CT images, the authors modified the segmentation method to cover the diversity of three dimensional configurations of different body parts. The modified version was evaluated as follows. In randomly selected 368 CT examinations (352 787 images), each image was preprocessed by using the modified preprocessing technique. Radiologists visually confirmed whether the segmented region covers the body region or not. The images with and without the preprocessing were reversibly compressed using Joint Photographic Experts Group (JPEG), JPEG2000 two-dimensional (2D), and JPEG2000 three-dimensional (3D) compressions. The percentage increase in CR per examination (CR{sub I}) was measured.Results: The rate of correct segmentation was 100.0% (95% CI: 99.9%, 100.0%) for all the examinations. The median of CR{sub I} were 26.1% (95% CI: 24.9%, 27.1%), 40.2% (38.5%, 41.1%), and 34.5% (32.7%, 36.2%) in JPEG, JPEG2000 2D, and JPEG2000 3D, respectively.Conclusions: In various CT examinations, the modified preprocessing technique can increase in the CR by 25% or more without concerning about degradation of diagnostic information.« less

  2. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  3. Do High Dynamic Range threatments improve the results of Structure from Motion approaches in Geomorphology?

    NASA Astrophysics Data System (ADS)

    Gómez-Gutiérrez, Álvaro; Juan de Sanjosé-Blasco, José; Schnabel, Susanne; de Matías-Bejarano, Javier; Pulido-Fernández, Manuel; Berenguer-Sempere, Fernando

    2015-04-01

    In this work, the hypothesis of improving 3D models obtained with Structure from Motion (SfM) approaches using images pre-processed by High Dynamic Range (HDR) techniques is tested. Photographs of the Veleta Rock Glacier in Spain were captured with different exposure values (EV0, EV+1 and EV-1), two focal lengths (35 and 100 mm) and under different weather conditions for the years 2008, 2009, 2011, 2012 and 2014. HDR images were produced using the different EV steps within Fusion F.1 software. Point clouds were generated using commercial and free available SfM software: Agisoft Photoscan and 123D Catch. Models Obtained using pre-processed images and non-preprocessed images were compared in a 3D environment with a benchmark 3D model obtained by means of a Terrestrial Laser Scanner (TLS). A total of 40 point clouds were produced, georeferenced and compared. Results indicated that for Agisoft Photoscan software differences in the accuracy between models obtained with pre-processed and non-preprocessed images were not significant from a statistical viewpoint. However, in the case of the free available software 123D Catch, models obtained using images pre-processed by HDR techniques presented a higher point density and were more accurate. This tendency was observed along the 5 studied years and under different capture conditions. More work should be done in the near future to corroborate whether the results of similar software packages can be improved by HDR techniques (e.g. ARC3D, Bundler and PMVS2, CMP SfM, Photosynth and VisualSFM).

  4. Optimizing Preprocessing and Analysis Pipelines for Single-Subject FMRI. I. Standard Temporal Motion and Physiological Noise Correction Methods

    PubMed Central

    Churchill, Nathan W.; Oder, Anita; Abdi, Hervé; Tam, Fred; Lee, Wayne; Thomas, Christopher; Ween, Jon E.; Graham, Simon J.; Strother, Stephen C.

    2016-01-01

    Subject-specific artifacts caused by head motion and physiological noise are major confounds in BOLD fMRI analyses. However, there is little consensus on the optimal choice of data preprocessing steps to minimize these effects. To evaluate the effects of various preprocessing strategies, we present a framework which comprises a combination of (1) nonparametric testing including reproducibility and prediction metrics of the data-driven NPAIRS framework (Strother et al. [2002]: NeuroImage 15:747–771), and (2) intersubject comparison of SPM effects, using DISTATIS (a three-way version of metric multidimensional scaling (Abdi et al. [2009]: NeuroImage 45:89–95). It is shown that the quality of brain activation maps may be significantly limited by sub-optimal choices of data preprocessing steps (or “pipeline”) in a clinical task-design, an fMRI adaptation of the widely used Trail-Making Test. The relative importance of motion correction, physiological noise correction, motion parameter regression, and temporal detrending were examined for fMRI data acquired in young, healthy adults. Analysis performance and the quality of activation maps were evaluated based on Penalized Discriminant Analysis (PDA). The relative importance of different preprocessing steps was assessed by (1) a nonparametric Friedman rank test for fixed sets of preprocessing steps, applied to all subjects; and (2) evaluating pipelines chosen specifically for each subject. Results demonstrate that preprocessing choices have significant, but subject-dependant effects, and that individually-optimized pipelines may significantly improve the reproducibility of fMRI results over fixed pipelines. This was demonstrated by the detection of a significant interaction with motion parameter regression and physiological noise correction, even though the range of subject head motion was small across the group (≪ 1 voxel). Optimizing pipelines on an individual-subject basis also revealed brain activation patterns either weak or absent under fixed pipelines, which has implications for the overall interpretation of fMRI data, and the relative importance of preprocessing methods. PMID:21455942

  5. Asphalted Road Temperature Variations Due to Wind Turbine Cast Shadows

    PubMed Central

    Arnay, Rafael; Acosta, Leopoldo; Sigut, Marta; Toledo, Jonay

    2009-01-01

    The contribution of this paper is a technique that in certain circumstances allows one to avoid the removal of dynamic shadows in the visible spectrum making use of images in the infrared spectrum. This technique emerged from a real problem concerning the autonomous navigation of a vehicle in a wind farm. In this environment, the dynamic shadows cast by the wind turbines' blades make it necessary to include a shadows removal stage in the preprocessing of the visible spectrum images in order to avoid the shadows being misclassified as obstacles. In the thermal images, dynamic shadows completely disappear, something that does not always occur in the visible spectrum, even when the preprocessing is executed. Thus, a fusion on thermal and visible bands is performed. PMID:22291541

  6. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery

    PubMed Central

    Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang

    2018-01-01

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585

  7. On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.

    PubMed

    Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang

    2018-04-25

    With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.

  8. Low-cost digital image processing at the University of Oklahoma

    NASA Technical Reports Server (NTRS)

    Harrington, J. A., Jr.

    1981-01-01

    Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.

  9. Automatic extraction of nuclei centroids of mouse embryonic cells from fluorescence microscopy images.

    PubMed

    Bashar, Md Khayrul; Komatsu, Koji; Fujimori, Toshihiko; Kobayashi, Tetsuya J

    2012-01-01

    Accurate identification of cell nuclei and their tracking using three dimensional (3D) microscopic images is a demanding task in many biological studies. Manual identification of nuclei centroids from images is an error-prone task, sometimes impossible to accomplish due to low contrast and the presence of noise. Nonetheless, only a few methods are available for 3D bioimaging applications, which sharply contrast with 2D analysis, where many methods already exist. In addition, most methods essentially adopt segmentation for which a reliable solution is still unknown, especially for 3D bio-images having juxtaposed cells. In this work, we propose a new method that can directly extract nuclei centroids from fluorescence microscopy images. This method involves three steps: (i) Pre-processing, (ii) Local enhancement, and (iii) Centroid extraction. The first step includes two variations: first variation (Variant-1) uses the whole 3D pre-processed image, whereas the second one (Variant-2) modifies the preprocessed image to the candidate regions or the candidate hybrid image for further processing. At the second step, a multiscale cube filtering is employed in order to locally enhance the pre-processed image. Centroid extraction in the third step consists of three stages. In Stage-1, we compute a local characteristic ratio at every voxel and extract local maxima regions as candidate centroids using a ratio threshold. Stage-2 processing removes spurious centroids from Stage-1 results by analyzing shapes of intensity profiles from the enhanced image. An iterative procedure based on the nearest neighborhood principle is then proposed to combine if there are fragmented nuclei. Both qualitative and quantitative analyses on a set of 100 images of 3D mouse embryo are performed. Investigations reveal a promising achievement of the technique presented in terms of average sensitivity and precision (i.e., 88.04% and 91.30% for Variant-1; 86.19% and 95.00% for Variant-2), when compared with an existing method (86.06% and 90.11%), originally developed for analyzing C. elegans images.

  10. Concepts for on-board satellite image registration. Volume 2: IAS prototype performance evaluation standard definition

    NASA Astrophysics Data System (ADS)

    Daluge, D. R.; Ruedger, W. H.

    1981-06-01

    Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered.

  11. Graph theory for feature extraction and classification: a migraine pathology case study.

    PubMed

    Jorge-Hernandez, Fernando; Garcia Chimeno, Yolanda; Garcia-Zapirain, Begonya; Cabrera Zubizarreta, Alberto; Gomez Beldarrain, Maria Angeles; Fernandez-Ruanova, Begonya

    2014-01-01

    Graph theory is also widely used as a representational form and characterization of brain connectivity network, as is machine learning for classifying groups depending on the features extracted from images. Many of these studies use different techniques, such as preprocessing, correlations, features or algorithms. This paper proposes an automatic tool to perform a standard process using images of the Magnetic Resonance Imaging (MRI) machine. The process includes pre-processing, building the graph per subject with different correlations, atlas, relevant feature extraction according to the literature, and finally providing a set of machine learning algorithms which can produce analyzable results for physicians or specialists. In order to verify the process, a set of images from prescription drug abusers and patients with migraine have been used. In this way, the proper functioning of the tool has been proved, providing results of 87% and 92% of success depending on the classifier used.

  12. SU-E-J-261: The Importance of Appropriate Image Preprocessing to Augment the Information of Radiomics Image Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L; Fried, D; Fave, X

    Purpose: To investigate how different image preprocessing techniques, their parameters, and the different boundary handling techniques can augment the information of features and improve feature’s differentiating capability. Methods: Twenty-seven NSCLC patients with a solid tumor volume and no visually obvious necrotic regions in the simulation CT images were identified. Fourteen of these patients had a necrotic region visible in their pre-treatment PET images (necrosis group), and thirteen had no visible necrotic region in the pre-treatment PET images (non-necrosis group). We investigated how image preprocessing can impact the ability of radiomics image features extracted from the CT to differentiate between twomore » groups. It is expected the histogram in the necrosis group is more negatively skewed, and the uniformity from the necrosis group is less. Therefore, we analyzed two first order features, skewness and uniformity, on the image inside the GTV in the intensity range [−20HU, 180HU] under the combination of several image preprocessing techniques: (1) applying the isotropic Gaussian or anisotropic diffusion smoothing filter with a range of parameter(Gaussian smoothing: size=11, sigma=0:0.1:2.3; anisotropic smoothing: iteration=4, kappa=0:10:110); (2) applying the boundaryadapted Laplacian filter; and (3) applying the adaptive upper threshold for the intensity range. A 2-tailed T-test was used to evaluate the differentiating capability of CT features on pre-treatment PT necrosis. Result: Without any preprocessing, no differences in either skewness or uniformity were observed between two groups. After applying appropriate Gaussian filters (sigma>=1.3) or anisotropic filters(kappa >=60) with the adaptive upper threshold, skewness was significantly more negative in the necrosis group(p<0.05). By applying the boundary-adapted Laplacian filtering after the appropriate Gaussian filters (0.5 <=sigma<=1.1) or anisotropic filters(20<=kappa <=50), the uniformity was significantly lower in the necrosis group (p<0.05). Conclusion: Appropriate selection of image preprocessing techniques allows radiomics features to extract more useful information and thereby improve prediction models based on these features.« less

  13. Automatic luminous reflections detector using global threshold with increased luminosity contrast in images

    NASA Astrophysics Data System (ADS)

    Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany

    2018-01-01

    The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.

  14. An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography

    PubMed Central

    Yu, Chenglong; Yue, Shihong; Wang, Jianpei; Wang, Huaxiang

    2014-01-01

    As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes. PMID:25165735

  15. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    PubMed

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Concepts for on-board satellite image registration. Volume 2: IAS prototype performance evaluation standard definition. [NEEDS Information Adaptive System

    NASA Technical Reports Server (NTRS)

    Daluge, D. R.; Ruedger, W. H.

    1981-01-01

    Problems encountered in testing onboard signal processing hardware designed to achieve radiometric and geometric correction of satellite imaging data are considered. These include obtaining representative image and ancillary data for simulation and the transfer and storage of a large quantity of image data at very high speed. The high resolution, high speed preprocessing of LANDSAT-D imagery is considered.

  17. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George [Maple Valley, WA; Afromowitz, Martin A [Mercer Island, WA; Hogle, Richard E [Olympia, WA

    2008-10-14

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.

  18. The Neuro Bureau ADHD-200 Preprocessed repository.

    PubMed

    Bellec, Pierre; Chu, Carlton; Chouinard-Decorte, François; Benhajali, Yassine; Margulies, Daniel S; Craddock, R Cameron

    2017-01-01

    In 2011, the "ADHD-200 Global Competition" was held with the aim of identifying biomarkers of attention-deficit/hyperactivity disorder from resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (s-MRI) data collected on 973 individuals. Statisticians and computer scientists were potentially the most qualified for the machine learning aspect of the competition, but generally lacked the specialized skills to implement the necessary steps of data preparation for rs-fMRI. Realizing this barrier to entry, the Neuro Bureau prospectively collaborated with all competitors by preprocessing the data and sharing these results at the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) (http://www.nitrc.org/frs/?group_id=383). This "ADHD-200 Preprocessed" release included multiple analytical pipelines to cater to different philosophies of data analysis. The processed derivatives included denoised and registered 4D fMRI volumes, regional time series extracted from brain parcellations, maps of 10 intrinsic connectivity networks, fractional amplitude of low frequency fluctuation, and regional homogeneity, along with grey matter density maps. The data was used by several teams who competed in the ADHD-200 Global Competition, including the winning entry by a group of biostaticians. To the best of our knowledge, the ADHD-200 Preprocessed release was the first large public resource of preprocessed resting-state fMRI and structural MRI data, and remains to this day the only resource featuring a battery of alternative processing paths. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dataset variability leverages white-matter lesion segmentation performance with convolutional neural network

    NASA Astrophysics Data System (ADS)

    Ravnik, Domen; Jerman, Tim; Pernuš, Franjo; Likar, Boštjan; Å piclin, Žiga

    2018-03-01

    Performance of a convolutional neural network (CNN) based white-matter lesion segmentation in magnetic resonance (MR) brain images was evaluated under various conditions involving different levels of image preprocessing and augmentation applied and different compositions of the training dataset. On images of sixty multiple sclerosis patients, half acquired on one and half on another scanner of different vendor, we first created a highly accurate multi-rater consensus based lesion segmentations, which were used in several experiments to evaluate the CNN segmentation result. First, the CNN was trained and tested without preprocessing the images and by using various combinations of preprocessing techniques, namely histogram-based intensity standardization, normalization by whitening, and train dataset augmentation by flipping the images across the midsagittal plane. Then, the CNN was trained and tested on images of the same, different or interleaved scanner datasets using a cross-validation approach. The results indicate that image preprocessing has little impact on performance in a same-scanner situation, while between-scanner performance benefits most from intensity standardization and normalization, but also further by incorporating heterogeneous multi-scanner datasets in the training phase. Under such conditions the between-scanner performance of the CNN approaches that of the ideal situation, when the CNN is trained and tested on the same scanner dataset.

  20. Super-resolution algorithm based on sparse representation and wavelet preprocessing for remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin

    2017-04-01

    An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.

  1. Can the usage of human growth hormones affect facial appearance and the accuracy of face recognition systems?

    NASA Astrophysics Data System (ADS)

    Rose, Jake; Martin, Michael; Bourlai, Thirimachos

    2014-06-01

    In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. The goal of the study is to demonstrate that steroid usage significantly affects human facial appearance and hence, the performance of commercial and academic face recognition (FR) algorithms. In this work, we evaluate the performance of state-of-the-art FR algorithms on two unique face image datasets of subjects before (gallery set) and after (probe set) steroid (or human growth hormone) usage. For the purpose of this study, datasets of 73 subjects were created from multiple sources found on the Internet, containing images of men and women before and after steroid usage. Next, we geometrically pre-processed all images of both face datasets. Then, we applied image restoration techniques on the same face datasets, and finally, we applied FR algorithms in order to match the pre-processed face images of our probe datasets against the face images of the gallery set. Experimental results demonstrate that only a specific set of FR algorithms obtain the most accurate results (in terms of the rank-1 identification rate). This is because there are several factors that influence the efficiency of face matchers including (i) the time lapse between the before and after image pre-processing and restoration face photos, (ii) the usage of different drugs (e.g. Dianabol, Winstrol, and Decabolan), (iii) the usage of different cameras to capture face images, and finally, (iv) the variability of standoff distance, illumination and other noise factors (e.g. motion noise). All of the previously mentioned complicated scenarios make clear that cross-scenario matching is a very challenging problem and, thus, further investigation is required.

  2. NASA End-to-End Data System /NEEDS/ information adaptive system - Performing image processing onboard the spacecraft

    NASA Technical Reports Server (NTRS)

    Kelly, W. L.; Howle, W. M.; Meredith, B. D.

    1980-01-01

    The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onbaord image processing. Since the IAS is a data preprocessing system which is closely coupled to the sensor system, it serves as a first step in providing a 'Smart' imaging sensor. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner and provide the opportunity to design sensor systems which can be reconfigured in near real time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.

  3. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    PubMed

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased sharpness over most of the field of view. Adaptive optics assisted images of the cone photoreceptors can be better pre-processed using a wavelet approach. These images can be assessed for image quality using a 'Designer Metric'. Two-stage image registration including correcting for rotation significantly improves the final image contrast and sharpness. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  4. Image processing tool for automatic feature recognition and quantification

    DOEpatents

    Chen, Xing; Stoddard, Ryan J.

    2017-05-02

    A system for defining structures within an image is described. The system includes reading of an input file, preprocessing the input file while preserving metadata such as scale information and then detecting features of the input file. In one version the detection first uses an edge detector followed by identification of features using a Hough transform. The output of the process is identified elements within the image.

  5. Preprocessing of emotional visual information in the human piriform cortex.

    PubMed

    Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris

    2017-08-23

    This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.

  6. Pre-processing SAR image stream to facilitate compression for transport on bandwidth-limited-link

    DOEpatents

    Rush, Bobby G.; Riley, Robert

    2015-09-29

    Pre-processing is applied to a raw VideoSAR (or similar near-video rate) product to transform the image frame sequence into a product that resembles more closely the type of product for which conventional video codecs are designed, while sufficiently maintaining utility and visual quality of the product delivered by the codec.

  7. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  8. Preprocessing with Photoshop Software on Microscopic Images of A549 Cells in Epithelial-Mesenchymal Transition.

    PubMed

    Ren, Zhou-Xin; Yu, Hai-Bin; Shen, Jun-Ling; Li, Ya; Li, Jian-Sheng

    2015-06-01

    To establish a preprocessing method for cell morphometry in microscopic images of A549 cells in epithelial-mesenchymal transition (EMT). Adobe Photoshop CS2 (Adobe Systems, Inc.) was used for preprocessing the images. First, all images were processed for size uniformity and high distinguishability between the cell and background area. Then, a blank image with the same size and grids was established and cross points of the grids were added into a distinct color. The blank image was merged into a processed image. In the merged images, the cells with 1 or more cross points were chosen, and then the cell areas were enclosed and were replaced in a distinct color. Except for chosen cellular areas, all areas were changed into a unique hue. Three observers quantified roundness of cells in images with the image preprocess (IPP) or without the method (Controls), respectively. Furthermore, 1 observer measured the roundness 3 times with the 2 methods, respectively. The results between IPPs and Controls were compared for repeatability and reproducibility. As compared with the Control method, among 3 observers, use of the IPP method resulted in a higher number and a higher percentage of same-chosen cells in an image. The relative average deviation values of roundness, either for 3 observers or 1 observer, were significantly higher in Controls than in IPPs (p < 0.01 or 0.001). The values of intraclass correlation coefficient, both in Single Type or Average, were higher in IPPs than in Controls both for 3 observers and 1 observer. Processed with Adobe Photoshop, a chosen cell from an image was more objective, regular, and accurate, creating an increase of reproducibility and repeatability on morphometry of A549 cells in epithelial to mesenchymal transition.

  9. Preprocessed Consortium for Neuropsychiatric Phenomics dataset.

    PubMed

    Gorgolewski, Krzysztof J; Durnez, Joke; Poldrack, Russell A

    2017-01-01

    Here we present preprocessed MRI data of 265 participants from the Consortium for Neuropsychiatric Phenomics (CNP) dataset. The preprocessed dataset includes minimally preprocessed data in the native, MNI and surface spaces accompanied with potential confound regressors, tissue probability masks, brain masks and transformations. In addition the preprocessed dataset includes unthresholded group level and single subject statistical maps from all tasks included in the original dataset. We hope that availability of this dataset will greatly accelerate research.

  10. Integration of a neuroimaging processing pipeline into a pan-canadian computing grid

    NASA Astrophysics Data System (ADS)

    Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.

    2012-02-01

    The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.

  11. A new approach to pre-processing digital image for wavelet-based watermark

    NASA Astrophysics Data System (ADS)

    Agreste, Santa; Andaloro, Guido

    2008-11-01

    The growth of the Internet has increased the phenomenon of digital piracy, in multimedia objects, like software, image, video, audio and text. Therefore it is strategic to individualize and to develop methods and numerical algorithms, which are stable and have low computational cost, that will allow us to find a solution to these problems. We describe a digital watermarking algorithm for color image protection and authenticity: robust, not blind, and wavelet-based. The use of Discrete Wavelet Transform is motivated by good time-frequency features and a good match with Human Visual System directives. These two combined elements are important for building an invisible and robust watermark. Moreover our algorithm can work with any image, thanks to the step of pre-processing of the image that includes resize techniques that adapt to the size of the original image for Wavelet transform. The watermark signal is calculated in correlation with the image features and statistic properties. In the detection step we apply a re-synchronization between the original and watermarked image according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has been shown to be resistant against geometric, filtering, and StirMark attacks with a low rate of false alarm.

  12. 3CCD image segmentation and edge detection based on MATLAB

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-09-01

    This research aimed to identify weeds from crops in early stage in the field operation by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ifred) which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. By the application of image-processing toolkit on MATLAB, the different areas in the image can be segmented clearly. As edge detection technique is the first and very important step in image processing, The different result of different processing method was compared. Especially, by using the wavelet packet transform toolkit on MATLAB, An image was preprocessed and then the edge was extracted, and getting more clearly cut image of edge. The segmentation methods include operations as erosion, dilation and other algorithms to preprocess the images. It is of great importance to segment different areas in digital images in field real time, so as to be applied in precision farming, to saving energy and herbicide and many other materials. At present time Large scale software as MATLAB on PC was used, but the computation can be reduced and integrated into a small embed system, which means that the application of this technique in agricultural engineering is feasible and of great economical value.

  13. Research on polarization imaging information parsing method

    NASA Astrophysics Data System (ADS)

    Yuan, Hongwu; Zhou, Pucheng; Wang, Xiaolong

    2016-11-01

    Polarization information parsing plays an important role in polarization imaging detection. This paper focus on the polarization information parsing method: Firstly, the general process of polarization information parsing is given, mainly including polarization image preprocessing, multiple polarization parameters calculation, polarization image fusion and polarization image tracking, etc.; And then the research achievements of the polarization information parsing method are presented, in terms of polarization image preprocessing, the polarization image registration method based on the maximum mutual information is designed. The experiment shows that this method can improve the precision of registration and be satisfied the need of polarization information parsing; In terms of multiple polarization parameters calculation, based on the omnidirectional polarization inversion model is built, a variety of polarization parameter images are obtained and the precision of inversion is to be improve obviously; In terms of polarization image fusion , using fuzzy integral and sparse representation, the multiple polarization parameters adaptive optimal fusion method is given, and the targets detection in complex scene is completed by using the clustering image segmentation algorithm based on fractal characters; In polarization image tracking, the average displacement polarization image characteristics of auxiliary particle filtering fusion tracking algorithm is put forward to achieve the smooth tracking of moving targets. Finally, the polarization information parsing method is applied to the polarization imaging detection of typical targets such as the camouflage target, the fog and latent fingerprints.

  14. Convolutional neural networks for vibrational spectroscopic data analysis.

    PubMed

    Acquarelli, Jacopo; van Laarhoven, Twan; Gerretzen, Jan; Tran, Thanh N; Buydens, Lutgarde M C; Marchiori, Elena

    2017-02-15

    In this work we show that convolutional neural networks (CNNs) can be efficiently used to classify vibrational spectroscopic data and identify important spectral regions. CNNs are the current state-of-the-art in image classification and speech recognition and can learn interpretable representations of the data. These characteristics make CNNs a good candidate for reducing the need for preprocessing and for highlighting important spectral regions, both of which are crucial steps in the analysis of vibrational spectroscopic data. Chemometric analysis of vibrational spectroscopic data often relies on preprocessing methods involving baseline correction, scatter correction and noise removal, which are applied to the spectra prior to model building. Preprocessing is a critical step because even in simple problems using 'reasonable' preprocessing methods may decrease the performance of the final model. We develop a new CNN based method and provide an accompanying publicly available software. It is based on a simple CNN architecture with a single convolutional layer (a so-called shallow CNN). Our method outperforms standard classification algorithms used in chemometrics (e.g. PLS) in terms of accuracy when applied to non-preprocessed test data (86% average accuracy compared to the 62% achieved by PLS), and it achieves better performance even on preprocessed test data (96% average accuracy compared to the 89% achieved by PLS). For interpretability purposes, our method includes a procedure for finding important spectral regions, thereby facilitating qualitative interpretation of results. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain.

    PubMed

    Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi

    2014-01-01

    We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.

  16. Conductivity map from scanning tunneling potentiometry.

    PubMed

    Zhang, Hao; Li, Xianqi; Chen, Yunmei; Durand, Corentin; Li, An-Ping; Zhang, X-G

    2016-08-01

    We present a novel method for extracting two-dimensional (2D) conductivity profiles from large electrochemical potential datasets acquired by scanning tunneling potentiometry of a 2D conductor. The method consists of a data preprocessing procedure to reduce/eliminate noise and a numerical conductivity reconstruction. The preprocessing procedure employs an inverse consistent image registration method to align the forward and backward scans of the same line for each image line followed by a total variation (TV) based image restoration method to obtain a (nearly) noise-free potential from the aligned scans. The preprocessed potential is then used for numerical conductivity reconstruction, based on a TV model solved by accelerated alternating direction method of multiplier. The method is demonstrated on a measurement of the grain boundary of a monolayer graphene, yielding a nearly 10:1 ratio for the grain boundary resistivity over bulk resistivity.

  17. Influence of Averaging Preprocessing on Image Analysis with a Markov Random Field Model

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hirotaka; Nakanishi-Ohno, Yoshinori; Okada, Masato

    2018-02-01

    This paper describes our investigations into the influence of averaging preprocessing on the performance of image analysis. Averaging preprocessing involves a trade-off: image averaging is often undertaken to reduce noise while the number of image data available for image analysis is decreased. We formulated a process of generating image data by using a Markov random field (MRF) model to achieve image analysis tasks such as image restoration and hyper-parameter estimation by a Bayesian approach. According to the notions of Bayesian inference, posterior distributions were analyzed to evaluate the influence of averaging. There are three main results. First, we found that the performance of image restoration with a predetermined value for hyper-parameters is invariant regardless of whether averaging is conducted. We then found that the performance of hyper-parameter estimation deteriorates due to averaging. Our analysis of the negative logarithm of the posterior probability, which is called the free energy based on an analogy with statistical mechanics, indicated that the confidence of hyper-parameter estimation remains higher without averaging. Finally, we found that when the hyper-parameters are estimated from the data, the performance of image restoration worsens as averaging is undertaken. We conclude that averaging adversely influences the performance of image analysis through hyper-parameter estimation.

  18. Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas.

    PubMed

    Vellmer, Sebastian; Tonoyan, Aram S; Suter, Dieter; Pronin, Igor N; Maximov, Ivan I

    2018-02-01

    Diffusion magnetic resonance imaging (dMRI) is a powerful tool in clinical applications, in particular, in oncology screening. dMRI demonstrated its benefit and efficiency in the localisation and detection of different types of human brain tumours. Clinical dMRI data suffer from multiple artefacts such as motion and eddy-current distortions, contamination by noise, outliers etc. In order to increase the image quality of the derived diffusion scalar metrics and the accuracy of the subsequent data analysis, various pre-processing approaches are actively developed and used. In the present work we assess the effect of different pre-processing procedures such as a noise correction, different smoothing algorithms and spatial interpolation of raw diffusion data, with respect to the accuracy of brain glioma differentiation. As a set of sensitive biomarkers of the glioma malignancy grades we chose the derived scalar metrics from diffusion and kurtosis tensor imaging as well as the neurite orientation dispersion and density imaging (NODDI) biophysical model. Our results show that the application of noise correction, anisotropic diffusion filtering, and cubic-order spline interpolation resulted in the highest sensitivity and specificity for glioma malignancy grading. Thus, these pre-processing steps are recommended for the statistical analysis in brain tumour studies. Copyright © 2017. Published by Elsevier GmbH.

  19. Neural network face recognition using wavelets

    NASA Astrophysics Data System (ADS)

    Karunaratne, Passant V.; Jouny, Ismail I.

    1997-04-01

    The recognition of human faces is a phenomenon that has been mastered by the human visual system and that has been researched extensively in the domain of computer neural networks and image processing. This research is involved in the study of neural networks and wavelet image processing techniques in the application of human face recognition. The objective of the system is to acquire a digitized still image of a human face, carry out pre-processing on the image as required, an then, given a prior database of images of possible individuals, be able to recognize the individual in the image. The pre-processing segment of the system includes several procedures, namely image compression, denoising, and feature extraction. The image processing is carried out using Daubechies wavelets. Once the images have been passed through the wavelet-based image processor they can be efficiently analyzed by means of a neural network. A back- propagation neural network is used for the recognition segment of the system. The main constraints of the system is with regard to the characteristics of the images being processed. The system should be able to carry out effective recognition of the human faces irrespective of the individual's facial-expression, presence of extraneous objects such as head-gear or spectacles, and face/head orientation. A potential application of this face recognition system would be as a secondary verification method in an automated teller machine.

  20. Spot restoration for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2014-05-20

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  1. Buried object detection in GPR images

    DOEpatents

    Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald

    2014-04-29

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  2. A real time mobile-based face recognition with fisherface methods

    NASA Astrophysics Data System (ADS)

    Arisandi, D.; Syahputra, M. F.; Putri, I. L.; Purnamawati, S.; Rahmat, R. F.; Sari, P. P.

    2018-03-01

    Face Recognition is a field research in Computer Vision that study about learning face and determine the identity of the face from a picture sent to the system. By utilizing this face recognition technology, learning process about people’s identity between students in a university will become simpler. With this technology, student won’t need to browse student directory in university’s server site and look for the person with certain face trait. To obtain this goal, face recognition application use image processing methods consist of two phase, pre-processing phase and recognition phase. In pre-processing phase, system will process input image into the best image for recognition phase. Purpose of this pre-processing phase is to reduce noise and increase signal in image. Next, to recognize face phase, we use Fisherface Methods. This methods is chosen because of its advantage that would help system of its limited data. Therefore from experiment the accuracy of face recognition using fisherface is 90%.

  3. Fast and Accurate Cell Tracking by a Novel Optical-Digital Hybrid Method

    NASA Astrophysics Data System (ADS)

    Torres-Cisneros, M.; Aviña-Cervantes, J. G.; Pérez-Careta, E.; Ambriz-Colín, F.; Tinoco, Verónica; Ibarra-Manzano, O. G.; Plascencia-Mora, H.; Aguilera-Gómez, E.; Ibarra-Manzano, M. A.; Guzman-Cabrera, R.; Debeir, Olivier; Sánchez-Mondragón, J. J.

    2013-09-01

    An innovative methodology to detect and track cells using microscope images enhanced by optical cross-correlation techniques is proposed in this paper. In order to increase the tracking sensibility, image pre-processing has been implemented as a morphological operator on the microscope image. Results show that the pre-processing process allows for additional frames of cell tracking, therefore increasing its robustness. The proposed methodology can be used in analyzing different problems such as mitosis, cell collisions, and cell overlapping, ultimately designed to identify and treat illnesses and malignancies.

  4. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator.

    PubMed

    Khazendar, S; Sayasneh, A; Al-Assam, H; Du, H; Kaijser, J; Ferrara, L; Timmerman, D; Jassim, S; Bourne, T

    2015-01-01

    Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered.

  5. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  6. A survey of visual preprocessing and shape representation techniques

    NASA Technical Reports Server (NTRS)

    Olshausen, Bruno A.

    1988-01-01

    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention).

  7. Opacity annotation of diffuse lung diseases using deep convolutional neural network with multi-channel information

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Kido, Shoji; Hashimoto, Noriaki; Hirano, Yasushi; Kuremoto, Takashi

    2018-02-01

    This research proposes a multi-channel deep convolutional neural network (DCNN) for computer-aided diagnosis (CAD) that classifies normal and abnormal opacities of diffuse lung diseases in Computed Tomography (CT) images. Because CT images are gray scale, DCNN usually uses one channel for inputting image data. On the other hand, this research uses multi-channel DCNN where each channel corresponds to the original raw image or the images transformed by some preprocessing techniques. In fact, the information obtained only from raw images is limited and some conventional research suggested that preprocessing of images contributes to improving the classification accuracy. Thus, the combination of the original and preprocessed images is expected to show higher accuracy. The proposed method realizes region of interest (ROI)-based opacity annotation. We used lung CT images taken in Yamaguchi University Hospital, Japan, and they are divided into 32 × 32 ROI images. The ROIs contain six kinds of opacities: consolidation, ground-glass opacity (GGO), emphysema, honeycombing, nodular, and normal. The aim of the proposed method is to classify each ROI into one of the six opacities (classes). The DCNN structure is based on VGG network that secured the first and second places in ImageNet ILSVRC-2014. From the experimental results, the classification accuracy of the proposed method was better than the conventional method with single channel, and there was a significant difference between them.

  8. The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data.

    PubMed

    Puccio, Benjamin; Pooley, James P; Pellman, John S; Taverna, Elise C; Craddock, R Cameron

    2016-10-25

    Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.

  9. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement.

    PubMed

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.

  10. Spatially assisted down-track median filter for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N Reginald

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  11. Spatially adaptive migration tomography for multistatic GPR imaging

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  12. Synthetic aperture integration (SAI) algorithm for SAR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  13. Zero source insertion technique to account for undersampling in GPR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  14. Real-time system for imaging and object detection with a multistatic GPR array

    DOEpatents

    Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  15. Nonlinear, non-stationary image processing technique for eddy current NDE

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Dib, Gerges; Kim, Jaejoon; Zhang, Lu; Xin, Junjun; Udpa, Lalita

    2012-05-01

    Automatic analysis of eddy current (EC) data has facilitated the analysis of large volumes of data generated in the inspection of steam generator tubes in nuclear power plants. The traditional procedure for analysis of EC data includes data calibration, pre-processing, region of interest (ROI) detection, feature extraction and classification. Accurate ROI detection has been enhanced by pre-processing, which involves reducing noise and other undesirable components as well as enhancing defect indications in the raw measurement. This paper presents the Hilbert-Huang Transform (HHT) for feature extraction and support vector machine (SVM) for classification. The performance is shown to significantly better than the existing rule based classification approach used in industry.

  16. Automated Computational Processing of 3-D MR Images of Mouse Brain for Phenotyping of Living Animals.

    PubMed

    Medina, Christopher S; Manifold-Wheeler, Brett; Gonzales, Aaron; Bearer, Elaine L

    2017-07-05

    Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm 3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  18. An efficient depth map preprocessing method based on structure-aided domain transform smoothing for 3D view generation

    PubMed Central

    Ma, Liyan; Qiu, Bo; Cui, Mingyue; Ding, Jianwei

    2017-01-01

    Depth image-based rendering (DIBR), which is used to render virtual views with a color image and the corresponding depth map, is one of the key techniques in the 2D to 3D conversion process. Due to the absence of knowledge about the 3D structure of a scene and its corresponding texture, DIBR in the 2D to 3D conversion process, inevitably leads to holes in the resulting 3D image as a result of newly-exposed areas. In this paper, we proposed a structure-aided depth map preprocessing framework in the transformed domain, which is inspired by recently proposed domain transform for its low complexity and high efficiency. Firstly, our framework integrates hybrid constraints including scene structure, edge consistency and visual saliency information in the transformed domain to improve the performance of depth map preprocess in an implicit way. Then, adaptive smooth localization is cooperated and realized in the proposed framework to further reduce over-smoothness and enhance optimization in the non-hole regions. Different from the other similar methods, the proposed method can simultaneously achieve the effects of hole filling, edge correction and local smoothing for typical depth maps in a united framework. Thanks to these advantages, it can yield visually satisfactory results with less computational complexity for high quality 2D to 3D conversion. Numerical experimental results demonstrate the excellent performances of the proposed method. PMID:28407027

  19. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  20. Applying Enhancement Filters in the Pre-processing of Images of Lymphoma

    NASA Astrophysics Data System (ADS)

    Henrique Silva, Sérgio; Zanchetta do Nascimento, Marcelo; Alves Neves, Leandro; Ramos Batista, Valério

    2015-01-01

    Lymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.

  1. Sunspot Pattern Classification using PCA and Neural Networks (Poster)

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Thompson, D. E.; Slater, G. L.

    2005-01-01

    The sunspot classification scheme presented in this paper is considered as a 2-D classification problem on archived datasets, and is not a real-time system. As a first step, it mirrors the Zuerich/McIntosh historical classification system and reproduces classification of sunspot patterns based on preprocessing and neural net training datasets. Ultimately, the project intends to move from more rudimentary schemes, to develop spatial-temporal-spectral classes derived by correlating spatial and temporal variations in various wavelengths to the brightness fluctuation spectrum of the sun in those wavelengths. Once the approach is generalized, then the focus will naturally move from a 2-D to an n-D classification, where "n" includes time and frequency. Here, the 2-D perspective refers both to the actual SOH0 Michelson Doppler Imager (MDI) images that are processed, but also refers to the fact that a 2-D matrix is created from each image during preprocessing. The 2-D matrix is the result of running Principal Component Analysis (PCA) over the selected dataset images, and the resulting matrices and their eigenvalues are the objects that are stored in a database, classified, and compared. These matrices are indexed according to the standard McIntosh classification scheme.

  2. Computer vision for microscopy diagnosis of malaria.

    PubMed

    Tek, F Boray; Dempster, Andrew G; Kale, Izzet

    2009-07-13

    This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  3. Improving the convergence rate in affine registration of PET and SPECT brain images using histogram equalization.

    PubMed

    Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A

    2013-01-01

    A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.

  4. Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator

    PubMed Central

    Khazendar, S.; Sayasneh, A.; Al-Assam, H.; Du, H.; Kaijser, J.; Ferrara, L.; Timmerman, D.; Jassim, S.; Bourne, T.

    2015-01-01

    Introduction: Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. Objectives: In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Materials and methods: Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. Results: The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). Conclusion: We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered. PMID:25897367

  5. Error-proofing test system of industrial components based on image processing

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Huang, Tao

    2018-05-01

    Due to the improvement of modern industrial level and accuracy, conventional manual test fails to satisfy the test standards of enterprises, so digital image processing technique should be utilized to gather and analyze the information on the surface of industrial components, so as to achieve the purpose of test. To test the installation parts of automotive engine, this paper employs camera to capture the images of the components. After these images are preprocessed including denoising, the image processing algorithm relying on flood fill algorithm is used to test the installation of the components. The results prove that this system has very high test accuracy.

  6. A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Li, Jiafu; Xiang, Shuiying; Wang, Haoning; Gong, Junkai; Wen, Aijun

    2018-03-01

    In this paper, a novel image encryption algorithm based on synchronization of physical random bit generated in a cascade-coupled semiconductor ring lasers (CCSRL) system is proposed, and the security analysis is performed. In both transmitter and receiver parts, the CCSRL system is a master-slave configuration consisting of a master semiconductor ring laser (M-SRL) with cross-feedback and a solitary SRL (S-SRL). The proposed image encryption algorithm includes image preprocessing based on conventional chaotic maps, pixel confusion based on control matrix extracted from physical random bit, and pixel diffusion based on random bit stream extracted from physical random bit. Firstly, the preprocessing method is used to eliminate the correlation between adjacent pixels. Secondly, physical random bit with verified randomness is generated based on chaos in the CCSRL system, and is used to simultaneously generate the control matrix and random bit stream. Finally, the control matrix and random bit stream are used for the encryption algorithm in order to change the position and the values of pixels, respectively. Simulation results and security analysis demonstrate that the proposed algorithm is effective and able to resist various typical attacks, and thus is an excellent candidate for secure image communication application.

  7. Automatic segmentation of mammogram and tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Park, Sun Young

    2016-03-01

    Breast cancer is a one of the most common forms of cancer in terms of new cases and deaths both in the United States and worldwide. However, the survival rate with breast cancer is high if it is detected and treated before it spreads to other parts of the body. The most common screening methods for breast cancer are mammography and digital tomosynthesis, which involve acquiring X-ray images of the breasts that are interpreted by radiologists. The work described in this paper is aimed at optimizing the presentation of mammography and tomosynthesis images to the radiologist, thereby improving the early detection rate of breast cancer and the resulting patient outcomes. Breast cancer tissue has greater density than normal breast tissue, and appears as dense white image regions that are asymmetrical between the breasts. These irregularities are easily seen if the breast images are aligned and viewed side-by-side. However, since the breasts are imaged separately during mammography, the images may be poorly centered and aligned relative to each other, and may not properly focus on the tissue area. Similarly, although a full three dimensional reconstruction can be created from digital tomosynthesis images, the same centering and alignment issues can occur for digital tomosynthesis. Thus, a preprocessing algorithm that aligns the breasts for easy side-by-side comparison has the potential to greatly increase the speed and accuracy of mammogram reading. Likewise, the same preprocessing can improve the results of automatic tissue classification algorithms for mammography. In this paper, we present an automated segmentation algorithm for mammogram and tomosynthesis images that aims to improve the speed and accuracy of breast cancer screening by mitigating the above mentioned problems. Our algorithm uses information in the DICOM header to facilitate preprocessing, and incorporates anatomical region segmentation and contour analysis, along with a hidden Markov model (HMM) for processing the multi-frame tomosynthesis images. The output of the algorithm is a new set of images that have been processed to show only the diagnostically relevant region and align the breasts so that they can be easily compared side-by-side. Our method has been tested on approximately 750 images, including various examples of mammogram, tomosynthesis, and scanned images, and has correctly segmented the diagnostically relevant image region in 97% of cases.

  8. A Comparative Study on Preprocessing Techniques in Diabetic Retinopathy Retinal Images: Illumination Correction and Contrast Enhancement

    PubMed Central

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation. PMID:25709940

  9. Cloudy Solar Software - Enhanced Capabilities for Finding, Pre-processing, and Visualizing Solar Data

    NASA Astrophysics Data System (ADS)

    Istvan Etesi, Laszlo; Tolbert, K.; Schwartz, R.; Zarro, D.; Dennis, B.; Csillaghy, A.

    2010-05-01

    In our project "Extending the Virtual Solar Observatory (VSO)” we have combined some of the features available in Solar Software (SSW) to produce an integrated environment for data analysis, supporting the complete workflow from data location, retrieval, preparation, and analysis to creating publication-quality figures. Our goal is an integrated analysis experience in IDL, easy-to-use but flexible enough to allow more sophisticated procedures such as multi-instrument analysis. To that end, we have made the transition from a locally oriented setting where all the analysis is done on the user's computer, to an extended analysis environment where IDL has access to services available on the Internet. We have implemented a form of Cloud Computing that uses the VSO search and a new data retrieval and pre-processing server (PrepServer) that provides remote execution of instrument-specific data preparation. We have incorporated the interfaces to the VSO search and the PrepServer into an IDL widget (SHOW_SYNOP) that provides user-friendly searching and downloading of raw solar data and optionally sends search results for pre-processing to the PrepServer prior to downloading the data. The raw and pre-processed data can be displayed with our plotting suite, PLOTMAN, which can handle different data types (light curves, images, and spectra) and perform basic data operations such as zooming, image overlays, solar rotation, etc. PLOTMAN is highly configurable and suited for visual data analysis and for creating publishable figures. PLOTMAN and SHOW_SYNOP work hand-in-hand for a convenient working environment. Our environment supports a growing number of solar instruments that currently includes RHESSI, SOHO/EIT, TRACE, SECCHI/EUVI, HINODE/XRT, and HINODE/EIS.

  10. Training site statistics from Landsat and Seasat satellite imagery registered to a common map base

    NASA Technical Reports Server (NTRS)

    Clark, J.

    1981-01-01

    Landsat and Seasat satellite imagery and training site boundary coordinates were registered to a common Universal Transverse Mercator map base in the Newport Beach area of Orange County, California. The purpose was to establish a spatially-registered, multi-sensor data base which would test the use of Seasat synthetic aperture radar imagery to improve spectral separability of channels used for land use classification of an urban area. Digital image processing techniques originally developed for the digital mosaics of the California Desert and the State of Arizona were adapted to spatially register multispectral and radar data. Techniques included control point selection from imagery and USGS topographic quadrangle maps, control point cataloguing with the Image Based Information System, and spatial and spectral rectifications of the imagery. The radar imagery was pre-processed to reduce its tendency toward uniform data distributions, so that training site statistics for selected Landsat and pre-processed Seasat imagery indicated good spectral separation between channels.

  11. Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review.

    PubMed

    Chen, Jia-Mei; Li, Yan; Xu, Jun; Gong, Lei; Wang, Lin-Wei; Liu, Wen-Lou; Liu, Juan

    2017-03-01

    With the advance of digital pathology, image analysis has begun to show its advantages in information analysis of hematoxylin and eosin histopathology images. Generally, histological features in hematoxylin and eosin images are measured to evaluate tumor grade and prognosis for breast cancer. This review summarized recent works in image analysis of hematoxylin and eosin histopathology images for breast cancer prognosis. First, prognostic factors for breast cancer based on hematoxylin and eosin histopathology images were summarized. Then, usual procedures of image analysis for breast cancer prognosis were systematically reviewed, including image acquisition, image preprocessing, image detection and segmentation, and feature extraction. Finally, the prognostic value of image features and image feature-based prognostic models was evaluated. Moreover, we discussed the issues of current analysis, and some directions for future research.

  12. Bistatic SAR: Signal Processing and Image Formation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, Daniel E.; Yocky, David A.

