ERIC Educational Resources Information Center
Hawaii Educational Policy Center, 2008
2008-01-01
The 2007 Hawai'i State Legislature passed Senate Concurrent Resolution 118 S.D.1 HD 1 Improving the Community's Understanding of the Department of Education's Programs and School Expenses Including a Comparison with Other States on Adequacy of Funds. Among the requests contained in the resolution were the following: "Be it further resolved…
2017-01-26
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5514--17-9692 High Resolution Bathymetry Estimation Improvement with Single Image Super...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate
NASA Astrophysics Data System (ADS)
Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim
2016-04-01
The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).
Enhancing resolution in coherent x-ray diffraction imaging.
Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong
2016-12-14
Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
Wu, Yicong; Chandris, Panagiotis; Winter, Peter W.; Kim, Edward Y.; Jaumouillé, Valentin; Kumar, Abhishek; Guo, Min; Leung, Jacqueline M.; Smith, Corey; Rey-Suarez, Ivan; Liu, Huafeng; Waterman, Clare M.; Ramamurthi, Kumaran S.; La Riviere, Patrick J.; Shroff, Hari
2016-01-01
Most fluorescence microscopes are inefficient, collecting only a small fraction of the emitted light at any instant. Besides wasting valuable signal, this inefficiency also reduces spatial resolution and causes imaging volumes to exhibit significant resolution anisotropy. We describe microscopic and computational techniques that address these problems by simultaneously capturing and subsequently fusing and deconvolving multiple specimen views. Unlike previous methods that serially capture multiple views, our approach improves spatial resolution without introducing any additional illumination dose or compromising temporal resolution relative to conventional imaging. When applying our methods to single-view wide-field or dual-view light-sheet microscopy, we achieve a twofold improvement in volumetric resolution (~235 nm × 235 nm × 340 nm) as demonstrated on a variety of samples including microtubules in Toxoplasma gondii, SpoVM in sporulating Bacillus subtilis, and multiple protein distributions and organelles in eukaryotic cells. In every case, spatial resolution is improved with no drawback by harnessing previously unused fluorescence. PMID:27761486
Kanwar, Siddak M; Noheria, Amit; DeSimone, Christopher V; Rabinstein, Alejandro A; Asirvatham, Samuel J
2016-03-01
We analyzed the literature to assess the coincidental impact on migraines of transcatheter patent foramen ovale (PFO) closure performed for secondary stroke prevention. We searched Medline, EMBASE, and the Cochrane database for studies published up until August 2013. We included English-language studies that provided information on complete resolution or improvement in migraine headaches following PFO closure. Two study authors identified 375 original articles and both independently reviewed 32 relevant manuscripts. Data including study methodology, inclusion criteria, PFO closure and migraine outcomes were extracted manually from all eligible studies. Pooled odds (and probability) of resolution or improvement of migraine headaches were calculated using random-effects models. Twenty studies were analyzed. Most were uncontrolled studies that included a small number of patients with cryptogenic stroke who had undergone PFO closure and had variable time of followup. The probability of complete resolution of migraine with PFO closure (18 studies, 917 patients) was 0.46 (95% confidence interval 0.39, 0.53) and of any improvement in migraine (17 studies, 881 patients) was 0.78 (0.74, 0.82). There was evidence for publication bias in studies reporting on improvement in migraines (Begg's p=0.002), but not for studies on complete resolution of migraine (p=0.3). In patients with aura, the probability of complete resolution of migraine post-PFO closure was 0.54 (0.43, 0.65), and in those without aura, complete resolution occurred in 0.39 (0.29, 0.51). Among patients with unexplained stroke and migraine undergoing transcatheter PFO closure, resolution of headaches occurred in a majority of patients with aura and for a smaller proportion of patients without aura.
Enhanced High Resolution RBS System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, Thomas J.; Hass, James A.; Klody, George M.
2011-06-01
Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic datamore » collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.« less
Gravity model improvement investigation. [improved gravity model for determination of ocean geoid
NASA Technical Reports Server (NTRS)
Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.
1973-01-01
This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R
2017-11-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.
NASA Astrophysics Data System (ADS)
Christensen, Niels B.; Lawrie, Ken
2015-06-01
We analyse and compare the resolution improvement that can be obtained from including x-component data in the inversion of AEM data from the SkyTEM and TEMPEST systems. Except for the resistivity of the bottom layer, the SkyTEM system, even without including x-component data, has the better resolution of the parameters of the analysed models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pino, Francisco; Roé, Nuria; Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es
2015-02-15
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Threemore » methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery coefficients in the reconstructed images. To avoid the appearance of ring-type artifacts, the number of iterations should be limited. In low magnification systems, the intrinsic detector PSF plays a major role in improvement of the image-quality parameters.« less
Mumcuoglu, Tarkan; Wollstein, Gadi; Wojtkowski, Maciej; Kagemann, Larry; Ishikawa, Hiroshi; Gabriele, Michelle L.; Srinivasan, Vivek; Fujimoto, James G.; Duker, Jay S.; Schuman, Joel S.
2009-01-01
Purpose To test if improving optical coherence tomography (OCT) resolution and scanning speed improves the visualization of glaucomatous structural changes as compared with conventional OCT. Design Prospective observational case series. Participants Healthy and glaucomatous subjects in various stages of disease. Methods Subjects were scanned at a single visit with commercially available OCT (StratusOCT) and high-speed ultrahigh-resolution (hsUHR) OCT. The prototype hsUHR OCT had an axial resolution of 3.4 μm (3 times higher than StratusOCT), with an A-scan rate of 24 000 hertz (60 times faster than StratusOCT). The fast scanning rate allowed the acquisition of novel scanning patterns such as raster scanning, which provided dense coverage of the retina and optic nerve head. Main Outcome Measures Discrimination of retinal tissue layers and detailed visualization of retinal structures. Results High-speed UHR OCT provided a marked improvement in tissue visualization as compared with StratusOCT. This allowed the identification of numerous retinal layers, including the ganglion cell layer, which is specifically prone to glaucomatous damage. Fast scanning and the enhanced A-scan registration properties of hsUHR OCT provided maps of the macula and optic nerve head with unprecedented detail, including en face OCT fundus images and retinal nerve fiber layer thickness maps. Conclusion High-speed UHR OCT improves visualization of the tissues relevant to the detection and management of glaucoma. PMID:17884170
Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.
2017-01-01
The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089
CrIS High Resolution Hyperspectral Radiances
NASA Astrophysics Data System (ADS)
Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.
2014-12-01
The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.
A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4
NASA Astrophysics Data System (ADS)
Wang, Qiang; Wekerle, Claudia; Danilov, Sergey; Wang, Xuezhu; Jung, Thomas
2018-04-01
In the framework of developing a global modeling system which can facilitate modeling studies on Arctic Ocean and high- to midlatitude linkage, we evaluate the Arctic Ocean simulated by the multi-resolution Finite Element Sea ice-Ocean Model (FESOM). To explore the value of using high horizontal resolution for Arctic Ocean modeling, we use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 km vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer, in terms of both Atlantic Water (AW) mean state and variability. The deepening and thickening bias of the AW layer, a common issue found in coarse-resolution simulations, is significantly alleviated by using higher resolution. The topographic steering of the AW is stronger and the seasonal and interannual temperature variability along the ocean bottom topography is enhanced in the high-resolution simulation. The high resolution also improves the ocean surface circulation, mainly through a better representation of the narrow straits in the Canadian Arctic Archipelago (CAA). The representation of CAA throughflow not only influences the release of water masses through the other gateways but also the circulation pathways inside the Arctic Ocean. However, the mean state and variability of Arctic freshwater content and the variability of freshwater transport through the Arctic gateways appear not to be very sensitive to the increase in resolution employed here. By highlighting the issues that are independent of model resolution, we address that other efforts including the improvement of parameterizations are still required.
Teaching Goals-Plans-Action Theory through a Negotiation Exercise
ERIC Educational Resources Information Center
Gan, Ivan
2014-01-01
Evidence that K-12 schools had successfully integrated conflict resolution into curricula (Johnson & Johnson, 2004; Stevahn, 2004) includes students' resolution of personal conflicts and improved academic performances (Johnson, Johnson, Dudley, & Magnuson, 1995; Stevahn, Johnson, Johnson, Green, & Laginski, 1997; Stevahn, Johnson,…
Multiresponse imaging system design for improved resolution
NASA Technical Reports Server (NTRS)
Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.; Rahman, Zia-Ur; Reichenbach, Stephen E.
1991-01-01
Multiresponse imaging is a process that acquires A images, each with a different optical response, and reassembles them into a single image with an improved resolution that can approach 1/sq rt A times the photodetector-array sampling lattice. Our goals are to optimize the performance of this process in terms of the resolution and fidelity of the restored image and to assess the amount of information required to do so. The theoretical approach is based on the extension of both image restoration and rate-distortion theories from their traditional realm of signal processing to image processing which includes image gathering and display.
Study of a high-resolution PET system using a Silicon detector probe
NASA Astrophysics Data System (ADS)
Brzeziński, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.
2014-10-01
A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 × 52 array of 1 × 1 × 1 mm3 pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed visible improvement in resolution when including the probe in the simulations. The image quality study demonstrated that contrast and spill-over ratio in other areas of the FOV were not sacrificed for this enhancement. The CNR study performed on the breast phantom indicates increased lesion detectability provided by the probe.
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.
Super-resolution mapping using multi-viewing CHRIS/PROBA data
NASA Astrophysics Data System (ADS)
Dwivedi, Manish; Kumar, Vinay
2016-04-01
High-spatial resolution Remote Sensing (RS) data provides detailed information which ensures high-definition visual image analysis of earth surface features. These data sets also support improved information extraction capabilities at a fine scale. In order to improve the spatial resolution of coarser resolution RS data, the Super Resolution Reconstruction (SRR) technique has become widely acknowledged which focused on multi-angular image sequences. In this study multi-angle CHRIS/PROBA data of Kutch area is used for SR image reconstruction to enhance the spatial resolution from 18 m to 6m in the hope to obtain a better land cover classification. Various SR approaches like Projection onto Convex Sets (POCS), Robust, Iterative Back Projection (IBP), Non-Uniform Interpolation and Structure-Adaptive Normalized Convolution (SANC) chosen for this study. Subjective assessment through visual interpretation shows substantial improvement in land cover details. Quantitative measures including peak signal to noise ratio and structural similarity are used for the evaluation of the image quality. It was observed that SANC SR technique using Vandewalle algorithm for the low resolution image registration outperformed the other techniques. After that SVM based classifier is used for the classification of SRR and data resampled to 6m spatial resolution using bi-cubic interpolation. A comparative analysis is carried out between classified data of bicubic interpolated and SR derived images of CHRIS/PROBA and SR derived classified data have shown a significant improvement of 10-12% in the overall accuracy. The results demonstrated that SR methods is able to improve spatial detail of multi-angle images as well as the classification accuracy.
NASA Astrophysics Data System (ADS)
Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.
2017-12-01
The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on flood inundation, we examine the NWM outputs from Hurricane Matthew, which devastated southeastern North Carolina in October 2016. When compared with numerous surveyed high water marks across the coastal plain, this assessment provides insight on the impacts of grid resolution on flood inundation extent.
GEOS S2S-2_1: GMAO's New High Resolution Seasonal Prediction System
NASA Technical Reports Server (NTRS)
Molod, Andrea; Akella, Santha; Andrews, Lauren; Barahona, Donifan; Borovikov, Anna; Chang, Yehui; Cullather, Richard; Hackert, Eric; Kovach, Robin; Koster, Randal;
2017-01-01
A new version of the modeling and analysis system used to produce sub-seasonal to seasonal forecasts has just been released by the NASA Goddard Global Modeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 12 degree globally), contains a substantially improved model description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilation system has been replaced with a Local Ensemble Transform Kalman Filter. Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will also present results from a free-running coupled simulation with the new system and results from a series of retrospective seasonal forecasts. Results from retrospective forecasts show significant improvements in surface temperatures over much of the northern hemisphere and a much improved prediction of sea ice extent in both hemispheres. The precipitation forecast skill is comparable to previous S2S systems, and the only trade off is an increased double ITCZ, which is expected as we go to higher atmospheric resolution.
Adaptive optics improves multiphoton super-resolution imaging
NASA Astrophysics Data System (ADS)
Zheng, Wei; Wu, Yicong; Winter, Peter; Shroff, Hari
2018-02-01
Three dimensional (3D) fluorescence microscopy has been essential for biological studies. It allows interrogation of structure and function at spatial scales spanning the macromolecular, cellular, and tissue levels. Critical factors to consider in 3D microscopy include spatial resolution, signal-to-noise (SNR), signal-to-background (SBR), and temporal resolution. Maintaining high quality imaging becomes progressively more difficult at increasing depth (where optical aberrations, induced by inhomogeneities of refractive index in the sample, degrade resolution and SNR), and in thick or densely labeled samples (where out-of-focus background can swamp the valuable, in-focus-signal from each plane). In this report, we introduce our new instrumentation to address these problems. A multiphoton structured illumination microscope was simply modified to integrate an adpative optics system for optical aberrations correction. Firstly, the optical aberrations are determined using direct wavefront sensing with a nonlinear guide star and subsequently corrected using a deformable mirror, restoring super-resolution information. We demonstrate the flexibility of our adaptive optics approach on a variety of semi-transparent samples, including bead phantoms, cultured cells in collagen gels and biological tissues. The performance of our super-resolution microscope is improved in all of these samples, as peak intensity is increased (up to 40-fold) and resolution recovered (up to 176+/-10 nm laterally and 729+/-39 nm axially) at depths up to 250 μm from the coverslip surface.
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Williams, D. B.
1992-01-01
This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.
Corey, K E; Vuppalanchi, R; Wilson, L A; Cummings, O W; Chalasani, N
2015-02-01
Nonalcoholic steatohepatitis (NASH) is associated with dyslipidemia and cardiovascular disease (CVD). To determine the relationship between resolution of NASH and dyslipidemia. Individuals in the Pioglitazone vs. Vitamin E vs. Placebo for the Treatment of Nondiabetic Patients with Nonalcoholic Steatohepatitis (PIVENS) trial with paired liver biopsies and fasting lipid levels were included (N = 222). In the PIVENS trial individuals were randomised to pioglitazone 30 mg, vitamin E 800 IU or placebo for 96 weeks. Change in lipid levels at 96 weeks was compared between those with and without NASH resolution. Dyslipidemia at baseline was frequent, with low high-density lipoprotein (HDL) (<40 mg/dL in men or <50 mg/dL in women) in 63%, hypertriglyceridaemia (≥150 mg/dL) in 46%, hypercholesterolaemia (≥200 mg/dL) in 47% and triglycerides (TG)/HDL >5.0 in 25%. Low-density lipoprotein (LD) ≥160 mg/dL was found in 16% and elevated non-HDL cholesterol (non-HDL-C) (≥130 mg/dL) in 73%. HDL increased with NASH resolution but decreased in those without resolution (2.9 mg/dL vs. -2.5 mg/dL, P < 0.001). NASH resolution was associated with significant decreases in TG and TG/HDL ratio compared to those without resolution (TG: -21.1 vs. -2.3 mg/dL, P = 0.03 and TG/HDL: -0.7 vs. 0.1, P = 0.003). Non-HDL-C, LDL and cholesterol decreased over 96 weeks in both groups, but there was no significant difference between groups. Treatment group did not impact lipids. NASH resolution is associated with improvements in TG and HDL but not in other cardiovascular disease risk factors including LDL and non-HDL-C levels. Individuals with resolution of NASH may still be at increased risk of cardiovascular disease. ClinicalTrials.gov identifier: NCT00063622. © 2014 John Wiley & Sons Ltd.
Panretinal, high-resolution color photography of the mouse fundus.
Paques, Michel; Guyomard, Jean-Laurent; Simonutti, Manuel; Roux, Michel J; Picaud, Serge; Legargasson, Jean-François; Sahel, José-Alain
2007-06-01
To analyze high-resolution color photographs of the mouse fundus. A contact fundus camera based on topical endoscopy fundus imaging (TEFI) was built. Fundus photographs of C57 and Balb/c mice obtained by TEFI were qualitatively analyzed. High-resolution digital imaging of the fundus, including the ciliary body, was routinely obtained. The reflectance and contrast of retinal vessels varied significantly with the amount of incident and reflected light and, thus, with the degree of fundus pigmentation. The combination of chromatic and spherical aberration favored blue light imaging, in term of both field and contrast. TEFI is a small, low-cost system that allows high-resolution color fundus imaging and fluorescein angiography in conscious mice. Panretinal imaging is facilitated by the presence of the large rounded lens. TEFI significantly improves the quality of in vivo photography of retina and ciliary process of mice. Resolution is, however, affected by chromatic aberration, and should be improved by monochromatic imaging.
Vertical resolution of baroclinic modes in global ocean models
NASA Astrophysics Data System (ADS)
Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.
2017-05-01
Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).
Super-resolution reconstruction of hyperspectral images.
Akgun, Toygar; Altunbasak, Yucel; Mersereau, Russell M
2005-11-01
Hyperspectral images are used for aerial and space imagery applications, including target detection, tracking, agricultural, and natural resource exploration. Unfortunately, atmospheric scattering, secondary illumination, changing viewing angles, and sensor noise degrade the quality of these images. Improving their resolution has a high payoff, but applying super-resolution techniques separately to every spectral band is problematic for two main reasons. First, the number of spectral bands can be in the hundreds, which increases the computational load excessively. Second, considering the bands separately does not make use of the information that is present across them. Furthermore, separate band super-resolution does not make use of the inherent low dimensionality of the spectral data, which can effectively be used to improve the robustness against noise. In this paper, we introduce a novel super-resolution method for hyperspectral images. An integral part of our work is to model the hyperspectral image acquisition process. We propose a model that enables us to represent the hyperspectral observations from different wavelengths as weighted linear combinations of a small number of basis image planes. Then, a method for applying super resolution to hyperspectral images using this model is presented. The method fuses information from multiple observations and spectral bands to improve spatial resolution and reconstruct the spectrum of the observed scene as a combination of a small number of spectral basis functions.
Global Multi-Resolution Topography (GMRT) Synthesis - Version 2.0
NASA Astrophysics Data System (ADS)
Ferrini, V.; Coplan, J.; Carbotte, S. M.; Ryan, W. B.; O'Hara, S.; Morton, J. J.
2010-12-01
The detailed morphology of the global ocean floor is poorly known, with most areas mapped only at low resolution using satellite-based measurements. Ship-based sonars provide data at resolution sufficient to quantify seafloor features related to the active processes of erosion, sediment flow, volcanism, and faulting. To date, these data have been collected in a small fraction of the global ocean (<10%). The Global Multi-Resolution Topography (GMRT) synthesis makes use of sonar data collected by scientists and institutions worldwide, merging them into a single continuously updated compilation of high-resolution seafloor topography. Several applications, including GeoMapApp (http://www.geomapapp.org) and Virtual Ocean (http://www.virtualocean.org), make use of the GMRT Synthesis and provide direct access to images and underlying gridded data. Source multibeam files included in the compilation can also accessed through custom functionality in GeoMapApp. The GMRT Synthesis began in 1992 as the Ridge Multibeam Synthesis. It was subsequently expanded to include bathymetry data from the Southern Ocean, and now includes data from throughout the global oceans. Our design strategy has been to make data available at the full native resolution of shipboard sonar systems, which historically has been ~100 m in the deep sea (Ryan et al., 2009). A new release of the GMRT Synthesis in Fall of 2010 includes several significant improvements over our initial strategy. In addition to increasing the number of cruises included in the compilation by over 25%, we have developed a new protocol for handling multibeam source data, which has improved the overall quality of the compilation. The new tileset also includes a discrete layer of sonar data in the public domain that are gridded to the full resolution of the sonar system, with data gridded 25 m in some areas. This discrete layer of sonar data has been provided to Google for integration into Google’s default ocean base map. NOAA coastal grids and numerous grids contributed by the international science community are also integrated into the GMRT Synthesis. Finally, terrestrial elevation data from NASA’s ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) global DEM, and the USGS National Elevation Dataset have been included in the synthesis, providing resolution of up to 10 m in some areas of the US.
Improving the accuracy of macromolecular structure refinement at 7 Å resolution.
Brunger, Axel T; Adams, Paul D; Fromme, Petra; Fromme, Raimund; Levitt, Michael; Schröder, Gunnar F
2012-06-06
In X-ray crystallography, molecular replacement and subsequent refinement is challenging at low resolution. We compared refinement methods using synchrotron diffraction data of photosystem I at 7.4 Å resolution, starting from different initial models with increasing deviations from the known high-resolution structure. Standard refinement spoiled the initial models, moving them further away from the true structure and leading to high R(free)-values. In contrast, DEN refinement improved even the most distant starting model as judged by R(free), atomic root-mean-square differences to the true structure, significance of features not included in the initial model, and connectivity of electron density. The best protocol was DEN refinement with initial segmented rigid-body refinement. For the most distant initial model, the fraction of atoms within 2 Å of the true structure improved from 24% to 60%. We also found a significant correlation between R(free) values and the accuracy of the model, suggesting that R(free) is useful even at low resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.
Optical analysis of a compound quasi-microscope for planetary landers
NASA Technical Reports Server (NTRS)
Wall, S. D.; Burcher, E. E.; Huck, F. O.
1974-01-01
A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests
NASA Technical Reports Server (NTRS)
Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.
New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing ofmore » PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.« less
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35° AGCM
NASA Astrophysics Data System (ADS)
Johnson, Stephanie J.; Levine, Richard C.; Turner, Andrew G.; Martin, Gill M.; Woolnough, Steven J.; Schiemann, Reinhard; Mizielinski, Matthew S.; Roberts, Malcolm J.; Vidale, Pier Luigi; Demory, Marie-Estelle; Strachan, Jane
2016-02-01
The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world's population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200-40 km at the equator (N96-N512, 1.9°-0.35°). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.
Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques
NASA Astrophysics Data System (ADS)
Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.
2017-12-01
Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.
Osland, Emma; Yunus, Rossita Mohamad; Khan, Shahjahan; Memon, Breda; Memon, Muhammed Ashraf
2017-05-01
Laparoscopic Roux-en-Y gastric bypass (LRYGB) and laparoscopic vertical sleeve gastrectomy (LVSG) have been proposed as cost-effective strategies to manage obesity-related chronic disease. The aim of this systematic review was to study the peer review literature regarding postoperative nondiabetic comorbid disease resolution or improvement reported from randomized controlled trials (RCTs) comparing LVSG and LRYGB procedures. RCTs comparing postoperative comorbid disease resolution such as hypertension, dyslipidemia, obstructive sleep apnea, joint and musculoskeletal conditions, gastroesophageal reflux disease, and menstrual irregularities following LVSG and LRYGB were included for analysis. The studies were selected from PubMed, Medline, EMBASE, Science Citation Index, Current Contents, and the Cochrane database and reported on at least one comorbidity resolution or improvement. The present work was undertaken according to the Preferred Reporting Items of Systematic Reviews and Meta-Analyses (PRISMA). The Jadad method for assessment of methodological quality was applied to the included studies. Six RCTs performed between 2005 and 2015 involving a total of 695 patients (LVSG n = 347, LRYGB n = 348) reported on the resolution or improvement of comorbid disease following LVSG and LRYGB procedures. Both bariatric procedures provide effective and almost comparable results in improving or resolving these comorbidities. This systematic review of RCTs suggests that both LVSG and LRYGB are effective in resolving or improving preoperative nondiabetic comorbid diseases in obese patients. While results are not conclusive at this time, LRYGB may provide superior results compared to LVSG in mediating the remission and/or improvement in some conditions such as dyslipidemia and arthritis.
Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges
Lemeshewsky, George P.; Schowengerdt, Robert A.
2000-01-01
Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.
The Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer / Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.
The Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) is a candidate NASA Origins Probe Mission. SPIRIT is a two-telescope Michelson interferometer covering wavelengths from 25-400 microns, providing simultaneously high spectral resolution and high angular resolution. With comparable sensitivity to Spitzer, but two orders of magnitude improvement in angular resolution, SPIRIT will enable us to address a wide array of compelling scientific questions, including how planetary systems form in disks and how new planets interact with the disk. Further, SPIRIT will lay the technological groundwork for an array of future interferometry missions with ambitious scientific goals, including the Terrestrial Planet Finder Interferometer/Darwin, and the Submillimeter Probe of the Evolution of Cosmic Structure.
Above-real-time training (ARTT) improves transfer to a simulated flight control task.
Donderi, D C; Niall, Keith K; Fish, Karyn; Goldstein, Benjamin
2012-06-01
The aim of this study was to measure the effects of above-real-time-training (ARTT) speed and screen resolution on a simulated flight control task. ARTT has been shown to improve transfer to the criterion task in some military simulation experiments. We tested training speed and screen resolution in a project, sponsored by Defence Research and Development Canada, to develop components for prototype air mission simulators. For this study, 54 participants used a single-screen PC-based flight simulation program to learn to chase and catch an F-18A fighter jet with another F-18A while controlling the chase aircraft with a throttle and side-stick controller. Screen resolution was varied between participants, and training speed was varied factorially across two sessions within participants. Pretest and posttest trials were at high resolution and criterion (900 knots) speed. Posttest performance was best with high screen resolution training and when one ARTT training session was followed by a session of criterion speed training. ARTT followed by criterion training improves performance on a visual-motor coordination task. We think that ARTT influences known facilitators of transfer, including similarity to the criterion task and contextual interference. Use high-screen resolution, start with ARTT, and finish with criterion speed training when preparing a mission simulation.
New materials for high-energy-resolution x-ray optics
Yavas, Hasan; Sutter, John P.; Gog, Thomas; ...
2017-06-09
The use of crystals other than silicon for x-ray optics is becoming more common for many challenging experiments such as resonant inelastic x-ray scattering and nuclear resonant scattering. As more—and more specialized—spectrometers become available at many synchrotron radiation facilities, interest in pushing the limits of experimental energy resolution has increased. The potentially large improvements in resolution and efficiency that nonsilicon optics offer are beginning to be realized. Furthermore, this article covers the background and state of the art for nonsilicon crystal optics with a focus on a resolution of 10 meV or better, concentrating on compounds that form trigonal crystals,more » including sapphire, quartz, and lithium niobate, rather than the more conventional cubic materials, including silicon, diamond, and germanium.« less
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W
2014-11-11
A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.
Resolution of seven-axis manipulator redundancy: A heuristic issue
NASA Technical Reports Server (NTRS)
Chen, I.
1990-01-01
An approach is presented for the resolution of the redundancy of a seven-axis manipulator arm from the AI and expert systems point of view. This approach is heuristic, analytical, and globally resolves the redundancy at the position level. When compared with other approaches, this approach has several improved performance capabilities, including singularity avoidance, repeatability, stability, and simplicity.
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation
NASA Astrophysics Data System (ADS)
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-01
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ˜550m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection.
Minimal modeling of the extratropical general circulation
NASA Technical Reports Server (NTRS)
O'Brien, Enda; Branscome, Lee E.
1989-01-01
The ability of low-order, two-layer models to reproduce basic features of the mid-latitude general circulation is investigated. Changes in model behavior with increased spectral resolution are examined in detail. Qualitatively correct time-mean heat and momentum balances are achieved in a beta-plane channel model which includes the first and third meridional modes. This minimal resolution also reproduces qualitatively realistic surface and upper-level winds and mean meridional circulations. Higher meridional resolution does not result in substantial changes in the latitudinal structure of the circulation. A qualitatively correct kinetic energy spectrum is produced when the resolution is high enough to include several linearly stable modes. A model with three zonal waves and the first three meridional modes has a reasonable energy spectrum and energy conversion cycle, while also satisfying heat and momentum budget requirements. This truncation reproduces the basic mechanisms and zonal circulation features that are obtained at higher resolution. The model performance improves gradually with higher resolution and is smoothly dependent on changes in external parameters.
2015-08-01
prostate cancer. In the preliminary in-vitro study , imaging resolution, contrast to tissue ratio, and lesion detectability will be assessed relative to...a Siemens EV- 8C4 transrectal ultrasound probe. In the in-vivo study , molecular imaging and microvascular mapping will both be performed to assess...single element tests, years 2 and 3 have included progress towards the design of the final a dual frequency linear array. These studies included the
NASA Astrophysics Data System (ADS)
Luo, D.; Cai, F.
2017-12-01
Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and suppress of ghost, thus formation reflection characteristics are highlighted. The result shows that the small-scale and high resolution marine sparker multi-channel seismic surveys are very effective in improving the resolution and quality of gas hydrate imaging than the conventional seismic acquisition technology.
Polisena, Julie; Gagliardi, Anna; Urbach, David; Clifford, Tammy; Fiander, Michelle
2015-03-29
Medical devices have improved the treatment of many medical conditions. Despite their benefit, the use of devices can lead to unintended incidents, potentially resulting in unnecessary harm, injury or complications to the patient, a complaint, loss or damage. Devices are used in hospitals on a routine basis. Research to date, however, has been primarily limited to describing incidents rates, so the optimal design of a hospital-based surveillance system remains unclear. Our research objectives were twofold: i) to explore factors that influence device-related incident recognition, reporting and resolution and ii) to investigate interventions or strategies to improve the recognition, reporting and resolution of medical device-related incidents. We searched the bibliographic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Trials and PsycINFO database. Grey literature (literature that is not commercially available) was searched for studies on factors that influence incident recognition, reporting and resolution published and interventions or strategies for their improvement from 2003 to 2014. Although we focused on medical devices, other health technologies were eligible for inclusion. Thirty studies were included in our systematic review, but most studies were concentrated on other health technologies. The study findings indicate that fear of punishment, uncertainty of what should be reported and how incident reports will be used and time constraints to incident reporting are common barriers to incident recognition and reporting. Relevant studies on the resolution of medical errors were not found. Strategies to improve error reporting include the use of an electronic error reporting system, increased training and feedback to frontline clinicians about the reported error. The available evidence on factors influencing medical device-related incident recognition, reporting and resolution by healthcare professionals can inform data collection and analysis in future studies. Since evidence gaps on medical device-related incidents exist, telephone interviews with frontline clinicians will be conducted to solicit information about their experiences with medical devices and suggested strategies for device surveillance improvement in a hospital context. Further research also should investigate the impact of human, system, organizational and education factors on the development and implementation of local medical device surveillance systems.
NASA Astrophysics Data System (ADS)
Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Christensen, Hannah M.; Juricke, Stephan; Subramanian, Aneesh; Watson, Peter A. G.; Weisheimer, Antje; Palmer, Tim N.
2017-03-01
The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), together with coupled transient runs (1850-2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate - specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).
NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Lee-Rausch, E. M.
2012-01-01
Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kenan; Jacobsen, Chris
Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less
Collimator application for microchannel plate image intensifier resolution improvement
Thomas, Stanley W.
1996-02-27
A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution.
Belaghzal, Houda; Dekker, Job; Gibcus, Johan H
2017-07-01
Chromosome conformation capture-based methods such as Hi-C have become mainstream techniques for the study of the 3D organization of genomes. These methods convert chromatin interactions reflecting topological chromatin structures into digital information (counts of pair-wise interactions). Here, we describe an updated protocol for Hi-C (Hi-C 2.0) that integrates recent improvements into a single protocol for efficient and high-resolution capture of chromatin interactions. This protocol combines chromatin digestion and frequently cutting enzymes to obtain kilobase (kb) resolution. It also includes steps to reduce random ligation and the generation of uninformative molecules, such as unligated ends, to improve the amount of valid intra-chromosomal read pairs. This protocol allows for obtaining information on conformational structures such as compartment and topologically associating domains, as well as high-resolution conformational features such as DNA loops. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Boyes, Edward D.; Gai, Pratibha L.
2014-02-01
Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"
Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology.
Johnson, Sam A
2015-01-01
Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches. © 2014 Wiley Periodicals, Inc.
Lin, Chao-Chyun; Chen, Po-Liang
2013-01-01
AIM To evaluate the efficacy of a new modality for improving visual acuity (VA) in pediatric patients with anisometropic amblyopia. METHODS Retrospective and interventional case series. Medical records of 360 children with anisometropic amblyopia treated with a modality that included rotated prisms, lenses, and near activities from January 2008 to January 2012 were analyzed. Characteristics such as improvement of VA and contrast sensitivity in amblyopic eyes and resolution of amblyopia (VA ≤0.1logMAR or a difference of ≤2 lines in logMAR between the eyes) were assessed. RESULTS Among the patients, the mean VA of the amblyopic eyes improved from 0.48logMAR (SD=0.16) to 0.12logMAR (SD=0.16) and the mean VA improvement was 0.36logMAR (SD=0.10, P<0.001). Resolution of amblyopia was achieved in 233 of 360 patients (64.72%). The mean time for resolution of amblyopia was 8.05 weeks (SD=4.83) or 14.14 sessions (SD=8.76). Among the study group, refraction error did not change significantly after treatment (P=0.437). We found that better baseline VA may be related to success and shorten the time to amblyopic resolution. CONCLUSION VA and contrast sensitivity improved with rotated prisms, correcting lenses, and near activities in children with anisometropic amblyopia. The VA improvement by this modality was comparable to other methods. However, the time to resolution of amblyopia was shorter with this method than with other modalities. Rotated prisms combined with near acuity could provide an alternative treatment in children with anisometropic amblyopia who can't tolerant traditional therapy method like patching. PMID:23991384
Razi, Aida; Britton, Robert A.
2017-01-01
Abstract Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Å in the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process. PMID:28180306
ERIC Educational Resources Information Center
Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei
2017-01-01
Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…
Gemperline, Paul J; Cash, Eric
2003-08-15
A new algorithm for self-modeling curve resolution (SMCR) that yields improved results by incorporating soft constraints is described. The method uses least squares penalty functions to implement constraints in an alternating least squares algorithm, including nonnegativity, unimodality, equality, and closure constraints. By using least squares penalty functions, soft constraints are formulated rather than hard constraints. Significant benefits are (obtained using soft constraints, especially in the form of fewer distortions due to noise in resolved profiles. Soft equality constraints can also be used to introduce incomplete or partial reference information into SMCR solutions. Four different examples demonstrating application of the new method are presented, including resolution of overlapped HPLC-DAD peaks, flow injection analysis data, and batch reaction data measured by UV/visible and near-infrared spectroscopy (NIR). Each example was selected to show one aspect of the significant advantages of soft constraints over traditionally used hard constraints. Incomplete or partial reference information into self-modeling curve resolution models is described. The method offers a substantial improvement in the ability to resolve time-dependent concentration profiles from mixture spectra recorded as a function of time.
GEOS S2S-2_1: The GMAO new high resolution Seasonal Prediction System
NASA Astrophysics Data System (ADS)
Molod, A.; Vikhliaev, Y. V.; Hackert, E. C.; Kovach, R. M.; Zhao, B.; Cullather, R. I.; Marshak, J.; Borovikov, A.; Li, Z.; Barahona, D.; Andrews, L. C.; Chang, Y.; Schubert, S. D.; Koster, R. D.; Suarez, M.; Akella, S.
2017-12-01
A new version of the modeling and analysis system used to produce subseasonalto seasonal forecasts has just been released by the NASA/Goddard GlobalModeling and Assimilation Office. The new version runs at higher atmospheric resolution (approximately 1/2 degree globally), contains a subtantially improvedmodel description of the cryosphere, and includes additional interactive earth system model components (aerosol model). In addition, the Ocean data assimilationsystem has been replaced with a Local Ensemble Transform Kalman Filter.Here will describe the new system, along with the plans for the future (GEOS S2S-3_0) which will include a higher resolution ocean model and more interactive earth system model components (interactive vegetation, biomass burning from fires). We will alsopresent results from a free-running coupled simulation with the new system and resultsfrom a series of retrospective seasonal forecasts.Results from retrospective forecasts show significant improvements in surface temperaturesover much of the northern hemisphere and a much improved prediction of sea ice extent in bothhemispheres. The precipitation forecast skill is comparable to previous S2S systems, andthe only tradeoff is an increased "double ITCZ", which is expected as we go to higher atmospheric resolution.
NASA Astrophysics Data System (ADS)
Cowley, Garret S.; Niemann, Jeffrey D.; Green, Timothy R.; Seyfried, Mark S.; Jones, Andrew S.; Grazaitis, Peter J.
2017-02-01
Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing, but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model downscales coarse-resolution soil moisture using fine-resolution topographic, vegetation, and soil data to produce fine-resolution (10-30 m) estimates of soil moisture. The EMT+VS model performs well at catchments with low topographic relief (≤124 m), but it has not been applied to regions with larger ranges of elevation. Large relief can produce substantial variations in precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil moisture. In this research, simple methods to downscale temporal average precipitation and PET are developed and included in the EMT+VS model, and the effects of spatial variations in these variables on the surface soil moisture estimates are investigated. The methods are tested against ground truth data at the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and PET downscaling methods are able to capture the main features in the spatial patterns of both variables. The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included, respectively. PET downscaling provides a larger improvement in the soil moisture estimates than precipitation downscaling likely because the PET pattern is more persistent through time, and thus more predictable, than the precipitation pattern.
Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.
2016-06-02
The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less
Raich, Peter C; Whitley, Elizabeth M; Thorland, William; Valverde, Patricia; Fairclough, Diane
2012-10-01
Barriers to timely resolution of abnormal cancer screening tests add to cancer health disparities among low-income, uninsured, and minority populations. We conducted a randomized trial to evaluate the impact of lay patient navigators on time to resolution and completion of follow-up testing among patients with abnormal screening tests in a medically underserved patient population. Denver Health, the safety-net health care system serving Denver, is one of 10 performance sites participating in the Patient Navigation Research Program. Of 993 eligible subjects with abnormal screening tests randomized to navigation and no-navigation (control) arms and analyzed, 628 had abnormal breast screens (66 abnormal clinical breast examinations, 304 BIRADS 0, 200 BIRADS 3, 58 BIRADS 4 or 5) whereas 235 had abnormal colorectal and 130 had abnormal prostate screens. Time to resolution was significantly shorter in the navigated group (stratified log rank test, P < 0.001). Patient navigation improved diagnostic resolution for patients presenting with mammographic BIRADS 3 (P = 0.0003) and BIRADS 0 (P = 0.09), but not BIRADS 4/5 or abnormal breast examinations. Navigation shortened the time for both colorectal (P = 0.0017) and prostate screening resolution (P = 0.06). Participant demographics included 72% minority, 49% with annual household income less than $10,000, and 36% uninsured. Patient navigation positively impacts time to resolution of abnormal screening tests for breast, colorectal, and prostate cancers in a medically underserved population. By shortening the time to and increasing the proportion of patients with diagnostic resolution patient navigation could reduce disparities in stage at diagnosis and improve cancer outcomes. 2012 AACR
Speckle imaging through turbulent atmosphere based on adaptable pupil segmentation.
Loktev, Mikhail; Soloviev, Oleg; Savenko, Svyatoslav; Vdovin, Gleb
2011-07-15
We report on the first results to our knowledge obtained with adaptable multiaperture imaging through turbulence on a horizontal atmospheric path. We show that the resolution can be improved by adaptively matching the size of the subaperture to the characteristic size of the turbulence. Further improvement is achieved by the deconvolution of a number of subimages registered simultaneously through multiple subapertures. Different implementations of multiaperture geometry, including pupil multiplication, pupil image sampling, and a plenoptic telescope, are considered. Resolution improvement has been demonstrated on a ∼550 m horizontal turbulent path, using a combination of aperture sampling, speckle image processing, and, optionally, frame selection. © 2011 Optical Society of America
The impact of high-resolution topography on landslide characterization using DInSAR
NASA Astrophysics Data System (ADS)
Tiampo, K. F.; Barba, M.; Jacquemart, M. F.; Willis, M. J.; González, P. J.; McKee, C.; Samsonov, S. V.; Feng, W.
2017-12-01
Differential interferometric synthetic aperture radar (DInSAR) can measure surface deformation at the centimeter level and, as a result, has been used to investigate a wide variety of natural hazards since the 1990s. In general, short spatial and temporal baselines are selected to reduce decorrelation and the effect of incorrect removal of the topographic component in differential interferograms. The nearly global coverage of the Shuttle Radar Topography Mission (SRTM) digital elevation models (DEMs) significantly simplified and improved the modelling and removal of topography for differential interferometric applications. However, DEMs are produced today at much finer resolutions, although with varying availability and cost. SRTM DEMs are freely available at 30 m resolution world-wide and 10 m resolution in the US. The TanDEM-X mission has produced a worldwide DEM at 12 m, although it is not generally free of cost. Light Detection and Ranging (LiDAR) DEMs can provide better than 1m resolution, but are expensive to produce over limited extents. Finally, DEMs from optical data can be produced from Digital Globe satellite images over larger regions at resolutions of less than 1 m, subject to various restrictions. It can be shown that the coherence quality of a DInSAR image is directly related to the DEM resolution, improving recovery of the differential phase by significantly reducing the geometric decorrelation, and that the number of recovered pixels significantly increases with higher resolutions, particularly in steep topography. In this work we quantify that improvement for varying resolutions, from 1 to 30 m, and slopes and investigate its effect on the characterization of landslides in different regions and with a variety of surface conditions, including Greenland, Alaska, California, and the Canary Islands.
Collimator application for microchannel plate image intensifier resolution improvement
Thomas, S.W.
1996-02-27
A collimator is included in a microchannel plate image intensifier (MCPI). Collimators can be useful in improving resolution of MCPIs by eliminating the scattered electron problem and by limiting the transverse energy of electrons reaching the screen. Due to its optical absorption, a collimator will also increase the extinction ratio of an intensifier by approximately an order of magnitude. Additionally, the smooth surface of the collimator will permit a higher focusing field to be employed in the MCP-to-collimator region than is currently permitted in the MCP-to-screen region by the relatively rough and fragile aluminum layer covering the screen. Coating the MCP and collimator surfaces with aluminum oxide appears to permit additional significant increases in the field strength, resulting in better resolution. 2 figs.
High-resolution ultrasound imaging of the eye – a review
Silverman, Ronald H
2009-01-01
This report summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) of the eye, in which frequencies of 35 MHz and above provide over a threefold improvement in resolution compared with conventional ophthalmic ultrasound systems. UBM allows imaging of anatomy and pathology involving the anterior segment, including regions obscured by overlying optically opaque anatomic or pathologic structures. UBM provides diagnostically significant information in conditions such as glaucoma, cysts and neoplasms, trauma and foreign bodies. UBM also can provide crucial biometric information regarding anterior segment structures, including the cornea and its constituent layers and the anterior and posterior chambers. Although UBM has now been in use for over 15 years, new technologies, including transducer arrays, pulse encoding and combination of ultrasound with light, offer the potential for significant advances in high-resolution diagnostic imaging of the eye. PMID:19138310
High-resolution ultrasound imaging of the eye - a review.
Silverman, Ronald H
2009-01-01
This report summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) of the eye, in which frequencies of 35 MHz and above provide over a threefold improvement in resolution compared with conventional ophthalmic ultrasound systems. UBM allows imaging of anatomy and pathology involving the anterior segment, including regions obscured by overlying optically opaque anatomic or pathologic structures. UBM provides diagnostically significant information in conditions such as glaucoma, cysts and neoplasms, trauma and foreign bodies. UBM also can provide crucial biometric information regarding anterior segment structures, including the cornea and its constituent layers and the anterior and posterior chambers. Although UBM has now been in use for over 15 years, new technologies, including transducer arrays, pulse encoding and combination of ultrasound with light, offer the potential for significant advances in high-resolution diagnostic imaging of the eye.
Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager
NASA Astrophysics Data System (ADS)
Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna
2010-02-01
We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.
Realism of Indian Summer Monsoon Simulation in a Quarter Degree Global Climate Model
NASA Astrophysics Data System (ADS)
Salunke, P.; Mishra, S. K.; Sahany, S.; Gupta, K.
2017-12-01
This study assesses the fidelity of Indian Summer Monsoon (ISM) simulations using a global model at an ultra-high horizontal resolution (UHR) of 0.25°. The model used was the atmospheric component of the Community Earth System Model version 1.2.0 (CESM 1.2.0) developed at the National Center for Atmospheric Research (NCAR). Precipitation and temperature over the Indian region were analyzed for a wide range of space and time scales to evaluate the fidelity of the model under UHR, with special emphasis on the ISM simulations during the period of June-through-September (JJAS). Comparing the UHR simulations with observed data from the India Meteorological Department (IMD) over the Indian land, it was found that 0.25° resolution significantly improved spatial rainfall patterns over many regions, including the Western Ghats and the South-Eastern peninsula as compared to the standard model resolution. Convective and large-scale rainfall components were analyzed using the European Centre for Medium Range Weather Forecast (ECMWF) Re-Analysis (ERA)-Interim (ERA-I) data and it was found that at 0.25° resolution, there was an overall increase in the large-scale component and an associated decrease in the convective component of rainfall as compared to the standard model resolution. Analysis of the diurnal cycle of rainfall suggests a significant improvement in the phase characteristics simulated by the UHR model as compared to the standard model resolution. Analysis of the annual cycle of rainfall, however, failed to show any significant improvement in the UHR model as compared to the standard version. Surface temperature analysis showed small improvements in the UHR model simulations as compared to the standard version. Thus, one may conclude that there are some significant improvements in the ISM simulations using a 0.25° global model, although there is still plenty of scope for further improvement in certain aspects of the annual cycle of rainfall.
NASA Astrophysics Data System (ADS)
Coppola, E.; Fantini, A.; Raffaele, F.; Torma, C. Z.; Bacer, S.; Giorgi, F.; Ahrens, B.; Dubois, C.; Sanchez, E.; Verdecchia, M.
2017-12-01
We assess the statistics of different daily precipitation indices in ensembles of Med-CORDEX and EUROCORDEX experiments at high resolution (grid spacing of ˜0.11° , or RCM11) and medium resolution (grid spacing of ˜0.44° , or RCM44) with regional climate models (RCMs) driven by the ERA-Interim reanalysis of observations for the period 1989-2008. The assessment is carried out by comparison with a set of high resolution observation datasets for 9 European subregions. The statistics analyzed include quantitative metrics for mean precipitation, daily precipitation Probability Density Functions (PDFs), daily precipitation intensity, frequency, 95th percentile and 95th percentile of dry spell length. We assess both an ensemble including all Med-CORDEX and EURO-CORDEX models and one including the Med-CORDEX models alone. For the All Models ensembles, the RCM11 one shows a remarkable performance in reproducing the spatial patterns and seasonal cycle of mean precipitation over all regions, with a consistent and marked improvement compared to the RCM44 ensemble and the ERA-Interim reanalysis. A good consistency with observations by the RCM11 ensemble (and a substantial improvement compared to RCM44 and ERA-Interim) is found also for the daily precipitation PDFs, mean intensity and, to a lesser extent, the 95th percentile. In fact, for some regions the RCM11 ensemble overestimates the occurrence of very high intensity events while for one region the models underestimate the occurrence of the largest extremes. The RCM11 ensemble still shows a general tendency to underestimate the dry day frequency and 95th percentile of dry spell length over wetter regions, with only a marginal improvement compared to the lower resolution models. This indicates that the problem of the excessive production of low precipitation events found in many climate models persists also at relatively high resolutions, at least in wet climate regimes. Concerning the Med-CORDEX model ensembles we find that their performance is of similar quality as that of the all-models over the Mediterranean regions analyzed. Finally, we stress the need of consistent and quality checked fine scale observation datasets for the assessment of RCMs run at increasingly high horizontal resolutions.
