Nuclear Export of Messenger RNA
Katahira, Jun
2015-01-01
Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925
Obana, Nozomu; Shirahama, Yu; Abe, Kimihiro; Nakamura, Kouji
2010-09-01
The small RNA (sRNA), VR-RNA that is directly regulated by the VirR/VirS two-component system, regulates many genes including toxin genes such as collagenase (colA) and phospholipase C (plc) in Clostridium perfringens. Although the VR-RNA 3' region is sufficient to regulate the colA and plc genes, the molecular mechanism of toxin gene regulation by VR-RNA remains unclear. Here, we found that colA mRNA is cleaved at position -79 and -78 from the A of the first codon (ATG) in the presence of VR-RNA. The processed transcripts were stable compared with longer intact transcripts. On the other hand, colA mRNA was labile in a VR-RNA-deficient strain, and processed transcripts were undetectable. The stability and processing of colA mRNA were restored by transformation of the 3' region of VR-RNA-expression vector. The 3' region of VR-RNA and colA mRNA had significant complementation and interacted in vitro. These results show that VR-RNA base pairs with colA mRNA and induces cleavage in the 5' untranslated region (UTR) of colA mRNA, which leads to the stabilization of colA mRNA and the activation of colA expression. © 2010 Blackwell Publishing Ltd.
Alternative Polyadenylation in Human Diseases
Chang, Jae-Woong; Yeh, Hsin-Sung
2017-01-01
Varying length of messenger RNA (mRNA) 3′-untranslated region is generated by alternating the usage of polyadenylation sites during pre-mRNA processing. It is prevalent through all eukaryotes and has emerged as a key mechanism for controlling gene expression. Alternative polyadenylation (APA) plays an important role for cell growth, proliferation, and differentiation. In this review, we discuss the functions of APA related with various physiological conditions including cellular metabolism, mRNA processing, and protein diversity in a variety of disease models. We also discuss the molecular mechanisms underlying APA regulation, such as variations in the concentration of mRNA processing factors and RNA-binding proteins, as well as global transcriptome changes under cellular signaling pathway. PMID:29271615
Principles of mRNA transport in yeast.
Heym, Roland Gerhard; Niessing, Dierk
2012-06-01
mRNA localization and localized translation is a common mechanism by which cellular asymmetry is achieved. In higher eukaryotes the mRNA transport machinery is required for such diverse processes as stem cell division and neuronal plasticity. Because mRNA localization in metazoans is highly complex, studies at the molecular level have proven to be cumbersome. However, active mRNA transport has also been reported in fungi including Saccharomyces cerevisiae, Ustilago maydis and Candida albicans, in which these events are less difficult to study. Amongst them, budding yeast S. cerevisiae has yielded mechanistic insights that exceed our understanding of other mRNA localization events to date. In contrast to most reviews, we refrain here from summarizing mRNA localization events from different organisms. Instead we give an in-depth account of ASH1 mRNA localization in budding yeast. This approach is particularly suited to providing a more holistic view of the interconnection between the individual steps of mRNA localization, from transcriptional events to cytoplasmic mRNA transport and localized translation. Because of our advanced mechanistic understanding of mRNA localization in yeast, the present review may also be informative for scientists working, for example, on mRNA localization in embryogenesis or in neurons.
Multiple Export Mechanisms for mRNAs
Delaleau, Mildred; Borden, Katherine L. B.
2015-01-01
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed. PMID:26343730
Protein Translation and Signaling in Human Eosinophils
Esnault, Stephane; Shen, Zhong-Jian; Malter, James S.
2017-01-01
We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS) survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1) the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2) the mechanisms regulating mRNA binding proteins activity in EOS, and (3) the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases. PMID:28971096
hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation
Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.
2016-01-01
Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614
Dynamic integration of splicing within gene regulatory pathways
Braunschweig, Ulrich; Gueroussov, Serge; Plocik, Alex; Graveley, Brenton R.; Blencowe, Benjamin J.
2013-01-01
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive cross-talk between gene regulatory layers takes advantage of dynamic spatial, physical and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control. PMID:23498935
Coupling mRNA processing with transcription in time and space
Bentley, David L.