    This report describes the significant processing steps that were used to take the raw recorded digitized signals from the bistatic synthetic aperture RADAR (SAR) hardware built for the NCNS Bistatic SAR project to a final bistatic SAR image. In general, the process steps herein are applicable to bistatic SAR signals that include the direct-path signal and the reflected signal. The steps include preprocessing steps, data extraction to for a phase history, and finally, image format. Various plots and values will be shown at most steps to illustrate the processing for a bistatic COSMO SkyMed collection gathered on June 10, 2013more » on Kirtland Air Force Base, New Mexico.« less

  13. Analysis of live cell images: Methods, tools and opportunities.

    PubMed

    Nketia, Thomas A; Sailem, Heba; Rohde, Gustavo; Machiraju, Raghu; Rittscher, Jens

    2017-02-15

    Advances in optical microscopy, biosensors and cell culturing technologies have transformed live cell imaging. Thanks to these advances live cell imaging plays an increasingly important role in basic biology research as well as at all stages of drug development. Image analysis methods are needed to extract quantitative information from these vast and complex data sets. The aim of this review is to provide an overview of available image analysis methods for live cell imaging, in particular required preprocessing image segmentation, cell tracking and data visualisation methods. The potential opportunities recent advances in machine learning, especially deep learning, and computer vision provide are being discussed. This review includes overview of the different available software packages and toolkits. Copyright © 2017. Published by Elsevier Inc.

  14. Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images

    USGS Publications Warehouse

    Chavez, P.S.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, Stephanie L.; Velasco, M.G.

    2002-01-01

    Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.

  15. Cloud screening Coastal Zone Color Scanner images using channel 5

    NASA Technical Reports Server (NTRS)

    Eckstein, B. A.; Simpson, J. J.

    1991-01-01

    Clouds are removed from Coastal Zone Color Scanner (CZCS) data using channel 5. Instrumentation problems require pre-processing of channel 5 before an intelligent cloud-screening algorithm can be used. For example, at intervals of about 16 lines, the sensor records anomalously low radiances. Moreover, the calibration equation yields negative radiances when the sensor records zero counts, and pixels corrupted by electronic overshoot must also be excluded. The remaining pixels may then be used in conjunction with the procedure of Simpson and Humphrey to determine the CZCS cloud mask. These results plus in situ observations of phytoplankton pigment concentration show that pre-processing and proper cloud-screening of CZCS data are necessary for accurate satellite-derived pigment concentrations. This is especially true in the coastal margins, where pigment content is high and image distortion associated with electronic overshoot is also present. The pre-processing algorithm is critical to obtaining accurate global estimates of pigment from spacecraft data.

  16. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  17. Automatic cloud coverage assessment of Formosat-2 image

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2011-11-01

    Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.

  18. Two-dimensional compression of surface electromyographic signals using column-correlation sorting and image encoders.

    PubMed

    Costa, Marcus V C; Carvalho, Joao L A; Berger, Pedro A; Zaghetto, Alexandre; da Rocha, Adson F; Nascimento, Francisco A O

    2009-01-01

    We present a new preprocessing technique for two-dimensional compression of surface electromyographic (S-EMG) signals, based on correlation sorting. We show that the JPEG2000 coding system (originally designed for compression of still images) and the H.264/AVC encoder (video compression algorithm operating in intraframe mode) can be used for compression of S-EMG signals. We compare the performance of these two off-the-shelf image compression algorithms for S-EMG compression, with and without the proposed preprocessing step. Compression of both isotonic and isometric contraction S-EMG signals is evaluated. The proposed methods were compared with other S-EMG compression algorithms from the literature.

  19. New decision support tool for acute lymphoblastic leukemia classification

    NASA Astrophysics Data System (ADS)

    Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.

    2012-03-01

    In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.

  20. NEEDS - Information Adaptive System

    NASA Technical Reports Server (NTRS)

    Kelly, W. L.; Benz, H. F.; Meredith, B. D.

    1980-01-01

    The Information Adaptive System (IAS) is an element of the NASA End-to-End Data System (NEEDS) Phase II and is focused toward onboard image processing. The IAS is a data preprocessing system which is closely coupled to the sensor system. Some of the functions planned for the IAS include sensor response nonuniformity correction, geometric correction, data set selection, data formatting, packetization, and adaptive system control. The inclusion of these sensor data preprocessing functions onboard the spacecraft will significantly improve the extraction of information from the sensor data in a timely and cost effective manner, and provide the opportunity to design sensor systems which can be reconfigured in near real-time for optimum performance. The purpose of this paper is to present the preliminary design of the IAS and the plans for its development.

  1. Flexibility and utility of pre-processing methods in converting STXM setups for ptychography - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fromm, Catherine

    2015-08-20

    Ptychography is an advanced diffraction based imaging technique that can achieve resolution of 5nm and below. It is done by scanning a sample through a beam of focused x-rays using discrete yet overlapping scan steps. Scattering data is collected on a CCD camera, and the phase of the scattered light is reconstructed with sophisticated iterative algorithms. Because the experimental setup is similar, ptychography setups can be created by retrofitting existing STXM beam lines with new hardware. The other challenge comes in the reconstruction of the collected scattering images. Scattering data must be adjusted and packaged with experimental parameters to calibratemore » the reconstruction software. The necessary pre-processing of data prior to reconstruction is unique to each beamline setup, and even the optical alignments used on that particular day. Pre-processing software must be developed to be flexible and efficient in order to allow experiments appropriate control and freedom in the analysis of their hard-won data. This paper will describe the implementation of pre-processing software which successfully connects data collection steps to reconstruction steps, letting the user accomplish accurate and reliable ptychography.« less

  2. A special purpose knowledge-based face localization method

    NASA Astrophysics Data System (ADS)

    Hassanat, Ahmad; Jassim, Sabah

    2008-04-01

    This paper is concerned with face localization for visual speech recognition (VSR) system. Face detection and localization have got a great deal of attention in the last few years, because it is an essential pre-processing step in many techniques that handle or deal with faces, (e.g. age, face, gender, race and visual speech recognition). We shall present an efficient method for localization human's faces in video images captured on mobile constrained devices, under a wide variation in lighting conditions. We use a multiphase method that may include all or some of the following steps starting with image pre-processing, followed by a special purpose edge detection, then an image refinement step. The output image will be passed through a discrete wavelet decomposition procedure, and the computed LL sub-band at a certain level will be transformed into a binary image that will be scanned by using a special template to select a number of possible candidate locations. Finally, we fuse the scores from the wavelet step with scores determined by color information for the candidate location and employ a form of fuzzy logic to distinguish face from non-face locations. We shall present results of large number of experiments to demonstrate that the proposed face localization method is efficient and achieve high level of accuracy that outperforms existing general-purpose face detection methods.

  3. Radar image processing for rock-type discrimination

    NASA Technical Reports Server (NTRS)

    Blom, R. G.; Daily, M.

    1982-01-01

    Image processing and enhancement techniques for improving the geologic utility of digital satellite radar images are reviewed. Preprocessing techniques such as mean and variance correction on a range or azimuth line by line basis to provide uniformly illuminated swaths, median value filtering for four-look imagery to eliminate speckle, and geometric rectification using a priori elevation data. Examples are presented of application of preprocessing methods to Seasat and Landsat data, and Seasat SAR imagery was coregistered with Landsat imagery to form composite scenes. A polynomial was developed to distort the radar picture to fit the Landsat image of a 90 x 90 km sq grid, using Landsat color ratios with Seasat intensities. Subsequent linear discrimination analysis was employed to discriminate rock types from known areas. Seasat additions to the Landsat data improved rock identification by 7%.

  4. Remote Sensing Image Quality Assessment Experiment with Post-Processing

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.

    2018-04-01

    This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  5. Image pre-processing method for near-wall PIV measurements over moving curved interfaces

    NASA Astrophysics Data System (ADS)

    Jia, L. C.; Zhu, Y. D.; Jia, Y. X.; Yuan, H. J.; Lee, C. B.

    2017-03-01

    PIV measurements near a moving interface are always difficult. This paper presents a PIV image pre-processing method that returns high spatial resolution velocity profiles near the interface. Instead of re-shaping or re-orientating the interrogation windows, interface tracking and an image transformation are used to stretch the particle image strips near a curved interface into rectangles. Then the adaptive structured interrogation windows can be arranged at specified distances from the interface. Synthetic particles are also added into the solid region to minimize interfacial effects and to restrict particles on both sides of the interface. Since a high spatial resolution is only required in high velocity gradient region, adaptive meshing and stretching of the image strips in the normal direction is used to improve the cross-correlation signal-to-noise ratio (SN) by reducing the velocity difference and the particle image distortion within the interrogation window. A two dimensional Gaussian fit is used to compensate for the effects of stretching particle images. The working hypothesis is that fluid motion near the interface is ‘quasi-tangential flow’, which is reasonable in most fluid-structure interaction scenarios. The method was validated against the window deformation iterative multi-grid scheme (WIDIM) using synthetic image pairs with different velocity profiles. The method was tested for boundary layer measurements of a supersonic turbulent boundary layer on a flat plate, near a rotating blade and near a flexible flapping flag. This image pre-processing method provides higher spatial resolution than conventional WIDIM and good robustness for measuring velocity profiles near moving interfaces.

  6. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrw B. (Inventor)

    2010-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image. or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image . Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer. SSO. Some embodiments include masking functions. window functions. special treatment for images lying on or near border and pre-processing of test images.

  7. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2012-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer, SSO. Some embodiments include masking functions, window functions, special treatment for images lying on or near borders and pre-processing of test images.

  8. Processing of CT sinograms acquired using a VRX detector

    NASA Astrophysics Data System (ADS)

    Jordan, Lawrence M.; DiBianca, Frank A.; Zou, Ping; Laughter, Joseph S.; Zeman, Herbert D.

    2000-04-01

    A 'variable resolution x-ray detector' (VRX) capable of resolving beyond 100 cycles/main a single dimension has been proposed by DiBianca, et al. The use of detectors of this design for computed-tomography (CT) imaging requires novel preprocessing of data to correct for the detector's non- uniform imaging characteristics over its range of view. This paper describes algorithms developed specifically to adjust VRX data for varying magnification, source-to-detector range and beam obliquity and to sharpen reconstructions by deconvolving the ray impulse function. The preprocessing also incorporates nonlinear interpolation of VRX raw data into canonical CT sinogram formats.

  9. Lane marking detection based on waveform analysis and CNN

    NASA Astrophysics Data System (ADS)

    Ye, Yang Yang; Chen, Hou Jin; Hao, Xiao Li

    2017-06-01

    Lane markings detection is a very important part of the ADAS to avoid traffic accidents. In order to obtain accurate lane markings, in this work, a novel and efficient algorithm is proposed, which analyses the waveform generated from the road image after inverse perspective mapping (IPM). The algorithm includes two main stages: the first stage uses an image preprocessing including a CNN to reduce the background and enhance the lane markings. The second stage obtains the waveform of the road image and analyzes the waveform to get lanes. The contribution of this work is that we introduce local and global features of the waveform to detect the lane markings. The results indicate the proposed method is robust in detecting and fitting the lane markings.

  10. An automated distinction of DICOM images for lung cancer CAD system

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Saita, S.; Kubo, M.; Kawata, Y.; Niki, N.; Nishitani, H.; Ohmatsu, H.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2009-02-01

    Automated distinction of medical images is an important preprocessing in Computer-Aided Diagnosis (CAD) systems. The CAD systems have been developed using medical image sets with specific scan conditions and body parts. However, varied examinations are performed in medical sites. The specification of the examination is contained into DICOM textual meta information. Most DICOM textual meta information can be considered reliable, however the body part information cannot always be considered reliable. In this paper, we describe an automated distinction of DICOM images as a preprocessing for lung cancer CAD system. Our approach uses DICOM textual meta information and low cost image processing. Firstly, the textual meta information such as scan conditions of DICOM image is distinguished. Secondly, the DICOM image is set to distinguish the body parts which are identified by image processing. The identification of body parts is based on anatomical structure which is represented by features of three regions, body tissue, bone, and air. The method is effective to the practical use of lung cancer CAD system in medical sites.

  11. Gabor filter based fingerprint image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Xiang

    2013-03-01

    Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.

  12. Evaluation of preprocessing steps to compensate for magnetic field distortions due to body movements in BOLD fMRI

    PubMed Central

    Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.

    2009-01-01

    Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810

  13. Micro-Analyzer: automatic preprocessing of Affymetrix microarray data.

    PubMed

    Guzzi, Pietro Hiram; Cannataro, Mario

    2013-08-01

    A current trend in genomics is the investigation of the cell mechanism using different technologies, in order to explain the relationship among genes, molecular processes and diseases. For instance, the combined use of gene-expression arrays and genomic arrays has been demonstrated as an effective instrument in clinical practice. Consequently, in a single experiment different kind of microarrays may be used, resulting in the production of different types of binary data (images and textual raw data). The analysis of microarray data requires an initial preprocessing phase, that makes raw data suitable for use on existing analysis platforms, such as the TIGR M4 (TM4) Suite. An additional challenge to be faced by emerging data analysis platforms is the ability to treat in a combined way those different microarray formats coupled with clinical data. In fact, resulting integrated data may include both numerical and symbolic data (e.g. gene expression and SNPs regarding molecular data), as well as temporal data (e.g. the response to a drug, time to progression and survival rate), regarding clinical data. Raw data preprocessing is a crucial step in analysis but is often performed in a manual and error prone way using different software tools. Thus novel, platform independent, and possibly open source tools enabling the semi-automatic preprocessing and annotation of different microarray data are needed. The paper presents Micro-Analyzer (Microarray Analyzer), a cross-platform tool for the automatic normalization, summarization and annotation of Affymetrix gene expression and SNP binary data. It represents the evolution of the μ-CS tool, extending the preprocessing to SNP arrays that were not allowed in μ-CS. The Micro-Analyzer is provided as a Java standalone tool and enables users to read, preprocess and analyse binary microarray data (gene expression and SNPs) by invoking TM4 platform. It avoids: (i) the manual invocation of external tools (e.g. the Affymetrix Power Tools), (ii) the manual loading of preprocessing libraries, and (iii) the management of intermediate files, such as results and metadata. Micro-Analyzer users can directly manage Affymetrix binary data without worrying about locating and invoking the proper preprocessing tools and chip-specific libraries. Moreover, users of the Micro-Analyzer tool can load the preprocessed data directly into the well-known TM4 platform, extending in such a way also the TM4 capabilities. Consequently, Micro Analyzer offers the following advantages: (i) it reduces possible errors in the preprocessing and further analysis phases, e.g. due to the incorrect choice of parameters or due to the use of old libraries, (ii) it enables the combined and centralized pre-processing of different arrays, (iii) it may enhance the quality of further analysis by storing the workflow, i.e. information about the preprocessing steps, and (iv) finally Micro-Analzyer is freely available as a standalone application at the project web site http://sourceforge.net/projects/microanalyzer/. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  15. UCXp camera imaging principle and key technologies of data post-processing

    NASA Astrophysics Data System (ADS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  16. A hybrid flower pollination algorithm based modified randomized location for multi-threshold medical image segmentation.

    PubMed

    Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou

    2015-01-01

    Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.

  17. Combined endeavor of Neutrosophic Set and Chan-Vese model to extract accurate liver image from CT scan.

    PubMed

    Siri, Sangeeta K; Latte, Mrityunjaya V

    2017-11-01

    Many different diseases can occur in the liver, including infections such as hepatitis, cirrhosis, cancer and over effect of medication or toxins. The foremost stage for computer-aided diagnosis of liver is the identification of liver region. Liver segmentation algorithms extract liver image from scan images which helps in virtual surgery simulation, speedup the diagnosis, accurate investigation and surgery planning. The existing liver segmentation algorithms try to extort exact liver image from abdominal Computed Tomography (CT) scan images. It is an open problem because of ambiguous boundaries, large variation in intensity distribution, variability of liver geometry from patient to patient and presence of noise. A novel approach is proposed to meet challenges in extracting the exact liver image from abdominal CT scan images. The proposed approach consists of three phases: (1) Pre-processing (2) CT scan image transformation to Neutrosophic Set (NS) and (3) Post-processing. In pre-processing, the noise is removed by median filter. The "new structure" is designed to transform a CT scan image into neutrosophic domain which is expressed using three membership subset: True subset (T), False subset (F) and Indeterminacy subset (I). This transform approximately extracts the liver image structure. In post processing phase, morphological operation is performed on indeterminacy subset (I) and apply Chan-Vese (C-V) model with detection of initial contour within liver without user intervention. This resulted in liver boundary identification with high accuracy. Experiments show that, the proposed method is effective, robust and comparable with existing algorithm for liver segmentation of CT scan images. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparison of algorithms for automatic border detection of melanoma in dermoscopy images

    NASA Astrophysics Data System (ADS)

    Srinivasa Raghavan, Sowmya; Kaur, Ravneet; LeAnder, Robert

    2016-09-01

    Melanoma is one of the most rapidly accelerating cancers in the world [1]. Early diagnosis is critical to an effective cure. We propose a new algorithm for more accurately detecting melanoma borders in dermoscopy images. Proper border detection requires eliminating occlusions like hair and bubbles by processing the original image. The preprocessing step involves transforming the RGB image to the CIE L*u*v* color space, in order to decouple brightness from color information, then increasing contrast, using contrast-limited adaptive histogram equalization (CLAHE), followed by artifacts removal using a Gaussian filter. After preprocessing, the Chen-Vese technique segments the preprocessed images to create a lesion mask which undergoes a morphological closing operation. Next, the largest central blob in the lesion is detected, after which, the blob is dilated to generate an image output mask. Finally, the automatically-generated mask is compared to the manual mask by calculating the XOR error [3]. Our border detection algorithm was developed using training and test sets of 30 and 20 images, respectively. This detection method was compared to the SRM method [4] by calculating the average XOR error for each of the two algorithms. Average error for test images was 0.10, using the new algorithm, and 0.99, using SRM method. In comparing the average error values produced by the two algorithms, it is evident that the average XOR error for our technique is lower than the SRM method, thereby implying that the new algorithm detects borders of melanomas more accurately than the SRM algorithm.

  19. Object recognition of ladar with support vector machine

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Feng; Li, Qi; Wang, Qi

    2005-01-01

    Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.

  20. Nondestructive Evaluation of Hardwood Logs Using Automated Interpretation of CT Images

    Treesearch

    Daniel L. Schmoldt; Dongping Zhu; Richard W. Conners

    1993-01-01

    Computed tomography (CT) imaging is being used to examine the internal structure of hardwood logs. The following steps are used to automatically interpret CT images: (1) preprocessing to remove unwanted portions of the image, e.g., annual ring structure, (2) image-by-image segmentation to produce relatively homogeneous image areas, (3) volume growing to create volumes...

  1. Automatic Detection of Welding Defects using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Hou, Wenhui; Wei, Ye; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2018-01-01

    In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.

  2. Schlieren image velocimetry measurements in a rocket engine exhaust plume

    NASA Astrophysics Data System (ADS)

    Morales, Rudy; Peguero, Julio; Hargather, Michael

    2017-11-01

    Schlieren image velocimetry (SIV) measures velocity fields by tracking the motion of naturally-occurring turbulent flow features in a compressible flow. Here the technique is applied to measuring the exhaust velocity profile of a liquid rocket engine. The SIV measurements presented include discussion of visibility of structures, image pre-processing for structure visibility, and ability to process resulting images using commercial particle image velocimetry (PIV) codes. The small-scale liquid bipropellant rocket engine operates on nitrous oxide and ethanol as propellants. Predictions of the exhaust velocity are obtained through NASA CEA calculations and simple compressible flow relationships, which are compared against the measured SIV profiles. Analysis of shear layer turbulence along the exhaust plume edge is also presented.

  3. The PREP pipeline: standardized preprocessing for large-scale EEG analysis.

    PubMed

    Bigdely-Shamlo, Nima; Mullen, Tim; Kothe, Christian; Su, Kyung-Min; Robbins, Kay A

    2015-01-01

    The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode.

  4. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images.

    PubMed

    Muncy, Nathan M; Hedges-Muncy, Ariana M; Kirwan, C Brock

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing.

  5. Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.

    PubMed

    Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis

    2014-04-01

    Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the system could help the physician in the assessment of cardiovascular image analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Constrained optimization of image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1973-01-01

    A linear shift-invariant preprocessing technique is described which requires no specific knowledge of the image parameters and which is sufficiently general to allow the effective radius of the composite imaging system to be minimized while constraining other system parameters to remain within specified limits.

  7. Binary-space-partitioned images for resolving image-based visibility.

    PubMed

    Fu, Chi-Wing; Wong, Tien-Tsin; Tong, Wai-Shun; Tang, Chi-Keung; Hanson, Andrew J

    2004-01-01

    We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.

  8. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network.

    PubMed

    Chi, Jianning; Walia, Ekta; Babyn, Paul; Wang, Jimmy; Groot, Gary; Eramian, Mark

    2017-08-01

    With many thyroid nodules being incidentally detected, it is important to identify as many malignant nodules as possible while excluding those that are highly likely to be benign from fine needle aspiration (FNA) biopsies or surgeries. This paper presents a computer-aided diagnosis (CAD) system for classifying thyroid nodules in ultrasound images. We use deep learning approach to extract features from thyroid ultrasound images. Ultrasound images are pre-processed to calibrate their scale and remove the artifacts. A pre-trained GoogLeNet model is then fine-tuned using the pre-processed image samples which leads to superior feature extraction. The extracted features of the thyroid ultrasound images are sent to a Cost-sensitive Random Forest classifier to classify the images into "malignant" and "benign" cases. The experimental results show the proposed fine-tuned GoogLeNet model achieves excellent classification performance, attaining 98.29% classification accuracy, 99.10% sensitivity and 93.90% specificity for the images in an open access database (Pedraza et al. 16), while 96.34% classification accuracy, 86% sensitivity and 99% specificity for the images in our local health region database.

  9. Research on registration algorithm for check seal verification

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen

    2008-03-01

    Nowadays seals play an important role in China. With the development of social economy, the traditional method of manual check seal identification can't meet the need s of banking transactions badly. This paper focus on pre-processing and registration algorithm for check seal verification using theory of image processing and pattern recognition. First of all, analyze the complex characteristics of check seals. To eliminate the difference of producing conditions and the disturbance caused by background and writing in check image, many methods are used in the pre-processing of check seal verification, such as color components transformation, linearity transform to gray-scale image, medium value filter, Otsu, close calculations and labeling algorithm of mathematical morphology. After the processes above, the good binary seal image can be obtained. On the basis of traditional registration algorithm, a double-level registration method including rough and precise registration method is proposed. The deflection angle of precise registration method can be precise to 0.1°. This paper introduces the concepts of difference inside and difference outside and use the percent of difference inside and difference outside to judge whether the seal is real or fake. The experimental results of a mass of check seals are satisfied. It shows that the methods and algorithmic presented have good robustness to noise sealing conditions and satisfactory tolerance of difference within class.

  10. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  11. A comparison of PCA/ICA for data preprocessing in remote sensing imagery classification

    NASA Astrophysics Data System (ADS)

    He, Hui; Yu, Xianchuan

    2005-10-01

    In this paper a performance comparison of a variety of data preprocessing algorithms in remote sensing image classification is presented. These selected algorithms are principal component analysis (PCA) and three different independent component analyses, ICA (Fast-ICA (Aapo Hyvarinen, 1999), Kernel-ICA (KCCA and KGV (Bach & Jordan, 2002), EFFICA (Aiyou Chen & Peter Bickel, 2003). These algorithms were applied to a remote sensing imagery (1600×1197), obtained from Shunyi, Beijing. For classification, a MLC method is used for the raw and preprocessed data. The results show that classification with the preprocessed data have more confident results than that with raw data and among the preprocessing algorithms, ICA algorithms improve on PCA and EFFICA performs better than the others. The convergence of these ICA algorithms (for data points more than a million) are also studied, the result shows EFFICA converges much faster than the others. Furthermore, because EFFICA is a one-step maximum likelihood estimate (MLE) which reaches asymptotic Fisher efficiency (EFFICA), it computers quite small so that its demand of memory come down greatly, which settled the "out of memory" problem occurred in the other algorithms.

  12. Development and application of computer assisted optimal method for treatment of femoral neck fracture.

    PubMed

    Wang, Monan; Zhang, Kai; Yang, Ning

    2018-04-09

    To help doctors decide their treatment from the aspect of mechanical analysis, the work built a computer assisted optimal system for treatment of femoral neck fracture oriented to clinical application. The whole system encompassed the following three parts: Preprocessing module, finite element mechanical analysis module, post processing module. Preprocessing module included parametric modeling of bone, parametric modeling of fracture face, parametric modeling of fixed screw and fixed position and input and transmission of model parameters. Finite element mechanical analysis module included grid division, element type setting, material property setting, contact setting, constraint and load setting, analysis method setting and batch processing operation. Post processing module included extraction and display of batch processing operation results, image generation of batch processing operation, optimal program operation and optimal result display. The system implemented the whole operations from input of fracture parameters to output of the optimal fixed plan according to specific patient real fracture parameter and optimal rules, which demonstrated the effectiveness of the system. Meanwhile, the system had a friendly interface, simple operation and could improve the system function quickly through modifying single module.

  13. Texture Feature Extraction and Classification for Iris Diagnosis

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Li, Naimin

    Appling computer aided techniques in iris image processing, and combining occidental iridology with the traditional Chinese medicine is a challenging research area in digital image processing and artificial intelligence. This paper proposes an iridology model that consists the iris image pre-processing, texture feature analysis and disease classification. To the pre-processing, a 2-step iris localization approach is proposed; a 2-D Gabor filter based texture analysis and a texture fractal dimension estimation method are proposed for pathological feature extraction; and at last support vector machines are constructed to recognize 2 typical diseases such as the alimentary canal disease and the nerve system disease. Experimental results show that the proposed iridology diagnosis model is quite effective and promising for medical diagnosis and health surveillance for both hospital and public use.

  14. MGH-USC Human Connectome Project Datasets with Ultra-High b-Value Diffusion MRI

    PubMed Central

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R.A.; Van Horn, John D.; Drews, Michelle K.; Somerville, Leah H.; Sheridan, Margaret A.; Santillana, Rosario M.; Snyder, Jenna; Hedden, Trey; Shaw, Emily E.; Hollinshead, Marisa O.; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R.; Tisdall, Dylan; Buckner, Randy L.; Wedeen, Van J.; Wald, Lawrence L.; Toga, Arthur W.; Rosen, Bruce R.

    2015-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnecomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. PMID:26364861

  15. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery.

    PubMed

    Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W; Chen, Zhuo Georgia; Fei, Baowei

    2015-01-01

    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.

  16. Framework for hyperspectral image processing and quantification for cancer detection during animal tumor surgery

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Wang, Dongsheng; Qin, Xulei; Halig, Luma; Muller, Susan; Zhang, Hongzheng; Chen, Amy; Pogue, Brian W.; Chen, Zhuo Georgia; Fei, Baowei

    2015-12-01

    Hyperspectral imaging (HSI) is an imaging modality that holds strong potential for rapid cancer detection during image-guided surgery. But the data from HSI often needs to be processed appropriately in order to extract the maximum useful information that differentiates cancer from normal tissue. We proposed a framework for hyperspectral image processing and quantification, which includes a set of steps including image preprocessing, glare removal, feature extraction, and ultimately image classification. The framework has been tested on images from mice with head and neck cancer, using spectra from 450- to 900-nm wavelength. The image analysis computed Fourier coefficients, normalized reflectance, mean, and spectral derivatives for improved accuracy. The experimental results demonstrated the feasibility of the hyperspectral image processing and quantification framework for cancer detection during animal tumor surgery, in a challenging setting where sensitivity can be low due to a modest number of features present, but potential for fast image classification can be high. This HSI approach may have potential application in tumor margin assessment during image-guided surgery, where speed of assessment may be the dominant factor.

  17. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  18. The properties of the lunar regolith at Chang'e-3 landing site: A study based on LPR data

    NASA Astrophysics Data System (ADS)

    Feng, J.; Su, Y.; Xing, S.; Ding, C.; Li, C.

    2015-12-01

    In situ sampling from surface is difficult in the exploration of planets and sometimes radar sensing is a better choice. The properties of the surface material such as permittivity, density and depth can be obtained by a surface penetrating radar. The Chang'e-3 (CE-3) landed in the northern Mare Imbrium and a Lunar Penetrating Radar (LPR) is carried on the Yutu rover to detect the shallow structure of the lunar crust and the properties of the lunar regolith, which will give us a close look at the lunar subsurface. We process the radar data in a way which consist two steps: the regular preprocessing step and migration step. The preprocessing part includes zero time correction, de-wow, gain compensation, DC removal, geometric positioning. Then we combine all radar data obtained at the time the rover was moving, and use FIR filter to reduce the noise in the radar image with a pass band frequency range 200MHz-600MHz. A normal radar image is obtained after the preprocessing step. Using a nonlinear least squares fitting method, we fit the most hyperbolas in the radar image which are caused by the buried objects or rocks in the regolith and estimate the EM wave propagation velocity and the permittivity of the regolith. For there is a fixed mathematical relationship between dielectric constant and density, the density profile of the lunar regolith is also calculated. It seems that the permittivity and density at the landing site is larger than we thought before. Finally with a model of variable velocities, we apply the Kirchhoff migration method widely used in the seismology to transform the the unfocused space-time LPR image to a focused one showing the object's (most are stones) true location and size. From the migrated image, we find that the regolith depth in the landing site is smaller than previous study and the stone content rises rapidly with depth. Our study suggests that the landing site is a young region and the reworked history of the surface is short, which is consistent with crater density, showing the gradual formation of regolith by rock fracture during impact events.

  19. [Advances in automatic detection technology for images of thin blood film of malaria parasite].

    PubMed

    Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang

    2017-05-05

    This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.

  20. Computer-assisted diagnosis of melanoma.

    PubMed

    Fuller, Collin; Cellura, A Paul; Hibler, Brian P; Burris, Katy

    2016-03-01

    The computer-assisted diagnosis of melanoma is an exciting area of research where imaging techniques are combined with diagnostic algorithms in an attempt to improve detection and outcomes for patients with skin lesions suspicious for malignancy. Once an image has been acquired, it undergoes a processing pathway which includes preprocessing, enhancement, segmentation, feature extraction, feature selection, change detection, and ultimately classification. Practicality for everyday clinical use remains a vital question. A successful model must obtain results that are on par or outperform experienced dermatologists, keep costs at a minimum, be user-friendly, and be time efficient with high sensitivity and specificity. ©2015 Frontline Medical Communications.

  1. A Comparison of Earthquake Back-Projection Imaging Methods for Dense Local Arrays, and Application to the 2011 Virginia Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Michaelides, M.; Brown, L. D.; Quiros, D. A.

    2016-12-01

    Back-projection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. Back-projection is scalable to earthquakes with a wide range of magnitudes from very tiny to very large. Local dense arrays provide the opportunity to capture very tiny events for a range applications, such as tectonic microseismicity, source scaling studies, wastewater injection-induced seismicity, hydraulic fracturing, CO2 injection monitoring, volcano studies, and mining safety. While back-projection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed to overcome imaging issues. We compare the performance of back-projection using four previously used data pre-processing methods: full waveform, envelope, short-term averaging / long-term averaging (STA/LTA), and kurtosis. The goal is to identify an optimized strategy for an entirely automated imaging process that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the energy imaged at the source, preserves magnitude information, and considers computational cost. Real data issues include aliased station spacing, low signal-to-noise ratio (to <1), large noise bursts and spatially varying waveform polarity. For evaluation, the four imaging methods were applied to the aftershock sequence of the 2011 Virginia earthquake as recorded by the AIDA array with 200-400 m station spacing. These data include earthquake magnitudes from -2 to 3 with highly variable signal to noise, spatially aliased noise, and large noise bursts: realistic issues in many environments. Each of the four back-projection methods has advantages and disadvantages, and a combined multi-pass method achieves the best of all criteria. Preliminary imaging results from the 2011 Virginia dataset will be presented.

  2. One-Dimensional Signal Extraction Of Paper-Written ECG Image And Its Archiving

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-ni; Zhang, Hong; Zhuang, Tian-ge

    1987-10-01

    A method for converting paper-written electrocardiograms to one dimensional (1-D) signals for archival storage on floppy disk is presented here. Appropriate image processing techniques were employed to remove the back-ground noise inherent to ECG recorder charts and to reconstruct the ECG waveform. The entire process consists of (1) digitization of paper-written ECGs with an image processing system via a TV camera; (2) image preprocessing, including histogram filtering and binary image generation; (3) ECG feature extraction and ECG wave tracing, and (4) transmission of the processed ECG data to IBM-PC compatible floppy disks for storage and retrieval. The algorithms employed here may also be used in the recognition of paper-written EEG or EMG and may be useful in robotic vision.

  3. Discrete pre-processing step effects in registration-based pipelines, a preliminary volumetric study on T1-weighted images

    PubMed Central

    2017-01-01

    Pre-processing MRI scans prior to performing volumetric analyses is common practice in MRI studies. As pre-processing steps adjust the voxel intensities, the space in which the scan exists, and the amount of data in the scan, it is possible that the steps have an effect on the volumetric output. To date, studies have compared between and not within pipelines, and so the impact of each step is unknown. This study aims to quantify the effects of pre-processing steps on volumetric measures in T1-weighted scans within a single pipeline. It was our hypothesis that pre-processing steps would significantly impact ROI volume estimations. One hundred fifteen participants from the OASIS dataset were used, where each participant contributed three scans. All scans were then pre-processed using a step-wise pipeline. Bilateral hippocampus, putamen, and middle temporal gyrus volume estimations were assessed following each successive step, and all data were processed by the same pipeline 5 times. Repeated-measures analyses tested for a main effects of pipeline step, scan-rescan (for MRI scanner consistency) and repeated pipeline runs (for algorithmic consistency). A main effect of pipeline step was detected, and interestingly an interaction between pipeline step and ROI exists. No effect for either scan-rescan or repeated pipeline run was detected. We then supply a correction for noise in the data resulting from pre-processing. PMID:29023597

  4. Contourlet textual features: improving the diagnosis of solitary pulmonary nodules in two dimensional CT images.

    PubMed

    Wang, Jingjing; Sun, Tao; Gao, Ni; Menon, Desmond Dev; Luo, Yanxia; Gao, Qi; Li, Xia; Wang, Wei; Zhu, Huiping; Lv, Pingxin; Liang, Zhigang; Tao, Lixin; Liu, Xiangtong; Guo, Xiuhua

    2014-01-01

    To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data. Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93. Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer.

  5. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers

    DOEpatents

    Kychakoff, George; Afromowitz, Martin A; Hugle, Richard E

    2005-06-21

    A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions and about 4 or 8.7 microns and directly producing images of the interior of the boiler. An image pre-processing circuit (95) in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. An image segmentation module (105) for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. An image-understanding unit (115) matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system (130) for more efficient operation of the plant pendant tube cleaning and operating systems.

  6. Automated X-Ray Diffraction of Irradiated Materials

    DOE PAGES

    Rodman, John; Lin, Yuewei; Sprouster, David; ...

    2017-10-26

    Synchrotron-based X-ray diffraction (XRD) and small-angle Xray scattering (SAXS) characterization techniques used on unirradiated and irradiated reactor pressure vessel steels yield large amounts of data. Machine learning techniques, including PCA, offer a novel method of analyzing and visualizing these large data sets in order to determine the effects of chemistry and irradiation conditions on the formation of radiation induced precipitates. In order to run analysis on these data sets, preprocessing must be carried out to convert the data to a usable format and mask the 2-D detector images to account for experimental variations. Once the data has been preprocessed, itmore » can be organized and visualized using principal component analysis (PCA), multi-dimensional scaling, and k-means clustering. In conclusion, from these techniques, it is shown that sample chemistry has a notable effect on the formation of the radiation induced precipitates in reactor pressure vessel steels.« less

  7. Boost OCR accuracy using iVector based system combination approach

    NASA Astrophysics Data System (ADS)

    Peng, Xujun; Cao, Huaigu; Natarajan, Prem

    2015-01-01

    Optical character recognition (OCR) is a challenging task because most existing preprocessing approaches are sensitive to writing style, writing material, noises and image resolution. Thus, a single recognition system cannot address all factors of real document images. In this paper, we describe an approach to combine diverse recognition systems by using iVector based features, which is a newly developed method in the field of speaker verification. Prior to system combination, document images are preprocessed and text line images are extracted with different approaches for each system, where iVector is transformed from a high-dimensional supervector of each text line and is used to predict the accuracy of OCR. We merge hypotheses from multiple recognition systems according to the overlap ratio and the predicted OCR score of text line images. We present evaluation results on an Arabic document database where the proposed method is compared against the single best OCR system using word error rate (WER) metric.

  8. Optical Correlation of Images With Signal-Dependent Noise Using Constrained-Modulation Filter Devices

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1995-01-01

    Images with signal-dependent noise present challenges beyond those of images with additive white or colored signal-independent noise in terms of designing the optimal 4-f correlation filter that maximizes correlation-peak signal-to-noise ratio, or combinations of correlation-peak metrics. Determining the proper design becomes more difficult when the filter is to be implemented on a constrained-modulation spatial light modulator device. The design issues involved for updatable optical filters for images with signal-dependent film-grain noise and speckle noise are examined. It is shown that although design of the optimal linear filter in the Fourier domain is impossible for images with signal-dependent noise, proper nonlinear preprocessing of the images allows the application of previously developed design rules for optimal filters to be implemented on constrained-modulation devices. Thus the nonlinear preprocessing becomes necessary for correlation in optical systems with current spatial light modulator technology. These results are illustrated with computer simulations of images with signal-dependent noise correlated with binary-phase-only filters and ternary-phase-amplitude filters.

  9. Retinal image restoration by means of blind deconvolution

    NASA Astrophysics Data System (ADS)

    Marrugo, Andrés G.; Šorel, Michal; Šroubek, Filip; Millán, María S.

    2011-11-01

    Retinal imaging plays a key role in the diagnosis and management of ophthalmologic disorders, such as diabetic retinopathy, glaucoma, and age-related macular degeneration. Because of the acquisition process, retinal images often suffer from blurring and uneven illumination. This problem may seriously affect disease diagnosis and progression assessment. Here we present a method for color retinal image restoration by means of multichannel blind deconvolution. The method is applied to a pair of retinal images acquired within a lapse of time, ranging from several minutes to months. It consists of a series of preprocessing steps to adjust the images so they comply with the considered degradation model, followed by the estimation of the point-spread function and, ultimately, image deconvolution. The preprocessing is mainly composed of image registration, uneven illumination compensation, and segmentation of areas with structural changes. In addition, we have developed a procedure for the detection and visualization of structural changes. This enables the identification of subtle developments in the retina not caused by variation in illumination or blur. The method was tested on synthetic and real images. Encouraging experimental results show that the method is capable of significant restoration of degraded retinal images.

  10. The research of road and vehicle information extraction algorithm based on high resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong

    2016-09-01

    With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.

  11. Standardized processing of MALDI imaging raw data for enhancement of weak analyte signals in mouse models of gastric cancer and Alzheimer's disease.

    PubMed

    Schwartz, Matthias; Meyer, Björn; Wirnitzer, Bernhard; Hopf, Carsten

    2015-03-01

    Conventional mass spectrometry image preprocessing methods used for denoising, such as the Savitzky-Golay smoothing or discrete wavelet transformation, typically do not only remove noise but also weak signals. Recently, memory-efficient principal component analysis (PCA) in conjunction with random projections (RP) has been proposed for reversible compression and analysis of large mass spectrometry imaging datasets. It considers single-pixel spectra in their local context and consequently offers the prospect of using information from the spectra of adjacent pixels for denoising or signal enhancement. However, little systematic analysis of key RP-PCA parameters has been reported so far, and the utility and validity of this method for context-dependent enhancement of known medically or pharmacologically relevant weak analyte signals in linear-mode matrix-assisted laser desorption/ionization (MALDI) mass spectra has not been explored yet. Here, we investigate MALDI imaging datasets from mouse models of Alzheimer's disease and gastric cancer to systematically assess the importance of selecting the right number of random projections k and of principal components (PCs) L for reconstructing reproducibly denoised images after compression. We provide detailed quantitative data for comparison of RP-PCA-denoising with the Savitzky-Golay and wavelet-based denoising in these mouse models as a resource for the mass spectrometry imaging community. Most importantly, we demonstrate that RP-PCA preprocessing can enhance signals of low-intensity amyloid-β peptide isoforms such as Aβ1-26 even in sparsely distributed Alzheimer's β-amyloid plaques and that it enables enhanced imaging of multiply acetylated histone H4 isoforms in response to pharmacological histone deacetylase inhibition in vivo. We conclude that RP-PCA denoising may be a useful preprocessing step in biomarker discovery workflows.

  12. Automated boundary segmentation and wound analysis for longitudinal corneal OCT images

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Shi, Fei; Zhu, Weifang; Pan, Lingjiao; Chen, Haoyu; Huang, Haifan; Zheng, Kangkeng; Chen, Xinjian

    2017-03-01

    Optical coherence tomography (OCT) has been widely applied in the examination and diagnosis of corneal diseases, but the information directly achieved from the OCT images by manual inspection is limited. We propose an automatic processing method to assist ophthalmologists in locating the boundaries in corneal OCT images and analyzing the recovery of corneal wounds after treatment from longitudinal OCT images. It includes the following steps: preprocessing, epithelium and endothelium boundary segmentation and correction, wound detection, corneal boundary fitting and wound analysis. The method was tested on a data set with longitudinal corneal OCT images from 20 subjects. Each subject has five images acquired after corneal operation over a period of time. The segmentation and classification accuracy of the proposed algorithm is high and can be used for analyzing wound recovery after corneal surgery.

  13. [Image Feature Extraction and Discriminant Analysis of Xinjiang Uygur Medicine Based on Color Histogram].

    PubMed

    Hamit, Murat; Yun, Weikang; Yan, Chuanbo; Kutluk, Abdugheni; Fang, Yang; Alip, Elzat

    2015-06-01

    Image feature extraction is an important part of image processing and it is an important field of research and application of image processing technology. Uygur medicine is one of Chinese traditional medicine and researchers pay more attention to it. But large amounts of Uygur medicine data have not been fully utilized. In this study, we extracted the image color histogram feature of herbal and zooid medicine of Xinjiang Uygur. First, we did preprocessing, including image color enhancement, size normalizition and color space transformation. Then we extracted color histogram feature and analyzed them with statistical method. And finally, we evaluated the classification ability of features by Bayes discriminant analysis. Experimental results showed that high accuracy for Uygur medicine image classification was obtained by using color histogram feature. This study would have a certain help for the content-based medical image retrieval for Xinjiang Uygur medicine.

  14. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  15. Digital methods of recording color television images on film tape

    NASA Astrophysics Data System (ADS)

    Krivitskaya, R. Y.; Semenov, V. M.

    1985-04-01

    Three methods are now available for recording color television images on film tape, directly or after appropriate finish of signal processing. Conventional recording of images from the screens of three kinescopes with synthetic crystal face plates is still most effective for high fidelity. This method was improved by digital preprocessing of brightness color-difference signal. Frame-by-frame storage of these signals in the memory in digital form is followed by gamma and aperture correction and electronic correction of crossover distortions in the color layers of the film with fixing in accordance with specific emulsion procedures. The newer method of recording color television images with line arrays of light-emitting diodes involves dichromic superposing mirrors and a movable scanning mirror. This method allows the use of standard movie cameras, simplifies interlacing-to-linewise conversion and the mechanical equipment, and lengthens exposure time while it shortens recording time. The latest image transform method requires an audio-video recorder, a memory disk, a digital computer, and a decoder. The 9-step procedure includes preprocessing the total color television signal with reduction of noise level and time errors, followed by frame frequency conversion and setting the number of lines. The total signal is then resolved into its brightness and color-difference components and phase errors and image blurring are also reduced. After extraction of R,G,B signals and colorimetric matching of TV camera and film tape, the simultaneous R,B, B signals are converted from interlacing to sequential triades of color-quotient frames with linewise scanning at triple frequency. Color-quotient signals are recorded with an electron beam on a smoothly moving black-and-white film tape under vacuum. While digital techniques improve the signal quality and simplify the control of processes, not requiring stabilization of circuits, image processing is still analog.

  16. Head motion parameters in fMRI differ between patients with mild cognitive impairment and Alzheimer disease versus elderly control subjects.

    PubMed

    Haller, Sven; Monsch, Andreas U; Richiardi, Jonas; Barkhof, Frederik; Kressig, Reto W; Radue, Ernst W

    2014-11-01

    Motion artifacts are a well-known and frequent limitation during neuroimaging workup of cognitive decline. While head motion typically deteriorates image quality, we test the hypothesis that head motion differs systematically between healthy controls (HC), amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD) and consequently might contain diagnostic information. This prospective study was approved by the local ethics committee and includes 28 HC (age 71.0 ± 6.9 years, 18 females), 15 aMCI (age 67.7 ± 10.9 years, 9 females) and 20 AD (age 73.4 ± 6.8 years, 10 females). Functional magnetic resonance imaging (fMRI) at 3T included a 9 min echo-planar imaging sequence with 180 repetitions. Cumulative average head rotation and translation was estimated based on standard fMRI preprocessing and compared between groups using receiver operating characteristic statistics. Global cumulative head rotation discriminated aMCI from controls [p < 0.01, area under curve (AUC) 0.74] and AD from controls (p < 0.01, AUC 0.73). The ratio of rotation z versus y discriminated AD from controls (p < 0.05, AUC 0.71) and AD from aMCI (p < 0.05, AUC of 0.75). Head motion systematically differs between aMCI/AD and controls. Since motion is not random but convoluted with diagnosis, the higher amount of motion in aMCI and AD as compared to controls might be a potential confounding factor for fMRI group comparisons. Additionally, head motion not only deteriorates image quality, yet also contains useful discriminatory information and is available for free as a "side product" of fMRI data preprocessing.