Meng, Bo; Zhao, Lu; Yin, Yi; Li, Hongyang; Wang, Xiaolei; Yang, Xiufen; You, Ran; Wang, Jialin; Zhang, Youjing; Wang, Hui; Du, Ran; Wang, Ningli; Zhan, Siyan; Wang, Yanling
2017-09-08
Myopic foveoschisis (MF) is among the leading causes of visual loss in high myopia. However, it remains controversial whether internal limiting membrane (ILM) peeling or gas tamponade is necessary treatment option for MF. PubMed, EMBASE, CBM, CNKI, WANFANG DATA and VIP databases were systematically reviewed. Outcome indicators were myopic foveoschisis resolution rate, visual acuity improvement and postoperative complications. Nine studies that included 239 eyes were selected. The proportion of resolution of foveoschisis was higher in ILM peeling group than non-ILM peeling group (OR = 2.15, 95% CI: 1.06-4.35; P = 0.03). The proportion of postoperative complications was higher in Tamponade group than non-Tamponade group (OR = 10.81, 95% CI: 1.26-93.02; P = 0.03). However, the proportion of visual acuity improvement (OR = 1.63, 95% CI: 0.56-4.80; P = 0.37) between ILM peeling group and non-ILM peeling group and the proportion of resolution of foveoschisis (OR = 1.80, 95% CI: 0.76-4.28; P = 0.18) between Tamponade group and non-Tamponade group were similar. Vitrectomy with internal limiting membrane peeling could contribute to better resolution of myopic foveoschisis than non-peeling, however it does not significantly influence the proportion of visual acuity improvement and postoperative complications. Vitrectomy with gas tamponade is associated with more complications than non-tamponade and does not significantly influence the proportion of visual acuity improvement and resolution of myopic foveoschisis.
Ultrasound physics and instrumentation for pathologists.
Lieu, David
2010-10-01
Interest in pathologist-performed ultrasound-guided fine-needle aspiration is increasing. Educational courses discuss clinical ultrasound and biopsy techniques but not ultrasound physics and instrumentation. To review modern ultrasound physics and instrumentation to help pathologists understand the basis of modern ultrasound. A review of recent literature and textbooks was performed. Ultrasound physics and instrumentation are the foundations of clinical ultrasound. The key physical principle is the piezoelectric effect. When stimulated by an electric current, certain crystals vibrate and produce ultrasound. A hand-held transducer converts electricity into ultrasound, transmits it into tissue, and listens for reflected ultrasound to return. The returning echoes are converted into electrical signals and used to create a 2-dimensional gray-scale image. Scanning at a high frequency improves axial resolution but has low tissue penetration. Electronic focusing moves the long-axis focus to depth of the object of interest and improves lateral resolution. The short-axis focus in 1-dimensional transducers is fixed, which results in poor elevational resolution away from the focal zone. Using multiple foci improves lateral resolution but degrades temporal resolution. The sonographer can adjust the dynamic range to change contrast and bring out subtle masses. Contrast resolution is limited by processing speed, monitor resolution, and gray-scale perception of the human eye. Ultrasound is an evolving field. New technologies include miniaturization, spatial compound imaging, tissue harmonics, and multidimensional transducers. Clinical cytopathologists who understand ultrasound physics, instrumentation, and clinical ultrasound are ready for the challenges of cytopathologist-performed ultrasound-guided fine-needle aspiration and core-needle biopsy in the 21st century.
Thermal infrared panoramic imaging sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail; Tsui, Eddy K.; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey
2006-05-01
Panoramic cameras offer true real-time, 360-degree coverage of the surrounding area, valuable for a variety of defense and security applications, including force protection, asset protection, asset control, security including port security, perimeter security, video surveillance, border control, airport security, coastguard operations, search and rescue, intrusion detection, and many others. Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence of target detection, and enables both man-in-the-loop and fully automated system operation. Thermal imaging provides the benefits of all-weather, 24-hour day/night operation with no downtime. In addition, thermal signatures of different target types facilitate better classification, beyond the limits set by camera's spatial resolution. The useful range of catadioptric panoramic cameras is affected by their limited resolution. In many existing systems the resolution is optics-limited. Reflectors customarily used in catadioptric imagers introduce aberrations that may become significant at large camera apertures, such as required in low-light and thermal imaging. Advantages of panoramic imagers with high image resolution include increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) combines the strengths of improved, high-resolution panoramic optics with thermal imaging in the 8 - 14 micron spectral range, leveraged by intelligent video processing for automated detection, location, and tracking of moving targets. The work in progress supports the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to serve in a wide range of applications of homeland security, as well as serve the Army in tasks of improved situational awareness (SA) in defense and offensive operations, and as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The novel ViperView TM high-resolution panoramic thermal imager is the heart of the APTIS system. It features an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS system include network communications, advanced power management, and wakeup capability. Recent developments include image processing, optical design being expanded into the visible spectral range, and wireless communications design. This paper describes the development status of the APTIS system.
Improving near-range forecasts of severe precipitation with GNSS and InSAR high-resolution data
NASA Astrophysics Data System (ADS)
Miranda, P. M.; Mateus, P.; Nico, G.; Catalão, J.; Pinto, P.; Tomé, R.; Benevides, P.
2017-12-01
Precipitable water vapor (PWV) maps obtained by GNSS observations are now routinely incorporated into meteorological reanalysis by the main forecast centers such as ECMWF and NCEP. Such data, however, represent a small subset of the available microwave information, which now includes many regional networks of GNSS stations capable to produce frequent updates of the PWV distribution (at least at hourly time scales), and in some cases very high resolution PWV-anomaly fields that may be produced by SAR interferometry (Mateus et al 2013). Such very high resolution fields can be assimilated into state of the art forecast models such as WRF improving it's performance (Mateus et al 2016). In the present study, the assimilation of InSAR data from Sentinel 1A is used to analyse the evolution of two severe precipitation events, which occurred 12 hours apart in the city of Adra in 6-7 September 2015, southern Spain, timed after the two successive passages of the Sentinel. Such events, which produced a flash flood with casualties and large structural damage, were not forecasted by the operational models, but are very accurately reproduced once InSAR data is assimilated, as shown by local observations including weather radar. The physical processes involved in the development of the storm are discussed in some detail, by comparing different simulations: a control run, an experiment with GNSS assimilation, and the experiment with InSAR assimilation. While InSAR images are at this time only available every 6 days, the fact that an improvement of the water vapor distribution by data assimilation can have such a dramatic impact in severe weather forecasts suggests there is significant room for improvement in near term forecasting, by a better incorporation of both higher resolution GNSS data and more frequent SAR images.
Natural history of frozen shoulder: fact or fiction? A systematic review.
Wong, C K; Levine, W N; Deo, K; Kesting, R S; Mercer, E A; Schram, G A; Strang, B L
2017-03-01
In 1940s, it was proposed that frozen shoulder progresses through a self-limiting natural history of painful, stiff and recovery phases, leading to full recovery without treatment. However, clinical evidence of persistent limitations lasting for years contradicts this assumption. To assess evidence for the natural history theory of frozen shoulder by examining: (1) progression through recovery phases, and (2) full resolution without treatment. MEDLINE, PubMed, EBSCO CINAHL and PEDro database searches augmented by hand searching. Cohort or randomised controlled trials with no-treatment comparison groups including adults with frozen shoulder who received no treatment and reporting range of motion, pain or function for ≥6 months. Reviewers assessed study eligibility and quality, and extracted data before reaching consensus. Limited early range-of-motion improvements and greater late improvements defined progression through recovery phases. Restoration of normal range of motion and previous function defined full resolution. Of 508 citations, 13 articles were reviewed and seven were included in this review. Low-quality evidence suggested that no treatment yielded some, but not complete, improvement in range of motion after 1 to 4 years of follow-up. No evidence supported the theory of progression through recovery phases to full resolution without treatment. On the contrary, moderate-quality evidence from three randomised controlled trials with longitudinal data demonstrated that most improvement occurred early, not late. Low-quality evidence revealed the weakness of longstanding assumptions about frozen shoulder. Contradictory evidence and a lack of supporting evidence shows that the theory of recovery phases leading to complete resolution without treatment for frozen shoulder is unfounded. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resolution Enhancement in PET Reconstruction Using Collimation
NASA Astrophysics Data System (ADS)
Metzler, Scott D.; Matej, Samuel; Karp, Joel S.
2013-02-01
Collimation can improve both the spatial resolution and sampling properties compared to the same scanner without collimation. Spatial resolution improves because each original crystal can be conceptually split into two (i.e., doubling the number of in-plane crystals) by masking half the crystal with a high-density attenuator (e.g., tungsten); this reduces coincidence efficiency by 4× since both crystals comprising the line of response (LOR) are masked, but yields 4× as many resolution-enhanced (RE) LORs. All the new RE LORs can be measured by scanning with the collimator in different configurations.In this simulation study, the collimator was assumed to be ideal, neither allowing gamma penetration nor truncating the field of view. Comparisons were made in 2D between an uncollimated small-animal system with 2-mm crystals that were assumed to be perfectly absorbing and the same system with collimation that narrowed the effective crystal size to 1 mm. Digital phantoms included a hot-rod and a single-hot-spot, both in a uniform background with activity ratio of 4:1. In addition to the collimated and uncollimated configurations, angular and spatial wobbling acquisitions of the 2-mm case were also simulated. Similarly, configurations with different combinations of the RE LORs were considered including (i) all LORs, (ii) only those parallel to the 2-mm LORs; and (iii) only cross pairs that are not parallel to the 2-mm LORs. Lastly, quantitative studies were conducted for collimated and uncollimated data using contrast recovery coefficient and mean-squared error (MSE) as metrics. The reconstructions show that for most noise levels there is a substantial improvement in image quality (i.e., visual quality, resolution, and a reduction in artifacts) by using collimation even when there are 4 fewer counts or-in some cases-comparing with the noiseless uncollimated reconstruction. By comparing various configurations of sampling, the results show that it is the matched combination of both improved spatial resolution of each LOR and the increase in the number of LORs that yields improved reconstructions. Further, the quantitative studies show that for low-count scans, the collimated data give better MSE for small lesions and the uncollimated data give better MSE for larger lesions; for highcount studies, the collimated data yield better quantitative values for the entire range of lesion sizes that were evaluated.
NASA Astrophysics Data System (ADS)
Sayan, Safak; Vanelderen, Pieter; Hetel, Iulian; Chan, BT; Raghavan, Praveen; Blanco, Victor; Foubert, Philippe; D'urzo, Lucia; De Simone, Danilo; Vandenberghe, Geert
2017-04-01
There are many knobs available that change the chemical and physical properties of the photoresists to "break" the RLS (Resolution, Sensitivity, Line edge/width roughness) trade-off, however those are not enough today to realize a material to satisfy all requirements at once for 7nm technology and beyond. DDRP improves the ultimate achievable resolution via pattern collapse mitigation, hence the priority of requirements for the EUV photoresist development may be changed with more focus on Sensitivity and LWR. This may potentially provide a new conceptual approach towards EUV PR development for DDRP applications. We have previously demonstrated pattern collapse (PC) mitigation via DDRP on different EUVL photoresists (including different resist platforms), achieving ultimate resolution and exposure latitude improvements [1,2]. In this contribution, we report patterning and material defect performance of HVM compatible (all aqueous) dry development rinse material. We will also report on process window improvement on 2-dimensional metal structures towards standard cell size reduction with elimination of mask layer(s) using single EUV exposure.
NASA Astrophysics Data System (ADS)
Park, Jeong-Gyun; Jee, Joon-Bum
2017-04-01
Dangerous weather such as severe rain, heavy snow, drought and heat wave caused by climate change make more damage in the urban area that dense populated and industry areas. Urban areas, unlike the rural area, have big population and transportation, dense the buildings and fuel consumption. Anthropogenic factors such as road energy balance, the flow of air in the urban is unique meteorological phenomena. However several researches are in process about prediction of urban meteorology. ASAPS (Advanced Storm-scale Analysis and Prediction System) predicts a severe weather with very short range (prediction with 6 hour) and high resolution (every hour with time and 1 km with space) on Seoul metropolitan area based on KLAPS (Korea Local Analysis and Prediction System) from KMA (Korea Meteorological Administration). This system configured three parts that make a background field (SUF5), analysis field (SU01) with observation and forecast field with high resolution (SUF1). In this study, we improve a high-resolution ASAPS model and perform a sensitivity test for the rainfall case. The improvement of ASAPS include model domain configuration, high resolution topographic data and data assimilation with WISE observation data.
Onyewu, Samuel C; Ogundimu, Ololade O; Ortega, Gezzer; Bauer, Edward S; Emenari, Chijindu C; Molyneaux, Neh D; Layne, Sylvonne A; Changoor, Navin R; Tapscott, Denia; Tran, Daniel D; Fullum, Terrence M
2017-01-01
Super morbid obesity (body mass index [BMI] > 50 kg/m 2 ) is associated with significant comorbidities and is disparagingly prevalent among the black population. There is paucity of data regarding bariatric surgery outcomes among super morbid obese (SMO) blacks. Our aim is to evaluate the reduction in weight and resolution of comorbidities after bariatric surgery among SMO black patients at an urban academic institution. A retrospective review of SMO black patients who underwent bariatric surgery from August 2008 to June 2013 at Howard University Hospital. Outcomes of interest include weight loss, improvement or resolution of hypertension, type 2 diabetes, and hyperlipidemia at 12 months. Eighty-seven patients met our inclusion criteria. Mean preoperative weight and BMI were 347.2 lbs and 56.8 kg/m 2 , respectively. At 12 months, mean weight and BMI were 245.3 lbs and 40.1 kg/m 2 , respectively. There was also significant improvement or resolution of hypertension, type 2 diabetes, and hyperlipidemia. Bariatric surgery may result in significant weight loss and improvement or resolution of comorbidities in SMO black patients. Copyright © 2016. Published by Elsevier Inc.
Pathfinder Sea Surface Temperature Climate Data Record
NASA Astrophysics Data System (ADS)
Baker-Yeboah, S.; Saha, K.; Zhang, D.; Casey, K. S.
2016-02-01
Global sea surface temperature (SST) fields are important in understanding ocean and climate variability. The NOAA National Centers for Environmental Information (NCEI) develops and maintains a high resolution, long-term, climate data record (CDR) of global satellite SST. These SST values are generated at approximately 4 km resolution using Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA polar-orbiting satellites going back to 1981. The Pathfinder SST algorithm is based on the Non-Linear SST algorithm using the modernized NASA SeaWiFS Data Analysis System (SeaDAS). Coefficients for this SST product were generated using regression analyses with co-located in situ and satellite measurements. Previous versions of Pathfinder included level 3 collated (L3C) products. Pathfinder Version 5.3 includes level 2 pre-processed (L2P), level 3 Uncollated (L3C), and L3C products. Notably, the data were processed in the cloud using Amazon Web Services and are made available through all of the modern web visualization and subset services provided by the THREDDS Data Server, the Live Access Server, and the OPeNDAP Hyrax Server.In this version of Pathfinder SST, anomalous hot-spots at land-water boundaries are better identified and the dataset includes updated land masks and sea ice data over the Antarctic ice shelves. All quality levels of SST values are generated, giving the user greater flexibility and the option to apply their own cloud-masking procedures. Additional improvements include consistent cloud tree tests for NOAA-07 and NOAA-19 with respect to the other sensors, improved SSTs in sun glint areas, and netCDF file format improvements to ensure consistency with the latest Group for High Resolution SST (GHRSST) requirements. This quality controlled satellite SST field is a reference environmental data record utilized as a primary resource of SST for numerous regional and global marine efforts.
NASA Astrophysics Data System (ADS)
Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.
2017-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.
Combined GPS/GLONASS Precise Point Positioning with Fixed GPS Ambiguities
Pan, Lin; Cai, Changsheng; Santerre, Rock; Zhu, Jianjun
2014-01-01
Precise point positioning (PPP) technology is mostly implemented with an ambiguity-float solution. Its performance may be further improved by performing ambiguity-fixed resolution. Currently, the PPP integer ambiguity resolutions (IARs) are mainly based on GPS-only measurements. The integration of GPS and GLONASS can speed up the convergence and increase the accuracy of float ambiguity estimates, which contributes to enhancing the success rate and reliability of fixing ambiguities. This paper presents an approach of combined GPS/GLONASS PPP with fixed GPS ambiguities (GGPPP-FGA) in which GPS ambiguities are fixed into integers, while all GLONASS ambiguities are kept as float values. An improved minimum constellation method (MCM) is proposed to enhance the efficiency of GPS ambiguity fixing. Datasets from 20 globally distributed stations on two consecutive days are employed to investigate the performance of the GGPPP-FGA, including the positioning accuracy, convergence time and the time to first fix (TTFF). All datasets are processed for a time span of three hours in three scenarios, i.e., the GPS ambiguity-float solution, the GPS ambiguity-fixed resolution and the GGPPP-FGA resolution. The results indicate that the performance of the GPS ambiguity-fixed resolutions is significantly better than that of the GPS ambiguity-float solutions. In addition, the GGPPP-FGA improves the positioning accuracy by 38%, 25% and 44% and reduces the convergence time by 36%, 36% and 29% in the east, north and up coordinate components over the GPS-only ambiguity-fixed resolutions, respectively. Moreover, the TTFF is reduced by 27% after adding GLONASS observations. Wilcoxon rank sum tests and chi-square two-sample tests are made to examine the significance of the improvement on the positioning accuracy, convergence time and TTFF. PMID:25237901
X-ray penumbral imaging diagnostic developments at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.
2017-08-01
X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.
The Enhancement of 3D Scans Depth Resolution Obtained by Confocal Scanning of Porous Materials
NASA Astrophysics Data System (ADS)
Martisek, Dalibor; Prochazkova, Jana
2017-12-01
The 3D reconstruction of simple structured materials using a confocal microscope is widely used in many different areas including civil engineering. Nonetheless, scans of porous materials such as concrete or cement paste are highly problematic. The well-known problem of these scans is low depth resolution in comparison to the horizontal and vertical resolution. The degradation of the image depth resolution is caused by systematic errors and especially by different random events. Our method is focused on the elimination of such random events, mainly the additive noise. We use an averaging method based on the Lindeberg-Lévy theorem that improves the final depth resolution to a level comparable with horizontal and vertical resolution. Moreover, using the least square method, we also precisely determine the limit value of a depth resolution. Therefore, we can continuously evaluate the difference between current resolution and the optimal one. This substantially simplifies the scanning process because the operator can easily determine the required number of scans.
Physical correction filter for improving the optical quality of an image
NASA Technical Reports Server (NTRS)
Lee, S. Y. (Inventor)
1975-01-01
A family of physical correction filters is described. Each filter is designed to correct image content of a photographed scene of limited resolution and includes a first filter element with a pinhole through which light passes to a differential amplifier. A second filter element through which light passes through one or more openings, whose geometric configuration is a function of the cause of the resolution loss included. The light, passing through the second filter element, is also supplied to the differential amplifier whose output is used to activate an optical display or recorder to reproduce a photograph or display of the scene in the original photograph or display of the scene in the original photograph with resolution which is significantly greater than that characterizing the original photograph.
Improvement of the energy resolution of pixelated CdTe detectors for applications in 0νββ searches
NASA Astrophysics Data System (ADS)
Gleixner, T.; Anton, G.; Filipenko, M.; Seller, P.; Veale, M. C.; Wilson, M. D.; Zang, A.; Michel, T.
2015-07-01
Experiments trying to detect 0νββ are very challenging. Their requirements include a good energy resolution and a good detection efficiency. With current fine pixelated CdTe detectors there is a trade off between the energy resolution and the detection efficiency, which limits their performance. It will be shown with simulations that this problem can be mostly negated by analysing the cathode signal which increases the optimal sensor thickness. We will compare different types of fine pixelated CdTe detectors (Timepix, Dosepix, HEXITEC) from this point of view.
Development and Performance of an Atomic Interferometer Gravity Gradiometer for Earth Science
NASA Astrophysics Data System (ADS)
Luthcke, S. B.; Saif, B.; Sugarbaker, A.; Rowlands, D. D.; Loomis, B.
2016-12-01
The wealth of multi-disciplinary science achieved from the GRACE mission, the commitment to GRACE Follow On (GRACE-FO), and Resolution 2 from the International Union of Geodesy and Geophysics (IUGG, 2015), highlight the importance to implement a long-term satellite gravity observational constellation. Such a constellation would measure time variable gravity (TVG) with accuracies 50 times better than the first generation missions, at spatial and temporal resolutions to support regional and sub-basin scale multi-disciplinary science. Improved TVG measurements would achieve significant societal benefits including: forecasting of floods and droughts, improved estimates of climate impacts on water cycle and ice sheets, coastal vulnerability, land management, risk assessment of natural hazards, and water management. To meet the accuracy and resolution challenge of the next generation gravity observational system, NASA GSFC and AOSense are currently developing an Atomic Interferometer Gravity Gradiometer (AIGG). This technology is capable of achieving the desired accuracy and resolution with a single instrument, exploiting the advantages of the microgravity environment. The AIGG development is funded under NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), and includes the design, build, and testing of a high-performance, single-tensor-component gravity gradiometer for TVG recovery from a satellite in low Earth orbit. The sensitivity per shot is 10-5 Eötvös (E) with a flat spectral bandwidth from 0.3 mHz - 0.03 Hz. Numerical simulations show that a single space-based AIGG in a 326 km altitude polar orbit is capable of exceeding the IUGG target requirement for monthly TVG accuracy of 1 cm equivalent water height at 200 km resolution. We discuss the current status of the AIGG IIP development and estimated instrument performance, and we present results of simulated Earth TVG recovery of the space-based AIGG. We explore the accuracy, and spatial and temporal resolution of surface mass change observations from several space-based implementations of the AIGG instrument, including various orbit configurations and multi-satellite/multi-orbit configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Said, A. H.; Sinn, H.; Divan, R.
2011-05-01
In this work new improvements related to the fabrication of spherical bent analyzers for 1 meV energy-resolution inelastic X-ray scattering spectroscopy are presented. The new method includes the use of a two-dimensional bender to achieve the required radius of curvature for X-ray analyzers. The advantage of this method is the ability to monitor the focus during bending, which leads to higher-efficiency analyzers.
The development of high resolution silicon x-ray microcalorimeters
NASA Astrophysics Data System (ADS)
Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.
2005-12-01
Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.
Sharpening advanced land imager multispectral data using a sensor model
Lemeshewsky, G.P.; ,
2005-01-01
The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.
Microfabrication of High Resolution X-ray Magnetic Calorimeters
NASA Astrophysics Data System (ADS)
Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.
2009-12-01
Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.
Mozaffarzadeh, Moein; Mahloojifar, Ali; Orooji, Mahdi; Adabi, Saba; Nasiriavanaki, Mohammadreza
2018-01-01
Photoacoustic imaging (PAI) is an emerging medical imaging modality capable of providing high spatial resolution of Ultrasound (US) imaging and high contrast of optical imaging. Delay-and-Sum (DAS) is the most common beamforming algorithm in PAI. However, using DAS beamformer leads to low resolution images and considerable contribution of off-axis signals. A new paradigm namely delay-multiply-and-sum (DMAS), which was originally used as a reconstruction algorithm in confocal microwave imaging, was introduced to overcome the challenges in DAS. DMAS was used in PAI systems and it was shown that this algorithm results in resolution improvement and sidelobe degrading. However, DMAS is still sensitive to high levels of noise, and resolution improvement is not satisfying. Here, we propose a novel algorithm based on DAS algebra inside DMAS formula expansion, double stage DMAS (DS-DMAS), which improves the image resolution and levels of sidelobe, and is much less sensitive to high level of noise compared to DMAS. The performance of DS-DMAS algorithm is evaluated numerically and experimentally. The resulted images are evaluated qualitatively and quantitatively using established quality metrics including signal-to-noise ratio (SNR), full-width-half-maximum (FWHM) and contrast ratio (CR). It is shown that DS-DMAS outperforms DAS and DMAS at the expense of higher computational load. DS-DMAS reduces the lateral valley for about 15 dB and improves the SNR and FWHM better than 13% and 30%, respectively. Moreover, the levels of sidelobe are reduced for about 10 dB in comparison with those in DMAS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiswell, S
2009-01-11
Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less
Headache and refractive errors in children.
Roth, Zachary; Pandolfo, Katie R; Simon, John; Zobal-Ratner, Jitka
2014-01-01
To investigate the association between uncorrected or miscorrected refractive errors in children and headache, and to determine whether correction of refractive errors contributes to headache resolution. Results of ophthalmic examination, including refractive error, were recorded at initial visit for headache. If resolution of headache on subsequent visits was not documented, a telephone call was placed to their caregivers to inquire whether headache had resolved. Of the 158 patients, 75.3% had normal or unchanged eye examinations, including refractions.Follow-up data were available for 110 patients. Among those, 32 received new or changed spectacle correction and 78 did not require a change in refraction.Headaches improved in 76.4% of all patients, whether with (71.9%) or without (78.2%) a change in refractive correction. The difference between these two groups was not statistically significant (P = .38). Headaches in children usually do not appear to be caused by ophthalmic disease, including refractive error. The prognosis for improvement is favorable, regardless of whether refractive correction is required. Copyright 2014, SLACK Incorporated.
Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities.
Hauser, Meghan; Wojcik, Michal; Kim, Doory; Mahmoudi, Morteza; Li, Wan; Xu, Ke
2017-06-14
Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.
High resolution optical DNA mapping
NASA Astrophysics Data System (ADS)
Baday, Murat
Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.
Review of recent advances in analytical techniques for the determination of neurotransmitters
Perry, Maura; Li, Qiang; Kennedy, Robert T.
2009-01-01
Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472
Zhang, Qiushi; Zhang, Congzhe; Lu, Yanye; Yang, Kun; Ren, Qiushi
2013-01-01
CdZnTe detectors have been under development for the past two decades, providing good stopping power for gamma rays, lightweight camera heads and improved energy resolution. However, the performance of this type of detector is limited primarily by incomplete charge collection problems resulting from charge carriers trapping. This paper is a review of the progress in the development of CdZnTe unipolar detectors with some data correction techniques for improving performance of the detectors. We will first briefly review the relevant theories. Thereafter, two aspects of the techniques for overcoming the hole trapping issue are summarized, including irradiation direction configuration and pulse shape correction methods. CdZnTe detectors of different geometries are discussed in detail, covering the principal of the electrode geometry design, the design and performance characteristics, some detector prototypes development and special correction techniques to improve the energy resolution. Finally, the state of art development of 3-D position sensing and Compton imaging technique are also discussed. Spectroscopic performance of CdZnTe semiconductor detector will be greatly improved even to approach the statistical limit on energy resolution with the combination of some of these techniques. PMID:23429509
Testing of Front End Electronics for 10ps Time of Flight Detectors
NASA Astrophysics Data System (ADS)
Kimball, Matthew; EIC PID Consortium Collaboration
2016-09-01
To fully achieve the physics goals of the future Electron Ion Collider (EIC), continued development of the detectors involved is needed. One area of research involves improving the timing resolution of Time of Flight (ToF) detectors from 100ps to 10ps. When the timing resolution of these ToF detectors is improved, better particle identification can be achieved. In addition, as ToF detectors are being constructed with ever improving timing resolution, the need to improve the high speed performance of the fast electronics used in their front-end electronics (FEE) increases. A series of careful measurements has been performed to investigate the performance and efficiency of each element in the FEE chain. The focus of these tests lies on the amplitude transmission efficiency of the high speed signals as a function of frequency, also known as the bandwidth. The components tested include balanced to unbalanced (balun) boards, signal pre-amps, and waveform digitizers. These tests were performed on individual components and with all elements connected over a frequency range of 1MHz to 1GHz. The results of these tests will be presented. This research was supported by US DOE MENP Grant DE-FG02-03ER41243.
High Resolution Laser Mass Spectrometry Bioimaging
Murray, Kermit K.; Seneviratne, Chinthaka A.; Ghorai, Suman
2016-01-01
MSI (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10 μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. PMID:26972785
High resolution laser mass spectrometry bioimaging.
Murray, Kermit K; Seneviratne, Chinthaka A; Ghorai, Suman
2016-07-15
Mass spectrometry imaging (MSI) was introduced more than five decades ago with secondary ion mass spectrometry (SIMS) and a decade later with laser desorption/ionization (LDI) mass spectrometry (MS). Large biomolecule imaging by matrix-assisted laser desorption/ionization (MALDI) was developed in the 1990s and ambient laser MS a decade ago. Although SIMS has been capable of imaging with a moderate mass range at sub-micrometer lateral resolution from its inception, laser MS requires additional effort to achieve a lateral resolution of 10μm or below which is required to image at the size scale of single mammalian cells. This review covers untargeted large biomolecule MSI using lasers for desorption/ionization or laser desorption and post-ionization. These methods include laser microprobe (LDI) MSI, MALDI MSI, laser ambient and atmospheric pressure MSI, and near-field laser ablation MS. Novel approaches to improving lateral resolution are discussed, including oversampling, beam shaping, transmission geometry, reflective and through-hole objectives, microscope mode, and near-field optics. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, C. M.; Omar, A. H.; Hook, S. J.; Tzortziou, M.; Luvall, J. C.; Turner, W. W.
2016-02-01
Observations from the Pre-Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral InfraRed Imager (HyspIRI) satellite missions are highly complementary and have the potential to significantly advance understanding of various science and applications challenges in the ocean sciences and water quality communities. Scheduled for launch in the 2022 timeframe, PACE is designed to make climate-quality global measurements essential for understanding ocean biology, biogeochemistry and ecology, and determining the role of the ocean in global biogeochemical cycling and ocean ecology, and how it affects and is affected by climate change. PACE will provide high signal-to-noise, hyperspectral observations over an extended spectral range (UV to SWIR) and will have global coverage every 1-2 days, at approximately 1 km spatial resolution; furthermore, PACE is currently designed to include a polarimeter, which will vastly improve atmospheric correction algorithms over water bodies. The PACE mission will enable advances in applications across a range of areas, including oceans, climate, water resources, ecological forecasting, disasters, human health and air quality. HyspIRI, with contiguous measurements in VSWIR, and multispectral measurements in TIR, will be able to provide detailed spectral observations and higher spatial resolution (30 to 60-m) over aquatic systems, but at a temporal resolution that is approximately 5-16 days. HyspIRI would enable improved, detailed studies of aquatic ecosystems, including benthic communities, algal blooms, coral reefs, and wetland species distribution as well as studies of water quality indicators or pollutants such as oil spills, suspended sediment, and colored dissolved organic matter. Together, PACE and HyspIRI will be able to address numerous applications and science priorities, including improving and extending climate data records, and studies of inland, coastal and ocean environments.
Thin Shell, Segmented X-Ray Mirrors
NASA Technical Reports Server (NTRS)
Petre, Robert
2010-01-01
Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shvartsburg, Alexandre A.; Tang, Keqi; Smith, Richard D.
The use of Field Asymmetric waveform Ion Mobility Spectrometry (FAIMS) has rapidly grown with the advent of commercial FAIMS systems coupled to mass spectrometry. However, many fundamental aspects of FAIMS remain obscure, hindering its technological improvement and expansion of analytical utility. Recently, we developed a comprehensive numerical simulation approach to FAIMS that can handle any device geometry and operational conditions. The formalism was originally set up in one dimension for a uniform gas flow and limited to ideal asymmetric voltage waveforms. Here we extend the model to account for a realistic gas flow velocity distribution in the analytical gap, axialmore » ion diffusion, and waveform imperfections (e.g. noise and ripple). The non-uniformity of gas flow velocity profile has only a minor effect, slightly improving resolution. However, waveform perturbations are significant even at very low levels, in some cases {approx} 0.01% of nominal voltage. These perturbations always improve resolution and decrease sensitivity. Variation of noise or ripple amplitude produces a trade-off between resolution and sensitivity. This trade-off is physically equivalent to that obtained via adjustment of the gap width and/or asymmetric waveform frequency, but the scaling of low-frequency ripple appears to be a more practical way to control FAIMS resolution.« less
NASA Astrophysics Data System (ADS)
Isakson, Steve Wesley
2001-12-01
Well-known principles of physics explain why resolution restrictions occur in images produced by optical diffraction-limited systems. The limitations involved are present in all diffraction-limited imaging systems, including acoustical and microwave. In most circumstances, however, prior knowledge about the object and the imaging system can lead to resolution improvements. In this dissertation I outline a method to incorporate prior information into the process of reconstructing images to superresolve the object beyond the above limitations. This dissertation research develops the details of this methodology. The approach can provide the most-probable global solution employing a finite number of steps in both far-field and near-field images. In addition, in order to overcome the effects of noise present in any imaging system, this technique provides a weighted image that quantifies the likelihood of various imaging solutions. By utilizing Bayesian probability, the procedure is capable of incorporating prior information about both the object and the noise to overcome the resolution limitation present in many imaging systems. Finally I will present an imaging system capable of detecting the evanescent waves missing from far-field systems, thus improving the resolution further.
NASA Astrophysics Data System (ADS)
Garay, M. J.; Bull, M. A.; Witek, M. L.; Diner, D. J.; Seidel, F.
2017-12-01
Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. A major, multi-year development effort has led to the release of updated operational MISR Level 2 aerosol and land surface retrieval products. The spatial resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23, present validation of the aerosol product, and describe some of the applications enabled by these product updates.
Using high-resolution displays for high-resolution cardiac data.
Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken
2009-07-13
The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.
NASA Astrophysics Data System (ADS)
Valentine, Timothy E.; Leal, Luiz C.; Guber, Klaus H.
2002-12-01
The Department of Energy established the Nuclear Criticality Safety Program (NCSP) in response to the Recommendation 97-2 by the Defense Nuclear Facilities Safety Board. The NCSP consists of seven elements of which nuclear data measurements and evaluations is a key component. The intent of the nuclear data activities is to provide high resolution nuclear data measurements that are evaluated, validated, and formatted for use by the nuclear criticality safety community to provide improved and reliable calculations for nuclear criticality safety evaluations. High resolution capture, fission, and transmission measurements are performed at the Oak Ridge Electron Linear Accelerator (ORELA) to address the needs of the criticality safety community and to address known deficiencies in nuclear data evaluations. The activities at ORELA include measurements on both light and heavy nuclei and have been used to identify improvements in measurement techniques that greatly improve the measurement of small capture cross sections. The measurement activities at ORELA provide precise and reliable high-resolution nuclear data for the nuclear criticality safety community.
Fabricating High-Resolution X-Ray Collimators
NASA Technical Reports Server (NTRS)
Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill
2008-01-01
A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.
A comparison of GLAS SAT and NMC high resolution NOSAT forecasts from 19 and 11 February 1976
NASA Technical Reports Server (NTRS)
Atlas, R.
1979-01-01
A subjective comparison of the Goddard Laboratory for Atmospheric Sciences (GLAS) and the National Meteorological Center (NMC) high resolution model forecasts is presented. Two cases where NMC's operational model in 1976 had serious difficulties in forecasting for the United States were examined. For each of the cases, the GLAS model forecasts from initial conditions which included satellite sounding data were compared directly to the NMC higher resolution model forecasts, from initial conditions which excluded the satellite data. The comparison showed that the GLAS satellite forecasts significantly improved upon the current NMC operational model's predictions in both cases.
Park, Jong Kang; Rowlands, Christopher J; So, Peter T C
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.
Park, Jong Kang; Rowlands, Christopher J.; So, Peter T. C.
2017-01-01
Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD), can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice. PMID:29387484
Analytical SuperSTEM for extraterrestrial materials research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J P; Dai, Z R
2009-09-08
Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried outmore » with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.« less
Design principles and applications of a cooled CCD camera for electron microscopy.
Faruqi, A R
1998-01-01
Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.
Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting
Huang, Xiwei; Jiang, Yu; Liu, Xu; Xu, Hang; Han, Zhi; Rong, Hailong; Yang, Haiping; Yan, Mei; Yu, Hao
2016-01-01
A lensless blood cell counting system integrating microfluidic channel and a complementary metal oxide semiconductor (CMOS) image sensor is a promising technique to miniaturize the conventional optical lens based imaging system for point-of-care testing (POCT). However, such a system has limited resolution, making it imperative to improve resolution from the system-level using super-resolution (SR) processing. Yet, how to improve resolution towards better cell detection and recognition with low cost of processing resources and without degrading system throughput is still a challenge. In this article, two machine learning based single-frame SR processing types are proposed and compared for lensless blood cell counting, namely the Extreme Learning Machine based SR (ELMSR) and Convolutional Neural Network based SR (CNNSR). Moreover, lensless blood cell counting prototypes using commercial CMOS image sensors and custom designed backside-illuminated CMOS image sensors are demonstrated with ELMSR and CNNSR. When one captured low-resolution lensless cell image is input, an improved high-resolution cell image will be output. The experimental results show that the cell resolution is improved by 4×, and CNNSR has 9.5% improvement over the ELMSR on resolution enhancing performance. The cell counting results also match well with a commercial flow cytometer. Such ELMSR and CNNSR therefore have the potential for efficient resolution improvement in lensless blood cell counting systems towards POCT applications. PMID:27827837
NASA Astrophysics Data System (ADS)
Kuik, Friderike; Lauer, Axel; Churkina, Galina; Denier van der Gon, Hugo A. C.; Fenner, Daniel; Mar, Kathleen A.; Butler, Tim M.
2016-12-01
Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols. NOx (NO + NO2) concentrations are simulated reasonably well on average, but nighttime concentrations are overestimated due to the model's underestimation of the mixing layer height, and urban daytime concentrations are underestimated. The daytime underestimation is improved when using downscaled, and thus locally higher emissions, suggesting that part of this bias is due to deficiencies in the emission input data and their resolution. The results further demonstrate that a horizontal resolution of 3 km improves the results and spatial representativeness of the model compared to a horizontal resolution of 15 km. With the input data (land use classes, emissions) at the level of detail of the base run of this study, we find that a horizontal resolution of 1 km does not improve the results compared to a resolution of 3 km. However, our results suggest that a 1 km horizontal model resolution could enable a detailed simulation of local pollution patterns in the Berlin-Brandenburg region if the urban land use classes, together with the respective input parameters to the urban canopy model, are specified with a higher level of detail and if urban emissions of higher spatial resolution are used.
A New Approach in Downscaling Microwave Soil Moisture Product using Machine Learning
NASA Astrophysics Data System (ADS)
Abbaszadeh, Peyman; Yan, Hongxiang; Moradkhani, Hamid
2016-04-01
Understating the soil moisture pattern has significant impact on flood modeling, drought monitoring, and irrigation management. Although satellite retrievals can provide an unprecedented spatial and temporal resolution of soil moisture at a global-scale, their soil moisture products (with a spatial resolution of 25-50 km) are inadequate for regional study, where a resolution of 1-10 km is needed. In this study, a downscaling approach using Genetic Programming (GP), a specialized version of Genetic Algorithm (GA), is proposed to improve the spatial resolution of satellite soil moisture products. The GP approach was applied over a test watershed in United States using the coarse resolution satellite data (25 km) from Advanced Microwave Scanning Radiometer - EOS (AMSR-E) soil moisture products, the fine resolution data (1 km) from Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index, and ground based data including land surface temperature, vegetation and other potential physical variables. The results indicated the great potential of this approach to derive the fine resolution soil moisture information applicable for data assimilation and other regional studies.
NASA Astrophysics Data System (ADS)
Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.
2015-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. At the time of abstract submission, results from the year 2007 have been produced. More years will be added as ISCCP reprocessing occurs. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. Improvements in GSW include an expansion of the number of wavelength bands from five to eighteen, and the inclusion of ice cloud vs. water cloud radiative transfer. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors
NASA Astrophysics Data System (ADS)
Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.
2008-04-01
Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.
Image quality improvement in cone-beam CT using the super-resolution technique.
Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi
2018-04-05
This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.
The Detector Subsystem for the SXS Instrument on the Astro-H Observatory
NASA Technical Reports Server (NTRS)
Porter, Frederick; Adams, J. S.; Brown, G. V.; Chervenak, J. A.; Chiao, M. P.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.;
2011-01-01
The Soft X-ray Spectrometer (SXS) instrument on the Astro-H observatory is based on a 36 pixel x-ray calorimeter array cooled to 50 mK in a sophisticated spaceflight cryostat. The SXS is a true spatial-spectral instrument, where each spatially discrete pixel functions as a high-resolution spectrometer. Here we discuss the SXS detector subsystem that includes the detector array, the anticoincidence detector, the first stage amplifiers, the thermal and mechanical staging of the detector, and the cryogenic bias electronics. The design of the SXS detector subsystem has significant heritage from the Suzaku/XRS instrument but has some important modifications that increase performance margins and simplify the focal plane assembly. Notable improvements include x-ray absorbers with significantly lower heat capacity, improved load resistors, improved thermometry, and a decreased sensitivity to thermal radiation. These modifications have yielded an energy resolution of 3.5-4.0 eV FWHM at 6 keV for representative devices in the laboratory, giving considerable margin against the 7 eV instrument requirement. We expect similar performance in flight
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)
2001-01-01
On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.
Subranging scheme for SQUID sensors
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor)
2008-01-01
A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Wang, Yi; Camargo, Aldo; Martel, Florent
2008-01-01
In traditional super-resolution methods, researchers generally assume that accurate subpixel image registration parameters are given a priori. In reality, accurate image registration on a subpixel grid is the single most critically important step for the accuracy of super-resolution image reconstruction. In this paper, we introduce affine invariant features to improve subpixel image registration, which considerably reduces the number of mismatched points and hence makes traditional image registration more efficient and more accurate for super-resolution video enhancement. Affine invariant interest points include those corners that are invariant to affine transformations, including scale, rotation, and translation. They are extracted from the second moment matrix through the integration and differentiation covariance matrices. Our tests are based on two sets of real video captured by a small Unmanned Aircraft System (UAS) aircraft, which is highly susceptible to vibration from even light winds. The experimental results from real UAS surveillance video show that affine invariant interest points are more robust to perspective distortion and present more accurate matching than traditional Harris/SIFT corners. In our experiments on real video, all matching affine invariant interest points are found correctly. In addition, for the same super-resolution problem, we can use many fewer affine invariant points than Harris/SIFT corners to obtain good super-resolution results.
NASA Astrophysics Data System (ADS)
Park, Moon-Soo; Park, Sung-Hwa; Chae, Jung-Hoon; Choi, Min-Hyeok; Song, Yunyoung; Kang, Minsoo; Roh, Joon-Woo
2017-04-01
To improve our knowledge of urban meteorology, including those processes applicable to high-resolution meteorological models in the Seoul Metropolitan Area (SMA), the Weather Information Service Engine (WISE) Urban Meteorological Observation System (UMS-Seoul) has been designed and installed. The UMS-Seoul incorporates 14 surface energy balance (EB) systems, 7 surface-based three-dimensional (3-D) meteorological observation systems and applied meteorological (AP) observation systems, and the existing surface-based meteorological observation network. The EB system consists of a radiation balance system, sonic anemometers, infrared CO2/H2O gas analyzers, and many sensors measuring the wind speed and direction, temperature and humidity, precipitation, and air pressure. The EB-produced radiation, meteorological, and turbulence data will be used to quantify the surface EB according to land use and to improve the boundary-layer and surface processes in meteorological models. The 3-D system, composed of a wind lidar, microwave radiometer, aerosol lidar, or ceilometer, produces the cloud height, vertical profiles of backscatter by aerosols, wind speed and direction, temperature, humidity, and liquid water content. It will be used for high-resolution reanalysis data based on observations and for the improvement of the boundary-layer, radiation, and microphysics processes in meteorological models. The AP system includes road weather information, mosquito activity, water quality, and agrometeorological observation instruments. The standardized metadata for networks and stations are documented and renewed periodically to provide a detailed observation environment. The UMS-Seoul data are designed to support real-time acquisition and display and automatically quality check within 10 min from observation. After the quality check, data can be distributed to relevant potential users such as researchers and policy makers. Finally, two case studies demonstrate that the observed data have a great potential to help to understand the boundary-layer structures more deeply, improve the performance of high-resolution meteorological models, and provide useful information customized based on the user demands in the SMA.
In situ X-ray-based imaging of nano materials
Weker, Johanna Nelson; Huang, Xiaojing; Toney, Michael F.
2016-02-13
We study functional nanomaterials that are heterogeneous and understanding their behavior during synthesis and operation requires high resolution diagnostic imaging tools that can be used in situ. Over the past decade, huge progress has been made in the development of X-ray based imaging, including full field and scanning microscopy and their analogs in coherent diffractive imaging. Currently, spatial resolution of about 10 nm and time resolution of sub-seconds are achievable. For catalysis, X-ray imaging allows tracking of particle chemistry under reaction conditions. In energy storage, in situ X-ray imaging of electrode particles is providing important insight into degradation processes. Recently,more » both spatial and temporal resolutions are improving to a few nm and milliseconds and these developments will open up unprecedented opportunities.« less
High-resolution reconstruction for terahertz imaging.
Xu, Li-Min; Fan, Wen-Hui; Liu, Jia
2014-11-20
We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.
High-Resolution Intravital Microscopy
Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca
2012-01-01
Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology. Moreover, our striped-illumination approach is able to improve the resolution of any laser-scanning-microscope, including confocal microscopes, by simply choosing an appropriate detector. PMID:23251402
2007-03-01
time. This is a very powerful tool in determining fine spatial resolution , as boundary conditions are not only updated at every timestep, but the ...HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT PREDICTIONS THESIS Christopher P...11 1 HIGH RESOLUTION MESOSCALE WEATHER DATA IMPROVEMENT TO SPATIAL EFFECTS FOR DOSE-RATE CONTOUR PLOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaskuri, Anna, E-mail: anna.vaskuri@aalto.fi; Kärhä, Petri; Heikkilä, Anu
2015-10-15
Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with amore » silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.« less
Spontaneous resolution of traumatic acute subdural haematomas: A systematic review.