2015-01-01
Maturation of mRNA precursors often occurs simultaneously with their synthesis by RNA polymerase II (Pol II). The co-transcriptional nature of mRNA processing has permitted the evolution of coupling mechanisms that coordinate transcription with mRNA capping, splicing, editing and 3′ end formation. Recent experiments using sophisticated new methods for analysis of nascent RNA have provided important insights into the relative amount of co-transcriptional and post-transcriptional processing, the relationship between mRNA elongation and processing, and the role of the Pol II carboxy-terminal domain (CTD) in regulating these processes. PMID:24514444
Alternative polyadenylation of mRNA precursors
Tian, Bin; Manley, James L.
2017-01-01
Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3′ termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation. PMID:27677860
mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription.
Varshney, Dhaval; Lombardi, Olivia; Schweikert, Gabriele; Dunn, Sianadh; Suska, Olga; Cowling, Victoria H
2018-05-01
mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
The mTOR kinase inhibitor rapamycin decreases iNOS mRNA stability in astrocytes
2011-01-01
Background Reactive astrocytes are capable of producing a variety of pro-inflammatory mediators and potentially neurotoxic compounds, including nitric oxide (NO). High amounts of NO are synthesized following up-regulation of inducible NO synthase (iNOS). The expression of iNOS is tightly regulated by complex molecular mechanisms, involving both transcriptional and post-transcriptional processes. The mammalian target of rapamycin (mTOR) kinase modulates the activity of some proteins directly involved in post-transcriptional processes of mRNA degradation. mTOR is a serine-threonine kinase that plays an evolutionarily conserved role in the regulation of cell growth, proliferation, survival, and metabolism. It is also a key regulator of intracellular processes in glial cells. However, with respect to iNOS expression, both stimulatory and inhibitory actions involving the mTOR pathway have been described. In this study the effects of mTOR inhibition on iNOS regulation were evaluated in astrocytes. Methods Primary cultures of rat cortical astrocytes were activated with different proinflammatory stimuli, namely a mixture of cytokines (TNFα, IFNγ, and IL-1β) or by LPS plus IFNγ. Rapamycin was used at nM concentrations to block mTOR activity and under these conditions we measured its effects on the iNOS promoter, mRNA and protein levels. Functional experiments to evaluate iNOS activity were also included. Results In this experimental paradigm mTOR activation did not significantly affect astrocyte iNOS activity, but mTOR pathway was involved in the regulation of iNOS expression. Rapamycin did not display any significant effects under basal conditions, on either iNOS activity or its expression. However, the drug significantly increased iNOS mRNA levels after 4 h incubation in presence of pro-inflammatory stimuli. This stimulatory effect was transient, since no differences in either iNOS mRNA or protein levels were detected after 24 h. Interestingly, reduced levels of iNOS mRNA were detected after 48 hours, suggesting that rapamycin can modify iNOS mRNA stability. In this regard, we found that rapamycin significantly reduced the half-life of iNOS mRNA, from 4 h to 50 min when cells were co-incubated with cytokine mixture and 10 nM rapamycin. Similarly, rapamycin induced a significant up-regulation of tristetraprolin (TTP), a protein involved in the regulation of iNOS mRNA stability. Conclusion The present findings show that mTOR controls the rate of iNOS mRNA degradation in astrocytes. Together with the marked anti-inflammatory effects that we previously observed in microglial cells, these data suggest possible beneficial effects of mTOR inhibitors in the treatment of inflammatory-based CNS pathologies. PMID:21208419
Mechanism of Cytoplasmic mRNA Translation
2015-01-01
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings. PMID:26019692
Sullivan, Eileen; Santiago, Carlos; Parker, Emily D.; Dominski, Zbigniew; Yang, Xiaocui; Lanzotti, David J.; Ingledue, Tom C.; Marzluff, William F.; Duronio, Robert J.