  17. Automated framework for intraretinal cystoid macular edema segmentation in three-dimensional optical coherence tomography images with macular hole

    NASA Astrophysics Data System (ADS)

    Zhu, Weifang; Zhang, Li; Shi, Fei; Xiang, Dehui; Wang, Lirong; Guo, Jingyun; Yang, Xiaoling; Chen, Haoyu; Chen, Xinjian

    2017-07-01

    Cystoid macular edema (CME) and macular hole (MH) are the leading causes for visual loss in retinal diseases. The volume of the CMEs can be an accurate predictor for visual prognosis. This paper presents an automatic method to segment the CMEs from the abnormal retina with coexistence of MH in three-dimensional-optical coherence tomography images. The proposed framework consists of preprocessing and CMEs segmentation. The preprocessing part includes denoising, intraretinal layers segmentation and flattening, and MH and vessel silhouettes exclusion. In the CMEs segmentation, a three-step strategy is applied. First, an AdaBoost classifier trained with 57 features is employed to generate the initialization results. Second, an automated shape-constrained graph cut algorithm is applied to obtain the refined results. Finally, cyst area information is used to remove false positives (FPs). The method was evaluated on 19 eyes with coexistence of CMEs and MH from 18 subjects. The true positive volume fraction, FP volume fraction, dice similarity coefficient, and accuracy rate for CMEs segmentation were 81.0%±7.8%, 0.80%±0.63%, 80.9%±5.7%, and 99.7%±0.1%, respectively.

  18. The PREP pipeline: standardized preprocessing for large-scale EEG analysis

    PubMed Central

    Bigdely-Shamlo, Nima; Mullen, Tim; Kothe, Christian; Su, Kyung-Min; Robbins, Kay A.

    2015-01-01

    The technology to collect brain imaging and physiological measures has become portable and ubiquitous, opening the possibility of large-scale analysis of real-world human imaging. By its nature, such data is large and complex, making automated processing essential. This paper shows how lack of attention to the very early stages of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce unwanted artifacts into the data, particularly for computations done in single precision. We demonstrate that ordinary average referencing improves the signal-to-noise ratio, but that noisy channels can contaminate the results. We also show that identification of noisy channels depends on the reference and examine the complex interaction of filtering, noisy channel identification, and referencing. We introduce a multi-stage robust referencing scheme to deal with the noisy channel-reference interaction. We propose a standardized early-stage EEG processing pipeline (PREP) and discuss the application of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically generated report for each dataset processed. Users can download the PREP pipeline as a freely available MATLAB library from http://eegstudy.org/prepcode. PMID:26150785

  19. An innovative partnership for national environmental assessment

    USGS Publications Warehouse

    Shaw, D.M.; Field, D.W.; Holm, T.M.; Jennings, M.D.; Sturdevant, J.A.; Thelin, G.P.; Worthy, L.D.

    1993-01-01

    Four federal environmental programs: EMAP (USEPA), GAP (USFWS), C-CAP (NOAA), NAWQA (USGS) have formed a partnership with EROS Data Center (USGS) to facilitate the development of baseline land characteristics information for the conterminous U.S. Each of the respective programs brings to the group unique experience and expertise. Despite emphasis on different environmental issues, together we have identified common requirements for source satellite data, preprocessing, spectral clustering, ancillary data, data management and distribution. We are also developing a research agenda to support this initiative and future efforts of this partnership. The short-term goal of out effort is the joint acquisition and preprocessing of recent Landsat TM images for the conterminous U.S. To date, images have been identified for acquisition, and preliminary plans have been made for preprocessing. The long-term goal for this group is collaborative research and development of a flexible and functional land characteristics database for use by our programs and others. This partnership demonstrates that national environmental programs within multiple government agencies can work effectively together to achieve common goals and reduce overall cost.

  20. Rapid and non-destructive assessment of polyunsaturated fatty acids contents in Salmon using near-infrared hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Mba, Ogan; Liu, Li; Ngadi, Michael

    2017-04-01

    Polyunsaturated fatty acids (PUFAs) are important nutrients present in Salmon. However, current methods for quantifying the fatty acids (FAs) contents in foods are generally based on gas chromatography (GC) technique, which is time-consuming, laborious and destructive to the tested samples. Therefore, the capability of near-infrared (NIR) hyperspectral imaging to predict the PUFAs contents of C20:2 n-6, C20:3 n-6, C20:5 n-3, C22:5 n-3 and C22:6 n-3 in Salmon fillets in a rapid and non-destructive way was investigated in this work. Mean reflectance spectra were first extracted from the region of interests (ROIs), and then the spectral pre-processing methods of 2nd derivative and Savitzky-Golay (SG) smoothing were performed on the original spectra. Based on the original and the pre-processed spectra, PLSR technique was employed to develop the quantitative models for predicting each PUFA content in Salmon fillets. The results showed that for all the studied PUFAs, the quantitative models developed using the pre-processed reflectance spectra by "2nd derivative + SG smoothing" could improve their modeling results. Good prediction results were achieved with RP and RMSEP of 0.91 and 0.75 mg/g dry weight, 0.86 and 1.44 mg/g dry weight, 0.82 and 3.01 mg/g dry weight for C20:3 n-6, C22:5 n-3 and C20:5 n-3, respectively after pre-processing by "2nd derivative + SG smoothing". The work demonstrated that NIR hyperspectral imaging could be a useful tool for rapid and non-destructive determination of the PUFA contents in fish fillets.

  1. Cluster compression algorithm: A joint clustering/data compression concept

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.

    1977-01-01

    The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.

  2. Automated segmentation of three-dimensional MR brain images

    NASA Astrophysics Data System (ADS)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  3. Classification of optical coherence tomography images for diagnosing different ocular diseases

    NASA Astrophysics Data System (ADS)

    Gholami, Peyman; Sheikh Hassani, Mohsen; Kuppuswamy Parthasarathy, Mohana; Zelek, John S.; Lakshminarayanan, Vasudevan

    2018-03-01

    Optical Coherence tomography (OCT) images provide several indicators, e.g., the shape and the thickness of different retinal layers, which can be used for various clinical and non-clinical purposes. We propose an automated classification method to identify different ocular diseases, based on the local binary pattern features. The database consists of normal and diseased human eye SD-OCT images. We use a multiphase approach for building our classifier, including preprocessing, Meta learning, and active learning. Pre-processing is applied to the data to handle missing features from images and replace them with the mean or median of the corresponding feature. All the features are run through a Correlation-based Feature Subset Selection algorithm to detect the most informative features and omit the less informative ones. A Meta learning approach is applied to the data, in which a SVM and random forest are combined to obtain a more robust classifier. Active learning is also applied to strengthen our classifier around the decision boundary. The primary experimental results indicate that our method is able to differentiate between the normal and non-normal retina with an area under the ROC curve (AUC) of 98.6% and also to diagnose the three common retina-related diseases, i.e., Age-related Macular Degeneration, Diabetic Retinopathy, and Macular Hole, with an AUC of 100%, 95% and 83.8% respectively. These results indicate a better performance of the proposed method compared to most of the previous works in the literature.

  4. MRI-based quantification of Duchenne muscular dystrophy in a canine model

    NASA Astrophysics Data System (ADS)

    Wang, Jiahui; Fan, Zheng; Kornegay, Joe N.; Styner, Martin A.

    2011-03-01

    Duchenne muscular dystrophy (DMD) is a progressive and fatal X-linked disease caused by mutations in the DMD gene. Magnetic resonance imaging (MRI) has shown potential to provide non-invasive and objective biomarkers for monitoring disease progression and therapeutic effect in DMD. In this paper, we propose a semi-automated scheme to quantify MRI features of golden retriever muscular dystrophy (GRMD), a canine model of DMD. Our method was applied to a natural history data set and a hydrodynamic limb perfusion data set. The scheme is composed of three modules: pre-processing, muscle segmentation, and feature analysis. The pre-processing module includes: calculation of T2 maps, spatial registration of T2 weighted (T2WI) images, T2 weighted fat suppressed (T2FS) images, and T2 maps, and intensity calibration of T2WI and T2FS images. We then manually segment six pelvic limb muscles. For each of the segmented muscles, we finally automatically measure volume and intensity statistics of the T2FS images and T2 maps. For the natural history study, our results showed that four of six muscles in affected dogs had smaller volumes and all had higher mean intensities in T2 maps as compared to normal dogs. For the perfusion study, the muscle volumes and mean intensities in T2FS were increased in the post-perfusion MRI scans as compared to pre-perfusion MRI scans, as predicted. We conclude that our scheme successfully performs quantitative analysis of muscle MRI features of GRMD.

  5. Preprocessing of 2-Dimensional Gel Electrophoresis Images Applied to Proteomic Analysis: A Review.

    PubMed

    Goez, Manuel Mauricio; Torres-Madroñero, Maria Constanza; Röthlisberger, Sarah; Delgado-Trejos, Edilson

    2018-02-01

    Various methods and specialized software programs are available for processing two-dimensional gel electrophoresis (2-DGE) images. However, due to the anomalies present in these images, a reliable, automated, and highly reproducible system for 2-DGE image analysis has still not been achieved. The most common anomalies found in 2-DGE images include vertical and horizontal streaking, fuzzy spots, and background noise, which greatly complicate computational analysis. In this paper, we review the preprocessing techniques applied to 2-DGE images for noise reduction, intensity normalization, and background correction. We also present a quantitative comparison of non-linear filtering techniques applied to synthetic gel images, through analyzing the performance of the filters under specific conditions. Synthetic proteins were modeled into a two-dimensional Gaussian distribution with adjustable parameters for changing the size, intensity, and degradation. Three types of noise were added to the images: Gaussian, Rayleigh, and exponential, with signal-to-noise ratios (SNRs) ranging 8-20 decibels (dB). We compared the performance of wavelet, contourlet, total variation (TV), and wavelet-total variation (WTTV) techniques using parameters SNR and spot efficiency. In terms of spot efficiency, contourlet and TV were more sensitive to noise than wavelet and WTTV. Wavelet worked the best for images with SNR ranging 10-20 dB, whereas WTTV performed better with high noise levels. Wavelet also presented the best performance with any level of Gaussian noise and low levels (20-14 dB) of Rayleigh and exponential noise in terms of SNR. Finally, the performance of the non-linear filtering techniques was evaluated using a real 2-DGE image with previously identified proteins marked. Wavelet achieved the best detection rate for the real image. Copyright © 2018 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.

  6. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    NASA Astrophysics Data System (ADS)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  7. Automatic pelvis segmentation from x-ray images of a mouse model

    NASA Astrophysics Data System (ADS)

    Al Okashi, Omar M.; Du, Hongbo; Al-Assam, Hisham

    2017-05-01

    The automatic detection and quantification of skeletal structures has a variety of different applications for biological research. Accurate segmentation of the pelvis from X-ray images of mice in a high-throughput project such as the Mouse Genomes Project not only saves time and cost but also helps achieving an unbiased quantitative analysis within the phenotyping pipeline. This paper proposes an automatic solution for pelvis segmentation based on structural and orientation properties of the pelvis in X-ray images. The solution consists of three stages including pre-processing image to extract pelvis area, initial pelvis mask preparation and final pelvis segmentation. Experimental results on a set of 100 X-ray images showed consistent performance of the algorithm. The automated solution overcomes the weaknesses of a manual annotation procedure where intra- and inter-observer variations cannot be avoided.

  8. Efficient reversible data hiding in encrypted image with public key cryptosystem

    NASA Astrophysics Data System (ADS)

    Xiang, Shijun; Luo, Xinrong

    2017-12-01

    This paper proposes a new reversible data hiding scheme for encrypted images by using homomorphic and probabilistic properties of Paillier cryptosystem. The proposed method can embed additional data directly into encrypted image without any preprocessing operations on original image. By selecting two pixels as a group for encryption, data hider can retrieve the absolute differences of groups of two pixels by employing a modular multiplicative inverse method. Additional data can be embedded into encrypted image by shifting histogram of the absolute differences by using the homomorphic property in encrypted domain. On the receiver side, legal user can extract the marked histogram in encrypted domain in the same way as data hiding procedure. Then, the hidden data can be extracted from the marked histogram and the encrypted version of original image can be restored by using inverse histogram shifting operations. Besides, the marked absolute differences can be computed after decryption for extraction of additional data and restoration of original image. Compared with previous state-of-the-art works, the proposed scheme can effectively avoid preprocessing operations before encryption and can efficiently embed and extract data in encrypted domain. The experiments on the standard image files also certify the effectiveness of the proposed scheme.

  9. Contribution of non-negative matrix factorization to the classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Karoui, M. S.; Deville, Y.; Hosseini, S.; Ouamri, A.; Ducrot, D.

    2008-10-01

    Remote sensing has become an unavoidable tool for better managing our environment, generally by realizing maps of land cover using classification techniques. The classification process requires some pre-processing, especially for data size reduction. The most usual technique is Principal Component Analysis. Another approach consists in regarding each pixel of the multispectral image as a mixture of pure elements contained in the observed area. Using Blind Source Separation (BSS) methods, one can hope to unmix each pixel and to perform the recognition of the classes constituting the observed scene. Our contribution consists in using Non-negative Matrix Factorization (NMF) combined with sparse coding as a solution to BSS, in order to generate new images (which are at least partly separated images) using HRV SPOT images from Oran area, Algeria). These images are then used as inputs of a supervised classifier integrating textural information. The results of classifications of these "separated" images show a clear improvement (correct pixel classification rate improved by more than 20%) compared to classification of initial (i.e. non separated) images. These results show the contribution of NMF as an attractive pre-processing for classification of multispectral remote sensing imagery.

  10. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.

    PubMed

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R

    2016-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. SEMG signal compression based on two-dimensional techniques.

    PubMed

    de Melo, Wheidima Carneiro; de Lima Filho, Eddie Batista; da Silva Júnior, Waldir Sabino

    2016-04-18

    Recently, two-dimensional techniques have been successfully employed for compressing surface electromyographic (SEMG) records as images, through the use of image and video encoders. Such schemes usually provide specific compressors, which are tuned for SEMG data, or employ preprocessing techniques, before the two-dimensional encoding procedure, in order to provide a suitable data organization, whose correlations can be better exploited by off-the-shelf encoders. Besides preprocessing input matrices, one may also depart from those approaches and employ an adaptive framework, which is able to directly tackle SEMG signals reassembled as images. This paper proposes a new two-dimensional approach for SEMG signal compression, which is based on a recurrent pattern matching algorithm called multidimensional multiscale parser (MMP). The mentioned encoder was modified, in order to efficiently work with SEMG signals and exploit their inherent redundancies. Moreover, a new preprocessing technique, named as segmentation by similarity (SbS), which has the potential to enhance the exploitation of intra- and intersegment correlations, is introduced, the percentage difference sorting (PDS) algorithm is employed, with different image compressors, and results with the high efficiency video coding (HEVC), H.264/AVC, and JPEG2000 encoders are presented. Experiments were carried out with real isometric and dynamic records, acquired in laboratory. Dynamic signals compressed with H.264/AVC and HEVC, when combined with preprocessing techniques, resulted in good percent root-mean-square difference [Formula: see text] compression factor figures, for low and high compression factors, respectively. Besides, regarding isometric signals, the modified two-dimensional MMP algorithm outperformed state-of-the-art schemes, for low compression factors, the combination between SbS and HEVC proved to be competitive, for high compression factors, and JPEG2000, combined with PDS, provided good performance allied to low computational complexity, all in terms of percent root-mean-square difference [Formula: see text] compression factor. The proposed schemes are effective and, specifically, the modified MMP algorithm can be considered as an interesting alternative for isometric signals, regarding traditional SEMG encoders. Besides, the approach based on off-the-shelf image encoders has the potential of fast implementation and dissemination, given that many embedded systems may already have such encoders available, in the underlying hardware/software architecture.

  12. Context-specific selection of algorithms for recursive feature tracking in endoscopic image using a new methodology.

    PubMed

    Selka, F; Nicolau, S; Agnus, V; Bessaid, A; Marescaux, J; Soler, L

    2015-03-01

    In minimally invasive surgery, the tracking of deformable tissue is a critical component for image-guided applications. Deformation of the tissue can be recovered by tracking features using tissue surface information (texture, color,...). Recent work in this field has shown success in acquiring tissue motion. However, the performance evaluation of detection and tracking algorithms on such images are still difficult and are not standardized. This is mainly due to the lack of ground truth data on real data. Moreover, in order to avoid supplementary techniques to remove outliers, no quantitative work has been undertaken to evaluate the benefit of a pre-process based on image filtering, which can improve feature tracking robustness. In this paper, we propose a methodology to validate detection and feature tracking algorithms, using a trick based on forward-backward tracking that provides an artificial ground truth data. We describe a clear and complete methodology to evaluate and compare different detection and tracking algorithms. In addition, we extend our framework to propose a strategy to identify the best combinations from a set of detector, tracker and pre-process algorithms, according to the live intra-operative data. Experimental results have been performed on in vivo datasets and show that pre-process can have a strong influence on tracking performance and that our strategy to find the best combinations is relevant for a reasonable computation cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. An effective and efficient compression algorithm for ECG signals with irregular periods.

    PubMed

    Chou, Hsiao-Hsuan; Chen, Ying-Jui; Shiau, Yu-Chien; Kuo, Te-Son

    2006-06-01

    This paper presents an effective and efficient preprocessing algorithm for two-dimensional (2-D) electrocardiogram (ECG) compression to better compress irregular ECG signals by exploiting their inter- and intra-beat correlations. To better reveal the correlation structure, we first convert the ECG signal into a proper 2-D representation, or image. This involves a few steps including QRS detection and alignment, period sorting, and length equalization. The resulting 2-D ECG representation is then ready to be compressed by an appropriate image compression algorithm. We choose the state-of-the-art JPEG2000 for its high efficiency and flexibility. In this way, the proposed algorithm is shown to outperform some existing arts in the literature by simultaneously achieving high compression ratio (CR), low percent root mean squared difference (PRD), low maximum error (MaxErr), and low standard derivation of errors (StdErr). In particular, because the proposed period sorting method rearranges the detected heartbeats into a smoother image that is easier to compress, this algorithm is insensitive to irregular ECG periods. Thus either the irregular ECG signals or the QRS false-detection cases can be better compressed. This is a significant improvement over existing 2-D ECG compression methods. Moreover, this algorithm is not tied exclusively to JPEG2000. It can also be combined with other 2-D preprocessing methods or appropriate codecs to enhance the compression performance in irregular ECG cases.

  14. A survey of current solid state star tracker technology

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Staley, D. A.

    1985-12-01

    This paper is a survey of the current state of the art in design of star trackers for spacecraft attitude determination systems. Specific areas discussed are sensor technology, including the current state-of-the-art solid state sensors and techniques of mounting and cooling the sensor, analog image preprocessing electronics performance, and digital processing hardware and software. Three examples of area array solid state star tracker development are presented - ASTROS, developed by the Jet Propulsion Laboratory, the Retroreflector Field Tracker (RFT) by Ball Aerospace, and TRW's MADAN. Finally, a discussion of solid state line arrays explores the possibilities for one-dimensional imagers which offer simplified scan control electronics.

  15. Multiple Hypothesis Correlation for Space Situational Awareness

    DTIC Science & Technology

    2011-08-29

    formulations with anti-aliasing through hybrid approaches such as the Drizzle algorithm [43] all the way up through to image superresolution techniques. Most... superresolution techniques. Second, given a set of images, either directly from the sensor or preprocessed using the above techniques, we showed how

  16. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    PubMed Central

    Wang, Changjian; Liu, Xiaohui; Jin, Shiyao

    2018-01-01

    Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227

  17. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  18. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management.

    PubMed

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches).

  19. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management

    PubMed Central

    Torres-Sánchez, Jorge; López-Granados, Francisca; De Castro, Ana Isabel; Peña-Barragán, José Manuel

    2013-01-01

    A new aerial platform has risen recently for image acquisition, the Unmanned Aerial Vehicle (UAV). This article describes the technical specifications and configuration of a UAV used to capture remote images for early season site- specific weed management (ESSWM). Image spatial and spectral properties required for weed seedling discrimination were also evaluated. Two different sensors, a still visible camera and a six-band multispectral camera, and three flight altitudes (30, 60 and 100 m) were tested over a naturally infested sunflower field. The main phases of the UAV workflow were the following: 1) mission planning, 2) UAV flight and image acquisition, and 3) image pre-processing. Three different aspects were needed to plan the route: flight area, camera specifications and UAV tasks. The pre-processing phase included the correct alignment of the six bands of the multispectral imagery and the orthorectification and mosaicking of the individual images captured in each flight. The image pixel size, area covered by each image and flight timing were very sensitive to flight altitude. At a lower altitude, the UAV captured images of finer spatial resolution, although the number of images needed to cover the whole field may be a limiting factor due to the energy required for a greater flight length and computational requirements for the further mosaicking process. Spectral differences between weeds, crop and bare soil were significant in the vegetation indices studied (Excess Green Index, Normalised Green-Red Difference Index and Normalised Difference Vegetation Index), mainly at a 30 m altitude. However, greater spectral separability was obtained between vegetation and bare soil with the index NDVI. These results suggest that an agreement among spectral and spatial resolutions is needed to optimise the flight mission according to every agronomical objective as affected by the size of the smaller object to be discriminated (weed plants or weed patches). PMID:23483997

  20. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters.

    PubMed

    Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders

    2017-06-22

    In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.

  1. Key Issues in the Analysis of Remote Sensing Data: A report on the workshop

    NASA Technical Reports Server (NTRS)

    Swain, P. H. (Principal Investigator)

    1981-01-01

    The procedures of a workshop assessing the state of the art of machine analysis of remotely sensed data are summarized. Areas discussed were: data bases, image registration, image preprocessing operations, map oriented considerations, advanced digital systems, artificial intelligence methods, image classification, and improved classifier training. Recommendations of areas for further research are presented.

  2. Learning-based image preprocessing for robust computer-aided detection

    NASA Astrophysics Data System (ADS)

    Raghupathi, Laks; Devarakota, Pandu R.; Wolf, Matthias

    2013-03-01

    Recent studies have shown that low dose computed tomography (LDCT) can be an effective screening tool to reduce lung cancer mortality. Computer-aided detection (CAD) would be a beneficial second reader for radiologists in such cases. Studies demonstrate that while iterative reconstructions (IR) improve LDCT diagnostic quality, it however degrades CAD performance significantly (increased false positives) when applied directly. For improving CAD performance, solutions such as retraining with newer data or applying a standard preprocessing technique may not be suffice due to high prevalence of CT scanners and non-uniform acquisition protocols. Here, we present a learning-based framework that can adaptively transform a wide variety of input data to boost an existing CAD performance. This not only enhances their robustness but also their applicability in clinical workflows. Our solution consists of applying a suitable pre-processing filter automatically on the given image based on its characteristics. This requires the preparation of ground truth (GT) of choosing an appropriate filter resulting in improved CAD performance. Accordingly, we propose an efficient consolidation process with a novel metric. Using key anatomical landmarks, we then derive consistent feature descriptors for the classification scheme that then uses a priority mechanism to automatically choose an optimal preprocessing filter. We demonstrate CAD prototype∗ performance improvement using hospital-scale datasets acquired from North America, Europe and Asia. Though we demonstrated our results for a lung nodule CAD, this scheme is straightforward to extend to other post-processing tools dedicated to other organs and modalities.

  3. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    PubMed

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.

  4. Spatial-spectral preprocessing for endmember extraction on GPU's

    NASA Astrophysics Data System (ADS)

    Jimenez, Luis I.; Plaza, Javier; Plaza, Antonio; Li, Jun

    2016-10-01

    Spectral unmixing is focused in the identification of spectrally pure signatures, called endmembers, and their corresponding abundances in each pixel of a hyperspectral image. Mainly focused on the spectral information contained in the hyperspectral images, endmember extraction techniques have recently included spatial information to achieve more accurate results. Several algorithms have been developed for automatic or semi-automatic identification of endmembers using spatial and spectral information, including the spectral-spatial endmember extraction (SSEE) where, within a preprocessing step in the technique, both sources of information are extracted from the hyperspectral image and equally used for this purpose. Previous works have implemented the SSEE technique in four main steps: 1) local eigenvectors calculation in each sub-region in which the original hyperspectral image is divided; 2) computation of the maxima and minima projection of all eigenvectors over the entire hyperspectral image in order to obtain a candidates pixels set; 3) expansion and averaging of the signatures of the candidate set; 4) ranking based on the spectral angle distance (SAD). The result of this method is a list of candidate signatures from which the endmembers can be extracted using various spectral-based techniques, such as orthogonal subspace projection (OSP), vertex component analysis (VCA) or N-FINDR. Considering the large volume of data and the complexity of the calculations, there is a need for efficient implementations. Latest- generation hardware accelerators such as commodity graphics processing units (GPUs) offer a good chance for improving the computational performance in this context. In this paper, we develop two different implementations of the SSEE algorithm using GPUs. Both are based on the eigenvectors computation within each sub-region of the first step, one using the singular value decomposition (SVD) and another one using principal component analysis (PCA). Based on our experiments with hyperspectral data sets, high computational performance is observed in both cases.

  5. Automatic digital surface model (DSM) generation from aerial imagery data

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Cao, Shixiang; He, Hongyan; Xing, Kun; Yue, Chunyu

    2018-04-01

    Aerial sensors are widely used to acquire imagery for photogrammetric and remote sensing application. In general, the images have large overlapped region, which provide a lot of redundant geometry and radiation information for matching. This paper presents a POS supported dense matching procedure for automatic DSM generation from aerial imagery data. The method uses a coarse-to-fine hierarchical strategy with an effective combination of several image matching algorithms: image radiation pre-processing, image pyramid generation, feature point extraction and grid point generation, multi-image geometrically constraint cross-correlation (MIG3C), global relaxation optimization, multi-image geometrically constrained least squares matching (MIGCLSM), TIN generation and point cloud filtering. The image radiation pre-processing is used in order to reduce the effects of the inherent radiometric problems and optimize the images. The presented approach essentially consists of 3 components: feature point extraction and matching procedure, grid point matching procedure and relational matching procedure. The MIGCLSM method is used to achieve potentially sub-pixel accuracy matches and identify some inaccurate and possibly false matches. The feasibility of the method has been tested on different aerial scale images with different landcover types. The accuracy evaluation is based on the comparison between the automatic extracted DSMs derived from the precise exterior orientation parameters (EOPs) and the POS.

  6. Comparative performance analysis of cervix ROI extraction and specular reflection removal algorithms for uterine cervix image analysis

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Jeronimo, Jose; Thoma, George R.

    2007-03-01

    Cervicography is a technique for visual screening of uterine cervix images for cervical cancer. One of our research goals is the automated detection in these images of acetowhite (AW) lesions, which are sometimes correlated with cervical cancer. These lesions are characterized by the whitening of regions along the squamocolumnar junction on the cervix when treated with 5% acetic acid. Image preprocessing is required prior to invoking AW detection algorithms on cervicographic images for two reasons: (1) to remove Specular Reflections (SR) caused by camera flash, and (2) to isolate the cervix region-of-interest (ROI) from image regions that are irrelevant to the analysis. These image regions may contain medical instruments, film markup, or other non-cervix anatomy or regions, such as vaginal walls. We have qualitatively and quantitatively evaluated the performance of alternative preprocessing algorithms on a test set of 120 images. For cervix ROI detection, all approaches use a common feature set, but with varying combinations of feature weights, normalization, and clustering methods. For SR detection, while one approach uses a Gaussian Mixture Model on an intensity/saturation feature set, a second approach uses Otsu thresholding on a top-hat transformed input image. Empirical results are analyzed to derive conclusions on the performance of each approach.

  7. Hazardous gas detection for FTIR-based hyperspectral imaging system using DNN and CNN

    NASA Astrophysics Data System (ADS)

    Kim, Yong Chan; Yu, Hyeong-Geun; Lee, Jae-Hoon; Park, Dong-Jo; Nam, Hyun-Woo

    2017-10-01

    Recently, a hyperspectral imaging system (HIS) with a Fourier Transform InfraRed (FTIR) spectrometer has been widely used due to its strengths in detecting gaseous fumes. Even though numerous algorithms for detecting gaseous fumes have already been studied, it is still difficult to detect target gases properly because of atmospheric interference substances and unclear characteristics of low concentration gases. In this paper, we propose detection algorithms for classifying hazardous gases using a deep neural network (DNN) and a convolutional neural network (CNN). In both the DNN and CNN, spectral signal preprocessing, e.g., offset, noise, and baseline removal, are carried out. In the DNN algorithm, the preprocessed spectral signals are used as feature maps of the DNN with five layers, and it is trained by a stochastic gradient descent (SGD) algorithm (50 batch size) and dropout regularization (0.7 ratio). In the CNN algorithm, preprocessed spectral signals are trained with 1 × 3 convolution layers and 1 × 2 max-pooling layers. As a result, the proposed algorithms improve the classification accuracy rate by 1.5% over the existing support vector machine (SVM) algorithm for detecting and classifying hazardous gases.

  8. Composite Wavelet Filters for Enhanced Automated Target Recognition

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2012-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low-resolution sonar and camera videos taken from unmanned vehicles. These sonar images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both sonar and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this paper.

  9. [Algorithm of locally adaptive region growing based on multi-template matching applied to automated detection of hemorrhages].

    PubMed

    Gao, Wei-Wei; Shen, Jian-Xin; Wang, Yu-Liang; Liang, Chun; Zuo, Jing

    2013-02-01

    In order to automatically detect hemorrhages in fundus images, and develop an automated diabetic retinopathy screening system, a novel algorithm named locally adaptive region growing based on multi-template matching was established and studied. Firstly, spectral signature of major anatomical structures in fundus was studied, so that the right channel among RGB channels could be selected for different segmentation objects. Secondly, the fundus image was preprocessed by means of HSV brightness correction and contrast limited adaptive histogram equalization (CLAHE). Then, seeds of region growing were founded out by removing optic disc and vessel from the resulting image of normalized cross-correlation (NCC) template matching on the previous preprocessed image with several templates. Finally, locally adaptive region growing segmentation was used to find out the exact contours of hemorrhages, and the automated detection of the lesions was accomplished. The approach was tested on 90 different resolution fundus images with variable color, brightness and quality. Results suggest that the approach could fast and effectively detect hemorrhages in fundus images, and it is stable and robust. As a result, the approach can meet the clinical demands.

  10. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.

    PubMed

    Xu, Xuanang; Zhou, Fugen; Liu, Bo

    2018-03-19

    Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.

  11. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.

    PubMed

    Kim, Hyeongseok; Lee, Taewon; Hong, Joonpyo; Sabir, Sohail; Lee, Jung-Ryun; Choi, Young Wook; Kim, Hak Hee; Chae, Eun Young; Cho, Seungryong

    2017-02-01

    Nonlinear pre-reconstruction processing of the projection data in computed tomography (CT) where accurate recovery of the CT numbers is important for diagnosis is usually discouraged, for such a processing would violate the physics of image formation in CT. However, one can devise a pre-processing step to enhance detectability of lesions in digital breast tomosynthesis (DBT) where accurate recovery of the CT numbers is fundamentally impossible due to the incompleteness of the scanned data. Since the detection of lesions such as micro-calcifications and mass in breasts is the purpose of using DBT, it is justified that a technique producing higher detectability of lesions is a virtue. A histogram modification technique was developed in the projection data domain. Histogram of raw projection data was first divided into two parts: One for the breast projection data and the other for background. Background pixel values were set to a single value that represents the boundary between breast and background. After that, both histogram parts were shifted by an appropriate amount of offset and the histogram-modified projection data were log-transformed. Filtered-backprojection (FBP) algorithm was used for image reconstruction of DBT. To evaluate performance of the proposed method, we computed the detectability index for the reconstructed images from clinically acquired data. Typical breast border enhancement artifacts were greatly suppressed and the detectability of calcifications and masses was increased by use of the proposed method. Compared to a global threshold-based post-reconstruction processing technique, the proposed method produced images of higher contrast without invoking additional image artifacts. In this work, we report a novel pre-processing technique that improves detectability of lesions in DBT and has potential advantages over the global threshold-based post-reconstruction processing technique. The proposed method not only increased the lesion detectability but also reduced typical image artifacts pronounced in conventional FBP-based DBT. © 2016 American Association of Physicists in Medicine.

  12. Image preprocessing for improving computational efficiency in implementation of restoration and superresolution algorithms.

    PubMed

    Sundareshan, Malur K; Bhattacharjee, Supratik; Inampudi, Radhika; Pang, Ho-Yuen

    2002-12-10

    Computational complexity is a major impediment to the real-time implementation of image restoration and superresolution algorithms in many applications. Although powerful restoration algorithms have been developed within the past few years utilizing sophisticated mathematical machinery (based on statistical optimization and convex set theory), these algorithms are typically iterative in nature and require a sufficient number of iterations to be executed to achieve the desired resolution improvement that may be needed to meaningfully perform postprocessing image exploitation tasks in practice. Additionally, recent technological breakthroughs have facilitated novel sensor designs (focal plane arrays, for instance) that make it possible to capture megapixel imagery data at video frame rates. A major challenge in the processing of these large-format images is to complete the execution of the image processing steps within the frame capture times and to keep up with the output rate of the sensor so that all data captured by the sensor can be efficiently utilized. Consequently, development of novel methods that facilitate real-time implementation of image restoration and superresolution algorithms is of significant practical interest and is the primary focus of this study. The key to designing computationally efficient processing schemes lies in strategically introducing appropriate preprocessing steps together with the superresolution iterations to tailor optimized overall processing sequences for imagery data of specific formats. For substantiating this assertion, three distinct methods for tailoring a preprocessing filter and integrating it with the superresolution processing steps are outlined. These methods consist of a region-of-interest extraction scheme, a background-detail separation procedure, and a scene-derived information extraction step for implementing a set-theoretic restoration of the image that is less demanding in computation compared with the superresolution iterations. A quantitative evaluation of the performance of these algorithms for restoring and superresolving various imagery data captured by diffraction-limited sensing operations are also presented.

  13. Comparison of pre-processing techniques for fluorescence microscopy images of cells labeled for actin.

    PubMed

    Muralidhar, Gautam S; Channappayya, Sumohana S; Slater, John H; Blinka, Ellen M; Bovik, Alan C; Frey, Wolfgang; Markey, Mia K

    2008-11-06

    Automated analysis of fluorescence microscopy images of endothelial cells labeled for actin is important for quantifying changes in the actin cytoskeleton. The current manual approach is laborious and inefficient. The goal of our work is to develop automated image analysis methods, thereby increasing cell analysis throughput. In this study, we present preliminary results on comparing different algorithms for cell segmentation and image denoising.

  14. Using Fourier transform IR spectroscopy to analyze biological materials

    PubMed Central

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  15. General tensor discriminant analysis and gabor features for gait recognition.

    PubMed

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2007-10-01

    The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine state of the art classification methods in gait recognition.

  16. Contourlet Textual Features: Improving the Diagnosis of Solitary Pulmonary Nodules in Two Dimensional CT Images

    PubMed Central

    Wang, Jingjing; Sun, Tao; Gao, Ni; Menon, Desmond Dev; Luo, Yanxia; Gao, Qi; Li, Xia; Wang, Wei; Zhu, Huiping; Lv, Pingxin; Liang, Zhigang; Tao, Lixin; Liu, Xiangtong; Guo, Xiuhua

    2014-01-01

    Objective To determine the value of contourlet textural features obtained from solitary pulmonary nodules in two dimensional CT images used in diagnoses of lung cancer. Materials and Methods A total of 6,299 CT images were acquired from 336 patients, with 1,454 benign pulmonary nodule images from 84 patients (50 male, 34 female) and 4,845 malignant from 252 patients (150 male, 102 female). Further to this, nineteen patient information categories, which included seven demographic parameters and twelve morphological features, were also collected. A contourlet was used to extract fourteen types of textural features. These were then used to establish three support vector machine models. One comprised a database constructed of nineteen collected patient information categories, another included contourlet textural features and the third one contained both sets of information. Ten-fold cross-validation was used to evaluate the diagnosis results for the three databases, with sensitivity, specificity, accuracy, the area under the curve (AUC), precision, Youden index, and F-measure were used as the assessment criteria. In addition, the synthetic minority over-sampling technique (SMOTE) was used to preprocess the unbalanced data. Results Using a database containing textural features and patient information, sensitivity, specificity, accuracy, AUC, precision, Youden index, and F-measure were: 0.95, 0.71, 0.89, 0.89, 0.92, 0.66, and 0.93 respectively. These results were higher than results derived using the database without textural features (0.82, 0.47, 0.74, 0.67, 0.84, 0.29, and 0.83 respectively) as well as the database comprising only textural features (0.81, 0.64, 0.67, 0.72, 0.88, 0.44, and 0.85 respectively). Using the SMOTE as a pre-processing procedure, new balanced database generated, including observations of 5,816 benign ROIs and 5,815 malignant ROIs, and accuracy was 0.93. Conclusion Our results indicate that the combined contourlet textural features of solitary pulmonary nodules in CT images with patient profile information could potentially improve the diagnosis of lung cancer. PMID:25250576

  17. Recognition and classification of colon cells applying the ensemble of classifiers.

    PubMed

    Kruk, M; Osowski, S; Koktysz, R

    2009-02-01

    The paper presents the application of an ensemble of classifiers for the recognition of colon cells on the basis of the microscope colon image. The solved task include: segmentation of the individual cells from the image using the morphological operations, the preprocessing stages, leading to the extraction of features, selection of the most important features, and the classification stage applying the classifiers arranged in the form of ensemble. The paper presents and discusses the results concerning the recognition of four most important colon cell types: eosinophylic granulocyte, neutrophilic granulocyte, lymphocyte and plasmocyte. The proposed system is able to recognize the cells with the accuracy comparable to the human expert (around 5% of discrepancy of both results).

  18. Biometric recognition using 3D ear shape.

    PubMed

    Yan, Ping; Bowyer, Kevin W

    2007-08-01

    Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and earrings. We present a complete system for ear biometrics, including automated segmentation of the ear in a profile view image and 3D shape matching for recognition. We evaluated this system with the largest experimental study to date in ear biometrics, achieving a rank-one recognition rate of 97.8 percent for an identification scenario and an equal error rate of 1.2 percent for a verification scenario on a database of 415 subjects and 1,386 total probes.

  19. Binary image encryption in a joint transform correlator scheme by aid of run-length encoding and QR code

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong

    2018-07-01

    We propose a binary image encryption method in joint transform correlator (JTC) by aid of the run-length encoding (RLE) and Quick Response (QR) code, which enables lossless retrieval of the primary image. The binary image is encoded with RLE to obtain the highly compressed data, and then the compressed binary image is further scrambled using a chaos-based method. The compressed and scrambled binary image is then transformed into one QR code that will be finally encrypted in JTC. The proposed method successfully, for the first time to our best knowledge, encodes a binary image into a QR code with the identical size of it, and therefore may probe a new way for extending the application of QR code in optical security. Moreover, the preprocessing operations, including RLE, chaos scrambling and the QR code translation, append an additional security level on JTC. We present digital results that confirm our approach.

  20. On the importance of mathematical methods for analysis of MALDI-imaging mass spectrometry data.

    PubMed

    Trede, Dennis; Kobarg, Jan Hendrik; Oetjen, Janina; Thiele, Herbert; Maass, Peter; Alexandrov, Theodore

    2012-03-21

    In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 10⁸ to 10⁹ intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.

  1. On the Importance of Mathematical Methods for Analysis of MALDI-Imaging Mass Spectrometry Data.

    PubMed

    Trede, Dennis; Kobarg, Jan Hendrik; Oetjen, Janina; Thiele, Herbert; Maass, Peter; Alexandrov, Theodore

    2012-03-01

    In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 108 to 109 intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.

  2. Novel algorithm by low complexity filter on retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Rostampour, Samad

    2011-10-01

    This article shows a new method to detect blood vessels in the retina by digital images. Retinal vessel segmentation is important for detection of side effect of diabetic disease, because diabetes can form new capillaries which are very brittle. The research has been done in two phases: preprocessing and processing. Preprocessing phase consists to apply a new filter that produces a suitable output. It shows vessels in dark color on white background and make a good difference between vessels and background. The complexity is very low and extra images are eliminated. The second phase is processing and used the method is called Bayesian. It is a built-in in supervision classification method. This method uses of mean and variance of intensity of pixels for calculate of probability. Finally Pixels of image are divided into two classes: vessels and background. Used images are related to the DRIVE database. After performing this operation, the calculation gives 95 percent of efficiency average. The method also was performed from an external sample DRIVE database which has retinopathy, and perfect result was obtained

  3. SparCLeS: dynamic l₁ sparse classifiers with level sets for robust beard/moustache detection and segmentation.

    PubMed

    Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios

    2013-08-01

    Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.

  4. A novel microaneurysms detection approach based on convolutional neural networks with reinforcement sample learning algorithm.

    PubMed

    Budak, Umit; Şengür, Abdulkadir; Guo, Yanhui; Akbulut, Yaman

    2017-12-01

    Microaneurysms (MAs) are known as early signs of diabetic-retinopathy which are called red lesions in color fundus images. Detection of MAs in fundus images needs highly skilled physicians or eye angiography. Eye angiography is an invasive and expensive procedure. Therefore, an automatic detection system to identify the MAs locations in fundus images is in demand. In this paper, we proposed a system to detect the MAs in colored fundus images. The proposed method composed of three stages. In the first stage, a series of pre-processing steps are used to make the input images more convenient for MAs detection. To this end, green channel decomposition, Gaussian filtering, median filtering, back ground determination, and subtraction operations are applied to input colored fundus images. After pre-processing, a candidate MAs extraction procedure is applied to detect potential regions. A five-stepped procedure is adopted to get the potential MA locations. Finally, deep convolutional neural network (DCNN) with reinforcement sample learning strategy is used to train the proposed system. The DCNN is trained with color image patches which are collected from ground-truth MA locations and non-MA locations. We conducted extensive experiments on ROC dataset to evaluate of our proposal. The results are encouraging.

  5. Semiautomatic Segmentation of Glioma on Mobile Devices.

    PubMed

    Wu, Ya-Ping; Lin, Yu-Song; Wu, Wei-Guo; Yang, Cong; Gu, Jian-Qin; Bai, Yan; Wang, Mei-Yun

    2017-01-01

    Brain tumor segmentation is the first and the most critical step in clinical applications of radiomics. However, segmenting brain images by radiologists is labor intense and prone to inter- and intraobserver variability. Stable and reproducible brain image segmentation algorithms are thus important for successful tumor detection in radiomics. In this paper, we propose a supervised brain image segmentation method, especially for magnetic resonance (MR) brain images with glioma. This paper uses hard edge multiplicative intrinsic component optimization to preprocess glioma medical image on the server side, and then, the doctors could supervise the segmentation process on mobile devices in their convenient time. Since the preprocessed images have the same brightness for the same tissue voxels, they have small data size (typically 1/10 of the original image size) and simple structure of 4 types of intensity value. This observation thus allows follow-up steps to be processed on mobile devices with low bandwidth and limited computing performance. Experiments conducted on 1935 brain slices from 129 patients show that more than 30% of the sample can reach 90% similarity; over 60% of the samples can reach 85% similarity, and more than 80% of the sample could reach 75% similarity. The comparisons with other segmentation methods also demonstrate both efficiency and stability of the proposed approach.

  6. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.

    PubMed

    Liu, Manhua; Cheng, Danni; Wang, Kundong; Wang, Yaping

    2018-03-23

    Accurate and early diagnosis of Alzheimer's disease (AD) plays important role for patient care and development of future treatment. Structural and functional neuroimages, such as magnetic resonance images (MRI) and positron emission tomography (PET), are providing powerful imaging modalities to help understand the anatomical and functional neural changes related to AD. In recent years, machine learning methods have been widely studied on analysis of multi-modality neuroimages for quantitative evaluation and computer-aided-diagnosis (CAD) of AD. Most existing methods extract the hand-craft imaging features after image preprocessing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. This paper proposes to construct cascaded convolutional neural networks (CNNs) to learn the multi-level and multimodal features of MRI and PET brain images for AD classification. First, multiple deep 3D-CNNs are constructed on different local image patches to transform the local brain image into more compact high-level features. Then, an upper high-level 2D-CNN followed by softmax layer is cascaded to ensemble the high-level features learned from the multi-modality and generate the latent multimodal correlation features of the corresponding image patches for classification task. Finally, these learned features are combined by a fully connected layer followed by softmax layer for AD classification. The proposed method can automatically learn the generic multi-level and multimodal features from multiple imaging modalities for classification, which are robust to the scale and rotation variations to some extent. No image segmentation and rigid registration are required in pre-processing the brain images. Our method is evaluated on the baseline MRI and PET images of 397 subjects including 93 AD patients, 204 mild cognitive impairment (MCI, 76 pMCI +128 sMCI) and 100 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 93.26% for classification of AD vs. NC and 82.95% for classification pMCI vs. NC, demonstrating the promising classification performance.

  7. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  8. Tree leaves extraction in natural images: comparative study of preprocessing tools and segmentation methods.

    PubMed

    Grand-Brochier, Manuel; Vacavant, Antoine; Cerutti, Guillaume; Kurtz, Camille; Weber, Jonathan; Tougne, Laure

    2015-05-01

    In this paper, we propose a comparative study of various segmentation methods applied to the extraction of tree leaves from natural images. This study follows the design of a mobile application, developed by Cerutti et al. (published in ReVeS Participation--Tree Species Classification Using Random Forests and Botanical Features. CLEF 2012), to highlight the impact of the choices made for segmentation aspects. All the tests are based on a database of 232 images of tree leaves depicted on natural background from smartphones acquisitions. We also propose to study the improvements, in terms of performance, using preprocessing tools, such as the interaction between the user and the application through an input stroke, as well as the use of color distance maps. The results presented in this paper shows that the method developed by Cerutti et al. (denoted Guided Active Contour), obtains the best score for almost all observation criteria. Finally, we detail our online benchmark composed of 14 unsupervised methods and 6 supervised ones.

  9. A spectral water index based on visual bands

    NASA Astrophysics Data System (ADS)

    Basaeed, Essa; Bhaskar, Harish; Al-Mualla, Mohammed

    2013-10-01

    Land-water segmentation is an important preprocessing step in a number of remote sensing applications such as target detection, environmental monitoring, and map updating. A Normalized Optical Water Index (NOWI) is proposed to accurately discriminate between land and water regions in multi-spectral satellite imagery data from DubaiSat-1. NOWI exploits the spectral characteristics of water content (using visible bands) and uses a non-linear normalization procedure that renders strong emphasize on small changes in lower brightness values whilst guaranteeing that the segmentation process remains image-independent. The NOWI representation is validated through systematic experiments, evaluated using robust metrics, and compared against various supervised classification algorithms. Analysis has indicated that NOWI has the advantages that it: a) is a pixel-based method that requires no global knowledge of the scene under investigation, b) can be easily implemented in parallel processing, c) is image-independent and requires no training, d) works in different environmental conditions, e) provides high accuracy and efficiency, and f) works directly on the input image without any form of pre-processing.

  10. Testing of a Composite Wavelet Filter to Enhance Automated Target Recognition in SONAR

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.