Vital, Roberto Bezerra; Hamamoto Filho, Pedro Tadao; Oliveira, Victor Azevedo de; Romero, Flávio Ramalho; Zanini, Marco Antônio
2016-01-01
Traumatic subdural haematomas often require emergency surgical evacuation. Spontaneous resolution of traumatic acute subdural haematomas (TASDH) is under-reported. Two patients are described with spontaneous resolution of TASDH correlating with previous reports. A discussion is presented on the clinical, pathological and radiological features of TASDH. A review of the literature was performed using PubMed (Medline), Embase, and Cochrane Library for similar cases. A total 21 articles were included, involving 27 cases well detailed of TASDH with spontaneous resolution or neurological and radiological improvement in less than 24 h. There are two main mechanisms for the spontaneous resolution of acute subdural haematomas: dilution in subarachnoid space and redistribution of the haematoma in the subdural space. The primary radiological characteristic of these lesions is a hypodense rim on the outer surface of the clot. Spontaneous resolution of TASDH is unusual. Clinical and radiological surveillance is essential for appropriate management of these patients. Copyright © 2015 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahoo, Swaroop
2011-12-01
The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio. This thesis also discusses Colorado State University's (CSU) participation in the European Space Agency (ESA)'s "Mitigation of Electromagnetic Transmission errors induced by Atmospheric WAter Vapor Effects" (METAWAVE) experiment conducted in the fall of 2008. CSU deployed a ground-based network of three Compact Microwave Radiometers for Humidity profiling (CMR-Hs) in Rome to measure atmospheric brightness temperatures. These measurements were used to retrieve high-resolution 3-D atmospheric water vapor and its variation with time. High-resolution information about water vapor can be crucial for the mitigation of wet tropospheric path delay variations that limit the quality of Interferometric Synthetic Aperture Radar satellite interferograms. Three-dimensional water vapor retrieval makes use of radiative transfer theory, algebraic tomographic reconstruction and Bayesian optimal estimation coupled with Kalman filtering. In addition, spatial interpolation (kriging) is used to retrieve water vapor density at unsampled locations. 3-D humidity retrievals from Rome data with vertical and horizontal resolution of 0.5 km are presented. The water vapor retrieved from CMR-H measurements is compared with MM5 Mesoscale Model output, as well as with measurements from the Medium Resolution Imaging Spectrometer (MERIS) aboard ESA's ENVISAT and the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA's Aqua and Terra satellites.
Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan
2017-09-01
To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.
2009-05-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).
Rabilloud, Thierry; Adessi, C.; Giraudel, A.; Lunardi, J.
2007-01-01
Summary We have carried out the separation of sparingly-soluble (membrane and nuclear) proteins by high resolution two-dimensional electrophoresis. IEF with immobilized pH gradients leads to severe quantitative losses of proteins in the resulting 2-D map, although the resolution is usually kept high. We therefore tried to improve the solubility of proteins in this technique, by using denaturing cocktails containing various detergents and chaotropes. Best results were obtained by using a denaturing solution containing urea, thiourea, and detergents (both nonionic and zwitterionic). The usefulness of thiourea-containing denaturing mixtures are shown in this article on several models including microsomal and nuclear proteins and on tubulin, a protein highly prone to aggregation. PMID:9150907
T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm.
Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver
2017-03-14
We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T 1 -weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.
T1-weighted in vivo human whole brain MRI dataset with an ultrahigh isotropic resolution of 250 μm
NASA Astrophysics Data System (ADS)
Lüsebrink, Falk; Sciarra, Alessandro; Mattern, Hendrik; Yakupov, Renat; Speck, Oliver
2017-03-01
We present an ultrahigh resolution in vivo human brain magnetic resonance imaging (MRI) dataset. It consists of T1-weighted whole brain anatomical data acquired at 7 Tesla with a nominal isotropic resolution of 250 μm of a single young healthy Caucasian subject and was recorded using prospective motion correction. The raw data amounts to approximately 1.2 TB and was acquired in eight hours total scan time. The resolution of this dataset is far beyond any previously published in vivo structural whole brain dataset. Its potential use is to build an in vivo MR brain atlas. Methods for image reconstruction and image restoration can be improved as the raw data is made available. Pre-processing and segmentation procedures can possibly be enhanced for high magnetic field strength and ultrahigh resolution data. Furthermore, potential resolution induced changes in quantitative data analysis can be assessed, e.g., cortical thickness or volumetric measures, as high quality images with an isotropic resolution of 1 and 0.5 mm of the same subject are included in the repository as well.
Examples of current radar technology and applications, chapter 5, part B
NASA Technical Reports Server (NTRS)
1975-01-01
Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochem, Warren C; Sims, Kelly M; Bright, Eddie A
In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographicallymore » scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.« less
Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics
NASA Technical Reports Server (NTRS)
Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)
2001-01-01
We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.
The use of Sentinel-2 imagery for seagrass mapping: Kalloni Gulf (Lesvos Island, Greece) case study
NASA Astrophysics Data System (ADS)
Topouzelis, Konstantinos; Charalampis Spondylidis, Spyridon; Papakonstantinou, Apostolos; Soulakellis, Nikolaos
2016-08-01
Seagrass meadows play a significant role in ecosystems by stabilizing sediment and improving water clarity, which enhances seagrass growing conditions. It is high on the priority of EU legislation to map and protect them. The traditional use of medium spatial resolution satellite imagery e.g. Landsat-8 (30m) is very useful for mapping seagrass meadows on a regional scale. However, the availability of Sentinel-2 data, the recent ESA's satellite with its payload Multi-Spectral Instrument (MSI) is expected to improve the mapping accuracy. MSI designed to improve coastline studies due to its enhanced spatial and spectral capabilities e.g. optical bands with 10m spatial resolution. The present work examines the quality of Sentinel-2 images for seagrass mapping, the ability of each band in detection and discrimination of different habitats and estimates the accuracy of seagrass mapping. After pre-processing steps, e.g. radiometric calibration and atmospheric correction, image classified into four classes. Classification classes included sub-bottom composition e.g. seagrass, soft bottom, and hard bottom. Concrete vectors describing the areas covered by seagrass extracted from the high-resolution satellite image and used as in situ measurements. The developed methodology applied in the Gulf of Kalloni, (Lesvos Island - Greece). Results showed that Sentinel-2 images can be robustly used for seagrass mapping due to their spatial resolution, band availability and radiometric accuracy.
STIC3 - Silicon Photomultiplier Timing Chip with picosecond resolution
NASA Astrophysics Data System (ADS)
Stankova, Vera; Shen, Wei; Briggl, Konrad; Chen, Huangshan; Fischer, Peter; Gil, Alejandro; Harion, Tobias; Kiworra, Volker; Munwes, Yonathan; Ritzert, Michael; Schultz-Coulon, Hans-Christian
2015-07-01
The diagnostic of pancreas and prostate cancer is a challenging task due to the background noise coming from the closer organs. The EndoToFPET-US project aims to combine the synergy between metabolic and anatomical (ultrasound) image in order to improve the precision in the tumor localization. The goal of the project is to develop a Positron Emission Tomography (PET) system that provides a time-of-flight resolution of 200 ps FWHM for improving the signal to noise ratio and further to improve the medical image quality. In order to achieve this purpose an ASIC has been designed for very high timing resolution in time-of-flight (ToF) applications. In this paper we present the ASIC performance and the first characterization measurements with the 64-channels prototype version (STiC3). Measurements are performed with LYSO scintillator crystal and a Multi Pixel Photon Counter (MPPC). Measurements with the chip show an analog-front-end stage jitter of 35 ps for the first photo-electron equivalent charge and reach 18 ps for the third photo-electron. Coincidence time resolution (CTR) of 240 ps FWHM is measured with 3.1×3.1×15 mm3 LYSO crystal and 50 μm pixel pitch MPPC. Further optimization including the Time-to-Digital Converter (TDC) non-linearity corrections and setup fine tuning are ongoing for achieving the desired CTR of 200 ps FWHM.
Very High Resolution Panoramic Photography to Improve Conventional Rangeland Monitoring 1994
USDA-ARS?s Scientific Manuscript database
Rangeland monitoring often includes repeat photographs as a basis for documentation and although photographic equipment and electronics have been evolving rapidly, basic rangeland photo monitoring methods have changed little over time. Ground based digital photography is underutilized, especially s...
High-resolution DNA melting analysis in plant research
USDA-ARS?s Scientific Manuscript database
Genetic and genomic studies provide valuable insight into the inheritance, structure, organization, and function of genes. The knowledge gained from the analysis of plant genes is beneficial to all aspects of plant research, including crop improvement. New methods and tools are continually developed...
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk
2015-01-01
Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960
High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.
Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa
2015-02-01
Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.
Improved Flux Formulations for Unsteady Low Mach Number Flows
2012-07-01
challenging problem since it requires the resolution of disparate time scales. Unsteady effects may arise from a combination of hydrodynamic effects...Many practical applications including rotorcraft flows, jets and shear layers include a combination of both acoustic and hydrodynamic effects...are computed independently as scalar formulations thus making it possible to independently tailor the dissipation for hydrodynamic and acoustic
NASA Technical Reports Server (NTRS)
Goldman, A.; Murcray, F. J.; Blatherwick, R. D.; Kosters, J. J.; Murcray, D. G.; Rinsland, C. P.; Flaud, J.-M.; Camy-Peyret, C.
1992-01-01
Very-high-resolution FWHM solar-occultation spectra are investigated with a balloon-borne interferometer using revised spectroscopic line parameters for HNO3, O3, and H2O. The O3 and H2O data are evaluated to determine their capacity for interference in the HNO3 line which is studied in the nu sub 2 band at 5.8 microns. The line parameters developed with the stratospheric data are compared to data based on a HITRAN compilation as well as laboratory spectra with a 0.002/cm resolution. The line list is calculated and shown to include J and Ka transitions which improve the line parameters for HNO3 by accounting for the weaker absorption features in the stratospheric spectra. The stratospheric HNO3 profile developed analytically is compared to those based on reported measurements, and the one developed with the stratospheric solar spectra is found to be consistent with the measurements and confirm inherent measurement biases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stinnett, Jacob; Sullivan, Clair J.; Xiong, Hao
Low-resolution isotope identifiers are widely deployed for nuclear security purposes, but these detectors currently demonstrate problems in making correct identifications in many typical usage scenarios. While there are many hardware alternatives and improvements that can be made, performance on existing low resolution isotope identifiers should be able to be improved by developing new identification algorithms. We have developed a wavelet-based peak extraction algorithm and an implementation of a Bayesian classifier for automated peak-based identification. The peak extraction algorithm has been extended to compute uncertainties in the peak area calculations. To build empirical joint probability distributions of the peak areas andmore » uncertainties, a large set of spectra were simulated in MCNP6 and processed with the wavelet-based feature extraction algorithm. Kernel density estimation was then used to create a new component of the likelihood function in the Bayesian classifier. Furthermore, identification performance is demonstrated on a variety of real low-resolution spectra, including Category I quantities of special nuclear material.« less
New concepts for scintillator/HgI[sub 2] gamma ray spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.J.; Iwanczyk, J.S.; Patt, B.E.
The construction of a high energy resolution gamma ray detector consisting of a scintillator/mercuric iodide photodetector combination has been investigated. Several HgI[sub 2] photodetectors have been fabricated and tested with standard NIM electronics. The energy resolution of a scintillator/HgI[sub 2] pair was found to be 4.75%, full width at half maximum, for 662 keV [sup 137]Cs gamma ray photons. Of five detectors fabricated with the new technique, all produced resolutions better than 5.6% FWHM. This technology makes it possible to reliably produce high quality HgI[sub 2] photodetectors. New design concepts for the HgI[sub 2] photocell, including the transparent entrance electrode,more » detector geometry, and detector packaging, are described in the paper. Advantages of gamma ray spectrometers based upon crystal scintillators optically coupled to HgI[sub 2] photodetectors (in contrast to coupling the scintillators to the more conventional light sensors, i.e., photomultiplier tubes (PMTs)) include greater ruggedness, improved energy resolution, markedly smaller size and weight, reduced power, and insensitivity to magnetic field perturbations.« less
NASA Astrophysics Data System (ADS)
Ridder, Nina; de Vries, Hylke; Drijfhout, Sybren; van den Brink, Henk; van Meijgaard, Erik; de Vries, Hans
2018-02-01
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter ( α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjessum, K.; Stegeman, J.J.
1979-10-15
Addition of primary organic amines, such as n-butylamine, to the mobile phase altered the capacity factors and selectivity of benzo(a)pyrene metabolites obtained with reverse-phase high pressure liquid chromatography on an ODS column. Separation of benzo(a)pyrene phenols in particular was improved with 8 of the 10 available metabolites resolved, including those known to be biologically produced. The method offers sufficiently improved resolution or convenience that it should prove useful in comparative studies of metabolism of benzo(a)-pyrene and other polynuclear aromatic hydrocarbons. Applying the method to analysis of benzo(a)pyrene metabolites produced in vitro by hepatic microsomes from the marine fish Stenotomus versicolormore » indicated the principal phenolic derivatives produced by this fish were 1-hydroxy-, 3-hydroxy-, 7-hydroxy-, and 9-hydroxybenzo(a)pyrene.« less
Improved line parameters for ozone bands in the 10-micron spectral region
NASA Technical Reports Server (NTRS)
Flaud, Jean-Marie; Camy-Peyret, Claude; Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, Malathy V.
1990-01-01
A complete update of spectroscopic line parameters for the 10-micron bands of ozone is reported. The listing contains calculated positions, intensities, lower state energies, and air- and self-broadened halfwidths of more than 53,000 lines. The results have been generated using improved spectroscopic parameters obtained in a number of recent high resolution laboratory studies. A total of eighteen bands of (O-16)3 (sixteen hot bands plus the nu(1) and nu(3) fundamentals) are included along with the nu(1) and nu(3) fundamentals of both (O-16)(O-16)(O-18) and (O-16)(O-18)(O-16). As shown by comparisons of line-by-line simulations with 0.003/cm resolution balloon-borne stratospheric solar spectra, the new parameters greatly improve the accuracy of atmospheric calculations in the 10-micron region, especially for the isotopic (O-16)(O-16)(O-18) and (O-16)(O-18)(O-16) lines.
High-resolution method for evolving complex interface networks
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-04-01
In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.
Multiview boosting digital pathology analysis of prostate cancer.
Kwak, Jin Tae; Hewitt, Stephen M
2017-04-01
Various digital pathology tools have been developed to aid in analyzing tissues and improving cancer pathology. The multi-resolution nature of cancer pathology, however, has not been fully analyzed and utilized. Here, we develop an automated, cooperative, and multi-resolution method for improving prostate cancer diagnosis. Digitized tissue specimen images are obtained from 5 tissue microarrays (TMAs). The TMAs include 70 benign and 135 cancer samples (TMA1), 74 benign and 89 cancer samples (TMA2), 70 benign and 115 cancer samples (TMA3), 79 benign and 82 cancer samples (TMA4), and 72 benign and 86 cancer samples (TMA5). The tissue specimen images are segmented using intensity- and texture-based features. Using the segmentation results, a number of morphological features from lumens and epithelial nuclei are computed to characterize tissues at different resolutions. Applying a multiview boosting algorithm, tissue characteristics, obtained from differing resolutions, are cooperatively combined to achieve accurate cancer detection. In segmenting prostate tissues, the multiview boosting method achieved≥ 0.97 AUC using TMA1. For detecting cancers, the multiview boosting method achieved an AUC of 0.98 (95% CI: 0.97-0.99) as trained on TMA2 and tested on TMA3, TMA4, and TMA5. The proposed method was superior to single-view approaches, utilizing features from a single resolution or merging features from all the resolutions. Moreover, the performance of the proposed method was insensitive to the choice of the training dataset. Trained on TMA3, TMA4, and TMA5, the proposed method obtained an AUC of 0.97 (95% CI: 0.96-0.98), 0.98 (95% CI: 0.96-0.99), and 0.97 (95% CI: 0.96-0.98), respectively. The multiview boosting method is capable of integrating information from multiple resolutions in an effective and efficient fashion and identifying cancers with high accuracy. The multiview boosting method holds a great potential for improving digital pathology tools and research. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Gul, M. Shahzeb Khan; Gunturk, Bahadir K.
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.
Gul, M Shahzeb Khan; Gunturk, Bahadir K
2018-05-01
Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.
Micromachined Chip Scale Thermal Sensor for Thermal Imaging.
Shekhawat, Gajendra S; Ramachandran, Srinivasan; Jiryaei Sharahi, Hossein; Sarkar, Souravi; Hujsak, Karl; Li, Yuan; Hagglund, Karl; Kim, Seonghwan; Aden, Gary; Chand, Ami; Dravid, Vinayak P
2018-02-27
The lateral resolution of scanning thermal microscopy (SThM) has hitherto never approached that of mainstream atomic force microscopy, mainly due to poor performance of the thermal sensor. Herein, we report a nanomechanical system-based thermal sensor (thermocouple) that enables high lateral resolution that is often required in nanoscale thermal characterization in a wide range of applications. This thermocouple-based probe technology delivers excellent lateral resolution (∼20 nm), extended high-temperature measurements >700 °C without cantilever bending, and thermal sensitivity (∼0.04 °C). The origin of significantly improved figures-of-merit lies in the probe design that consists of a hollow silicon tip integrated with a vertically oriented thermocouple sensor at the apex (low thermal mass) which interacts with the sample through a metallic nanowire (50 nm diameter), thereby achieving high lateral resolution. The efficacy of this approach to SThM is demonstrated by imaging embedded metallic nanostructures in silica core-shell, metal nanostructures coated with polymer films, and metal-polymer interconnect structures. The nanoscale pitch and extremely small thermal mass of the probe promise significant improvements over existing methods and wide range of applications in several fields including semiconductor industry, biomedical imaging, and data storage.
Optimization of contrast resolution by genetic algorithm in ultrasound tissue harmonic imaging.
Ménigot, Sébastien; Girault, Jean-Marc
2016-09-01
The development of ultrasound imaging techniques such as pulse inversion has improved tissue harmonic imaging. Nevertheless, no recommendation has been made to date for the design of the waveform transmitted through the medium being explored. Our aim was therefore to find automatically the optimal "imaging" wave which maximized the contrast resolution without a priori information. To overcome assumption regarding the waveform, a genetic algorithm investigated the medium thanks to the transmission of stochastic "explorer" waves. Moreover, these stochastic signals could be constrained by the type of generator available (bipolar or arbitrary). To implement it, we changed the current pulse inversion imaging system by including feedback. Thus the method optimized the contrast resolution by adaptively selecting the samples of the excitation. In simulation, we benchmarked the contrast effectiveness of the best found transmitted stochastic commands and the usual fixed-frequency command. The optimization method converged quickly after around 300 iterations in the same optimal area. These results were confirmed experimentally. In the experimental case, the contrast resolution measured on a radiofrequency line could be improved by 6% with a bipolar generator and it could still increase by 15% with an arbitrary waveform generator. Copyright © 2016 Elsevier B.V. All rights reserved.
Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko
2016-01-01
Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327
Poole, Dana S; Plenge, Esben; Poot, Dirk H J; Lakke, Egbert A J F; Niessen, Wiro J; Meijering, Erik; van der Weerd, Louise
2014-07-01
The visualization of activity in mouse brain using inversion recovery spin echo (IR-SE) manganese-enhanced MRI (MEMRI) provides unique contrast, but suffers from poor resolution in the slice-encoding direction. Super-resolution reconstruction (SRR) is a resolution-enhancing post-processing technique in which multiple low-resolution slice stacks are combined into a single volume of high isotropic resolution using computational methods. In this study, we investigated, first, whether SRR can improve the three-dimensional resolution of IR-SE MEMRI in the slice selection direction, whilst maintaining or improving the contrast-to-noise ratio of the two-dimensional slice stacks. Second, the contrast-to-noise ratio of SRR IR-SE MEMRI was compared with a conventional three-dimensional gradient echo (GE) acquisition. Quantitative experiments were performed on a phantom containing compartments of various manganese concentrations. The results showed that, with comparable scan times, the signal-to-noise ratio of three-dimensional GE acquisition is higher than that of SRR IR-SE MEMRI. However, the contrast-to-noise ratio between different compartments can be superior with SRR IR-SE MEMRI, depending on the chosen inversion time. In vivo experiments were performed in mice receiving manganese using an implanted osmotic pump. The results showed that SRR works well as a resolution-enhancing technique in IR-SE MEMRI experiments. In addition, the SRR image also shows a number of brain structures that are more clearly discernible from the surrounding tissues than in three-dimensional GE acquisition, including a number of nuclei with specific higher brain functions, such as memory, stress, anxiety and reward behavior. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, K.; Wilson, R.J.; Hemler, R.S.
1999-11-15
The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less
Attention Modifies Spatial Resolution According to Task Demands.
Barbot, Antoine; Carrasco, Marisa
2017-03-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands.
Attention Modifies Spatial Resolution According to Task Demands
Barbot, Antoine; Carrasco, Marisa
2017-01-01
How does visual attention affect spatial resolution? In texture-segmentation tasks, exogenous (involuntary) attention automatically increases resolution at the attended location, which improves performance where resolution is too low (at the periphery) but impairs performance where resolution is already too high (at central locations). Conversely, endogenous (voluntary) attention improves performance at all eccentricities, which suggests a more flexible mechanism. Here, using selective adaptation to spatial frequency, we investigated the mechanism by which endogenous attention benefits performance in resolution tasks. Participants detected a texture target that could appear at several eccentricities. Adapting to high or low spatial frequencies selectively affected performance in a manner consistent with changes in resolution. Moreover, adapting to high, but not low, frequencies mitigated the attentional benefit at central locations where resolution was too high; this shows that attention can improve performance by decreasing resolution. Altogether, our results indicate that endogenous attention benefits performance by modulating the contribution of high-frequency information in order to flexibly adjust spatial resolution according to task demands. PMID:28118103
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface.
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-06-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging.
Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.
2016-03-01
Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.
Wang, Yan; Li, Jingwen; Sun, Bing; Yang, Jian
2016-01-01
Azimuth resolution of airborne stripmap synthetic aperture radar (SAR) is restricted by the azimuth antenna size. Conventionally, a higher azimuth resolution should be achieved by employing alternate modes that steer the beam in azimuth to enlarge the synthetic antenna aperture. However, if a data set of a certain region, consisting of multiple tracks of airborne stripmap SAR data, is available, the azimuth resolution of specific small region of interest (ROI) can be conveniently improved by a novel azimuth super-resolution method as introduced by this paper. The proposed azimuth super-resolution method synthesize the azimuth bandwidth of the data selected from multiple discontinuous tracks and contributes to a magnifier-like function with which the ROI can be further zoomed in with a higher azimuth resolution than that of the original stripmap images. Detailed derivation of the azimuth super-resolution method, including the steps of two-dimensional dechirping, residual video phase (RVP) removal, data stitching and data correction, is provided. The restrictions of the proposed method are also discussed. Lastly, the presented approach is evaluated via both the single- and multi-target computer simulations. PMID:27304959
An Innovative Pharmaceutical Care Practical Course
ERIC Educational Resources Information Center
Bulatova, N. R.; Aburuz, S.; Yousef, A. M.
2007-01-01
The innovative practical course was developed to improve the students' ability to acquire pharmaceutical care skills. The primary components of the course were in-school training using small group discussions and hospital experience including identification, analysis, prevention and resolution of drug-therapy problems, patient counseling on their…
MPAS-Ocean NESAP Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Mark Roger; Arndt, William; Keen, Noel
NESAP performance improvements on MPAS-Ocean have resulted in a 5% to 7% speed-up on each of the examined systems including Cori-KNL, Cori-Haswell, and Edison. These tests were configured to emulate a production workload by using 128 nodes and a high-resolution ocean domain. Overall, the gap between standard and many-core architecture performance has been narrowed, but Cori-KNL remains considerably under-performing relative to Edison. NESAP code alterations affected 600 lines of code, and most of these improvements will benefit other MPAS codes (sea ice, land ice) that are also components within ACME. Modifications are fully tested within MPAS. Testing in ACME acrossmore » many platforms is underway, and must be completed before the code is merged. In addition, a ten-year production ACME global simulation was conducted on Cori-KNL in late 2016 with the pre-NESAP code in order to test readiness and configurations for scientific studies. Next steps include assessing performance across a range of nodes, threads per node, and ocean resolutions on Cori-KNL.« less
Unmixing AVHRR Imagery to Assess Clearcuts and Forest Regrowth in Oregon
NASA Technical Reports Server (NTRS)
Hlavka, Christine A.; Spanner, Michael A.
1995-01-01
Advanced Very High Resolution Radiometer imagery provides frequent and low-cost coverage of the earth, but its coarse spatial resolution (approx. 1.1 km by 1.1 km) does not lend itself to standard techniques of automated categorization of land cover classes because the pixels are generally mixed; that is, the extent of the pixel includes several land use/cover classes. Unmixing procedures were developed to extract land use/cover class signatures from mixed pixels, using Landsat Thematic Mapper data as a source for the training set, and to estimate fractions of class coverage within pixels. Application of these unmixing procedures to mapping forest clearcuts and regrowth in Oregon indicated that unmixing is a promising approach for mapping major trends in land cover with AVHRR bands 1 and 2. Including thermal bands by unmixing AVHRR bands 1-4 did not lead to significant improvements in accuracy, but experiments with unmixing these four bands did indicate that use of weighted least squares techniques might lead to improvements in other applications of unmixing.
Haiti: Two Decades of Intervention and Very Little to Show
2012-05-17
the period 1994 to 2010, from Operation Uphold Democracy to the Leogane earthquake, with the hope that the research would help improve US policy or...while the guidance given to JTF-180 throughout the planning process provided the strategic aims. UN Security Council Resolutions beginning with...the intervention. If the objectives of the intervention did not include an attempt to improve those conditions in Haiti, then the objectives were
NASA Astrophysics Data System (ADS)
Farrell, S. L.; Kurtz, N. T.; Richter-Menge, J.; Harbeck, J. P.; Onana, V.
2012-12-01
Satellite-derived estimates of ice thickness and observations of ice extent over the last decade point to a downward trend in the basin-scale ice volume of the Arctic Ocean. This loss has broad-ranging impacts on the regional climate and ecosystems, as well as implications for regional infrastructure, marine navigation, national security, and resource exploration. New observational datasets at small spatial and temporal scales are now required to improve our understanding of physical processes occurring within the ice pack and advance parameterizations in the next generation of numerical sea-ice models. High-resolution airborne and satellite observations of the sea ice are now available at meter-scale resolution or better that provide new details on the properties and morphology of the ice pack across basin scales. For example the NASA IceBridge airborne campaign routinely surveys the sea ice of the Arctic and Southern Oceans with an advanced sensor suite including laser and radar altimeters and digital cameras that together provide high-resolution measurements of sea ice freeboard, thickness, snow depth and lead distribution. Here we present statistical analyses of the ice pack primarily derived from the following IceBridge instruments: the Digital Mapping System (DMS), a nadir-looking, high-resolution digital camera; the Airborne Topographic Mapper, a scanning lidar; and the University of Kansas snow radar, a novel instrument designed to estimate snow depth on sea ice. Together these instruments provide data from which a wide range of sea ice properties may be derived. We provide statistics on lead distribution and spacing, lead width and area, floe size and distance between floes, as well as ridge height, frequency and distribution. The goals of this study are to (i) identify unique statistics that can be used to describe the characteristics of specific ice regions, for example first-year/multi-year ice, diffuse ice edge/consolidated ice pack, and convergent/divergent ice zones, (ii) provide datasets that support enhanced parameterizations in numerical models as well as model initialization and validation, (iii) parameters of interest to Arctic stakeholders for marine navigation and ice engineering studies, and (iv) statistics that support algorithm development for the next-generation of airborne and satellite altimeters, including NASA's ICESat-2 mission. We describe the potential contribution our results can make towards the improvement of coupled ice-ocean numerical models, and discuss how data synthesis and integration with high-resolution models may improve our understanding of sea ice variability and our capabilities in predicting the future state of the ice pack.
LANDSAT data for coastal zone management. [New Jersey
NASA Technical Reports Server (NTRS)
Mckenzie, S.
1981-01-01
The lack of adequate, current data on land and water surface conditions in New Jersey led to the search for better data collections and analysis techniques. Four-channel MSS data of Cape May County and access to the OSER computer interpretation system were provided by NASA. The spectral resolution of the data was tested and a surface cover map was produced by going through the steps of supervised classification. Topics covered include classification; change detection and improvement of spectral and spatial resolution; merging LANDSAT and map data; and potential applications for New Jersey.
Portable non-invasive brain-computer interface: challenges and opportunities of optical modalities
NASA Astrophysics Data System (ADS)
Scholl, Clara A.; Hendrickson, Scott M.; Swett, Bruce A.; Fitch, Michael J.; Walter, Erich C.; McLoughlin, Michael P.; Chevillet, Mark A.; Blodgett, David W.; Hwang, Grace M.
2017-05-01
The development of portable non-invasive brain computer interface technologies with higher spatio-temporal resolution has been motivated by the tremendous success seen with implanted devices. This talk will discuss efforts to overcome several major obstacles to viability including approaches that promise to improve spatial and temporal resolution. Optical approaches in particular will be highlighted and the potential benefits of both Blood-Oxygen Level Dependent (BOLD) and Fast Optical Signal (FOS) will be discussed. Early-stage research into the correlations between neural activity and FOS will be explored.
Resolution recovery for Compton camera using origin ensemble algorithm.
Andreyev, A; Celler, A; Ozsahin, I; Sitek, A
2016-08-01
Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. To validate the proposed algorithm we used Monte Carlo simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2-3 orders of magnitude per iteration. The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.
NASA Astrophysics Data System (ADS)
Zhang, Hua; He, Zhen-Hua; Li, Ya-Lin; Li, Rui; He, Guamg-Ming; Li, Zhong
2017-06-01
Multi-wave exploration is an effective means for improving precision in the exploration and development of complex oil and gas reservoirs that are dense and have low permeability. However, converted wave data is characterized by a low signal-to-noise ratio and low resolution, because the conventional deconvolution technology is easily affected by the frequency range limits, and there is limited scope for improving its resolution. The spectral inversion techniques is used to identify λ/8 thin layers and its breakthrough regarding band range limits has greatly improved the seismic resolution. The difficulty associated with this technology is how to use the stable inversion algorithm to obtain a high-precision reflection coefficient, and then to use this reflection coefficient to reconstruct broadband data for processing. In this paper, we focus on how to improve the vertical resolution of the converted PS-wave for multi-wave data processing. Based on previous research, we propose a least squares inversion algorithm with a total variation constraint, in which we uses the total variance as a priori information to solve under-determined problems, thereby improving the accuracy and stability of the inversion. Here, we simulate the Gaussian fitting amplitude spectrum to obtain broadband wavelet data, which we then process to obtain a higher resolution converted wave. We successfully apply the proposed inversion technology in the processing of high-resolution data from the Penglai region to obtain higher resolution converted wave data, which we then verify in a theoretical test. Improving the resolution of converted PS-wave data will provide more accurate data for subsequent velocity inversion and the extraction of reservoir reflection information.
Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning
NASA Astrophysics Data System (ADS)
Li, Jun-Bao; Liu, Jing; Pan, Jeng-Shyang; Yao, Hongxun
2017-06-01
Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.
Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering
NASA Astrophysics Data System (ADS)
John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard
2018-05-01
The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.
Mapping and detecting bark beetle-caused tree mortality in the western United States
NASA Astrophysics Data System (ADS)
Meddens, Arjan J. H.
Recently, insect outbreaks across North America have dramatically increased and the forest area affected by bark beetles is similar to that affected by fire. Remote sensing offers the potential to detect insect outbreaks with high accuracy. Chapter one involved detection of insect-caused tree mortality on the tree level for a 90km2 area in northcentral Colorado. Classes of interest included green trees, multiple stages of post-insect attack tree mortality including dead trees with red needles ("red-attack") and dead trees without needles ("gray-attack"), and non-forest. The results illustrated that classification of an image with a spatial resolution similar to the area of a tree crown outperformed that from finer and coarser resolution imagery for mapping tree mortality and non-forest classes. I also demonstrated that multispectral imagery could be used to separate multiple postoutbreak attack stages (i.e., red-attack and gray-attack) from other classes in the image. In Chapter 2, I compared and improved methods for detecting bark beetle-caused tree mortality using medium-resolution satellite data. I found that overall classification accuracy was similar between single-date and multi-date classification methods. I developed regression models to predict percent red attack within a 30-m grid cell and these models explained >75% of the variance using three Landsat spectral explanatory variables. Results of the final product showed that approximately 24% of the forest within the Landsat scene was comprised of tree mortality caused by bark beetles. In Chapter 3, I developed a gridded data set with 1-km2 resolution using aerial survey data and improved estimates of tree mortality across the western US and British Columbia. In the US, I also produced an upper estimate by forcing the mortality area to match that from high-resolution imagery in Idaho, Colorado, and New Mexico. Cumulative mortality area from all bark beetles was 5.46 Mha in British Columbia in 2001-2010 and 0.47-5.37 Mha (lower and upper estimate) in the western conterminous US during 1997-2010. Improved methods for detection and mapping of insect outbreak areas will lead to improved assessments of the effects of these forest disturbances on the economy, carbon cycle (and feedback to climate change), fuel loads, hydrology and forest ecology.
High-resolution ophthalmic imaging system
Olivier, Scot S.; Carrano, Carmen J.
2007-12-04
A system for providing an improved resolution retina image comprising an imaging camera for capturing a retina image and a computer system operatively connected to the imaging camera, the computer producing short exposures of the retina image and providing speckle processing of the short exposures to provide the improved resolution retina image. The system comprises the steps of capturing a retina image, producing short exposures of the retina image, and speckle processing the short exposures of the retina image to provide the improved resolution retina image.
Improved Flux Formulations for Unsteady Low Mach Number Flows
2012-06-01
it requires the resolution of disparate time scales. Unsteady effects may arise from a combination of hydrodynamic effects in which pressure...including rotorcraft flows, jets and shear layers include a combination of both acoustic and hydrodynamic effects. Furthermore these effects may be...preconditioning parameter used for time scaling also affects the dissipation for the spatial flux, hydrodynamic unsteady effects (such as vortex propagation
Nested high-resolution large-eddy simulations in WRF to support wind power
NASA Astrophysics Data System (ADS)
Mirocha, J.; Kirkil, G.; Kosovic, B.; Lundquist, J. K.
2009-12-01
The WRF model’s grid nesting capability provides a potentially powerful framework for simulating flow over a wide range of scales. One such application is computation of realistic inflow boundary conditions for large eddy simulations (LES) by nesting LES domains within mesoscale domains. While nesting has been widely and successfully applied at GCM to mesoscale resolutions, the WRF model’s nesting behavior at the high-resolution (Δx < 1000m) end of the spectrum is less well understood. Nesting LES within msoscale domains can significantly improve turbulent flow prediction at the scale of a wind park, providing a basis for superior site characterization, or for improved simulation of turbulent inflows encountered by turbines. We investigate WRF’s grid nesting capability at high mesh resolutions using nested mesoscale and large-eddy simulations. We examine the spatial scales required for flow structures to equilibrate to the finer mesh as flow enters a nest, and how the process depends on several parameters, including grid resolution, turbulence subfilter stress models, relaxation zones at nest interfaces, flow velocities, surface roughnesses, terrain complexity and atmospheric stability. Guidance on appropriate domain sizes and turbulence models for LES in light of these results is provided This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-ABS-416482
Van Steenkiste, Gwendolyn; Jeurissen, Ben; Veraart, Jelle; den Dekker, Arnold J; Parizel, Paul M; Poot, Dirk H J; Sijbers, Jan
2016-01-01
Diffusion MRI is hampered by long acquisition times, low spatial resolution, and a low signal-to-noise ratio. Recently, methods have been proposed to improve the trade-off between spatial resolution, signal-to-noise ratio, and acquisition time of diffusion-weighted images via super-resolution reconstruction (SRR) techniques. However, during the reconstruction, these SRR methods neglect the q-space relation between the different diffusion-weighted images. An SRR method that includes a diffusion model and directly reconstructs high resolution diffusion parameters from a set of low resolution diffusion-weighted images was proposed. Our method allows an arbitrary combination of diffusion gradient directions and slice orientations for the low resolution diffusion-weighted images, optimally samples the q- and k-space, and performs motion correction with b-matrix rotation. Experiments with synthetic data and in vivo human brain data show an increase of spatial resolution of the diffusion parameters, while preserving a high signal-to-noise ratio and low scan time. Moreover, the proposed SRR method outperforms the previous methods in terms of the root-mean-square error. The proposed SRR method substantially increases the spatial resolution of MRI that can be obtained in a clinically feasible scan time. © 2015 Wiley Periodicals, Inc.
Trans-dimensional joint inversion of seabed scattering and reflection data.
Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2013-03-01
This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.
Investigation to improve the resolution and range of a light imaging system for very thick tissues
NASA Astrophysics Data System (ADS)
Wist, Abund O.; Moon, Peter; Herr, Steven L.; Fatouros, Panos P.
1995-05-01
A high resolution light imaging system has been developed utilizing an HeNe (628 nm, 32 mW) and a receiver with post collimation mounted on an x, y table to scan the object. The image can be either recorded on a film or stored in a computer for display on a terminal. Tests show that the system in the regular mode is capable of detecting the spine and soft tissues in anesthetized mice, and of transilluminating fully an adult skull bone with a resolution for details better than one third mm. In teeth, all regular carious lesions, including incipient lesions larger than one third of a mm, can be seen in front or in the back of the tooth, none of which could be detected by dental x-ray systems. Applying a new high resolution mode, the resolution can be increased in teeth to less than 0.1 mm. Some difficulty still exists in detecting small lesions on occlusal or approximal surfaces.
Using High Resolution Design Spaces for Aerodynamic Shape Optimization Under Uncertainty
NASA Technical Reports Server (NTRS)
Li, Wu; Padula, Sharon
2004-01-01
This paper explains why high resolution design spaces encourage traditional airfoil optimization algorithms to generate noisy shape modifications, which lead to inaccurate linear predictions of aerodynamic coefficients and potential failure of descent methods. By using auxiliary drag constraints for a simultaneous drag reduction at all design points and the least shape distortion to achieve the targeted drag reduction, an improved algorithm generates relatively smooth optimal airfoils with no severe off-design performance degradation over a range of flight conditions, in high resolution design spaces parameterized by cubic B-spline functions. Simulation results using FUN2D in Euler flows are included to show the capability of the robust aerodynamic shape optimization method over a range of flight conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
On the resolution of plenoptic PIV
NASA Astrophysics Data System (ADS)
Deem, Eric A.; Zhang, Yang; Cattafesta, Louis N.; Fahringer, Timothy W.; Thurow, Brian S.
2016-08-01
Plenoptic PIV offers a simple, single camera solution for volumetric velocity measurements of fluid flow. However, due to the novel manner in which the particle images are acquired and processed, few references exist to aid in determining the resolution limits of the measurements. This manuscript provides a framework for determining the spatial resolution of plenoptic PIV based on camera design and experimental parameters. This information can then be used to determine the smallest length scales of flows that are observable by plenoptic PIV, the dynamic range of plenoptic PIV, and the corresponding uncertainty in plenoptic PIV measurements. A simplified plenoptic camera is illustrated to provide the reader with a working knowledge of the method in which the light field is recorded. Then, operational considerations are addressed. This includes a derivation of the depth resolution in terms of the design parameters of the camera. Simulated volume reconstructions are presented to validate the derived limits. It is found that, while determining the lateral resolution is relatively straightforward, many factors affect the resolution along the optical axis. These factors are addressed and suggestions are proposed for improving performance.
Sub-100 nm resolution microscopy based on proximity projection grating scheme
Hu, Feng; Somekh, Michael G.; Albutt, Darren J.; Webb, Kevin; Moradi, Emilia; See, Chung W.
2015-01-01
Structured illumination microscopy (SIM) has been widely used in life science imaging applications. The maximum resolution improvement of SIM, compared to conventional bright field system is a factor of 2. Here we present an approach to structured illumination microscopy using the proximity projection grating scheme (PPGS), which has the ability to further enhance the SIM resolution without invoking any nonlinearity response from the sample. With the PPGS-based SIM, sub-100 nm resolution has been obtained experimentally, and results corresponding to 2.4 times resolution improvement are presented. Furthermore, it will be shown that an improvement of greater than 3 times can be achieved. PMID:25715953
NASA Astrophysics Data System (ADS)
Stackhouse, P. W., Jr.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.; Gupta, S. K.
2016-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces, validates and analyzes shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. The current release 3.0/3.1 consists of 1x1 degree radiative fluxes (available at gewex-srb.larc.nasa.gov) and is produced using the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This ISCCP DX product is subsampled to 30 km. ISCCP is currently recalibrating and reprocessing their entire data series, to be released as the H product series, with its highest resolution at 10km pixel resolution. The nine-fold increase in number of pixels will allow SRB to produce a higher resolution gridded product (e.g. 0.5 degree or higher), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice maps. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data (for at least 5 years, 2005-2009), various other improved input data sets and incorporation of many additional internal SRB model improvements. We assess the radiative fluxes from new SRB products and contrast these at various resolutions. All these fluxes are compared to both surface measurements and to CERES SYN1Deg and EBAF data products for assessment of the effect of improvements. The SRB data produced will be released as part of the Release 4.0 Integrated Product that shares key input and output quantities with other GEWEX global products providing estimates of the Earth's global water and energy cycle (i.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Daniel J
2008-01-01
Many attempts to observe changes in terrestrial systems over time would be significantly enhanced if it were possible to improve the accuracy of classifications of low-resolution historic satellite data. In an effort to examine improving the accuracy of historic satellite image classification by combining satellite and air photo data, two experiments were undertaken in which low-resolution multispectral data and high-resolution panchromatic data were combined and then classified using the ECHO spectral-spatial image classification algorithm and the Maximum Likelihood technique. The multispectral data consisted of 6 multispectral channels (30-meter pixel resolution) from Landsat 7. These data were augmented with panchromatic datamore » (15m pixel resolution) from Landsat 7 in the first experiment, and with a mosaic of digital aerial photography (1m pixel resolution) in the second. The addition of the Landsat 7 panchromatic data provided a significant improvement in the accuracy of classifications made using the ECHO algorithm. Although the inclusion of aerial photography provided an improvement in accuracy, this improvement was only statistically significant at a 40-60% level. These results suggest that once error levels associated with combining aerial photography and multispectral satellite data are reduced, this approach has the potential to significantly enhance the precision and accuracy of classifications made using historic remotely sensed data, as a way to extend the time range of efforts to track temporal changes in terrestrial systems.« less
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-03-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shaanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modeled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modeled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI), elevation and aspect have small and additive effects on improving the spatial scaling between these two resolutions.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Chen, X.; Ju, W.
2013-07-01
Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling between these two resolutions.
Ma, Hsiang-Yang; Lin, Ying-Hsiu; Wang, Chiao-Yin; Chen, Chiung-Nien; Ho, Ming-Chih; Tsui, Po-Hsiang
2016-08-01
Ultrasound Nakagami imaging is an attractive method for visualizing changes in envelope statistics. Window-modulated compounding (WMC) Nakagami imaging was reported to improve image smoothness. The sliding window technique is typically used for constructing ultrasound parametric and Nakagami images. Using a large window overlap ratio may improve the WMC Nakagami image resolution but reduces computational efficiency. Therefore, the objectives of this study include: (i) exploring the effects of the window overlap ratio on the resolution and smoothness of WMC Nakagami images; (ii) proposing a fast algorithm that is based on the convolution operator (FACO) to accelerate WMC Nakagami imaging. Computer simulations and preliminary clinical tests on liver fibrosis samples (n=48) were performed to validate the FACO-based WMC Nakagami imaging. The results demonstrated that the width of the autocorrelation function and the parameter distribution of the WMC Nakagami image reduce with the increase in the window overlap ratio. One-pixel shifting (i.e., sliding the window on the image data in steps of one pixel for parametric imaging) as the maximum overlap ratio significantly improves the WMC Nakagami image quality. Concurrently, the proposed FACO method combined with a computational platform that optimizes the matrix computation can accelerate WMC Nakagami imaging, allowing the detection of liver fibrosis-induced changes in envelope statistics. FACO-accelerated WMC Nakagami imaging is a new-generation Nakagami imaging technique with an improved image quality and fast computation. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, C. Shan; Hayworth, Kenneth J.; Lu, Zhiyuan
Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 ?m 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processesmore » and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.« less
Measurements on the development of cascades in a tungsten-scintillator ionization spectrometer
NASA Technical Reports Server (NTRS)
Cheshire, D. L.; Huggett, R. W.; Johnson, D. P.; Jones, W. V.; Rountree, S. P.; Schmidt, W. K. H.; Kurz, R. J.; Bowen, T.; Delise, D. A.; Krider, E. P.
1975-01-01
The response of a tungsten-scintillator ionization spectrometer to accelerated particle beams has been investigated. Results obtained from exposure of the approx. 1000 g/sq cm apparatus to 5, 10, and 15 GeV/c electrons and pions as well as to 2.1 GeV/nucleon C-12 and O-16 ions are presented. These results include cascade-development curves, fractions of the primary energy measured by the spectrometer, and resolutions of the apparatus for measuring the primary energies. For 15 GeV/c electrons, an average of about 82% of the incident energy is measured by the apparatus with resolution (normal standard deviation) of about 6%. For 15 GeV/c pions, an average of about 65% of the incident energy is measured with resolution of about 18%. The energy resolution improves with increasing energy and with increasing depth of the spectrometer.
Enhanced FIB-SEM systems for large-volume 3D imaging.
Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F
2017-05-13
Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 µm 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.
Improving Spectroscopic Performance of a Coplanar-Anode High-Pressure Xenon Gamma-Ray Spectrometer
NASA Astrophysics Data System (ADS)
Kiff, Scott Douglas; He, Zhong; Tepper, Gary C.
2007-08-01
High-pressure xenon (HPXe) gas is a desirable radiation detection medium for homeland security applications because of its good inherent room-temperature energy resolution, potential for large, efficient devices, and stability over a broad temperature range. Past work in HPXe has produced large-diameter gridded ionization chambers with energy resolution at 662 keV between 3.5 and 4% FWHM. However, one major limitation of these detectors is resolution degradation due to Frisch grid microphonics. A coplanar-anode HPXe detector has been developed as an alternative to gridded chambers. An investigation of this detector's energy resolution is reported in this submission. A simulation package is used to investigate the contributions of important physical processes to the measured photopeak broadening. Experimental data is presented for pure Xe and Xe + 0.2%H2 mixtures, including an analysis of interaction location effects on the energy spectrum.
High-resolution ultrasonic imaging of the posterior segment.