2001-01-01
Replication-associated histone genes encode the only metazoan mRNAs that lack polyA tails, ending instead in a conserved 26-nt sequence that forms a stem–loop. Most of the regulation of mammalian histone mRNA is posttranscriptional and mediated by this unique 3′ end. Stem–loop–binding protein (SLBP) binds to the histone mRNA 3′ end and is thought to participate in all aspects of histone mRNA metabolism, including cell cycle regulation. To examine SLBP function genetically, we have cloned the gene encoding Drosophila SLBP (dSLBP) by a yeast three-hybrid method and have isolated mutations in dSLBP. dSLBP function is required both zygotically and maternally. Strong dSLBP alleles cause zygotic lethality late in development and result in production of stable histone mRNA that accumulates in nonreplicating cells. These histone mRNAs are cytoplasmic and have polyadenylated 3′ ends like other polymerase II transcripts. Hypomorphic dSLBP alleles support zygotic development but cause female sterility. Eggs from these females contain dramatically reduced levels of histone mRNA, and mutant embryos are not able to complete the syncytial embryonic cycles. This is in part because of a failure of chromosome condensation at mitosis that blocks normal anaphase. These data demonstrate that dSLBP is required in vivo for 3′ end processing of histone pre-mRNA, and that this is an essential function for development. Moreover, dSLBP-dependent processing plays an important role in coupling histone mRNA production with the cell cycle. PMID:11157774
Heinrich, Stephanie; Derrer, Carina Patrizia; Lari, Azra; Weis, Karsten; Montpetit, Ben
2017-01-01
The transport of messenger RNAs (mRNAs) from the nucleus to cytoplasm is an essential step in the gene expression program of all eukaryotes. Recent technological advances in the areas of RNA-labeling, microscopy, and sequencing are leading to novel insights about mRNA biogenesis and export. This includes quantitative single molecule imaging (SMI) of RNA molecules in live cells, which is providing knowledge of the spatial and temporal dynamics of the export process. As this information becomes available, it leads to new questions, the reinterpretation of previous findings, and revised models of mRNA export. In this review, we will briefly highlight some of these recent findings and discuss how live cell SMI approaches may be used to further our current understanding of mRNA export and gene expression. PMID:28052353
mRNA Cancer Vaccines-Messages that Prevail.
Grunwitz, Christian; Kranz, Lena M
2017-01-01
During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.
Himabindu, P; Anupama, K
2017-04-15
The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli , but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5'-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5'-pyrophosphohydrolase, RppH, that catalyzes conversion of 5'-terminal triphosphate to 5'-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT , which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coli IMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli . Copyright © 2017 American Society for Microbiology.
Differential expression of decorin and biglycan genes during mouse tooth development
NASA Technical Reports Server (NTRS)
Matsuura, T.; Duarte, W. R.; Cheng, H.; Uzawa, K.; Yamauchi, M.
2001-01-01
Small leucine-rich proteoglycans (SLRPs) have a number of biological functions and some of them are thought to regulate collagen mineralizaton in bone and tooth. We have previously identified and immunolocalized two members of the SLRPs family, decorin and biglycan, in bovine tooth/periodontium. To investigate their potential roles in tooth development, we examined the mRNA expression patterns of decorin, biglycan and type I collagen in newborn (day 19) mice tooth germs by in situ hybridization. At this developmental stage, the first maxillary and mandibular molars include stages before and after secretion of the predentin matrix, respectively. The expression of decorin mRNA coincided with that of type I collagen mRNA and was mostly observed in secretory odontoblasts, while the biglycan mRNA was expressed throughout the tooth germ, including pre-secretory odontoblasts/ameloblasts, dental papilla and stellate reticulum. However, its signal in secretory odontoblasts was not as evident as that of decorin. In mandibular incisors, where a significant amount of predentin matrix and a small amount of enamel matrix were already secreted, a similar differential expression pattern was observed. In secretory ameloblasts the biglycan mRNA expression was apparent, while that of decorin was not. These differential expression patterns suggest the distinct roles of biglycan and decorin in the process of tooth development.
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less
A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization
Qiu, Chen; McCann, Kathleen L.; Wine, Robert N.; ...
2014-12-15
Pumilio/feminization of XX and XO animals (fem)-3 mRNA-binding factor (PUF) proteins bind sequence specifically to mRNA targets using a single-stranded RNA-binding domain comprising eight Pumilio (PUM) repeats. PUM repeats have now been identified in proteins that function in pre-rRNA processing, including human Puf-A and yeast Puf6. This is a role not previously ascribed to PUF proteins. In this paper we present crystal structures of human Puf-A that reveal a class of nucleic acid-binding proteins with 11 PUM repeats arranged in an “L”-like shape. In contrast to classical PUF proteins, Puf-A forms sequence-independent interactions with DNA or RNA, mediated by conservedmore » basic residues. We demonstrate that equivalent basic residues in yeast Puf6 are important for RNA binding, pre-rRNA processing, and mRNA localization. Finally, PUM repeats can be assembled into alternative folds that bind to structured nucleic acids in addition to forming canonical eight-repeat crescent-shaped RNA-binding domains found in classical PUF proteins.« less
The physical characteristics of human proteins in different biological functions.
Wang, Tengjiao; Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.