    2011-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low resolution SONAR and camera videos taken from Unmanned Underwater Vehicles (UUVs). These SONAR images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both SONAR and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this report.

  11. Segmentation of the pectoral muscle in breast MR images using structure tensor and deformable model

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo

    2012-02-01

    Recently, breast MR images have been used in wider clinical area including diagnosis, treatment planning, and treatment response evaluation, which requests quantitative analysis and breast tissue segmentation. Although several methods have been proposed for segmenting MR images, segmenting out breast tissues robustly from surrounding structures in a wide range of anatomical diversity still remains challenging. Therefore, in this paper, we propose a practical and general-purpose approach for segmenting the pectoral muscle boundary based on the structure tensor and deformable model. The segmentation work flow comprises four key steps: preprocessing, detection of the region of interest (ROI) within the breast region, segmenting the pectoral muscle and finally extracting and refining the pectoral muscle boundary. From experimental results we show that the proposed method can segment the pectoral muscle robustly in diverse patient cases. In addition, the proposed method will allow the application of the quantification research for various breast images.

  12. Implementation of a high-speed face recognition system that uses an optical parallel correlator.

    PubMed

    Watanabe, Eriko; Kodate, Kashiko

    2005-02-10

    We implement a fully automatic fast face recognition system by using a 1000 frame/s optical parallel correlator designed and assembled by us. The operational speed for the 1:N (i.e., matching one image against N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 s, including the preprocessing and postprocessing times. The binary real-only matched filter is devised for the sake of face recognition, and the system is optimized by the false-rejection rate (FRR) and the false-acceptance rate (FAR), according to 300 samples selected by the biometrics guideline. From trial 1:N identification experiments with the optical parallel correlator, we acquired low error rates of 2.6% FRR and 1.3% FAR. Facial images of people wearing thin glasses or heavy makeup that rendered identification difficult were identified with this system.

  13. Passive Infrared Thermographic Imaging for Mobile Robot Object Identification

    NASA Astrophysics Data System (ADS)

    Hinders, M. K.; Fehlman, W. L.

    2010-02-01

    The usefulness of thermal infrared imaging as a mobile robot sensing modality is explored, and a set of thermal-physical features used to characterize passive thermal objects in outdoor environments is described. Objects that extend laterally beyond the thermal camera's field of view, such as brick walls, hedges, picket fences, and wood walls as well as compact objects that are laterally within the thermal camera's field of view, such as metal poles and tree trunks, are considered. Classification of passive thermal objects is a subtle process since they are not a source for their own emission of thermal energy. A detailed analysis is included of the acquisition and preprocessing of thermal images, as well as the generation and selection of thermal-physical features from these objects within thermal images. Classification performance using these features is discussed, as a precursor to the design of a physics-based model to automatically classify these objects.

  14. A method for fast automated microscope image stitching.

    PubMed

    Yang, Fan; Deng, Zhen-Sheng; Fan, Qiu-Hong

    2013-05-01

    Image stitching is an important technology to produce a panorama or larger image by combining several images with overlapped areas. In many biomedical researches, image stitching is highly desirable to acquire a panoramic image which represents large areas of certain structures or whole sections, while retaining microscopic resolution. In this study, we develop a fast normal light microscope image stitching algorithm based on feature extraction. At first, an algorithm of scale-space reconstruction of speeded-up robust features (SURF) was proposed to extract features from the images to be stitched with a short time and higher repeatability. Then, the histogram equalization (HE) method was employed to preprocess the images to enhance their contrast for extracting more features. Thirdly, the rough overlapping zones of the images preprocessed were calculated by phase correlation, and the improved SURF was used to extract the image features in the rough overlapping areas. Fourthly, the features were corresponded by matching algorithm and the transformation parameters were estimated, then the images were blended seamlessly. Finally, this procedure was applied to stitch normal light microscope images to verify its validity. Our experimental results demonstrate that the improved SURF algorithm is very robust to viewpoint, illumination, blur, rotation and zoom of the images and our method is able to stitch microscope images automatically with high precision and high speed. Also, the method proposed in this paper is applicable to registration and stitching of common images as well as stitching the microscope images in the field of virtual microscope for the purpose of observing, exchanging, saving, and establishing a database of microscope images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A new level set model for cell image segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun

    2011-02-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  16. MRI Segmentation of the Human Brain: Challenges, Methods, and Applications

    PubMed Central

    Despotović, Ivana

    2015-01-01

    Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121

  17. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  18. An automatic segmentation method of a parameter-adaptive PCNN for medical images.

    PubMed

    Lian, Jing; Shi, Bin; Li, Mingcong; Nan, Ziwei; Ma, Yide

    2017-09-01

    Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision. The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter [Formula: see text] for different kinds of images. Secondly, we acquire the parameter [Formula: see text] according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset [Formula: see text] to improve initial segmentation precision. Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726. The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.

  19. Face recognition system using multiple face model of hybrid Fourier feature under uncontrolled illumination variation.

    PubMed

    Hwang, Wonjun; Wang, Haitao; Kim, Hyunwoo; Kee, Seok-Cheol; Kim, Junmo

    2011-04-01

    The authors present a robust face recognition system for large-scale data sets taken under uncontrolled illumination variations. The proposed face recognition system consists of a novel illumination-insensitive preprocessing method, a hybrid Fourier-based facial feature extraction, and a score fusion scheme. First, in the preprocessing stage, a face image is transformed into an illumination-insensitive image, called an "integral normalized gradient image," by normalizing and integrating the smoothed gradients of a facial image. Then, for feature extraction of complementary classifiers, multiple face models based upon hybrid Fourier features are applied. The hybrid Fourier features are extracted from different Fourier domains in different frequency bandwidths, and then each feature is individually classified by linear discriminant analysis. In addition, multiple face models are generated by plural normalized face images that have different eye distances. Finally, to combine scores from multiple complementary classifiers, a log likelihood ratio-based score fusion scheme is applied. The proposed system using the face recognition grand challenge (FRGC) experimental protocols is evaluated; FRGC is a large available data set. Experimental results on the FRGC version 2.0 data sets have shown that the proposed method shows an average of 81.49% verification rate on 2-D face images under various environmental variations such as illumination changes, expression changes, and time elapses.

  20. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  1. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    PubMed

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  2. The Elixir System: Data Characterization and Calibration at the Canada-France-Hawaii Telescope

    NASA Astrophysics Data System (ADS)

    Magnier, E. A.; Cuillandre, J.-C.

    2004-05-01

    The Elixir System at the Canada-France-Hawaii Telescope performs data characterization and calibration for all data from the wide-field mosaic imagers CFH12K and MegaPrime. The project has several related goals, including monitoring data quality, providing high-quality master detrend images, determining the photometric and astrometric calibrations, and automatic preprocessing of images for queued service observing (QSO). The Elixir system has been used for all data obtained with CFH12K since the QSO project began in 2001 January. In addition, it has been used to process archival data from the CFH12K and all MegaPrime observations beginning in 2002 December. The Elixir system has been extremely successful in providing well-characterized data to the end observers, who may otherwise be overwhelmed by data-processing concerns.

  3. Experimental image alignment system

    NASA Technical Reports Server (NTRS)

    Moyer, A. L.; Kowel, S. T.; Kornreich, P. G.

    1980-01-01

    A microcomputer-based instrument for image alignment with respect to a reference image is described which uses the DEFT sensor (Direct Electronic Fourier Transform) for image sensing and preprocessing. The instrument alignment algorithm which uses the two-dimensional Fourier transform as input is also described. It generates signals used to steer the stage carrying the test image into the correct orientation. This algorithm has computational advantages over algorithms which use image intensity data as input and is suitable for a microcomputer-based instrument since the two-dimensional Fourier transform is provided by the DEFT sensor.

  4. A comparison of earthquake backprojection imaging methods for dense local arrays

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Michaelides, M.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Brown, L. D.; Quiros, D. A.

    2018-03-01

    Backprojection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. While backprojection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed and simplified to overcome imaging challenges. Real data issues include aliased station spacing, inadequate array aperture, inaccurate velocity model, low signal-to-noise ratio, large noise bursts and varying waveform polarity. We compare the performance of backprojection with four previously used data pre-processing methods: raw waveform, envelope, short-term averaging/long-term averaging and kurtosis. Our primary goal is to detect and locate events smaller than noise by stacking prior to detection to improve the signal-to-noise ratio. The objective is to identify an optimized strategy for automated imaging that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the source images, preserves magnitude, and considers computational cost. Imaging method performance is assessed using a real aftershock data set recorded by the dense AIDA array following the 2011 Virginia earthquake. Our comparisons show that raw-waveform backprojection provides the best spatial resolution, preserves magnitude and boosts signal to detect events smaller than noise, but is most sensitive to velocity error, polarity error and noise bursts. On the other hand, the other methods avoid polarity error and reduce sensitivity to velocity error, but sacrifice spatial resolution and cannot effectively reduce noise by stacking. Of these, only kurtosis is insensitive to large noise bursts while being as efficient as the raw-waveform method to lower the detection threshold; however, it does not preserve the magnitude information. For automatic detection and location of events in a large data set, we therefore recommend backprojecting kurtosis waveforms, followed by a second pass on the detected events using noise-filtered raw waveforms to achieve the best of all criteria.

  5. Information content exploitation of imaging spectrometer's images for lossless compression

    NASA Astrophysics Data System (ADS)

    Wang, Jianyu; Zhu, Zhenyu; Lin, Kan

    1996-11-01

    Imaging spectrometer, such as MAIS produces a tremendous volume of image data with up to 5.12 Mbps raw data rate, which needs urgently a real-time, efficient and reversible compression implementation. Between the lossy scheme with high compression ratio and the lossless scheme with high fidelity, we must make our choice based on the particular information content analysis of each imaging spectrometer's image data. In this paper, we present a careful analysis of information-preserving compression of imaging spectrometer MAIS with an entropy and autocorrelation study on the hyperspectral images. First, the statistical information in an actual MAIS image, captured in Marble Bar Australia, is measured with its entropy, conditional entropy, mutual information and autocorrelation coefficients on both spatial dimensions and spectral dimension. With these careful analyses, it is shown that there is high redundancy existing in the spatial dimensions, but the correlation in spectral dimension of the raw images is smaller than expected. The main reason of the nonstationarity on spectral dimension is attributed to the instruments's discrepancy on detector's response and channel's amplification in different spectral bands. To restore its natural correlation, we preprocess the signal in advance. There are two methods to accomplish this requirement: onboard radiation calibration and normalization. A better result can be achieved by the former one. After preprocessing, the spectral correlation increases so high that it contributes much redundancy in addition to spatial correlation. At last, an on-board hardware implementation for the lossless compression is presented with an ideal result.

  6. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  7. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Automated detection of microcalcification clusters in mammograms

    NASA Astrophysics Data System (ADS)

    Karale, Vikrant A.; Mukhopadhyay, Sudipta; Singh, Tulika; Khandelwal, Niranjan; Sadhu, Anup

    2017-03-01

    Mammography is the most efficient modality for detection of breast cancer at early stage. Microcalcifications are tiny bright spots in mammograms and can often get missed by the radiologist during diagnosis. The presence of microcalcification clusters in mammograms can act as an early sign of breast cancer. This paper presents a completely automated computer-aided detection (CAD) system for detection of microcalcification clusters in mammograms. Unsharp masking is used as a preprocessing step which enhances the contrast between microcalcifications and the background. The preprocessed image is thresholded and various shape and intensity based features are extracted. Support vector machine (SVM) classifier is used to reduce the false positives while preserving the true microcalcification clusters. The proposed technique is applied on two different databases i.e DDSM and private database. The proposed technique shows good sensitivity with moderate false positives (FPs) per image on both databases.

  9. Comparison of preprocessing methods and storage times for touch DNA samples

    PubMed Central

    Dong, Hui; Wang, Jing; Zhang, Tao; Ge, Jian-ye; Dong, Ying-qiang; Sun, Qi-fan; Liu, Chao; Li, Cai-xia

    2017-01-01

    Aim To select appropriate preprocessing methods for different substrates by comparing the effects of four different preprocessing methods on touch DNA samples and to determine the effect of various storage times on the results of touch DNA sample analysis. Method Hand touch DNA samples were used to investigate the detection and inspection results of DNA on different substrates. Four preprocessing methods, including the direct cutting method, stubbing procedure, double swab technique, and vacuum cleaner method, were used in this study. DNA was extracted from mock samples with four different preprocessing methods. The best preprocess protocol determined from the study was further used to compare performance after various storage times. DNA extracted from all samples was quantified and amplified using standard procedures. Results The amounts of DNA and the number of alleles detected on the porous substrates were greater than those on the non-porous substrates. The performances of the four preprocessing methods varied with different substrates. The direct cutting method displayed advantages for porous substrates, and the vacuum cleaner method was advantageous for non-porous substrates. No significant degradation trend was observed as the storage times increased. Conclusion Different substrates require the use of different preprocessing method in order to obtain the highest DNA amount and allele number from touch DNA samples. This study provides a theoretical basis for explorations of touch DNA samples and may be used as a reference when dealing with touch DNA samples in case work. PMID:28252870

  10. Diffusion tensor driven contour closing for cell microinjection targeting.

    PubMed

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  11. An Algorithm to Detect the Retinal Region of Interest

    NASA Astrophysics Data System (ADS)

    Şehirli, E.; Turan, M. K.; Demiral, E.

    2017-11-01

    Retina is one of the important layers of the eyes, which includes sensitive cells to colour and light and nerve fibers. Retina can be displayed by using some medical devices such as fundus camera, ophthalmoscope. Hence, some lesions like microaneurysm, haemorrhage, exudate with many diseases of the eye can be detected by looking at the images taken by devices. In computer vision and biomedical areas, studies to detect lesions of the eyes automatically have been done for a long time. In order to make automated detections, the concept of ROI may be utilized. ROI which stands for region of interest generally serves the purpose of focusing on particular targets. The main concentration of this paper is the algorithm to automatically detect retinal region of interest belonging to different retinal images on a software application. The algorithm consists of three stages such as pre-processing stage, detecting ROI on processed images and overlapping between input image and obtained ROI of the image.

  12. Development of digital interactive processing system for NOAA satellites AVHRR data

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Murthy, N. N.

    The paper discusses the digital image processing system for NOAA/AVHRR data including Land applications - configured around VAX 11/750 host computer supported with FPS 100 Array Processor, Comtal graphic display and HP Plotting devices; wherein the system software for relational Data Base together with query and editing facilities, Man-Machine Interface using form, menu and prompt inputs including validation of user entries for data type and range; preprocessing software for data calibration, Sun-angle correction, Geometric Corrections for Earth curvature effect and Earth rotation offsets and Earth location of AVHRR image have been accomplished. The implemented image enhancement techniques such as grey level stretching, histogram equalization and convolution are discussed. The software implementation details for the computation of vegetative index and normalized vegetative index using NOAA/AVHRR channels 1 and 2 data together with output are presented; scientific background for such computations and obtainability of similar indices from Landsat/MSS data are also included. The paper concludes by specifying the further software developments planned and the progress envisaged in the field of vegetation index studies.

  13. Detection of retinal nerve fiber layer defects in retinal fundus images using Gabor filtering

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshinori; Nakagawa, Toshiaki; Hatanaka, Yuji; Aoyama, Akira; Kakogawa, Masakatsu; Hara, Takeshi; Fujita, Hiroshi; Yamamoto, Tetsuya

    2007-03-01

    Retinal nerve fiber layer defect (NFLD) is one of the most important findings for the diagnosis of glaucoma reported by ophthalmologists. However, such changes could be overlooked, especially in mass screenings, because ophthalmologists have limited time to search for a number of different changes for the diagnosis of various diseases such as diabetes, hypertension and glaucoma. Therefore, the use of a computer-aided detection (CAD) system can improve the results of diagnosis. In this work, a technique for the detection of NFLDs in retinal fundus images is proposed. In the preprocessing step, blood vessels are "erased" from the original retinal fundus image by using morphological filtering. The preprocessed image is then transformed into a rectangular array. NFLD regions are observed as vertical dark bands in the transformed image. Gabor filtering is then applied to enhance the vertical dark bands. False positives (FPs) are reduced by a rule-based method which uses the information of the location and the width of each candidate region. The detected regions are back-transformed into the original configuration. In this preliminary study, 71% of NFLD regions are detected with average number of FPs of 3.2 per image. In conclusion, we have developed a technique for the detection of NFLDs in retinal fundus images. Promising results have been obtained in this initial study.

  14. FPGA implementation of image dehazing algorithm for real time applications

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.

    2017-09-01

    Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.

  15. Preprocessing of PHERMEX flash radiographic images with Haar and adaptive filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brolley, J.E.

    1978-11-01

    Work on image preparation has continued with the application of high-sequency boosting via Haar filtering. This is useful in developing line or edge structures. Widrow LMS adaptive filtering has also been shown to be useful in developing edge structure in special problems. Shadow effects can be obtained with the latter which may be useful for some problems. Combined Haar and adaptive filtering is illustrated for a PHERMEX image.

  16. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  17. SENTINEL-1 and SENTINEL-2 Data Fusion for Wetlands Mapping: Balikdami, Turkey

    NASA Astrophysics Data System (ADS)

    Kaplan, G.; Avdan, U.

    2018-04-01

    Wetlands provide a number of environmental and socio-economic benefits such as their ability to store floodwaters and improve water quality, providing habitats for wildlife and supporting biodiversity, as well as aesthetic values. Remote sensing technology has proven to be a useful and frequent application in monitoring and mapping wetlands. Combining optical and microwave satellite data can help with mapping and monitoring the biophysical characteristics of wetlands and wetlands` vegetation. Also, fusing radar and optical remote sensing data can increase the wetland classification accuracy. In this paper, data from the fine spatial resolution optical satellite, Sentinel-2 and the Synthetic Aperture Radar Satellite, Sentinel-1, were fused for mapping wetlands. Both Sentinel-1 and Sentinel-2 images were pre-processed. After the pre-processing, vegetation indices were calculated using the Sentinel-2 bands and the results were included in the fusion data set. For the classification of the fused data, three different classification approaches were used and compared. The results showed significant improvement in the wetland classification using both multispectral and microwave data. Also, the presence of the red edge bands and the vegetation indices used in the data set showed significant improvement in the discrimination between wetlands and other vegetated areas. The statistical results of the fusion of the optical and radar data showed high wetland mapping accuracy, showing an overall classification accuracy of approximately 90 % in the object-based classification method. For future research, we recommend multi-temporal image use, terrain data collection, as well as a comparison of the used method with the traditional image fusion techniques.

  18. Labeling Defects in CT Images of Hardwood Logs with Species-Dependent and Species-Independent Classifiers

    Treesearch

    Pei Li; Jing He; A. Lynn Abbott; Daniel L. Schmoldt

    1996-01-01

    This paper analyses computed tomography (CT) images of hardwood logs, with the goal of locating internal defects. The ability to detect and identify defects automatically is a critical component of efficiency improvements for future sawmills and veneer mills. This paper describes an approach in which 1) histogram equalization is used during preprocessing to normalize...

  19. A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear.

    PubMed

    Zarandi, M H Fazel; Khadangi, A; Karimi, F; Turksen, I B

    2016-12-01

    Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. λ-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of "η" value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.

  20. Super-Resolution for “Jilin-1” Satellite Video Imagery via a Convolutional Network

    PubMed Central

    Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-01-01

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method’s practicality. Experimental results on “Jilin-1” satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods. PMID:29652838

  1. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.

    PubMed

    Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-04-13

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  2. Topology-Preserving Rigid Transformation of 2D Digital Images.

    PubMed

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  3. A Free Database of Auto-detected Full-sun Coronal Hole Maps

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Downs, C.; Linker, J.

    2016-12-01

    We present a 4-yr (06/10/2010 to 08/18/14 at 6-hr cadence) database of full-sun synchronic EUV and coronal hole (CH) maps made available on a dedicated web site (http://www.predsci.com/chd). The maps are generated using STEREO/EUVI A&B 195Å and SDO/AIA 193Å images through an automated pipeline (Caplan et al, (2016) Ap.J. 823, 53).Specifically, the original data is preprocessed with PSF-deconvolution, a nonlinear limb-brightening correction, and a nonlinear inter-instrument intensity normalization. Coronal holes are then detected in the preprocessed images using a GPU-accelerated region growing segmentation algorithm. The final results from all three instruments are then merged and projected to form full-sun sine-latitude maps. All the software used in processing the maps is provided, which can easily be adapted for use with other instruments and channels. We describe the data pipeline and show examples from the database. We also detail recent CH-detection validation experiments using synthetic EUV emission images produced from global thermodynamic MHD simulations.

  4. Application of wavelet techniques for cancer diagnosis using ultrasound images: A Review.

    PubMed

    Sudarshan, Vidya K; Mookiah, Muthu Rama Krishnan; Acharya, U Rajendra; Chandran, Vinod; Molinari, Filippo; Fujita, Hamido; Ng, Kwan Hoong

    2016-02-01

    Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Economics of End-of-Life Materials Recovery: A Study of Small Appliances and Computer Devices in Portugal.

    PubMed

    Ford, Patrick; Santos, Eduardo; Ferrão, Paulo; Margarido, Fernanda; Van Vliet, Krystyn J; Olivetti, Elsa

    2016-05-03

    The challenges brought on by the increasing complexity of electronic products, and the criticality of the materials these devices contain, present an opportunity for maximizing the economic and societal benefits derived from recovery and recycling. Small appliances and computer devices (SACD), including mobile phones, contain significant amounts of precious metals including gold and platinum, the present value of which should serve as a key economic driver for many recycling decisions. However, a detailed analysis is required to estimate the economic value that is unrealized by incomplete recovery of these and other materials, and to ascertain how such value could be reinvested to improve recovery processes. We present a dynamic product flow analysis for SACD throughout Portugal, a European Union member, including annual data detailing product sales and industrial-scale preprocessing data for recovery of specific materials from devices. We employ preprocessing facility and metals pricing data to identify losses, and develop an economic framework around the value of recycling including uncertainty. We show that significant economic losses occur during preprocessing (over $70 M USD unrecovered in computers and mobile phones, 2006-2014) due to operations that fail to target high value materials, and characterize preprocessing operations according to material recovery and total costs.

  6. Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells.

    PubMed

    Mattson, Eric C; Unger, Miriam; Clède, Sylvain; Lambert, François; Policar, Clotilde; Imtiaz, Asher; D'Souza, Roshan; Hirschmugl, Carol J

    2013-10-07

    Advancements in widefield infrared spectromicroscopy have recently been demonstrated following the commissioning of IRENI (InfraRed ENvironmental Imaging), a Fourier Transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center. The present study demonstrates the effects of magnification, spatial oversampling, spectral pre-processing and deconvolution, focusing on the intracellular detection and distribution of an exogenous metal tris-carbonyl derivative 1 in a single MDA-MB-231 breast cancer cell. We demonstrate here that spatial oversampling for synchrotron-based infrared imaging is critical to obtain accurate diffraction-limited images at all wavelengths simultaneously. Resolution criteria and results from raw and deconvoluted images for two Schwarzschild objectives (36×, NA 0.5 and 74×, NA 0.65) are compared to each other and to prior reports for raster-scanned, confocal microscopes. The resolution of the imaging data can be improved by deconvolving the instrumental broadening that is determined with the measured PSFs, which is implemented with GPU programming architecture for fast hyperspectral processing. High definition, rapidly acquired, FTIR chemical images of respective spectral signatures of the cell 1 and shows that 1 is localized next to the phosphate- and Amide-rich regions, in agreement with previous infrared and luminescence studies. The infrared image contrast, localization and definition are improved after applying proven spectral pre-processing (principal component analysis based noise reduction and RMie scattering correction algorithms) to individual pixel spectra in the hyperspectral cube.

  7. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    PubMed

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  8. Semi-automatic object geometry estimation for image personalization

    NASA Astrophysics Data System (ADS)

    Ding, Hengzhou; Bala, Raja; Fan, Zhigang; Eschbach, Reiner; Bouman, Charles A.; Allebach, Jan P.

    2010-01-01

    Digital printing brings about a host of benefits, one of which is the ability to create short runs of variable, customized content. One form of customization that is receiving much attention lately is in photofinishing applications, whereby personalized calendars, greeting cards, and photo books are created by inserting text strings into images. It is particularly interesting to estimate the underlying geometry of the surface and incorporate the text into the image content in an intelligent and natural way. Current solutions either allow fixed text insertion schemes into preprocessed images, or provide manual text insertion tools that are time consuming and aimed only at the high-end graphic designer. It would thus be desirable to provide some level of automation in the image personalization process. We propose a semi-automatic image personalization workflow which includes two scenarios: text insertion and text replacement. In both scenarios, the underlying surfaces are assumed to be planar. A 3-D pinhole camera model is used for rendering text, whose parameters are estimated by analyzing existing structures in the image. Techniques in image processing and computer vison such as the Hough transform, the bilateral filter, and connected component analysis are combined, along with necessary user inputs. In particular, the semi-automatic workflow is implemented as an image personalization tool, which is presented in our companion paper.1 Experimental results including personalized images for both scenarios are shown, which demonstrate the effectiveness of our algorithms.

  9. ESARR: enhanced situational awareness via road sign recognition

    NASA Astrophysics Data System (ADS)

    Perlin, V. E.; Johnson, D. B.; Rohde, M. M.; Lupa, R. M.; Fiorani, G.; Mohammad, S.

    2010-04-01

    The enhanced situational awareness via road sign recognition (ESARR) system provides vehicle position estimates in the absence of GPS signal via automated processing of roadway fiducials (primarily directional road signs). Sign images are detected and extracted from vehicle-mounted camera system, and preprocessed and read via a custom optical character recognition (OCR) system specifically designed to cope with low quality input imagery. Vehicle motion and 3D scene geometry estimation enables efficient and robust sign detection with low false alarm rates. Multi-level text processing coupled with GIS database validation enables effective interpretation even of extremely low resolution low contrast sign images. In this paper, ESARR development progress will be reported on, including the design and architecture, image processing framework, localization methodologies, and results to date. Highlights of the real-time vehicle-based directional road-sign detection and interpretation system will be described along with the challenges and progress in overcoming them.

  10. Detection of Tephra Layers in Antarctic Sediment Cores with Hyperspectral Imaging

    PubMed Central

    Aymerich, Ismael F.; Oliva, Marc; Giralt, Santiago; Martín-Herrero, Julio

    2016-01-01

    Tephrochronology uses recognizable volcanic ash layers (from airborne pyroclastic deposits, or tephras) in geological strata to set unique time references for paleoenvironmental events across wide geographic areas. This involves the detection of tephra layers which sometimes are not evident to the naked eye, including the so-called cryptotephras. Tests that are expensive, time-consuming, and/or destructive are often required. Destructive testing for tephra layers of cores from difficult regions, such as Antarctica, which are useful sources of other kinds of information beyond tephras, is always undesirable. Here we propose hyperspectral imaging of cores, Self-Organizing Map (SOM) clustering of the preprocessed spectral signatures, and spatial analysis of the classified images as a convenient, fast, non-destructive method for tephra detection. We test the method in five sediment cores from three Antarctic lakes, and show its potential for detection of tephras and cryptotephras. PMID:26815202

  11. Anisotropic analysis of trabecular architecture in human femur bone radiographs using quaternion wavelet transforms.

    PubMed

    Sangeetha, S; Sujatha, C M; Manamalli, D

    2014-01-01

    In this work, anisotropy of compressive and tensile strength regions of femur trabecular bone are analysed using quaternion wavelet transforms. The normal and abnormal femur trabecular bone radiographic images are considered for this study. The sub-anatomic regions, which include compressive and tensile regions, are delineated using pre-processing procedures. These delineated regions are subjected to quaternion wavelet transforms and statistical parameters are derived from the transformed images. These parameters are correlated with apparent porosity, which is derived from the strength regions. Further, anisotropy is also calculated from the transformed images and is analyzed. Results show that the anisotropy values derived from second and third phase components of quaternion wavelet transform are found to be distinct for normal and abnormal samples with high statistical significance for both compressive and tensile regions. These investigations demonstrate that architectural anisotropy derived from QWT analysis is able to differentiate normal and abnormal samples.

  12. Processing digital images and calculation of beam emittance (pepper-pot method for the Krion source)

    NASA Astrophysics Data System (ADS)

    Alexandrov, V. S.; Donets, E. E.; Nyukhalova, E. V.; Kaminsky, A. K.; Sedykh, S. N.; Tuzikov, A. V.; Philippov, A. V.

    2016-12-01

    Programs for the pre-processing of photographs of beam images on the mask based on Wolfram Mathematica and Origin software are described. Angles of rotation around the axis and in the vertical plane are taken into account in the generation of the file with image coordinates. Results of the emittance calculation by the Pep_emit program written in Visual Basic using the generated file in the test mode are presented.

  13. Normalization of T2W-MRI prostate images using Rician a priori

    NASA Astrophysics Data System (ADS)

    Lemaître, Guillaume; Rastgoo, Mojdeh; Massich, Joan; Vilanova, Joan C.; Walker, Paul M.; Freixenet, Jordi; Meyer-Baese, Anke; Mériaudeau, Fabrice; Martí, Robert

    2016-03-01

    Prostate cancer is reported to be the second most frequently diagnosed cancer of men in the world. In practise, diagnosis can be affected by multiple factors which reduces the chance to detect the potential lesions. In the last decades, new imaging techniques mainly based on MRI are developed in conjunction with Computer-Aided Diagnosis (CAD) systems to help radiologists for such diagnosis. CAD systems are usually designed as a sequential process consisting of four stages: pre-processing, segmentation, registration and classification. As a pre-processing, image normalization is a critical and important step of the chain in order to design a robust classifier and overcome the inter-patients intensity variations. However, little attention has been dedicated to the normalization of T2W-Magnetic Resonance Imaging (MRI) prostate images. In this paper, we propose two methods to normalize T2W-MRI prostate images: (i) based on a Rician a priori and (ii) based on a Square-Root Slope Function (SRSF) representation which does not make any assumption regarding the Probability Density Function (PDF) of the data. A comparison with the state-of-the-art methods is also provided. The normalization of the data is assessed by comparing the alignment of the patient PDFs in both qualitative and quantitative manners. In both evaluation, the normalization using Rician a priori outperforms the other state-of-the-art methods.

  14. Palmprint and face score level fusion: hardware implementation of a contactless small sample biometric system

    NASA Astrophysics Data System (ADS)

    Poinsot, Audrey; Yang, Fan; Brost, Vincent

    2011-02-01

    Including multiple sources of information in personal identity recognition and verification gives the opportunity to greatly improve performance. We propose a contactless biometric system that combines two modalities: palmprint and face. Hardware implementations are proposed on the Texas Instrument Digital Signal Processor and Xilinx Field-Programmable Gate Array (FPGA) platforms. The algorithmic chain consists of a preprocessing (which includes palm extraction from hand images), Gabor feature extraction, comparison by Hamming distance, and score fusion. Fusion possibilities are discussed and tested first using a bimodal database of 130 subjects that we designed (uB database), and then two common public biometric databases (AR for face and PolyU for palmprint). High performance has been obtained for recognition and verification purpose: a recognition rate of 97.49% with AR-PolyU database and an equal error rate of 1.10% on the uB database using only two training samples per subject have been obtained. Hardware results demonstrate that preprocessing can easily be performed during the acquisition phase, and multimodal biometric recognition can be treated almost instantly (0.4 ms on FPGA). We show the feasibility of a robust and efficient multimodal hardware biometric system that offers several advantages, such as user-friendliness and flexibility.

  15. A Novel Binarization Algorithm for Ballistics Firearm Identification

    NASA Astrophysics Data System (ADS)

    Li, Dongguang

    The identification of ballistics specimens from imaging systems is of paramount importance in criminal investigation. Binarization plays a key role in preprocess of recognizing cartridges in the ballistic imaging systems. Unfortunately, it is very difficult to get the satisfactory binary image using existing binary algorithms. In this paper, we utilize the global and local thresholds to enhance the image binarization. Importantly, we present a novel criterion for effectively detecting edges in the images. Comprehensive experiments have been conducted over sample ballistic images. The empirical results demonstrate the proposed method can provide a better solution than existing binary algorithms.

  16. A fuzzy optimal threshold technique for medical images

    NASA Astrophysics Data System (ADS)

    Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.

    2012-01-01

    A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.

  17. Combining Stereo SECCHI COR2 and HI1 Images for Automatic CME Front Edge Tracking

    NASA Technical Reports Server (NTRS)

    Kirnosov, Vladimir; Chang, Lin-Ching; Pulkkinen, Antti

    2016-01-01

    COR2 coronagraph images are the most commonly used data for coronal mass ejection (CME) analysis among the various types of data provided by the STEREO (Solar Terrestrial Relations Observatory) SECCHI (Sun-Earth Connection Coronal and Heliospheric Investigation) suite of instruments. The field of view (FOV) in COR2 images covers 215 solar radii (Rs) that allow for tracking the front edge of a CME in its initial stage to forecast the lead-time of a CME and its chances of reaching the Earth. However, estimating the lead-time of a CME using COR2 images gives a larger lead-time, which may be associated with greater uncertainty. To reduce this uncertainty, CME front edge tracking should be continued beyond the FOV of COR2 images. Therefore, heliospheric imager (HI1) data that covers 1590 Rs FOV must be included. In this paper, we propose a novel automatic method that takes both COR2 and HI1 images into account and combine the results to track the front edges of a CME continuously. The method consists of two modules: pre-processing and tracking. The pre-processing module produces a set of segmented images, which contain the signature of a CME, for both COR2 and HI1 separately. In addition, the HI1 images are resized and padded, so that the center of the Sun is the central coordinate of the resized HI1 images. The resulting COR2 andHI1 image set is then fed into the tracking module to estimate the position angle (PA) and track the front edge of a CME. The detected front edge is then used to produce a height-time profile that is used to estimate the speed of a CME. The method was validated using 15 CME events observed in the period from January 1, 2008 to August 31, 2009. The results demonstrate that the proposed method is effective for CME front edge tracking in both COR2 and HI1 images. Using this method, the CME front edge can now be tracked automatically and continuously in a much larger range, i.e., from 2 to 90 Rs, for the first time. These improvement scan greatly help in making the quantitative CME analysis more accurate and have the potential to assist in space weather forecasting.

  18. Implementation of pulse-coupled neural networks in a CNAPS environment.

    PubMed

    Kinser, J M; Lindblad, T

    1999-01-01

    Pulse coupled neural networks (PCNN's) are biologically inspired algorithms very well suited for image/signal preprocessing. While several analog implementations are proposed we suggest a digital implementation in an existing environment, the connected network of adapted processors system (CNAPS). The reason for this is two fold. First, CNAPS is a commercially available chip which has been used for several neural-network implementations. Second, the PCNN is, in almost all applications, a very efficient component of a system requiring subsequent and additional processing. This may include gating, Fourier transforms, neural classifiers, data mining, etc, with or without feedback to the PCNN.

  19. Hyperspectral imaging for predicting the allicin and soluble solid content of garlic with variable selection algorithms and chemometric models.

    PubMed

    Rahman, Anisur; Faqeerzada, Mohammad A; Cho, Byoung-Kwan

    2018-03-14

    Allicin and soluble solid content (SSC) in garlic is the responsible for its pungent flavor and odor. However, current conventional methods such as the use of high-pressure liquid chromatography and a refractometer have critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to predict allicin and SSC in garlic using hyperspectral imaging in combination with variable selection algorithms and calibration models. Hyperspectral images of 100 garlic cloves were acquired that covered two spectral ranges, from which the mean spectra of each clove were extracted. The calibration models included partial least squares (PLS) and least squares-support vector machine (LS-SVM) regression, as well as different spectral pre-processing techniques, from which the highest performing spectral preprocessing technique and spectral range were selected. Then, variable selection methods, such as regression coefficients, variable importance in projection (VIP) and the successive projections algorithm (SPA), were evaluated for the selection of effective wavelengths (EWs). Furthermore, PLS and LS-SVM regression methods were applied to quantitatively predict the quality attributes of garlic using the selected EWs. Of the established models, the SPA-LS-SVM model obtained an Rpred2 of 0.90 and standard error of prediction (SEP) of 1.01% for SSC prediction, whereas the VIP-LS-SVM model produced the best result with an Rpred2 of 0.83 and SEP of 0.19 mg g -1 for allicin prediction in the range 1000-1700 nm. Furthermore, chemical images of garlic were developed using the best predictive model to facilitate visualization of the spatial distributions of allicin and SSC. The present study clearly demonstrates that hyperspectral imaging combined with an appropriate chemometrics method can potentially be employed as a fast, non-invasive method to predict the allicin and SSC in garlic. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI

    PubMed Central

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency. PMID:29497372

  1. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.

    PubMed

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg) . Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.

  2. Study of the temporal evolution of Whitening Teeth immersed in Peroxide of hydrogen (H2O2) Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Díaz, L.; Morales, Y.; Torres, C.

    2015-01-01

    The esthetic dentistry reference in our society is determined by several factors, including one that produces more dissatisfaction is abnormal tooth color or that does not meet the patient's expectations. For this reason it has been designed and implemented an algorithm in MATLAB that captures, digitizes, pre-processing and analyzed dental imaging by allowing to evaluate the degree of bleaching caused by the use of peroxide of hidrogen. The samples analyzed were human teeth extracted, which were subjected to different concentrations of peroxide of hidrogen and see if they can teeth whitening when using these products, was used different concentrations and intervals of time to analysis or study of the whitening of the teeth with the hydrogen peroxide.

  3. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing

    PubMed Central

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-01-01

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, feature extraction algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system. PMID:29462855

  4. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    PubMed

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  5. Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction.

    PubMed

    Blaiotta, Claudia; Freund, Patrick; Cardoso, M Jorge; Ashburner, John

    2018-02-01

    In this paper we present a hierarchical generative model of medical image data, which can capture simultaneously the variability of both signal intensity and anatomical shapes across large populations. Such a model has a direct application for learning average-shaped probabilistic tissue templates in a fully automated manner. While in principle the generality of the proposed Bayesian approach makes it suitable to address a wide range of medical image computing problems, our work focuses primarily on neuroimaging applications. In particular we validate the proposed method on both real and synthetic brain MR scans including the cervical cord and demonstrate that it yields accurate alignment of brain and spinal cord structures, as compared to state-of-the-art tools for medical image registration. At the same time we illustrate how the resulting tissue probability maps can readily be used to segment, bias correct and spatially normalise unseen data, which are all crucial pre-processing steps for MR imaging studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Neural networks for sign language translation

    NASA Astrophysics Data System (ADS)

    Wilson, Beth J.; Anspach, Gretel

    1993-09-01

    A neural network is used to extract relevant features of sign language from video images of a person communicating in American Sign Language or Signed English. The key features are hand motion, hand location with respect to the body, and handshape. A modular hybrid design is under way to apply various techniques, including neural networks, in the development of a translation system that will facilitate communication between deaf and hearing people. One of the neural networks described here is used to classify video images of handshapes into their linguistic counterpart in American Sign Language. The video image is preprocessed to yield Fourier descriptors that encode the shape of the hand silhouette. These descriptors are then used as inputs to a neural network that classifies their shapes. The network is trained with various examples from different signers and is tested with new images from new signers. The results have shown that for coarse handshape classes, the network is invariant to the type of camera used to film the various signers and to the segmentation technique.

  7. Classification of underground pipe scanned images using feature extraction and neuro-fuzzy algorithm.

    PubMed

    Sinha, S K; Karray, F

    2002-01-01

    Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.

  8. Application of MCM image construction to IRAS comet observations

    NASA Technical Reports Server (NTRS)

    Schlapfer, Martin F.; Walker, Russell G.

    1994-01-01

    There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.

  9. Texture Descriptors Ensembles Enable Image-Based Classification of Maturation of Human Stem Cell-Derived Retinal Pigmented Epithelium

    PubMed Central

    Caetano dos Santos, Florentino Luciano; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari

    2016-01-01

    Aims A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. Methods For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. Dataset and Results The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. Conclusions Here we showed that the developed ensembles of texture descriptors are able to classify the RPE cell maturation stage. Moreover, we proved that preprocessing and region-based decomposition improves many descriptors’ accuracy in biological dataset classification. Finally, we built the first public dataset of stem cell-derived RPE cells, which is publicly available to the scientific community for classification studies. The proposed tool is available at https://www.dei.unipd.it/node/2357 and the RPE dataset at http://www.biomeditech.fi/data/RPE_dataset/. Both are available at https://figshare.com/s/d6fb591f1beb4f8efa6f. PMID:26895509

  10. Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework.

    PubMed

    Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S

    2016-12-01

    We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read

    PubMed Central

    2010-01-01

    Background High-throughput automated sequencing has enabled an exponential growth rate of sequencing data. This requires increasing sequence quality and reliability in order to avoid database contamination with artefactual sequences. The arrival of pyrosequencing enhances this problem and necessitates customisable pre-processing algorithms. Results SeqTrim has been implemented both as a Web and as a standalone command line application. Already-published and newly-designed algorithms have been included to identify sequence inserts, to remove low quality, vector, adaptor, low complexity and contaminant sequences, and to detect chimeric reads. The availability of several input and output formats allows its inclusion in sequence processing workflows. Due to its specific algorithms, SeqTrim outperforms other pre-processors implemented as Web services or standalone applications. It performs equally well with sequences from EST libraries, SSH libraries, genomic DNA libraries and pyrosequencing reads and does not lead to over-trimming. Conclusions SeqTrim is an efficient pipeline designed for pre-processing of any type of sequence read, including next-generation sequencing. It is easily configurable and provides a friendly interface that allows users to know what happened with sequences at every pre-processing stage, and to verify pre-processing of an individual sequence if desired. The recommended pipeline reveals more information about each sequence than previously described pre-processors and can discard more sequencing or experimental artefacts. PMID:20089148

  12. The Effects of Pre-processing Strategies for Pediatric Cochlear Implant Recipients

    PubMed Central

    Rakszawski, Bernadette; Wright, Rose; Cadieux, Jamie H.; Davidson, Lisa S.; Brenner, Christine

    2016-01-01

    Background Cochlear implants (CIs) have been shown to improve children’s speech recognition over traditional amplification when severe to profound sensorineural hearing loss is present. Despite improvements, understanding speech at low-level intensities or in the presence of background noise remains difficult. In an effort to improve speech understanding in challenging environments, Cochlear Ltd. offers pre-processing strategies that apply various algorithms prior to mapping the signal to the internal array. Two of these strategies include Autosensitivity Control™ (ASC) and Adaptive Dynamic Range Optimization (ADRO®). Based on previous research, the manufacturer’s default pre-processing strategy for pediatrics’ everyday programs combines ASC+ADRO®. Purpose The purpose of this study is to compare pediatric speech perception performance across various pre-processing strategies while applying a specific programming protocol utilizing increased threshold (T) levels to ensure access to very low-level sounds. Research Design This was a prospective, cross-sectional, observational study. Participants completed speech perception tasks in four pre-processing conditions: no pre-processing, ADRO®, ASC, ASC+ADRO®. Study Sample Eleven pediatric Cochlear Ltd. cochlear implant users were recruited: six bilateral, one unilateral, and four bimodal. Intervention Four programs, with the participants’ everyday map, were loaded into the processor with different pre-processing strategies applied in each of the four positions: no pre-processing, ADRO®, ASC, and ASC+ADRO®. Data Collection and Analysis Participants repeated CNC words presented at 50 and 70 dB SPL in quiet and HINT sentences presented adaptively with competing R-Space noise at 60 and 70 dB SPL. Each measure was completed as participants listened with each of the four pre-processing strategies listed above. Test order and condition were randomized. A repeated-measures analysis of variance (ANOVA) was used to compare each pre-processing strategy across group data. Critical differences were utilized to determine significant score differences between each pre-processing strategy for individual participants. Results For CNC words presented at 50 dB SPL, the group data revealed significantly better scores using ASC+ADRO® compared to all other pre-processing conditions while ASC resulted in poorer scores compared to ADRO® and ASC+ADRO®. Group data for HINT sentences presented in 70 dB SPL of R-Space noise revealed significantly improved scores using ASC and ASC+ADRO® compared to no pre-processing, with ASC+ADRO® scores being better than ADRO® alone scores. Group data for CNC words presented at 70 dB SPL and adaptive HINT sentences presented in 60 dB SPL of R-Space noise showed no significant difference among conditions. Individual data showed that the pre-processing strategy yielding the best scores varied across measures and participants. Conclusions Group data reveals an advantage with ASC+ADRO® for speech perception presented at lower levels and in higher levels of background noise. Individual data revealed that the optimal pre-processing strategy varied among participants; indicating that a variety of pre-processing strategies should be explored for each CI user considering his or her performance in challenging listening environments. PMID:26905529

  13. Automated Detection of Optic Disc in Fundus Images

    NASA Astrophysics Data System (ADS)

    Burman, R.; Almazroa, A.; Raahemifar, K.; Lakshminarayanan, V.

    Optic disc (OD) localization is an important preprocessing step in the automated image detection of fundus image infected with glaucoma. An Interval Type-II fuzzy entropy based thresholding scheme along with Differential Evolution (DE) is applied to determine the location of the OD in the right of left eye retinal fundus image. The algorithm, when applied to 460 fundus images from the MESSIDOR dataset, shows a success rate of 99.07 % for 217 normal images and 95.47 % for 243 pathological images. The mean computational time is 1.709 s for normal images and 1.753 s for pathological images. These results are important for automated detection of glaucoma and for telemedicine purposes.

  14. An improved automated procedure for informal and temporary dwellings detection and enumeration, using mathematical morphology operators on VHR satellite data

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Małgorzata; Kemper, Thomas

    2016-10-01

    Every year thousands of people are displaced by conflicts or natural disasters and often gather in large camps. Knowing how many people have been gathered is crucial for an efficient relief operation. However, it is often difficult to collect exact information on the total number of the population. This paper presents the improved morphological methodology for the estimation of dwellings structures located in several Internally Displaced Persons (IDPs) Camps, based on Very High Resolution (VHR) multispectral satellite imagery with pixel sizes of 1 meter or less including GeoEye-1, WorldView-2, QuickBird-2, Ikonos-2, Pléiades-A and Pléiades-B. The main topic of this paper is the approach enhancement with selection of feature extraction algorithm, the improvement and automation of pre-processing and results verification. For the informal and temporary dwellings extraction purpose the high quality of data has to be ensured. The pre-processing has been extended by including the input data hierarchy level assignment and data fusion method selection and evaluation. The feature extraction algorithm follows the procedure presented in Jenerowicz, M., Kemper, T., 2011. Optical data are analysed in a cyclic approach comprising image segmentation, geometrical, textural and spectral class modeling aiming at camp area identification. The successive steps of morphological processing have been combined in a one stand-alone application for automatic dwellings detection and enumeration. Actively implemented, these approaches can provide a reliable and consistent results, independent of the imaging satellite type and different study sites location, providing decision support in emergency response for the humanitarian community like United Nations, European Union and Non-Governmental relief organizations.