Coleman, D Jackson; Silverman, Ronald H; Chabi, Almira; Rondeau, Mark J; Shung, K Kirk; Cannata, Jon; Lincoff, Harvey
2004-07-01
Conventional ophthalmic ultrasonography is performed using 10-megahertz (MHz) transducers. Our aim was to explore the use of higher frequency ultrasound to provide improved resolution of the posterior pole. Prospective case series. One normal subject and 5 subjects with pathologies affecting the posterior coats, including nevii, small melanomas, and macular hole. We modeled the frequency-dependent attenuation of ultrasound across the eye to develop an understanding of the range of frequencies that might be practically applied for imaging of the posterior pole. We compared images of the posterior coats made at 10, 15, and 20 MHz, and 20-MHz ultrasound images of pathologies with 10-MHz ultrasound and optical coherence tomography (OCT). Ability to resolve normal and pathologic structures affecting posterior coats of the eye. Modeling showed that frequencies of 20 to 25 MHz might be used for posterior pole imaging. Twenty-megahertz images allowed differentiation of the retina, choroid, and sclera. In addition, at 20 MHz the retina showed banding patterns suggesting an internal structure comparable in many respects to that seen in OCT and histology. Images of ocular pathology provided much improved detail relative to 10-MHz images and deeper penetration than OCT. Twenty-megahertz ultrasound can be practically employed for imaging of the posterior pole of the eye, providing a 2-fold improvement in resolution relative to conventional 10-MHz instruments. Although not providing the resolution of OCT, ultrasound can be used in the presence of optical opacities and allows evaluation of deeper tissue structures.
Chen, Bin; Zhao, Kai; Li, Bo; Cai, Wenchao; Wang, Xiaoying; Zhang, Jue; Fang, Jing
2015-10-01
To demonstrate the feasibility of the improved temporal resolution by using compressed sensing (CS) combined imaging sequence in dynamic contrast-enhanced MRI (DCE-MRI) of kidney, and investigate its quantitative effects on renal perfusion measurements. Ten rabbits were included in the accelerated scans with a CS-combined 3D pulse sequence. To evaluate the image quality, the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the proposed CS strategy and the conventional full sampling method. Moreover, renal perfusion was estimated by using the separable compartmental model in both CS simulation and realistic CS acquisitions. The CS method showed DCE-MRI images with improved temporal resolution and acceptable image contrast, while presenting significantly higher SNR than the fully sampled images (p<.01) at 2-, 3- and 4-X acceleration. In quantitative measurements, renal perfusion results were in good agreement with the fully sampled one (concordance correlation coefficient=0.95, 0.91, 0.88) at 2-, 3- and 4-X acceleration in CS simulation. Moreover, in realistic acquisitions, the estimated perfusion by the separable compartmental model exhibited no significant differences (p>.05) between each CS-accelerated acquisition and the full sampling method. The CS-combined 3D sequence could improve the temporal resolution for DCE-MRI in kidney while yielding diagnostically acceptable image quality, and it could provide effective measurements of renal perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hutton, Brian F.; Lau, Yiu H.
1998-06-01
Compensation for distance-dependent resolution can be directly incorporated in maximum likelihood reconstruction. Our objective was to examine the effectiveness of this compensation using either the standard expectation maximization (EM) algorithm or an accelerated algorithm based on use of ordered subsets (OSEM). We also investigated the application of post-reconstruction filtering in combination with resolution compensation. Using the MCAT phantom, projections were simulated for
data, including attenuation and distance-dependent resolution. Projection data were reconstructed using conventional EM and OSEM with subset size 2 and 4, with/without 3D compensation for detector response (CDR). Also post-reconstruction filtering (PRF) was performed using a 3D Butterworth filter of order 5 with various cutoff frequencies (0.2-
). Image quality and reconstruction accuracy were improved when CDR was included. Image noise was lower with CDR for a given iteration number. PRF with cutoff frequency greater than
improved noise with no reduction in recovery coefficient for myocardium but the effect was less when CDR was incorporated in the reconstruction. CDR alone provided better results than use of PRF without CDR. Results suggest that using CDR without PRF, and stopping at a small number of iterations, may provide sufficiently good results for myocardial SPECT. Similar behaviour was demonstrated for OSEM.
Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC
2013-09-30
scientific community including the recent T- PARC /TCS08, ITOP, and HS3 field campaigns to build upon the existing modeling capabilities. We will...heating and cooling rates in developing and non-developing tropical disturbances during tcs-08: radar -equivalent retrievals from mesoscale numerical
Replica amplification of nucleic acid arrays
Church, George M.; Mitra, Robi D.
2010-08-31
Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.
The S-054 X-ray telescope experiment on Skylab
NASA Technical Reports Server (NTRS)
Vaiana, G. S.; Van Speybroeck, L.; Zombeck, M. V.; Krieger, A. S.; Silk, J. K.; Timothy, A.
1977-01-01
A description of the S-054 X-ray telescope on Skylab is presented with a discussion of the experimental objectives, observing program, data reduction and analysis. Some results from the Skylab mission are given. The telescope photographically records high-resolution images of the solar corona in several broadband regions of the soft X-ray spectrum. It includes an objective grating used to study the line spectrum. The spatial resolution, sensitivity, dynamic range and time resolution of the instrument were chosen to survey a wide variety of solar phenomena. It embodies improvements in design, fabrication, and calibration techniques which were developed over a ten-year period. The observing program was devised to optimize the use of the instrument and to provide studies on a wide range of time scales. The data analysis program includes morphological studies and quantitative analysis using digitized images. A small sample of the data obtained in the mission is presented to demonstrate the type of information that is available and the kinds of results that can be obtained from it.
NASA Technical Reports Server (NTRS)
Hasler, A. F.
1981-01-01
Observations of cloud geometry using scan-synchronized stereo geostationary satellites having images with horizontal spatial resolution of approximately 0.5 km, and temporal resolution of up to 3 min are presented. The stereo does not require a cloud with known emissivity to be in equilibrium with an atmosphere with a known vertical temperature profile. It is shown that absolute accuracies of about 0.5 km are possible. Qualitative and quantitative representations of atmospheric dynamics were shown by remapping, display, and stereo image analysis on an interactive computer/imaging system. Applications of stereo observations include: (1) cloud top height contours of severe thunderstorms and hurricanes, (2) cloud top and base height estimates for cloud-wind height assignment, (3) cloud growth measurements for severe thunderstorm over-shooting towers, (4) atmospheric temperature from stereo heights and infrared cloud top temperatures, and (5) cloud emissivity estimation. Recommendations are given for future improvements in stereo observations, including a third GOES satellite, operational scan synchronization of all GOES satellites and better resolution sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreyev, A.
Purpose: Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. Methods: To validate the proposed algorithm we used Monte Carlomore » simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Results: Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2–3 orders of magnitude per iteration. Conclusions: The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions with resolution recovery. The quality of images and their contrast are similar to those obtained from the OE reconstructions from scans simulated with perfect energy and spatial resolutions.« less
Boiret, Mathieu; de Juan, Anna; Gorretta, Nathalie; Ginot, Yves-Michel; Roger, Jean-Michel
2015-09-10
Raman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution. Non negativity and spatial local rank constraints have been identified as the most powerful constraints to be used. In this work, an alternative method to set local rank constraints is proposed. The method is based on orthogonal projections pretreatment. For each drug product compound, raw Raman spectra are orthogonally projected to a basis including all the variability from the formulation compounds other than the product of interest. Presence or absence of the compound of interest is obtained by observing the correlations between the orthogonal projected spectra and a pure spectrum orthogonally projected to the same basis. By selecting an appropriate threshold, maps of presence/absence of compounds can be set up for all the product compounds. This method appears as a powerful approach to identify a low dose compound within a pharmaceutical drug product. The maps of presence/absence of compounds can be used as local rank constraints in resolution methods, such as multivariate curve resolution-alternating least squares process in order to improve the resolution of the system. The method proposed is particularly suited for pharmaceutical systems, where the identity of all compounds in the formulations is known and, therefore, the space of interferences can be well defined. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cotton, P. D.; Andersen, O.; Stenseng, L.; Boy, F.; Cancet, M.; Cipollini, P.; Gommenginger, C.; Dinardo, S.; Egido, A.; Fernandes, M. J.; Garcia, P. N.; Moreau, T.; Naeije, M.; Scharroo, R.; Lucas, B.; Benveniste, J.
2016-08-01
The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "Cryosat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of Cryosat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: To build a sound scientific basis for new oceanographic applications of Cryosat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter, and to ensure that the scientific return of the Cryosat-2 mission is maximised.This task was addressed within four specific themes: Open Ocean Altimetry; High Resolution Coastal Zone Altimetry; High Resolution Polar Ocean Altimetry; High Resolution Sea-Floor Bathymetry, with further work in developing improved geophysical corrections. The Cryosat Plus 4 Oceans (CP4O) consortium brought together a uniquely strong team of key European experts to develop and validate new algorithms and products to enable users to fully exploit the novel capabilities of the Cryosat-2 mission for observations over ocean. The consortium was led by SatOC (UK), and included CLS (France), Delft University of Technology (The Netherlands), DTU Space (Denmark), isardSat (Spain), National Oceanography Centre (UK), Noveltis (France), Starlab (Spain) and the University of Porto (Portugal).This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications.
Microcalorimetry and the transition-edge sensor
NASA Astrophysics Data System (ADS)
Lindeman, Mark Anton
2000-10-01
Many scientific and industrial applications call for quantum-efficient high-energy-resolution microcalorimeters for the measurement of x rays. The applications driving the development of these detectors involve the measurement of faint sources of x rays in which few photons reach the detector. Interesting astrophysical applications for these microcalorimeters include the measurement of composition and temperatures of stellar atmospheres and diffuse interstellar plasmas. Other applications of microcalorimeter technology include x-ray fluorescence (XRF) measurements of industrial or scientific samples. We are attempting to develop microcalorimeters with energy resolutions of several eV because many sources (such as celestial plasmas) contain combinations of elements producing emission lines spaced only a few eV apart. Our microcalorimeters consist of a metal-film absorber (250mum x 250mum x 3mum of copper) coupled to a superconducting transition-edge-sensor (TES) thermometer. This microcalorimeter demonstrated an energy resolution of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position dependent response. The response of our microcalorimeters depends both on the temperature of the microcalorimeter and on the electrical current conducted through the TES thermometer. We present a microcalorimeter model that extends previous microcalorimeter theory to include additional current dependent effects. The model makes predictions about the effects of various forms of noise. In addition, the model helps us to understand what measurements are useful for characterizing TES microcalorimeters. While the energy resolution we obtained was quite good (twice as good as conventional semiconductor-based x-ray detectors), the obtained resolution was not as good as expected, due to excess noise from fluctuations in the TES thermometer. The energy resolution of future TES microcalorimeters can be improved by redesigning the calorimeters to minimize the noise due to these fluctuations.
Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.
2015-01-01
There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621
Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface
Wang, Libo; Li, Lianlin; Li, Yunbo; Zhang, Hao Chi; Cui, Tie Jun
2016-01-01
Real-time high-resolution (including super-resolution) imaging with low-cost hardware is a long sought-after goal in various imaging applications. Here, we propose broadband single-shot and single-sensor high-/super-resolution imaging by using a spatio-temporal dispersive metasurface and an imaging reconstruction algorithm. The metasurface with spatio-temporal dispersive property ensures the feasibility of the single-shot and single-sensor imager for super- and high-resolution imaging, since it can convert efficiently the detailed spatial information of the probed object into one-dimensional time- or frequency-dependent signal acquired by a single sensor fixed in the far-field region. The imaging quality can be improved by applying a feature-enhanced reconstruction algorithm in post-processing, and the desired imaging resolution is related to the distance between the object and metasurface. When the object is placed in the vicinity of the metasurface, the super-resolution imaging can be realized. The proposed imaging methodology provides a unique means to perform real-time data acquisition, high-/super-resolution images without employing expensive hardware (e.g. mechanical scanner, antenna array, etc.). We expect that this methodology could make potential breakthroughs in the areas of microwave, terahertz, optical, and even ultrasound imaging. PMID:27246668
Development of a Scintillation Detector and the Influence on Clinical Imaging
NASA Astrophysics Data System (ADS)
Panetta, Joseph Vincent
The detector is the functional unit within a Positron Emission Tomography (PET) scanner, serving to convert the energy of radiation emitted from a patient into positional information, and as such contributes significantly to the performance of the scanner. Excellent spatial resolution in continuous detectors that are thick has proven difficult to achieve using simple positioning algorithms, leading to research in the field to improve performance. This thesis aims to investigate the effect of modifications to the scintillation light spread within the bulk of the scintillator to improve performance, focusing on the use of laser induced optical barriers (LIOBs) etched within thick continuous crystals, and furthermore aims to translate the effect on detector performance to scanner quantitation in patient studies. The conventional continuous detector is first investigated by analyzing the various components of the detector as well as its limitations. It is seen that the performance of the detector is affected by a number of variables that either cannot be improved or may be improved only at the expense of greater complexity or computing time; these include the photodetector, the positioning algorithm, and Compton scatter in the detector. The performance of the detectors, however, is fundamentally determined by the light spread within the detector, and limited by the depth-dependence of the light spread and poor performance in the entrance region, motivating efforts to modify this aspect of the detector. The feasibility and potential of LIOBs to fine-tune this light spread and improve these limitations is then studied using both experiments and simulations. The behavior of the LIOBs in response to optical light is investigated, and the opacity of the etchings is shown to be dependent on the parameters of the etching procedure. Thick crystals were also etched with LIOBs in their entrance region in a grid pattern in order to improve the resolution in the entrance region. Measurements show an overall improvement in spatial resolution: the resolution in the etched region of the crystals is slightly improved (e.g., 0.8mm for a 25mm thick crystal), though in the unetched region, it is slightly degraded (e.g., 0.4mm for a 25mm thick crystal). While the depth-dependence of the response of the crystal is decreased, the depth-of-interaction (DOI) performance is degraded as well. Simulation studies informed by these measurements show that the properties of the LIOBs strongly affect the performance of the crystal, and ultimately further illustrate that trade-offs in spatial resolution, position sampling, and DOI resolution are inherent in varying the light spread using LIOBs in this manner; these may be used as a guide for future experiments. System Monte Carlo simulations were used to investigate the added benefit of improved detector spatial resolution and position sampling to the imaging performance of a whole-body scanner. These simulations compared the performance of scanners composed of conventional pixelated detectors to that of scanners using continuous crystals. Results showed that the improved performance (relative to that of 4-mm pixelated detectors) of continuous crystals with a 2-mm resolution, pertinent to both the etched 14mm thick crystal studied as well as potential designs with the etched 25mm thick crystal, increased the mean contrast recovery coefficient (CRC) of images by 22% for 5.5mm spheres. Last, a set of experiments aimed to test the correspondence between quantification in phantom and patient images using a lesion embedding methodology, so that any improvements determined using phantom studies may be understood clinically. The results show that the average CRC values for lesions embedded in the lung and liver agree well with those for lesions embedded in the phantom for all lesion sizes. In addition, the relative changes in CRC resulting from application of post-filters on the subject and phantom images are consistent within measurement uncertainty. This study shows that the improvements in CRC resulting from improved spatial resolution, measured using phantom studies in the simulations, are representative of improvements in quantitative accuracy in patient studies. While unmodified thick continuous detectors hold promise for both improved image quality and quantitation in whole-body imaging, excellent performance requires intensive hardware and computational solutions. Laser induced optical barriers offer the ability to modify the light spread within the scintillator to improve the intrinsic performance of the detector: while measurements with crystals etched with relatively transmissive etchings show a slight improvement in resolution, simulations show that the LIOBs may be fine-tuned to result in improved performance using relatively simple positioning algorithms. For systems in which DOI information is less important, and transverse resolution and sensitivity are paramount, etching thick detectors with this design, fine-tuned to the particular thickness of the crystal and application, is an interesting alternative to the standard detector design. (Abstract shortened by ProQuest.).
Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.
Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao
2018-01-12
Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.
Very high resolution aerial films
NASA Astrophysics Data System (ADS)
Becker, Rolf
1986-11-01
The use of very high resolution aerial films in aerial photography is evaluated. Commonly used panchromatic, color, and CIR films and their high resolution equivalents are compared. Based on practical experience and systematic investigations, the very high image quality and improved height accuracy that can be achieved using these films are demonstrated. Advantages to be gained from this improvement and operational restrictions encountered when using high resolution film are discussed.
Wallsh, Josh O; Gallemore, Ron P; Taban, Mehran; Hu, Charles; Sharareh, Behnam
2013-01-01
To assess the safety and efficacy of a modified technique for pars plana placement of the Ahmed valve in combination with pars plana vitrectomy in the treatment of glaucoma associated with posterior segment disease. Thirty-nine eyes with glaucoma associated with posterior segment disease underwent pars plana vitrectomy combined with Ahmed valve placement. All valves were placed in the pars plana using a modified technique, without the pars plana clip, and using a scleral patch graft. The 24 eyes diagnosed with neovascular glaucoma had an improvement in intraocular pressure from 37.6 mmHg to 13.8 mmHg and best-corrected visual acuity from 2.13 logarithm of minimum angle of resolution to 1.40 logarithm of minimum angle of resolution. Fifteen eyes diagnosed with steroid-induced glaucoma had an improvement in intraocular pressure from 27.9 mmHg to 14.1 mmHg and best-corrected visual acuity from 1.38 logarithm of minimum angle of resolution to 1.13 logarithm of minimum angle of resolution. Complications included four cases of cystic bleb formation and one case of choroidal detachment and explantation for hypotony. Ahmed valve placement through the pars plana during vitrectomy is an effective option for managing complex cases of glaucoma without the use of the pars plana clip.
An Attention-Information-Based Spatial Adaptation Framework for Browsing Videos via Mobile Devices
NASA Astrophysics Data System (ADS)
Li, Houqiang; Wang, Yi; Chen, Chang Wen
2007-12-01
With the growing popularity of personal digital assistant devices and smart phones, more and more consumers are becoming quite enthusiastic to appreciate videos via mobile devices. However, limited display size of the mobile devices has been imposing significant barriers for users to enjoy browsing high-resolution videos. In this paper, we present an attention-information-based spatial adaptation framework to address this problem. The whole framework includes two major parts: video content generation and video adaptation system. During video compression, the attention information in video sequences will be detected using an attention model and embedded into bitstreams with proposed supplement-enhanced information (SEI) structure. Furthermore, we also develop an innovative scheme to adaptively adjust quantization parameters in order to simultaneously improve the quality of overall encoding and the quality of transcoding the attention areas. When the high-resolution bitstream is transmitted to mobile users, a fast transcoding algorithm we developed earlier will be applied to generate a new bitstream for attention areas in frames. The new low-resolution bitstream containing mostly attention information, instead of the high-resolution one, will be sent to users for display on the mobile devices. Experimental results show that the proposed spatial adaptation scheme is able to improve both subjective and objective video qualities.
Improving GPR image resolution in lossy ground using dispersive migration
Oden, C.P.; Powers, M.H.; Wright, D.L.; Olhoeft, G.R.
2007-01-01
As a compact wave packet travels through a dispersive medium, it becomes dilated and distorted. As a result, ground-penetrating radar (GPR) surveys over conductive and/or lossy soils often result in poor image resolution. A dispersive migration method is presented that combines an inverse dispersion filter with frequency-domain migration. The method requires a fully characterized GPR system including the antenna response, which is a function of the local soil properties for ground-coupled antennas. The GPR system response spectrum is used to stabilize the inverse dispersion filter. Dispersive migration restores attenuated spectral components when the signal-to-noise ratio is adequate. Applying the algorithm to simulated data shows that the improved spatial resolution is significant when data are acquired with a GPR system having 120 dB or more of dynamic range, and when the medium has a loss tangent of 0.3 or more. Results also show that dispersive migration provides no significant advantage over conventional migration when the loss tangent is less than 0.3, or when using a GPR system with a small dynamic range. ?? 2007 IEEE.
Stinnett, Jacob; Sullivan, Clair J.; Xiong, Hao
2017-03-02
Low-resolution isotope identifiers are widely deployed for nuclear security purposes, but these detectors currently demonstrate problems in making correct identifications in many typical usage scenarios. While there are many hardware alternatives and improvements that can be made, performance on existing low resolution isotope identifiers should be able to be improved by developing new identification algorithms. We have developed a wavelet-based peak extraction algorithm and an implementation of a Bayesian classifier for automated peak-based identification. The peak extraction algorithm has been extended to compute uncertainties in the peak area calculations. To build empirical joint probability distributions of the peak areas andmore » uncertainties, a large set of spectra were simulated in MCNP6 and processed with the wavelet-based feature extraction algorithm. Kernel density estimation was then used to create a new component of the likelihood function in the Bayesian classifier. Furthermore, identification performance is demonstrated on a variety of real low-resolution spectra, including Category I quantities of special nuclear material.« less
Performance of European chemistry transport models as function of horizontal resolution
NASA Astrophysics Data System (ADS)
Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.
2015-07-01
Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation procedures at high spatial and temporal resolution are a crucial factor for further model resolution improvements.
NASA Astrophysics Data System (ADS)
DeForest, Craig; Seaton, Daniel B.; Darnell, John A.
2017-08-01
I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO/AIA , SDO/HMI, STEREO/SECCHI, and GOES-R/SUVI) that explore the benefits and limits of the technique.
A Robust Multi-Scale Modeling System for the Study of Cloud and Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2012-01-01
During the past decade, numerical weather and global non-hydrostatic models have started using more complex microphysical schemes originally developed for high resolution cloud resolving models (CRMs) with 1-2 km or less horizontal resolutions. These microphysical schemes affect the dynamic through the release of latent heat (buoyancy loading and pressure gradient) the radiation through the cloud coverage (vertical distribution of cloud species), and surface processes through rainfall (both amount and intensity). Recently, several major improvements of ice microphysical processes (or schemes) have been developed for cloud-resolving model (Goddard Cumulus Ensemble, GCE, model) and regional scale (Weather Research and Forecast, WRF) model. These improvements include an improved 3-ICE (cloud ice, snow and graupel) scheme (Lang et al. 2010); a 4-ICE (cloud ice, snow, graupel and hail) scheme and a spectral bin microphysics scheme and two different two-moment microphysics schemes. The performance of these schemes has been evaluated by using observational data from TRMM and other major field campaigns. In this talk, we will present the high-resolution (1 km) GeE and WRF model simulations and compared the simulated model results with observation from recent field campaigns [i.e., midlatitude continental spring season (MC3E; 2010), high latitude cold-season (C3VP, 2007; GCPEx, 2012), and tropical oceanic (TWP-ICE, 2006)].
Example-Based Super-Resolution Fluorescence Microscopy.
Jia, Shu; Han, Boran; Kutz, J Nathan
2018-04-23
Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.
CALIFA, the Calar Alto Legacy Integral Field Area survey. IV. Third public data release
NASA Astrophysics Data System (ADS)
Sánchez, S. F.; García-Benito, R.; Zibetti, S.; Walcher, C. J.; Husemann, B.; Mendoza, M. A.; Galbany, L.; Falcón-Barroso, J.; Mast, D.; Aceituno, J.; Aguerri, J. A. L.; Alves, J.; Amorim, A. L.; Ascasibar, Y.; Barrado-Navascues, D.; Barrera-Ballesteros, J.; Bekeraitè, S.; Bland-Hawthorn, J.; Cano Díaz, M.; Cid Fernandes, R.; Cavichia, O.; Cortijo, C.; Dannerbauer, H.; Demleitner, M.; Díaz, A.; Dettmar, R. J.; de Lorenzo-Cáceres, A.; del Olmo, A.; Galazzi, A.; García-Lorenzo, B.; Gil de Paz, A.; González Delgado, R.; Holmes, L.; Iglésias-Páramo, J.; Kehrig, C.; Kelz, A.; Kennicutt, R. C.; Kleemann, B.; Lacerda, E. A. D.; López Fernández, R.; López Sánchez, A. R.; Lyubenova, M.; Marino, R.; Márquez, I.; Mendez-Abreu, J.; Mollá, M.; Monreal-Ibero, A.; Ortega Minakata, R.; Torres-Papaqui, J. P.; Pérez, E.; Rosales-Ortega, F. F.; Roth, M. M.; Sánchez-Blázquez, P.; Schilling, U.; Spekkens, K.; Vale Asari, N.; van den Bosch, R. C. E.; van de Ven, G.; Vilchez, J. M.; Wild, V.; Wisotzki, L.; Yıldırım, A.; Ziegler, B.
2016-10-01
This paper describes the third public data release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the second public data release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto Observatory. Three different spectral setups are available: I) a low-resolution V500 setup covering the wavelength range 3745-7500 Å (4240-7140 Å unvignetted) with a spectral resolution of 6.0 Å (FWHM) for 646 galaxies, II) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å (3650-4620 Å unvignetted) with a spectral resolution of 2.3 Å (FWHM) for 484 galaxies, and III) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0 Å and a wavelength range between 3700-7500 Å (3700-7140 Å unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ~1.5 million independent spectra. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).The spectra are available at http://califa.caha.es/DR3
A new method for imaging nuclear threats using cosmic ray muons
NASA Astrophysics Data System (ADS)
Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; Miyadera, Haruo; Perry, John; Rose, Evan; Watson, Scott; White, Tim; Aberle, Derek; Green, J. Andrew; McDuff, George G.; Lukić, Zarija; Milner, Edward C.
2013-08-01
Muon tomography is a technique that uses cosmic ray muons to generate three dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study above the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Here we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.
A new method for imaging nuclear threats using cosmic ray muons
Morris, C. L.; Bacon, Jeffrey; Borozdin, Konstantin; ...
2013-08-29
Muon tomography is a technique that uses cosmic ray muons to generate three-dimensional images of volumes using information contained in the Coulomb scattering of the muons. Advantages of this technique are the ability of cosmic rays to penetrate significant overburden and the absence of any additional dose delivered to subjects under study beyond the natural cosmic ray flux. Disadvantages include the relatively long exposure times and poor position resolution and complex algorithms needed for reconstruction. Furthermore, we demonstrate a new method for obtaining improved position resolution and statistical precision for objects with spherical symmetry.
Optimizing modelling in iterative image reconstruction for preclinical pinhole PET
NASA Astrophysics Data System (ADS)
Goorden, Marlies C.; van Roosmalen, Jarno; van der Have, Frans; Beekman, Freek J.
2016-05-01
The recently developed versatile emission computed tomography (VECTor) technology enables high-energy SPECT and simultaneous SPECT and PET of small animals at sub-mm resolutions. VECTor uses dedicated clustered pinhole collimators mounted in a scanner with three stationary large-area NaI(Tl) gamma detectors. Here, we develop and validate dedicated image reconstruction methods that compensate for image degradation by incorporating accurate models for the transport of high-energy annihilation gamma photons. Ray tracing software was used to calculate photon transport through the collimator structures and into the gamma detector. Input to this code are several geometric parameters estimated from system calibration with a scanning 99mTc point source. Effects on reconstructed images of (i) modelling variable depth-of-interaction (DOI) in the detector, (ii) incorporating photon paths that go through multiple pinholes (‘multiple-pinhole paths’ (MPP)), and (iii) including various amounts of point spread function (PSF) tail were evaluated. Imaging 18F in resolution and uniformity phantoms showed that including large parts of PSFs is essential to obtain good contrast-noise characteristics and that DOI modelling is highly effective in removing deformations of small structures, together leading to 0.75 mm resolution PET images of a hot-rod Derenzo phantom. Moreover, MPP modelling reduced the level of background noise. These improvements were also clearly visible in mouse images. Performance of VECTor can thus be significantly improved by accurately modelling annihilation gamma photon transport.
Construction of an instant structured illumination microscope
Curd, Alistair; Cleasby, Alexa; Makowska, Katarzyna; York, Andrew; Shroff, Hari; Peckham, Michelle
2015-01-01
A challenge in biological imaging is to capture high-resolution images at fast frame rates in live cells. The “instant structured illumination microscope” (iSIM) is a system designed for this purpose. Similarly to standard structured illumination microscopy (SIM), an iSIM provides a twofold improvement over widefield microscopy, in x, y and z, but also allows much faster image acquisition, with real-time display of super-resolution images. The assembly of an iSIM is reasonably complex, involving the combination and alignment of many optical components, including three micro-optics arrays (two lenslet arrays and an array of pinholes, all with a pitch of 222 μm) and a double-sided scanning mirror. In addition, a number of electronic components must be correctly controlled. Construction of the system is therefore not trivial, but is highly desirable, particularly for live-cell imaging. We report, and provide instructions for, the construction of an iSIM, including minor modifications to a previous design in both hardware and software. The final instrument allows us to rapidly acquire fluorescence images at rates faster than 100 fps, with approximately twofold improvement in resolution in both x–y and z; sub-diffractive biological features have an apparent size (full width at half maximum) of 145 nm (lateral) and 320 nm (axial), using a 1.49 NA objective and 488 nm excitation. PMID:26210400
Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation
NASA Astrophysics Data System (ADS)
Nakata, Robert
Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.
NASA Astrophysics Data System (ADS)
Boaggio, K.; Bandamede, M.; Bancroft, L.; Hurler, K.; Magee, N. B.
2016-12-01
We report on details of continuing instrument development and deployment of a novel balloon-borne device for capturing and characterizing atmospheric ice and aerosol particles, the Ice Cryo Encapsulator by Balloon (ICE-Ball). The device is designed to capture and preserve cirrus ice particles, maintaining them at cold equilibrium temperatures, so that high-altitude particles can recovered, transferred intact, and then imaged under SEM at an unprecedented resolution (approximately 3 nm maximum resolution). In addition to cirrus ice particles, high altitude aerosol particles are also captured, imaged, and analyzed for geometry, chemical composition, and activity as ice nucleating particles. Prototype versions of ICE-Ball have successfully captured and preserved high altitude ice particles and aerosols, then returned them for recovery and SEM imaging and analysis. New improvements include 1) ability to capture particles from multiple narrowly-defined altitudes on a single payload, 2) high quality measurements of coincident temperature, humidity, and high-resolution video at capture altitude, 3) ability to capture particles during both ascent and descent, 4) better characterization of particle collection volume and collection efficiency, and 5) improved isolation and characterization of capture-cell cryo environment. This presentation provides detailed capability specifications for anyone interested in using measurements, collaborating on continued instrument development, or including this instrument in ongoing or future field campaigns.
Kohen, D P; Olness, K N; Colwell, S O; Heimel, A
1984-02-01
This report assessed outcomes of hypnotherapeutic interventions for 505 children and adolescents seen by four pediatricians over a period of one year and followed from four months to two years. Presenting problems included enuresis, acute pain, chronic pain, asthma, habit disorders, obesity, encopresis, and anxiety. Using strict criteria for determination of problem resolution (e.g., all beds dry) and recognizing that some conditions were intrinsically chronic, the authors found that 51% of these children and adolescents achieved complete resolution of the presenting problem; an additional 32% achieved significant improvement, 9% showed initial or some improvement; and 7% demonstrated no apparent change or improvement. Children as young as three years of age effectively applied self-hypnosis techniques. In general, facility in self-hypnosis increased with age. There was an inverse correlation (p less than 0.001) between clinical success and number of visits, suggesting that prediction of responsivity is possible after four visits or less.
Dynamic frame resizing with convolutional neural network for efficient video compression
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Park, Youngo; Choi, Kwang Pyo; Lee, JongSeok; Jeon, Sunyoung; Park, JeongHoon
2017-09-01
In the past, video codecs such as vc-1 and H.263 used a technique to encode reduced-resolution video and restore original resolution from the decoder for improvement of coding efficiency. The techniques of vc-1 and H.263 Annex Q are called dynamic frame resizing and reduced-resolution update mode, respectively. However, these techniques have not been widely used due to limited performance improvements that operate well only under specific conditions. In this paper, video frame resizing (reduced/restore) technique based on machine learning is proposed for improvement of coding efficiency. The proposed method features video of low resolution made by convolutional neural network (CNN) in encoder and reconstruction of original resolution using CNN in decoder. The proposed method shows improved subjective performance over all the high resolution videos which are dominantly consumed recently. In order to assess subjective quality of the proposed method, Video Multi-method Assessment Fusion (VMAF) which showed high reliability among many subjective measurement tools was used as subjective metric. Moreover, to assess general performance, diverse bitrates are tested. Experimental results showed that BD-rate based on VMAF was improved by about 51% compare to conventional HEVC. Especially, VMAF values were significantly improved in low bitrate. Also, when the method is subjectively tested, it had better subjective visual quality in similar bit rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvidge, Christopher D.; Sutton, Paul S.; Ghosh, Tilottama
A global poverty map has been produced at 30 arc sec resolution using a poverty index calculated by dividing population count (LandScan2004) by the brightness of satellite observed lighting (DMSP nighttimelights). Inputs to the LandScan product include satellite-derived landcover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that shouldmore » improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.« less
Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi
2015-01-01
Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy system were applied in the imaging experiment respectively. The relative THz-power loss imaging of samples were use in this article. This method generally delivers the best signal to noise ratio in loss images, dispersion effects are cancelled. Terahertz imaging results show that the sample's boundary was more distinct after inserting the pinhole in front of, sample. The results also conform that inserting pinhole in front of sample can improve the imaging spatial resolution effectively. The theoretical analyses of the method which improve the spatial resolution by inserting a pinhole in front of sample were given in this article. The analyses also indicate that the smaller the pinhole size, the longer spatial coherence length of the system, the better spatial resolution of the system. At the same time the terahertz signal will be reduced accordingly. All the experimental results and theoretical analyses indicate that the method of inserting a pinhole in front of sample can improve the spatial resolution of traditional terahertz time domain spectroscopy system effectively, and it will further expand the application of terahertz imaging technology.
de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K
We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch's membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch's membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption.
Laser Speckle Contrast Imaging of Cerebral Blood Flow
Dunn, Andrew K.
2011-01-01
Laser speckle contrast imaging (LSCI) has emerged over the past decade as a powerful, yet simple, method for imaging of blood flow dynamics in real time. The rapid adoption of LSCI for physiological studies is due to the relative ease and low cost of building an instrument as well as the ability to quantify blood flow changes with excellent spatial and temporal resolution. Although measurements are limited to superficial tissues with no depth resolution, LSCI has been instrumental in pre-clinical studies of neurological disorders as well as clinical applications including dermatological, neurosurgical and endoscopic studies. Recently a number of technical advances have been developed to improve the quantitative accuracy and temporal resolution of speckle imaging. This article reviews some of these recent advances and describes several applications of speckle imaging. PMID:22109805
NASA Technical Reports Server (NTRS)
Kester, DO; Bontekoe, Tj. Romke
1994-01-01
In order to make the best high resolution images of IRAS data it is necessary to incorporate any knowledge about the instrument into a model: the IRAS model. This is necessary since every remaining systematic effect will be amplified by any high resolution technique into spurious artifacts in the images. The search for random noise is in fact the never-ending quest for better quality results, and can only be obtained by better models. The Dutch high-resolution effort has resulted in HIRAS which drives the MEMSYS5 algorithm. It is specifically designed for IRAS image construction. A detailed description of HIRAS with many results is in preparation. In this paper we emphasize many of the instrumental effects incorporated in the IRAS model, including our improved 100 micron IRAS response functions.
Multi-pass transmission electron microscopy
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...
2017-05-10
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.
Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young
2014-11-17
We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
NASA Technical Reports Server (NTRS)
Rhodes, P. H.; Snyder, R. S.
1982-01-01
Several proposed modifications are expected to improve performance of a continous-flow electrophoresis cell. Changes would allow better control of buffer flow and would increase resolution by suppressing thermal gradients. Improved electrophoresis device would have high resolution and be easy to operate. Improvements would allow better flow control and heat dissipation.
Ueda, H; Tanaka, H; Sakurai, Y
2015-10-01
Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography
Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.
2015-01-01
Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598
NASA Astrophysics Data System (ADS)
Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.
2015-12-01
Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.
Existing methods for improving the accuracy of digital-to-analog converters
NASA Astrophysics Data System (ADS)
Eielsen, Arnfinn A.; Fleming, Andrew J.
2017-09-01
The performance of digital-to-analog converters is principally limited by errors in the output voltage levels. Such errors are known as element mismatch and are quantified by the integral non-linearity. Element mismatch limits the achievable accuracy and resolution in high-precision applications as it causes gain and offset errors, as well as harmonic distortion. In this article, five existing methods for mitigating the effects of element mismatch are compared: physical level calibration, dynamic element matching, noise-shaping with digital calibration, large periodic high-frequency dithering, and large stochastic high-pass dithering. These methods are suitable for improving accuracy when using digital-to-analog converters that use multiple discrete output levels to reconstruct time-varying signals. The methods improve linearity and therefore reduce harmonic distortion and can be retrofitted to existing systems with minor hardware variations. The performance of each method is compared theoretically and confirmed by simulations and experiments. Experimental results demonstrate that three of the five methods provide significant improvements in the resolution and accuracy when applied to a general-purpose digital-to-analog converter. As such, these methods can directly improve performance in a wide range of applications including nanopositioning, metrology, and optics.
NASA Astrophysics Data System (ADS)
Newman, A. J.; Clark, M. P.; Nijssen, B.; Wood, A.; Gutmann, E. D.; Mizukami, N.; Longman, R. J.; Giambelluca, T. W.; Cherry, J.; Nowak, K.; Arnold, J.; Prein, A. F.
2016-12-01
Gridded precipitation and temperature products are inherently uncertain due to myriad factors. These include interpolation from a sparse observation network, measurement representativeness, and measurement errors. Despite this inherent uncertainty, uncertainty is typically not included, or is a specific addition to each dataset without much general applicability across different datasets. A lack of quantitative uncertainty estimates for hydrometeorological forcing fields limits their utility to support land surface and hydrologic modeling techniques such as data assimilation, probabilistic forecasting and verification. To address this gap, we have developed a first of its kind gridded, observation-based ensemble of precipitation and temperature at a daily increment for the period 1980-2012 over the United States (including Alaska and Hawaii). A longer, higher resolution version (1970-present, 1/16th degree) has also been implemented to support real-time hydrologic- monitoring and prediction in several regional US domains. We will present the development and evaluation of the dataset, along with initial applications of the dataset for ensemble data assimilation and probabilistic evaluation of high resolution regional climate model simulations. We will also present results on the new high resolution products for Alaska and Hawaii (2 km and 250 m respectively), to complete the first ensemble observation based product suite for the entire 50 states. Finally, we will present plans to improve the ensemble dataset, focusing on efforts to improve the methods used for station interpolation and ensemble generation, as well as methods to fuse station data with numerical weather prediction model output.
Huynh, Lynn; Totev, Todor; Vekeman, Francis; Neary, Maureen P; Duh, Mei S; Benson, Al B
2017-09-01
To calculate the cost reduction associated with diarrhea/flushing symptom resolution/improvement following treatment with above-standard dose octreotide-LAR from the commercial payor's perspective. Diarrhea and flushing are two major carcinoid syndrome symptoms of neuroendocrine tumor (NET). Previously, a study of NET patients from three US tertiary oncology centers (NET 3-Center Study) demonstrated that dose escalation of octreotide LAR to above-standard dose resolved/improved diarrhea/flushing in 79% of the patients within 1 year. Time course of diarrhea/flushing symptom data were collected from the NET 3-Center Study. Daily healthcare costs were calculated from a commercial claims database analysis. For the patient cohort experiencing any diarrhea/flushing symptom resolution/improvement, their observation period was divided into days of symptom resolution/improvement or no improvement, which were then multiplied by the respective daily healthcare cost and summed over 1 year to yield the blended mean annual cost per patient. For patients who experienced no diarrhea/flushing symptom improvement, mean annual daily healthcare cost of diarrhea/flushing over a 1-year period was calculated. The economic model found that 108 NET patients who experienced diarrhea/flushing symptom resolution/improvement within 1 year had statistically significantly lower mean annual healthcare cost/patient than patients with no symptom improvement, by $14,766 (p = .03). For the sub-set of 85 patients experiencing resolution/improvement of diarrhea, their cost reduction was more pronounced, at $18,740 (p = .01), statistically significantly lower than those with no improvement; outpatient costs accounted for 56% of the cost reduction (p = .02); inpatient costs, emergency department costs, and pharmacy costs accounted for the remaining 44%. The economic model relied on two different sources of data, with some heterogeneity in the prior treatment and disease status of patients. Symptom resolution/improvement of diarrhea/flushing after treatment with an above-standard dose of octreotide-LAR in NET was associated with a statistically significant healthcare cost decrease compared to a scenario of no symptom improvement.
Adaptive Optics Optical Coherence Tomography in Glaucoma
Dong, Zachary M.; Wollstein, Gadi; Wang, Bo; Schuman, Joel S.
2016-01-01
Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm3. It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal. PMID:27916682
A quantitative study to design an experimental setup for photoacoustic imaging.
Marion, Adrien; Boutet, Jérôme; Debourdeau, Mathieu; Dinten, Jean-Marc; Vray, Didier
2011-01-01
During the last decade, a new modality called photoacoustic imaging has emerged. The increasing interest for this new modality is due to the fact that it combines advantages of ultrasound and optical imaging, i.e. the high contrast due to optical absorption and the low acoustic attenuation in biological tissues. It is thus possible to study vascularization because blood has high optical absorption coefficient. Papers in the literature often focus on applications and rarely discuss quantitative parameters. The goal of this paper is to provide quantitative elements to design an acquisition setup. By defining the targeted resolution and penetration depth, it is then possible to evaluate which kind of excitation and reception systems have to be used. First, we recall theoretical background related to photoacoustic effect before to describe the experiments based on a nanosecond laser at 1064 nm and 2.25-5 MHz transducers. Second, we present results about the relation linking fluence laser to signal amplitude and axial and lateral resolutions of our acquisition setup. We verify the linear relation between fluence and amplitude before to estimate axial resolution at 550 μm for a 2.25 MHz ultrasonic transducer. Concerning lateral resolution, we show that a reconstruction technique based on curvilinear acquisition of 30 lines improves it by a factor of 3 compared to a lateral displacement. Future works will include improvement of lateral resolution using probes, like in ultrasound imaging, instead of single-element transducers.
, effects of balloon drift in time and space included Forecast and post processing: Improved orography minor changes: Observations and analysis: Higher resolution sea ice mask Forecast and post processing . 12/04/07 12Z: Use of Unified Post Processor in GFS 12/04/07 12Z: GFS Ensemble (NAEFS/TIGGE) UPGRADE
Space telescope searches for black holes in galactic nuclei
NASA Technical Reports Server (NTRS)
Harms, Richard J.
1989-01-01
The Hubble Space Telescope (HST) will allow astronomers to obtain luminosity profiles, rotation curves, and velocity dispersions at angular scales that are an order of magnitude superior to those obtained previously. This enhanced spatial resolution will greatly improve the sensitivity for detecting centrally condensed matter in nearby galactic nuclei including, possibly, black holes.
Super-resolution differential interference contrast microscopy by structured illumination.
Chen, Jianling; Xu, Yan; Lv, Xiaohua; Lai, Xiaomin; Zeng, Shaoqun
2013-01-14
We propose a structured illumination differential interference contrast (SI-DIC) microscopy, breaking the diffraction resolution limit of differential interference contrast (DIC) microscopy. SI-DIC extends the bandwidth of coherent transfer function of the DIC imaging system, thus the resolution is improved. With 0.8 numerical aperture condenser and objective, the reconstructed SI-DIC image of 53 nm polystyrene beads reveals lateral resolution of approximately 190 nm, doubling that of the conventional DIC image. We also demonstrate biological observations of label-free cells with improved spatial resolution. The SI-DIC microscopy can provide sub-diffraction resolution and high contrast images with marker-free specimens, and has the potential for achieving sub-diffraction resolution quantitative phase imaging.
Applied Use Value of Scientific Information for Management of Ecosystem Services
NASA Astrophysics Data System (ADS)
Raunikar, R. P.; Forney, W.; Bernknopf, R.; Mishra, S.
2012-12-01
The U.S. Geological Survey has developed and applied methods for quantifying the value of scientific information (VOI) that are based on the applied use value of the information. In particular the applied use value of U.S. Geological Survey information often includes efficient management of ecosystem services. The economic nature of U.S. Geological Survey scientific information is largely equivalent to that of any information, but we focus application of our VOI quantification methods on the information products provided freely to the public by the U.S. Geological Survey. We describe VOI economics in general and illustrate by referring to previous studies that use the evolving applied use value methods, which includes examples of the siting of landfills in Louden County, the mineral exploration efficiencies of finer resolution geologic maps in Canada, and improved agricultural production and groundwater protection in Eastern Iowa possible with Landsat moderate resolution satellite imagery. Finally, we describe the adaptation of the applied use value method to the case of streamgage information used to improve the efficiency of water markets in New Mexico.
Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.
2017-01-01
The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.
Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance
Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong
2016-01-01
Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351
Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong
2016-05-01
The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.
Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.; ...
2017-04-24
In this study, we present the results of high-resolution simulations of the implosion of high-convergence layered indirect-drive inertial confinement fusion capsules of the type fielded on the National Ignition Facility using the xRAGE radiation-hydrodynamics code. In order to evaluate the suitability of xRAGE to model such experiments, we benchmark simulation results against available experimental data, including shock-timing, shock-velocity, and shell trajectory data, as well as hydrodynamic instability growth rates. We discuss the code improvements that were necessary in order to achieve favorable comparisons with these data. Due to its use of adaptive mesh refinement and Eulerian hydrodynamics, xRAGE is particularlymore » well suited for high-resolution study of multi-scale engineering features such as the capsule support tent and fill tube, which are known to impact the performance of high-convergence capsule implosions. High-resolution two-dimensional (2D) simulations including accurate and well-resolved models for the capsule fill tube, support tent, drive asymmetry, and capsule surface roughness are presented. These asymmetry seeds are isolated in order to study their relative importance and the resolution of the simulations enables the observation of details that have not been previously reported. We analyze simulation results to determine how the different asymmetries affect hotspot reactivity, confinement, and confinement time and how these combine to degrade yield. Yield degradation associated with the tent occurs largely through decreased reactivity due to the escape of hot fuel mass from the hotspot. Drive asymmetries and the fill tube, however, degrade yield primarily via burn truncation, as associated instability growth accelerates the disassembly of the hotspot. Finally, modeling all of these asymmetries together in 2D leads to improved agreement with experiment but falls short of explaining the experimentally observed yield degradation, consistent with previous 2D simulations of such capsules.« less
Gupta, Sandesh K; Jain, Amit; Bednarek, Daniel R; Rudin, Stephen
2011-01-01
In this study, we evaluated the imaging characteristics of the high-resolution, high-sensitivity micro-angiographic fluoroscope (MAF) with 35-micron pixel-pitch when used with different commercially-available 300 micron thick phosphors: the high resolution (HR) and high light (HL) from Hamamatsu. The purpose of this evaluation was to see if the HL phosphor with its higher screen efficiency could be replaced with the HR phosphor to achieve improved resolution without an increase in noise resulting from the HR's decreased light-photon yield. We designated the detectors MAF-HR and MAF-HL and compared them with a standard flat panel detector (FPD) (194 micron pixel pitch and 600 micron thick CsI(Tl)). For this comparison, we used the generalized linear-system metrics of GMTF, GNNPS and GDQE which are more realistic measures of total system performance since they include the effect of scattered radiation, focal spot distribution, and geometric un-sharpness. Magnifications (1.05-1.15) and scatter fractions (0.28 and 0.33) characteristic of a standard head phantom were used. The MAF-HR performed significantly better than the MAF-HL at high spatial frequencies. The ratio of GMTF and GDQE of the MAF-HR compared to the MAF-HL at 3(6) cycles/mm was 1.45(2.42) and 1.23(2.89), respectively. Despite significant degradation by inclusion of scatter and object magnification, both MAF-HR and MAF-HL provide superior performance over the FPD at higher spatial frequencies with similar performance up to the FPD's Nyquist frequency of 2.5 cycles/mm. Both substantially higher resolution and improved GDQE can be achieved with the MAF using the HR phosphor instead of the HL phosphor.
Improved spatial resolution in PET scanners using sampling techniques
Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.
2009-01-01
Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586
Fundamental techniques for resolution enhancement of average subsampled images
NASA Astrophysics Data System (ADS)
Shen, Day-Fann; Chiu, Chui-Wen
2012-07-01
Although single image resolution enhancement, otherwise known as super-resolution, is widely regarded as an ill-posed inverse problem, we re-examine the fundamental relationship between a high-resolution (HR) image acquisition module and its low-resolution (LR) counterpart. Analysis shows that partial HR information is attenuated but still exists, in its LR version, through the fundamental averaging-and-subsampling process. As a result, we propose a modified Laplacian filter (MLF) and an intensity correction process (ICP) as the pre and post process, respectively, with an interpolation algorithm to partially restore the attenuated information in a super-resolution (SR) enhanced image image. Experiments show that the proposed MLF and ICP provide significant and consistent quality improvements on all 10 test images with three well known interpolation methods including bilinear, bi-cubic, and the SR graphical user interface program provided by Ecole Polytechnique Federale de Lausanne. The proposed MLF and ICP are simple in implementation and generally applicable to all average-subsampled LR images. MLF and ICP, separately or together, can be integrated into most interpolation methods that attempt to restore the original HR contents. Finally, the idea of MLF and ICP can also be applied for average, subsampled one-dimensional signal.
Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko
2017-11-01
Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Funderburg, Rebecca; Arevalo, Ricardo; Locmelis, Marek; Adachi, Tomoko
2017-07-01
Laser ablation ICP-MS enables streamlined, high-sensitivity measurements of rare earth element (REE) abundances in geological materials. However, many REE isotope mass stations are plagued by isobaric interferences, particularly from diatomic oxides and argides. In this study, we compare REE abundances quantitated from mass spectra collected with low-resolution (m/Δm = 300 at 5% peak height) and medium-resolution (m/Δm = 2500) mass discrimination. A wide array of geological samples was analyzed, including USGS and NIST glasses ranging from mafic to felsic in composition, with NIST 610 employed as the bracketing calibrating reference material. The medium-resolution REE analyses are shown to be significantly more accurate and precise (at the 95% confidence level) than low-resolution analyses, particularly in samples characterized by low (<μg/g levels) REE abundances. A list of preferred mass stations that are least susceptible to isobaric interferences is reported. These findings impact the reliability of REE abundances derived from LA-ICP-MS methods, particularly those relying on mass analyzers that do not offer tuneable mass-resolution and/or collision cell technologies that can reduce oxide and/or argide formation.
Re-scan confocal microscopy: scanning twice for better resolution.
De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.
NASA Astrophysics Data System (ADS)
Barik, M. G.; Al-Hamdan, M. Z.; Crosson, W. L.; Yang, C. A.; Coffield, S. R.
2017-12-01
Satellite-derived environmental data, available in a range of spatio-temporal scales, are contributing to the growing use of health impact assessments of air pollution in the public health sector. Models developed using correlation of Moderate Resolution Imaging Spectrometer (MODIS) Aerosol Optical Depth (AOD) with ground measurements of fine particulate matter less than 2.5 microns (PM2.5) are widely applied to measure PM2.5 spatial and temporal variability. In the public health sector, associations of PM2.5 with respiratory and cardiovascular diseases are often investigated to quantify air quality impacts on these health concerns. In order to improve predictability of PM2.5 estimation using correlation models, we have included meteorological variables, higher-resolution AOD products and instantaneous PM2.5 observations into statistical estimation models. Our results showed that incorporation of high-resolution (1-km) Multi-Angle Implementation of Atmospheric Correction (MAIAC)-generated MODIS AOD, meteorological variables and instantaneous PM2.5 observations improved model performance in various parts of California (CA), USA, where single variable AOD-based models showed relatively weak performance. In this study, we further asked whether these improved models actually would be more successful for exploring associations of public health outcomes with estimated PM2.5. To answer this question, we geospatially investigated model-estimated PM2.5's relationship with respiratory and cardiovascular diseases such as asthma, high blood pressure, coronary heart disease, heart attack and stroke in CA using health data from the Centers for Disease Control and Prevention (CDC)'s Wide-ranging Online Data for Epidemiologic Research (WONDER) and the Behavioral Risk Factor Surveillance System (BRFSS). PM2.5 estimation from these improved models have the potential to improve our understanding of associations between public health concerns and air quality.
Khomri, Bilal; Christodoulidis, Argyrios; Djerou, Leila; Babahenini, Mohamed Chaouki; Cheriet, Farida
2018-05-01
Retinal vessel segmentation plays an important role in the diagnosis of eye diseases and is considered as one of the most challenging tasks in computer-aided diagnosis (CAD) systems. The main goal of this study was to propose a method for blood-vessel segmentation that could deal with the problem of detecting vessels of varying diameters in high- and low-resolution fundus images. We proposed to use the particle swarm optimization (PSO) algorithm to improve the multiscale line detection (MSLD) method. The PSO algorithm was applied to find the best arrangement of scales in the MSLD method and to handle the problem of multiscale response recombination. The performance of the proposed method was evaluated on two low-resolution (DRIVE and STARE) and one high-resolution fundus (HRF) image datasets. The data include healthy (H) and diabetic retinopathy (DR) cases. The proposed approach improved the sensitivity rate against the MSLD by 4.7% for the DRIVE dataset and by 1.8% for the STARE dataset. For the high-resolution dataset, the proposed approach achieved 87.09% sensitivity rate, whereas the MSLD method achieves 82.58% sensitivity rate at the same specificity level. When only the smallest vessels were considered, the proposed approach improved the sensitivity rate by 11.02% and by 4.42% for the healthy and the diabetic cases, respectively. Integrating the proposed method in a comprehensive CAD system for DR screening would allow the reduction of false positives due to missed small vessels, misclassified as red lesions. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Qin, Zhuanping; Ma, Wenjuan; Ren, Shuyan; Geng, Liqing; Li, Jing; Yang, Ying; Qin, Yingmei
2017-02-01
Endoscopic DOT has the potential to apply to cancer-related imaging in tubular organs. Although the DOT has relatively large tissue penetration depth, the endoscopic DOT is limited by the narrow space of the internal tubular tissue, so as to the relatively small penetration depth. Because some adenocarcinomas including cervical adenocarcinoma are located in deep canal, it is necessary to improve the imaging resolution under the limited measurement condition. To improve the resolution, a new FOCUSS algorithm along with the image reconstruction algorithm based on the effective detection range (EDR) is developed. This algorithm is based on the region of interest (ROI) to reduce the dimensions of the matrix. The shrinking method cuts down the computation burden. To reduce the computational complexity, double conjugate gradient method is used in the matrix inversion. For a typical inner size and optical properties of the cervix-like tubular tissue, reconstructed images from the simulation data demonstrate that the proposed method achieves equivalent image quality to that obtained from the method based on EDR when the target is close the inner boundary of the model, and with higher spatial resolution and quantitative ratio when the targets are far from the inner boundary of the model. The quantitative ratio of reconstructed absorption and reduced scattering coefficient can be up to 70% and 80% under 5mm depth, respectively. Furthermore, the two close targets with different depths can be separated from each other. The proposed method will be useful to the development of endoscopic DOT technologies in tubular organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upton, Zachary, M.; Pulli, Jay, J.
2003-10-13
OAK B272 Quarterly technical report summarizing BBN's efforts to improve DOE's hydroacoustic modeling and analysis capability for nuclear explosion monitoring. BBN's work during the third quarter of 2003 was focused on preparations for and participation in the 2003 Seismic Research Review Meeting, unit testing and bug fixes to HydroCAM 4.1, data collection and analysis, and procuring high-resolution bathymetric data. In an attempt to save money, BBN scaled back its labor in the third quarter, delaying some deliverables but saving contract funding in case our next increment is delayed. We have succeeded in finding the correct Naval contact that can helpmore » us procure high-resolution bathymetry data. Although these data may require the release of a classified version of HydroCAM, we are optimistic that we will be able to acquire and integrate high-resolution bathymetric data near the Indian Ocean IMS stations. HydroCAM 4.1, which includes the ability to make blockage predictions using varying resolution bathymetric data, has completed unit testing and is now under integration (release) testing. We hope to deliver that functionality to DOE and AFTAC in November. BBN improved its database of hydroacoustic events in the Indian Ocean by including meta-data for associated arrivals. For each earthquake event, BBN is now picking the direct arrival at each station (Diego Garcia North and South, and Cape Leeuwin) and associating that arrival with the origin information that we are compiling. The data for 2001, 2002 and 2003 (to date) will be delivered to LLNL for integration into the Knowledge Base during the fourth quarter of 2003.« less
A high resolution InSAR topographic reconstruction research in urban area based on TerraSAR-X data
NASA Astrophysics Data System (ADS)
Qu, Feifei; Qin, Zhang; Zhao, Chaoying; Zhu, Wu
2011-10-01
Aiming at the problems of difficult unwrapping and phase noise in InSAR DEM reconstruction, especially for the high-resolution TerraSAR-X data, this paper improved the height reconstruction algorithm in view of "remove-restore" based on external coarse DEM and multi-interferogram processing, proposed a height calibration method based on CR+GPS data. Several measures have been taken for urban high resolution DEM reconstruction with TerraSAR data. The SAR interferometric pairs with long spatial and short temporal baselines are served for the DEM. The external low resolution and low accuracy DEM is applied for the "remove-restore" concept to ease the phase unwrapping. The stochastic errors including atmospheric effects and phase noise are suppressed by weighted averaging of DEM phases. Six TerraSAR-X data are applied to create the twelve-meter's resolution DEM over Xian, China with the newly-proposed method. The heights in discrete GPS benchmarks are used to calibrate the result, and the RMS of 3.29 meter is achieved by comparing with 1:50000 DEM.
Evaluation of Multi-Channel ADCs for Gamma-Ray Spectroscopy
NASA Astrophysics Data System (ADS)
Tan, Hui; Hennig, Wolfgang; Walby, Mark D.; Breus, Dimitry; Harris, Jackson
2013-04-01
As nuclear physicists increasingly design large scale experiments with hundreds or thousands of detector channels, there are growing needs for high density readout electronics with good timing and energy resolution that at the same time offer lower cost per channel compared to existing commercial solutions. Recent improvements in the design of commercial analog to digital converters (ADCs) have resulted in a variety of multi-channel ADCs that are natural choice for designing such high density readout modules. However, multi-channel ADCs typically are designed for medical imaging/ultrasound applications and therefore are not rated for their spectroscopic characteristics. In this work, we evaluated the gamma-ray spectroscopic performance of several multi-channel ADCs, including their energy resolution, nonlinearity, and timing resolution. Some of these ADCs demonstrated excellent energy resolution, 2.66% FWHM at 662 keV with a LaBr3 or 1.78 keV FWHM at 1332.5 keV with a high purity germanium (HPGe) detector, and sub-nanosecond timing resolution with LaBr 3. We present results from these measurements to illustrate their suitability for gamma-ray spectroscopy.
Assessment of prediction skill in equatorial Pacific Ocean in high resolution model of CFS
NASA Astrophysics Data System (ADS)
Arora, Anika; Rao, Suryachandra A.; Pillai, Prasanth; Dhakate, Ashish; Salunke, Kiran; Srivastava, Ankur
2018-01-01
The effect of increasing atmospheric resolution on prediction skill of El Niño southern oscillation phenomenon in climate forecast system model is explored in this paper. Improvement in prediction skill for sea surface temperature (SST) and winds at all leads compared to low resolution model in the tropical Indo-Pacific basin is observed. High resolution model is able to capture extreme events reasonably well. As a result, the signal to noise ratio is improved in the high resolution model. However, spring predictability barrier (SPB) for summer months in Nino 3 and Nino 3.4 region is stronger in high resolution model, in spite of improvement in overall prediction skill and dynamics everywhere else. Anomaly correlation coefficient of SST in high resolution model with observations in Nino 3.4 region targeting boreal summer months when predicted at lead times of 3-8 months in advance decreased compared its lower resolution counterpart. It is noted that higher variance of winds predicted in spring season over central equatorial Pacific compared to observed variance of winds results in stronger than normal response on subsurface ocean, hence increases SPB for boreal summer months in high resolution model.
Simultaneous Luminescence Pressure and Temperature Mapping
NASA Technical Reports Server (NTRS)
Buck, Gregory M. (Inventor)
1998-01-01
A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (-150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.
Preliminary design and development of a reflectance spectrometer instrument
NASA Technical Reports Server (NTRS)
Mccord, T. B.
1979-01-01
An improved design for the reflectance spectrometer is described to be used on various terrestrial body missions. These improvements were made on the original Lunar Polar Orbiter design. These include a larger entrance mirror, rectangular aperture, multiple optical beams, spatial resolution, and a bandwidth extension to 5 microns. In addition, detailed electronic designs were produced for a charge amplifier and an amplifier/demodulator/integrator. Design of a microprocessor driven test system was begun. Laboratory tests were performed on a tuning fork chopper.
Simultaneous Luminescence Pressure and Temperature Mapping System
NASA Technical Reports Server (NTRS)
Buck, Gregory M. (Inventor)
1995-01-01
A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (approximately 150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.
Venkateswaran, Krishnakumar; Roorda, Austin; Romero-Borja, Fernando
2004-01-01
We present axial resolution calculated using a mathematical model of the adaptive optics scanning laser ophthalmoscope (AOSLO). The peak intensity and the width of the axial intensity response are computed with the residual Zernike coefficients after the aberrations are corrected using adaptive optics for eight subjects and compared with the axial resolution of a diffraction-limited eye. The AOSLO currently uses a confocal pinhole that is 80 microm, or 3.48 times the width of the Airy disk radius of the collection optics, and projects to 7.41 microm on the retina. For this pinhole, the axial resolution of a diffraction-limited system is 114 microm and the computed axial resolution varies between 120 and 146 microm for the human subjects included in this study. The results of this analysis indicate that to improve axial resolution, it is best to reduce the pinhole size. The resulting reduction in detected light may demand, however, a more sophisticated adaptive optics system. The study also shows that imaging systems with large pinholes are relatively insensitive to misalignment in the lateral positioning of the confocal pinhole. However, when small pinholes are used to maximize resolution, alignment becomes critical. ( c) 2004 Society of Photo-Optical Instrumentation Engineers.
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-01-01
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties. PMID:24919017
Han, Lei; Shi, Lu; Yang, Yiling; Song, Dalei
2014-06-10
Geostationary meteorological satellite infrared (IR) channel data contain important spectral information for meteorological research and applications, but their spatial resolution is relatively low. The objective of this study is to obtain higher-resolution IR images. One common method of increasing resolution fuses the IR data with high-resolution visible (VIS) channel data. However, most existing image fusion methods focus only on visual performance, and often fail to take into account the thermal physical properties of the IR images. As a result, spectral distortion occurs frequently. To tackle this problem, we propose a thermal physical properties-based correction method for fusing geostationary meteorological satellite IR and VIS images. In our two-step process, the high-resolution structural features of the VIS image are first extracted and incorporated into the IR image using regular multi-resolution fusion approach, such as the multiwavelet analysis. This step significantly increases the visual details in the IR image, but fake thermal information may be included. Next, the Stefan-Boltzmann Law is applied to correct the distortion, to retain or recover the thermal infrared nature of the fused image. The results of both the qualitative and quantitative evaluation demonstrate that the proposed physical correction method both improves the spatial resolution and preserves the infrared thermal properties.
NASA Technical Reports Server (NTRS)
Kelley, Richard L.
2004-01-01
The Astro-E2 observatory is a rebuild of the original Astro-E observatory that was lost during launch in February 2000. It is scheduled for launch into low earth orbit on a Japanese M-V rocket in early 2005. The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, is developing the observatory with major contributions from the US. The three instruments on the observatory are the high-resolution x-ray spectrometer (the XRS) featuring a 30-pixel x-ray microcalorimeter array, a set of four CCD cameras (the XIS) and a combination photo-diode/scintillator detector system (the HXD) that will extend the band pass up to nearly 700 keV. A significant feature of Astro-E2 is that all of the instruments are coaligned and operated simultaneously. With its high spectral resolution and collecting area for spectroscopy above 1 keV, Astro-E2 should enable major discovery space and pioneer new technology for use in space. Prime areas for investigation are supernova remnants, active galaxies and the measurement of black hole properties via relativistically-broadened Fe-K emission galaxies. A number of enhancements have been made for the Astro-E2/XRS, including a higher resolution microcalorimeter array, ii mechanical cooler for longer cryogen life, and an improved in-flight calibration system. The Astro-E2/XIS has also been improved to include two back-side-illuminated CCDs to enhance the low energy response. Improvements have also been made to the x-ray mirrors used for both the XRS and XIS to sharpen the point spread function and reduce the effects of stray light. In this talk we will present the essential features of Astro-E2, paying particular attention to the enhancements, and describe the major scientific strengths of the observatory.
Image enhancement in positron emission mammography
NASA Astrophysics Data System (ADS)
Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.
2017-02-01
Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).
Coherent diffractive imaging of time-evolving samples with improved temporal resolution
Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...
2016-05-19
Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less
NASA Astrophysics Data System (ADS)
Zhao, Y.; Qiu, L. P.; Xu, R. Y.; Xie, F. J.; Zhang, Q.; Yu, Y. Y.; Nielsen, C. P.; Qin, H. X.; Wang, H. K.; Wu, X. C.; Li, W. Q.; Zhang, J.
2015-11-01
With most eastern Chinese cities facing major air quality challenges, there is a strong need for city-scale emission inventories for use in both chemical transport modeling and the development of pollution control policies. In this paper, a high-resolution emission inventory (with a horizontal resolution of 3 × 3 km) of air pollutants and CO2 for Nanjing, a typical large city in the Yangtze River Delta, is developed, incorporating the best available information on local sources. Emission factors and activity data at the unit or facility level are collected and compiled using a thorough on-site survey of major sources. Over 900 individual plants, which account for 97 % of the city's total coal consumption, are identified as point sources, and all of the emission-related parameters including combustion technology, fuel quality, and removal efficiency of air pollution control devices (APCD) are analyzed. New data-collection approaches including continuous emission monitoring systems and real-time monitoring of traffic flows are employed to improve spatiotemporal distribution of emissions. Despite fast growth of energy consumption between 2010 and 2012, relatively small interannual changes in emissions are found for most air pollutants during this period, attributed mainly to benefits of growing APCD deployment and the comparatively strong and improving regulatory oversight of the large point sources that dominate the levels and spatial distributions of Nanjing emissions overall. The improvement of this city-level emission inventory is indicated by comparisons with observations and other inventories at larger spatial scale. Relatively good spatial correlations are found for SO2, NOx, and CO between the city-scale emission estimates and concentrations at nine state-operated monitoring sites (R = 0.58, 0.46, and 0.61, respectively). The emission ratios of specific pollutants including BC to CO, OC to EC, and CO2 to CO compare well to top-down constraints from ground observations. The interannual variability and spatial distribution of NOx emissions are consistent with NO2 vertical column density measured by the Ozone Monitoring Instrument (OMI). In particular, the Nanjing city-scale emission inventory correlates better with satellite observations than the downscaled Multi-resolution Emission Inventory for China (MEIC) does when emissions from power plants are excluded. This indicates improvement in emission estimation for sectors other than power generation, notably industry and transportation. A high-resolution emission inventory may also provide a basis to consider the quality of instrumental observations. To further improve emission estimation and evaluation, more measurements of both emission factors and ambient levels of given pollutants are suggested; the uncertainties of emission inventories at city scale should also be fully quantified and compared with those at national scale.
Fast, Angela M; Nees, Shannon N; Van Batavia, Jason P; Combs, Andrew J; Glassberg, Kenneth I
2013-09-01
There is a known association between nonneurogenic lower urinary tract conditions and vesicoureteral reflux. Whether reflux is secondary to the lower urinary tract condition or coincidental is controversial. We determined the rate of reflux resolution in patients with lower urinary tract dysfunction using targeted treatment for the underlying condition. Patients diagnosed and treated for a lower urinary tract condition who had concomitant vesicoureteral reflux at or near the time of diagnosis were included. Patients underwent targeted treatment and antibiotic prophylaxis, and reflux was monitored with voiding cystourethrography or videourodynamics. Vesicoureteral reflux was identified in 58 ureters in 36 females and 5 males with a mean age of 6.2 years. After a mean of 3.1 years of treatment reflux resolved with targeted treatment in 26 of 58 ureters (45%). All of these patients had a history of urinary tract infections before starting targeted treatment. Resolution rates of vesicoureteral reflux were similar for all reflux grades. Resolution or significant improvement of reflux was greater in the ureters of patients with dysfunctional voiding (70%) compared to those with idiopathic detrusor overactivity disorder (38%) or detrusor underutilization (40%). Vesicoureteral reflux associated with lower urinary tract conditions resolved with targeted treatment and antibiotic prophylaxis in 45% of ureters. Unlike the resolution rates reported in patients with reflux without a coexisting lower urinary tract condition, we found that there were no differences in resolution rates among grades I to V reflux in patients with lower urinary tract conditions. Patients with dysfunctional voiding had the most improvement and greatest resolution of reflux. Additionally grade V reflux resolved in some patients. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Method and system for dual resolution translation stage
Halpin, John Michael
2014-04-22
A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.
Re-scan confocal microscopy: scanning twice for better resolution
De Luca, Giulia M.R.; Breedijk, Ronald M.P.; Brandt, Rick A.J.; Zeelenberg, Christiaan H.C.; de Jong, Babette E.; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A.; Stallinga, Sjoerd; Manders, Erik M.M.
2013-01-01
We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required. PMID:24298422
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungho
Hard x-ray resonant inelastic x-ray scattering (RIXS) is a promising x-ray spectroscopic tool for measuring low-energy excitation spectra at high pressure which have been stymied heretofore by the technical difficulties inherent in measuring a sample held at high pressure in a diamond anvil cell. The currently available facilities of high resolution (< 200 meV) RIXS has been used to probe low-energy excitation spectra from the diamond anvil cell, by virtue of advanced photon detection instrumentations of high-brilliance synchrotron x-ray radiation sources. Compared to a structural elastic scattering and x-ray emission, RIXS is a photon hungry technique and high-resolution RIXS undermore » high pressure is at its infancy stage. In this review, the fundamentals of RIXS including instrumentation of high-resolution RIXS are presented and then experimental details of diamond anvil cell, sample preparation and measurement geometry are discussed. Experimental data of 3d and 5d transition metal oxides are presented. Finally, future improvements in high-resolution RIXS instrumentation for the high pressure experiment is discussed.« less
Enhanced FIB-SEM systems for large-volume 3D imaging
Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F
2017-01-01
Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 106 µm3. These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology. DOI: http://dx.doi.org/10.7554/eLife.25916.001 PMID:28500755
Enhanced FIB-SEM systems for large-volume 3D imaging
Xu, C. Shan; Hayworth, Kenneth J.; Lu, Zhiyuan; ...
2017-05-13
Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 ?m 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processesmore » and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sternberg, B.K.; Thomas, S.J.
1992-12-01
The overall objective of the project was to apply a new high-resolution imaging system to water resource investigations. This imaging system measures the ellipticity of received magnetic-field components. The source of the magnetic field is a long-line transmitter emitting frequencies from 30 Hz to 30 kHz. A new high-accuracy calibration method was used to enhance the resolution of the measurements. The specific objectives included: (1) refine the system hardware and software based on these investigations, (2) learn the limitations of this technology in practical water resource investigations, and (3) improve interpretation techniques to extract the highest possible resolution. Successful fieldmore » surveys were run at: (1) San Xavier Mine, Arizona - flow of injected fluid was monitored with the system. (2) Avra Valley, Arizona - subsurface stratigraphy was imaged. A survey at a third site was less successful; interpreted resistivity section does not agree with nearby well logs. Surveys are continuing at this site.« less
The spatial resolving power of earth resources satellites: A review
NASA Technical Reports Server (NTRS)
Townshend, J. R. G.
1980-01-01
The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.
NASA Technical Reports Server (NTRS)
Putman, William P.
2012-01-01
Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
Biochemical and physiological MR imaging of skeletal muscle at 7 tesla and above.
Chang, Gregory; Wang, Ligong; Cárdenas-Blanco, Arturo; Schweitzer, Mark E; Recht, Michael P; Regatte, Ravinder R
2010-06-01
Ultra-high field (UHF; >or=7 T) magnetic resonance imaging (MRI), with its greater signal-to-noise ratio, offers the potential for increased spatial resolution, faster scanning, and, above all, improved biochemical and physiological imaging of skeletal muscle. The increased spectral resolution and greater sensitivity to low-gamma nuclei available at UHF should allow techniques such as (1)H MR spectroscopy (MRS), (31)P MRS, and (23)Na MRI to be more easily implemented. Numerous technical challenges exist in the performance of UHF MRI, including changes in relaxation values, increased chemical shift and susceptibility artifact, radiofrequency (RF) coil design/B (1)(+) field inhomogeneity, and greater RF energy deposition. Nevertheless, the possibility of improved functional and metabolic imaging at UHF will likely drive research efforts in the near future to overcome these challenges and allow studies of human skeletal muscle physiology and pathophysiology to be possible at >or=7 T.
Research on regional numerical weather prediction
NASA Technical Reports Server (NTRS)
Kreitzberg, C. W.
1976-01-01
Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.
Laser ablation surface-enhanced Raman microspectroscopy.
Londero, Pablo S; Lombardi, John R; Leona, Marco
2013-06-04
Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.
Evaluating an image-fusion algorithm with synthetic-image-generation tools
NASA Astrophysics Data System (ADS)
Gross, Harry N.; Schott, John R.
1996-06-01
An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.
DOT National Transportation Integrated Search
1990-01-01
During its 1989 session, the Virginia General Assembly passed House Joint Resolution No. 419. The Resolution requested that Virginia's pedestrian safety laws be studied and that recommendations for revisions of those laws be made to improve pedestria...
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy.
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-07-29
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-01-01
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy. PMID:27471000
High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy
NASA Astrophysics Data System (ADS)
Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham
2016-07-01
Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.
NASA Astrophysics Data System (ADS)
Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong
2018-05-01
The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.
ERIC Educational Resources Information Center
Lipschutz, Betsy D.
2010-01-01
School safety is one of the most important issues facing administrators, teachers, and parents. Several risk factors have been identified as antecedents to aggression including poor social skills, difficulty dealing with anger and frustration, and inadequate problem solving abilities. "No Child Left Behind" requires all schools receiving…
Conflict management: difficult conversations with difficult people.
Overton, Amy R; Lowry, Ann C
2013-12-01
Conflict occurs frequently in any workplace; health care is not an exception. The negative consequences include dysfunctional team work, decreased patient satisfaction, and increased employee turnover. Research demonstrates that training in conflict resolution skills can result in improved teamwork, productivity, and patient and employee satisfaction. Strategies to address a disruptive physician, a particularly difficult conflict situation in healthcare, are addressed.
Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center
NASA Technical Reports Server (NTRS)
Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary
2009-01-01
This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.
Potential for geophysical experiments in large scale tests.
Dieterich, J.H.
1981-01-01
Potential research applications for large-specimen geophysical experiments include measurements of scale dependence of physical parameters and examination of interactions with heterogeneities, especially flaws such as cracks. In addition, increased specimen size provides opportunities for improved recording resolution and greater control of experimental variables. Large-scale experiments using a special purpose low stress (100MPa).-Author
Resolution-improved in situ DNA hybridization detection based on microwave photonic interrogation.
Cao, Yuan; Guo, Tuan; Wang, Xudong; Sun, Dandan; Ran, Yang; Feng, Xinhuan; Guan, Bai-ou
2015-10-19
In situ bio-sensing system based on microwave photonics filter (MPF) interrogation method with improved resolution is proposed and experimentally demonstrated. A microfiber Bragg grating (mFBG) is used as sensing probe for DNA hybridization detection. Different from the traditional wavelength monitoring technique, we use the frequency interrogation scheme for resolution-improved bio-sensing detection. Experimental results show that the frequency shift of MPF notch presents a linear response to the surrounding refractive index (SRI) change over the range of 1.33 to 1.38, with a SRI resolution up to 2.6 × 10(-5) RIU, which has been increased for almost two orders of magnitude compared with the traditional fundamental mode monitoring technique (~3.6 × 10(-3) RIU). Due to the high Q value (about 27), the whole process of DNA hybridization can be in situ monitored. The proposed MPF-based bio-sensing system provides a new interrogation method over the frequency domain with improved sensing resolution and rapid interrogation rate for biochemical and environmental measurement.
High-Resolution Atmospheric Emission Inventory of the Argentine Enery Sector
NASA Astrophysics Data System (ADS)
Puliafito, Salvador Enrique; Castesana, Paula; Allende, David; Ruggeri, Florencia; Pinto, Sebastián; Pascual, Romina; Bolaño Ortiz, Tomás; Fernandez, Rafael Pedro
2017-04-01
This study presents a high-resolution spatially disaggregated inventory (2.5 km x 2.5 km), updated to 2014, of the main emissions from energy activities in Argentina. This inventory was created with the purpose of improving air quality regional models. The sub-sectors considered are public electricity and heat production, cement production, domestic aviation, road and rail transportation, inland navigation, residential and commercial, and fugitive emissions from refineries and fuel expenditure. The pollutants considered include greenhouse gases and ozone precursors: CO2, CH4, NOx, N2O VOC; and other gases specifically related to air quality including PM10, PM2.5, SOx, Pb and POPs. The uncertainty analysis of the inventories resulted in a variability of 3% for public electricity generation, 3-6% in the residential, commercial sector, 6-12% terrestrial transportation sector, 10-20% in oil refining and cement production according to the considered pollutant. Aviation and maritime navigation resulted in a higher variability reaching more than 60%. A comparison with the international emission inventory EDGAR shows disagreements in the spatial distribution of emissions, probably due to the finer resolution of the map presented here, particularly as a result of the use of new spatially disaggregated data of higher resolution that is currently available.
Positioning performance improvements with European multiple-frequency satellite navigation - Galileo
NASA Astrophysics Data System (ADS)
Ji, Shengyue
2008-10-01
The rapid development of Global Positioning System has demonstrated the advantages of satellite based navigation systems. In near future, there will be a number of Global Navigation Satellite System (GNSS) available, i.e. modernized GPS, Galileo, restored GLONASS, BeiDou and many other regional GNSS augmentation systems. Undoubtedly, the new GNSS systems will significantly improve navigation performance over current GPS, with a better satellite coverage and multiple satellite signal bands. In this dissertation, the positioning performance improvement of new GNSS has been investigated based on both theoretical analysis and numerical study. First of all, the navigation performance of new GNSS systems has been analyzed, particularly for urban applications. The study has demonstrated that Receiver Autonomous Integrity Monitoring (RAIM) performance can be significantly improved with multiple satellite constellations, although the position accuracy improvement is limited. Based on a three-dimensional urban building model in Hong Kong streets, it is found that positioning availability is still very low in high-rising urban areas, even with three GNSS systems. On the other hand, the discontinuity of navigation solutions is significantly reduced with the combined constellations. Therefore, it is possible to use cheap DR systems to bridge the gaps of GNSS positioning, with high accuracy. Secondly, the ambiguity resolution performance has been investigated with Galileo multiple frequency band signals. The ambiguity resolution performance of three different algorithms is compared, including CAR, ILS and improved CAR methods (a new method proposed in this study). For short baselines, with four frequency Galileo data, it is highly possible to achieve reliable single epoch ambiguity resolution, when the carrier phase noise level is reasonably low (i.e. less than 6mm). For long baselines (up to 800 km), the integer ambiguity can be determined within 1 min on average. Ambiguity validation is crucial for any ambiguity resolution algorithm using searching method. This study has proposed to use both Ellipsoidal Integer Aperture (EIA) estimator and R-ratio test for ambiguity validation. Using real GPS data and simulated Galileo data, it has been demonstrated that the new method performs better than the use of EIA or the R-ratio test alone, with much less ambiguity mis-fixed rate.
Labeling proteins inside living cells using external fluorophores for microscopy.
Teng, Kai Wen; Ishitsuka, Yuji; Ren, Pin; Youn, Yeoan; Deng, Xiang; Ge, Pinghua; Lee, Sang Hak; Belmont, Andrew S; Selvin, Paul R
2016-12-09
Site-specific fluorescent labeling of proteins inside live mammalian cells has been achieved by employing Streptolysin O, a bacterial enzyme which forms temporary pores in the membrane and allows delivery of virtually any fluorescent probes, ranging from labeled IgG's to small ligands, with high efficiency (>85% of cells). The whole process, including recovery, takes 30 min, and the cell is ready to be imaged immediately. A variety of cell viability tests were performed after treatment with SLO to ensure that the cells have intact membranes, are able to divide, respond normally to signaling molecules, and maintains healthy organelle morphology. When combined with Oxyrase, a cell-friendly photostabilizer, a ~20x improvement in fluorescence photostability is achieved. By adding in glutathione, fluorophores are made to blink, enabling super-resolution fluorescence with 20-30 nm resolution over a long time (~30 min) under continuous illumination. Example applications in conventional and super-resolution imaging of native and transfected cells include p65 signal transduction activation, single molecule tracking of kinesin, and specific labeling of a series of nuclear and cytoplasmic protein complexes.
Communication-and-resolution programs: the challenges and lessons learned from six early adopters.
Mello, Michelle M; Boothman, Richard C; McDonald, Timothy; Driver, Jeffrey; Lembitz, Alan; Bouwmeester, Darren; Dunlap, Benjamin; Gallagher, Thomas
2014-01-01
In communication-and-resolution programs (CRPs), health systems and liability insurers encourage the disclosure of unanticipated care outcomes to affected patients and proactively seek resolutions, including offering an apology, an explanation, and, where appropriate, reimbursement or compensation. Anecdotal reports from the University of Michigan Health System and other early adopters of CRPs suggest that these programs can substantially reduce liability costs and improve patient safety. But little is known about how these early programs achieved success. We studied six CRPs to identify the major challenges in and lessons learned from implementing these initiatives. The CRP participants we interviewed identified several factors that contributed to their programs' success, including the presence of a strong institutional champion, investing in building and marketing the program to skeptical clinicians, and making it clear that the results of such transformative change will take time. Many of the early CRP adopters we interviewed expressed support for broader experimentation with these programs even in settings that differ from their own, such as systems that do not own and control their liability insurer, and in states without strong tort reforms.
The High Time Resolution Universe surveys for pulsars and fast transients
NASA Astrophysics Data System (ADS)
Keith, Michael J.
2013-03-01
The High Time Resolution Universe survey for pulsars and transients is the first truly all-sky pulsar survey, taking place at the Parkes Radio Telescope in Australia and the Effelsberg Radio Telescope in Germany. Utilising multibeam receivers with custom built all-digital recorders the survey targets the fastest millisecond pulsars and radio transients on timescales of 64 μs to a few seconds. The new multibeam digital filter-bank system at has a factor of eight improvement in frequency resolution over previous Parkes multibeam surveys, allowing us to probe further into the Galactic plane for short duration signals. The survey is split into low, mid and high Galactic latitude regions. The mid-latitude portion of the southern hemisphere survey is now completed, discovering 107 previously unknown pulsars, including 26 millisecond pulsars. To date, the total number of discoveries in the combined survey is 135 and 29 MSPs These discoveries include the first magnetar to be discovered by it's radio emission, unusual low-mass binaries, gamma-ray pulsars and pulsars suitable for pulsar timing array experiments.
NASA/GEWEX Surface Radiation Budget: First Results From The Release 4 GEWEX Integrated Data Products
NASA Astrophysics Data System (ADS)
Stackhouse, Paul; Cox, Stephen; Gupta, Shashi; Mikovitz, J. Colleen; zhang, taiping
2016-04-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number should help improve the RMS of the existing products and allow for future higher resolution SRB gridded product (e.g. 0.5 degree). In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
New products from the shuttle radar topography mission
Gesch, Dean B.; Farr, Tom; Slater, James; Muller, Jan-Peter; Cook, Sally
2006-01-01
Final products include elevation data resulting from a substantial editing effort by the NGA in which water bodies and coastlines were well defined and data artifacts known as spikes and wells (single pixel errors) were removed. This second version of the SRTM data set, also referred to as ‘finished’ data, represents a significant improvement over earlier versions that had nonflat water bodies, poorly defined coastlines, and numerous noise artifacts. The edited data are available at a one-arc-second resolution (approximately 30 meters) for the United States and its territories, and at a three-arc-second resolution (approximately 90 meters) for non-U.S. areas.
Enhancing the detector for advanced neutron capture experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, A.; Mosby, S.; Baramsai, B.
2015-05-28
The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We, thus, report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. Furthermore, the upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.
Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range
NASA Astrophysics Data System (ADS)
Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.
2013-12-01
The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these worst-case resolution measurements, estimating the spatial resolution to be approximately 3.5 μm and 3.0 μm at 530 eV and 680 eV, well below the resolution limit of 5 μm required to improve the spectral resolution by a factor of 2.
NASA Astrophysics Data System (ADS)
Guenther, A. B.; Duhl, T.
2011-12-01
Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.
Abdominal applications of 3.0-T MR imaging: comparative review versus a 1.5-T system.
Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun; Kim, Ji Youn; Jones, Alun C; de Becker, Jan; van Cauteren, Marc
2008-01-01
With the development of dedicated receiver coils and increased gradient performance, 3.0-T magnetic resonance (MR) systems are gaining wider acceptance in clinical practice. The expected twofold increase in signal-to-noise ratio (SNR) compared with that of 1.5-T MR systems may help improve spatial resolution or increase temporal resolution when used with parallel acquisition techniques. Several issues must be considered when applying 3.0-T MR in the abdomen, including the alteration of the radiofrequency field and relaxation time, increase in energy deposition and susceptibility effects, and problems associated with motion artifacts. For the evaluation of liver lesions, higher SNR and greater resolution achieved with the 3.0-T system could translate into better detection of malignant lesions on T2-weighted images obtained with adjusted imaging parameters. For the evaluation of pancreatic and biliary diseases, high-resolution T2-weighted imaging using single-shot turbo spin-echo sequences is useful; improvement in SNR was noticeable on two-dimensional MR cholangiopancreatographic images. For the preoperative imaging of rectal cancer, a single-shot sequence is useful for dramatically decreasing imaging time while maintaining image quality. Substantial modification of examination protocols, with optimized imaging parameters and sequence designs along with ongoing development of hardware, could contribute to an increased role of the 3.0-T system for abdominal MR examinations.
Characterization of ASTER GDEM Elevation Data over Vegetated Area Compared with Lidar Data
NASA Technical Reports Server (NTRS)
Ni, Wenjian; Sun, Guoqing; Ranson, Kenneth J.
2013-01-01
Current researches based on areal or spaceborne stereo images with very high resolutions (less than 1 meter) have demonstrated that it is possible to derive vegetation height from stereo images. The second version of the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) is a state-of-the-art global elevation data-set developed by stereo images. However, the resolution of ASTER stereo images (15 meters) is much coarser than areal stereo images, and the ASTER GDEM is compiled products from stereo images acquired over 10 years. The forest disturbances as well as forest growth are inevitable in 10 years time span. In this study, the features of ASTER GDEM over vegetated areas under both flat and mountainous conditions were investigated by comparisons with lidar data. The factors possibly affecting the extraction of vegetation canopy height considered include (1) co-registration of DEMs; (2) spatial resolution of digital elevation models (DEMs); (3) spatial vegetation structure; and (4) terrain slope. The results show that accurate co-registration between ASTER GDEM and the National Elevation Dataset (NED) is necessary over mountainous areas. The correlation between ASTER GDEM minus NED and vegetation canopy height is improved from 0.328 to 0.43 by degrading resolutions from 1 arc-second to 5 arc-seconds and further improved to 0.6 if only homogenous vegetated areas were considered.
Finite Element Simulations of Kaikoura, NZ Earthquake using DInSAR and High-Resolution DSMs
NASA Astrophysics Data System (ADS)
Barba, M.; Willis, M. J.; Tiampo, K. F.; Glasscoe, M. T.; Clark, M. K.; Zekkos, D.; Stahl, T. A.; Massey, C. I.
2017-12-01
Three-dimensional displacements from the Kaikoura, NZ, earthquake in November 2016 are imaged here using Differential Interferometric Synthetic Aperture Radar (DInSAR) and high-resolution Digital Surface Model (DSM) differencing and optical pixel tracking. Full-resolution co- and post-seismic interferograms of Sentinel-1A/B images are constructed using the JPL ISCE software. The OSU SETSM software is used to produce repeat 0.5 m posting DSMs from commercial satellite imagery, which are supplemented with UAV derived DSMs over the Kaikoura fault rupture on the eastern South Island, NZ. DInSAR provides long-wavelength motions while DSM differencing and optical pixel tracking provides both horizontal and vertical near fault motions, improving the modeling of shallow rupture dynamics. JPL GeoFEST software is used to perform finite element modeling of the fault segments and slip distributions and, in turn, the associated asperity distribution. The asperity profile is then used to simulate event rupture, the spatial distribution of stress drop, and the associated stress changes. Finite element modeling of slope stability is accomplished using the ultra high-resolution UAV derived DSMs to examine the evolution of post-earthquake topography, landslide dynamics and volumes. Results include new insights into shallow dynamics of fault slip and partitioning, estimates of stress change, and improved understanding of its relationship with the associated seismicity, deformation, and triggered cascading hazards.
NASA Astrophysics Data System (ADS)
O'Neill, A.
2015-12-01
The Coastal Storm Modeling System (CoSMoS) is a numerical modeling scheme used to predict coastal flooding due to sea level rise and storms influenced by climate change, currently in use in central California and in development for Southern California (Pt. Conception to the Mexican border). Using a framework of circulation, wave, analytical, and Bayesian models at different geographic scales, high-resolution results are translated as relevant hazards projections at the local scale that include flooding, wave heights, coastal erosion, shoreline change, and cliff failures. Ready access to accurate, high-resolution coastal flooding data is critical for further validation and refinement of CoSMoS and improved coastal hazard projections. High-resolution Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provides an exceptional data source as appropriately-timed flights during extreme tides or storms provide a geographically-extensive method for determining areas of inundation and flooding extent along expanses of complex and varying coastline. Landward flood extents are numerically identified via edge-detection in imagery from single flights, and can also be ascertained via change detection using additional flights and imagery collected during average wave/tide conditions. The extracted flooding positions are compared against CoSMoS results for similar tide, water level, and storm-intensity conditions, allowing for robust testing and validation of CoSMoS and providing essential feedback for supporting regional and local model improvement.
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.
2012-12-01
Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building the computational framework for double-difference processing the combined parametric and waveform archives of the ISC, NEIC, and IRIS with over three million recorded earthquakes worldwide. Since our methods are scalable and run on inexpensive Beowulf clusters, periodic re-analysis of such archives may thus become a routine procedure to continuously improve resolution in existing global earthquake catalogs. Results from subduction zones and aftershock sequences of recent great earthquakes demonstrate the considerable social and economic impact that high-resolution images of active faults, when available in real-time, will have in the prompt evaluation and mitigation of seismic hazards. These results also highlight the need for consistent long-term seismic monitoring and archiving of records.
NASA Astrophysics Data System (ADS)
Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang
2017-08-01
The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).
Treatment of pediatric restless legs syndrome.
Amos, Louella B; Grekowicz, Megan L; Kuhn, Evelyn M; Olstad, Jenna D; Collins, Maureen M; Norins, Nan A; D'Andrea, Lynn A
2014-04-01
The primary aim was to determine if iron supplementation effectively treats children with restless legs syndrome (RLS), the time to improvement or resolution of symptoms, and patient characteristics (family history of RLS, secondary sleep disorders, medical diagnoses, and/or mental health diagnoses) that may affect outcome. METHODS.: This was a retrospective chart review of children between 5 and 18 years old who were diagnosed with RLS at the pediatric sleep disorders clinic at Children's Hospital of Wisconsin in Milwaukee, Wisconsin. Documented RLS treatment approaches included supplemental iron, nonpharmacologic interventions, melatonin, gabapentin, clonidine, and dopamine agonists (pramipexole and ropinirole). Ninety-seven children were diagnosed with RLS; 60.8% of children were between 5 and 11 years old. Most children (65%) received iron either as monotherapy or in combination with other treatments. Approximately 80% of the children who received iron and had follow-up had improvement or resolution of their symptoms. The median baseline ferritin level was 22.7 ng/mL, and 71% of children had a ferritin level less than 30 ng/mL. The median time to improvement or resolution of symptoms was 3.8 months. Supplemental iron as monotherapy or in combination with other treatments is effective in treating pediatric RLS. A prospective study could help determine if the initial ferritin level and degree of change in the ferritin level impact response to iron treatment. It is also important to study the long-term outcomes in these patients.
Chittiboina, Prashant; Talagala, S Lalith; Merkle, Hellmut; Sarlls, Joelle E; Montgomery, Blake K; Piazza, Martin G; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R; Oldfield, Edward H; Koretsky, Alan P; Butman, John A
2016-12-01
OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra-high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm 3 and 0.15 × 0.15 × 0.30 mm 3 , respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus.
Chittiboina, Prashant; Talagala, S. Lalith; Merkle, Hellmut; Sarlls, Joelle E.; Montgomery, Blake K.; Piazza, Martin G.; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R.; Oldfield, Edward H.; Koretsky, Alan P.; Butman, John A.
2016-01-01
OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing’s disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra–high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm3 and 0.15 × 0.15 × 0.30 mm3, respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus. PMID:26991390
A method for generating high resolution satellite image time series
NASA Astrophysics Data System (ADS)
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation, environment and etc. applications.