  15. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    PubMed

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  16. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing.

    PubMed

    Rahim, Sarni Suhaila; Palade, Vasile; Shuttleworth, James; Jayne, Chrisina

    2016-12-01

    Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.

  17. Improvement of automatic hemorrhage detection methods using brightness correction on fundus images

    NASA Astrophysics Data System (ADS)

    Hatanaka, Yuji; Nakagawa, Toshiaki; Hayashi, Yoshinori; Kakogawa, Masakatsu; Sawada, Akira; Kawase, Kazuhide; Hara, Takeshi; Fujita, Hiroshi

    2008-03-01

    We have been developing several automated methods for detecting abnormalities in fundus images. The purpose of this study is to improve our automated hemorrhage detection method to help diagnose diabetic retinopathy. We propose a new method for preprocessing and false positive elimination in the present study. The brightness of the fundus image was changed by the nonlinear curve with brightness values of the hue saturation value (HSV) space. In order to emphasize brown regions, gamma correction was performed on each red, green, and blue-bit image. Subsequently, the histograms of each red, blue, and blue-bit image were extended. After that, the hemorrhage candidates were detected. The brown regions indicated hemorrhages and blood vessels and their candidates were detected using density analysis. We removed the large candidates such as blood vessels. Finally, false positives were removed by using a 45-feature analysis. To evaluate the new method for the detection of hemorrhages, we examined 125 fundus images, including 35 images with hemorrhages and 90 normal images. The sensitivity and specificity for the detection of abnormal cases was were 80% and 88%, respectively. These results indicate that the new method may effectively improve the performance of our computer-aided diagnosis system for hemorrhages.

  18. Massively-Parallel Architectures for Automatic Recognition of Visual Speech Signals

    DTIC Science & Technology

    1988-10-12

    Secusrity Clamifieation, Nlassively-Parallel Architectures for Automa ic Recognitio of Visua, Speech Signals 12. PERSONAL AUTHOR(S) Terrence J...characteristics of speech from tJhe, visual speech signals. Neural networks have been trained on a database of vowels. The rqw images of faces , aligned and...images of faces , aligned and preprocessed, were used as input to these network which were trained to estimate the corresponding envelope of the

  19. Methodological improvements in voxel-based analysis of diffusion tensor images: applications to study the impact of apolipoprotein E on white matter integrity.

    PubMed

    Newlander, Shawn M; Chu, Alan; Sinha, Usha S; Lu, Po H; Bartzokis, George

    2014-02-01

    To identify regional differences in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) using customized preprocessing before voxel-based analysis (VBA) in 14 normal subjects with the specific genes that decrease (apolipoprotein [APO] E ε2) and that increase (APOE ε4) the risk of Alzheimer's disease. Diffusion tensor images (DTI) acquired at 1.5 Tesla were denoised with a total variation tensor regularization algorithm before affine and nonlinear registration to generate a common reference frame for the image volumes of all subjects. Anisotropic and isotropic smoothing with varying kernel sizes was applied to the aligned data before VBA to determine regional differences between cohorts segregated by allele status. VBA on the denoised tensor data identified regions of reduced FA in APOE ε4 compared with the APOE ε2 healthy older carriers. The most consistent results were obtained using the denoised tensor and anisotropic smoothing before statistical testing. In contrast, isotropic smoothing identified regional differences for small filter sizes alone, emphasizing that this method introduces bias in FA values for higher kernel sizes. Voxel-based DTI analysis can be performed on low signal to noise ratio images to detect subtle regional differences in cohorts using the proposed preprocessing techniques. Copyright © 2013 Wiley Periodicals, Inc.

  20. Determination of densified biomass mass properties using 3D laser scanning and image analysis

    USDA-ARS?s Scientific Manuscript database

    Biomass densification is viewed as the indispensable feedstock preprocessing operation for efficient transport, storage, material flow through machines, and handling activities. Accurate mass properties of densified biomass such as surface area, volume, and envelope density form fundamental data for...

  1. Principal components technique analysis for vegetation and land use discrimination. [Brazilian cerrados

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Formaggio, A. R.; Dossantos, J. R.; Dias, L. A. V.

    1984-01-01

    Automatic pre-processing technique called Principal Components (PRINCO) in analyzing LANDSAT digitized data, for land use and vegetation cover, on the Brazilian cerrados was evaluated. The chosen pilot area, 223/67 of MSS/LANDSAT 3, was classified on a GE Image-100 System, through a maximum-likehood algorithm (MAXVER). The same procedure was applied to the PRINCO treated image. PRINCO consists of a linear transformation performed on the original bands, in order to eliminate the information redundancy of the LANDSAT channels. After PRINCO only two channels were used thus reducing computer effort. The original channels and the PRINCO channels grey levels for the five identified classes (grassland, "cerrado", burned areas, anthropic areas, and gallery forest) were obtained through the MAXVER algorithm. This algorithm also presented the average performance for both cases. In order to evaluate the results, the Jeffreys-Matusita distance (JM-distance) between classes was computed. The classification matrix, obtained through MAXVER, after a PRINCO pre-processing, showed approximately the same average performance in the classes separability.

  2. Novel method for edge detection of retinal vessels based on the model of the retinal vascular network and mathematical morphology

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Zheng, Xiaoxiang; Zhang, Hengyi; Yu, Yajun

    1998-09-01

    Accurate edge detection of retinal vessels is a prerequisite for quantitative analysis of subtle morphological changes of retinal vessels under different pathological conditions. A novel method for edge detection of retinal vessels is presented in this paper. Methods: (1) Wavelet-based image preprocessing. (2) The signed edge detection algorithm and mathematical morphological operation are applied to get the approximate regions that contain retinal vessels. (3) By convolving the preprocessed image with a LoG operator only on the detected approximate regions of retinal vessels, followed by edges refining, clear edge maps of the retinal vessels are fast obtained. Results: A detailed performance evaluation together with the existing techniques is given to demonstrate the strong features of our method. Conclusions: True edge locations of retinal vessels can be fast detected with continuous structures of retinal vessels, less non- vessel segments left and insensitivity to noise. The method is also suitable for other application fields such as road edge detection.

  3. Image-based path planning for automated virtual colonoscopy navigation

    NASA Astrophysics Data System (ADS)

    Hong, Wei

    2008-03-01

    Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.

  4. Coupled dictionary learning for joint MR image restoration and segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Xuesong; Fan, Yong

    2018-03-01

    To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.

  5. X-window-based 2K display workstation

    NASA Astrophysics Data System (ADS)

    Weinberg, Wolfram S.; Hayrapetian, Alek S.; Cho, Paul S.; Valentino, Daniel J.; Taira, Ricky K.; Huang, H. K.

    1991-07-01

    A high-definition, high-performance display station for reading and review of digital radiological images is introduced. The station is based on a Sun SPARC Station 4 and employs X window system for display and manipulation of images. A mouse-operated graphic user interface is implemented utilizing Motif-style tools. The system supports up to four MegaScan gray-scale 2560 X 2048 monitors. A special configuration of frame and video buffer yields a data transfer of 50 M pixels/s. A magnetic disk array supplies a storage capacity of 2 GB with a data transfer rate of 4-6 MB/s. The system has access to the central archive through an ultrahigh-speed fiber-optic network and patient studies are automatically transferred to the local disk. The available image processing functions include change of lookup table, zoom and pan, and cine. Future enhancements will provide for manual contour tracing, length, area, and density measurements, text and graphic overlay, as well as composition of selected images. Additional preprocessing procedures under development will optimize the initial lookup table and adjust the images to a standard orientation.

  6. Genetic Algorithm for Optimization: Preprocessing with n Dimensional Bisection and Error Estimation

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2006-01-01

    A knowledge of the appropriate values of the parameters of a genetic algorithm (GA) such as the population size, the shrunk search space containing the solution, crossover and mutation probabilities is not available a priori for a general optimization problem. Recommended here is a polynomial-time preprocessing scheme that includes an n-dimensional bisection and that determines the foregoing parameters before deciding upon an appropriate GA for all problems of similar nature and type. Such a preprocessing is not only fast but also enables us to get the global optimal solution and its reasonably narrow error bounds with a high degree of confidence.

  7. LDRD final report :

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, Randolph C.; McLendon, William Clarence,

    2013-01-01

    Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report amore » preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.« less

  8. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  9. Road sign recognition with fuzzy adaptive pre-processing models.

    PubMed

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance.

  10. Road Sign Recognition with Fuzzy Adaptive Pre-Processing Models

    PubMed Central

    Lin, Chien-Chuan; Wang, Ming-Shi

    2012-01-01

    A road sign recognition system based on adaptive image pre-processing models using two fuzzy inference schemes has been proposed. The first fuzzy inference scheme is to check the changes of the light illumination and rich red color of a frame image by the checking areas. The other is to check the variance of vehicle's speed and angle of steering wheel to select an adaptive size and position of the detection area. The Adaboost classifier was employed to detect the road sign candidates from an image and the support vector machine technique was employed to recognize the content of the road sign candidates. The prohibitory and warning road traffic signs are the processing targets in this research. The detection rate in the detection phase is 97.42%. In the recognition phase, the recognition rate is 93.04%. The total accuracy rate of the system is 92.47%. For video sequences, the best accuracy rate is 90.54%, and the average accuracy rate is 80.17%. The average computing time is 51.86 milliseconds per frame. The proposed system can not only overcome low illumination and rich red color around the road sign problems but also offer high detection rates and high computing performance. PMID:22778650

  11. Automated Processing Workflow for Ambient Seismic Recordings

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J.

    2017-12-01

    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that automated preprocessing of ambient seismic recordings in the recording domain successfully mitigates unwanted coherent noise events in both the time and frequency domain. Accordingly, we assert that this method is beneficial for direct wave-equation imaging with ambient seismic recordings.

  12. Automated detection of diabetic retinopathy on digital fundus images.

    PubMed

    Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D

    2002-02-01

    The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.

  13. The artificial object detection and current velocity measurement using SAR ocean surface images

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Strotov, Valery; Ershov, Maksim; Muraviev, Vadim; Feldman, Alexander; Smirnov, Sergey

    2017-10-01

    Due to the fact that water surface covers wide areas, remote sensing is the most appropriate way of getting information about ocean environment for vessel tracking, security purposes, ecological studies and others. Processing of synthetic aperture radar (SAR) images is extensively used for control and monitoring of the ocean surface. Image data can be acquired from Earth observation satellites, such as TerraSAR-X, ERS, and COSMO-SkyMed. Thus, SAR image processing can be used to solve many problems arising in this field of research. This paper discusses some of them including ship detection, oil pollution control and ocean currents mapping. Due to complexity of the problem several specialized algorithm are necessary to develop. The oil spill detection algorithm consists of the following main steps: image preprocessing, detection of dark areas, parameter extraction and classification. The ship detection algorithm consists of the following main steps: prescreening, land masking, image segmentation combined with parameter measurement, ship orientation estimation and object discrimination. The proposed approach to ocean currents mapping is based on Doppler's law. The results of computer modeling on real SAR images are presented. Based on these results it is concluded that the proposed approaches can be used in maritime applications.

  14. Image analysis of pulmonary nodules using micro CT

    NASA Astrophysics Data System (ADS)

    Niki, Noboru; Kawata, Yoshiki; Fujii, Masashi; Kakinuma, Ryutaro; Moriyama, Noriyuki; Tateno, Yukio; Matsui, Eisuke

    2001-07-01

    We are developing a micro-computed tomography (micro CT) system for imaging pulmonary nodules. The purpose is to enhance the physician performance in accessing the micro- architecture of the nodule for classification between malignant and benign nodules. The basic components of the micro CT system consist of microfocus X-ray source, a specimen manipulator, and an image intensifier detector coupled to charge-coupled device (CCD) camera. 3D image reconstruction was performed by the slice. A standard fan- beam convolution and backprojection algorithm was used to reconstruct the center plane intersecting the X-ray source. The preprocessing of the 3D image reconstruction included the correction of the geometrical distortions and the shading artifact introduced by the image intensifier. The main advantage of the system is to obtain a high spatial resolution which ranges between b micrometers and 25 micrometers . In this work we report on preliminary studies performed with the micro CT for imaging resected tissues of normal and abnormal lung. Experimental results reveal micro architecture of lung tissues, such as alveolar wall, septal wall of pulmonary lobule, and bronchiole. From the results, the micro CT system is expected to have interesting potentials for high confidential differential diagnosis.

  15. LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2

    NASA Astrophysics Data System (ADS)

    Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.

    2018-01-01

    We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive ( = 1015 M⊙) clusters at 0.15 < z < 0.3. Highly complete spectroscopic coverage combined with 24 μm imaging from Spitzer allows us to make a consistent and robust selection of cluster and group members including star-forming galaxies down to a stellar mass limit of M⋆ = 2 × 1010 M⊙. The fraction fSF of star-forming galaxies in infalling groups is lower and with a flatter trend with respect to clustercentric radius when compared to the rest of the cluster galaxy population. At R ≈ 1.3 r200, the fraction of star-forming galaxies in infalling groups is half that in the cluster galaxy population. This is direct evidence that star-formation quenching is effective in galaxies already prior to them settling in the cluster potential, and that groups are favourable locations for this process.

  16. Object-based land-use/land-cover change detection using Landsat imagery: a case study of Ardabil, Namin, and Nir counties in northwest Iran.

    PubMed

    Aslami, Farnoosh; Ghorbani, Ardavan

    2018-06-03

    In this study, land-use/land-cover (LULC) change in the Ardabil, Namin, and Nir counties, in the Ardabil province in the northwest of Iran, was detected using an object-based method. Landsat images including Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM + ), and Operational Land Imager (OLI) were used. Preprocessing methods, including geometric and radiometric correction, and topographic normalization were performed. Image processing was conducted according to object-based image analysis using the nearest neighbor algorithm. An accuracy assessment was conducted using overall accuracy and Kappa statistics. Results show that maps obtained from images for 1987, 2002, and 2013 had an overall accuracy of 91.76, 91.06, and 93.00%, and a Kappa coefficient of 0.90, 0.83, and 0.91, respectively. Change detection between 1987 and 2013 shows that most of the rangelands (97,156.6 ha) have been converted to dry farming; moreover, residential and other urban land uses have also increased. The largest change in land use has occurred for irrigated farming, rangelands, and dry farming, of which approximately 3539.8, 3086.9, and 2271.9 ha, respectively, have given way to urban land use for each of the studied years.

  17. A hybrid algorithm for the segmentation of books in libraries

    NASA Astrophysics Data System (ADS)

    Hu, Zilong; Tang, Jinshan; Lei, Liang

    2016-05-01

    This paper proposes an algorithm for book segmentation based on bookshelves images. The algorithm can be separated into three parts. The first part is pre-processing, aiming at eliminating or decreasing the effect of image noise and illumination conditions. The second part is near-horizontal line detection based on Canny edge detector, and separating a bookshelves image into multiple sub-images so that each sub-image contains an individual shelf. The last part is book segmentation. In each shelf image, near-vertical line is detected, and obtained lines are used for book segmentation. The proposed algorithm was tested with the bookshelf images taken from OPIE library in MTU, and the experimental results demonstrate good performance.

  18. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  19. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  20. A novel method for retinal optic disc detection using bat meta-heuristic algorithm.

    PubMed

    Abdullah, Ahmad S; Özok, Yasa Ekşioğlu; Rahebi, Javad

    2018-05-09

    Normally, the optic disc detection of retinal images is useful during the treatment of glaucoma and diabetic retinopathy. In this paper, the novel preprocessing of a retinal image with a bat algorithm (BA) optimization is proposed to detect the optic disc of the retinal image. As the optic disk is a bright area and the vessels that emerge from it are dark, these facts lead to the selected segments being regions with a great diversity of intensity, which does not usually happen in pathological regions. First, in the preprocessing stage, the image is fully converted into a gray image using a gray scale conversion, and then morphological operations are implemented in order to remove dark elements such as blood vessels, from the images. In the next stage, a bat algorithm (BA) is used to find the optimum threshold value for the optic disc location. In order to improve the accuracy and to obtain the best result for the segmented optic disc, the ellipse fitting approach was used in the last stage to enhance and smooth the segmented optic disc boundary region. The ellipse fitting is carried out using the least square distance approach. The efficiency of the proposed method was tested on six publicly available datasets, MESSIDOR, DRIVE, DIARETDB1, DIARETDB0, STARE, and DRIONS-DB. The optic disc segmentation average overlaps and accuracy was in the range of 78.5-88.2% and 96.6-99.91% in these six databases. The optic disk of the retinal images was segmented in less than 2.1 s per image. The use of the proposed method improved the optic disc segmentation results for healthy and pathological retinal images in a low computation time. Graphical abstract ᅟ.

  1. Influence of signal intensity non-uniformity on brain volumetry using an atlas-based method.

    PubMed

    Goto, Masami; Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2012-01-01

    Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.

  2. Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method

    PubMed Central

    Abe, Osamu; Miyati, Tosiaki; Kabasawa, Hiroyuki; Takao, Hidemasa; Hayashi, Naoto; Kurosu, Tomomi; Iwatsubo, Takeshi; Yamashita, Fumio; Matsuda, Hiroshi; Mori, Harushi; Kunimatsu, Akira; Aoki, Shigeki; Ino, Kenji; Yano, Keiichi; Ohtomo, Kuni

    2012-01-01

    Objective Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 × [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials. PMID:22778560

  3. The modulation transfer function and signal-to-noise ratio of different digital filters: a technical approach.

    PubMed

    Brüllmann, D D; d'Hoedt, B

    2011-05-01

    The aim of this study was to illustrate the influence of digital filters on the signal-to-noise ratio (SNR) and modulation transfer function (MTF) of digital images. The article will address image pre-processing that may be beneficial for the production of clinically useful digital radiographs with lower radiation dose. Three filters, an arithmetic mean filter, a median filter and a Gaussian filter (standard deviation (SD) = 0.4), with kernel sizes of 3 × 3 pixels and 5 × 5 pixels were tested. Synthetic images with exactly increasing amounts of Gaussian noise were created to gather linear regression of SNR before and after application of digital filters. Artificial stripe patterns with defined amounts of line pairs per millimetre were used to calculate MTF before and after the application of the digital filters. The Gaussian filter with a 5 × 5 kernel size caused the highest noise suppression (SNR increased from 2.22, measured in the synthetic image, to 11.31 in the filtered image). The smallest noise reduction was found with the 3 × 3 median filter. The application of the median filters resulted in no changes in MTF at the different resolutions but did result in the deletion of smaller structures. The 5 × 5 Gaussian filter and the 5 × 5 arithmetic mean filter showed the strongest changes of MTF. The application of digital filters can improve the SNR of a digital sensor; however, MTF can be adversely affected. As such, imaging systems should not be judged solely on their quoted spatial resolutions because pre-processing may influence image quality.

  4. EMHP: an accurate automated hole masking algorithm for single-particle cryo-EM image processing.

    PubMed

    Berndsen, Zachary; Bowman, Charles; Jang, Haerin; Ward, Andrew B

    2017-12-01

    The Electron Microscopy Hole Punch (EMHP) is a streamlined suite of tools for quick assessment, sorting and hole masking of electron micrographs. With recent advances in single-particle electron cryo-microscopy (cryo-EM) data processing allowing for the rapid determination of protein structures using a smaller computational footprint, we saw the need for a fast and simple tool for data pre-processing that could run independent of existing high-performance computing (HPC) infrastructures. EMHP provides a data preprocessing platform in a small package that requires minimal python dependencies to function. https://www.bitbucket.org/chazbot/emhp Apache 2.0 License. bowman@scripps.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  5. Application of the Intuitionistic Fuzzy InterCriteria Analysis Method with Triples to a Neural Network Preprocessing Procedure

    PubMed Central

    Atanassova, Vassia; Sotirova, Evdokia; Doukovska, Lyubka; Bureva, Veselina; Mavrov, Deyan; Tomov, Jivko

    2017-01-01

    The approach of InterCriteria Analysis (ICA) was applied for the aim of reducing the set of variables on the input of a neural network, taking into account the fact that their large number increases the number of neurons in the network, thus making them unusable for hardware implementation. Here, for the first time, with the help of the ICA method, correlations between triples of the input parameters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may yield reduction of the total time for training the neural networks, hence, the time for the network's processing of data and images. PMID:28874908

  6. Computing Fourier integral operators with caustics

    NASA Astrophysics Data System (ADS)

    Caday, Peter

    2016-12-01

    Fourier integral operators (FIOs) have widespread applications in imaging, inverse problems, and PDEs. An implementation of a generic algorithm for computing FIOs associated with canonical graphs is presented, based on a recent paper of de Hoop et al. Given the canonical transformation and principal symbol of the operator, a preprocessing step reduces application of an FIO approximately to multiplications, pushforwards and forward and inverse discrete Fourier transforms, which can be computed in O({N}n+(n-1)/2{log}N) time for an n-dimensional FIO. The same preprocessed data also allows computation of the inverse and transpose of the FIO, with identical runtime. Examples demonstrate the algorithm’s output, and easily extendible MATLAB/C++ source code is available from the author.

  7. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  8. Neural network diagnosis of avascular necrosis from magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Manduca, Armando; Christy, Paul S.; Ehman, Richard L.

    1993-09-01

    We have explored the use of artificial neural networks to diagnose avascular necrosis (AVN) of the femoral head from magnetic resonance images. We have developed multi-layer perceptron networks, trained with conjugate gradient optimization, which diagnose AVN from single sagittal images of the femoral head with 100% accuracy on the training data and 97% accuracy on test data. These networks use only the raw image as input (with minimal preprocessing to average the images down to 32 X 32 size and to scale the input data values) and learn to extract their own features for the diagnosis decision. Various experiments with these networks are described.

  9. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.

  10. An Improved Framework for Confound Regression and Filtering for Control of Motion Artifact in the Preprocessing of Resting-State Functional Connectivity Data

    PubMed Central

    Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.

    2013-01-01

    Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292

  11. Multi-objective optimization for an automated and simultaneous phase and baseline correction of NMR spectral data

    NASA Astrophysics Data System (ADS)

    Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus

    2018-04-01

    Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

  12. Epidermis area detection for immunofluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia

    2018-04-01

    We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.

  13. Improving performances of suboptimal greedy iterative biclustering heuristics via localization.

    PubMed

    Erten, Cesim; Sözdinler, Melih

    2010-10-15

    Biclustering gene expression data is the problem of extracting submatrices of genes and conditions exhibiting significant correlation across both the rows and the columns of a data matrix of expression values. Even the simplest versions of the problem are computationally hard. Most of the proposed solutions therefore employ greedy iterative heuristics that locally optimize a suitably assigned scoring function. We provide a fast and simple pre-processing algorithm called localization that reorders the rows and columns of the input data matrix in such a way as to group correlated entries in small local neighborhoods within the matrix. The proposed localization algorithm takes its roots from effective use of graph-theoretical methods applied to problems exhibiting a similar structure to that of biclustering. In order to evaluate the effectivenesss of the localization pre-processing algorithm, we focus on three representative greedy iterative heuristic methods. We show how the localization pre-processing can be incorporated into each representative algorithm to improve biclustering performance. Furthermore, we propose a simple biclustering algorithm, Random Extraction After Localization (REAL) that randomly extracts submatrices from the localization pre-processed data matrix, eliminates those with low similarity scores, and provides the rest as correlated structures representing biclusters. We compare the proposed localization pre-processing with another pre-processing alternative, non-negative matrix factorization. We show that our fast and simple localization procedure provides similar or even better results than the computationally heavy matrix factorization pre-processing with regards to H-value tests. We next demonstrate that the performances of the three representative greedy iterative heuristic methods improve with localization pre-processing when biological correlations in the form of functional enrichment and PPI verification constitute the main performance criteria. The fact that the random extraction method based on localization REAL performs better than the representative greedy heuristic methods under same criteria also confirms the effectiveness of the suggested pre-processing method. Supplementary material including code implementations in LEDA C++ library, experimental data, and the results are available at http://code.google.com/p/biclustering/ cesim@khas.edu.tr; melihsozdinler@boun.edu.tr Supplementary data are available at Bioinformatics online.

  14. Self-Organizing-Map Program for Analyzing Multivariate Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Jacob, Joseph C.; Block, Gary L.; Braverman, Amy J.

    2005-01-01

    SOM_VIS is a computer program for analysis and display of multidimensional sets of Earth-image data typified by the data acquired by the Multi-angle Imaging Spectro-Radiometer [MISR (a spaceborne instrument)]. In SOM_VIS, an enhanced self-organizing-map (SOM) algorithm is first used to project a multidimensional set of data into a nonuniform three-dimensional lattice structure. The lattice structure is mapped to a color space to obtain a color map for an image. The Voronoi cell-refinement algorithm is used to map the SOM lattice structure to various levels of color resolution. The final result is a false-color image in which similar colors represent similar characteristics across all its data dimensions. SOM_VIS provides a control panel for selection of a subset of suitably preprocessed MISR radiance data, and a control panel for choosing parameters to run SOM training. SOM_VIS also includes a component for displaying the false-color SOM image, a color map for the trained SOM lattice, a plot showing an original input vector in 36 dimensions of a selected pixel from the SOM image, the SOM vector that represents the input vector, and the Euclidean distance between the two vectors.

  15. Optimal Filter Estimation for Lucas-Kanade Optical Flow

    PubMed Central

    Sharmin, Nusrat; Brad, Remus

    2012-01-01

    Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.

  16. Three-dimensional digital mapping of the optic nerve head cupping in glaucoma

    NASA Astrophysics Data System (ADS)

    Mitra, Sunanda; Ramirez, Manuel; Morales, Jose

    1992-08-01

    Visualization of the optic nerve head cupping is clinically achieved by stereoscopic viewing of a fundus image pair of the suspected eye. A novel algorithm for three-dimensional digital surface representation of the optic nerve head, using fusion of stereo depth map with a linearly stretched intensity image of a stereo fundus image pair, is presented. Prior to depth map acquisition, a number of preprocessing tasks including feature extraction, registration by cepstral analysis, and correction for intensity variations are performed. The depth map is obtained by using a coarse to fine strategy for obtaining disparities between corresponding areas. The required matching techniques to obtain the translational differences in every step, uses cepstral analysis and correlation-like scanning technique in the spatial domain for the finest details. The quantitative and precise representation of the optic nerve head surface topography following this algorithm is not computationally intensive and should provide more useful information than just qualitative stereoscopic viewing of the fundus as one of the diagnostic criteria for diagnosis of glaucoma.

  17. Change detection in satellite images

    NASA Astrophysics Data System (ADS)

    Thonnessen, U.; Hofele, G.; Middelmann, W.

    2005-05-01

    Change detection plays an important role in different military areas as strategic reconnaissance, verification of armament and disarmament control and damage assessment. It is the process of identifying differences in the state of an object or phenomenon by observing it at different times. The availability of spaceborne reconnaissance systems with high spatial resolution, multi spectral capabilities, and short revisit times offer new perspectives for change detection. Before performing any kind of change detection it is necessary to separate changes of interest from changes caused by differences in data acquisition parameters. In these cases it is necessary to perform a pre-processing to correct the data or to normalize it. Image registration and, corresponding to this task, the ortho-rectification of the image data is a further prerequisite for change detection. If feasible, a 1-to-1 geometric correspondence should be aspired for. Change detection on an iconic level with a succeeding interpretation of the changes by the observer is often proposed; nevertheless an automatic knowledge-based analysis delivering the interpretation of the changes on a semantic level should be the aim of the future. We present first results of change detection on a structural level concerning urban areas. After pre-processing, the images are segmented in areas of interest and structural analysis is applied to these regions to extract descriptions of urban infrastructure like buildings, roads and tanks of refineries. These descriptions are matched to detect changes and similarities.

  18. MassImager: A software for interactive and in-depth analysis of mass spectrometry imaging data.

    PubMed

    He, Jiuming; Huang, Luojiao; Tian, Runtao; Li, Tiegang; Sun, Chenglong; Song, Xiaowei; Lv, Yiwei; Luo, Zhigang; Li, Xin; Abliz, Zeper

    2018-07-26

    Mass spectrometry imaging (MSI) has become a powerful tool to probe molecule events in biological tissue. However, it is a widely held viewpoint that one of the biggest challenges is an easy-to-use data processing software for discovering the underlying biological information from complicated and huge MSI dataset. Here, a user-friendly and full-featured MSI software including three subsystems, Solution, Visualization and Intelligence, named MassImager, is developed focusing on interactive visualization, in-situ biomarker discovery and artificial intelligent pathological diagnosis. Simplified data preprocessing and high-throughput MSI data exchange, serialization jointly guarantee the quick reconstruction of ion image and rapid analysis of dozens of gigabytes datasets. It also offers diverse self-defined operations for visual processing, including multiple ion visualization, multiple channel superposition, image normalization, visual resolution enhancement and image filter. Regions-of-interest analysis can be performed precisely through the interactive visualization between the ion images and mass spectra, also the overlaid optical image guide, to directly find out the region-specific biomarkers. Moreover, automatic pattern recognition can be achieved immediately upon the supervised or unsupervised multivariate statistical modeling. Clear discrimination between cancer tissue and adjacent tissue within a MSI dataset can be seen in the generated pattern image, which shows great potential in visually in-situ biomarker discovery and artificial intelligent pathological diagnosis of cancer. All the features are integrated together in MassImager to provide a deep MSI processing solution at the in-situ metabolomics level for biomarker discovery and future clinical pathological diagnosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm.

    PubMed

    Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver

    2017-03-14

    We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T 1 -weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.

  20. Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine

    NASA Astrophysics Data System (ADS)

    Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko

    2015-01-01

    Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.

  1. Design of biometrics identification system on palm vein using infrared light

    NASA Astrophysics Data System (ADS)

    Syafiq, Muhammad; Nasution, Aulia M. T.

    2016-11-01

    Image obtained by the LED with wavelength 740nm and 810nm showed that the contrast gradient of vein pattern is low and palm pattern still exist. It means that 740nm and 810nm are less suitable for the detection of blood vessels in the palm of the hand. At a wavelength of 940nm, the pattern is clearly visible, and the pattern of the palms is mostly gone. Furthermore, the pre-processing performed using smoothing process which include Gaussian filter and median filter and contrast stretching. Image segmentation is done by getting the ROI area that would be obtained its information. The identification process of image features obtained by using MSE (Mean Suare Error) method ,LBP (Local Binary Pattern). Furthermore, we will use a database consists of 5 different palm vein pattern which will be used for testing the tool in the identification process. All the process above are done using Raspberry Pi device. The Obtained MSE parameter is 0.025 and LBP features score are less than 10-3 for image to be matched.

  2. T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm

    NASA Astrophysics Data System (ADS)

    Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver

    2017-03-01

    We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T1-weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.

  3. Combustion monitoring of a water tube boiler using a discriminant radial basis network.

    PubMed

    Sujatha, K; Pappa, N

    2011-01-01

    This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Nucleus segmentation in histology images with hierarchical multilevel thresholding

    NASA Astrophysics Data System (ADS)

    Ahmady Phoulady, Hady; Goldgof, Dmitry B.; Hall, Lawrence O.; Mouton, Peter R.

    2016-03-01

    Automatic segmentation of histological images is an important step for increasing throughput while maintaining high accuracy, avoiding variation from subjective bias, and reducing the costs for diagnosing human illnesses such as cancer and Alzheimer's disease. In this paper, we present a novel method for unsupervised segmentation of cell nuclei in stained histology tissue. Following an initial preprocessing step involving color deconvolution and image reconstruction, the segmentation step consists of multilevel thresholding and a series of morphological operations. The only parameter required for the method is the minimum region size, which is set according to the resolution of the image. Hence, the proposed method requires no training sets or parameter learning. Because the algorithm requires no assumptions or a priori information with regard to cell morphology, the automatic approach is generalizable across a wide range of tissues. Evaluation across a dataset consisting of diverse tissues, including breast, liver, gastric mucosa and bone marrow, shows superior performance over four other recent methods on the same dataset in terms of F-measure with precision and recall of 0.929 and 0.886, respectively.

  5. Multimodal Imaging of Brain Connectivity Using the MIBCA Toolbox: Preliminary Application to Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Ribeiro, André Santos; Lacerda, Luís Miguel; Silva, Nuno André da; Ferreira, Hugo Alexandre

    2015-06-01

    The Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox is a fully automated all-in-one connectivity analysis toolbox that offers both pre-processing, connectivity, and graph theory analysis of multimodal images such as anatomical, diffusion, and functional MRI, and PET. In this work, the MIBCA functionalities were used to study Alzheimer's Disease (AD) in a multimodal MR/PET approach. Materials and Methods: Data from 12 healthy controls, and 36 patients with EMCI, LMCI and AD (12 patients for each group) were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu), including T1-weighted (T1-w), Diffusion Tensor Imaging (DTI) data, and 18F-AV-45 (florbetapir) dynamic PET data from 40-60 min post injection (4x5 min). Both MR and PET data were automatically pre-processed for all subjects using MIBCA. T1-w data was parcellated into cortical and subcortical regions-of-interest (ROIs), and the corresponding thicknesses and volumes were calculated. DTI data was used to compute structural connectivity matrices based on fibers connecting pairs of ROIs. Lastly, dynamic PET images were summed, and the relative Standard Uptake Values calculated for each ROI. Results: An overall higher uptake of 18F-AV-45, consistent with an increased deposition of beta-amyloid, was observed for the AD group. Additionally, patients showed significant cortical atrophy (thickness and volume) especially in the entorhinal cortex and temporal areas, and a significant increase in Mean Diffusivity (MD) in the hippocampus, amygdala and temporal areas. Furthermore, patients showed a reduction of fiber connectivity with the progression of the disease, especially for intra-hemispherical connections. Conclusion: This work shows the potential of the MIBCA toolbox for the study of AD, as findings were shown to be in agreement with the literature. Here, only structural changes and beta-amyloid accumulation were considered. Yet, MIBCA is further able to process fMRI and different radiotracers, thus leading to integration of functional information, and supporting the research for new multimodal biomarkers for AD and other neurodegenerative diseases.

  6. BanglaLekha-Isolated: A multi-purpose comprehensive dataset of Handwritten Bangla Isolated characters.

    PubMed

    Biswas, Mithun; Islam, Rafiqul; Shom, Gautam Kumar; Shopon, Md; Mohammed, Nabeel; Momen, Sifat; Abedin, Anowarul

    2017-06-01

    BanglaLekha-Isolated, a Bangla handwritten isolated character dataset is presented in this article. This dataset contains 84 different characters comprising of 50 Bangla basic characters, 10 Bangla numerals and 24 selected compound characters. 2000 handwriting samples for each of the 84 characters were collected, digitized and pre-processed. After discarding mistakes and scribbles, 1,66,105 handwritten character images were included in the final dataset. The dataset also includes labels indicating the age and the gender of the subjects from whom the samples were collected. This dataset could be used not only for optical handwriting recognition research but also to explore the influence of gender and age on handwriting. The dataset is publicly available at https://data.mendeley.com/datasets/hf6sf8zrkc/2.

  7. An SPM12 extension for multiple sclerosis lesion segmentation

    NASA Astrophysics Data System (ADS)

    Roura, Eloy; Oliver, Arnau; Cabezas, Mariano; Valverde, Sergi; Pareto, Deborah; Vilanova, Joan C.; Ramió-Torrentà, Lluís.; Rovira, Àlex; Lladó, Xavier

    2016-03-01

    Purpose: Magnetic resonance imaging is nowadays the hallmark to diagnose multiple sclerosis (MS), characterized by white matter lesions. Several approaches have been recently presented to tackle the lesion segmentation problem, but none of them have been accepted as a standard tool in the daily clinical practice. In this work we present yet another tool able to automatically segment white matter lesions outperforming the current-state-of-the-art approaches. Methods: This work is an extension of Roura et al. [1], where external and platform dependent pre-processing libraries (brain extraction, noise reduction and intensity normalization) were required to achieve an optimal performance. Here we have updated and included all these required pre-processing steps into a single framework (SPM software). Therefore, there is no need of external tools to achieve the desired segmentation results. Besides, we have changed the working space from T1w to FLAIR, reducing interpolation errors produced in the registration process from FLAIR to T1w space. Finally a post-processing constraint based on shape and location has been added to reduce false positive detections. Results: The evaluation of the tool has been done on 24 MS patients. Qualitative and quantitative results are shown with both approaches in terms of lesion detection and segmentation. Conclusion: We have simplified both installation and implementation of the approach, providing a multiplatform tool1 integrated into the SPM software, which relies only on using T1w and FLAIR images. We have reduced with this new version the computation time of the previous approach while maintaining the performance.

  8. Toward automated face detection in thermal and polarimetric thermal imagery

    NASA Astrophysics Data System (ADS)

    Gordon, Christopher; Acosta, Mark; Short, Nathan; Hu, Shuowen; Chan, Alex L.

    2016-05-01

    Visible spectrum face detection algorithms perform pretty reliably under controlled lighting conditions. However, variations in illumination and application of cosmetics can distort the features used by common face detectors, thereby degrade their detection performance. Thermal and polarimetric thermal facial imaging are relatively invariant to illumination and robust to the application of makeup, due to their measurement of emitted radiation instead of reflected light signals. The objective of this work is to evaluate a government off-the-shelf wavelet based naïve-Bayes face detection algorithm and a commercial off-the-shelf Viola-Jones cascade face detection algorithm on face imagery acquired in different spectral bands. New classifiers were trained using the Viola-Jones cascade object detection framework with preprocessed facial imagery. Preprocessing using Difference of Gaussians (DoG) filtering reduces the modality gap between facial signatures across the different spectral bands, thus enabling more correlated histogram of oriented gradients (HOG) features to be extracted from the preprocessed thermal and visible face images. Since the availability of training data is much more limited in the thermal spectrum than in the visible spectrum, it is not feasible to train a robust multi-modal face detector using thermal imagery alone. A large training dataset was constituted with DoG filtered visible and thermal imagery, which was subsequently used to generate a custom trained Viola-Jones detector. A 40% increase in face detection rate was achieved on a testing dataset, as compared to the performance of a pre-trained/baseline face detector. Insights gained in this research are valuable in the development of more robust multi-modal face detectors.

  9. User-friendly solutions for microarray quality control and pre-processing on ArrayAnalysis.org

    PubMed Central

    Eijssen, Lars M. T.; Jaillard, Magali; Adriaens, Michiel E.; Gaj, Stan; de Groot, Philip J.; Müller, Michael; Evelo, Chris T.

    2013-01-01

    Quality control (QC) is crucial for any scientific method producing data. Applying adequate QC introduces new challenges in the genomics field where large amounts of data are produced with complex technologies. For DNA microarrays, specific algorithms for QC and pre-processing including normalization have been developed by the scientific community, especially for expression chips of the Affymetrix platform. Many of these have been implemented in the statistical scripting language R and are available from the Bioconductor repository. However, application is hampered by lack of integrative tools that can be used by users of any experience level. To fill this gap, we developed a freely available tool for QC and pre-processing of Affymetrix gene expression results, extending, integrating and harmonizing functionality of Bioconductor packages. The tool can be easily accessed through a wizard-like web portal at http://www.arrayanalysis.org or downloaded for local use in R. The portal provides extensive documentation, including user guides, interpretation help with real output illustrations and detailed technical documentation. It assists newcomers to the field in performing state-of-the-art QC and pre-processing while offering data analysts an integral open-source package. Providing the scientific community with this easily accessible tool will allow improving data quality and reuse and adoption of standards. PMID:23620278

  10. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    PubMed

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  11. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  12. EEG and MEG data analysis in SPM8.

    PubMed

    Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl

    2011-01-01

    SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools.

  13. EEG and MEG Data Analysis in SPM8

    PubMed Central

    Litvak, Vladimir; Mattout, Jérémie; Kiebel, Stefan; Phillips, Christophe; Henson, Richard; Kilner, James; Barnes, Gareth; Oostenveld, Robert; Daunizeau, Jean; Flandin, Guillaume; Penny, Will; Friston, Karl

    2011-01-01

    SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian M/EEG source reconstruction, including support for group studies, simultaneous EEG and MEG, and fMRI priors; (iii) dynamic causal modelling (DCM), an approach combining neural modelling with data analysis for which there are several variants dealing with evoked responses, steady state responses (power spectra and cross-spectra), induced responses, and phase coupling. SPM8 is integrated with the FieldTrip toolbox , making it possible for users to combine a variety of standard analysis methods with new schemes implemented in SPM and build custom analysis tools using powerful graphical user interface (GUI) and batching tools. PMID:21437221

  14. Fast and efficient indexing approach for object recognition

    NASA Astrophysics Data System (ADS)

    Hefnawy, Alaa; Mashali, Samia A.; Rashwan, Mohsen; Fikri, Magdi

    1999-08-01

    This paper introduces a fast and efficient indexing approach for both 2D and 3D model-based object recognition in the presence of rotation, translation, and scale variations of objects. The indexing entries are computed after preprocessing the data by Haar wavelet decomposition. The scheme is based on a unified image feature detection approach based on Zernike moments. A set of low level features, e.g. high precision edges, gray level corners, are estimated by a set of orthogonal Zernike moments, calculated locally around every image point. A high dimensional, highly descriptive indexing entries are then calculated based on the correlation of these local features and employed for fast access to the model database to generate hypotheses. A list of the most candidate models is then presented by evaluating the hypotheses. Experimental results are included to demonstrate the effectiveness of the proposed indexing approach.

  15. Diffractive-optical correlators: chances to make optical image preprocessing as intelligent as human vision

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    2004-10-01

    The human eye is a good model for the engineering of optical correlators. Three prominent intelligent functionalities in human vision could in the near future become realized by a new diffractive-optical hardware design of optical imaging sensors: (1) Illuminant-adaptive RGB-based color Vision, (2) Monocular 3D Vision based on RGB data processing, (3) Patchwise fourier-optical Object-Classification and Identification. The hardware design of the human eye has specific diffractive-optical elements (DOE's) in aperture and in image space and seems to execute the three jobs at -- or not far behind -- the loci of the images of objects.

  16. Segmentation of solid subregion of high grade gliomas in MRI images based on active contour model (ACM)

    NASA Astrophysics Data System (ADS)

    Seow, P.; Win, M. T.; Wong, J. H. D.; Abdullah, N. A.; Ramli, N.

    2016-03-01

    Gliomas are tumours arising from the interstitial tissue of the brain which are heterogeneous, infiltrative and possess ill-defined borders. Tumour subregions (e.g. solid enhancing part, edema and necrosis) are often used for tumour characterisation. Tumour demarcation into substructures facilitates glioma staging and provides essential information. Manual segmentation had several drawbacks that include laborious, time consuming, subjected to intra and inter-rater variability and hindered by diversity in the appearance of tumour tissues. In this work, active contour model (ACM) was used to segment the solid enhancing subregion of the tumour. 2D brain image acquisition data using 3T MRI fast spoiled gradient echo sequence in post gadolinium of four histologically proven high-grade glioma patients were obtained. Preprocessing of the images which includes subtraction and skull stripping were performed and then followed by ACM segmentation. The results of the automatic segmentation method were compared against the manual delineation of the tumour by a trainee radiologist. Both results were further validated by an experienced neuroradiologist and a brief quantitative evaluations (pixel area and difference ratio) were performed. Preliminary results of the clinical data showed the potential of ACM model in the application of fast and large scale tumour segmentation in medical imaging.

  17. Using deep learning for detecting gender in adult chest radiographs

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.

    2018-03-01

    In this paper, we present a method for automatically identifying the gender of an imaged person using their frontal chest x-ray images. Our work is motivated by the need to determine missing gender information in some datasets. The proposed method employs the technique of convolutional neural network (CNN) based deep learning and transfer learning to overcome the challenge of developing handcrafted features in limited data. Specifically, the method consists of four main steps: pre-processing, CNN feature extractor, feature selection, and classifier. The method is tested on a combined dataset obtained from several sources with varying acquisition quality resulting in different pre-processing steps that are applied for each. For feature extraction, we tested and compared four CNN architectures, viz., AlexNet, VggNet, GoogLeNet, and ResNet. We applied a feature selection technique, since the feature length is larger than the number of images. Two popular classifiers: SVM and Random Forest, are used and compared. We evaluated the classification performance by cross-validation and used seven performance measures. The best performer is the VggNet-16 feature extractor with the SVM classifier, with accuracy of 86.6% and ROC Area being 0.932 for 5-fold cross validation. We also discuss several misclassified cases and describe future work for performance improvement.

  18. Neural net target-tracking system using structured laser patterns

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun

    1996-06-01

    In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.

  19. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    PubMed

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  20. Fast data preprocessing with Graphics Processing Units for inverse problem solving in light-scattering measurements

    NASA Astrophysics Data System (ADS)

    Derkachov, G.; Jakubczyk, T.; Jakubczyk, D.; Archer, J.; Woźniak, M.

    2017-07-01

    Utilising Compute Unified Device Architecture (CUDA) platform for Graphics Processing Units (GPUs) enables significant reduction of computation time at a moderate cost, by means of parallel computing. In the paper [Jakubczyk et al., Opto-Electron. Rev., 2016] we reported using GPU for Mie scattering inverse problem solving (up to 800-fold speed-up). Here we report the development of two subroutines utilising GPU at data preprocessing stages for the inversion procedure: (i) A subroutine, based on ray tracing, for finding spherical aberration correction function. (ii) A subroutine performing the conversion of an image to a 1D distribution of light intensity versus azimuth angle (i.e. scattering diagram), fed from a movie-reading CPU subroutine running in parallel. All subroutines are incorporated in PikeReader application, which we make available on GitHub repository. PikeReader returns a sequence of intensity distributions versus a common azimuth angle vector, corresponding to the recorded movie. We obtained an overall ∼ 400 -fold speed-up of calculations at data preprocessing stages using CUDA codes running on GPU in comparison to single thread MATLAB-only code running on CPU.

  1. Development of Advanced Signal Processing and Source Imaging Methods for Superparamagnetic Relaxometry

    PubMed Central

    Huang, Ming-Xiong; Anderson, Bill; Huang, Charles W.; Kunde, Gerd J.; Vreeland, Erika C.; Huang, Jeffrey W.; Matlashov, Andrei N.; Karaulanov, Todor; Nettles, Christopher P.; Gomez, Andrew; Minser, Kayla; Weldon, Caroline; Paciotti, Giulio; Harsh, Michael; Lee, Roland R.; Flynn, Edward R.