Development of novel separation techniques for biological samples in capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Huan -Tsung
1994-07-27
This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good waymore » to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.« less
High-accurate optical vector analysis based on optical single-sideband modulation
NASA Astrophysics Data System (ADS)
Xue, Min; Pan, Shilong
2016-11-01
Most of the efforts devoted to the area of optical communications were on the improvement of the optical spectral efficiency. Varies innovative optical devices are thus developed to finely manipulate the optical spectrum. Knowing the spectral responses of these devices, including the magnitude, phase and polarization responses, is of great importance for their fabrication and application. To achieve high-resolution characterization, optical vector analyzers (OVAs) based on optical single-sideband (OSSB) modulation have been proposed and developed. Benefiting from the mature and highresolution microwave technologies, the OSSB-based OVA can potentially achieve a resolution of sub-Hz. However, the accuracy is restricted by the measurement errors induced by the unwanted first-order sideband and the high-order sidebands in the OSSB signal, since electrical-to-optical conversion and optical-to-electrical conversion are essentially required to achieve high-resolution frequency sweeping and extract the magnitude and phase information in the electrical domain. Recently, great efforts have been devoted to improve the accuracy of the OSSB-based OVA. In this paper, the influence of the unwanted-sideband induced measurement errors and techniques for implementing high-accurate OSSB-based OVAs are discussed.
Use of airborne hyperspectral imagery to map soil parameters in tilled agricultural fields
Hively, W. Dean; McCarty, Gregory W.; Reeves, James B.; Lang, Megan W.; Oesterling, Robert A.; Delwiche, Stephen R.
2011-01-01
Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ~10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.
Report from the Third IUPAP International Conference on Women in Physics
NASA Astrophysics Data System (ADS)
Freeland, Emily E.; Murphy, N.; Jang-Condell, H.; Gomez Maqueo Chew, Y.
2009-12-01
The Third IUPAP (International Union of Pure and Applied Physics) International Conference on Women in Physics was held in Seoul, South Korea from October 8-10, 2008 with 283 participants from 57 countries. Topics discussed included personal and professional development, attracting girls to physics, site visits for assessing and improving the climate for women, fundraising and leadership, and organizing women in physics working groups. Resolutions unanimously passed by the conference assembly recommend (1) the formation of additional regional or national working groups for women in physics, (2) promotion of site visits as an effective tool for improving the climate of the physics workplace, (3) increased professional development opportunities and outreach activities associated with conferences, and (4) a global survey of physicists in 2009 to assess the status of women in physics. See http://www.icwip2008.org/ for the text of the resolutions and the conference program. In this poster, AAS members who participated will report on this conference as well as resolutions from the first (Paris, 2002) and second (Rio de Janeiro, 2005) conferences. The next IUPAP Conference on Women in Physics is expected to occur in South Africa in 2011.
Wilmshurst, Jo M; Guekht, Alla; Secco, Mary; Helen Cross, J; Perucca, Emilio
2018-06-01
In May 2015 the World Health Assembly (WHA) approved the Resolution on the Global Burden of Epilepsy. This report addresses how the Resolution can be leveraged to improve the care of children with epilepsy worldwide. Children with epilepsy have unique needs and face unique challenges from stigma at all levels of society. Children lack a voice to lobby for their own needs, including their right to have access to education. Effective leadership and governance should be enhanced through the support of stakeholders empowered to counsel, advise, and lobby for appropriate care. National health care plans should integrate primary and specialist care, and they need to be adapted to local specificities. Antiepileptic medicines should be widely accessible in appropriate, sustained, and affordable ways. Public awareness initiatives are needed to improve the inclusion of affected children in society and to reduce stigma. Cost-effective interventions are also needed to address preventable causes of epilepsy. Without greater investment in research, evidence-based interventions cannot be implemented. Through all of this, civil society must be engaged to ensure that the multivariate dimensions from the clinic to the community are addressed to fulfil the needs of children with epilepsy.
Design of 4D x-ray tomography experiments for reconstruction using regularized iterative algorithms
NASA Astrophysics Data System (ADS)
Mohan, K. Aditya
2017-10-01
4D X-ray computed tomography (4D-XCT) is widely used to perform non-destructive characterization of time varying physical processes in various materials. The conventional approach to improving temporal resolution in 4D-XCT involves the development of expensive and complex instrumentation that acquire data faster with reduced noise. It is customary to acquire data with many tomographic views at a high signal to noise ratio. Instead, temporal resolution can be improved using regularized iterative algorithms that are less sensitive to noise and limited views. These algorithms benefit from optimization of other parameters such as the view sampling strategy while improving temporal resolution by reducing the total number of views or the detector exposure time. This paper presents the design principles of 4D-XCT experiments when using regularized iterative algorithms derived using the framework of model-based reconstruction. A strategy for performing 4D-XCT experiments is presented that allows for improving the temporal resolution by progressively reducing the number of views or the detector exposure time. Theoretical analysis of the effect of the data acquisition parameters on the detector signal to noise ratio, spatial reconstruction resolution, and temporal reconstruction resolution is also presented in this paper.
Improving PET spatial resolution and detectability for prostate cancer imaging
NASA Astrophysics Data System (ADS)
Bal, H.; Guerin, L.; Casey, M. E.; Conti, M.; Eriksson, L.; Michel, C.; Fanti, S.; Pettinato, C.; Adler, S.; Choyke, P.
2014-08-01
Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%.
Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS)
NASA Astrophysics Data System (ADS)
Kumer, John B.; Rairden, Richard L.; Mitchell, Keith E.; Roche, Aidan E.; Mergenthaler, John L.
2002-11-01
The Dual Etalon Cross Tilt Order Sorted Spectrometer (DECTOSS) uses relatively inexpensive off the shelf components in a small and simple package to provide ultra high spectral resolution over a limited spectral range. For example, the modest first try laboratory test setup DECTOSS we describe in this presentation achieves resolving power ~ 105 on a spectral range of about 1 nm centered near 760 nm. This ultra high spectral resolution facilitates some important atmospheric remote sensing applications including profiling cirrus and/or aerosol above bright reflective surfaces in the O2 A-band and the column measurements of CO and CO2 utilizing solar reflectance spectra. We show details of the how the use of ultra high spectral resolution in the O2 A-band improves the profiling of cirrus and aerosol. The DECTOSS utilizes a Narrow Band Spectral Filter (NBSF), a Low Resolution Etalon (LRE) and a High Resolution Etalon (HRE). Light passing through these elements is focused on to a 2 Dimensional Array Detector (2DAD). Off the shelf, solid etalons with airgap or solid spacer gap are used in this application. In its simplest application this setup utilizes a spatially uniform extended source so that spatial and spectral structure are not confused. In this presentation we'll show 2D spectral data obtained in a desktop test configuration, and in the first try laboratory test setup. These were obtained by illuminating a Lambertian screen with (1) monochromatic light, and (2) with atmospheric absorption spectra in the oxygen (O2) A-band. Extracting the 1D spectra from these data is a work in progress and we show preliminary results compared with (1) solar absorption data obtained with a large Echelle grating spectrometer, and (2) theoretical spectra. We point out areas for improvement in our laboratory test setup, and general improvements in spectral range and sensitivity that are planned for our next generation field test setup.
Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data
NASA Astrophysics Data System (ADS)
Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.
2017-12-01
We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).
Determining Titan surface topography from Cassini SAR data
Stiles, Bryan W.; Hensley, Scott; Gim, Yonggyu; Bates, David M.; Kirk, Randolph L.; Hayes, Alex; Radebaugh, Jani; Lorenz, Ralph D.; Mitchell, Karl L.; Callahan, Philip S.; Zebker, Howard; Johnson, William T.K.; Wall, Stephen D.; Lunine, Jonathan I.; Wood, Charles A.; Janssen, Michael; Pelletier, Frederic; West, Richard D.; Veeramacheneni, Chandini
2009-01-01
A technique, referred to as SARTopo, has been developed for obtaining surface height estimates with 10 km horizontal resolution and 75 m vertical resolution of the surface of Titan along each Cassini Synthetic Aperture Radar (SAR) swath. We describe the technique and present maps of the co-located data sets. A global map and regional maps of Xanadu and the northern hemisphere hydrocarbon lakes district are included in the results. A strength of the technique is that it provides topographic information co-located with SAR imagery. Having a topographic context vastly improves the interpretability of the SAR imagery and is essential for understanding Titan. SARTopo is capable of estimating surface heights for most of the SAR-imaged surface of Titan. Currently nearly 30% of the surface is within 100 km of a SARTopo height profile. Other competing techniques provide orders of magnitude less coverage. We validate the SARTopo technique through comparison with known geomorphological features such as mountain ranges and craters, and by comparison with co-located nadir altimetry, including a 3000 km strip that had been observed by SAR a month earlier. In this area, the SARTopo and nadir altimetry data sets are co-located tightly (within 5-10 km for one 500 km section), have similar resolution, and as expected agree closely in surface height. Furthermore the region contains prominent high spatial resolution topography, so it provides an excellent test of the resolution and precision of both techniques.
Matysik, Silke; Liebisch, Gerhard
2017-12-01
A limited specificity is inherent to immunoassays for steroid hormone analysis. To improve selectivity mass spectrometric analysis of steroid hormones by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been introduced in the clinical laboratory over the past years usually with low mass resolution triple-quadrupole instruments or more recently by high resolution mass spectrometry (HR-MS). Here we introduce liquid chromatography-high resolution tandem mass spectrometry (LC-MS/HR-MS) to further increase selectivity of steroid hormone quantification. Application of HR-MS demonstrates an enhanced selectivity compared to low mass resolution. Separation of isobaric interferences reduces background noise and avoids overestimation. Samples were prepared by automated liquid-liquid extraction with MTBE. The LC-MS/HR-MS method using a quadrupole-Orbitrap analyzer includes eight steroid hormones i.e. androstenedione, corticosterone, cortisol, cortisone, 11-deoxycortisol, 17-hydroxyprogesterone, progesterone, and testosterone. It has a run-time of 5.3min and was validated according to the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) guidelines. For most of the analytes coefficient of variation were 10% or lower and LOQs were determined significantly below 1ng/ml. Full product ion spectra including accurate masses substantiate compound identification by matching their masses and ratios with authentic standards. In summary, quantification of steroid hormones by LC-MS/HR-MS is applicable for clinical diagnostics and holds also promise for highly selective quantification of other small molecules. Copyright © 2017 Elsevier B.V. All rights reserved.
Improving the City-scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing
NASA Astrophysics Data System (ADS)
Qiu, L.; Zhao, Y.; Xu, R.; Xie, F.; Wang, H.; Qin, H.; Wu, X.; Zhang, J.
2014-12-01
To evaluate the improvement of city-scale emission inventory, a high-resolution emission inventory of air pollutants for Nanjing is first developed combining detailed source information, and then justified through quantitative analysis with observations. The best available domestic emission factors and unit-/facility-based activity level data were compiled based on a thorough field survey on major emission sources. Totally 1089 individual emission sources were identified as point sources and all the emission-related parameters including burner type, combustion technology, fuel quality, and removal efficiency of pollution control devices, are carefully investigated and analyzed. Some new data such as detailed information of city fueling-gas stations, construction sites, monthly activity level, data from continuous emission monitoring systems and traffic flow information were combined to improve spatiotemporal distribution of this inventory. For SO2, NOX and CO, good spatial correlations were found between ground observation (9 state controlling air sampling sites in Nanjing) and city-scale emission inventory (R2=0.34, 0.38 and 0.74, respectively). For TSP, PM10 and PM2.5, however, poorer correlation was found due to relatively weaker accuracy in emission estimation and spatial distribution of road dust. The mixing ratios between specific pollutants including OC/EC, BC/CO and CO2/CO, are well correlated between those from ground observation and emission. Compared to MEIC (Multi-resolution Emission Inventory for China), there is a better spatial consistence between this city-scale emission inventory and NO2 measured by OMI (Ozone Monitoring Instrument). In particular, the city-scale emission inventory still correlated well with satellite observations (R2=0.28) while the regional emission inventory showed little correlation with satellite observations (R2=0.09) when grids containing power plants are excluded. It thus confirms the improvement of city-scale emission inventory on industrial and transportation sources other than big power plants. Through the inventory evaluation, the necessity to develop high-resolution emission inventory with comprehensive emission source information is revealed for atmospheric science studies and air quality improvement at local scale.
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.
2015-01-01
Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100 μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200 μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194 μm, with 2×2 binning during the acquisition giving an effective pixel size of 388 μm. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors. PMID:26158095
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J
2015-04-01
Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of [Formula: see text], with [Formula: see text] binning during the acquisition giving an effective pixel size of [Formula: see text]. Thus, it would be expected that the position estimate accuracy reported in this study would improve detection and visualization of microcalcifications as compared to that with conventional detectors.
2007-02-01
Elastographic Transrectal Ultrasound for Improved Diagnosis of Prostate Cancer PRINCIPAL INVESTIGATOR: John A. Hossack, Ph.D...Resolution Anatomic and Elastographic Transrectal Ultrasound for Improved 5a. CONTRACT NUMBER Diagnosis of Prostate Cancer 5b. GRANT NUMBER...improve upon conventional Digital Rectal Examination (DRE) and PSA blood test by using ultrasound elasticity imaging. A latex sheath over the transrectal
Gross, Colin A; Reddy, Chandan K; Dazzo, Frank B
2010-02-01
Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noid, G; Chen, G; Tai, A
2014-06-01
Purpose: Iterative reconstruction (IR) algorithms are developed to improve CT image quality (IQ) by reducing noise without diminishing spatial resolution or contrast. For CT in radiation therapy (RT), slightly increasing imaging dose to improve IQ may be justified if it can substantially enhance structure delineation. The purpose of this study is to investigate and to quantify the IQ enhancement as a result of increasing imaging doses and using IR algorithms. Methods: CT images were acquired for phantoms, built to evaluate IQ metrics including spatial resolution, contrast and noise, with a variety of imaging protocols using a CT scanner (Definition ASmore » Open, Siemens) installed inside a Linac room. Representative patients were scanned once the protocols were optimized. Both phantom and patient scans were reconstructed using the Sinogram Affirmed Iterative Reconstruction (SAFIRE) and the Filtered Back Projection (FBP) methods. IQ metrics of the obtained CTs were compared. Results: IR techniques are demonstrated to preserve spatial resolution as measured by the point spread function and reduce noise in comparison to traditional FBP. Driven by the reduction in noise, the contrast to noise ratio is doubled by adopting the highest SAFIRE strength. As expected, increasing imaging dose reduces noise for both SAFIRE and FBP reconstructions. The contrast to noise increases from 3 to 5 by increasing the dose by a factor of 4. Similar IQ improvement was observed on the CTs for selected patients with pancreas and prostrate cancers. Conclusion: The IR techniques produce a measurable enhancement to CT IQ by reducing the noise. Increasing imaging dose further reduces noise independent of the IR techniques. The improved CT enables more accurate delineation of tumors and/or organs at risk during RT planning and delivery guidance.« less
Processing the image gradient field using a topographic primal sketch approach.
Gambaruto, A M
2015-03-01
The spatial derivatives of the image intensity provide topographic information that may be used to identify and segment objects. The accurate computation of the derivatives is often hampered in medical images by the presence of noise and a limited resolution. This paper focuses on accurate computation of spatial derivatives and their subsequent use to process an image gradient field directly, from which an image with improved characteristics can be reconstructed. The improvements include noise reduction, contrast enhancement, thinning object contours and the preservation of edges. Processing the gradient field directly instead of the image is shown to have numerous benefits. The approach is developed such that the steps are modular, allowing the overall method to be improved and possibly tailored to different applications. As presented, the approach relies on a topographic representation and primal sketch of an image. Comparisons with existing image processing methods on a synthetic image and different medical images show improved results and accuracy in segmentation. Here, the focus is on objects with low spatial resolution, which is often the case in medical images. The methods developed show the importance of improved accuracy in derivative calculation and the potential in processing the image gradient field directly. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Fusing Unmanned Aerial Vehicle Imagery with High Resolution Hydrologic Modeling (Invited)
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Pierini, N.; Schreiner-McGraw, A.; Anderson, C.; Saripalli, S.; Rango, A.
2013-12-01
After decades of development and applications, high resolution hydrologic models are now common tools in research and increasingly used in practice. More recently, high resolution imagery from unmanned aerial vehicles (UAVs) that provide information on land surface properties have become available for civilian applications. Fusing the two approaches promises to significantly advance the state-of-the-art in terms of hydrologic modeling capabilities. This combination will also challenge assumptions on model processes, parameterizations and scale as land surface characteristics (~0.1 to 1 m) may now surpass traditional model resolutions (~10 to 100 m). Ultimately, predictions from high resolution hydrologic models need to be consistent with the observational data that can be collected from UAVs. This talk will describe our efforts to develop, utilize and test the impact of UAV-derived topographic and vegetation fields on the simulation of two small watersheds in the Sonoran and Chihuahuan Deserts at the Santa Rita Experimental Range (Green Valley, AZ) and the Jornada Experimental Range (Las Cruces, NM). High resolution digital terrain models, image orthomosaics and vegetation species classification were obtained from a fixed wing airplane and a rotary wing helicopter, and compared to coarser analyses and products, including Light Detection and Ranging (LiDAR). We focus the discussion on the relative improvements achieved with UAV-derived fields in terms of terrain-hydrologic-vegetation analyses and summer season simulations using the TIN-based Real-time Integrated Basin Simulator (tRIBS) model. Model simulations are evaluated at each site with respect to a high-resolution sensor network consisting of six rain gauges, forty soil moisture and temperature profiles, four channel runoff flumes, a cosmic-ray soil moisture sensor and an eddy covariance tower over multiple summer periods. We also discuss prospects for the fusion of high resolution models with novel observations from UAVs, including synthetic aperture radar and multispectral imagery.
Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.
Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography
NASA Astrophysics Data System (ADS)
Herz, P. R.; Chen, Y.; Aguirre, A. D.; Schneider, K.; Hsiung, P.; Fujimoto, J. G.; Madden, K.; Schmitt, J.; Goodnow, J.; Petersen, C.
2004-10-01
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-µm axial resolution by use of a femtosecond Crforsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.
Landry, Amy; Erwin, Cathleen
2015-01-01
Multidisciplinary teams (MDTs) are used in healthcare organizations to address both clinical and managerial functions. Despite their prevalence, little is known about how team processes work to facilitate effectiveness among MDT leadership teams. This study explores perceptions of MDT participation experienced by organizational leaders in healthcare organizations in the United States. A survey of American College of Healthcare Executives members was conducted to assess involvement and perceptions of MDTs among health care management professionals. Descriptive statistics, independent T-Tests and Chi-square analyses were used to examine participation in MDTs, perception of MDT processes, and the association of participation and perceived processes with employee and organizational characteristics. The survey yielded a sample comprised of 492 healthcare executive or executive-track employees. An overwhelming majority indicated participation in MDTs. The study identified team processes that could use improvement including communication, cooperation, and conflict resolution. The study provides evidence that can help guide the development of training programs that focus on providing managerial leaders with strategies aimed at improving communication, coordination, and conflict resolution that will improve the effectiveness of MDT functioning in healthcare organizations.
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Yuxing; Fan, Jiwen; Xiao, Heng
Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less
Expanding the functionality and applications of nanopore sensors
NASA Astrophysics Data System (ADS)
Venta, Kimberly E.
Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic nanopores, which previously could not be reliably measured. Current nanopore sensor resolution levels have facilitated innovative research on nanoscale systems, including studies of DNA and nanoparticle characterization. Further nanopore system improvements will enable vastly improved DNA sequencing capabilities and open the door to additional nanopore sensing applications.
NASA Astrophysics Data System (ADS)
Nakano, Masuo; Wada, Akiyoshi; Sawada, Masahiro; Yoshimura, Hiromasa; Onishi, Ryo; Kawahara, Shintaro; Sasaki, Wataru; Nasuno, Tomoe; Yamaguchi, Munehiko; Iriguchi, Takeshi; Sugi, Masato; Takeuchi, Yoshiaki
2017-03-01
Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of ˜ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales < 10 km, the development of global nonhydrostatic models with high accuracy is urgently required. The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency. Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.
NASA Technical Reports Server (NTRS)
Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping
2016-01-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).
NASA Astrophysics Data System (ADS)
Tada, Tsutomu; Hitomi, Keitaro; Tanaka, Tomonobu; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo
2011-05-01
Digital pulse processing and electronic noise analysis are proposed for improving energy resolution in planar thallium bromide (TlBr) detectors. An energy resolution of 5.8% FWHM at 662 keV was obtained from a 0.5 mm thick planar TlBr detector at room temperature using a digitizer with a sampling rate of 100 MS/s and 8 bit resolution. The electronic noise in the detector-preamplifier system was measured as a function of pulse shaping time in order to investigate the optimum shaping time for the detector. The depth of interaction (DOI) in TlBr detectors for incident gamma-rays was determined by taking the ratio of pulse heights for fast-shaped to slow-shaped signals. FWHM energy resolution of the detector was improved from 5.8% to 4.2% by implementing depth correction and by using the obtained optimum shaping time.
NASA Astrophysics Data System (ADS)
Adloff, C.; Blaha, J.; Blaising, J.-J.; Drancourt, C.; Espargilière, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S. T.; Sosebee, M.; White, A. P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N. K.; Goto, T.; Mavromanolakis, G.; Thomson, M. A.; Ward, D. R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G. C.; Dyshkant, A.; Lima, J. G. R.; Zutshi, V.; Hostachy, J.-Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.-I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G. W.; Kawagoe, K.; Dauncey, P. D.; Magnan, A.-M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch; Pöschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.
2012-09-01
The energy resolution of a highly granular 1 m3 analogue scintillator-steel hadronic calorimeter is studied using charged pions with energies from 10 GeV to 80 GeV at the CERN SPS. The energy resolution for single hadrons is determined to be approximately 58%/√E/GeV. This resolution is improved to approximately 45%/√E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to geant4 simulations yield resolution improvements comparable to those observed for real data.
Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail
2009-01-01
A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.
Recent Development of TlBr Gamma-Ray Detectors
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Tada, Tsutomu; Kim, Seong-Yun; Wu, Yan; Tanaka, Tomonobu; Shoji, Tadayoshi; Yamazaki, Hiromichi; Ishii, Keizo
2011-08-01
Planar detectors, strip detectors, and double-sided strip detectors were fabricated from TlBr crystals grown by the traveling molten zone method using zone-purified material. The detector performance including the leakage current, energy resolutions, and timing performance were evaluated in order to assess the capability of the detectors for PET and SPECT applications. The TlBr detectors exhibited excellent spectroscopic performance at room temperature. An energy resolution of 3.4% FWHM at 511 keV was obtained from a TlBr planar detector 1 mm thick. A TlBr strip detector 1 mm thick with four anode strip electrodes exhibited almost uniform detector performance over the strips with the average energy resolution of 4.4% FWHM at 511 keV. A TlBr double-sided strip detector exhibited an energy resolution of 6.3% FWHM for 122 keV gamma-rays. Coincidence timing spectra between a TlBr planar detector and a BaF2 scintillation detector were recorded at room temperature. Timing resolutions of 14 ns and 24 ns were obtained from TlBr detectors 0.5 mm and 1 mm thick, respectively. By cooling the detector to 0° C, an improved timing resolution of 12 ns was obtained from a TlBr detector 1 mm thick.
Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps
NASA Astrophysics Data System (ADS)
Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios
2017-09-01
The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.
Muon tomography imaging improvement using optimized limited angle data
NASA Astrophysics Data System (ADS)
Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew
2014-05-01
Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.
Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter
McVey, Mark J.; Spring, Christopher M.; Kuebler, Wolfgang M.
2018-01-01
ABSTRACT Improvements in identification and assessment of extracellular vesicles (EVs) have fuelled a recent surge in EV publications investigating their roles as biomarkers and mediators of disease. Meaningful scientific comparisons are, however, hampered by difficulties in accurate, reproducible enumeration and characterization of EVs in biological fluids. High-sensitivity flow cytometry (FCM) is presently the most commonly applied strategy to assess EVs, yet its utility is limited by variant ability to resolve smaller EVs. Here, we propose the use of 405 nm (violet) wavelength lasers in place of 488 nm (blue) for side scatter (SSC) detection to obtain greater resolution of EVs using high-sensitivity FCM. To test this hypothesis, we modelled EV resolution by violet versus blue SSC in silico and compared resolution of reference beads and biological EVs from plasma and bronchoalveolar lavage (BAL) fluid using either violet or blue wavelength SSC EV detection. Mie scatter modelling predicted that violet as compared to blue SSC increases resolution of small (100–500 nm) spherical particles with refractive indices (1.34–1.46) similar to EVs by approximately twofold in terms of light intensity and by nearly 20% in SSC signal quantum efficiency. Resolution of reference beads was improved by violet instead of blue SSC with two- and fivefold decreases in coefficients of variation for particles of 300–500 nm and 180–240 nm size, respectively. Resolution was similarly improved for detection of EVs from plasma or BAL fluid. Violet SSC detection for high-sensitivity FCM allows for significantly greater resolution of EVs in plasma and BAL compared to conventional blue SSC and particularly improves resolution of smaller EVs. Notably, the proposed strategy is readily implementable and inexpensive for machines already equipped with 405 nm SSC or the ability to accommodate 405/10 nm bandpass filters in their violet detector arrays. PMID:29696076
NASA Astrophysics Data System (ADS)
Wright, L.; Coddington, O.; Pilewskie, P.
2017-12-01
Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. We describe the development of an Informed Non-Negative Matrix Factorization (INMF) spectral unmixing method to exploit this spectral information and separate atmospheric and surface signals based on their physical sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO), with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric and surface conditions. These include atmospheres with varying aerosol optical thicknesses and cloud cover. HICO images also provide a range of surface conditions including deep ocean regions, with only minor contributions from the ocean surfaces; and more complex shallow coastal regions with contributions from the seafloor or suspended sediments. We provide extensive comparison of INMF decomposition results against independent measurements of physical properties. These include comparison against traditional model-based retrievals of water-leaving, aerosol, and molecular scattering radiances and other satellite products, such as aerosol optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS).
Conflict Management: Difficult Conversations with Difficult People
Overton, Amy R.; Lowry, Ann C.
2013-01-01
Conflict occurs frequently in any workplace; health care is not an exception. The negative consequences include dysfunctional team work, decreased patient satisfaction, and increased employee turnover. Research demonstrates that training in conflict resolution skills can result in improved teamwork, productivity, and patient and employee satisfaction. Strategies to address a disruptive physician, a particularly difficult conflict situation in healthcare, are addressed. PMID:24436688
Gregory M. Bonito; James M. Trappe; Pat Rawlinson; Rytas Vilgalys
2010-01-01
Tuber gibbosum Harkn., described from northern California, originally was thought to be a single, variable species that fruited from autumn through winter to spring. It has become popular as a culinary truffle in northwestern USA, where it is commercially harvested. Morphological studies suggested it might be a complex that includes at least two...
Ideas for Future GPS Timing Improvements
NASA Technical Reports Server (NTRS)
Hutsell, Steven T.
1996-01-01
Having recently met stringent criteria for full operational capability (FOC) certification, the Global Positioning System (GPS) now has higher customer expectations than ever before. In order to maintain customer satisfaction, and the meet the even high customer demands of the future, the GPS Master Control Station (MCS) must play a critical role in the process of carefully refining the performance and integrity of the GPS constellation, particularly in the area of timing. This paper will present an operational perspective on several ideas for improving timing in GPS. These ideas include the desire for improving MCS - US Naval Observatory (USNO) data connectivity, an improved GPS-Coordinated Universal Time (UTC) prediction algorithm, a more robust Kalman Filter, and more features in the GPS reference time algorithm (the GPS composite clock), including frequency step resolution, a more explicit use of the basic time scale equation, and dynamic clock weighting. Current MCS software meets the exceptional challenge of managing an extremely complex constellation of 24 navigation satellites. The GPS community will, however, always seek to improve upon this performance and integrity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artuso, M.; et al.,
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In additionmore » the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.« less
Sensor Compendium - A Snowmass Whitepaper-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Artuso, M.; Battaglia, M.; Bolla, G.
Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In additionmore » the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.« less
High resolution imaging and wavefront aberration correction in plenoptic systems.
Trujillo-Sevilla, J M; Rodríguez-Ramos, L F; Montilla, I; Rodríguez-Ramos, J M
2014-09-01
Plenoptic imaging systems are becoming more common since they provide capabilities unattainable in conventional imaging systems, but one of their main limitations is the poor bidimensional resolution. Combining the wavefront phase measurement and the plenoptic image deconvolution, we propose a system capable of improving the resolution when a wavefront aberration is present and the image is blurred. In this work, a plenoptic system is simulated using Fourier optics, and the results show that an improved resolution is achieved, even in the presence of strong wavefront aberrations.
NASA Astrophysics Data System (ADS)
Teixeira, J. C.; Carvalho, A. C.; Carvalho, M. J.; Luna, T.; Rocha, A.
2014-08-01
The advances in satellite technology in recent years have made feasible the acquisition of high-resolution information on the Earth's surface. Examples of such information include elevation and land use, which have become more detailed. Including this information in numerical atmospheric models can improve their results in simulating lower boundary forced events, by providing detailed information on their characteristics. Consequently, this work aims to study the sensitivity of the weather research and forecast (WRF) model to different topography as well as land-use simulations in an extreme precipitation event. The test case focused on a topographically driven precipitation event over the island of Madeira, which triggered flash floods and mudslides in the southern parts of the island. Difference fields between simulations were computed, showing that the change in the data sets produced statistically significant changes to the flow, the planetary boundary layer structure and precipitation patterns. Moreover, model results show an improvement in model skill in the windward region for precipitation and in the leeward region for wind, in spite of the non-significant enhancement in the overall results with higher-resolution data sets of topography and land use.
Senda, Miki; Muto, Shinsuke; Horikoshi, Masami; Senda, Toshiya
2008-10-01
One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Ibeta/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Ibeta/INHAT crystals from around 5.5 to 2.3 A without changing the crystallization conditions.
Mask manufacturing of advanced technology designs using multi-beam lithography (Part 1)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-10-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced Optical Proximity Correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking Sub-Resolution Assist Features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, we study one such process, characterizing mask manufacturing capability of 10nm and below structures with particular focus on minimum resolution and pattern fidelity.
Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions
NASA Astrophysics Data System (ADS)
Weichman, Marissa L.; Neumark, Daniel M.
2018-04-01
Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm‑1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.
The High Resolution Powder Diffraction Beam Line at ESRF.
Fitch, A N
2004-01-01
The optical design and performance of the high-resolution powder diffraction beam line BM16 at ESRF are discussed and illustrated. Some recent studies carried out on BM16 are described, including crystal structure solution and refinement, anomalous scattering, in situ measurements, residual strain in engineering components, investigation of microstructure, and grazing-incidence diffraction from surface layers. The beam line is built on a bending magnet, and operates in the energy range from 5 keV to 40 keV. After the move to an undulator source in 2002, it will benefit from an extented energy range up to 60 keV and increased flux and resolution. It is anticipated that enhancements to the data quality will be achieved, leading to the solution of larger crystal structures, and improvements in the accuracy of refined structures. The systematic exploitation of anisotropic thermal expansion will help reduce the effects of peak overlap in the analysis of powder diffraction data.
Short range, ultra-wideband radar with high resolution swept range gate
McEwan, T.E.
1998-05-26
A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. 14 figs.
NASA Astrophysics Data System (ADS)
Cox, Stephen J.; Stackhouse, Paul W.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping
2017-02-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current Release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institute Aerosol Climatology (MAC), and temperature and moisture profiles from nnHIRS.
NASA Astrophysics Data System (ADS)
Mandai, Shingo; Jain, Vishwas; Charbon, Edoardo
2014-02-01
This paper presents a digital silicon photomultiplier (SiPM) partitioned in columns, whereas each column is connected to a column-parallel time-to-digital converter (TDC), in order to improve the timing resolution of single-photon detection. By reducing the number of pixels per TDC using a sharing scheme with three TDCs per column, the pixel-to-pixel skew is reduced. We report the basic characterization of the SiPM, comprising 416 single-photon avalanche diodes (SPADs); the characterization includes photon detection probability, dark count rate, afterpulsing, and crosstalk. We achieved 264-ps full-width at half maximum timing resolution of single-photon detection using a 48-fold column-parallel TDC with a temporal resolution of 51.8 ps (least significant bit), fully integrated in standard complementary metal-oxide semiconductor technology.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Short range, ultra-wideband radar with high resolution swept range gate
McEwan, Thomas E.
1998-05-26
A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with a typical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control.
Stridor and dysphagia associated with subthalamic nucleus stimulation in Parkinson disease.
Fagbami, Oluwakemi Y; Donato, Anthony A
2011-11-01
Refractory symptoms in Parkinson disease show good response to deep brain stimulation (DBS). This procedure improves United Parkinson's Disease Rating Scale scores and reduces dyskinesias, whereas speech and swallowing dysfunction typically do not improve and may even worsen. Rarely, DBS can cause idiosyncratic dystonias of muscle groups, including those of the neck and throat. The authors describe a patient experiencing stridor and dysphagia with confirmed pulmonary restriction and aspiration following subthalamic nucleus deep brain stimulator adjustment, with a resolution of symptoms and signs when the stimulator was switched off.
Massover, William H
2011-02-01
Resolution in transmission electron microscopy (TEM) now is limited by the properties of specimens, rather than by those of instrumentation. The long-standing difficulties in obtaining truly high-resolution structure from biological macromolecules with TEM demand the development, testing, and application of new ideas and unconventional approaches. This review concisely describes some new concepts and innovative methodologies for TEM that deal with unsolved problems in the preparation and preservation of macromolecular specimens. The selected topics include use of better support films, a more protective multi-component matrix surrounding specimens for cryo-TEM and negative staining, and, several quite different changes in microscopy and micrography that should decrease the effects of electron radiation damage; all these practical approaches are non-traditional, but have promise to advance resolution for specimens of biological macromolecules beyond its present level of 3-10 Å (0.3-1.0 nm). The result of achieving truly high resolution will be a fulfillment of the still unrealized potential of transmission electron microscopy for directly revealing the structure of biological macromolecules down to the atomic level. Published by Elsevier Ltd.
Understanding healthcare professionals' self-efficacy to resolve interprofessional conflict.
Sexton, Martha; Orchard, Carole
2016-05-01
Conflict within interprofessional healthcare teams, when not effectively resolved, has been linked to detrimental consequences; however, effective conflict resolution has been shown to enhance team performance, increase patient safety, and improve patient outcomes. Alarmingly, knowledge of healthcare professionals' ability to resolve conflict has been limited, largely due to the challenges that arise when researchers attempt to observe a conflict occurring in real time. Research literature has identified three central components that seem to influence healthcare professional's perceived ability to resolve conflict: communication competence, problem-solving ability, and conflict resolution education and training. The purpose of this study was to investigate the impact of communication competence, problem-solving ability, and conflict resolution education and training on healthcare professionals' perceived ability to resolve conflicts. This study employed a cross-sectional survey design. Multiple regression analyses demonstrated that two of the three central components-conflict resolution education and training and communication competence-were found to be statistically significant predictors of healthcare professionals' perceived ability to resolve conflict. Implications include a call to action for clinicians and academicians to recognize the importance of communication competence and conflict resolution education and training as a vital area in interprofessional pre- and post-licensure education and collaborative practice.
7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido
2014-06-09
Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystalmore » diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.« less
7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan
2014-01-01
Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166
Optimisation of a propagation-based x-ray phase-contrast micro-CT system
NASA Astrophysics Data System (ADS)
Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.
2018-03-01
Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.
Predictive displays for a process-control schematic interface.
Yin, Shanqing; Wickens, Christopher D; Helander, Martin; Laberge, Jason C
2015-02-01
Our objective was to examine the extent to which increasing precision of predictive (rate of change) information in process control will improve performance on a simulated process-control task. Predictive displays have been found to be useful in process control (as well as aviation and maritime industries). However, authors of prior research have not examined the extent to which predictive value is increased by increasing predictor resolution, nor has such research tied potential improvements to changes in process control strategy. Fifty nonprofessional participants each controlled a simulated chemical mixture process (honey mixer simulation) that simulated the operations found in process control. Participants in each of five groups controlled with either no predictor or a predictor ranging in the resolution of prediction of the process. Increasing detail resolution generally increased the benefit of prediction over the control condition although not monotonically so. The best overall performance, combining quality and predictive ability, was obtained by the display of intermediate resolution. The two displays with the lowest resolution were clearly inferior. Predictors with higher resolution are of value but may trade off enhanced sensitivity to variable change (lower-resolution discrete state predictor) with smoother control action (higher-resolution continuous predictors). The research provides guidelines to the process-control industry regarding displays that can most improve operator performance.
Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model
NASA Technical Reports Server (NTRS)
Molod, Andrea
2012-01-01
Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.
Exploring image data assimilation in the prospect of high-resolution satellite data
NASA Astrophysics Data System (ADS)
Verron, J. A.; Duran, M.; Gaultier, L.; Brankart, J. M.; Brasseur, P.
2016-02-01
Many recent works show the key importance of studying the ocean at fine scales including the meso- and submesoscales. Satellite observations such as ocean color data provide informations on a wide range of scales but do not directly provide information on ocean dynamics. Satellite altimetry provide informations on the ocean dynamic topography (SSH) but so far with a limited resolution in space and even more, in time. However, in the near future, high-resolution SSH data (e.g. SWOT) will give a vision of the dynamic topography at such fine space resolution. This raises some challenging issues for data assimilation in physical oceanography: develop reliable methodology to assimilate high resolution data, make integrated use of various data sets including biogeochemical data, and even more simply, solve the challenge of handling large amont of data and huge state vectors. In this work, we propose to consider structured information rather than pointwise data. First, we take an image data assimilation approach in studying the feasibility of inverting tracer observations from Sea Surface Temperature and/or Ocean Color datasets, to improve the description of mesoscale dynamics provided by altimetric observations. Finite Size Lyapunov Exponents are used as an image proxy. The inverse problem is formulated in a Bayesian framework and expressed in terms of a cost function measuring the misfits between the two images. Second, we explore the inversion of SWOT-like high resolution SSH data and more especially the various possible proxies of the actual SSH that could be used to control the ocean circulation at various scales. One focus is made on controlling the subsurface ocean from surface only data. A key point lies in the errors and uncertainties that are associated to SWOT data.
Generalized PSF modeling for optimized quantitation in PET imaging.
Ashrafinia, Saeed; Mohy-Ud-Din, Hassan; Karakatsanis, Nicolas A; Jha, Abhinav K; Casey, Michael E; Kadrmas, Dan J; Rahmim, Arman
2017-06-21
Point-spread function (PSF) modeling offers the ability to account for resolution degrading phenomena within the PET image generation framework. PSF modeling improves resolution and enhances contrast, but at the same time significantly alters image noise properties and induces edge overshoot effect. Thus, studying the effect of PSF modeling on quantitation task performance can be very important. Frameworks explored in the past involved a dichotomy of PSF versus no-PSF modeling. By contrast, the present work focuses on quantitative performance evaluation of standard uptake value (SUV) PET images, while incorporating a wide spectrum of PSF models, including those that under- and over-estimate the true PSF, for the potential of enhanced quantitation of SUVs. The developed framework first analytically models the true PSF, considering a range of resolution degradation phenomena (including photon non-collinearity, inter-crystal penetration and scattering) as present in data acquisitions with modern commercial PET systems. In the context of oncologic liver FDG PET imaging, we generated 200 noisy datasets per image-set (with clinically realistic noise levels) using an XCAT anthropomorphic phantom with liver tumours of varying sizes. These were subsequently reconstructed using the OS-EM algorithm with varying PSF modelled kernels. We focused on quantitation of both SUV mean and SUV max , including assessment of contrast recovery coefficients, as well as noise-bias characteristics (including both image roughness and coefficient of-variability), for different tumours/iterations/PSF kernels. It was observed that overestimated PSF yielded more accurate contrast recovery for a range of tumours, and typically improved quantitative performance. For a clinically reasonable number of iterations, edge enhancement due to PSF modeling (especially due to over-estimated PSF) was in fact seen to lower SUV mean bias in small tumours. Overall, the results indicate that exactly matched PSF modeling does not offer optimized PET quantitation, and that PSF overestimation may provide enhanced SUV quantitation. Furthermore, generalized PSF modeling may provide a valuable approach for quantitative tasks such as treatment-response assessment and prognostication.
High resolution change estimation of soil moisture and its assimilation into a land surface model
NASA Astrophysics Data System (ADS)
Narayan, Ujjwal
Near surface soil moisture plays an important role in hydrological processes including infiltration, evapotranspiration and runoff. These processes depend non-linearly on soil moisture and hence sub-pixel scale soil moisture variability characterization is important for accurate modeling of water and energy fluxes at the pixel scale. Microwave remote sensing has evolved as an attractive technique for global monitoring of near surface soil moisture. A radiative transfer model has been tested and validated for soil moisture retrieval from passive microwave remote sensing data under a full range of vegetation water content conditions. It was demonstrated that soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture are attainable with vegetation water content as high as 5 kg/m2. Recognizing the limitation of low spatial resolution associated with passive sensors, an algorithm that uses low resolution passive microwave (radiometer) and high resolution active microwave (radar) data to estimate soil moisture change at the spatial resolution of radar operation has been developed and applied to coincident Passive and Active L and S band (PALS) and Airborne Synthetic Aperture Radar (AIRSAR) datasets acquired during the Soil Moisture Experiments in 2002 (SMEX02) campaign with root mean square error of 10% and a 4 times enhancement in spatial resolution. The change estimation algorithm has also been used to estimate soil moisture change at 5 km resolution using AMSR-E soil moisture product (50 km) in conjunction with the TRMM-PR data (5 km) for a 3 month period demonstrating the possibility of high resolution soil moisture change estimation using satellite based data. Soil moisture change is closely related to precipitation and soil hydraulic properties. A simple assimilation framework has been implemented to investigate whether assimilation of surface layer soil moisture change observations into a hydrologic model will potentially improve it performance. Results indicate an improvement in model prediction of near surface and deep layer soil moisture content when the update is performed to the model state as compared to free model runs. It is also seen that soil moisture change assimilation is able to mitigate the effect of erroneous precipitation input data.
NASA Astrophysics Data System (ADS)
Brown, I.; Wennbom, M.
2013-12-01
Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors derived are evaluated using independent high spatial resolution datasets that reveal the pattern and health of vegetation at metre scales. We also use climate variables to support the interpretation of these data. We conclude that the spatio-temporal patterns in Darfur vegetation and climate datasets suggest that labelling the conflict a climate-change conflict is inaccurate and premature.
GPU-accelerated two dimensional synthetic aperture focusing for photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Liu, Siyu; Feng, Xiaohua; Gao, Fei; Jin, Haoran; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin
2018-02-01
Acoustic resolution photoacoustic microscopy (AR-PAM) generally suffers from limited depth of focus, which had been extended by synthetic aperture focusing techniques (SAFTs). However, for three dimensional AR-PAM, current one dimensional (1D) SAFT and its improved version like cross-shaped SAFT do not provide isotropic resolution in the lateral direction. The full potential of the SAFT remains to be tapped. To this end, two dimensional (2D) SAFT with fast computing architecture is proposed in this work. Explained by geometric modeling and Fourier acoustics theories, 2D-SAFT provide the narrowest post-focusing capability, thus to achieve best lateral resolution. Compared with previous 1D-SAFT techniques, the proposed 2D-SAFT improved the lateral resolution by at least 1.7 times and the signal-to-noise ratio (SNR) by about 10 dB in both simulation and experiments. Moreover, the improved 2D-SAFT algorithm is accelerated by a graphical processing unit that reduces the long period of reconstruction to only a few seconds. The proposed 2D-SAFT is demonstrated to outperform previous reported 1D SAFT in the aspects of improving the depth of focus, imaging resolution, and SNR with fast computational efficiency. This work facilitates future studies on in vivo deeper and high-resolution photoacoustic microscopy beyond several centimeters.
Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)
NASA Astrophysics Data System (ADS)
Green, Michael; Ham, Young; Dillon, Brian; Kasprowicz, Bryan; Hur, Ik Boum; Park, Joong Hee; Choi, Yohan; McMurran, Jeff; Kamberian, Henry; Chalom, Daniel; Klikovits, Jan; Jurkovic, Michal; Hudek, Peter
2016-09-01
As optical lithography is extended into 10nm and below nodes, advanced designs are becoming a key challenge for mask manufacturers. Techniques including advanced optical proximity correction (OPC) and Inverse Lithography Technology (ILT) result in structures that pose a range of issues across the mask manufacturing process. Among the new challenges are continued shrinking sub-resolution assist features (SRAFs), curvilinear SRAFs, and other complex mask geometries that are counter-intuitive relative to the desired wafer pattern. Considerable capability improvements over current mask making methods are necessary to meet the new requirements particularly regarding minimum feature resolution and pattern fidelity. Advanced processes using the IMS Multi-beam Mask Writer (MBMW) are feasible solutions to these coming challenges. In this paper, Part 2 of our study, we further characterize an MBMW process for 10nm and below logic node mask manufacturing including advanced pattern analysis and write time demonstration.
Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA
Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.
2001-01-01
The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.
Zhang, Zhe; Schindler, Christina E. M.; Lange, Oliver F.; Zacharias, Martin
2015-01-01
The high-resolution refinement of docked protein-protein complexes can provide valuable structural and mechanistic insight into protein complex formation complementing experiment. Monte Carlo (MC) based approaches are frequently applied to sample putative interaction geometries of proteins including also possible conformational changes of the binding partners. In order to explore efficiency improvements of the MC sampling, several enhanced sampling techniques, including temperature or Hamiltonian replica exchange and well-tempered ensemble approaches, have been combined with the MC method and were evaluated on 20 protein complexes using unbound partner structures. The well-tempered ensemble method combined with a 2-dimensional temperature and Hamiltonian replica exchange scheme (WTE-H-REMC) was identified as the most efficient search strategy. Comparison with prolonged MC searches indicates that the WTE-H-REMC approach requires approximately 5 times fewer MC steps to identify near native docking geometries compared to conventional MC searches. PMID:26053419
Millimeter wavelength propagation studies
NASA Technical Reports Server (NTRS)
Hodge, D. B.
1974-01-01
The investigations conducted for the Millimeter Wavelength Propagation Studies during the period December, 1966, to June 1974 are reported. These efforts included the preparation for the ATS-5 Millimeter Wavelength Propagation Experiment and the subsequent data acquisition and data analysis. The emphasis of the OSU participation in this experiment was placed on the determination of reliability improvement resulting from the use of space diversity on a millimeter wavelength earth-space communication link. Related measurements included the determination of the correlation between radiometric temperature and attenuation along the earth-space propagation path. Along with this experimental effort a theoretical model was developed for the prediction of attenuation statistics on single and spatially separated earth space propagation paths. A High Resolution Radar/Radiometer System and Low Resolution Radar System were developed and implemented for the study of intense rain cells in preparation for the ATS-6 Millimeter Wavelength Propagation Experiment.
True resolution enhancement for optical spectroscopy
NASA Astrophysics Data System (ADS)
Cooper, Justin T.; Oleske, Jeffrey B.
2018-02-01
Resolving spectrally adjacent peaks is important for techniques, such as tracking small shifts in Raman or fluorescence spectra, quantifying pharmaceutical polymorph ratios, or molecular orientation studies. Thus, suitable spectral resolution is a vital consideration when designing most spectroscopic systems. Most parameters that influence spectral resolution are fixed for a given system (spectrometer length, grating groove density, excitation source, CCD pixel size, etc.). Inflexible systems are non-problematic if the spectrometer is dedicated for a single purpose; however, these specifications cannot be optimized for different applications with wider range resolution requirements. Data processing techniques, including peak fitting, partial least squares, or principal component analysis, are typically used to achieve sub-optical resolution information. These techniques can be plagued by spectral artifacts introduced by post-processing as well as the subjective implementation of statistical parameters. TruRes™, from Andor Technology, uses an innovative optical means to greatly improve and expand the range of spectral resolutions accessible on a single setup. True spectral resolution enhancement of >30% is achieved without mathematical spectral alteration, dataprocessing, or spectrometer component changes. Discreet characteristic spectral lines from Laser-Induced Breakdown Spectroscopy (LIBS) and atomic calibration sources are now fully resolved from spectrally-adjacent peaks under otherwise identical configuration. TruRes™ has added advantage of increasing the spectral resolution without sacrificing bandpass. Using TruRes™ the Kymera 328i resolution can approach that of a 500 mm focal spectrometer. Furthermore, the bandpass of a 500 mm spectrograph with would be 50% narrower than the Kymera 328i with all other spectrometer components constant. However, the Kymera 328i with TruRes™ is able to preserve a 50% wider bandpass.
Spatial and temporal resolution effects on urban catchments with different imperviousness degrees
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.
2015-04-01
One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.
Clinical outcome of pediatric collagenous gastritis: case series and review of literature.
Hijaz, Nadia Mazen; Septer, Seth Steven; Degaetano, James; Attard, Thomas Mario
2013-03-07
Collagenous gastritis (CG) is characterized by patchy subepithelial collagen bands. Effective treatment and the clinical and histological outcome of CG in children are poorly defined. The aim of this study is to summarize the published literature on the clinical outcome and response to therapy of pediatric CG including two new cases. We performed a search in Pubmed, OVID for related terms; articles including management and clinical and/or endo-histologic follow up information were included and abstracted. Reported findings were pooled in a dedicated database including the corresponding data extracted from chart review in our patients with CG. Twenty-four patients were included (17 females) with a mean age of 11.7 years. The clinical presentation included iron deficiency anemia and dyspepsia. The reported duration of follow up (in 18 patients) ranged between 0.2-14 years. Despite most subjects presenting with anemia including one requiring blood transfusion, oral iron therapy was only documented in 12 patients. Other treatment modalities were antisecretory measures in 13 patients; proton pump inhibitors (12), or histamine-2 blockers (3), sucralfate (5), prednisolone (6), oral budesonide in 3 patients where one received it in fish oil and triple therapy (3). Three (13%) patients showed no clinical improvement despite therapy; conversely 19 out of 22 were reported with improved symptoms including 8 with complete symptom resolution. Spontaneous clinical resolution without antisecretory, anti-inflammatory or gastroprotective agents was noted in 5 patients (4 received only supplemental iron). Follow up endo-histopathologic data (17 patients) included persistent collagen band and stable Mononuclear cell infiltrate in 12 patients with histopathologic improvement in 5 patients. Neither collagen band thickness nor mononuclear cell infiltrate correlated with clinical course. Intestinal metaplasia and endocrine cell hyperplasia were reported (1) raising the concern of long term malignant transformation. In summary, CG in children is a chronic disease, typically with a variable clinical response and an indolent course that is distinct from the adult phenotype. Long term therapy usually included iron supplementation but cannot be standardized, given the chronicity of the disease, variability of response and potential for adverse events.
Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.
Herz, P R; Chen, Y; Aguirre, A D; Schneider, K; Hsiung, P; Fujimoto, J G; Madden, K; Schmitt, J; Goodnow, J; Petersen, C
2004-10-01
A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.
NASA Astrophysics Data System (ADS)
Wiggins, B. B.; deSouza, Z. O.; Vadas, J.; Alexander, A.; Hudan, S.; deSouza, R. T.
2017-11-01
A second generation position-sensitive microchannel plate detector using the induced signal approach has been realized. This detector is presently capable of measuring the incident position of electrons, photons, or ions. To assess the spatial resolution, the masked detector was illuminated by electrons. The initial, measured spatial resolution of 276 μm FWHM was improved by requiring a minimum signal amplitude on the anode and by employing digital signal processing techniques. The resulting measured spatial resolution of 119 μm FWHM corresponds to an intrinsic resolution of 98 μm FWHM when the effect of the finite slit width is de-convoluted. This measurement is a substantial improvement from the last reported spatial resolution of 466 μm FWHM using the induced signal approach. To understand the factors that limit the measured resolution, the performance of the detector is simulated.
NASA Astrophysics Data System (ADS)
Park, Haemi; Im, Jungho; Kim, Miae
2016-04-01
Photosynthesis of plants is the main mechanism of carbon absorption from the atmosphere into the terrestrial ecosystem and it contributes to remove greenhouse gases such as carbon dioxide. Annually, 120 Gt of C is supposed to be assimilated through photosynthetic activity of plants as the gross primary production (GPP) over global land area. In terms of climate change, GPP modelling is essential to understand carbon cycle and the balance of carbon budget over various ecosystems. One of the GPP modelling approaches uses light use efficiency that each vegetation type has a specific efficiency for consuming solar radiation related with temperature and humidity. Satellite data can be used to measure various meteorological and biophysical factors over vast areas, which can be used to quantify GPP. NASA Earth Observing System (EOS) program provides Moderate Resolution Imaging Spectroradiometer (MODIS)-derived global GPP product, namely MOD17A2H, on a daily basis. However, significant underestimation of MOD17A2H has been reported in Eastern Asia due to its dense forest distribution and humid condition during monsoon rainy season in summer. The objective of this study was to improve underestimation of MODIS GPP (MOD17A2H) by incorporating meteorological data-temperature, relative humidity, and solar radiation-of higher spatial resolution than data used in MOD17A2H. Landsat-based land cover maps of finer resolution observation and monitoring - global land cover (FROM-GLC) at 30m resolution were used for selection of light use efficiency (LUE). GPP (eq1. GPP = APAR×LUE) is computed by multiplication of APAR (IPAR×fPAR) and LUE (ɛ= ɛmax×T(°C)scalar×VPD(Pa)scalar, where, T is temperature, VPD is vapour pressure deficit) in this study. Meteorological data of Japanese 55-year Reanalysis (JRA-55, 0.56° grid, 3hr) were used for calculation of GPP in East Asia, including Eastern part of China, Korean peninsula, and Japan. Results were validated using flux tower-observed GPP data of AsiaFlux. Results showed that about 40% of underestimation of monthly average of MOD17A2H is confirmed and underestimation of MOD17A2 was improved from 42.3% and 60.4% to 8.3% and -26.2% for two flux tower sites (API site in Japan and GCK site in Korea), respectively. These improvements suggest that correction of LUE by finer land cover classification and/or better frequency of solar radiation data is effective where MOD17A2H does not work well. Further research will include evaluation of the proposed approach over areas in different climate conditions and environments.
Low-cost, high-resolution scanning laser ophthalmoscope for the clinical environment
NASA Astrophysics Data System (ADS)
Soliz, P.; Larichev, A.; Zamora, G.; Murillo, S.; Barriga, E. S.
2010-02-01
Researchers have sought to gain greater insight into the mechanisms of the retina and the optic disc at high spatial resolutions that would enable the visualization of small structures such as photoreceptors and nerve fiber bundles. The sources of retinal image quality degradation are aberrations within the human eye, which limit the achievable resolution and the contrast of small image details. To overcome these fundamental limitations, researchers have been applying adaptive optics (AO) techniques to correct for the aberrations. Today, deformable mirror based adaptive optics devices have been developed to overcome the limitations of standard fundus cameras, but at prices that are typically unaffordable for most clinics. In this paper we demonstrate a clinically viable fundus camera with auto-focus and astigmatism correction that is easy to use and has improved resolution. We have shown that removal of low-order aberrations results in significantly better resolution and quality images. Additionally, through the application of image restoration and super-resolution techniques, the images present considerably improved quality. The improvements lead to enhanced visualization of retinal structures associated with pathology.
Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M
2016-06-01
MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (<5 ppm) and resolving power (∼75 000 at m/z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
History of one family of atmospheric radiative transfer codes
NASA Astrophysics Data System (ADS)
Anderson, Gail P.; Wang, Jinxue; Hoke, Michael L.; Kneizys, F. X.; Chetwynd, James H., Jr.; Rothman, Laurence S.; Kimball, L. M.; McClatchey, Robert A.; Shettle, Eric P.; Clough, Shepard (.; Gallery, William O.; Abreu, Leonard W.; Selby, John E. A.
1994-12-01
Beginning in the early 1970's, the then Air Force Cambridge Research Laboratory initiated a program to develop computer-based atmospheric radiative transfer algorithms. The first attempts were translations of graphical procedures described in a 1970 report on The Optical Properties of the Atmosphere, based on empirical transmission functions and effective absorption coefficients derived primarily from controlled laboratory transmittance measurements. The fact that spectrally-averaged atmospheric transmittance (T) does not obey the Beer-Lambert Law (T equals exp(-(sigma) (DOT)(eta) ), where (sigma) is a species absorption cross section, independent of (eta) , the species column amount along the path) at any but the finest spectral resolution was already well known. Band models to describe this gross behavior were developed in the 1950's and 60's. Thus began LOWTRAN, the Low Resolution Transmittance Code, first released in 1972. This limited initial effort has how progressed to a set of codes and related algorithms (including line-of-sight spectral geometry, direct and scattered radiance and irradiance, non-local thermodynamic equilibrium, etc.) that contain thousands of coding lines, hundreds of subroutines, and improved accuracy, efficiency, and, ultimately, accessibility. This review will include LOWTRAN, HITRAN (atlas of high-resolution molecular spectroscopic data), FASCODE (Fast Atmospheric Signature Code), and MODTRAN (Moderate Resolution Transmittance Code), their permutations, validations, and applications, particularly as related to passive remote sensing and energy deposition.
High-resolution mapping of vehicle emissions in China in 2008
NASA Astrophysics Data System (ADS)
Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.
2014-09-01
This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.
Ping Gong; Pengfei Song; Shigao Chen
2017-06-01
The development of ultrafast ultrasound imaging offers great opportunities to improve imaging technologies, such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, there are tradeoffs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Various approaches have been proposed to solve this tradeoff, such as multiplane wave imaging or the attempts of implementing synthetic transmit aperture imaging. In this paper, we propose an ultrafast synthetic transmit aperture (USTA) imaging technique using Hadamard-encoded virtual sources with overlapping sub-apertures to enhance both image SNR and resolution without sacrificing frame rate. This method includes three steps: 1) create virtual sources using sub-apertures; 2) encode virtual sources using Hadamard matrix; and 3) add short time intervals (a few microseconds) between transmissions of different virtual sources to allow overlapping sub-apertures. The USTA was tested experimentally with a point target, a B-mode phantom, and in vivo human kidney micro-vessel imaging. Compared with standard coherent diverging wave compounding with the same frame rate, improvements on image SNR, lateral resolution (+33%, with B-mode phantom imaging), and contrast ratio (+3.8 dB, with in vivo human kidney micro-vessel imaging) have been achieved. The f-number of virtual sources, the number of virtual sources used, and the number of elements used in each sub-aperture can be flexibly adjusted to enhance resolution and SNR. This allows very flexible optimization of USTA for different applications.
Multifeature-based high-resolution palmprint recognition.
Dai, Jifeng; Zhou, Jie
2011-05-01
Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.
Torsional tapping atomic force microscopy for molecular resolution imaging of soft matter
NASA Astrophysics Data System (ADS)
Hobbs, Jamie; Mullin, Nic
2012-02-01
Despite considerable advances in image resolution on challenging, soft systems, a method for obtaining molecular resolution on `real' samples with significant surface roughness has remained elusive. Here we will show that a relatively new technique, torsional tapping AFM (TTAFM), is capable of imaging with resolution down to 3.7 Angrstrom on the surface of `bulk' polymer films [1]. In TTAFM T-shaped cantilevers are driven into torsional oscillation. As the tip is offset from the rotation axis this provides a tapping motion. Due to the high frequency and Q of the oscillation and relatively small increase in spring constant, improved cantilever dynamics and force sensitivity are obtained. As the tip offset from the torsional axis is relatively small (typically 25 microns), the optical lever sensitivity is considerably improved compared to flexural oscillation. Combined these give a reduction in noise floor by a factor of 12 just by changing the cantilever geometry. The ensuing low noise allows the use of ultra-sharp `whisker' tips with minimal blunting. As the cantilevers remain soft in the flexural axis, the force when imaging with error is also reduced, further protecting the tip. We will show that this combination allows routine imaging of the molecular structure of semicrystalline polymer films, including chain folds, loose loops and tie-chains in polyethylene, and the helical conformation of polypropylene within the crystal, using a standard, commercial AFM. [4pt] [1] N Mullin, JK Hobbs, PRL 107, 197801 (2011)
Liquid crystal light valve technologies for display applications
NASA Astrophysics Data System (ADS)
Kikuchi, Hiroshi; Takizawa, Kuniharu
2001-11-01
The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim
2014-01-01
To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less
Mesquita, Rosilene Oliveira; de Almeida Soares, Eduardo; de Barros, Everaldo Gonçalves; Loureiro, Marcelo Ehlers
2012-01-01
The most critical step in any proteomic study is protein extraction and sample preparation. Better solubilization increases the separation and resolution of gels, allowing identification of a higher number of proteins and more accurate quantitation of differences in gene expression. Despite the existence of published results for the optimization of proteomic analyses of soybean seeds, no comparable data are available for proteomic studies of soybean leaf tissue. In this work we have tested the effects of modification of a TCA-acetone method on the resolution of 2-DE gels of leaves and roots of soybean. Better focusing was obtained when both mercaptoethanol and dithiothreitol were used in the extraction buffer simultaneously. Increasing the number of washes of TCA precipitated protein with acetone, using a final wash with 80% ethanol and using sonication to ressuspend the pellet increased the number of detected proteins as well the resolution of the 2-DE gels. Using this approach we have constructed a soybean protein map. The major group of identified proteins corresponded to genes of unknown function. The second and third most abundant groups of proteins were composed of photosynthesis and metabolism related genes. The resulting protocol improved protein solubility and gel resolution allowing the identification of 122 soybean leaf proteins, 72 of which were not detected in other published soybean leaf 2-DE gel datasets, including a transcription factor and several signaling proteins. PMID:22802721
NASA Astrophysics Data System (ADS)
Ahmad, Sabrina; Jalil, Intan Ermahani A.; Ahmad, Sharifah Sakinah Syed
2016-08-01
It is seldom technical issues which impede the process of eliciting software requirements. The involvement of multiple stakeholders usually leads to conflicts and therefore the need of conflict detection and resolution effort is crucial. This paper presents a conceptual model to further improve current efforts. Hence, this paper forwards an improved conceptual model to assist the conflict detection and resolution effort which extends the model ability and improves overall performance. The significant of the new model is to empower the automation of conflicts detection and its severity level with rule-based reasoning.
A method to improve the range resolution in stepped frequency continuous wave radar
NASA Astrophysics Data System (ADS)
Kaczmarek, Paweł
2018-04-01
In the paper one of high range resolution methods - Aperture Sampling - was analysed. Unlike MUSIC based techniques it proved to be very efficient in terms of achieving unambiguous synthetic range profile for ultra-wideband stepped frequency continuous wave radar. Assuming that minimal distance required to separate two targets in depth (distance) corresponds to -3 dB width of received echo, AS provided a 30,8 % improvement in range resolution in analysed scenario, when compared to results of applying IFFT. Output data is far superior in terms of both improved range resolution and reduced side lobe level than used typically in this area Inverse Fourier Transform. Furthermore it does not require prior knowledge or an estimate of number of targets to be detected in a given scan.
Holloway, Jason; Wu, Yicheng; Sharma, Manoj K.; Cossairt, Oliver; Veeraraghavan, Ashok
2017-01-01
Synthetic aperture radar is a well-known technique for improving resolution in radio imaging. Extending these synthetic aperture techniques to the visible light domain is not straightforward because optical receivers cannot measure phase information. We propose to use macroscopic Fourier ptychography (FP) as a practical means of creating a synthetic aperture for visible imaging to achieve subdiffraction-limited resolution. We demonstrate the first working prototype for macroscopic FP in a reflection imaging geometry that is capable of imaging optically rough objects. In addition, a novel image space denoising regularization is introduced during phase retrieval to reduce the effects of speckle and improve perceptual quality of the recovered high-resolution image. Our approach is validated experimentally where the resolution of various diffuse objects is improved sixfold. PMID:28439550
NASA Astrophysics Data System (ADS)
Hasegawa, Hideyuki
2017-07-01
The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).
Science Enabling Applications of Gridded Radiances and Products
NASA Astrophysics Data System (ADS)
Goldberg, M.; Wolf, W.; Zhou, L.
2005-12-01
New generations of hyperspectral sounders and imagers are not only providing vastly improved information to monitor, assess and predict the Earth's environment, they also provide tremendous volumes of data to manage. Key management challenges must include data processing, distribution, archive and utilization. At the NOAA/NESDIS Office of Research and Applications, we have started to address the challenge of utilizing high volume satellite by thinning observations and developing gridded datasets from the observations made from the NASA AIRS, AMSU and MODIS instrument. We have developed techniques for intelligent thinning of AIRS data for numerical weather prediction, by selecting the clearest AIRS 14 km field of view within a 3 x 3 array. The selection uses high spatial resolution 1 km MODIS data which are spatially convolved to the AIRS field of view. The MODIS cloud masks and AIRS cloud tests are used to select the clearest. During the real-time processing the data are thinned and gridded to support monitoring, validation and scientific studies. Products from AIRS, which includes profiles of temperature, water vapor and ozone and cloud-corrected infrared radiances for more than 2000 channels, are derived from a single AIRS/AMSU field of regard, which is a 3 x 3 array of AIRS footprints (each with a 14 km spatial resolution) collocated with a single AMSU footprint (42 km). One of our key gridded dataset is a daily 3 x 3 latitude/longitude projection which contains the nearest AIRS/AMSU field of regard with respect to the center of the 3 x 3 lat/lon grid. This particular gridded dataset is 1/40 the size of the full resolution data. This gridded dataset is the type of product request that can be used to support algorithm validation and improvements. It also provides for a very economical approach for reprocessing, testing and improving algorithms for climate studies without having to reprocess the full resolution data stored at the DAAC. For example, on a single CPU workstation, all the AIRS derived products can be derived from a single year of gridded data in 5 days. This relatively short turnaround time, which can be reduced considerably to 3 hours by using a cluster of 40 pc G5processors, allows for repeated reprocessing at the PIs home institution before substantial investments are made to reprocess the full resolution data sets archived at the DAAC. In other words, do not reprocess the full resolution data until the science community have tested and selected the optimal algorithm on the gridded data. Development and applications of gridded radiances and products will be discussed. The applications can be provided as part of a web-based service.
NASA Astrophysics Data System (ADS)
Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.
2018-01-01
The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)
2002-01-01
On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.
Enhancing the ATIC Charge Resolution
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunashingha, R. M.
2006-01-01
The Advanced Thin Ionization Calorimeter (ATIC) experiment measures the energy spectra of elements, from H to Fe, in the energy region from about 100 GeV to tens of TeV. The ATIC instrument was flown twice in long-duration balloon flights around the South Pole; the ATIC-1 test flight during Dec. 2000 - Jan. 2001 and the ATIC-2 science flight during Dec. 2002 - Jan. 2003. Analyses of both datasets have, to date, relied upon the highly segmented Silicon Matrix (SiM) detector to separate the incident cosmic ray from the calorimeter backscatter and to identify the charge. This method has worked well, enabling ATIC to separate protons from helium and to resolve all the major species up through iron. This charge resolution can be significantly improved by restricting the analysis to particle trajectories that pass through two SiM pixels at the cost of using only a fraction of the potential instrument geometry. However, immediately below the SiM is the two layer SI hodoscope (x, y) consisting of Bicron BC-408 plastic scintillator 2 cm wide, 1 cm thick, 88.2 cm long strips viewed by Hamamatsu R5611 photomultiplier tubes on each end of each strip. The primary purpose of the ATIC hodoscopes is to provide a fast trigger, and each hodoscope includes two crossed layers of strips (42 per layer in the case of Sl) providing supplemental particle trajectory information. The hodoscope readout electronics were designed to provide reasonable charge resolution over the dynamic range from protons through iron. This presentation discusses the S 1 hodoscope energy deposit calibrations, examines the charge resolution possible with this detector and investigates combining the S1 and SiM charge measurements to improve the overall ATIC charge resolution while minimizing degradation of the instrument geometry.
NASA Astrophysics Data System (ADS)
Labzovskii, Lev D.; Papayannis, Alexandros; Binietoglou, Ioannis; Banks, Robert F.; Baldasano, Jose M.; Toanca, Florica; Tzanis, Chris G.; Christodoulakis, John
2018-02-01
Accurate continuous measurements of relative humidity (RH) vertical profiles in the lower troposphere have become a significant scientific challenge. In recent years a synergy of various ground-based remote sensing instruments have been successfully used for RH vertical profiling, which has resulted in the improvement of spatial resolution and, in some cases, of the accuracy of the measurement. Some studies have also suggested the use of high-resolution model simulations as input datasets into RH vertical profiling techniques. In this paper we apply two synergetic methods for RH profiling, including the synergy of lidar with a microwave radiometer and high-resolution atmospheric modeling. The two methods are employed for RH retrieval between 100 and 6000 m with increased spatial resolution, based on datasets from the HygrA-CD (Hygroscopic Aerosols to Cloud Droplets) campaign conducted in Athens, Greece from May to June 2014. RH profiles from synergetic methods are then compared with those retrieved using single instruments or as simulated by high-resolution models. Our proposed technique for RH profiling provides improved statistical agreement with reference to radiosoundings by 27 % when the lidar-radiometer (in comparison with radiometer measurements) approach is used and by 15 % when a lidar model is used (in comparison with WRF-model simulations). Mean uncertainty of RH due to temperature bias in RH profiling was ˜ 4.34 % for the lidar-radiometer and ˜ 1.22 % for the lidar-model methods. However, maximum uncertainty in RH retrievals due to temperature bias showed that lidar-model method is more reliable at heights greater than 2000 m. Overall, our results have demonstrated the capability of both combined methods for daytime measurements in heights between 100 and 6000 m when lidar-radiometer or lidar-WRF combined datasets are available.
Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.
Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo
2018-04-01
To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.
Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy
Sredar, Nripun; Fagbemi, Oladipo E.
2018-01-01
Purpose To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. Methods The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. Results The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. Conclusions The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Translational Relevance Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers. PMID:29629239
Landsat-8: Science and product vision for terrestrial global change research
Roy, David P.; Wulder, M.A.; Loveland, Thomas R.; Woodcock, C.E.; Allen, R. G.; Anderson, M. C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; Scambos, T.A.; Schaaf, Crystal B.; Schott, J.R.; Sheng, Y.; Vermote, E. F.; Belward, A.S.; Bindschadler, R.; Cohen, W.B.; Gao, F.; Hipple, J. D.; Hostert, Patrick; Huntington, J.; Justice, C.O.; Kilic, A.; Kovalskyy, Valeriy; Lee, Z. P.; Lymburner, Leo; Masek, J.G.; McCorkel, J.; Shuai, Y.; Trezza, R.; Vogelmann, James; Wynne, R.H.; Zhu, Z.
2014-01-01
Landsat 8, a NASA and USGS collaboration, acquires global moderate-resolution measurements of the Earth's terrestrial and polar regions in the visible, near-infrared, short wave, and thermal infrared. Landsat 8 extends the remarkable 40 year Landsat record and has enhanced capabilities including new spectral bands in the blue and cirrus cloud-detection portion of the spectrum, two thermal bands, improved sensor signal-to-noise performance and associated improvements in radiometric resolution, and an improved duty cycle that allows collection of a significantly greater number of images per day. This paper introduces the current (2012–2017) Landsat Science Team's efforts to establish an initial understanding of Landsat 8 capabilities and the steps ahead in support of priorities identified by the team. Preliminary evaluation of Landsat 8 capabilities and identification of new science and applications opportunities are described with respect to calibration and radiometric characterization; surface reflectance; surface albedo; surface temperature, evapotranspiration and drought; agriculture; land cover, condition, disturbance and change; fresh and coastal water; and snow and ice. Insights into the development of derived ‘higher-level’ Landsat products are provided in recognition of the growing need for consistently processed, moderate spatial resolution, large area, long-term terrestrial data records for resource management and for climate and global change studies. The paper concludes with future prospects, emphasizing the opportunities for land imaging constellations by combining Landsat data with data collected from other international sensing systems, and consideration of successor Landsat mission requirements.
Evaluation of snowmelt simulation in the Weather Research and Forecasting model
NASA Astrophysics Data System (ADS)
Jin, Jiming; Wen, Lijuan
2012-05-01
The objective of this study is to better understand and improve snowmelt simulations in the advanced Weather Research and Forecasting (WRF) model by coupling it with the Community Land Model (CLM) Version 3.5. Both WRF and CLM are developed by the National Center for Atmospheric Research. The automated Snow Telemetry (SNOTEL) station data over the Columbia River Basin in the northwestern United States are used to evaluate snowmelt simulations generated with the coupled WRF-CLM model. These SNOTEL data include snow water equivalent (SWE), precipitation, and temperature. The simulations cover the period of March through June 2002 and focus mostly on the snowmelt season. Initial results show that when compared to observations, WRF-CLM significantly improves the simulations of SWE, which is underestimated when the release version of WRF is coupled with the Noah and Rapid Update Cycle (RUC) land surface schemes, in which snow physics is oversimplified. Further analysis shows that more realistic snow surface energy allocation in CLM is an important process that results in improved snowmelt simulations when compared to that in Noah and RUC. Additional simulations with WRF-CLM at different horizontal spatial resolutions indicate that accurate description of topography is also vital to SWE simulations. WRF-CLM at 10 km resolution produces the most realistic SWE simulations when compared to those produced with coarser spatial resolutions in which SWE is remarkably underestimated. The coupled WRF-CLM provides an important tool for research and forecasts in weather, climate, and water resources at regional scales.
What You Need to Know About the OMI NO2 Data Product for Air Quality Studies
NASA Technical Reports Server (NTRS)
Celarier, E. A.; Gleason, J. F.; Bucsela, E. J.; Brinksma, E.; Veefkind, J. P.
2007-01-01
The standard nitrogen dioxide (NO2) data product, produced from measurements by the Ozone Monitoring Instrument (OMI), are publicly available online from the NASA GESDISC facility. Important data fields include total and tropospheric column densities, as well as collocated data for cloud fraction and cloud top height, surface albedo and snow/ice coverage, at the resolution of the OMI instrument (12 km x 26 km, at nadir). The retrieved NO2 data have been validated, principally under clear-sky conditions. The first public-release version has been available since September 2006. An improved version of the data product, which includes a number of new data fields, and improved estimates of the retrieval uncertainties will be released by the end of 2007. This talk will describe the standard NO2 data product, including details that are essential for the use of the data for air quality studies. We will also describe the principal improvements with the new version of the data product.
van Mourik, Louise M; Leonards, Pim E G; Gaus, Caroline; de Boer, Jacob
2015-10-01
Concerns about the high production volumes, persistency, bioaccumulation potential and toxicity of chlorinated paraffin (CP) mixtures, especially short-chain CPs (SCCPs), are rising. However, information on their levels and fate in the environment is still insufficient, impeding international classifications and regulations. This knowledge gap is mainly due to the difficulties that arise with CP analysis, in particular the chromatographic separation within CPs and between CPs and other compounds. No fully validated routine analytical method is available yet and only semi-quantitative analysis is possible, although the number of studies reporting new and improved methods have rapidly increased since 2010. Better cleanup procedures that remove interfering compounds, and new instrumental techniques, which distinguish between medium-chain CPs (MCCPs) and SCCPs, have been developed. While gas chromatography coupled to an electron capture negative ionisation mass spectrometry (GC/ECNI-MS) remains the most commonly applied technique, novel and promising use of high resolution time of flight MS (TOF-MS) has also been reported. We expect that recent developments in high resolution TOF-MS and Orbitrap technologies will further improve the detection of CPs, including long-chain CPs (LCCPs), and the group separation and quantification of CP homologues. Also, new CP quantification methods have emerged, including the use of mathematical algorithms, multiple linear regression and principal component analysis. These quantification advancements are also reflected in considerably improved interlaboratory agreements since 2010. Analysis of lower chlorinated paraffins (
Clinical outcome of pediatric collagenous gastritis: Case series and review of literature
Hijaz, Nadia Mazen; Septer, Seth Steven; Degaetano, James; Attard, Thomas Mario
2013-01-01
Collagenous gastritis (CG) is characterized by patchy subepithelial collagen bands. Effective treatment and the clinical and histological outcome of CG in children are poorly defined. The aim of this study is to summarize the published literature on the clinical outcome and response to therapy of pediatric CG including two new cases. We performed a search in Pubmed, OVID for related terms; articles including management and clinical and/or endo-histologic follow up information were included and abstracted. Reported findings were pooled in a dedicated database including the corresponding data extracted from chart review in our patients with CG. Twenty-four patients were included (17 females) with a mean age of 11.7 years. The clinical presentation included iron deficiency anemia and dyspepsia. The reported duration of follow up (in 18 patients) ranged between 0.2-14 years. Despite most subjects presenting with anemia including one requiring blood transfusion, oral iron therapy was only documented in 12 patients. Other treatment modalities were antisecretory measures in 13 patients; proton pump inhibitors (12), or histamine-2 blockers (3), sucralfate (5), prednisolone (6), oral budesonide in 3 patients where one received it in fish oil and triple therapy (3). Three (13%) patients showed no clinical improvement despite therapy; conversely 19 out of 22 were reported with improved symptoms including 8 with complete symptom resolution. Spontaneous clinical resolution without antisecretory, anti-inflammatory or gastroprotective agents was noted in 5 patients (4 received only supplemental iron). Follow up endo-histopathologic data (17 patients) included persistent collagen band and stable Mononuclear cell infiltrate in 12 patients with histopathologic improvement in 5 patients. Neither collagen band thickness nor mononuclear cell infiltrate correlated with clinical course. Intestinal metaplasia and endocrine cell hyperplasia were reported (1) raising the concern of long term malignant transformation. In summary, CG in children is a chronic disease, typically with a variable clinical response and an indolent course that is distinct from the adult phenotype. Long term therapy usually inclused iron supplementation but cannot be standardized, given the chronicity of the disease, variability of response and potential for adverse events. PMID:23538318
Resolution improvement by nonconfocal theta microscopy.
Lindek, S; Stelzer, E H
1999-11-01
We present a novel scanning fluorescence microscopy technique, nonconfocal theta microscopy (NCTM), that provides almost isotropic resolution. In NCTM, multiphoton absorption from two orthogonal illumination directions is used to induce fluorescence emission. Therefore the point-spread function of the microscope is described by the product of illumination point-spread functions with reduced spatial overlap, which provides the resolution improvement and the more isotropic observation volume. We discuss the technical details of this new method.
A long-wave infrared hyperspectral sensor for Shadow class UAVs
NASA Astrophysics Data System (ADS)
Lucey, P. G.; Akagi, Jason T.; Hinrichs, John L.; Crites, S. T.; Wright, R.
2013-05-01
The University of Hawaii has developed a concept to ruggedize an existing thermal infrared hyperspectral system for use in the NASA SIERRA UAV. The Hawaii Institute of Geophysics and Planetology has developed a suite of instruments that acquire high spectral resolution thermal infrared image data with low mass and power consumption by combining microbolometers with stationary interferometers, allowing us to achieve hyperspectral resolution (20 wavenumbers between 8 and 14 micrometers), with signal to noise ratios as high as 1500:1. Several similar instruments have been developed and flown by our research group. One recent iteration, developed under NASA EPSCoR funding and designed for inclusion on a microsatellite (Thermal Hyperspectral Imager; THI), has a mass of 11 kg. Making THI ready for deployment on the SIERRA will involve incorporating improvements made in building nine thermal interferometric hyperspectral systems for commercial and government sponsors as part of HIGP's wider program. This includes: a) hardening the system for operation in the SIERRA environment, b) compact design for the calibration system, c) reconfiguring software for autonomous operation, d) incorporating HIGP-developed detectors with increased responsiveness at the 8 micron end of the TIR range, and e) an improved interferometer to increase SNR for imaging at the SIERRA's air speed. UAVs provide a unique platform for science investigations that the proposed instrument, UAVTHI, will be well placed to facilitate (e.g. very high temporal resolution measurements of temporally dynamic phenomena, such as wildfires and volcanic ash clouds). Its spectral range is suited to measuring gas plumes, including sulfur dioxide and carbon dioxide, which exhibit absorption features in the 8 to 14 micron range.
Nanoscale Chemical Imaging of Zeolites Using Atom Probe Tomography.
Weckhuysen, Bert Marc; Schmidt, Joel; Peng, Linqing; Poplawsky, Jonathan
2018-05-02
Understanding structure-composition-property relationships in zeolite-based materials is critical to engineering improved solid catalysts. However, this can be difficult to realize as even single zeolite crystals can exhibit heterogeneities spanning several orders of magnitude, with consequences for e.g. reactivity, diffusion as well as stability. Great progress has been made in characterizing these porous solids using tomographic techniques, though each method has an ultimate spatial resolution limitation. Atom Probe Tomography (APT) is the only technique so far capable of producing 3-D compositional reconstructions with sub-nm-scale resolution, and has only recently been applied to zeolite-based catalysts. Herein, we discuss the use of APT to study zeolites, including the critical aspects of sample preparation, data collection, assignment of mass spectral peaks including the predominant CO peak, the limitations of spatial resolution for the recovery of crystallographic information, and proper data analysis. All sections are illustrated with examples from recent literature, as well as previously unpublished data and analyses to demonstrate practical strategies to overcome potential pitfalls in applying APT to zeolites, thereby highlighting new insights gained from the APT method. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting.
Seipp, Michael T; Durtschi, Jacob D; Liew, Michael A; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V; Wittwer, Carl T
2007-07-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39 degrees C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments.
A review of the developments of radioxenon detectors for nuclear explosion monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.
Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.; ...
2016-12-19
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.
Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan
2006-08-01
An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.
Koparde, Vishal N.; Scarsdale, J. Neel; Kellogg, Glen E.
2011-01-01
Background The quality of X-ray crystallographic models for biomacromolecules refined from data obtained at high-resolution is assured by the data itself. However, at low-resolution, >3.0 Å, additional information is supplied by a forcefield coupled with an associated refinement protocol. These resulting structures are often of lower quality and thus unsuitable for downstream activities like structure-based drug discovery. Methodology An X-ray crystallography refinement protocol that enhances standard methodology by incorporating energy terms from the HINT (Hydropathic INTeractions) empirical forcefield is described. This protocol was tested by refining synthetic low-resolution structural data derived from 25 diverse high-resolution structures, and referencing the resulting models to these structures. The models were also evaluated with global structural quality metrics, e.g., Ramachandran score and MolProbity clashscore. Three additional structures, for which only low-resolution data are available, were also re-refined with this methodology. Results The enhanced refinement protocol is most beneficial for reflection data at resolutions of 3.0 Å or worse. At the low-resolution limit, ≥4.0 Å, the new protocol generated models with Cα positions that have RMSDs that are 0.18 Å more similar to the reference high-resolution structure, Ramachandran scores improved by 13%, and clashscores improved by 51%, all in comparison to models generated with the standard refinement protocol. The hydropathic forcefield terms are at least as effective as Coulombic electrostatic terms in maintaining polar interaction networks, and significantly more effective in maintaining hydrophobic networks, as synthetic resolution is decremented. Even at resolutions ≥4.0 Å, these latter networks are generally native-like, as measured with a hydropathic interactions scoring tool. PMID:21246043
Resolution dependence of precipitation statistical fidelity in hindcast simulations
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik; ...
2016-06-19
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Resolution dependence of precipitation statistical fidelity in hindcast simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Travis A.; Collins, William D.; Kashinath, Karthik
This article is a U.S. Government work and is in the public domain in the USA. Numerous studies have shown that atmospheric models with high horizontal resolution better represent the physics and statistics of precipitation in climate models. While it is abundantly clear from these studies that high-resolution increases the rate of extreme precipitation, it is not clear whether these added extreme events are “realistic”; whether they occur in simulations in response to the same forcings that drive similar events in reality. In order to understand whether increasing horizontal resolution results in improved model fidelity, a hindcast-based, multiresolution experimental designmore » has been conceived and implemented: the InitiaLIzed-ensemble, Analyze, and Develop (ILIAD) framework. The ILIAD framework allows direct comparison between observed and simulated weather events across multiple resolutions and assessment of the degree to which increased resolution improves the fidelity of extremes. Analysis of 5 years of daily 5 day hindcasts with the Community Earth System Model at horizontal resolutions of 220, 110, and 28 km shows that: (1) these hindcasts reproduce the resolution-dependent increase of extreme precipitation that has been identified in longer-duration simulations, (2) the correspondence between simulated and observed extreme precipitation improves as resolution increases; and (3) this increase in extremes and precipitation fidelity comes entirely from resolved-scale precipitation. Evidence is presented that this resolution-dependent increase in precipitation intensity can be explained by the theory of Rauscher et al. (), which states that precipitation intensifies at high resolution due to an interaction between the emergent scaling (spectral) properties of the wind field and the constraint of fluid continuity.« less
Lens implementation on the GATE Monte Carlo toolkit for optical imaging simulation
NASA Astrophysics Data System (ADS)
Kang, Han Gyu; Song, Seong Hyun; Han, Young Been; Kim, Kyeong Min; Hong, Seong Jong
2018-02-01
Optical imaging techniques are widely used for in vivo preclinical studies, and it is well known that the Geant4 Application for Emission Tomography (GATE) can be employed for the Monte Carlo (MC) modeling of light transport inside heterogeneous tissues. However, the GATE MC toolkit is limited in that it does not yet include optical lens implementation, even though this is required for a more realistic optical imaging simulation. We describe our implementation of a biconvex lens into the GATE MC toolkit to improve both the sensitivity and spatial resolution for optical imaging simulation. The lens implemented into the GATE was validated against the ZEMAX optical simulation using an US air force 1951 resolution target. The ray diagrams and the charge-coupled device images of the GATE optical simulation agreed with the ZEMAX optical simulation results. In conclusion, the use of a lens on the GATE optical simulation could improve the image quality of bioluminescence and fluorescence significantly as compared with pinhole optics.
Mechanism of aquaporin-4's fast and highly selective water conduction and proton exclusion.
Tani, Kazutoshi; Mitsuma, Tadanori; Hiroaki, Yoko; Kamegawa, Akiko; Nishikawa, Kouki; Tanimura, Yukihiro; Fujiyoshi, Yoshinori
2009-06-19
Members of the aquaporin (AQP) family are expressed in almost every organism, including 13 homologues in humans. Based on the electron crystallographic structure of AQP1, the hydrogen-bond isolation mechanism was proposed to explain why AQPs are impermeable to protons despite their very fast water conduction. The mechanism by which AQPs exclude protons remained controversial, however. Here we present the structure of AQP4 at 2.8 A resolution obtained by electron crystallography of double-layered two-dimensional crystals. The resolution has been improved from the previous 3.2 A, with accompanying improvement in data quality resulting in the ability to identify individual water molecules. Our structure of AQP4, the predominant water channel in the brain, reveals eight water molecules in the channel. The arrangement of the waters provides support for the hydrogen-bond isolation mechanism. Our AQP4 structure also visualizes five lipids, showing that direct interactions of the extracellular surface of AQP4 with three lipids in the adjoining membrane help stabilize the membrane junction.
Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA
2011-12-06
A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.
Long-term efficacy of a tongue tie service in improving breast feeding rates: A prospective study.
Billington, Jennifer; Yardley, Iain; Upadhyaya, Manasvi
2018-02-01
Breast feeding rates in England at 3months of age are approximately 17% for exclusive breast-feeding and 55% for breast-feeds supplemented with formula. Tongue-tie (TT) in infants is cited as a significant cause of difficulty with maintaining breast-feeding. Early treatment and support can improve breast-feeding and allow infants to benefit from the many long-term benefits of breast-feeding. Our aim was to determine BF rates in infants 3months after attending our tongue-tie clinic (TTC). Institutional ethical approval and study approval were obtained. Patients attending the TTC from May to July 2016 were included. Telephone contact was made 3months postprocedure to establish current behaviour. Symptom resolution was recorded as complete resolution (CR), moderate resolution (MoR), or minimal resolution (MiR). Feeding pattern was either exclusively BF or combined breast and formula feeds or exclusively formula fed. 100 infants were included with complete follow-up data on 87 (87% response rate). Median age at release of TT was 17 (2-88) days without any recurrence. Status at 3months was CR (n=70, 80%); MoR (n=13, 15%), and MiR (n=4, 5%). 43 (49%) were exclusively BF, 36 (41%) were supplementing BF with some formula (2/3 by choice and 1/3 owing to insufficient milk production), and 8 (10%) were using only formula milk (7 by choice and 2 owing to ongoing feeding difficulties). Of the 17 mothers still experiencing symptoms, 5 were exclusively breast-feeding, and 8 were persisting with combined feeds. Infants attending our tongue-tie clinic achieved both higher exclusive breastfeeding and combined breast and bottle-feeding when compared to national breast-feeding data at 3months of age. This can facilitate the achievement of long-term breastfeeding, exposing infants and mothers to many of the associated benefits. 4. Copyright © 2017 Elsevier Inc. All rights reserved.
Large-extent digital soil mapping approaches for total soil depth
NASA Astrophysics Data System (ADS)
Mulder, Titia; Lacoste, Marine; Saby, Nicolas P. A.; Arrouays, Dominique
2015-04-01
Total soil depth (SDt) plays a key role in supporting various ecosystem services and properties, including plant growth, water availability and carbon stocks. Therefore, predictive mapping of SDt has been included as one of the deliverables within the GlobalSoilMap project. In this work SDt was predicted for France following the directions of GlobalSoilMap, which requires modelling at 90m resolution. This first method, further referred to as DM, consisted of modelling the deterministic trend in SDt using data mining, followed by a bias correction and ordinary kriging of the residuals. Considering the total surface area of France, being about 540K km2, employed methods may need to be able dealing with large data sets. Therefore, a second method, multi-resolution kriging (MrK) for large datasets, was implemented. This method consisted of modelling the deterministic trend by a linear model, followed by interpolation of the residuals. For the two methods, the general trend was assumed to be explained by the biotic and abiotic environmental conditions, as described by the Soil-Landscape paradigm. The mapping accuracy was evaluated by an internal validation and its concordance with previous soil maps. In addition, the prediction interval for DM and the confidence interval for MrK were determined. Finally, the opportunities and limitations of both approaches were evaluated. The results showed consistency in mapped spatial patterns and a good prediction of the mean values. DM was better capable in predicting extreme values due to the bias correction. Also, DM was more powerful in capturing the deterministic trend than the linear model of the MrK approach. However, MrK was found to be more straightforward and flexible in delivering spatial explicit uncertainty measures. The validation indicated that DM was more accurate than MrK. Improvements for DM may be expected by predicting soil depth classes. MrK shows potential for modelling beyond the country level, at high resolution. Large-extent digital soil mapping approaches for SDt may be improved by (1) taking into account SDt observations which are censored and (2) using high-resolution biotic and abiotic environmental data. The latter may improve modelling the soil-landscape interactions influencing soil pedogenesis. Concluding, this work provided a robust and reproducible method (DM) for high-resolution soil property modelling, in accordance with the GlobalSoilMap requirements and an efficient alternative for large-extent digital soil mapping (MrK).
Automatic panoramic thermal integrated sensor
NASA Astrophysics Data System (ADS)
Gutin, Mikhail A.; Tsui, Eddy K.; Gutin, Olga N.
2005-05-01
Historically, the US Army has recognized the advantages of panoramic imagers with high image resolution: increased area coverage with fewer cameras, instantaneous full horizon detection, location and tracking of multiple targets simultaneously, extended range, and others. The novel ViperViewTM high-resolution panoramic thermal imager is the heart of the Automatic Panoramic Thermal Integrated Sensor (APTIS), being jointly developed by Applied Science Innovative, Inc. (ASI) and the Armament Research, Development and Engineering Center (ARDEC) in support of the Future Combat Systems (FCS) and the Intelligent Munitions Systems (IMS). The APTIS is anticipated to operate as an intelligent node in a wireless network of multifunctional nodes that work together to improve situational awareness (SA) in many defense and offensive operations, as well as serve as a sensor node in tactical Intelligence Surveillance Reconnaissance (ISR). The ViperView is as an aberration-corrected omnidirectional imager with small optics designed to match the resolution of a 640x480 pixels IR camera with improved image quality for longer range target detection, classification, and tracking. The same approach is applicable to panoramic cameras working in the visible spectral range. Other components of the ATPIS sensor suite include ancillary sensors, advanced power management, and wakeup capability. This paper describes the development status of the APTIS system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kevin L.
The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR ormore » OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.« less
Garcia-Roig, Michael; Ridley, Derrick E; McCracken, Courtney; Arlen, Angela M; Cooper, Christopher S; Kirsch, Andrew J
2017-04-01
The Vesicoureteral Reflux Index is a validated tool that reliably predicts spontaneous resolution of reflux or at least 2 grades of improvement for patients diagnosed before age 24 months. We evaluated the Vesicoureteral Reflux Index in children older than 2 years. Patients younger than 18 years who were diagnosed with primary vesicoureteral reflux after age 24 months and had undergone 2 or more voiding cystourethrograms were identified. Disease severity was scored using the Vesicoureteral Reflux Index, a 6-point scale based on gender, reflux grade, ureteral abnormalities and reflux timing. Proportional subdistribution hazard models for competing risks identified variables associated with resolution/improvement at different time points. A total of 21 males and 250 females met inclusion criteria. Mean ± SD age was 4.0 ± 2.1 years and patients had a median vesicoureteral reflux grade of 2. The Vesicoureteral Reflux Index score improved by 1 point in 1 patient (100%), 2 points in 25 (67.6%), 3 points in 48 (37%), 4 points in 18 (21.4%) and 5 to 6 points in 4 (18.2%). Female gender (p = 0.005) and vesicoureteral reflux timing (late filling, p = 0.002; early/mid filling, p <0.001) independently predicted nonresolution. Median resolution time based on Vesicoureteral Reflux Index score was 2 months or less in 15.6% of patients (95% CI 11.0-13.8), 3 months in 34.7% (95% CI 25.4-44.1), 4 months in 55.9% (95% CI 40.1 to infinity) and 5 months or more in 30.3% (95% CI 29.5 to infinity). High grade (IV or V) reflux was not associated with resolution at any point. Ureteral abnormalities were associated with lack of resolution in the first 12 to 18 months (HR 0.29, 95% CI 0.29-0.80) but not in later followup. Vesicoureteral Reflux Index scores of 3, 4 and 5 were significantly associated with lack of resolution/improvement compared to scores of 2 or less (p = 0.031). The Vesicoureteral Reflux Index reliably predicts primary vesicoureteral reflux improvement/resolution in children diagnosed after age 24 months. Spontaneous resolution/improvement is less likely as Vesicoureteral Reflux Index score and time from diagnosis increase. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chou, S. C.; Zolino, M. M.; Gomes, J. L.; Bustamante, J. F.; Lima-e-Silva, P. P.