    2017-01-01

    Superparamagnetic Relaxometry (SPMR) is a highly sensitive technique for the in vivo detection of tumor cells and may improve early stage detection of cancers. SPMR employs superparamagnetic iron oxide nanoparticles (SPION). After a brief magnetizing pulse is used to align the SPION, SPMR measures the time decay of SPION using Super-conducting Quantum Interference Device (SQUID) sensors. Substantial research has been carried out in developing the SQUID hardware and in improving the properties of the SPION. However, little research has been done in the pre-processing of sensor signals and post-processing source modeling in SPMR. In the present study, we illustrate new pre-processing tools that were developed to: 1) remove trials contaminated with artifacts, 2) evaluate and ensure that a single decay process associated with bounded SPION exists in the data, 3) automatically detect and correct flux jumps, and 4) accurately fit the sensor signals with different decay models. Furthermore, we developed an automated approach based on multi-start dipole imaging technique to obtain the locations and magnitudes of multiple magnetic sources, without initial guesses from the users. A regularization process was implemented to solve the ambiguity issue related to the SPMR source variables. A procedure based on reduced chi-square cost-function was introduced to objectively obtain the adequate number of dipoles that describe the data. The new pre-processing tools and multi-start source imaging approach have been successfully evaluated using phantom data. In conclusion, these tools and multi-start source modeling approach substantially enhance the accuracy and sensitivity in detecting and localizing sources from the SPMR signals. Furthermore, multi-start approach with regularization provided robust and accurate solutions for a poor SNR condition similar to the SPMR detection sensitivity in the order of 1000 cells. We believe such algorithms will help establishing the industrial standards for SPMR when applying the technique in pre-clinical and clinical settings. PMID:28072579

  2. Image processing methods used to simulate flight over remotely sensed data

    NASA Technical Reports Server (NTRS)

    Mortensen, H. B.; Hussey, K. J.; Mortensen, R. A.

    1988-01-01

    It has been demonstrated that image processing techniques can provide an effective means of simulating flight over remotely sensed data (Hussey et al. 1986). This paper explains the methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery. The preprocessing techniques used on the input data, the selection of the animation sequence, the generation of the animation frames, and the recording of the animation is covered. The software used for all steps is discussed.

  3. Computer Based Melanocytic and Nevus Image Enhancement and Segmentation.

    PubMed

    Jamil, Uzma; Akram, M Usman; Khalid, Shehzad; Abbas, Sarmad; Saleem, Kashif

    2016-01-01

    Digital dermoscopy aids dermatologists in monitoring potentially cancerous skin lesions. Melanoma is the 5th common form of skin cancer that is rare but the most dangerous. Melanoma is curable if it is detected at an early stage. Automated segmentation of cancerous lesion from normal skin is the most critical yet tricky part in computerized lesion detection and classification. The effectiveness and accuracy of lesion classification are critically dependent on the quality of lesion segmentation. In this paper, we have proposed a novel approach that can automatically preprocess the image and then segment the lesion. The system filters unwanted artifacts including hairs, gel, bubbles, and specular reflection. A novel approach is presented using the concept of wavelets for detection and inpainting the hairs present in the cancer images. The contrast of lesion with the skin is enhanced using adaptive sigmoidal function that takes care of the localized intensity distribution within a given lesion's images. We then present a segmentation approach to precisely segment the lesion from the background. The proposed approach is tested on the European database of dermoscopic images. Results are compared with the competitors to demonstrate the superiority of the suggested approach.

  4. Feature-aided multiple target tracking in the image plane

    NASA Astrophysics Data System (ADS)

    Brown, Andrew P.; Sullivan, Kevin J.; Miller, David J.

    2006-05-01

    Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we have developed an image plane tracker which automatically detects and tracks multiple targets in image sequences using both motion and feature information. The effects of platform and camera motion are compensated via image registration, and a novel change detection algorithm is applied for accurate moving target detection. The contiguous pixel blob on each moving target is segmented for use in target feature extraction and model learning. Feature-based target location measurements are used for tracking through move-stop-move maneuvers, close target spacing, and occlusion. Effective clutter suppression is achieved using joint probabilistic data association (JPDA), and confirmed target tracks are indicated for further processing or operator review. In this paper we describe the algorithms implemented in the image plane tracker and present performance results obtained with video clips from the DARPA VIVID program data collection and from a miniature unmanned aerial vehicle (UAV) flight.

  5. Automated Meteor Detection by All-Sky Digital Camera Systems

    NASA Astrophysics Data System (ADS)

    Suk, Tomáš; Šimberová, Stanislava

    2017-12-01

    We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.

  6. Storage, retrieval, and analysis of ST data

    NASA Technical Reports Server (NTRS)

    Albrecht, R.

    1984-01-01

    Space Telescope can generate multidimensional image data, very similar in nature to data produced with microdensitometers. An overview is presented of the ST science ground system between carrying out the observations and the interactive analysis of preprocessed data. The ground system elements used in data archival and retrieval are described and operational procedures are discussed. Emphasis is given to aspects of the ground system that are relevant to the science user and to general principles of system software development in a production environment. While the system being developed uses relatively conservative concepts for the launch baseline, concepts were developed to enhance the ground system. This includes networking, remote access, and the utilization of alternate data storage technologies.

  7. High-resolution inverse synthetic aperture radar imaging for large rotation angle targets based on segmented processing algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan

    2017-01-01

    In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.

  8. Investigation of LANDSAT D Thematic Mapper geometric performance: Line to line and band to band registration. [Toulouse, France and Mississippi, U.S.A.

    NASA Technical Reports Server (NTRS)

    Begni, G.; BOISSIN; Desachy, M. J.; PERBOS

    1984-01-01

    The geometric accuray of LANDSAT TM raw data of Toulouse (France) raw data of Mississippi, and preprocessed data of Mississippi was examined using a CDC computer. Analog images were restituted on the VIZIR SEP device. The methods used for line to line and band to band registration are based on automatic correlation techniques and are widely used in automated image to image registration at CNES. Causes of intraband and interband misregistration are identified and statistics are given for both line to line and band to band misregistration.

  9. High resolution crustal image of South California Continental Borderland: Reverse time imaging including multiples

    NASA Astrophysics Data System (ADS)

    Bian, A.; Gantela, C.

    2014-12-01

    Strong multiples were observed in marine seismic data of Los Angeles Regional Seismic Experiment (LARSE).It is crucial to eliminate these multiples in conventional ray-based or one-way wave-equation based depth image methods. As long as multiples contain information of target zone along travelling path, it's possible to use them as signal, to improve the illumination coverage thus enhance the image quality of structural boundaries. Reverse time migration including multiples is a two-way wave-equation based prestack depth image method that uses both primaries and multiples to map structural boundaries. Several factors, including source wavelet, velocity model, back ground noise, data acquisition geometry and preprocessing workflow may influence the quality of image. The source wavelet is estimated from direct arrival of marine seismic data. Migration velocity model is derived from integrated model building workflow, and the sharp velocity interfaces near sea bottom needs to be preserved in order to generate multiples in the forward and backward propagation steps. The strong amplitude, low frequency marine back ground noise needs to be removed before the final imaging process. High resolution reverse time image sections of LARSE Lines 1 and Line 2 show five interfaces: depth of sea-bottom, base of sedimentary basins, top of Catalina Schist, a deep layer and a possible pluton boundary. Catalina Schist shows highs in the San Clemente ridge, Emery Knoll, Catalina Ridge, under Catalina Basin on both the lines, and a minor high under Avalon Knoll. The high of anticlinal fold in Line 1 is under the north edge of Emery Knoll and under the San Clemente fault zone. An area devoid of any reflection features are interpreted as sides of an igneous plume.

  10. Investigating the enhancement of template-free activation detection of event-related fMRI data using wavelet shrinkage and figures of merit.

    PubMed

    Ngan, Shing-Chung; Hu, Xiaoping; Khong, Pek-Lan

    2011-03-01

    We propose a method for preprocessing event-related functional magnetic resonance imaging (fMRI) data that can lead to enhancement of template-free activation detection. The method is based on using a figure of merit to guide the wavelet shrinkage of a given fMRI data set. Several previous studies have demonstrated that in the root-mean-square error setting, wavelet shrinkage can improve the signal-to-noise ratio of fMRI time courses. However, preprocessing fMRI data in the root-mean-square error setting does not necessarily lead to enhancement of template-free activation detection. Motivated by this observation, in this paper, we move to the detection setting and investigate the possibility of using wavelet shrinkage to enhance template-free activation detection of fMRI data. The main ingredients of our method are (i) forward wavelet transform of the voxel time courses, (ii) shrinking the resulting wavelet coefficients as directed by an appropriate figure of merit, (iii) inverse wavelet transform of the shrunk data, and (iv) submitting these preprocessed time courses to a given activation detection algorithm. Two figures of merit are developed in the paper, and two other figures of merit adapted from the literature are described. Receiver-operating characteristic analyses with simulated fMRI data showed quantitative evidence that data preprocessing as guided by the figures of merit developed in the paper can yield improved detectability of the template-free measures. We also demonstrate the application of our methodology on an experimental fMRI data set. The proposed method is useful for enhancing template-free activation detection in event-related fMRI data. It is of significant interest to extend the present framework to produce comprehensive, adaptive and fully automated preprocessing of fMRI data optimally suited for subsequent data analysis steps. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Robust skin color-based moving object detection for video surveillance

    NASA Astrophysics Data System (ADS)

    Kaliraj, Kalirajan; Manimaran, Sudha

    2016-07-01

    Robust skin color-based moving object detection for video surveillance is proposed. The objective of the proposed algorithm is to detect and track the target under complex situations. The proposed framework comprises four stages, which include preprocessing, skin color-based feature detection, feature classification, and target localization and tracking. In the preprocessing stage, the input image frame is smoothed using averaging filter and transformed into YCrCb color space. In skin color detection, skin color regions are detected using Otsu's method of global thresholding. In the feature classification, histograms of both skin and nonskin regions are constructed and the features are classified into foregrounds and backgrounds based on Bayesian skin color classifier. The foreground skin regions are localized by a connected component labeling process. Finally, the localized foreground skin regions are confirmed as a target by verifying the region properties, and nontarget regions are rejected using the Euler method. At last, the target is tracked by enclosing the bounding box around the target region in all video frames. The experiment was conducted on various publicly available data sets and the performance was evaluated with baseline methods. It evidently shows that the proposed algorithm works well against slowly varying illumination, target rotations, scaling, fast, and abrupt motion changes.

  12. TU-D-207B-02: Delta-Radiomics: The Prognostic Value of Therapy-Induced Changes in Radiomics Features for Stage III Non-Small Cell Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fave, X; Court, L; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX

    Purpose: To determine how radiomics features change during radiation therapy and whether those changes (delta-radiomics features) can improve prognostic models built with clinical factors. Methods: 62 radiomics features, including histogram, co-occurrence, run-length, gray-tone difference, and shape features, were calculated from pretreatment and weekly intra-treatment CTs for 107 stage III NSCLC patients (5–9 images per patient). Image preprocessing for each feature was determined using the set of pretreatment images: bit-depth resample and/or a smoothing filter were tested for their impact on volume-correlation and significance of each feature in univariate cox regression models to maximize their information content. Next, the optimized featuresmore » were calculated from the intratreatment images and tested in linear mixed-effects models to determine which features changed significantly with dose-fraction. The slopes in these significant features were defined as delta-radiomics features. To test their prognostic potential multivariate cox regression models were fitted, first using only clinical features and then clinical+delta-radiomics features for overall-survival, local-recurrence, and distant-metastases. Leave-one-out cross validation was used for model-fitting and patient predictions. Concordance indices(c-index) and p-values for the log-rank test with patients stratified at the median were calculated. Results: Approximately one-half of the 62 optimized features required no preprocessing, one-fourth required smoothing, and one-fourth required smoothing and resampling. From these, 54 changed significantly during treatment. For overall-survival, the c-index improved from 0.52 for clinical factors alone to 0.62 for clinical+delta-radiomics features. For distant-metastases, the c-index improved from 0.53 to 0.58, while for local-recurrence it did not improve. Patient stratification significantly improved (p-value<0.05) for overallsurvival and distant-metastases when delta-radiomics features were included. The delta-radiomics versions of autocorrelation, kurtosis, and compactness were selected most frequently in leave-one-out iterations. Conclusion: Weekly changes in radiomics features can potentially be used to evaluate treatment response and predict patient outcomes. High-risk patients could be recommended for dose escalation or consolidation chemotherapy. This project was funded in part by grants from the National Cancer Institute (NCI) and the Cancer Prevention Research Institute of Texas (CPRIT).« less

  13. A two-view ultrasound CAD system for spina bifida detection using Zernike features

    NASA Astrophysics Data System (ADS)

    Konur, Umut; Gürgen, Fikret; Varol, Füsun

    2011-03-01

    In this work, we address a very specific CAD (Computer Aided Detection/Diagnosis) problem and try to detect one of the relatively common birth defects - spina bifida, in the prenatal period. To do this, fetal ultrasound images are used as the input imaging modality, which is the most convenient so far. Our approach is to decide using two particular types of views of the fetal neural tube. Transcerebellar head (i.e. brain) and transverse (axial) spine images are processed to extract features which are then used to classify healthy (normal), suspicious (probably defective) and non-decidable cases. Decisions raised by two independent classifiers may be individually treated, or if desired and data related to both modalities are available, those decisions can be combined to keep matters more secure. Even more security can be attained by using more than two modalities and base the final decision on all those potential classifiers. Our current system relies on feature extraction from images for cases (for particular patients). The first step is image preprocessing and segmentation to get rid of useless image pixels and represent the input in a more compact domain, which is hopefully more representative for good classification performance. Next, a particular type of feature extraction, which uses Zernike moments computed on either B/W or gray-scale image segments, is performed. The aim here is to obtain values for indicative markers that signal the presence of spina bifida. Markers differ depending on the image modality being used. Either shape or texture information captured by moments may propose useful features. Finally, SVM is used to train classifiers to be used as decision makers. Our experimental results show that a promising CAD system can be actualized for the specific purpose. On the other hand, the performance of such a system would highly depend on the qualities of image preprocessing, segmentation, feature extraction and comprehensiveness of image data.

  14. TargetSearch--a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data.

    PubMed

    Cuadros-Inostroza, Alvaro; Caldana, Camila; Redestig, Henning; Kusano, Miyako; Lisec, Jan; Peña-Cortés, Hugo; Willmitzer, Lothar; Hannah, Matthew A

    2009-12-16

    Metabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks. We introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R. TargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data.

  15. TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data

    PubMed Central

    2009-01-01

    Background Metabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks. Results We introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R. Conclusions TargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data. PMID:20015393

  16. Robust image registration for multiple exposure high dynamic range image synthesis

    NASA Astrophysics Data System (ADS)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  17. Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Wimmer, Michael

    2016-02-01

    With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.

  18. An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data

    USGS Publications Warehouse

    Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A.

    2011-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates. ?? 2010 IEEE.

  19. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Morisette, Jeffrey T.; Wolfe, Robert E.; Gao, Feng; Ederer, Gregory A.; Nightingale, Joanne; Pedelty, Jeffrey A.

    2012-01-01

    An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: a) original TIMESAT algorithm with original MODIS VI, b) original TIMESAT algorithm with pre-processed MODIS VI, and c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

  20. A robust technique based on VLM and Frangi filter for retinal vessel extraction and denoising.

    PubMed

    Khan, Khan Bahadar; Khaliq, Amir A; Jalil, Abdul; Shahid, Muhammad

    2018-01-01

    The exploration of retinal vessel structure is colossally important on account of numerous diseases including stroke, Diabetic Retinopathy (DR) and coronary heart diseases, which can damage the retinal vessel structure. The retinal vascular network is very hard to be extracted due to its spreading and diminishing geometry and contrast variation in an image. The proposed technique consists of unique parallel processes for denoising and extraction of blood vessels in retinal images. In the preprocessing section, an adaptive histogram equalization enhances dissimilarity between the vessels and the background and morphological top-hat filters are employed to eliminate macula and optic disc, etc. To remove local noise, the difference of images is computed from the top-hat filtered image and the high-boost filtered image. Frangi filter is applied at multi scale for the enhancement of vessels possessing diverse widths. Segmentation is performed by using improved Otsu thresholding on the high-boost filtered image and Frangi's enhanced image, separately. In the postprocessing steps, a Vessel Location Map (VLM) is extracted by using raster to vector transformation. Postprocessing steps are employed in a novel way to reject misclassified vessel pixels. The final segmented image is obtained by using pixel-by-pixel AND operation between VLM and Frangi output image. The method has been rigorously analyzed on the STARE, DRIVE and HRF datasets.

  1. Automated processing of zebrafish imaging data: a survey.

    PubMed

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  2. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  3. Automatic Semantic Orientation of Adjectives for Indonesian Language Using PMI-IR and Clustering

    NASA Astrophysics Data System (ADS)

    Riyanti, Dewi; Arif Bijaksana, M.; Adiwijaya

    2018-03-01

    We present our work in the area of sentiment analysis for Indonesian language. We focus on bulding automatic semantic orientation using available resources in Indonesian. In this research we used Indonesian corpus that contains 9 million words from kompas.txt and tempo.txt that manually tagged and annotated with of part-of-speech tagset. And then we construct a dataset by taking all the adjectives from the corpus, removing the adjective with no orientation. The set contained 923 adjective words. This systems will include several steps such as text pre-processing and clustering. The text pre-processing aims to increase the accuracy. And finally clustering method will classify each word to related sentiment which is positive or negative. With improvements to the text preprocessing, can be achieved 72% of accuracy.

  4. Multisensor data fusion across time and space

    NASA Astrophysics Data System (ADS)

    Villeneuve, Pierre V.; Beaven, Scott G.; Reed, Robert A.

    2014-06-01

    Field measurement campaigns typically deploy numerous sensors having different sampling characteristics for spatial, temporal, and spectral domains. Data analysis and exploitation is made more difficult and time consuming as the sample data grids between sensors do not align. This report summarizes our recent effort to demonstrate feasibility of a processing chain capable of "fusing" image data from multiple independent and asynchronous sensors into a form amenable to analysis and exploitation using commercially-available tools. Two important technical issues were addressed in this work: 1) Image spatial registration onto a common pixel grid, 2) Image temporal interpolation onto a common time base. The first step leverages existing image matching and registration algorithms. The second step relies upon a new and innovative use of optical flow algorithms to perform accurate temporal upsampling of slower frame rate imagery. Optical flow field vectors were first derived from high-frame rate, high-resolution imagery, and then finally used as a basis for temporal upsampling of the slower frame rate sensor's imagery. Optical flow field values are computed using a multi-scale image pyramid, thus allowing for more extreme object motion. This involves preprocessing imagery to varying resolution scales and initializing new vector flow estimates using that from the previous coarser-resolution image. Overall performance of this processing chain is demonstrated using sample data involving complex too motion observed by multiple sensors mounted to the same base. Multiple sensors were included, including a high-speed visible camera, up to a coarser resolution LWIR camera.

  5. Preprocessing method to correct illumination pattern in sinusoidal-based structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Doblas, A.; Saavedra, G.; Preza, C.

    2018-02-01

    The restored images in structured illumination microscopy (SIM) can be affected by residual fringes due to a mismatch between the illumination pattern and the sinusoidal model assumed by the restoration method. When a Fresnel biprism is used to generate a structured pattern, this pattern cannot be described by a pure sinusoidal function since it is distorted by an envelope due to the biprism's edge. In this contribution, we have investigated the effect of the envelope on the restored SIM images and propose a computational method in order to address it. The proposed approach to reduce the effect of the envelope consists of two parts. First, the envelope of the structured pattern, determined through calibration data, is removed from the raw SIM data via a preprocessing step. In the second step, a notch filter is applied to the images, which are restored using the well-known generalized Wiener filter, to filter any residual undesired fringes. The performance of our approach has been evaluated numerically by simulating the effect of the envelope on synthetic forward images of a 6-μm spherical bead generated using the real pattern and then restored using the SIM approach that is based on an ideal pure sinusoidal function before and after our proposed correction method. The simulation result shows 74% reduction in the contrast of the residual pattern when the proposed method is applied. Experimental results from a pollen grain sample also validate the proposed approach.

  6. CMOS image sensor with contour enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui

    2010-10-01

    Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.

  7. Pre-processing Tasks in Indonesian Twitter Messages

    NASA Astrophysics Data System (ADS)

    Hidayatullah, A. F.; Ma'arif, M. R.

    2017-01-01

    Twitter text messages are very noisy. Moreover, tweet data are unstructured and complicated enough. The focus of this work is to investigate pre-processing technique for Twitter messages in Bahasa Indonesia. The main goal of this experiment is to clean the tweet data for further analysis. Thus, the objectives of this pre-processing task is simply removing all meaningless character and left valuable words. In this research, we divide our proposed pre-processing experiments into two parts. The first part is common pre-processing task. The second part is a specific pre-processing task for tweet data. From the experimental result we can conclude that by employing a specific pre-processing task related to tweet data characteristic we obtained more valuable result. The result obtained is better in terms of less meaningful word occurrence which is not significant in number comparing to the result obtained by just running common pre-processing tasks.

  8. Translational Imaging Spectroscopy for Proximal Sensing

    PubMed Central

    Rogass, Christian; Koerting, Friederike M.; Mielke, Christian; Brell, Maximilian; Boesche, Nina K.; Bade, Maria; Hohmann, Christian

    2017-01-01

    Proximal sensing as the near field counterpart of remote sensing offers a broad variety of applications. Imaging spectroscopy in general and translational laboratory imaging spectroscopy in particular can be utilized for a variety of different research topics. Geoscientific applications require a precise pre-processing of hyperspectral data cubes to retrieve at-surface reflectance in order to conduct spectral feature-based comparison of unknown sample spectra to known library spectra. A new pre-processing chain called GeoMAP-Trans for at-surface reflectance retrieval is proposed here as an analogue to other algorithms published by the team of authors. It consists of a radiometric, a geometric and a spectral module. Each module consists of several processing steps that are described in detail. The processing chain was adapted to the broadly used HySPEX VNIR/SWIR imaging spectrometer system and tested using geological mineral samples. The performance was subjectively and objectively evaluated using standard artificial image quality metrics and comparative measurements of mineral and Lambertian diffuser standards with standard field and laboratory spectrometers. The proposed algorithm provides highly qualitative results, offers broad applicability through its generic design and might be the first one of its kind to be published. A high radiometric accuracy is achieved by the incorporation of the Reduction of Miscalibration Effects (ROME) framework. The geometric accuracy is higher than 1 μpixel. The critical spectral accuracy was relatively estimated by comparing spectra of standard field spectrometers to those from HySPEX for a Lambertian diffuser. The achieved spectral accuracy is better than 0.02% for the full spectrum and better than 98% for the absorption features. It was empirically shown that point and imaging spectrometers provide different results for non-Lambertian samples due to their different sensing principles, adjacency scattering impacts on the signal and anisotropic surface reflection properties. PMID:28800111

  9. [Study of near infrared spectral preprocessing and wavelength selection methods for endometrial cancer tissue].

    PubMed

    Zhao, Li-Ting; Xiang, Yu-Hong; Dai, Yin-Mei; Zhang, Zhuo-Yong

    2010-04-01

    Near infrared spectroscopy was applied to measure the tissue slice of endometrial tissues for collecting the spectra. A total of 154 spectra were obtained from 154 samples. The number of normal, hyperplasia, and malignant samples was 36, 60, and 58, respectively. Original near infrared spectra are composed of many variables, for example, interference information including instrument errors and physical effects such as particle size and light scatter. In order to reduce these influences, original spectra data should be performed with different spectral preprocessing methods to compress variables and extract useful information. So the methods of spectral preprocessing and wavelength selection have played an important role in near infrared spectroscopy technique. In the present paper the raw spectra were processed using various preprocessing methods including first derivative, multiplication scatter correction, Savitzky-Golay first derivative algorithm, standard normal variate, smoothing, and moving-window median. Standard deviation was used to select the optimal spectral region of 4 000-6 000 cm(-1). Then principal component analysis was used for classification. Principal component analysis results showed that three types of samples could be discriminated completely and the accuracy almost achieved 100%. This study demonstrated that near infrared spectroscopy technology and chemometrics method could be a fast, efficient, and novel means to diagnose cancer. The proposed methods would be a promising and significant diagnosis technique of early stage cancer.

  10. Classification of product inspection items using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.; Lee, H.-W.

    1998-03-01

    Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.

  11. Sensor, signal, and image informatics - state of the art and current topics.

    PubMed

    Lehmann, T M; Aach, T; Witte, H

    2006-01-01

    The number of articles published annually in the fields of biomedical signal and image acquisition and processing is increasing. Based on selected examples, this survey aims at comprehensively demonstrating the recent trends and developments. Four articles are selected for biomedical data acquisition covering topics such as dose saving in CT, C-arm X-ray imaging systems for volume imaging, and the replacement of dose-intensive CT-based diagnostic with harmonic ultrasound imaging. Regarding biomedical signal analysis (BSA), the four selected articles discuss the equivalence of different time-frequency approaches for signal analysis, an application to Cochlea implants, where time-frequency analysis is applied for controlling the replacement system, recent trends for fusion of different modalities, and the role of BSA as part of a brain machine interfaces. To cover the broad spectrum of publications in the field of biomedical image processing, six papers are focused. Important topics are content-based image retrieval in medical applications, automatic classification of tongue photographs from traditional Chinese medicine, brain perfusion analysis in single photon emission computed tomography (SPECT), model-based visualization of vascular trees, and virtual surgery, where enhanced visualization and haptic feedback techniques are combined with a sphere-filled model of the organ. The selected papers emphasize the five fields forming the chain of biomedical data processing: (1) data acquisition, (2) data reconstruction and pre-processing, (3) data handling, (4) data analysis, and (5) data visualization. Fields 1 and 2 form the sensor informatics, while fields 2 to 5 form signal or image informatics with respect to the nature of the data considered. Biomedical data acquisition and pre-processing, as well as data handling, analysis and visualization aims at providing reliable tools for decision support that improve the quality of health care. Comprehensive evaluation of the processing methods and their reliable integration in routine applications are future challenges in the field of sensor, signal and image informatics.

  12. Towards a unified estimate of arctic glaciers contribution to sea level rise since 1972.

    NASA Astrophysics Data System (ADS)

    Dehecq, A.; Gardner, A. S.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Glaciers retreat contributed to about 1/3 of the observed sea level rise since 1971 (IPCC). However, long term estimates of glaciers volume changes rely on sparse field observations and region-wide satellite observations are available mostly after 2000. The recently declassified images from the reconnaissance satellite series Hexagon (KH9), that acquired 6 m resolution stereoscopic images from 1971 to 1986, open new possibilities for glaciers observation. But the film-printed images represent a processing challenge. Here we present an automatic workflow developed to generate Digital Elevation Models (DEMs) at 24 m resolution from the raw scanned KH9 images. It includes a preprocessing step to detect fiducial marks and to correct distortions of the film caused by the 40-year storage. An estimate of the unknown satellite position is obtained from a crude geolocation of the images. Each stereo image pair/triplet is then processed using the NASA Ames Stereo Pipeline to derive an unscaled DEM using standard photogrammetric techniques. This DEM is finally aligned to a reference topography, to account for errors in translation, rotation and scaling. In a second part, we present DEMs generated over glaciers in the Canadian Arctic and analyze glaciers volume changes from 1970 to the more recent WorldView ArcticDEM.

  13. Building block extraction and classification by means of aerial images fused with super-resolution reconstructed elevation data

    NASA Astrophysics Data System (ADS)

    Panagiotopoulou, Antigoni; Bratsolis, Emmanuel; Charou, Eleni; Perantonis, Stavros

    2017-10-01

    The detailed three-dimensional modeling of buildings utilizing elevation data, such as those provided by light detection and ranging (LiDAR) airborne scanners, is increasingly demanded today. There are certain application requirements and available datasets to which any research effort has to be adapted. Our dataset includes aerial orthophotos, with a spatial resolution 20 cm, and a digital surface model generated from LiDAR, with a spatial resolution 1 m and an elevation resolution 20 cm, from an area of Athens, Greece. The aerial images are fused with LiDAR, and we classify these data with a multilayer feedforward neural network for building block extraction. The innovation of our approach lies in the preprocessing step in which the original LiDAR data are super-resolution (SR) reconstructed by means of a stochastic regularized technique before their fusion with the aerial images takes place. The Lorentzian estimator combined with the bilateral total variation regularization performs the SR reconstruction. We evaluate the performance of our approach against that of fusing unprocessed LiDAR data with aerial images. We present the classified images and the statistical measures confusion matrix, kappa coefficient, and overall accuracy. The results demonstrate that our approach predominates over that of fusing unprocessed LiDAR data with aerial images.

  14. Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python.

    PubMed

    Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri

    2014-01-01

    In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.

  15. Medical image segmentation based on SLIC superpixels model

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-ting; Zhang, Fan; Zhang, Ruo-ya

    2017-01-01

    Medical imaging has been widely used in clinical practice. It is an important basis for medical experts to diagnose the disease. However, medical images have many unstable factors such as complex imaging mechanism, the target displacement will cause constructed defect and the partial volume effect will lead to error and equipment wear, which increases the complexity of subsequent image processing greatly. The segmentation algorithm which based on SLIC (Simple Linear Iterative Clustering, SLIC) superpixels is used to eliminate the influence of constructed defect and noise by means of the feature similarity in the preprocessing stage. At the same time, excellent clustering effect can reduce the complexity of the algorithm extremely, which provides an effective basis for the rapid diagnosis of experts.

  16. Preprocessing film-copied MRI for studying morphological brain changes.

    PubMed

    Pham, Tuan D; Eisenblätter, Uwe; Baune, Bernhard T; Berger, Klaus

    2009-06-15

    The magnetic resonance imaging (MRI) of the brain is one of the important data items for studying memory and morbidity in elderly as these images can provide useful information through the quantitative measures of various regions of interest of the brain. As an effort to fully automate the biomedical analysis of the brain that can be combined with the genetic data of the same human population and where the records of the original MRI data are missing, this paper presents two effective methods for addressing this imaging problem. The first method handles the restoration of the film-copied MRI. The second method involves the segmentation of the image data. Experimental results and comparisons with other methods suggest the usefulness of the proposed image analysis methodology.

  17. Fast ITTBC using pattern code on subband segmentation

    NASA Astrophysics Data System (ADS)

    Koh, Sung S.; Kim, Hanchil; Lee, Kooyoung; Kim, Hongbin; Jeong, Hun; Cho, Gangseok; Kim, Chunghwa

    2000-06-01

    Iterated Transformation Theory-Based Coding suffers from very high computational complexity in encoding phase. This is due to its exhaustive search. In this paper, our proposed image coding algorithm preprocess an original image to subband segmentation image by wavelet transform before image coding to reduce encoding complexity. A similar block is searched by using the 24 block pattern codes which are coded by the edge information in the image block on the domain pool of the subband segmentation. As a result, numerical data shows that the encoding time of the proposed coding method can be reduced to 98.82% of that of Joaquin's method, while the loss in quality relative to the Jacquin's is about 0.28 dB in PSNR, which is visually negligible.

  18. An improved feature extraction algorithm based on KAZE for multi-spectral image

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Li, Jun

    2018-02-01

    Multi-spectral image contains abundant spectral information, which is widely used in all fields like resource exploration, meteorological observation and modern military. Image preprocessing, such as image feature extraction and matching, is indispensable while dealing with multi-spectral remote sensing image. Although the feature matching algorithm based on linear scale such as SIFT and SURF performs strong on robustness, the local accuracy cannot be guaranteed. Therefore, this paper proposes an improved KAZE algorithm, which is based on nonlinear scale, to raise the number of feature and to enhance the matching rate by using the adjusted-cosine vector. The experiment result shows that the number of feature and the matching rate of the improved KAZE are remarkably than the original KAZE algorithm.

  19. Design of an Intelligent Front-End Signal Conditioning Circuit for IR Sensors

    NASA Astrophysics Data System (ADS)

    de Arcas, G.; Ruiz, M.; Lopez, J. M.; Gutierrez, R.; Villamayor, V.; Gomez, L.; Montojo, Mª. T.

    2008-02-01

    This paper presents the design of an intelligent front-end signal conditioning system for IR sensors. The system has been developed as an interface between a PbSe IR sensor matrix and a TMS320C67x digital signal processor. The system architecture ensures its scalability so it can be used for sensors with different matrix sizes. It includes an integrator based signal conditioning circuit, a data acquisition converter block, and a FPGA based advanced control block that permits including high level image preprocessing routines such as faulty pixel detection and sensor calibration in the signal conditioning front-end. During the design phase virtual instrumentation technologies proved to be a very valuable tool for prototyping when choosing the best A/D converter type for the application. Development time was significantly reduced due to the use of this technology.

  20. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size of POM pieces. That was followed by discriminant analysis conducted using statistical and geostatistical characteristics of POM pieces. POM identified in the intact individual soil aggregates using the proposed procedure was in good agreement with POM measured in the studied aggregates using conventional lab method (R2=0.75). Of particular importance for accurate identification of POM in the images was the information on spatial characteristics of POM's GVs. Since this is the first attempt of POM determination, future work will be needed to explore how the proposed procedure performs under a variety of potentially influential factors, such as POM's origin and decomposition stage, X-ray scanning settings, image filtering and segmentation methods.

  1. Blood Vessel Extraction in Color Retinal Fundus Images with Enhancement Filtering and Unsupervised Classification

    PubMed Central

    2017-01-01

    Retinal blood vessels have a significant role in the diagnosis and treatment of various retinal diseases such as diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. For this reason, retinal vasculature extraction is important in order to help specialists for the diagnosis and treatment of systematic diseases. In this paper, a novel approach is developed to extract retinal blood vessel network. Our method comprises four stages: (1) preprocessing stage in order to prepare dataset for segmentation; (2) an enhancement procedure including Gabor, Frangi, and Gauss filters obtained separately before a top-hat transform; (3) a hard and soft clustering stage which includes K-means and Fuzzy C-means (FCM) in order to get binary vessel map; and (4) a postprocessing step which removes falsely segmented isolated regions. The method is tested on color retinal images obtained from STARE and DRIVE databases which are available online. As a result, Gabor filter followed by K-means clustering method achieves 95.94% and 95.71% of accuracy for STARE and DRIVE databases, respectively, which are acceptable for diagnosis systems. PMID:29065611

  2. Environmental impact to multimedia systems on the example of fingerprint aging behavior at crime scenes

    NASA Astrophysics Data System (ADS)

    Merkel, Ronny; Breuhan, Andy; Hildebrandt, Mario; Vielhauer, Claus; Bräutigam, Anja

    2012-06-01

    In the field of crime scene forensics, current methods of evidence collection, such as the acquisition of shoe-marks, tireimpressions, palm-prints or fingerprints are in most cases still performed in an analogue way. For example, fingerprints are captured by powdering and sticky tape lifting, ninhydrine bathing or cyanoacrylate fuming and subsequent photographing. Images of the evidence are then further processed by forensic experts. With the upcoming use of new multimedia systems for the digital capturing and processing of crime scene traces in forensics, higher resolutions can be achieved, leading to a much better quality of forensic images. Furthermore, the fast and mostly automated preprocessing of such data using digital signal processing techniques is an emerging field. Also, by the optical and non-destructive lifting of forensic evidence, traces are not destroyed and therefore can be re-captured, e.g. by creating time series of a trace, to extract its aging behavior and maybe determine the time the trace was left. However, such new methods and tools face different challenges, which need to be addressed before a practical application in the field. Based on the example of fingerprint age determination, which is an unresolved research challenge to forensic experts since decades, we evaluate the influences of different environmental conditions as well as different types of sweating and their implications to the capturing sensory, preprocessing methods and feature extraction. We use a Chromatic White Light (CWL) sensor to exemplary represent such a new optical and contactless measurement device and investigate the influence of 16 different environmental conditions, 8 different sweat types and 11 different preprocessing methods on the aging behavior of 48 fingerprint time series (2592 fingerprint scans in total). We show the challenges that arise for such new multimedia systems capturing and processing forensic evidence

  3. Pre-stack depth Migration imaging of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hussni, S. G.; Becel, A.; Schenini, L.; Laigle, M.; Dessa, J. X.; Galve, A.; Vitard, C.

    2017-12-01

    In 365 AD, a major M>8-tsunamignic earthquake occurred along the southwestern segment of the Hellenic subduction zone. Although this is the largest seismic event ever reported in Europe, some fundamental questions remain regarding the deep geometry of the interplate megathrust, as well as other faults within the overriding plate potentially connected to it. The main objective here is to image those deep structures, whose depths range between 15 and 45 km, using leading edge seismic reflection equipment. To this end, a 210-km-long multichannel seismic profile was acquired with the 8 km-long streamer and the 6600 cu.in source of R/V Marcus Langseth. This was realized at the end of 2015, during the SISMED cruise. This survey was made possible through a collective effort gathering labs (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Dpt. Geosciences of Pau Univ). A preliminary processing sequence has first been applied using Geovation software of CGG, which yielded a post-stack time migration of collected data, as well as pre-stack time migration obtained with a model derived from velocity analyses. Using Paradigm software, a pre-stack depth migration was subsequently carried out. This step required some tuning in the pre-processing sequence in order to improve multiple removal, noise suppression and to better reveal the true geometry of reflectors in depth. This iteration of pre-processing included, the use of parabolic Radon transform, FK filtering and time variant band pass filtering. An initial velocity model was built using depth-converted RMS velocities obtained from SISMED data for the sedimentary layer, complemented at depth with a smooth version of the tomographic velocities derived from coincident wide-angle data acquired during the 2012-ULYSSE survey. Then, we performed a Kirchhoff Pre-stack depth migration with traveltimes calculated using the Eikonal equation. Velocity model were then tuned through residual velocity analyses to flatten reflections in common reflection point gathers. These new results improve the imaging of deep reflectors and even reveal some new features. We will present this work, a comparison with our previously obtained post-stack time migration, as well as some insights into the new geological structures revealed by the depth imaging.

  4. Operational algorithm for ice-water classification on dual-polarized RADARSAT-2 images

    NASA Astrophysics Data System (ADS)

    Zakhvatkina, Natalia; Korosov, Anton; Muckenhuber, Stefan; Sandven, Stein; Babiker, Mohamed

    2017-01-01

    Synthetic Aperture Radar (SAR) data from RADARSAT-2 (RS2) in dual-polarization mode provide additional information for discriminating sea ice and open water compared to single-polarization data. We have developed an automatic algorithm based on dual-polarized RS2 SAR images to distinguish open water (rough and calm) and sea ice. Several technical issues inherent in RS2 data were solved in the pre-processing stage, including thermal noise reduction in HV polarization and correction of angular backscatter dependency in HH polarization. Texture features were explored and used in addition to supervised image classification based on the support vector machines (SVM) approach. The study was conducted in the ice-covered area between Greenland and Franz Josef Land. The algorithm has been trained using 24 RS2 scenes acquired in winter months in 2011 and 2012, and the results were validated against manually derived ice charts of the Norwegian Meteorological Institute. The algorithm was applied on a total of 2705 RS2 scenes obtained from 2013 to 2015, and the validation results showed that the average classification accuracy was 91 ± 4 %.

  5. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Monitoring the defoliation of hardwood forests in Pennsylvania using LANDSAT. [gypsy moth surveys

    NASA Technical Reports Server (NTRS)

    Dottavio, C. L.; Nelson, R. F.; Williams, D. L. (Principal Investigator)

    1983-01-01

    An automated system for conducting annual gypsy moth defoliation surveys using LANDSAT MSS data and digital processing techniques is described. A two-step preprocessing procedure was developed that uses multitemporal data sets representing forest canopy conditions before and after defoliation to create a digital image in which all nonforest cover types are eliminated or masked out of a LANDSAT image that exhibits insect defoliation. A temporal window for defoliation assessment was identified and a statewide data base was established. A data management system to interface image analysis software with the statewide data base was developed and a cost benefit analysis of this operational system was conducted.

  7. Instructional image processing on a university mainframe: The Kansas system

    NASA Technical Reports Server (NTRS)

    Williams, T. H. L.; Siebert, J.; Gunn, C.

    1981-01-01

    An interactive digital image processing program package was developed that runs on the University of Kansas central computer, a Honeywell Level 66 multi-processor system. The module form of the package allows easy and rapid upgrades and extensions of the system and is used in remote sensing courses in the Department of Geography, in regional five-day short courses for academics and professionals, and also in remote sensing projects and research. The package comprises three self-contained modules of processing functions: Subimage extraction and rectification; image enhancement, preprocessing and data reduction; and classification. Its use in a typical course setting is described. Availability and costs are considered.

  8. The robot's eyes - Stereo vision system for automated scene analysis

    NASA Technical Reports Server (NTRS)

    Williams, D. S.

    1977-01-01

    Attention is given to the robot stereo vision system which maintains the image produced by solid-state detector television cameras in a dynamic random access memory called RAPID. The imaging hardware consists of sensors (two solid-state image arrays using a charge injection technique), a video-rate analog-to-digital converter, the RAPID memory, and various types of computer-controlled displays, and preprocessing equipment (for reflexive actions, processing aids, and object detection). The software is aimed at locating objects and transversibility. An object-tracking algorithm is discussed and it is noted that tracking speed is in the 50-75 pixels/s range.

  9. Impulse Noise Cancellation of Medical Images Using Wavelet Networks and Median Filters

    PubMed Central

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeid; Gheissari, Niloofar

    2012-01-01

    This paper presents a new two-stage approach to impulse noise removal for medical images based on wavelet network (WN). The first step is noise detection, in which the so-called gray-level difference and average background difference are considered as the inputs of a WN. Wavelet Network is used as a preprocessing for the second stage. The second step is removing impulse noise with a median filter. The wavelet network presented here is a fixed one without learning. Experimental results show that our method acts on impulse noise effectively, and at the same time preserves chromaticity and image details very well. PMID:23493998

  10. The future of imaging spectroscopy - Prospective technologies and applications

    USGS Publications Warehouse

    Schaepman, M.E.; Green, R.O.; Ungar, S.G.; Curtiss, B.; Boardman, J.; Plaza, A.J.; Gao, B.-C.; Ustin, S.; Kokaly, R.; Miller, J.R.; Jacquemoud, S.; Ben-Dor, E.; Clark, R.; Davis, C.; Dozier, J.; Goodenough, D.G.; Roberts, D.; Swayze, G.; Milton, E.J.; Goetz, A.F.H.

    2006-01-01

    Spectroscopy has existed for more than three centuries now. Nonetheless, significant scientific advances have been achieved. We discuss the history of spectroscopy in relation to emerging technologies and applications. Advanced focal plane arrays, optical design, and intelligent on-board logic are prime prospective technologies. Scalable approaches in pre-processing of imaging spectrometer data will receive additional focus. Finally, we focus on new applications monitoring transitional ecological zones, where human impact and disturbance have highest impact as well as in monitoring changes in our natural resources and environment We conclude that imaging spectroscopy enables mapping of biophysical and biochemical variables of the Earth's surface and atmospheric composition with unprecedented accuracy.

  11. Recent developments with the ORSER system

    NASA Technical Reports Server (NTRS)

    Baumer, G. M.; Turner, B. J.; Myers, W. L.

    1981-01-01

    Additions to the ORSER remote sensing data processing package are described. The ORSER package consists of about 35 individual programs that are grouped into preprocessing, data analysis, and display subsystems. Additional data formats and data management, data transformation, and geometric correlation programs were supplemented to the preprocessing subsystem. Enhancements to the data analysis techniques include a maximum likelihood classifier (MAXCLASS) and a new version of the STATS program which makes delineation of training areas easier and allows for detection of outlier points. Ongoing developments are also described.

  12. Developing consistent Landsat data sets for large area applications: the MRLC 2001 protocol

    USGS Publications Warehouse

    Chander, G.; Huang, Chengquan; Yang, Limin; Homer, Collin G.; Larson, C.

    2009-01-01

    One of the major efforts in large area land cover mapping over the last two decades was the completion of two U.S. National Land Cover Data sets (NLCD), developed with nominal 1992 and 2001 Landsat imagery under the auspices of the MultiResolution Land Characteristics (MRLC) Consortium. Following the successful generation of NLCD 1992, a second generation MRLC initiative was launched with two primary goals: (1) to develop a consistent Landsat imagery data set for the U.S. and (2) to develop a second generation National Land Cover Database (NLCD 2001). One of the key enhancements was the formulation of an image preprocessing protocol and implementation of a consistent image processing method. The core data set of the NLCD 2001 database consists of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images. This letter details the procedures for processing the original ETM+ images and more recent scenes added to the database. NLCD 2001 products include Anderson Level II land cover classes, percent tree canopy, and percent urban imperviousness at 30-m resolution derived from Landsat imagery. The products are freely available for download to the general public from the MRLC Consortium Web site at http://www.mrlc.gov.

  13. Hyperspectral image analysis for rapid and accurate discrimination of bacterial infections: A benchmark study.

    PubMed

    Arrigoni, Simone; Turra, Giovanni; Signoroni, Alberto

    2017-09-01

    With the rapid diffusion of Full Laboratory Automation systems, Clinical Microbiology is currently experiencing a new digital revolution. The ability to capture and process large amounts of visual data from microbiological specimen processing enables the definition of completely new objectives. These include the direct identification of pathogens growing on culturing plates, with expected improvements in rapid definition of the right treatment for patients affected by bacterial infections. In this framework, the synergies between light spectroscopy and image analysis, offered by hyperspectral imaging, are of prominent interest. This leads us to assess the feasibility of a reliable and rapid discrimination of pathogens through the classification of their spectral signatures extracted from hyperspectral image acquisitions of bacteria colonies growing on blood agar plates. We designed and implemented the whole data acquisition and processing pipeline and performed a comprehensive comparison among 40 combinations of different data preprocessing and classification techniques. High discrimination performance has been achieved also thanks to improved colony segmentation and spectral signature extraction. Experimental results reveal the high accuracy and suitability of the proposed approach, driving the selection of most suitable and scalable classification pipelines and stimulating clinical validations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Geometric correction method for 3d in-line X-ray phase contrast image reconstruction

    PubMed Central

    2014-01-01

    Background Mechanical system with imperfect or misalignment of X-ray phase contrast imaging (XPCI) components causes projection data misplaced, and thus result in the reconstructed slice images of computed tomography (CT) blurred or with edge artifacts. So the features of biological microstructures to be investigated are destroyed unexpectedly, and the spatial resolution of XPCI image is decreased. It makes data correction an essential pre-processing step for CT reconstruction of XPCI. Methods To remove unexpected blurs and edge artifacts, a mathematics model for in-line XPCI is built by considering primary geometric parameters which include a rotation angle and a shift variant in this paper. Optimal geometric parameters are achieved by finding the solution of a maximization problem. And an iterative approach is employed to solve the maximization problem by using a two-step scheme which includes performing a composite geometric transformation and then following a linear regression process. After applying the geometric transformation with optimal parameters to projection data, standard filtered back-projection algorithm is used to reconstruct CT slice images. Results Numerical experiments were carried out on both synthetic and real in-line XPCI datasets. Experimental results demonstrate that the proposed method improves CT image quality by removing both blurring and edge artifacts at the same time compared to existing correction methods. Conclusions The method proposed in this paper provides an effective projection data correction scheme and significantly improves the image quality by removing both blurring and edge artifacts at the same time for in-line XPCI. It is easy to implement and can also be extended to other XPCI techniques. PMID:25069768

  15. Improved document image segmentation algorithm using multiresolution morphology

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.

  16. GPR-Based Water Leak Models in Water Distribution Systems

    PubMed Central

    Ayala-Cabrera, David; Herrera, Manuel; Izquierdo, Joaquín; Ocaña-Levario, Silvia J.; Pérez-García, Rafael

    2013-01-01

    This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR) as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.

  17. PI2GIS: processing image to geographical information systems, a learning tool for QGIS

    NASA Astrophysics Data System (ADS)

    Correia, R.; Teodoro, A.; Duarte, L.

    2017-10-01

    To perform an accurate interpretation of remote sensing images, it is necessary to extract information using different image processing techniques. Nowadays, it became usual to use image processing plugins to add new capabilities/functionalities integrated in Geographical Information System (GIS) software. The aim of this work was to develop an open source application to automatically process and classify remote sensing images from a set of satellite input data. The application was integrated in a GIS software (QGIS), automating several image processing steps. The use of QGIS for this purpose is justified since it is easy and quick to develop new plugins, using Python language. This plugin is inspired in the Semi-Automatic Classification Plugin (SCP) developed by Luca Congedo. SCP allows the supervised classification of remote sensing images, the calculation of vegetation indices such as NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) and other image processing operations. When analysing SCP, it was realized that a set of operations, that are very useful in teaching classes of remote sensing and image processing tasks, were lacking, such as the visualization of histograms, the application of filters, different image corrections, unsupervised classification and several environmental indices computation. The new set of operations included in the PI2GIS plugin can be divided into three groups: pre-processing, processing, and classification procedures. The application was tested consider an image from Landsat 8 OLI from a North area of Portugal.

  18. Performance evaluation of image denoising developed using convolutional denoising autoencoders in chest radiography

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Choi, Sunghoon; Kim, Hee-Joung

    2018-03-01

    When processing medical images, image denoising is an important pre-processing step. Various image denoising algorithms have been developed in the past few decades. Recently, image denoising using the deep learning method has shown excellent performance compared to conventional image denoising algorithms. In this study, we introduce an image denoising technique based on a convolutional denoising autoencoder (CDAE) and evaluate clinical applications by comparing existing image denoising algorithms. We train the proposed CDAE model using 3000 chest radiograms training data. To evaluate the performance of the developed CDAE model, we compare it with conventional denoising algorithms including median filter, total variation (TV) minimization, and non-local mean (NLM) algorithms. Furthermore, to verify the clinical effectiveness of the developed denoising model with CDAE, we investigate the performance of the developed denoising algorithm on chest radiograms acquired from real patients. The results demonstrate that the proposed denoising algorithm developed using CDAE achieves a superior noise-reduction effect in chest radiograms compared to TV minimization and NLM algorithms, which are state-of-the-art algorithms for image noise reduction. For example, the peak signal-to-noise ratio and structure similarity index measure of CDAE were at least 10% higher compared to conventional denoising algorithms. In conclusion, the image denoising algorithm developed using CDAE effectively eliminated noise without loss of information on anatomical structures in chest radiograms. It is expected that the proposed denoising algorithm developed using CDAE will be effective for medical images with microscopic anatomical structures, such as terminal bronchioles.

  19. Browsing Through Closed Books: Evaluation of Preprocessing Methods for Page Extraction of a 3-D CT Book Volume

    NASA Astrophysics Data System (ADS)

    Stromer, D.; Christlein, V.; Schön, T.; Holub, W.; Maier, A.

    2017-09-01

    It is often the case that a document can not be opened, page-turned or touched anymore due to damages caused by aging processes, moisture or fire. To counter this, special imaging systems can be used. One of our earlier work revealed that a common 3-D X-ray micro-CT scanner is well suited for imaging and reconstructing historical documents written with iron gall ink - an ink consisting of metallic particles. We acquired a volume of a self-made book without opening or page-turning with a single 3-D scan. However, when investigating the reconstructed volume, we faced the problem of a proper automatic extraction of single pages within the volume in an acceptable time without losing information of the writings. Within this work, we evaluate different appropriate pre-processing methods with respect to computation time and accuracy which are decisive for a proper extraction of book pages from the reconstructed X-ray volume and the subsequent ink identification. The different methods were tested for an extreme case with low resolution, noisy input data and wavy pages. Finally, we present results of the page extraction after applying the evaluated methods.

  20. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders

    NASA Astrophysics Data System (ADS)

    Rußwurm, Marc; Körner, Marco

    2018-03-01

    Earth observation (EO) sensors deliver data with daily or weekly temporal resolution. Most land use and land cover (LULC) approaches, however, expect cloud-free and mono-temporal observations. The increasing temporal capabilities of today's sensors enables the use of temporal, along with spectral and spatial features. Domains, such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells, which reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, we achieved in our experiments state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing compared to other classification approaches.

  1. PCA-based artifact removal algorithm for stroke detection using UWB radar imaging.

    PubMed

    Ricci, Elisa; di Domenico, Simone; Cianca, Ernestina; Rossi, Tommaso; Diomedi, Marina

    2017-06-01

    Stroke patients should be dispatched at the highest level of care available in the shortest time. In this context, a transportable system in specialized ambulances, able to evaluate the presence of an acute brain lesion in a short time interval (i.e., few minutes), could shorten delay of treatment. UWB radar imaging is an emerging diagnostic branch that has great potential for the implementation of a transportable and low-cost device. Transportability, low cost and short response time pose challenges to the signal processing algorithms of the backscattered signals as they should guarantee good performance with a reasonably low number of antennas and low computational complexity, tightly related to the response time of the device. The paper shows that a PCA-based preprocessing algorithm can: (1) achieve good performance already with a computationally simple beamforming algorithm; (2) outperform state-of-the-art preprocessing algorithms; (3) enable a further improvement in the performance (and/or decrease in the number of antennas) by using a multistatic approach with just a modest increase in computational complexity. This is an important result toward the implementation of such a diagnostic device that could play an important role in emergency scenario.

  2. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    PubMed

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  3. Non-interferometric quantitative phase imaging of yeast cells

    NASA Astrophysics Data System (ADS)

    Poola, Praveen K.; Pandiyan, Vimal Prabhu; John, Renu

    2015-12-01

    Real-time imaging of live cells is quite difficult without the addition of external contrast agents. Various methods for quantitative phase imaging of living cells have been proposed like digital holographic microscopy and diffraction phase microscopy. In this paper, we report theoretical and experimental results of quantitative phase imaging of live yeast cells with nanometric precision using transport of intensity equations (TIE). We demonstrate nanometric depth sensitivity in imaging live yeast cells using this technique. This technique being noninterferometric, does not need any coherent light sources and images can be captured through a regular bright-field microscope. This real-time imaging technique would deliver the depth or 3-D volume information of cells and is highly promising in real-time digital pathology applications, screening of pathogens and staging of diseases like malaria as it does not need any preprocessing of samples.

  4. Distance-based over-segmentation for single-frame RGB-D images

    NASA Astrophysics Data System (ADS)

    Fang, Zhuoqun; Wu, Chengdong; Chen, Dongyue; Jia, Tong; Yu, Xiaosheng; Zhang, Shihong; Qi, Erzhao

    2017-11-01

    Over-segmentation, known as super-pixels, is a widely used preprocessing step in segmentation algorithms. Oversegmentation algorithm segments an image into regions of perceptually similar pixels, but performs badly based on only color image in the indoor environments. Fortunately, RGB-D images can improve the performances on the images of indoor scene. In order to segment RGB-D images into super-pixels effectively, we propose a novel algorithm, DBOS (Distance-Based Over-Segmentation), which realizes full coverage of super-pixels on the image. DBOS fills the holes in depth images to fully utilize the depth information, and applies SLIC-like frameworks for fast running. Additionally, depth features such as plane projection distance are extracted to compute distance which is the core of SLIC-like frameworks. Experiments on RGB-D images of NYU Depth V2 dataset demonstrate that DBOS outperforms state-ofthe-art methods in quality while maintaining speeds comparable to them.

  5. Multitemporal Snow Cover Mapping in Mountainous Terrain for Landsat Climate Data Record Development

    NASA Technical Reports Server (NTRS)

    Crawford, Christopher J.; Manson, Steven M.; Bauer, Marvin E.; Hall, Dorothy K.

    2013-01-01

    A multitemporal method to map snow cover in mountainous terrain is proposed to guide Landsat climate data record (CDR) development. The Landsat image archive including MSS, TM, and ETM+ imagery was used to construct a prototype Landsat snow cover CDR for the interior northwestern United States. Landsat snow cover CDRs are designed to capture snow-covered area (SCA) variability at discrete bi-monthly intervals that correspond to ground-based snow telemetry (SNOTEL) snow-water-equivalent (SWE) measurements. The June 1 bi-monthly interval was selected for initial CDR development, and was based on peak snowmelt timing for this mountainous region. Fifty-four Landsat images from 1975 to 2011 were preprocessed that included image registration, top-of-the-atmosphere (TOA) reflectance conversion, cloud and shadow masking, and topographic normalization. Snow covered pixels were retrieved using the normalized difference snow index (NDSI) and unsupervised classification, and pixels having greater (less) than 50% snow cover were classified presence (absence). A normalized SCA equation was derived to independently estimate SCA given missing image coverage and cloud-shadow contamination. Relative frequency maps of missing pixels were assembled to assess whether systematic biases were embedded within this Landsat CDR. Our results suggest that it is possible to confidently estimate historical bi-monthly SCA from partially cloudy Landsat images. This multitemporal method is intended to guide Landsat CDR development for freshwaterscarce regions of the western US to monitor climate-driven changes in mountain snowpack extent.

  6. Breast tissue classification in digital tomosynthesis images based on global gradient minimization and texture features

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Lu, Guolan; Sechopoulos, Ioannis; Fei, Baowei

    2014-03-01

    Digital breast tomosynthesis (DBT) is a pseudo-three-dimensional x-ray imaging modality proposed to decrease the effect of tissue superposition present in mammography, potentially resulting in an increase in clinical performance for the detection and diagnosis of breast cancer. Tissue classification in DBT images can be useful in risk assessment, computer-aided detection and radiation dosimetry, among other aspects. However, classifying breast tissue in DBT is a challenging problem because DBT images include complicated structures, image noise, and out-of-plane artifacts due to limited angular tomographic sampling. In this project, we propose an automatic method to classify fatty and glandular tissue in DBT images. First, the DBT images are pre-processed to enhance the tissue structures and to decrease image noise and artifacts. Second, a global smooth filter based on L0 gradient minimization is applied to eliminate detailed structures and enhance large-scale ones. Third, the similar structure regions are extracted and labeled by fuzzy C-means (FCM) classification. At the same time, the texture features are also calculated. Finally, each region is classified into different tissue types based on both intensity and texture features. The proposed method is validated using five patient DBT images using manual segmentation as the gold standard. The Dice scores and the confusion matrix are utilized to evaluate the classified results. The evaluation results demonstrated the feasibility of the proposed method for classifying breast glandular and fat tissue on DBT images.

  7. Breast mass segmentation in mammograms combining fuzzy c-means and active contours

    NASA Astrophysics Data System (ADS)

    Hmida, Marwa; Hamrouni, Kamel; Solaiman, Basel; Boussetta, Sana

    2018-04-01

    Segmentation of breast masses in mammograms is a challenging issue due to the nature of mammography and the characteristics of masses. In fact, mammographic images are poor in contrast and breast masses have various shapes and densities with fuzzy and ill-defined borders. In this paper, we propose a method based on a modified Chan-Vese active contour model for mass segmentation in mammograms. We conduct the experiment on mass Regions of Interest (ROI) extracted from the MIAS database. The proposed method consists of mainly three stages: Firstly, the ROI is preprocessed to enhance the contrast. Next, two fuzzy membership maps are generated from the preprocessed ROI based on fuzzy C-Means algorithm. These fuzzy membership maps are finally used to modify the energy of the Chan-Vese model and to perform the final segmentation. Experimental results indicate that the proposed method yields good mass segmentation results.

  8. Evaluation of SIR-A (Shuttle Imaging Radar) images from the Tres Marias region (Minas Gerais State, Brazil) using derived spatial features and registration with MSS-LANDSAT images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kux, H. J. H.; Dutra, L. V.

    1984-01-01

    Two image processing experiments are described using a MSS-LANDSAT scene from the Tres Marias region and a shuttle Imaging Radar SIR-A image digitized by a vidicon scanner. In the first experiment the study area is analyzed using the original and preprocessed SIR-A image data. The following thematic classes are obtained: (1) water, (2) dense savanna vegetation, (3) sparse savanna vegetation, (4) reforestation areas and (5) bare soil areas. In the second experiment, the SIR-A image was registered together with MSS-LANDSAT bands five, six, and seven. The same five classes mentioned above are obtained. These results are compared with those obtained using solely MSS-LANDSAT data. The spatial information as well as coregistered SIR-A and MSS-LANDSAT data can increase the separability between classes, as compared to the use of raw SIR-A data solely.

  9. Epipolar Rectification for CARTOSAT-1 Stereo Images Using SIFT and RANSAC

    NASA Astrophysics Data System (ADS)

    Akilan, A.; Sudheer Reddy, D.; Nagasubramanian, V.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Cartosat-1 provides stereo images of spatial resolution 2.5 m with high fidelity of geometry. Stereo camera on the spacecraft has look angles of +26 degree and -5 degree respectively that yields effective along track stereo. Any DSM generation algorithm can use the stereo images for accurate 3D reconstruction and measurement of ground. Dense match points and pixel-wise matching are prerequisite in DSM generation to capture discontinuities and occlusions for accurate 3D modelling application. Epipolar image matching reduces the computational effort from two dimensional area searches to one dimensional. Thus, epipolar rectification is preferred as a pre-processing step for accurate DSM generation. In this paper we explore a method based on SIFT and RANSAC for epipolar rectification of cartosat-1 stereo images.

  10. a Metadata Based Approach for Analyzing Uav Datasets for Photogrammetric Applications

    NASA Astrophysics Data System (ADS)

    Dhanda, A.; Remondino, F.; Santana Quintero, M.

    2018-05-01

    This paper proposes a methodology for pre-processing and analysing Unmanned Aerial Vehicle (UAV) datasets before photogrammetric processing. In cases where images are gathered without a detailed flight plan and at regular acquisition intervals the datasets can be quite large and be time consuming to process. This paper proposes a method to calculate the image overlap and filter out images to reduce large block sizes and speed up photogrammetric processing. The python-based algorithm that implements this methodology leverages the metadata in each image to determine the end and side overlap of grid-based UAV flights. Utilizing user input, the algorithm filters out images that are unneeded for photogrammetric processing. The result is an algorithm that can speed up photogrammetric processing and provide valuable information to the user about the flight path.

  11. Preprocessing of region of interest localization based on local surface curvature analysis for three-dimensional reconstruction with multiresolution

    NASA Astrophysics Data System (ADS)

    Li, Wanjing; Schütze, Rainer; Böhler, Martin; Boochs, Frank; Marzani, Franck S.; Voisin, Yvon

    2009-06-01

    We present an approach to integrate a preprocessing step of the region of interest (ROI) localization into 3-D scanners (laser or stereoscopic). The definite objective is to make the 3-D scanner intelligent enough to localize rapidly in the scene, during the preprocessing phase, the regions with high surface curvature, so that precise scanning will be done only in these regions instead of in the whole scene. In this way, the scanning time can be largely reduced, and the results contain only pertinent data. To test its feasibility and efficiency, we simulated the preprocessing process under an active stereoscopic system composed of two cameras and a video projector. The ROI localization is done in an iterative way. First, the video projector projects a regular point pattern in the scene, and then the pattern is modified iteratively according to the local surface curvature of each reconstructed 3-D point. Finally, the last pattern is used to determine the ROI. Our experiments showed that with this approach, the system is capable to localize all types of objects, including small objects with small depth.

  12. Meteor tracking via local pattern clustering in spatio-temporal domain

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel

    2016-09-01

    Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).

  13. Computer-aided diagnostic detection system of venous beading in retinal images

    NASA Astrophysics Data System (ADS)

    Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.

    2000-05-01

    The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.

  14. Independent motion detection with a rival penalized adaptive particle filter

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Hübner, Wolfgang; Arens, Michael

    2014-10-01

    Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic filter for real-time detection and tracking of independently moving objects. The proposed approach introduces a competition scheme between particles in order to ensure an improved multi-modality. Further, the filter design helps to generate a particle distribution which is homogenous even in the presence of multiple targets showing non-rigid motion patterns. The effectiveness of the method is shown on exemplary outdoor sequences.

  15. Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis

    PubMed Central

    Garrison, Kathleen A.; Rogalsky, Corianne; Sheng, Tong; Liu, Brent; Damasio, Hanna; Winstein, Carolee J.; Aziz-Zadeh, Lisa S.

    2015-01-01

    Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant’s structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant’s non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design. PMID:26441816

  16. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  17. Production of Previews and Advanced Data Products for the ESO Science Archive

    NASA Astrophysics Data System (ADS)

    Rité, C.; Slijkhuis, R.; Rosati, P.; Delmotte, N.; Rino, B.; Chéreau, F.; Malapert, J.-C.

    2008-08-01

    We present a project being carried out by the Virtual Observatory Systems Department/Advanced Data Products group in order to populate the ESO Science Archive Facility with image previews and advanced data products. The main goal is to provide users of the ESO Science Archive Facility with the possibility of viewing pre-processed images associated with instruments like WFI, ISAAC and SOFI before actually retrieving the data for full processing. The image processing is done by using the ESO/MVM image reduction software developed at ESO, to produce astrometrically calibrated FITS images, ranging from simple previews of single archive images, to fully stacked mosaics. These data products can be accessed via the ESO Science Archive Query Form and also be viewed with the browser VirGO {http://archive.eso.org/cms/virgo}.

  18. Optimizing parameter choice for FSL-Brain Extraction Tool (BET) on 3D T1 images in multiple sclerosis.

    PubMed

    Popescu, V; Battaglini, M; Hoogstrate, W S; Verfaillie, S C J; Sluimer, I C; van Schijndel, R A; van Dijk, B W; Cover, K S; Knol, D L; Jenkinson, M; Barkhof, F; de Stefano, N; Vrenken, H

    2012-07-16

    Brain atrophy studies often use FSL-BET (Brain Extraction Tool) as the first step of image processing. Default BET does not always give satisfactory results on 3DT1 MR images, which negatively impacts atrophy measurements. Finding the right alternative BET settings can be a difficult and time-consuming task, which can introduce unwanted variability. To systematically analyze the performance of BET in images of MS patients by varying its parameters and options combinations, and quantitatively comparing its results to a manual gold standard. Images from 159 MS patients were selected from different MAGNIMS consortium centers, and 16 different 3DT1 acquisition protocols at 1.5 T or 3T. Before running BET, one of three pre-processing pipelines was applied: (1) no pre-processing, (2) removal of neck slices, or (3) additional N3 inhomogeneity correction. Then BET was applied, systematically varying the fractional intensity threshold (the "f" parameter) and with either one of the main BET options ("B" - bias field correction and neck cleanup, "R" - robust brain center estimation, or "S" - eye and optic nerve cleanup) or none. For comparison, intracranial cavity masks were manually created for all image volumes. FSL-FAST (FMRIB's Automated Segmentation Tool) tissue-type segmentation was run on all BET output images and on the image volumes masked with the manual intracranial cavity masks (thus creating the gold-standard tissue masks). The resulting brain tissue masks were quantitatively compared to the gold standard using Dice overlap coefficient (DOC). Normalized brain volumes (NBV) were calculated with SIENAX. NBV values obtained using for SIENAX other BET settings than default were compared to gold standard NBV with the paired t-test. The parameter/preprocessing/options combinations resulted in 20,988 BET runs. The median DOC for default BET (f=0.5, g=0) was 0.913 (range 0.321-0.977) across all 159 native scans. For all acquisition protocols, brain extraction was substantially improved for lower values of "f" than the default value. Using native images, optimum BET performance was observed for f=0.2 with option "B", giving median DOC=0.979 (range 0.867-0.994). Using neck removal before BET, optimum BET performance was observed for f=0.1 with option "B", giving median DOC 0.983 (range 0.844-0.996). Using the above BET-options for SIENAX instead of default, the NBV values obtained from images after neck removal with f=0.1 and option "B" did not differ statistically from NBV values obtained with gold-standard. Although default BET performs reasonably well on most 3DT1 images of MS patients, the performance can be improved substantially. The removal of the neck slices, either externally or within BET, has a marked positive effect on the brain extraction quality. BET option "B" with f=0.1 after removal of the neck slices seems to work best for all acquisition protocols. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Skin cancer texture analysis of OCT images based on Haralick, fractal dimension and the complex directional field features

    NASA Astrophysics Data System (ADS)

    Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.

    2016-04-01

    Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.

  20. Landsat Thematic Mapper Image Mosaic of Colorado

    USGS Publications Warehouse

    Cole, Christopher J.; Noble, Suzanne M.; Blauer, Steven L.; Friesen, Beverly A.; Bauer, Mark A.

    2010-01-01

    The U.S. Geological Survey (USGS) Rocky Mountain Geographic Science Center (RMGSC) produced a seamless, cloud-minimized remotely-sensed image spanning the State of Colorado. Multiple orthorectified Landsat 5 Thematic Mapper (TM) scenes collected during 2006-2008 were spectrally normalized via reflectance transformation and linear regression based upon pseudo-invariant features (PIFS) following the removal of clouds. Individual Landsat scenes were then mosaicked to form a six-band image composite spanning the visible to shortwave infrared spectrum. This image mosaic, presented here, will also be used to create a conifer health classification for Colorado in Scientific Investigations Map 3103. An archive of past and current Landsat imagery exists and is available to the scientific community (http://glovis.usgs.gov/), but significant pre-processing was required to produce a statewide mosaic from this information. Much of the data contained perennial cloud cover that complicated analysis and classification efforts. Existing Landsat mosaic products, typically three band image composites, did not include the full suite of multispectral information necessary to produce this assessment, and were derived using data collected in 2001 or earlier. A six-band image mosaic covering Colorado was produced. This mosaic includes blue (band 1), green (band 2), red (band 3), near infrared (band 4), and shortwave infrared information (bands 5 and 7). The image composite shown here displays three of the Landsat bands (7, 4, and 2), which are sensitive to the shortwave infrared, near infrared, and green ranges of the electromagnetic spectrum. Vegetation appears green in this image, while water looks black, and unforested areas appear pink. The lines that may be visible in the on-screen version of the PDF are an artifact of the export methods used to create this file. The file should be viewed at 150 percent zoom or greater for optimum viewing.

  1. Accessible maps for the color vision deficient observers: past and present knowledge and future possibilities

    NASA Astrophysics Data System (ADS)

    Kvitle, Anne Kristin

    2018-05-01

    Color is part of the visual variables in map, serving an aesthetic part and as a guide of attention. Impaired color vision affects the ability to distinguish colors, which makes the task of decoding the map colors difficult. Map reading is reported as a challenging task for these observers, especially when the size of stimuli is small. The aim of this study is to review existing methods for map design for color vision deficient users. A systematic review of research literature and case studies of map design for CVD observers has been conducted in order to give an overview of current knowledge and future research challenges. In addition, relevant research on simulations of CVD and color image enhancement for these observers from other fields of industry is included. The study identified two main approaches: pre-processing by using accessible colors and post-processing by using enhancement methods. Some of the methods may be applied for maps, but requires tailoring of test images according to map types.

  2. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei

    PubMed Central

    Pauli, Wolfgang M.; Nili, Amanda N.; Tyszka, J. Michael

    2018-01-01

    Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T1- and T2- weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain. PMID:29664465

  3. Deblurring adaptive optics retinal images using deep convolutional neural networks.

    PubMed

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-12-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved.

  4. Deblurring adaptive optics retinal images using deep convolutional neural networks

    PubMed Central

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-01-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved. PMID:29296496

  5. Open database of epileptic EEG with MRI and postoperational assessment of foci--a real world verification for the EEG inverse solutions.

    PubMed

    Zwoliński, Piotr; Roszkowski, Marcin; Zygierewicz, Jaroslaw; Haufe, Stefan; Nolte, Guido; Durka, Piotr J

    2010-12-01

    This paper introduces a freely accessible database http://eeg.pl/epi , containing 23 datasets from patients diagnosed with and operated on for drug-resistant epilepsy. This was collected as part of the clinical routine at the Warsaw Memorial Child Hospital. Each record contains (1) pre-surgical electroencephalography (EEG) recording (10-20 system) with inter-ictal discharges marked separately by an expert, (2) a full set of magnetic resonance imaging (MRI) scans for calculations of the realistic forward models, (3) structural placement of the epileptogenic zone, recognized by electrocorticography (ECoG) and post-surgical results, plotted on pre-surgical MRI scans in transverse, sagittal and coronal projections, (4) brief clinical description of each case. The main goal of this project is evaluation of possible improvements of localization of epileptic foci from the surface EEG recordings. These datasets offer a unique possibility for evaluating different EEG inverse solutions. We present preliminary results from a subset of these cases, including comparison of different schemes for the EEG inverse solution and preprocessing. We report also a finding which relates to the selective parametrization of single waveforms by multivariate matching pursuit, which is used in the preprocessing for the inverse solutions. It seems to offer a possibility of tracing the spatial evolution of seizures in time.

  6. Method for measuring anterior chamber volume by image analysis

    NASA Astrophysics Data System (ADS)

    Zhai, Gaoshou; Zhang, Junhong; Wang, Ruichang; Wang, Bingsong; Wang, Ningli

    2007-12-01

    Anterior chamber volume (ACV) is very important for an oculist to make rational pathological diagnosis as to patients who have some optic diseases such as glaucoma and etc., yet it is always difficult to be measured accurately. In this paper, a method is devised to measure anterior chamber volumes based on JPEG-formatted image files that have been transformed from medical images using the anterior-chamber optical coherence tomographer (AC-OCT) and corresponding image-processing software. The corresponding algorithms for image analysis and ACV calculation are implemented in VC++ and a series of anterior chamber images of typical patients are analyzed, while anterior chamber volumes are calculated and are verified that they are in accord with clinical observation. It shows that the measurement method is effective and feasible and it has potential to improve accuracy of ACV calculation. Meanwhile, some measures should be taken to simplify the handcraft preprocess working as to images.

  7. Performance Improvement of Power Analysis Attacks on AES with Encryption-Related Signals

    NASA Astrophysics Data System (ADS)

    Lee, You-Seok; Lee, Young-Jun; Han, Dong-Guk; Kim, Ho-Won; Kim, Hyoung-Nam

    A power analysis attack is a well-known side-channel attack but the efficiency of the attack is frequently degraded by the existence of power components, irrelative to the encryption included in signals used for the attack. To enhance the performance of the power analysis attack, we propose a preprocessing method based on extracting encryption-related parts from the measured power signals. Experimental results show that the attacks with the preprocessed signals detect correct keys with much fewer signals, compared to the conventional power analysis attacks.

  8. Improved frame-based estimation of head motion in PET brain imaging.

    PubMed

    Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R

    2016-05-01

    Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  9. The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study

    NASA Technical Reports Server (NTRS)

    Olshausen, Bruno; Watson, Andrew

    1990-01-01

    An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.

  10. Efficiency of the spectral-spatial classification of hyperspectral imaging data

    NASA Astrophysics Data System (ADS)

    Borzov, S. M.; Potaturkin, O. I.

    2017-01-01

    The efficiency of methods of the spectral-spatial classification of similarly looking types of vegetation on the basis of hyperspectral data of remote sensing of the Earth, which take into account local neighborhoods of analyzed image pixels, is experimentally studied. Algorithms that involve spatial pre-processing of the raw data and post-processing of pixel-based spectral classification maps are considered. Results obtained both for a large-size hyperspectral image and for its test fragment with different methods of training set construction are reported. The classification accuracy in all cases is estimated through comparisons of ground-truth data and classification maps formed by using the compared methods. The reasons for the differences in these estimates are discussed.

  11. Microaneurysm detection with radon transform-based classification on retina images.

    PubMed

    Giancardo, L; Meriaudeau, F; Karnowski, T P; Li, Y; Tobin, K W; Chaum, E

    2011-01-01

    The creation of an automatic diabetic retinopathy screening system using retina cameras is currently receiving considerable interest in the medical imaging community. The detection of microaneurysms is a key element in this effort. In this work, we propose a new microaneurysms segmentation technique based on a novel application of the radon transform, which is able to identify these lesions without any previous knowledge of the retina morphological features and with minimal image preprocessing. The algorithm has been evaluated on the Retinopathy Online Challenge public dataset, and its performance compares with the best current techniques. The performance is particularly good at low false positive ratios, which makes it an ideal candidate for diabetic retinopathy screening systems.

  12. An approach for traffic prohibition sign detection

    NASA Astrophysics Data System (ADS)

    Li, Qingquan; Xu, Dihong; Li, Bijun; Zeng, Zhe

    2006-10-01

    This paper presents an off-line traffic prohibition sign detection approach, whose core is based on combination with the color feature of traffic prohibition signs, shape feature and degree of circularity. Matlab-Image-processing toolbox is used for this purpose. In order to reduce the computational cost, a pre-processing of the image is applied before the core. Then, we employ the obvious redness attribute of prohibition signs to coarsely eliminate the non-redness image in the input data. Again, a edge-detection operator, Canny edge detector, is applied to extract the potential edge. Finally, Degree of circularity is used to verdict the traffic prohibition sign. Experimental results show that our systems offer satisfactory performance.

  13. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Kong, Wenwen; Liu, Fei; Zhang, Chu; Zhang, Jianfeng; Feng, Hailin

    2016-10-01

    The feasibility of hyperspectral imaging with 400-1000 nm was investigated to detect malondialdehyde (MDA) content in oilseed rape leaves under herbicide stress. After comparing the performance of different preprocessing methods, linear and nonlinear calibration models, the optimal prediction performance was achieved by extreme learning machine (ELM) model with only 23 wavelengths selected by competitive adaptive reweighted sampling (CARS), and the result was RP = 0.929 and RMSEP = 2.951. Furthermore, MDA distribution map was successfully achieved by partial least squares (PLS) model with CARS. This study indicated that hyperspectral imaging technology provided a fast and nondestructive solution for MDA content detection in plant leaves.

  14. Identifying Jets Using Artifical Neural Networks

    NASA Astrophysics Data System (ADS)

    Rosand, Benjamin; Caines, Helen; Checa, Sofia

    2017-09-01

    We investigate particle jet interactions with the Quark Gluon Plasma (QGP) using artificial neural networks modeled on those used in computer image recognition. We create jet images by binning jet particles into pixels and preprocessing every image. We analyzed the jets with a Multi-layered maxout network and a convolutional network. We demonstrate each network's effectiveness in differentiating simulated quenched jets from unquenched jets, and we investigate the method that the network uses to discriminate among different quenched jet simulations. Finally, we develop a greater understanding of the physics behind quenched jets by investigating what the network learnt as well as its effectiveness in differentiating samples. Yale College Freshman Summer Research Fellowship in the Sciences and Engineering.

  15. Forest Resource Information System. Phase 3: System transfer report

    NASA Technical Reports Server (NTRS)

    Mroczynski, R. P. (Principal Investigator)

    1981-01-01

    Transfer of the forest reserve information system (FRIS) from the Laboratory for Applications of Remote Sensing to St. Regis Paper Company is described. Modifications required for the transfer of the LARYS image processing software are discussed. The reformatting, geometric correction, image registration, and documentation performed for preprocessing transfer are described. Data turnaround was improved and geometrically corrected and ground-registered CCT LANDSAT 3 data provided to the user. The technology transfer activities are summarized. An application test performed in order to assess a Florida land acquisition is described. A benefit/cost analysis of FRIS is presented.

  16. Nature's crucible: Manufacturing optical nonlinearities for high resolution, high sensitivity encoding in the compound eye of the fly, Musca domestica

    NASA Technical Reports Server (NTRS)

    Wilcox, Mike

    1993-01-01

    The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.

  17. Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.

    PubMed

    Huynh, Hieu Trung; Le-Trong, Ngoc; Bao, Pham The; Oto, Aytek; Suzuki, Kenji

    2017-02-01

    Our purpose is to develop a fully automated scheme for liver volume measurement in abdominal MR images, without requiring any user input or interaction. The proposed scheme is fully automatic for liver volumetry from 3D abdominal MR images, and it consists of three main stages: preprocessing, rough liver shape generation, and liver extraction. The preprocessing stage reduced noise and enhanced the liver boundaries in 3D abdominal MR images. The rough liver shape was revealed fully automatically by using the watershed segmentation, thresholding transform, morphological operations, and statistical properties of the liver. An active contour model was applied to refine the rough liver shape to precisely obtain the liver boundaries. The liver volumes calculated by the proposed scheme were compared to the "gold standard" references which were estimated by an expert abdominal radiologist. The liver volumes computed by using our developed scheme excellently agreed (Intra-class correlation coefficient was 0.94) with the "gold standard" manual volumes by the radiologist in the evaluation with 27 cases from multiple medical centers. The running time was 8.4 min per case on average. We developed a fully automated liver volumetry scheme in MR, which does not require any interaction by users. It was evaluated with cases from multiple medical centers. The liver volumetry performance of our developed system was comparable to that of the gold standard manual volumetry, and it saved radiologists' time for manual liver volumetry of 24.7 min per case.

  18. Sensor feature fusion for detecting buried objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, G.A.; Sengupta, S.K.; Sherwood, R.J.

    1993-04-01

    Given multiple registered images of the earth`s surface from dual-band sensors, our system fuses information from the sensors to reduce the effects of clutter and improve the ability to detect buried or surface target sites. The sensor suite currently includes two sensors (5 micron and 10 micron wavelengths) and one ground penetrating radar (GPR) of the wide-band pulsed synthetic aperture type. We use a supervised teaming pattern recognition approach to detect metal and plastic land mines buried in soil. The overall process consists of four main parts: Preprocessing, feature extraction, feature selection, and classification. These parts are used in amore » two step process to classify a subimage. Thee first step, referred to as feature selection, determines the features of sub-images which result in the greatest separability among the classes. The second step, image labeling, uses the selected features and the decisions from a pattern classifier to label the regions in the image which are likely to correspond to buried mines. We extract features from the images, and use feature selection algorithms to select only the most important features according to their contribution to correct detections. This allows us to save computational complexity and determine which of the sensors add value to the detection system. The most important features from the various sensors are fused using supervised teaming pattern classifiers (including neural networks). We present results of experiments to detect buried land mines from real data, and evaluate the usefulness of fusing feature information from multiple sensor types, including dual-band infrared and ground penetrating radar. The novelty of the work lies mostly in the combination of the algorithms and their application to the very important and currently unsolved operational problem of detecting buried land mines from an airborne standoff platform.« less

  19. A graphical method to evaluate spectral preprocessing in multivariate regression calibrations: example with Savitzky-Golay filters and partial least squares regression.

    PubMed

    Delwiche, Stephen R; Reeves, James B

    2010-01-01

    In multivariate regression analysis of spectroscopy data, spectral preprocessing is often performed to reduce unwanted background information (offsets, sloped baselines) or accentuate absorption features in intrinsically overlapping bands. These procedures, also known as pretreatments, are commonly smoothing operations or derivatives. While such operations are often useful in reducing the number of latent variables of the actual decomposition and lowering residual error, they also run the risk of misleading the practitioner into accepting calibration equations that are poorly adapted to samples outside of the calibration. The current study developed a graphical method to examine this effect on partial least squares (PLS) regression calibrations of near-infrared (NIR) reflection spectra of ground wheat meal with two analytes, protein content and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of the quantity of the gluten proteins that contribute to strong doughs). These two properties were chosen because of their differing abilities to be modeled by NIR spectroscopy: excellent for protein content, fair for SDS sedimentation volume. To further demonstrate the potential pitfalls of preprocessing, an artificial component, a randomly generated value, was included in PLS regression trials. Savitzky-Golay (digital filter) smoothing, first-derivative, and second-derivative preprocess functions (5 to 25 centrally symmetric convolution points, derived from quadratic polynomials) were applied to PLS calibrations of 1 to 15 factors. The results demonstrated the danger of an over reliance on preprocessing when (1) the number of samples used in a multivariate calibration is low (<50), (2) the spectral response of the analyte is weak, and (3) the goodness of the calibration is based on the coefficient of determination (R(2)) rather than a term based on residual error. The graphical method has application to the evaluation of other preprocess functions and various types of spectroscopy data.

  20. Infrared thermal facial image sequence registration analysis and verification

    NASA Astrophysics Data System (ADS)

    Chen, Chieh-Li; Jian, Bo-Lin

    2015-03-01

    To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.

  1. Comparing Binaural Pre-processing Strategies III

    PubMed Central

    Warzybok, Anna; Ernst, Stephan M. A.

    2015-01-01

    A comprehensive evaluation of eight signal pre-processing strategies, including directional microphones, coherence filters, single-channel noise reduction, binaural beamformers, and their combinations, was undertaken with normal-hearing (NH) and hearing-impaired (HI) listeners. Speech reception thresholds (SRTs) were measured in three noise scenarios (multitalker babble, cafeteria noise, and single competing talker). Predictions of three common instrumental measures were compared with the general perceptual benefit caused by the algorithms. The individual SRTs measured without pre-processing and individual benefits were objectively estimated using the binaural speech intelligibility model. Ten listeners with NH and 12 HI listeners participated. The participants varied in age and pure-tone threshold levels. Although HI listeners required a better signal-to-noise ratio to obtain 50% intelligibility than listeners with NH, no differences in SRT benefit from the different algorithms were found between the two groups. With the exception of single-channel noise reduction, all algorithms showed an improvement in SRT of between 2.1 dB (in cafeteria noise) and 4.8 dB (in single competing talker condition). Model predictions with binaural speech intelligibility model explained 83% of the measured variance of the individual SRTs in the no pre-processing condition. Regarding the benefit from the algorithms, the instrumental measures were not able to predict the perceptual data in all tested noise conditions. The comparable benefit observed for both groups suggests a possible application of noise reduction schemes for listeners with different hearing status. Although the model can predict the individual SRTs without pre-processing, further development is necessary to predict the benefits obtained from the algorithms at an individual level. PMID:26721922

  2. Machine learning for the automatic localisation of foetal body parts in cine-MRI scans

    NASA Astrophysics Data System (ADS)

    Bowles, Christopher; Nowlan, Niamh C.; Hayat, Tayyib T. A.; Malamateniou, Christina; Rutherford, Mary; Hajnal, Joseph V.; Rueckert, Daniel; Kainz, Bernhard

    2015-03-01

    Being able to automate the location of individual foetal body parts has the potential to dramatically reduce the work required to analyse time resolved foetal Magnetic Resonance Imaging (cine-MRI) scans, for example, for use in the automatic evaluation of the foetal development. Currently, manual preprocessing of every scan is required to locate body parts before analysis can be performed, leading to a significant time overhead. With the volume of scans becoming available set to increase as cine-MRI scans become more prevalent in clinical practice, this stage of manual preprocessing is a bottleneck, limiting the data available for further analysis. Any tools which can automate this process will therefore save many hours of research time and increase the rate of new discoveries in what is a key area in understanding early human development. Here we present a series of techniques which can be applied to foetal cine-MRI scans in order to first locate and then differentiate between individual body parts. A novel approach to maternal movement suppression and segmentation using Fourier transforms is put forward as a preprocessing step, allowing for easy extraction of short movements of individual foetal body parts via the clustering of optical flow vector fields. These body part movements are compared to a labelled database and probabilistically classified before being spatially and temporally combined to give a final estimate for the location of each body part.

  3. Performance analysis of unsupervised optimal fuzzy clustering algorithm for MRI brain tumor segmentation.

    PubMed

    Blessy, S A Praylin Selva; Sulochana, C Helen

    2015-01-01

    Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.

  4. A method of detection to the grinding wheel layer thickness based on computer vision

    NASA Astrophysics Data System (ADS)

    Ji, Yuchen; Fu, Luhua; Yang, Dujuan; Wang, Lei; Liu, Changjie; Wang, Zhong

    2018-01-01

    This paper proposed a method of detection to the grinding wheel layer thickness based on computer vision. A camera is used to capture images of grinding wheel layer on the whole circle. Forward lighting and back lighting are used to enables a clear image to be acquired. Image processing is then executed on the images captured, which consists of image preprocessing, binarization and subpixel subdivision. The aim of binarization is to help the location of a chord and the corresponding ring width. After subpixel subdivision, the thickness of the grinding layer can be calculated finally. Compared with methods usually used to detect grinding wheel wear, method in this paper can directly and quickly get the information of thickness. Also, the eccentric error and the error of pixel equivalent are discussed in this paper.

  5. Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network

    NASA Astrophysics Data System (ADS)

    Nasution, T. H.; Andayani, U.

    2017-03-01

    The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.

  6. Hepatitis Diagnosis Using Facial Color Image

    NASA Astrophysics Data System (ADS)

    Liu, Mingjia; Guo, Zhenhua

    Facial color diagnosis is an important diagnostic method in traditional Chinese medicine (TCM). However, due to its qualitative, subjective and experi-ence-based nature, traditional facial color diagnosis has a very limited application in clinical medicine. To circumvent the subjective and qualitative problems of facial color diagnosis of Traditional Chinese Medicine, in this paper, we present a novel computer aided facial color diagnosis method (CAFCDM). The method has three parts: face Image Database, Image Preprocessing Module and Diagnosis Engine. Face Image Database is carried out on a group of 116 patients affected by 2 kinds of liver diseases and 29 healthy volunteers. The quantitative color feature is extracted from facial images by using popular digital image processing techni-ques. Then, KNN classifier is employed to model the relationship between the quantitative color feature and diseases. The results show that the method can properly identify three groups: healthy, severe hepatitis with jaundice and severe hepatitis without jaundice with accuracy higher than 73%.

  7. Detection of Pigment Networks in Dermoscopy Images

    NASA Astrophysics Data System (ADS)

    Eltayef, Khalid; Li, Yongmin; Liu, Xiaohui

    2017-02-01

    One of the most important structures in dermoscopy images is the pigment network, which is also one of the most challenging and fundamental task for dermatologists in early detection of melanoma. This paper presents an automatic system to detect pigment network from dermoscopy images. The design of the proposed algorithm consists of four stages. First, a pre-processing algorithm is carried out in order to remove the noise and improve the quality of the image. Second, a bank of directional filters and morphological connected component analysis are applied to detect the pigment networks. Third, features are extracted from the detected image, which can be used in the subsequent stage. Fourth, the classification process is performed by applying feed-forward neural network, in order to classify the region as either normal or abnormal skin. The method was tested on a dataset of 200 dermoscopy images from Hospital Pedro Hispano (Matosinhos), and better results were produced compared to previous studies.

  8. Detection of Melanoma Skin Cancer in Dermoscopy Images

    NASA Astrophysics Data System (ADS)

    Eltayef, Khalid; Li, Yongmin; Liu, Xiaohui

    2017-02-01

    Malignant melanoma is the most hazardous type of human skin cancer and its incidence has been rapidly increasing. Early detection of malignant melanoma in dermoscopy images is very important and critical, since its detection in the early stage can be helpful to cure it. Computer Aided Diagnosis systems can be very helpful to facilitate the early detection of cancers for dermatologists. In this paper, we present a novel method for the detection of melanoma skin cancer. To detect the hair and several noises from images, pre-processing step is carried out by applying a bank of directional filters. And therefore, Image inpainting method is implemented to fill in the unknown regions. Fuzzy C-Means and Markov Random Field methods are used to delineate the border of the lesion area in the images. The method was evaluated on a dataset of 200 dermoscopic images, and superior results were produced compared to alternative methods.

  9. Experiences in flip chip production of radiation detectors

    NASA Astrophysics Data System (ADS)

    Savolainen-Pulli, Satu; Salonen, Jaakko; Salmi, Jorma; Vähänen, Sami

    2006-09-01

    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-μm diameter tin-lead solder bumps at a 50-μm pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given.

  10. Walkaway-VSP survey using distributed optical fiber in China oilfield

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Yu, Gang; Zhang, Qinghong; Li, Yanpeng; Cai, Zhidong; Chen, Yuanzhong; Liu, Congwei; Zhao, Haiying; Li, Fei

    2017-10-01

    Distributed acoustic sensing (DAS) is a new type of replacement technology for geophysical geophone. DAS system is similar to high-density surface seismic geophone array. In the stage of acquisition, DAS can obtain the full well data with one shot. And it can provide enhanced vertical seismic profile (VSP) imaging and monitor fluids and pressures changes in the hydrocarbon production reservoir. Walkaway VSP data acquired over a former producing well in north eastern China provided a rich set of very high quality data. A standard VSP data pre-processing workflow was applied, followed by pre-stack Kirchhoff time migration. In the DAS pre-processing step we were faced with additional and special challenges: strong coherent noise due to cable slapping and ringing along the borehole casing. The single well DAS Walkaway VSP images provide a good result with higher vertical and lateral resolution than the surface seismic in the objective area. This paper reports on lessons learned in the handling of the wireline cable and subsequent special DAS data processing steps developed to remediate some of the practical wireline deployment issues. Optical wireline cable as a conveyance of fiber optic cables for VSP in vertical wells will open the use of the DAS system to much wider applications.