2012-04-01
The Eta Model is used operationally by CPTEC to produce weather forecasts over South America since 1997. The model has gone through upgrades. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The Eta Model was configured, with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain and coastline. Mountains can rise up to about 700m. The region suffers frequent events of floods and landslides. The objective of this work is to evaluate high resolution simulations of wind and temperature in this complex area. Verification of model runs uses observations taken from the nuclear power plant. Accurate near-surface wind direction and magnitude are needed for the plant emergency plan and winds are highly sensitive to model spatial resolution and atmospheric stability. Verification of two cases during summer shows that model has clear diurnal cycle signal for wind in that region. The area is characterized by weak winds which makes the simulation more difficult. The simulated wind magnitude is about 1.5m/s, which is close to observations of about 2m/s; however, the observed change of wind direction of the sea breeze is fast whereas it is slow in the simulations. Nighttime katabatic flow is captured by the simulations. Comparison against Eta-5km runs show that the valley circulation is better described in the 2-km resolution run. Simulated temperatures follow closely the observed diurnal cycle. Experiments improving some surface conditions such as the surface temperature and land cover show simulation error reduction and improved diurnal cycle.
Airborne electromagnetic mapping of the base of aquifer in areas of western Nebraska
Abraham, Jared D.; Cannia, James C.; Bedrosian, Paul A.; Johnson, Michaela R.; Ball, Lyndsay B.; Sibray, Steven S.
2012-01-01
Airborne geophysical surveys of selected areas of the North and South Platte River valleys of Nebraska, including Lodgepole Creek valley, collected data to map aquifers and bedrock topography and thus improve the understanding of groundwater - surface-water relationships to be used in water-management decisions. Frequency-domain helicopter electromagnetic surveys, using a unique survey flight-line design, collected resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful to multidimensional groundwater models, numerical inversion converted measured data into a depth-dependent subsurface resistivity model. The inverted resistivity model, along with sensitivity analyses and test-hole information, is used to identify hydrogeologic features such as bedrock highs and paleochannels, to improve estimates of groundwater storage. The two- and three-dimensional interpretations provide the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. The new hydrogeologic frameworks improve understanding of the flow-path orientation by refining the location of paleochannels and associated base of aquifer highs. These interpretations provide resource managers high-resolution hydrogeologic frameworks and quantitative estimates of framework uncertainty. The improved base of aquifer configuration represents the hydrogeology at a level of detail not achievable with previously available data.
A Bayesian technique for improving the sensitivity of the atmospheric neutrino L/E analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, A. S. T.; Chapman, J. D.; Thomson, M. A.
Tmore » his paper outlines a method for improving the precision of atmospheric neutrino oscillation measurements. One experimental signature for these oscillations is an observed deficit in the rate of ν μ charged-current interactions with an oscillatory dependence on L ν / E ν , where L ν is the neutrino propagation distance and E mrow is="true"> ν is the neutrino energy. For contained-vertex atmospheric neutrino interactions, the L ν / E ν resolution varies significantly from event to event. he precision of the oscillation measurement can be improved by incorporating information on L ν / E ν resolution into the oscillation analysis. In the analysis presented here, a Bayesian technique is used to estimate the L ν / E ν resolution of observed atmospheric neutrinos on an event-by-event basis. By separating the events into bins of L ν / E ν resolution in the oscillation analysis, a significant improvement in oscillation sensitivity can be achieved.« less
Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shiyu, E-mail: shiyu.xu@gmail.com; Chen, Ying, E-mail: adachen@siu.edu; Lu, Jianping
2015-09-15
Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair basedmore » prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.« less
Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G
2001-03-02
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.
VISAR Analysis in the Frequency Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, D. H.; Specht, P.
2017-05-18
VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.
Improved Process for Fabricating Carbon Nanotube Probes
NASA Technical Reports Server (NTRS)
Stevens, R.; Nguyen, C.; Cassell, A.; Delzeit, L.; Meyyappan, M.; Han, Jie
2003-01-01
An improved process has been developed for the efficient fabrication of carbon nanotube probes for use in atomic-force microscopes (AFMs) and nanomanipulators. Relative to prior nanotube tip production processes, this process offers advantages in alignment of the nanotube on the cantilever and stability of the nanotube's attachment. A procedure has also been developed at Ames that effectively sharpens the multiwalled nanotube, which improves the resolution of the multiwalled nanotube probes and, combined with the greater stability of multiwalled nanotube probes, increases the effective resolution of these probes, making them comparable in resolution to single-walled carbon nanotube probes. The robust attachment derived from this improved fabrication method and the natural strength and resiliency of the nanotube itself produces an AFM probe with an extremely long imaging lifetime. In a longevity test, a nanotube tip imaged a silicon nitride surface for 15 hours without measurable loss of resolution. In contrast, the resolution of conventional silicon probes noticeably begins to degrade within minutes. These carbon nanotube probes have many possible applications in the semiconductor industry, particularly as devices are approaching the nanometer scale and new atomic layer deposition techniques necessitate a higher resolution characterization technique. Previously at Ames, the use of nanotube probes has been demonstrated for imaging photoresist patterns with high aspect ratio. In addition, these tips have been used to analyze Mars simulant dust grains, extremophile protein crystals, and DNA structure.
Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution
NASA Astrophysics Data System (ADS)
Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.
High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of <20 μm FWHM and timing resolutions of <100 ps for dynamic imaging. New high efficiency photocathodes for the visible regime are discussed, which also allow response down below 150nm for UV sensing. Borosilicate MCPs are providing high performance, and when processed with ALD techniques are providing order of magnitude lifetime improvements and enhanced photocathode stability. New developments include UV/visible photocathodes, ALD MCPs, and high resolution cross strip anodes for 100 mm detectors. Tests with 50 mm format cross strip readouts suitable for Planacon devices show spatial resolutions better than 20 μm FWHM, with good image linearity while using low gain ( 106). Current cross strip encoding electronics can accommodate event rates of >5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)
2002-01-01
In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.
Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert
2012-04-02
There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.
The timing resolution of scintillation-detector systems: Monte Carlo analysis
NASA Astrophysics Data System (ADS)
Choong, Woon-Seng
2009-11-01
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
The timing resolution of scintillation-detector systems: Monte Carlo analysis.
Choong, Woon-Seng
2009-11-07
Recent advancements in fast scintillating materials and fast photomultiplier tubes (PMTs) have stimulated renewed interest in time-of-flight (TOF) positron emission tomography (PET). It is well known that the improvement in the timing resolution in PET can significantly reduce the noise variance in the reconstructed image resulting in improved image quality. In order to evaluate the timing performance of scintillation detectors used in TOF PET, we use Monte Carlo analysis to model the physical processes (crystal geometry, crystal surface finish, scintillator rise time, scintillator decay time, photoelectron yield, PMT transit time spread, PMT single-electron response, amplifier response and time pick-off method) that can contribute to the timing resolution of scintillation-detector systems. In the Monte Carlo analysis, the photoelectron emissions are modeled by a rate function, which is used to generate the photoelectron time points. The rate function, which is simulated using Geant4, represents the combined intrinsic light emissions of the scintillator and the subsequent light transport through the crystal. The PMT output signal is determined by the superposition of the PMT single-electron response resulting from the photoelectron emissions. The transit time spread and the single-electron gain variation of the PMT are modeled in the analysis. Three practical time pick-off methods are considered in the analysis. Statistically, the best timing resolution is achieved with the first photoelectron timing. The calculated timing resolution suggests that a leading edge discriminator gives better timing performance than a constant fraction discriminator and produces comparable results when a two-threshold or three-threshold discriminator is used. For a typical PMT, the effect of detector noise on the timing resolution is negligible. The calculated timing resolution is found to improve with increasing mean photoelectron yield, decreasing scintillator decay time and decreasing transit time spread. However, only substantial improvement in the timing resolution is obtained with improved transit time spread if the first photoelectron timing is less than the transit time spread. While the calculated timing performance does not seem to be affected by the pixel size of the crystal, it improves for an etched crystal compared to a polished crystal. In addition, the calculated timing resolution degrades with increasing crystal length. These observations can be explained by studying the initial photoelectron rate. Experimental measurements provide reasonably good agreement with the calculated timing resolution. The Monte Carlo analysis developed in this work will allow us to optimize the scintillation detectors for timing and to understand the physical factors limiting their performance.
NASA Astrophysics Data System (ADS)
Schmäck, J.; Klotzsche, A.; Van Der Kruk, J.; Vereecken, H.; Bechtold, M.
2017-12-01
The characterization of peatlands is of particular interest, since areas with peat soils represent global hotspots for the exchange of greenhouse gases. Their effect on global warming depends on several parameters, like mean annual water level and land use. Models of greenhouse gas emissions and carbon accumulation in peatlands can be improved by including small-scale soil properties that e.g. act as gas traps and periodically release gases to the atmosphere during ebullition events. Ground penetrating radar (GPR) is well suited to non- or minimal invasively characterize and improve our understanding of dynamic processes that take place in the critical zone. It uses high frequency electromagnetic waves to image and characterize the dielectric permittivity and electrical conductivity of the critical zone, which can be related to hydrogeological properties like porosity, soil water content, salinity and clay content. In the last decade, the full-waveform inversion of crosshole GPR data has proved to be a powerful tool to improve the image resolution compared to standard ray-based methods. This approach was successfully applied to several different aquifers and was able to provide decimeter-scale resolution images including small-scale high contrast layers that can be related to zones of high porosity, zones of preferential flow or clay lenses. The comparison to independently measured e.g. logging data proved the reliability of the method. Here, for the first time crosshole GPR full-waveform inversion is used to image three peatland plots with different land use that are part of the "Ahlen-Falkenberger Moor peat bog complex" in northwestern Germany. The full-waveform inversion of the acquired data returned higher resolution images than standard ray-based GPR methods, and, is able to improve our understanding of subsurface structures. The comparison of the different plots is expected to provide new insights into gas content and gas trapping structures across different land uses. Additionally, season-related changes of peatland soil properties are investigated. The crosshole GPR full-waveform inversion was successfully applied to several datasets and the results show the utility and credibility of GPR FWI to analyze peatland properties.
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.
1999-01-01
In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce spacecraft and subsystem resource requirements. The efforts in information systems will include better approaches for linking multiple data sets, extracting and visualizing information, and improvements in collecting, compressing, transmitting, processing, distributing and archiving data from multiple platforms. Overall concepts such as sensor webs, constellations of observing systems, and rapid and tailored data availability and delivery to multiple users comprise and notions Earth Science Vision for the future.
WCSC environmental process improvement study and demonstration program
NASA Technical Reports Server (NTRS)
Pawlick, Joseph F., Jr.; Severo, Orlando C.
1993-01-01
CSTAR's objective to develop commercial infrastructure is multi-faceted and includes diverse elements of the orbital and suborbital missions. Goals to this eight-month project with the WCSC are aimed at simplifying the environmental assessment, approval, and licensing process for commercial users. Included in this overarching set of goals are two specific processes: (1) air pollution control, and (2) the environmental assessment mechanism. Resolution of the potentially user unfriendly aspects of these environmentally sensitive criteria are readily transferable to other ranges where commercial space activity will be supported.
The Alba ray tracing code: ART
NASA Astrophysics Data System (ADS)
Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi
2013-09-01
The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.
Instantaneous microwave frequency measurement with improved resolution
NASA Astrophysics Data System (ADS)
Li, Yueqin; Pei, Li; Li, Jing; Zheng, Jingjing; Wang, Yiqun; Yuan, Jin; Tang, Yu
2015-11-01
An approach of instantaneous microwave frequency measurement with improved resolution is proposed and analyzed. The primary component employed in the proposal is a polarization modulator (PolM) followed by a linear polarizer (LP) and a spool of dispersive fiber. To obtain a flexible amplitude comparison function (ACF), the polarization state between the PolM and the LP should be properly adjusted. It is found that the notch point of the ACF can be widely shifted by simply adjusting the bias voltage applied to the PolM, especially, a greater first-order derivative of the ACF ensures that the measurement resolution can be improved when compared with the work in the reference.
2008-08-01
Elastographic Transrectal Ultrasound for Improved Diagnosis of Prostate Cancer PRINCIPAL INVESTIGATOR: John A. Hossack, Ph.D...January 21, 2004 – July 20, 2008 4. Title and Subtitle High Resolution Anatomic and Elastographic Transrectal Ultrasound for Improved Diagnosis of...can cer. In this work, we perform ultrasound elasticity imaging, using a slightly inflated latex sheath (to provide a source of moderate pressure
Ventura, Carla Aparecida Arena; Mendes, Isabel Amélia Costa; Fumincelli, Laís; Trevizan, Maria Auxiliadora
2015-09-01
To describe the evolution in the resolutions approved by World Health Organization (WHO)'s World Health Assembly (WHA) to strengthen nursing and midwifery. Qualitative and descriptive study, undertaken through a search of resolutions presented by WHA, on the WHO website, regarding the theme "strengthening of nursing and midwifery." The resolutions on the theme "nursing and midwifery" were included, whose titles were available and whose full texts were accessed, excluding those on general health themes. The key words used were resolutions, strengthening, and nursing and midwifery. Among the 20 resolutions found, 12 were selected, adopted between 1948 and 2013, in accordance with the study inclusion criteria. The data were interpreted using thematic qualitative analysis, identifying and grouping the data in categories related to the study theme. Based on the content analysis of the 12 resolutions studied, three thematic categories were defined: "nursing and midwifery in primary health"; "role of nursing and midwifery in health for all"; and "nurses and midwives' professional training." Based on the categories, the evolution in the strengthening of nursing and midwifery was demonstrated through the initiatives and resolutions approved by WHA, highlighting the importance of nurses and midwives as multiprofessional health team members and their fundamental role in the improvements of the health system. Therefore, in accordance with the needs of each country, the member states can implement strategies presented by the WHA resolutions to strengthen nursing and midwifery services. This study has relevance for the development of health policies considering the relevant contributions of nurses and midwives to healthcare systems and services, based on the analysis of WHO resolutions involving these professions. © 2015 Sigma Theta Tau International.
An Intervention Model of Constructive Conflict Resolution and Cooperative Learning.
ERIC Educational Resources Information Center
Zhang, Quanwu
1994-01-01
Tests an intervention model of constructive conflict resolution (CCR) and cooperative learning in three urban high schools. Findings show that improvements in CCR increased social support and decreased victimization for the students. These changes improved student's attitudes, self-esteem, interpersonal relations, and academic achievement. (GLR)
High-resolution multiphoton microscopy with a low-power continuous wave laser pump.
Chen, Xiang-Dong; Li, Shen; Du, Bo; Dong, Yang; Wang, Ze-Hao; Guo, Guang-Can; Sun, Fang-Wen
2018-02-15
Multiphoton microscopy (MPM) has been widely used for three-dimensional biological imaging. Here, based on the photon-induced charge state conversion process, we demonstrated a low-power high-resolution MPM with a nitrogen vacancy (NV) center in diamond. Continuous wave green and orange lasers were used to pump and detect the two-photon charge state conversion, respectively. The power of the laser for multiphoton excitation was 40 μW. Both the axial and lateral resolutions were improved approximately 1.5 times compared with confocal microscopy. The results can be used to improve the resolution of the NV center-based quantum sensing and biological imaging.
Fusion and quality analysis for remote sensing images using contourlet transform
NASA Astrophysics Data System (ADS)
Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram
2013-05-01
Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.
Experimental evaluation of the resolution improvement provided by a silicon PET probe.
Brzeziński, K; Oliver, J F; Gillam, J; Rafecas, M; Studen, A; Grkovski, M; Kagan, H; Smith, S; Llosá, G; Lacasta, C; Clinthorne, N H
2016-09-01
A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 × 16 arrays of 1.4 mm × 1.4 mm pixels and the other in 40 × 26 arrays of 1.0 mm × 1.0 mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 × 6 arrays of 6 mm × 12 mm × 30 mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5 mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8 mm and 4.0 mm phantom features respectively, were observed, while previously unresolvable 3.2 mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe.
Multi-frame super-resolution with quality self-assessment for retinal fundus videos.
Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P
2014-01-01
This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.
On precise phase difference measurement approach using border stability of detection resolution.
Bai, Lina; Su, Xin; Zhou, Wei; Ou, Xiaojuan
2015-01-01
For the precise phase difference measurement, this paper develops an improved dual phase coincidence detection method. The measurement resolution of the digital phase coincidence detection circuits is always limited, for example, only at the nanosecond level. This paper reveals a new way to improve the phase difference measurement precision by using the border stability of the circuit detection fuzzy areas. When a common oscillator signal is used to detect the phase coincidence with the two comparison signals, there will be two detection fuzzy areas for the reason of finite detection resolution surrounding the strict phase coincidence. Border stability of fuzzy areas and the fluctuation difference of the two fuzzy areas can be even finer than the picoseconds level. It is shown that the system resolution obtained only depends on the stability of the circuit measurement resolution which is much better than the measurement device resolution itself.
Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma
2017-07-20
Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.
Homology‐based hydrogen bond information improves crystallographic structures in the PDB
van Beusekom, Bart; Touw, Wouter G.; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L.; Perrakis, Anastassis
2017-01-01
Abstract The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H‐bond) distances as a source of information. However, H‐bond restraints can improve structures at low resolution where diffraction data are limited. To improve low‐resolution structure refinement, we present methods for deriving H‐bond information either globally from well‐refined high‐resolution structures from the PDB‐REDO databank, or specifically from on‐the‐fly constructed sets of homologous high‐resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low‐resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB‐REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. PMID:29168245
Homology-based hydrogen bond information improves crystallographic structures in the PDB.
van Beusekom, Bart; Touw, Wouter G; Tatineni, Mahidhar; Somani, Sandeep; Rajagopal, Gunaretnam; Luo, Jinquan; Gilliland, Gary L; Perrakis, Anastassis; Joosten, Robbie P
2018-03-01
The Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H-bond) distances as a source of information. However, H-bond restraints can improve structures at low resolution where diffraction data are limited. To improve low-resolution structure refinement, we present methods for deriving H-bond information either globally from well-refined high-resolution structures from the PDB-REDO databank, or specifically from on-the-fly constructed sets of homologous high-resolution structures. Refinement incorporating HOmology DErived Restraints (HODER), improves geometrical quality and the fit to the diffraction data for many low-resolution structures. To make these improvements readily available to the general public, we applied our new algorithms to all crystallographic structures in the PDB: using massively parallel computing, we constructed a new instance of the PDB-REDO databank (https://pdb-redo.eu). This resource is useful for researchers to gain insight on individual structures, on specific protein families (as we demonstrate with examples), and on general features of protein structure using data mining approaches on a uniformly treated dataset. © 2017 The Protein Society.
Selected configuration tradeoffs of contour optical instruments
NASA Astrophysics Data System (ADS)
Warren, J.; Strohbehn, K.; Murchie, S.; Fort, D.; Reynolds, E.; Heyler, G.; Peacock, K.; Boldt, J.; Darlington, E.; Hayes, J.; Henshaw, R.; Izenberg, N.; Kardian, C.; Lees, J.; Lohr, D.; Mehoke, D.; Schaefer, E.; Sholar, T.; Spisz, T.; Willey, C.; Veverka, J.; Bell, J.; Cochran, A.
2003-01-01
The Comet Nucleus Tour (CONTOUR) is a low-cost NASA Discovery mission designed to conduct three close flybys of comet nuclei. Selected configuration tradeoffs conducted to balance science requirements with low mission cost are reviewed. The tradeoffs discussed focus on the optical instruments and related spacecraft considerations. Two instruments are under development. The CONTOUR Forward Imager (CFI) is designed to perform optical navigation, moderate resolution nucleus/jet imaging, and imaging of faint molecular emission bands in the coma. The CONTOUR Remote Imager and Spectrometer (CRISP) is designed to obtain high-resolution multispectral images of the nucleus, conduct spectral mapping of the nucleus surface, and provide a backup optical navigation capability. Tradeoffs discussed are: (1) the impact on the optical instruments of not using reaction wheels on the spacecraft, (2) the improved performance and simplification gained by implementing a dedicated star tracker instead of including this function in CFI, (3) the improved flexibility and robustness of switching to a low frame rate tracker for CRISP, (4) the improved performance and simplification of replacing a visible imaging spectrometer by enhanced multispectral imaging in CRISP, and (5) the impact on spacecraft resources of these and other tradeoffs.
A Novel Multi-Digital Camera System Based on Tilt-Shift Photography Technology
Sun, Tao; Fang, Jun-yong; Zhao, Dong; Liu, Xue; Tong, Qing-xi
2015-01-01
Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product. PMID:25835187
A novel multi-digital camera system based on tilt-shift photography technology.
Sun, Tao; Fang, Jun-Yong; Zhao, Dong; Liu, Xue; Tong, Qing-Xi
2015-03-31
Multi-digital camera systems (MDCS) are constantly being improved to meet the increasing requirement of high-resolution spatial data. This study identifies the insufficiencies of traditional MDCSs and proposes a new category MDCS based on tilt-shift photography to improve ability of the MDCS to acquire high-accuracy spatial data. A prototype system, including two or four tilt-shift cameras (TSC, camera model: Nikon D90), is developed to validate the feasibility and correctness of proposed MDCS. Similar to the cameras of traditional MDCSs, calibration is also essential for TSC of new MDCS. The study constructs indoor control fields and proposes appropriate calibration methods for TSC, including digital distortion model (DDM) approach and two-step calibrated strategy. The characteristics of TSC are analyzed in detail via a calibration experiment; for example, the edge distortion of TSC. Finally, the ability of the new MDCS to acquire high-accuracy spatial data is verified through flight experiments. The results of flight experiments illustrate that geo-position accuracy of prototype system achieves 0.3 m at a flight height of 800 m, and spatial resolution of 0.15 m. In addition, results of the comparison between the traditional (MADC II) and proposed MDCS demonstrate that the latter (0.3 m) provides spatial data with higher accuracy than the former (only 0.6 m) under the same conditions. We also take the attitude that using higher accuracy TSC in the new MDCS should further improve the accuracy of the photogrammetry senior product.
GLASS: The Grism Lens-Amplified Survey From Space. HST Grism Spectroscopy of the Frontier Fields
NASA Astrophysics Data System (ADS)
Schmidt, Kasper B.; Schmidt
The Grism Lens-Amplified Survey From Space (GLASS) is a 140 orbit spectroscopic survey of 10 massive galaxy clusters, including the six Hubble Frontier Fields. GLASS has observed the cluster cores with the HST-WFC3 G102 and G141 grisms providing a wide wavelength coverage in the near-infrared from roughly 0.8-1.7μm. The parallel fields were observed through the optical ACS G800L grism. Taking advantage of the lensing magnification of the clusters, GLASS reaches intrinsic spectroscopic 1σ flux limits of roughly 10-18erg/s/cm2 and improved spatial resolution for lensed sources behind the clusters. These features are particularly useful for the three main science drivers of GLASS which are, I) exploring the universe at the epoch of reionization, II) describe how metals cycle in and out of galaxies, and III) asses the environmental dependence of galaxy evolution. The former two benefit highly from the improved depth and increased resolution provided by the cluster lensing. Apart from the main science drivers, a slew of ancillary science has been enabled by the survey, including improving cluster lens modeling and searches for supernovae. Here we present the survey and the GLASS data releases, which are continuously being made available to the community through https://archive.stsci.edu/prepds/glass/. For further information we refer to Schmidt et al. (2014), Treu et al. (2015), and http://glass.physics.ucsb.edu.
Propagation phasor approach for holographic image reconstruction
Luo, Wei; Zhang, Yibo; Göröcs, Zoltán; Feizi, Alborz; Ozcan, Aydogan
2016-01-01
To achieve high-resolution and wide field-of-view, digital holographic imaging techniques need to tackle two major challenges: phase recovery and spatial undersampling. Previously, these challenges were separately addressed using phase retrieval and pixel super-resolution algorithms, which utilize the diversity of different imaging parameters. Although existing holographic imaging methods can achieve large space-bandwidth-products by performing pixel super-resolution and phase retrieval sequentially, they require large amounts of data, which might be a limitation in high-speed or cost-effective imaging applications. Here we report a propagation phasor approach, which for the first time combines phase retrieval and pixel super-resolution into a unified mathematical framework and enables the synthesis of new holographic image reconstruction methods with significantly improved data efficiency. In this approach, twin image and spatial aliasing signals, along with other digital artifacts, are interpreted as noise terms that are modulated by phasors that analytically depend on the lateral displacement between hologram and sensor planes, sample-to-sensor distance, wavelength, and the illumination angle. Compared to previous holographic reconstruction techniques, this new framework results in five- to seven-fold reduced number of raw measurements, while still achieving a competitive resolution and space-bandwidth-product. We also demonstrated the success of this approach by imaging biological specimens including Papanicolaou and blood smears. PMID:26964671
Ocean wavenumber estimation from wave-resolving time series imagery
Plant, N.G.; Holland, K.T.; Haller, M.C.
2008-01-01
We review several approaches that have been used to estimate ocean surface gravity wavenumbers from wave-resolving remotely sensed image sequences. Two fundamentally different approaches that utilize these data exist. A power spectral density approach identifies wavenumbers where image intensity variance is maximized. Alternatively, a cross-spectral correlation approach identifies wavenumbers where intensity coherence is maximized. We develop a solution to the latter approach based on a tomographic analysis that utilizes a nonlinear inverse method. The solution is tolerant to noise and other forms of sampling deficiency and can be applied to arbitrary sampling patterns, as well as to full-frame imagery. The solution includes error predictions that can be used for data retrieval quality control and for evaluating sample designs. A quantitative analysis of the intrinsic resolution of the method indicates that the cross-spectral correlation fitting improves resolution by a factor of about ten times as compared to the power spectral density fitting approach. The resolution analysis also provides a rule of thumb for nearshore bathymetry retrievals-short-scale cross-shore patterns may be resolved if they are about ten times longer than the average water depth over the pattern. This guidance can be applied to sample design to constrain both the sensor array (image resolution) and the analysis array (tomographic resolution). ?? 2008 IEEE.
Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors.
Salomé, R; Kremer, Y; Dieudonné, S; Léger, J-F; Krichevsky, O; Wyart, C; Chatenay, D; Bourdieu, L
2006-06-30
Two-photon scanning microscopy (TPSM) is a powerful tool for imaging deep inside living tissues with sub-cellular resolution. The temporal resolution of TPSM is however strongly limited by the galvanometric mirrors used to steer the laser beam. Fast physiological events can therefore only be followed by scanning repeatedly a single line within the field of view. Because acousto-optic deflectors (AODs) are non-mechanical devices, they allow access at any point within the field of view on a microsecond time scale and are therefore excellent candidates to improve the temporal resolution of TPSM. However, the use of AOD-based scanners with femtosecond pulses raises several technical difficulties. In this paper, we describe an all-digital TPSM setup based on two crossed AODs. It includes in particular an acousto-optic modulator (AOM) placed at 45 degrees with respect to the AODs to pre-compensate for the large spatial distortions of femtosecond pulses occurring in the AODs, in order to optimize the spatial resolution and the fluorescence excitation. Our setup allows recording from freely selectable point-of-interest at high speed (1kHz). By maximizing the time spent on points of interest, random-access TPSM (RA-TPSM) constitutes a promising method for multiunit recordings with millisecond resolution in biological tissues.
Multi-scale coupled modelling of waves and currents on the Catalan shelf.
NASA Astrophysics Data System (ADS)
Grifoll, M.; Warner, J. C.; Espino, M.; Sánchez-Arcilla, A.
2012-04-01
Catalan shelf circulation is characterized by a background along-shelf flow to the southwest (including some meso-scale features) plus episodic storm driven patterns. To investigate these dynamics, a coupled multi-scale modeling system is applied to the Catalan shelf (North-western Mediterranean Sea). The implementation consists of a set of increasing-resolution nested models, based on the circulation model ROMS and the wave model SWAN as part of the COAWST modeling system, covering from the slope and shelf region (~1 km horizontal resolution) down to a local area around Barcelona city (~40 m). The system is initialized with MyOcean products in the coarsest outer domain, and uses atmospheric forcing from other sources for the increasing resolution inner domains. Results of the finer resolution domains exhibit improved agreement with observations relative to the coarser model results. Several hydrodynamic configurations were simulated to determine dominant forcing mechanisms and hydrodynamic processes that control coastal scale processes. The numerical results reveal that the short term (hours to days) inner-shelf variability is strongly influenced by local wind variability, while sea-level slope, baroclinic effects, radiation stresses and regional circulation constitute second-order processes. Additional analysis identifies the significance of shelf/slope exchange fluxes, river discharge and the effect of the spatial resolution of the atmospheric fluxes.
Homogeneity of Gd-based garnet transparent ceramic scintillators for gamma spectroscopy
NASA Astrophysics Data System (ADS)
Seeley, Z. M.; Cherepy, N. J.; Payne, S. A.
2013-09-01
Transparent polycrystalline ceramic scintillators based on the composition Gd1.49Y1.49Ce0.02Ga2.2Al2.8O12 are being developed for gamma spectroscopy detectors. Scintillator light yield and energy resolution depend on the details of various processing steps, including powder calcination, green body formation, and sintering atmosphere. We have found that gallium sublimation during vacuum sintering creates compositional gradients in the ceramic and can degrade the energy resolution. While sintering in oxygen produces ceramics with uniform composition and little afterglow, light yields are reduced, compared to vacuum sintering. By controlling the atmosphere during the various process steps, we were able to minimize the gallium sublimation, resulting in a more homogeneous composition and improved gamma spectroscopy performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, B.D.
The objective of this project is to advance lower cost solar cooling technology with the feasibility analysis, design and evaluation of proof-of-concept open cycle solar cooling concepts. The work is divided into three phases, with planned completion of each phase before proceeding with the following phase: Phase I - performance/economic/environmental related analysis and exploratory studies; Phase II - design and construction of an experimental system, including evaluative testing; Phase III - extended system testing during operation and engineering modifications as required. For Phase I, analysis and resolution of critical issues were completed with the objective of developing design specifications formore » an improved prototype OCA system.« less
Preliminary Results on Lunar Interior Properties from the GRAIL Mission
NASA Technical Reports Server (NTRS)
Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, H. Jay; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.;
2013-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core.
Science Questions for the Post-SIRTF and Herschel Era
NASA Technical Reports Server (NTRS)
Werner, Michael
2004-01-01
The contents include the following: 1. SIRTF. Long wavelength surveys planned for SIRTF. Galaxy Discovery Rates for Future Missions. Impact of SIRTF s Improved Resolution at 160um: Resolving the Background. 2. Polarimetry. Submillimeter Polarimetry - The State of Play. Magnetic Vectors Across the Orion Molecular Cloud Core. Neutral and Ionized Molecular Spectral Lines. Variation of Polarization With Wavelength. The Polarization Spectrum. Submillimeter Polarimetry - Looking Ahead. 3.Confusion. Confusion at 500, 600 micron. 4. Extragalactic Science. Do Massive Black Holes and Galaxy Bulges form Together? 5. Galactic Science. Can We See the First Generations of Stars and Metal Formation? The Birth of Planets and the Origins of Life. Spatial Resolution at 100 microns. Far-ir/Sub-mm Transitions of Linear Carbon Clusters. Predicted Spectra of Glycine.
Design and analysis of multilayer x ray/XUV microscope
NASA Technical Reports Server (NTRS)
Shealy, David L.
1990-01-01
The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.
The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science
NASA Astrophysics Data System (ADS)
Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration
2010-03-01
The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.
Ge, Lan; Kino, Aya; Lee, Daniel; Dharmakumar, Rohan; Carr, James C; Li, Debiao
2010-01-01
First-pass perfusion magnetic resonance imaging (MRI) is a promising technique for detecting ischemic heart disease. However, the diagnostic value of the method is limited by the low spatial coverage, resolution, signal-to-noise ratio (SNR), and cardiac motion-related image artifacts. A combination of sliding window and conjugate-gradient HighlY constrained back-PRojection reconstruction (SW-CG-HYPR) method has been proposed in healthy volunteer studies to reduce the acquisition window for each slice while maintaining the temporal resolution of 1 frame per heartbeat in myocardial perfusion MRI. This method allows for improved spatial coverage, resolution, and SNR. In this study, we use a controlled animal model to test whether the myocardial territory supplied by a stenotic coronary artery can be detected accurately by SW-CG-HYPR perfusion method under pharmacological stress. Results from 6 mongrel dogs (15-25 kg) studies demonstrate the feasibility of SW-CG-HYPR to detect regional perfusion defects. Using this method, the acquisition time per cardiac cycle was reduced by a factor of 4, and the spatial coverage was increased from 2 to 3 slices to 6 slices as compared with the conventional techniques including both turbo-Fast Low Angle Short (FLASH) and echoplanar imaging (EPI). The SNR of the healthy myocardium at peak enhancement with SW-CG-HYPR (12.68 ± 2.46) is significantly higher (P < 0.01) than the turbo-FLASH (8.65 ± 1.93) and EPI (5.48 ± 1.24). The spatial resolution of SW-CG-HYPR images is 1.2 × 1.2 × 8.0 mm, which is better than the turbo-FLASH (1.8 × 1.8 × 8.0 mm) and EPI (2.0 × 1.8 × 8.0 mm). Sliding-window CG-HYPR is a promising technique for myocardial perfusion MRI. This technique provides higher image quality with respect to significantly improved SNR and spatial resolution of the myocardial perfusion images, which might improve myocardial perfusion imaging in a clinical setting.
NASA Astrophysics Data System (ADS)
Gu, Defeng; Ju, Bing; Liu, Junhong; Tu, Jia
2017-09-01
Precise relative position determination is a prerequisite for radar interferometry by formation flying satellites. It has been shown that this can be achieved by high-quality, dual-frequency GPS receivers that provide precise carrier-phase observations. The precise baseline determination between satellites flying in formation can significantly improve the accuracy of interferometric products, and has become a research interest. The key technologies of baseline determination using spaceborne dual-frequency GPS for gravity recovery and climate experiment (GRACE) formation are presented, including zero-difference (ZD) reduced dynamic orbit determination, double-difference (DD) reduced dynamic relative orbit determination, integer ambiguity resolution and relative receiver antenna phase center variation (PCV) estimation. We propose an independent baseline determination method based on a new strategy of integer ambiguity resolution and correction of relative receiver antenna PCVs, and implement the method in the NUDTTK software package. The algorithms have been tested using flight data over a period of 120 days from GRACE. With the original strategy of integer ambiguity resolution based on Melbourne-Wübbena (M-W) combinations, the average success rate is 85.6%, and the baseline precision is 1.13 mm. With the new strategy of integer ambiguity resolution based on a priori relative orbit, the average success rate and baseline precision are improved by 5.8% and 0.11 mm respectively. A relative ionosphere-free phase pattern estimation result is given in this study, and with correction of relative receiver antenna PCVs, the baseline precision is further significantly improved by 0.34 mm. For ZD reduced dynamic orbit determination, the orbit precision for each GRACE satellite A or B in three dimensions (3D) is about 2.5 cm compared to Jet Propulsion Laboratory (JPL) post science orbits. For DD reduced dynamic relative orbit determination, the final baseline precision for two GRACE satellites formation is 0.68 mm validated by K-Band Ranging (KBR) observations, and average ambiguity success rate of about 91.4% could be achieved.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; LaCasse, Katherine M.; Santanello, Joseph A., Jr.; Lapenta, William M.; Petars-Lidard, Christa D.
2007-01-01
The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many hydrometeorological processes. Accurate and high-resolution representations of surface properties such as sea-surface temperature (SST), vegetation, soil temperature and moisture content, and ground fluxes are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of weather and climate phenomena. The NASA/NWS Short-term Prediction Research and Transition (SPORT) Center is currently investigating the potential benefits of assimilating high-resolution datasets derived from the NASA moderate resolution imaging spectroradiometer (MODIS) instruments using the Weather Research and Forecasting (WRF) model and the Goddard Space Flight Center Land Information System (LIS). The LIS is a software framework that integrates satellite and ground-based observational and modeled data along with multiple land surface models (LSMs) and advanced computing tools to accurately characterize land surface states and fluxes. The LIS can be run uncoupled to provide a high-resolution land surface initial condition, and can also be run in a coupled mode with WRF to integrate surface and soil quantities using any of the LSMs available in LIS. The LIS also includes the ability to optimize the initialization of surface and soil variables by tuning the spin-up time period and atmospheric forcing parameters, which cannot be done in the standard WRF. Among the datasets available from MODIS, a leaf-area index field and composite SST analysis are used to improve the lower boundary and initial conditions to the LIS/WRF coupled model over both land and water. Experiments will be conducted to measure the potential benefits from using the coupled LIS/WRF model over the Florida peninsula during May 2004. This month experienced relatively benign weather conditions, which will allow the experiments to focus on the local and mesoscale impacts of the high-resolution MODIS datasets and optimized soil and surface initial conditions. Follow-on experiments will examine the utility of such an optimized WRF configuration for more complex weather scenarios such as convective initiation. This paper will provide an overview of the experiment design and present preliminary results from selected cases in May 2004.
NASA Astrophysics Data System (ADS)
Koss, A.; Yuan, B.; De Gouw, J. A.; Warneke, C.; Stark, H.
2015-12-01
In-situ time-of-flight chemical ionization mass spectrometers (ToF-CIMS) using H3O+ reagent ion chemistry (PTR-MS) are a relatively new technique in detection of gas-phase hydrocarbons, and recent improvements in instrument sensitivity, mass resolution, and ease of field deployment have expanded their use in atmospheric chemistry. The comparatively low-energy H3O+ ionization technique is ideal for measuring complex mixtures of hydrocarbons, and, compared to conventional quadrupole PTRMS, the newest generation of ToF-CIMS measure many more species simultaneously and with a sensitivity that is as high as a quadrupole PTR-MS. We describe here the development of a commercially available ToF CIMS into an H3O+CIMS suitable for deployment on aircraft, and its application during an aircraft campaign studying emissions from oil and natural gas extraction industry. We provide an overview of instrument development and specifications, including design, characterization, and field operation. We then discuss data processing and interpretation. First, we investigate determination of intensities of poorly resolved peaks. The mass resolution of the present instrument (m/Δm ~4500) enables separate analysis of many isobaric peaks, but peaks are also frequently not fully resolved. Using results from laboratory tests, we quantify how the accuracy can be limited by the overlap in neighboring peaks, and compare to theoretical predictions from literature. We then briefly describe our method for quality assurance of reported compounds, and correction for background and humidity effects. Finally, we present preliminary results from the first field deployment of this instrument during the Spring 2015 SONGNEX aircraft campaign. This campaign sampled emissions from oil and natural gas extraction regions and associated infrastructure in the Western and Central United States. We will highlight results that illustrate (1) new scientific capability from improved mass resolution, which dramatically increased the number of species measured, and (2) new capability from improved time resolution, which provides better spatial coverage during flights, leads to a more thorough and accurate measure of emissions composition, and potentially could enable emission rate estimates using eddy covariance analysis.
Eric Betzig, Ph.D., a 2014 recipient of the Nobel Prize in Chemistry and a scientist at Janelia Research Campus (JRC), Howard Hughes Medical Institute, in Ashburn, Va., visited NCI at Frederick on Sept. 10 to present a Distinguished Scientist lecture and discuss the latest high-resolution microscopy techniques. Betzig co-invented photoactivation localization microscopy (PALM) in collaboration with scientists at NIH. PALM achieves 10-fold improvement in spatial resolution of cells, going from the resolution limit of approximately 250 nm in standard optical microscopy down to approximately 20 nm, thus producing a so-called “super-resolution” image. Spatial resolution refers to the clarity of an image or, in other words, the smallest details that can be observed from an image.
Kempen, John H; Van Natta, Mark L; Altaweel, Michael M; Dunn, James P; Jabs, Douglas A; Lightman, Susan L; Thorne, Jennifer E; Holbrook, Janet T
2015-12-01
To identify factors associated with best-corrected visual acuity (BCVA) presentation and 2-year outcome in 479 intermediate, posterior, and panuveitic eyes. Cohort study using randomized controlled trial data. Multicenter Uveitis Steroid Treatment (MUST) Trial masked BCVA measurements at baseline and at 2 years follow-up used gold-standard methods. Twenty-three clinical centers documented characteristics per protocol, which were evaluated as potential predictive factors for baseline BCVA and 2-year change in BCVA. Baseline factors significantly associated with reduced BCVA included age ≥50 vs <50 years; posterior vs intermediate uveitis; uveitis duration >10 vs <6 years; anterior chamber (AC) flare >grade 0; cataract; macular thickening; and exudative retinal detachment. Over 2 years, eyes better than 20/50 and 20/50 or worse at baseline improved, on average, by 1 letter (P = .52) and 10 letters (P < .001), respectively. Both treatment groups and all sites of uveitis improved similarly. Factors associated with improved BCVA included resolution of active AC cells, resolution of macular thickening, and cataract surgery in an initially cataractous eye. Factors associated with worsening BCVA included longer duration of uveitis (6-10 or >10 vs <6 years), incident AC flare, cataract at both baseline and follow-up, pseudophakia at baseline, persistence or incidence of vitreous haze, and incidence of macular thickening. Intermediate, posterior, and panuveitis have a similarly favorable prognosis with both systemic and fluocinolone acetonide implant treatment. Eyes with more prolonged/severe inflammatory damage and/or inflammatory findings initially or during follow-up have a worse visual acuity prognosis. The results indicate the value of implementing best practices in managing inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
Integrating Unified Gravity Wave Physics into the NOAA Next Generation Global Prediction System
NASA Astrophysics Data System (ADS)
Alpert, J. C.; Yudin, V.; Fuller-Rowell, T. J.; Akmaev, R. A.
2017-12-01
The Unified Gravity Wave Physics (UGWP) project for the Next Generation Global Prediction System (NGGPS) is a NOAA collaborative effort between the National Centers for Environmental Prediction (NCEP), Environemntal Modeling Center (EMC) and the University of Colorado, Cooperative Institute for Research in Environmental Sciences (CU-CIRES) to support upgrades and improvements of GW dynamics (resolved scales) and physics (sub-grid scales) in the NOAA Environmental Modeling System (NEMS)†. As envisioned the global climate, weather and space weather models of NEMS will substantially improve their predictions and forecasts with the resolution-sensitive (scale-aware) formulations planned under the UGWP framework for both orographic and non-stationary waves. In particular, the planned improvements for the Global Forecast System (GFS) model of NEMS are: calibration of model physics for higher vertical and horizontal resolution and an extended vertical range of simulations, upgrades to GW schemes, including the turbulent heating and eddy mixing due to wave dissipation and breaking, and representation of the internally-generated QBO. The main priority of the UGWP project is unified parameterization of orographic and non-orographic GW effects including momentum deposition in the middle atmosphere and turbulent heating and eddies due to wave dissipation and breaking. The latter effects are not currently represented in NOAA atmosphere models. The team has tested and evaluated four candidate GW solvers integrating the selected GW schemes into the NGGPS model. Our current work and planned activity is to implement the UGWP schemes in the first available GFS/FV3 (open FV3) configuration including adapted GFDL modification for sub-grid orography in GFS. Initial global model results will be shown for the operational and research GFS configuration for spectral and FV3 dynamical cores. †http://www.emc.ncep.noaa.gov/index.php?branch=NEMS
Temporal resolution requirements of satellite constellations for 30 m global burned area mapping
NASA Astrophysics Data System (ADS)
Melchiorre, A.; Boschetti, L.
2017-12-01
Global burned area maps have been generated systematically with daily, coarse resolution satellite data (Giglio et al. 2013). The production of moderate resolution (10 - 30 m) global burned area products would meet the needs of several user communities: improved carbon emission estimations due to heterogeneous landscapes and for local scale air quality and fire management applications (Mouillot et al. 2014; van der Werf et al. 2010). While the increased spatial resolution reduces the influence of mixed burnt/unburnt pixels and it would increase the spectral separation of burned areas, moderate resolution satellites have reduced temporal resolution (10 - 16 days). Fire causes a land-cover change spectrally visible for a period ranging from a few weeks in savannas to over a year in forested ecosystems (Roy et al. 2010); because clouds, smoke, and other optically thick aerosols limit the number of available observations (Roy et al. 2008; Smith and Wooster 2005), burned areas might disappear before they are observed by moderate resolution sensors. Data fusion from a constellation of different sensors has been proposed to overcome these limits (Boschetti et al. 2015; Roy 2015). In this study, we estimated the probability of moderate resolution satellites and virtual constellations (including Landsat-8/9, Sentinel-2A/B) to provide sufficient observations for burned area mapping globally, and by ecosystem. First, we estimated the duration of the persistence of the signal associated with burned areas by combining the MODIS Global Burned Area and the Nadir BRDF-Adjusted Reflectance Product by characterizing the post-fire trends in reflectance to determine the length of the period in which the burn class is spectrally distinct from the unburned and, therefore, detectable. The MODIS-Terra daily cloud data were then used to estimate the probability of cloud cover. The cloud probability was used at each location to estimate the minimum revisit time needed to obtain at least one cloud-free observation within the duration of the persistence of burned areas. As complementary results, the expected omission error due to insufficient observations was estimated for each of the satellite combination considered making use of the calendar and geometry of acquisition for each of the sensor included in the virtual constellation.
US Navy Global and Regional Wave Modeling
2014-09-01
Future plans call for increasing the resolution to 0.5 degree, upgrading to WW3 version 4, and including the ...NAVOCEANO WW3 system is in the early stages, and a number of key shortcomings have been identified for future improvement. The multigrid sys- tem...J. Shriver, R. Helber, P. Spence, S . Carroll, O.M. Smedstad, and B. Lunde. 2011. Validation Test Report for the Navy Coupled Ocean
Siegel, Nisan; Brooker, Gary
2014-09-22
FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".
Probe for high resolution NMR with sample reorientation
Pines, Alexander; Samoson, Ago
1990-01-01
An improved NMR probe and method are described which substantially improve the resolution of NMR measurements made on powdered or amorphous or otherwise orientationally disordered samples. The apparatus mechanically varies the orientation of the sample such that the time average of two or more sets of spherical harmonic functions are zero.