  11. Application of filtering techniques in preprocessing magnetic data

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Yi, Yongping; Yang, Hongxia; Hu, Guochuang; Liu, Guoming

    2010-08-01

    High precision magnetic exploration is a popular geophysical technique for its simplicity and its effectiveness. The explanation in high precision magnetic exploration is always a difficulty because of the existence of noise and disturbance factors, so it is necessary to find an effective preprocessing method to get rid of the affection of interference factors before further processing. The common way to do this work is by filtering. There are many kinds of filtering methods. In this paper we introduced in detail three popular kinds of filtering techniques including regularized filtering technique, sliding averages filtering technique, compensation smoothing filtering technique. Then we designed the work flow of filtering program based on these techniques and realized it with the help of DELPHI. To check it we applied it to preprocess magnetic data of a certain place in China. Comparing the initial contour map with the filtered contour map, we can see clearly the perfect effect our program. The contour map processed by our program is very smooth and the high frequency parts of data are disappeared. After filtering, we separated useful signals and noisy signals, minor anomaly and major anomaly, local anomaly and regional anomaly. It made us easily to focus on the useful information. Our program can be used to preprocess magnetic data. The results showed the effectiveness of our program.

  12. Comparison of pre-processing methods for multiplex bead-based immunoassays.

    PubMed

    Rausch, Tanja K; Schillert, Arne; Ziegler, Andreas; Lüking, Angelika; Zucht, Hans-Dieter; Schulz-Knappe, Peter

    2016-08-11

    High throughput protein expression studies can be performed using bead-based protein immunoassays, such as the Luminex® xMAP® technology. Technical variability is inherent to these experiments and may lead to systematic bias and reduced power. To reduce technical variability, data pre-processing is performed. However, no recommendations exist for the pre-processing of Luminex® xMAP® data. We compared 37 different data pre-processing combinations of transformation and normalization methods in 42 samples on 384 analytes obtained from a multiplex immunoassay based on the Luminex® xMAP® technology. We evaluated the performance of each pre-processing approach with 6 different performance criteria. Three performance criteria were plots. All plots were evaluated by 15 independent and blinded readers. Four different combinations of transformation and normalization methods performed well as pre-processing procedure for this bead-based protein immunoassay. The following combinations of transformation and normalization were suitable for pre-processing Luminex® xMAP® data in this study: weighted Box-Cox followed by quantile or robust spline normalization (rsn), asinh transformation followed by loess normalization and Box-Cox followed by rsn.

  13. quanTLC, an online open-source solution for videodensitometric quantification.

    PubMed

    Fichou, Dimitri; Morlock, Gertrud E

    2018-07-27

    The image is the key feature of planar chromatography. Videodensitometry by digital image conversion is the fastest way of its evaluation. Instead of scanning single sample tracks one after the other, only few clicks are needed to convert all tracks at one go. A minimalistic software was newly developed, termed quanTLC, that allowed the quantitative evaluation of samples in few minutes. quanTLC includes important assets such as open-source, online, free of charge, intuitive to use and tailored to planar chromatography, as none of the nine existent software for image evaluation covered these aspects altogether. quanTLC supports common image file formats for chromatogram upload. All necessary steps were included, i.e., videodensitogram extraction, preprocessing, automatic peak integration, calibration, statistical data analysis, reporting and data export. The default options for each step are suitable for most analyses while still being tunable, if needed. A one-minute video was recorded to serve as user manual. The software capabilities are shown on the example of a lipophilic dye mixture separation. The quantitative results were verified by comparison with those obtained by commercial videodensitometry software and opto-mechanical slit-scanning densitometry. The data can be exported at each step to be processed in further software, if required. The code was released open-source to be exploited even further. The software itself is online useable without installation and directly accessible at http://shinyapps.ernaehrung.uni-giessen.de/quanTLC. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Saliency detection algorithm based on LSC-RC

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu

    2018-02-01

    Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.

  15. An interactive medical image segmentation framework using iterative refinement.

    PubMed

    Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay

    2017-04-01

    Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Automated and simultaneous fovea center localization and macula segmentation using the new dynamic identification and classification of edges model.

    PubMed

    Onal, Sinan; Chen, Xin; Satamraju, Veeresh; Balasooriya, Maduka; Dabil-Karacal, Humeyra

    2016-07-01

    Detecting the position of retinal structures, including the fovea center and macula, in retinal images plays a key role in diagnosing eye diseases such as optic nerve hypoplasia, amblyopia, diabetic retinopathy, and macular edema. However, current detection methods are unreliable for infants or certain ethnic populations. Thus, a methodology is proposed here that may be useful for infants and across ethnicities that automatically localizes the fovea center and segments the macula on digital fundus images. First, dark structures and bright artifacts are removed from the input image using preprocessing operations, and the resulting image is transformed to polar space. Second, the fovea center is identified, and the macula region is segmented using the proposed dynamic identification and classification of edges (DICE) model. The performance of the method was evaluated using 1200 fundus images obtained from the relatively large, diverse, and publicly available Messidor database. In 96.1% of these 1200 cases, the distance between the fovea center identified manually by ophthalmologists and automatically using the proposed method remained within 0 to 8 pixels. The dice similarity index comparing the manually obtained results with those of the model for macula segmentation was 96.12% for these 1200 cases. Thus, the proposed method displayed a high degree of accuracy. The methodology using the DICE model is unique and advantageous over previously reported methods because it simultaneously determines the fovea center and segments the macula region without using any structural information, such as optic disc or blood vessel location, and it may prove useful for all populations, including infants.

  17. Three-phase general border detection method for dermoscopy images using non-uniform illumination correction.

    PubMed

    Norton, Kerri-Ann; Iyatomi, Hitoshi; Celebi, M Emre; Ishizaki, Sumiko; Sawada, Mizuki; Suzaki, Reiko; Kobayashi, Ken; Tanaka, Masaru; Ogawa, Koichi

    2012-08-01

    Computer-aided diagnosis of dermoscopy images has shown great promise in developing a quantitative, objective way of classifying skin lesions. An important step in the classification process is lesion segmentation. Many studies have been successful in segmenting melanocytic skin lesions (MSLs), but few have focused on non-melanocytic skin lesions (NoMSLs), as the wide variety of lesions makes accurate segmentation difficult. We developed an automatic segmentation program for detecting borders of skin lesions in dermoscopy images. The method consists of a pre-processing phase, general lesion segmentation phase, including illumination correction, and bright region segmentation phase. We tested our method on a set of 107 NoMSLs and a set of 319 MSLs. Our method achieved precision/recall scores of 84.5% and 88.5% for NoMSLs, and 93.9% and 93.8% for MSLs, in comparison with manual extractions from four or five dermatologists. The accuracy of our method was competitive or better than five recently published methods. Our new method is the first method for detecting borders of both non-melanocytic and melanocytic skin lesions. © 2011 John Wiley & Sons A/S.

  18. Image-based Lagrangian Particle Tracking in Bed-load Experiments.

    PubMed

    Radice, Alessio; Sarkar, Sankar; Ballio, Francesco

    2017-07-20

    Image analysis has been increasingly used for the measurement of river flows due to its capabilities to furnish detailed quantitative depictions at a relatively low cost. This manuscript describes an application of particle tracking velocimetry (PTV) to a bed-load experiment with lightweight sediment. The key characteristics of the investigated sediment transport conditions were the presence of a covered flow and of a fixed rough bed above which particles were released in limited number at the flume inlet. Under the applied flow conditions, the motion of the individual bed-load particles was intermittent, with alternating movement and stillness terms. The flow pattern was preliminarily characterized by acoustic measurements of vertical profiles of the stream-wise velocity. During process visualization, a large field of view was obtained using two action-cameras placed at different locations along the flume. The experimental protocol is described in terms of channel calibration, experiment realization, image pre-processing, automatic particle tracking, and post-processing of particle track data from the two cameras. The presented proof-of-concept results include probability distributions of the particle hop length and duration. The achievements of this work are compared to those of existing literature to demonstrate the validity of the protocol.

  19. Differentiation Between Organic and Non-Organic Apples Using Diffraction Grating and Image Processing-A Cost-Effective Approach.

    PubMed

    Jiang, Nanfeng; Song, Weiran; Wang, Hui; Guo, Gongde; Liu, Yuanyuan

    2018-05-23

    As the expectation for higher quality of life increases, consumers have higher demands for quality food. Food authentication is the technical means of ensuring food is what it says it is. A popular approach to food authentication is based on spectroscopy, which has been widely used for identifying and quantifying the chemical components of an object. This approach is non-destructive and effective but expensive. This paper presents a computer vision-based sensor system for food authentication, i.e., differentiating organic from non-organic apples. This sensor system consists of low-cost hardware and pattern recognition software. We use a flashlight to illuminate apples and capture their images through a diffraction grating. These diffraction images are then converted into a data matrix for classification by pattern recognition algorithms, including k -nearest neighbors ( k -NN), support vector machine (SVM) and three partial least squares discriminant analysis (PLS-DA)- based methods. We carry out experiments on a reasonable collection of apple samples and employ a proper pre-processing, resulting in a highest classification accuracy of 94%. Our studies conclude that this sensor system has the potential to provide a viable solution to empower consumers in food authentication.

  20. New algorithm for detecting smaller retinal blood vessels in fundus images

    NASA Astrophysics Data System (ADS)

    LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.

    2010-03-01

    About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.

  1. IRLooK: an advanced mobile infrared signature measurement, data reduction, and analysis system

    NASA Astrophysics Data System (ADS)

    Cukur, Tamer; Altug, Yelda; Uzunoglu, Cihan; Kilic, Kayhan; Emir, Erdem

    2007-04-01

    Infrared signature measurement capability has a key role in the electronic warfare (EW) self protection systems' development activities. In this article, the IRLooK System and its capabilities will be introduced. IRLooK is a truly innovative mobile infrared signature measurement system with all its design, manufacturing and integration accomplished by an engineering philosophy peculiar to ASELSAN. IRLooK measures the infrared signatures of military and civil platforms such as fixed/rotary wing aircrafts, tracked/wheeled vehicles and navy vessels. IRLooK has the capabilities of data acquisition, pre-processing, post-processing, analysis, storing and archiving over shortwave, mid-wave and long wave infrared spectrum by means of its high resolution radiometric sensors and highly sophisticated software analysis tools. The sensor suite of IRLooK System includes imaging and non-imaging radiometers and a spectroradiometer. Single or simultaneous multiple in-band measurements as well as high radiant intensity measurements can be performed. The system provides detailed information on the spectral, spatial and temporal infrared signature characteristics of the targets. It also determines IR Decoy characteristics. The system is equipped with a high quality field proven two-axes tracking mount to facilitate target tracking. Manual or automatic tracking is achieved by using a passive imaging tracker. The system also includes a high quality weather station and field-calibration equipment including cavity and extended area blackbodies. The units composing the system are mounted on flat-bed trailers and the complete system is designed to be transportable by large body aircraft.

  2. OCR enhancement through neighbor embedding and fast approximate nearest neighbors

    NASA Astrophysics Data System (ADS)

    Smith, D. C.

    2012-10-01

    Generic optical character recognition (OCR) engines often perform very poorly in transcribing scanned low resolution (LR) text documents. To improve OCR performance, we apply the Neighbor Embedding (NE) single-image super-resolution (SISR) technique to LR scanned text documents to obtain high resolution (HR) versions, which we subsequently process with OCR. For comparison, we repeat this procedure using bicubic interpolation (BI). We demonstrate that mean-square errors (MSE) in NE HR estimates do not increase substantially when NE is trained in one Latin font style and tested in another, provided both styles belong to the same font category (serif or sans serif). This is very important in practice, since for each font size, the number of training sets required for each category may be reduced from dozens to just one. We also incorporate randomized k-d trees into our NE implementation to perform approximate nearest neighbor search, and obtain a 1000x speed up of our original NE implementation, with negligible MSE degradation. This acceleration also made it practical to combine all of our size-specific NE Latin models into a single Universal Latin Model (ULM). The ULM eliminates the need to determine the unknown font category and size of an input LR text document and match it to an appropriate model, a very challenging task, since the dpi (pixels per inch) of the input LR image is generally unknown. Our experiments show that OCR character error rates (CER) were over 90% when we applied the Tesseract OCR engine to LR text documents (scanned at 75 dpi and 100 dpi) in the 6-10 pt range. By contrast, using k-d trees and the ULM, CER after NE preprocessing averaged less than 7% at 3x (100 dpi LR scanning) and 4x (75 dpi LR scanning) magnification, over an order of magnitude improvement. Moreover, CER after NE preprocessing was more that 6 times lower on average than after BI preprocessing.

  3. VSP Monitoring of CO2 Injection at the Aneth Oil Field in Utah

    NASA Astrophysics Data System (ADS)

    Huang, L.; Rutledge, J.; Zhou, R.; Denli, H.; Cheng, A.; Zhao, M.; Peron, J.

    2008-12-01

    Remotely tracking the movement of injected CO2 within a geological formation is critically important for ensuring safe and long-term geologic carbon sequestration. To study the capability of vertical seismic profiling (VSP) for remote monitoring of CO2 injection, a geophone string with 60 levels and 96 channels was cemented into a monitoring well at the Aneth oil field in Utah operated by Resolute Natural Resources and Navajo National Oil and Gas Company. The oil field is located in the Paradox Basin of southeastern Utah, and was selected by the Southwest Regional Partnership on Carbon Sequestration, supported by the U.S. Department of Energy, to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration. The geophones are placed at depths from 805 m to 1704 m, and the oil reservoir is located approximately from 1731 m to 1786 m in depth. A baseline VSP dataset with one zero-offset and seven offset source locations was acquired in October, 2007 before CO2 injection. The offsets/source locations are approximately 1 km away from the monitoring well with buried geophone string. A time-lapse VSP dataset with the same source locations was collected in July, 2008 after five months of CO2/water injection into a horizontal well adjacent to the monitoring well. The total amount of CO2 injected during the time interval between the two VSP surveys was 181,000 MCF (million cubic feet), or 10,500 tons. The time-lapse VSP data are pre-processed to balance the phase and amplitude of seismic events above the oil reservoir. We conduct wave-equation migration imaging and interferometry analysis using the pre-processed time-lapse VSP data. The results demonstrate that time-lapse VSP surveys with high-resolution migration imaging and scattering analysis can provide reliable information about CO2 migration. Both the repeatability of VSP surveys and sophisticated time-lapse data pre-processing are essential to make VSP as an effective tool for monitoring CO2 injection.

  4. Improving Feature Representation Based on a Neural Network for Author Profiling in Social Media Texts

    PubMed Central

    2016-01-01

    We introduce a lexical resource for preprocessing social media data. We show that a neural network-based feature representation is enhanced by using this resource. We conducted experiments on the PAN 2015 and PAN 2016 author profiling corpora and obtained better results when performing the data preprocessing using the developed lexical resource. The resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. Each of the dictionaries was built for the English, Spanish, Dutch, and Italian languages. The resource is freely available. PMID:27795703

  5. Image quality analysis of a color LCD as well as a monochrome LCD using a Foveon color CMOS camera

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Krupinski, Elizabeth A.

    2007-09-01

    We have combined a CMOS color camera with special software to compose a multi-functional image-quality analysis instrument. It functions as a colorimeter as well as measuring modulation transfer functions (MTF) and noise power spectra (NPS). It is presently being expanded to examine fixed-pattern noise and temporal noise. The CMOS camera has 9 μm square pixels and a pixel matrix of 2268 x 1512 x 3. The camera uses a sensor that has co-located pixels for all three primary colors. We have imaged sections of both a color and a monochrome LCD monitor onto the camera sensor with LCD-pixel-size to camera-pixel-size ratios of both 12:1 and 17.6:1. When used as an imaging colorimeter, each camera pixel is calibrated to provide CIE color coordinates and tristimulus values. This capability permits the camera to simultaneously determine chromaticity in different locations on the LCD display. After the color calibration with a CS-200 colorimeter the color coordinates of the display's primaries determined from the camera's luminance response are very close to those found from the CS-200. Only the color coordinates of the display's white point were in error. For calculating the MTF a vertical or horizontal line is displayed on the monitor. The captured image is color-matrix preprocessed, Fourier transformed then post-processed. For NPS, a uniform image is displayed on the monitor. Again, the image is pre-processed, transformed and processed. Our measurements show that the horizontal MTF's of both displays have a larger negative slope than that of the vertical MTF's. This behavior indicates that the horizontal MTF's are poorer than the vertical MTF's. However the modulations at the Nyquist frequency seem lower for the color LCD than for the monochrome LCD. The spatial noise of the color display in both directions is larger than that of the monochrome display. Attempts were also made to analyze the total noise in terms of spatial and temporal noise by applying subtractions of images taken at exactly the same exposure. Temporal noise seems to be significantly lower than spatial noise.

  6. Mass detection with digitized screening mammograms by using Gabor features

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Agyepong, Kwabena

    2007-03-01

    Breast cancer is the leading cancer among American women. The current lifetime risk of developing breast cancer is 13.4% (one in seven). Mammography is the most effective technology presently available for breast cancer screening. With digital mammograms computer-aided detection (CAD) has proven to be a useful tool for radiologists. In this paper, we focus on mass detection that is a common category of breast cancers relative to calcification and architecture distortion. We propose a new mass detection algorithm utilizing Gabor filters, termed as "Gabor Mass Detection" (GMD). There are three steps in the GMD algorithm, (1) preprocessing, (2) generating alarms and (3) classification (reducing false alarms). Down-sampling, quantization, denoising and enhancement are done in the preprocessing step. Then a total of 30 Gabor filtered images (along 6 bands by 5 orientations) are produced. Alarm segments are generated by thresholding four Gabor images of full orientations (Stage-I classification) with image-dependent thresholds computed via histogram analysis. Next a set of edge histogram descriptors (EHD) are extracted from 24 Gabor images (6 by 4) that will be used for Stage-II classification. After clustering EHD features with fuzzy C-means clustering method, a k-nearest neighbor classifier is used to reduce the number of false alarms. We initially analyzed 431 digitized mammograms (159 normal images vs. 272 cancerous images, from the DDSM project, University of South Florida) with the proposed GMD algorithm. And a ten-fold cross validation was used for testing the GMD algorithm upon the available data. The GMD performance is as follows: sensitivity (true positive rate) = 0.88 at false positives per image (FPI) = 1.25, and the area under the ROC curve = 0.83. The overall performance of the GMD algorithm is satisfactory and the accuracy of locating masses (highlighting the boundaries of suspicious areas) is relatively high. Furthermore, the GMD algorithm can successfully detect early-stage (with small values of Assessment & low Subtlety) malignant masses. In addition, Gabor filtered images are used in both stages of classifications, which greatly simplifies the GMD algorithm.

  7. "Radio-oncomics" : The potential of radiomics in radiation oncology.

    PubMed

    Peeken, Jan Caspar; Nüsslin, Fridtjof; Combs, Stephanie E

    2017-10-01

    Radiomics, a recently introduced concept, describes quantitative computerized algorithm-based feature extraction from imaging data including computer tomography (CT), magnetic resonance imaging (MRT), or positron-emission tomography (PET) images. For radiation oncology it offers the potential to significantly influence clinical decision-making and thus therapy planning and follow-up workflow. After image acquisition, image preprocessing, and defining regions of interest by structure segmentation, algorithms are applied to calculate shape, intensity, texture, and multiscale filter features. By combining multiple features and correlating them with clinical outcome, prognostic models can be created. Retrospective studies have proposed radiomics classifiers predicting, e. g., overall survival, radiation treatment response, distant metastases, or radiation-related toxicity. Besides, radiomics features can be correlated with genomic information ("radiogenomics") and could be used for tumor characterization. Distinct patterns based on data-based as well as genomics-based features will influence radiation oncology in the future. Individualized treatments in terms of dose level adaption and target volume definition, as well as other outcome-related parameters will depend on radiomics and radiogenomics. By integration of various datasets, the prognostic power can be increased making radiomics a valuable part of future precision medicine approaches. This perspective demonstrates the evidence for the radiomics concept in radiation oncology. The necessity of further studies to integrate radiomics classifiers into clinical decision-making and the radiation therapy workflow is emphasized.

  8. Change detection of medical images using dictionary learning techniques and PCA

    NASA Astrophysics Data System (ADS)

    Nika, Varvara; Babyn, Paul; Zhu, Hongmei

    2014-03-01

    Automatic change detection methods for identifying the changes of serial MR images taken at different times are of great interest to radiologists. The majority of existing change detection methods in medical imaging, and those of brain images in particular, include many preprocessing steps and rely mostly on statistical analysis of MRI scans. Although most methods utilize registration software, tissue classification remains a difficult and overwhelming task. Recently, dictionary learning techniques are used in many areas of image processing, such as image surveillance, face recognition, remote sensing, and medical imaging. In this paper we present the Eigen-Block Change Detection algorithm (EigenBlockCD). It performs local registration and identifies the changes between consecutive MR images of the brain. Blocks of pixels from baseline scan are used to train local dictionaries that are then used to detect changes in the follow-up scan. We use PCA to reduce the dimensionality of the local dictionaries and the redundancy of data. Choosing the appropriate distance measure significantly affects the performance of our algorithm. We examine the differences between L1 and L2 norms as two possible similarity measures in the EigenBlockCD. We show the advantages of L2 norm over L1 norm theoretically and numerically. We also demonstrate the performance of the EigenBlockCD algorithm for detecting changes of MR images and compare our results with those provided in recent literature. Experimental results with both simulated and real MRI scans show that the EigenBlockCD outperforms the previous methods. It detects clinical changes while ignoring the changes due to patient's position and other acquisition artifacts.

  9. A novel material detection algorithm based on 2D GMM-based power density function and image detail addition scheme in dual energy X-ray images.

    PubMed

    Pourghassem, Hossein

    2012-01-01

    Material detection is a vital need in dual energy X-ray luggage inspection systems at security of airport and strategic places. In this paper, a novel material detection algorithm based on statistical trainable models using 2-Dimensional power density function (PDF) of three material categories in dual energy X-ray images is proposed. In this algorithm, the PDF of each material category as a statistical model is estimated from transmission measurement values of low and high energy X-ray images by Gaussian Mixture Models (GMM). Material label of each pixel of object is determined based on dependency probability of its transmission measurement values in the low and high energy to PDF of three material categories (metallic, organic and mixed materials). The performance of material detection algorithm is improved by a maximum voting scheme in a neighborhood of image as a post-processing stage. Using two background removing and denoising stages, high and low energy X-ray images are enhanced as a pre-processing procedure. For improving the discrimination capability of the proposed material detection algorithm, the details of the low and high energy X-ray images are added to constructed color image which includes three colors (orange, blue and green) for representing the organic, metallic and mixed materials. The proposed algorithm is evaluated on real images that had been captured from a commercial dual energy X-ray luggage inspection system. The obtained results show that the proposed algorithm is effective and operative in detection of the metallic, organic and mixed materials with acceptable accuracy.

  10. Non-destructive determination of Malondialdehyde (MDA) distribution in oilseed rape leaves by laboratory scale NIR hyperspectral imaging

    PubMed Central

    Kong, Wenwen; Liu, Fei; Zhang, Chu; Zhang, Jianfeng; Feng, Hailin

    2016-01-01

    The feasibility of hyperspectral imaging with 400–1000 nm was investigated to detect malondialdehyde (MDA) content in oilseed rape leaves under herbicide stress. After comparing the performance of different preprocessing methods, linear and nonlinear calibration models, the optimal prediction performance was achieved by extreme learning machine (ELM) model with only 23 wavelengths selected by competitive adaptive reweighted sampling (CARS), and the result was RP = 0.929 and RMSEP = 2.951. Furthermore, MDA distribution map was successfully achieved by partial least squares (PLS) model with CARS. This study indicated that hyperspectral imaging technology provided a fast and nondestructive solution for MDA content detection in plant leaves. PMID:27739491

  11. Automatic Registration of GF4 Pms: a High Resolution Multi-Spectral Sensor on Board a Satellite on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Gao, M.; Li, J.

    2018-04-01

    Geometric correction is an important preprocessing process in the application of GF4 PMS image. The method of geometric correction that is based on the manual selection of geometric control points is time-consuming and laborious. The more common method, based on a reference image, is automatic image registration. This method involves several steps and parameters. For the multi-spectral sensor GF4 PMS, it is necessary for us to identify the best combination of parameters and steps. This study mainly focuses on the following issues: necessity of Rational Polynomial Coefficients (RPC) correction before automatic registration, base band in the automatic registration and configuration of GF4 PMS spatial resolution.

  12. Design and implementation of a preprocessing system for a sodium lidar

    NASA Technical Reports Server (NTRS)

    Voelz, D. G.; Sechrist, C. F., Jr.

    1983-01-01

    A preprocessing system, designed and constructed for use with the University of Illinois sodium lidar system, was developed to increase the altitude resolution and range of the lidar system and also to decrease the processing burden of the main lidar computer. The preprocessing system hardware and the software required to implement the system are described. Some preliminary results of an airborne sodium lidar experiment conducted with the preprocessing system installed in the sodium lidar are presented.

  13. Research on multi-source image fusion technology in haze environment

    NASA Astrophysics Data System (ADS)

    Ma, GuoDong; Piao, Yan; Li, Bing

    2017-11-01

    In the haze environment, the visible image collected by a single sensor can express the details of the shape, color and texture of the target very well, but because of the haze, the sharpness is low and some of the target subjects are lost; Because of the expression of thermal radiation and strong penetration ability, infrared image collected by a single sensor can clearly express the target subject, but it will lose detail information. Therefore, the multi-source image fusion method is proposed to exploit their respective advantages. Firstly, the improved Dark Channel Prior algorithm is used to preprocess the visible haze image. Secondly, the improved SURF algorithm is used to register the infrared image and the haze-free visible image. Finally, the weighted fusion algorithm based on information complementary is used to fuse the image. Experiments show that the proposed method can improve the clarity of the visible target and highlight the occluded infrared target for target recognition.

  14. MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.

    2018-04-01

    In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.

  15. Discriminating between benign and malignant breast tumors using 3D convolutional neural network in dynamic contrast enhanced-MR images

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fan, Ming; Zhang, Juan; Li, Lihua

    2017-03-01

    Convolutional neural networks (CNNs) are the state-of-the-art deep learning network architectures that can be used in a range of applications, including computer vision and medical image analysis. It exhibits a powerful representation learning mechanism with an automated design to learn features directly from the data. However, the common 2D CNNs only use the two dimension spatial information without evaluating the correlation between the adjoin slices. In this study, we established a method of 3D CNNs to discriminate between malignant and benign breast tumors. To this end, 143 patients were enrolled which include 66 benign and 77 malignant instances. The MRI images were pre-processed for noise reduction and breast tumor region segmentation. Data augmentation by spatial translating, rotating and vertical and horizontal flipping is applied to the cases to reduce possible over-fitting. A region-of-interest (ROI) and a volume-of-interest (VOI) were segmented in 2D and 3D DCE-MRI, respectively. The enhancement ratio for each MR series was calculated for the 2D and 3D images. The results for the enhancement ratio images in the two series are integrated for classification. The results of the area under the ROC curve(AUC) values are 0.739 and 0.801 for 2D and 3D methods, respectively. The results for 3D CNN which combined 5 slices for each enhancement ratio images achieved a high accuracy(Acc), sensitivity(Sens) and specificity(Spec) of 0.781, 0.744 and 0.823, respectively. This study indicates that 3D CNN deep learning methods can be a promising technology for breast tumor classification without manual feature extraction.

  16. A new classification scheme of plastic wastes based upon recycling labels.

    PubMed

    Özkan, Kemal; Ergin, Semih; Işık, Şahin; Işıklı, Idil

    2015-01-01

    Since recycling of materials is widely assumed to be environmentally and economically beneficial, reliable sorting and processing of waste packaging materials such as plastics is very important for recycling with high efficiency. An automated system that can quickly categorize these materials is certainly needed for obtaining maximum classification while maintaining high throughput. In this paper, first of all, the photographs of the plastic bottles have been taken and several preprocessing steps were carried out. The first preprocessing step is to extract the plastic area of a bottle from the background. Then, the morphological image operations are implemented. These operations are edge detection, noise removal, hole removing, image enhancement, and image segmentation. These morphological operations can be generally defined in terms of the combinations of erosion and dilation. The effect of bottle color as well as label are eliminated using these operations. Secondly, the pixel-wise intensity values of the plastic bottle images have been used together with the most popular subspace and statistical feature extraction methods to construct the feature vectors in this study. Only three types of plastics are considered due to higher existence ratio of them than the other plastic types in the world. The decision mechanism consists of five different feature extraction methods including as Principal Component Analysis (PCA), Kernel PCA (KPCA), Fisher's Linear Discriminant Analysis (FLDA), Singular Value Decomposition (SVD) and Laplacian Eigenmaps (LEMAP) and uses a simple experimental setup with a camera and homogenous backlighting. Due to the giving global solution for a classification problem, Support Vector Machine (SVM) is selected to achieve the classification task and majority voting technique is used as the decision mechanism. This technique equally weights each classification result and assigns the given plastic object to the class that the most classification results agree on. The proposed classification scheme provides high accuracy rate, and also it is able to run in real-time applications. It can automatically classify the plastic bottle types with approximately 90% recognition accuracy. Besides this, the proposed methodology yields approximately 96% classification rate for the separation of PET or non-PET plastic types. It also gives 92% accuracy for the categorization of non-PET plastic types into HPDE or PP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Image fusion based on millimeter-wave for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Zhu, Weiwen; Zhao, Yuejin; Deng, Chao; Zhang, Cunlin; Zhang, Yalin; Zhang, Jingshui

    2010-11-01

    This paper describes a novel multi sensors image fusion technology which is presented for concealed weapon detection (CWD). It is known to all, because of the good transparency of the clothes at millimeter wave band, a millimeter wave radiometer can be used to image and distinguish concealed contraband beneath clothes, for example guns, knives, detonator and so on. As a result, we adopt the passive millimeter wave (PMMW) imaging technology for airport security. However, in consideration of the wavelength of millimeter wave and the single channel mechanical scanning, the millimeter wave image has law optical resolution, which can't meet the need of practical application. Therefore, visible image (VI), which has higher resolution, is proposed for the image fusion with the millimeter wave image to enhance the readability. Before the image fusion, a novel image pre-processing which specifics to the fusion of millimeter wave imaging and visible image is adopted. And in the process of image fusion, multi resolution analysis (MRA) based on Wavelet Transform (WT) is adopted. In this way, the experiment result shows that this method has advantages in concealed weapon detection and has practical significance.

  18. Hybrid Correlation Algorithms. A Bridge Between Feature Matching and Image Correlation,

    DTIC Science & Technology

    1979-11-01

    spa- tially into groups of pixels. The intensity level preprocessing is designed to compensate for any biases or gain changes in the system ; whereas...number of error sources that affect the performance of the system . It would be desirable to lump these errors into ge- neric categories in discussing... system performance rather than treat- ing each error source separately. Such a generic categorization should possess the following properties: 1. The

  19. Image Understanding and Information Extraction\\

    DTIC Science & Technology

    1977-11-01

    mentation and generalization of DeCarlo’s Nyquist-like stability test [15,161. The last step of the procedure is to check whether this zero ...Several general sta- bility theorems which relate stability to the zero set of B(w,z) have been presented. These theorems led to the conclusion that...Spatial Stochastic Model for Contextual Pattern Recognition . ° . .............. 88 T. S. Yu and K. S. Fu V. PREPROCESSING 1. Stability of General Two

  20. The effect of regions of interest and spectral pre-processing on the detection of non-O157 shiga-toxin producing escherichia coli serogroups on agar media by hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Food borne infection caused by Shiga toxin-producing Escherichia coli (STEC) is a major worldwide health concern. The best known STEC serotype is E. coli O157:H7, which can be easily identified when cultured on sorbitol-MacConkey (SMAC) agar. Recently, six non-O157 STEC serotypes have been found t...

  1. An Automated, Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI

    PubMed Central

    Churchill, Nathan W.; Spring, Robyn; Afshin-Pour, Babak; Dong, Fan; Strother, Stephen C.

    2015-01-01

    BOLD fMRI is sensitive to blood-oxygenation changes correlated with brain function; however, it is limited by relatively weak signal and significant noise confounds. Many preprocessing algorithms have been developed to control noise and improve signal detection in fMRI. Although the chosen set of preprocessing and analysis steps (the “pipeline”) significantly affects signal detection, pipelines are rarely quantitatively validated in the neuroimaging literature, due to complex preprocessing interactions. This paper outlines and validates an adaptive resampling framework for evaluating and optimizing preprocessing choices by optimizing data-driven metrics of task prediction and spatial reproducibility. Compared to standard “fixed” preprocessing pipelines, this optimization approach significantly improves independent validation measures of within-subject test-retest, and between-subject activation overlap, and behavioural prediction accuracy. We demonstrate that preprocessing choices function as implicit model regularizers, and that improvements due to pipeline optimization generalize across a range of simple to complex experimental tasks and analysis models. Results are shown for brief scanning sessions (<3 minutes each), demonstrating that with pipeline optimization, it is possible to obtain reliable results and brain-behaviour correlations in relatively small datasets. PMID:26161667

  2. Data preprocessing for a vehicle-based localization system used in road traffic applications

    NASA Astrophysics Data System (ADS)

    Patelczyk, Timo; Löffler, Andreas; Biebl, Erwin

    2016-09-01

    This paper presents a fixed-point implementation of the preprocessing using a field programmable gate array (FPGA), which is required for a multipath joint angle and delay estimation (JADE) used in road traffic applications. This paper lays the foundation for many model-based parameter estimation methods. Here, a simulation of a vehicle-based localization system application for protecting vulnerable road users, which were equipped with appropriate transponders, is considered. For such safety critical applications, the robustness and real-time capability of the localization is particularly important. Additionally, a motivation to use a fixed-point implementation for the data preprocessing is a limited computing power of the head unit of a vehicle. This study aims to process the raw data provided by the localization system used in this paper. The data preprocessing applied includes a wideband calibration of the physical localization system, separation of relevant information from the received sampled signal, and preparation of the incoming data via further processing. Further, a channel matrix estimation was implemented to complete the data preprocessing, which contains information on channel parameters, e.g., the positions of the objects to be located. In the presented case of a vehicle-based localization system application we assume an urban environment, in which multipath propagation occurs. Since most methods for localization are based on uncorrelated signals, this fact must be addressed. Hence, a decorrelation of incoming data stream in terms of a further localization is required. This decorrelation was accomplished by considering several snapshots in different time slots. As a final aspect of the use of fixed-point arithmetic, quantization errors are considered. In addition, the resources and runtime of the presented implementation are discussed; these factors are strongly linked to a practical implementation.

  3. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  4. Analysis and Implementation of Methodologies for the Monitoring of Changes in Eye Fundus Images

    NASA Astrophysics Data System (ADS)

    Gelroth, A.; Rodríguez, D.; Salvatelli, A.; Drozdowicz, B.; Bizai, G.

    2011-12-01

    We present a support system for changes detection in fundus images of the same patient taken at different time intervals. This process is useful for monitoring pathologies lasting for long periods of time, as are usually the ophthalmologic. We propose a flow of preprocessing, processing and postprocessing applied to a set of images selected from a public database, presenting pathological advances. A test interface was developed designed to select the images to be compared in order to apply the different methods developed and to display the results. We measure the system performance in terms of sensitivity, specificity and computation times. We have obtained good results, higher than 84% for the first two parameters and processing times lower than 3 seconds for 512x512 pixel images. For the specific case of detection of changes associated with bleeding, the system responds with sensitivity and specificity over 98%.

  5. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  6. RESEARCH ON ROBUST METHODS FOR EXTRACTING AND RECOGNIZING PHOTOGRAPHY MANAGEMENT ITEMS FROM VARIOUS IMAGE DATA Of CONSTRUCTION

    NASA Astrophysics Data System (ADS)

    Kitagawa, Etsuji; Tanaka, Shigenori; Abiko, Satoshi; Wakabayashi, Katsuma; Jiang, Wenyuan

    Recently, an electronic delivery for various documents is carried out by Ministry of Land, Infrastructure, Transport and Tourism in construction fields. One of them is image data of construction photography that must be delivered with information of photography management items such as construction name or type of works, etc. However, there is a problem that a lot of cost is needed to treat contents of these items from characters printed and handwritten on blackboard into these image data. In this research, we develop the system which can treat contents of these items by extracting contents of these items from the image data of construction photography taken in various scenes with preprocessing the image, recognizing characters with OCR and correcting error with natural language process. And we confirm the effectiveness of the system, by experimenting in each function of system and in entire system.

  7. A novel method to detect shadows on multispectral images

    NASA Astrophysics Data System (ADS)

    Daǧlayan Sevim, Hazan; Yardımcı ćetin, Yasemin; Özışık Başkurt, Didem

    2016-10-01

    Shadowing occurs when the direct light coming from a light source is obstructed by high human made structures, mountains or clouds. Since shadow regions are illuminated only by scattered light, true spectral properties of the objects are not observed in such regions. Therefore, many object classification and change detection problems utilize shadow detection as a preprocessing step. Besides, shadows are useful for obtaining 3D information of the objects such as estimating the height of buildings. With pervasiveness of remote sensing images, shadow detection is ever more important. This study aims to develop a shadow detection method on multispectral images based on the transformation of C1C2C3 space and contribution of NIR bands. The proposed method is tested on Worldview-2 images covering Ankara, Turkey at different times. The new index is used on these 8-band multispectral images with two NIR bands. The method is compared with methods in the literature.

  8. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  9. Heuristic Enhancement of Magneto-Optical Images for NDE

    NASA Astrophysics Data System (ADS)

    Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo

    2010-12-01

    The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.

  10. Layered recognition networks that pre-process, classify, and describe

    NASA Technical Reports Server (NTRS)

    Uhr, L.

    1971-01-01

    A brief overview is presented of six types of pattern recognition programs that: (1) preprocess, then characterize; (2) preprocess and characterize together; (3) preprocess and characterize into a recognition cone; (4) describe as well as name; (5) compose interrelated descriptions; and (6) converse. A computer program (of types 3 through 6) is presented that transforms and characterizes the input scene through the successive layers of a recognition cone, and then engages in a stylized conversation to describe the scene.

  11. Distorted Character Recognition Via An Associative Neural Network

    NASA Astrophysics Data System (ADS)

    Messner, Richard A.; Szu, Harold H.

    1987-03-01

    The purpose of this paper is two-fold. First, it is intended to provide some preliminary results of a character recognition scheme which has foundations in on-going neural network architecture modeling, and secondly, to apply some of the neural network results in a real application area where thirty years of effort has had little effect on providing the machine an ability to recognize distorted objects within the same object class. It is the author's belief that the time is ripe to start applying in ernest the results of over twenty years of effort in neural modeling to some of the more difficult problems which seem so hard to solve by conventional means. The character recognition scheme proposed utilizes a preprocessing stage which performs a 2-dimensional Walsh transform of an input cartesian image field, then sequency filters this spectrum into three feature bands. Various features are then extracted and organized into three sets of feature vectors. These vector patterns that are stored and recalled associatively. Two possible associative neural memory models are proposed for further investigation. The first being an outer-product linear matrix associative memory with a threshold function controlling the strength of the output pattern (similar to Kohonen's crosscorrelation approach [1]). The second approach is based upon a modified version of Grossberg's neural architecture [2] which provides better self-organizing properties due to its adaptive nature. Preliminary results of the sequency filtering and feature extraction preprocessing stage and discussion about the use of the proposed neural architectures is included.

  12. Facilitating access to pre-processed research evidence in public health

    PubMed Central

    2010-01-01

    Background Evidence-informed decision making is accepted in Canada and worldwide as necessary for the provision of effective health services. This process involves: 1) clearly articulating a practice-based issue; 2) searching for and accessing relevant evidence; 3) appraising methodological rigor and choosing the most synthesized evidence of the highest quality and relevance to the practice issue and setting that is available; and 4) extracting, interpreting, and translating knowledge, in light of the local context and resources, into practice, program and policy decisions. While the public health sector in Canada is working toward evidence-informed decision making, considerable barriers, including efficient access to synthesized resources, exist. Methods In this paper we map to a previously developed 6 level pyramid of pre-processed research evidence, relevant resources that include public health-related effectiveness evidence. The resources were identified through extensive searches of both the published and unpublished domains. Results Many resources with public health-related evidence were identified. While there were very few resources dedicated solely to public health evidence, many clinically focused resources include public health-related evidence, making tools such as the pyramid, that identify these resources, particularly helpful for public health decisions makers. A practical example illustrates the application of this model and highlights its potential to reduce the time and effort that would be required by public health decision makers to address their practice-based issues. Conclusions This paper describes an existing hierarchy of pre-processed evidence and its adaptation to the public health setting. A number of resources with public health-relevant content that are either freely accessible or requiring a subscription are identified. This will facilitate easier and faster access to pre-processed, public health-relevant evidence, with the intent of promoting evidence-informed decision making. Access to such resources addresses several barriers identified by public health decision makers to evidence-informed decision making, most importantly time, as well as lack of knowledge of resources that house public health-relevant evidence. PMID:20181270

  13. Thirty years of use and improvement of remote sensing, applied to epidemiology: from early promises to lasting frustration.

    PubMed

    Herbreteau, Vincent; Salem, Gérard; Souris, Marc; Hugot, Jean-Pierre; Gonzalez, Jean-Paul

    2007-06-01

    Remote sensing, referring to the remote study of objects, was originally developed for Earth observation, through the use of sensors on board planes or satellites. Improvements in the use and accessibility of multi-temporal satellite-derived environmental data have, for 30 years, contributed to a growing use in epidemiology. Despite the potential of remote-sensed images and processing techniques for a better knowledge of disease dynamics, an exhaustive analysis of the bibliography shows a generalized use of pre-processed spatial data and low-cost images, resulting in a limited adaptability when addressing biological questions.

  14. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  15. Traffic sign classification with dataset augmentation and convolutional neural network

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Kurnianggoro, Laksono; Jo, Kang-Hyun

    2018-04-01

    This paper presents a method for traffic sign classification using a convolutional neural network (CNN). In this method, firstly we transfer a color image into grayscale, and then normalize it in the range (-1,1) as the preprocessing step. To increase robustness of classification model, we apply a dataset augmentation algorithm and create new images to train the model. To avoid overfitting, we utilize a dropout module before the last fully connection layer. To assess the performance of the proposed method, the German traffic sign recognition benchmark (GTSRB) dataset is utilized. Experimental results show that the method is effective in classifying traffic signs.

  16. LANDSAT data preprocessing

    NASA Technical Reports Server (NTRS)

    Austin, W. W.

    1983-01-01

    The effect on LANDSAT data of a Sun angle correction, an intersatellite LANDSAT-2 and LANDSAT-3 data range adjustment, and the atmospheric correction algorithm was evaluated. Fourteen 1978 crop year LACIE sites were used as the site data set. The preprocessing techniques were applied to multispectral scanner channel data and transformed data were plotted and used to analyze the effectiveness of the preprocessing techniques. Ratio transformations effectively reduce the need for preprocessing techniques to be applied directly to the data. Subtractive transformations are more sensitive to Sun angle and atmospheric corrections than ratios. Preprocessing techniques, other than those applied at the Goddard Space Flight Center, should only be applied as an option of the user. While performed on LANDSAT data the study results are also applicable to meteorological satellite data.

  17. Ensemble analyses improve signatures of tumour hypoxia and reveal inter-platform differences

    PubMed Central

    2014-01-01

    Background The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application. We and others have suggested that this is in-part caused by differential error-structure between datasets, and their incomplete removal by pre-processing algorithms. Methods To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients). Results We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved classification for a majority of signatures. Conclusions Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results but does not result in spuriously improved performance for poor biomarkers. While further research is required, this approach has the potential to become a standard for transcriptomic biomarkers. PMID:24902696

  18. Real-time 4D electrical resistivity imaging of tracer transport within an energically stimulated fracture zone

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.

    2016-12-01

    Hydraulic fracture stimulation is used extensively in the subsurface energy sector to improve access between energy bearing formations and production boreholes. However, large uncertainties exist concerning the location and extent of stimulated fractures, and concerning the behavior of flow within those fractures. This uncertainty often results in significant risks, including induced seismicity and contamination of potable groundwater aquifers. Time-lapse electrical resistivity tomography (ERT) is a proven method of imaging fluid flow within fracture networks, by imaging the change in bulk conductivity induced by the presence of an electrically anomalous tracer within the fracture. In this work we demonstrate characterization and flow monitoring of a stimulated fracture using real-time four-dimensional ERT imaging within an unsaturated rhyolite formation. After stimulation, a conductive tracer was injected into the fracture zone. ERT survey data were continuously and autonomously collected, pre-processed on site, submitted to an off-site high performance computing system for inversion, and returned to the field for inspection. Surveys were collected at approximately 12 minute intervals. Data transmission and inversion required approximately 2 minutes per survey. The time-lapse imaging results show the dominant flow-paths within the stimulated fracture zone, thereby revealing the location and extent of the fracture, and the behavior of tracer flow within the fracture. Ultimately real-time imaging will enable site operators to better understand stimulation operations, and control post-stimulation reservoir operations for optimal performance and environmental protection.

  19. Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.

    PubMed

    Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi

    2017-12-01

    Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A marker-based watershed method for X-ray image segmentation.

    PubMed

    Zhang, Xiaodong; Jia, Fucang; Luo, Suhuai; Liu, Guiying; Hu, Qingmao

    2014-03-01

    Digital X-ray images are the most frequent modality for both screening and diagnosis in hospitals. To facilitate subsequent analysis such as quantification and computer aided diagnosis (CAD), it is desirable to exclude image background. A marker-based watershed segmentation method was proposed to segment background of X-ray images. The method consisted of six modules: image preprocessing, gradient computation, marker extraction, watershed segmentation from markers, region merging and background extraction. One hundred clinical direct radiograph X-ray images were used to validate the method. Manual thresholding and multiscale gradient based watershed method were implemented for comparison. The proposed method yielded a dice coefficient of 0.964±0.069, which was better than that of the manual thresholding (0.937±0.119) and that of multiscale gradient based watershed method (0.942±0.098). Special means were adopted to decrease the computational cost, including getting rid of few pixels with highest grayscale via percentile, calculation of gradient magnitude through simple operations, decreasing the number of markers by appropriate thresholding, and merging regions based on simple grayscale statistics. As a result, the processing time was at most 6s even for a 3072×3072 image on a Pentium 4 PC with 2.4GHz CPU (4 cores) and 2G RAM, which was more than one time faster than that of the multiscale gradient based watershed method. The proposed method could be a potential tool for diagnosis and quantification of X-ray images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

Top