The physical characteristics of human proteins in different biological functions
Tang, Hailin
2017-01-01
The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865
Zybura-Broda, Katarzyna; Wolder-Gontarek, Malgorzata; Ambrozek-Latecka, Magdalena; Choros, Artur; Bogusz, Agnieszka; Wilemska-Dziaduszycka, Joanna; Rylski, Marcin
2018-01-01
Matrix metalloproteinase-9 (Mmp-9) is involved in different general and cell-type–specific processes, both in neuronal and non-neuronal cells. Moreover, it is implicated in an induction or progression of various human disorders, including diseases of the central nervous system. Mechanisms regulating activity-driven Mmp-9 expression in neurons are still not fully understood. Here, we show that stabilization of Mmp-9 mRNA is one of the factors responsible for the neuronal activity-evoked upregulation of Mmp-9 mRNA expression in hippocampal neurons. Furthermore, we demonstrate that the molecular mechanism related to this stabilization is dependent on the neuronal seizure-triggered transiently increased binding of the mRNA stability-inducing protein, HuR, to ARE1 and ARE4 motifs of the 3′UTR for Mmp-9 mRNA as well as the stably augmented association of another mRNA-stabilizing protein, HuB, to the ARE1 element of the 3′UTR. Intriguingly, we demonstrate further that both HuR and HuB are crucial for an incidence of Mmp-9 mRNA stabilization after neuronal activation. This study identifies Mmp-9 mRNA as the first HuB target regulated by mRNA stabilization in neurons. Moreover, these results are the first to describe an existence of HuR-dependent mRNA stabilization in neurons of the brain. PMID:29686606
RNA methylation in nuclear pre-mRNA processing.
Covelo-Molares, Helena; Bartosovic, Marek; Vanacova, Stepanka
2018-06-19
Eukaryotic RNA can carry more than 100 different types of chemical modifications. Early studies have been focused on modifications of highly abundant RNA, such as ribosomal RNA and transfer RNA, but recent technical advances have made it possible to also study messenger RNA (mRNA). Subsequently, mRNA modifications, namely methylation, have emerged as key players in eukaryotic gene expression regulation. The most abundant and widely studied internal mRNA modification is N 6 -methyladenosine (m 6 A), but the list of mRNA chemical modifications continues to grow as fast as interest in this field. Over the past decade, transcriptome-wide studies combined with advanced biochemistry and the discovery of methylation writers, readers, and erasers revealed roles for mRNA methylation in the regulation of nearly every aspect of the mRNA life cycle and in diverse cellular, developmental, and disease processes. Although large parts of mRNA function are linked to its cytoplasmic stability and regulation of its translation, a number of studies have begun to provide evidence for methylation-regulated nuclear processes. In this review, we summarize the recent advances in RNA methylation research and highlight how these new findings have contributed to our understanding of methylation-dependent RNA processing in the nucleus. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications. © 2018 The Authors. WIREs RNA published by Wiley Periodicals, Inc.
Stress-mediated translational control in cancer cells.
Leprivier, Gabriel; Rotblat, Barak; Khan, Debjit; Jan, Eric; Sorensen, Poul H
2015-07-01
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.
Regulation of cytoplasmic mRNA decay
Schoenberg, Daniel R.; Maquat, Lynne E.
2012-01-01
Discoveries made over the past 20 years highlight the importance of mRNA decay as a means to modulate gene expression and thereby protein production. Up until recently, studies focused largely on identifying cis-acting sequences that serve as mRNA stability or instability elements, the proteins that bind these elements, how the process of translation influences mRNA decay, and the ribonucleases that catalyze decay. Now, current studies have begun to elucidate how the decay process is regulated. This review examines our current understanding of how mammalian-cell mRNA decay is controlled by different signaling pathways and lays out a framework for future research. PMID:22392217
Olimpo, Jeffrey T; Quijas, Daniel A; Quintana, Anita M
2017-11-01
The central dogma has served as a foundational model for information flow, exchange, and storage in the biological sciences for several decades. Despite its continued importance, however, recent research suggests that novices in the domain possess several misconceptions regarding the aforementioned processes, including those pertaining specifically to the formation of messenger ribonucleic acid (mRNA) transcripts. In the present study, we sought to expand upon these observations through exploration of the influence of orientation cues on students' aptitude at synthesizing mRNAs from provided deoxyribonucleic acid (DNA) template strands. Data indicated that participants (n = 45) were proficient at solving tasks of this nature when the DNA template strand and the mRNA molecule were represented in an antiparallel orientation. In contrast, participants' performance decreased significantly on items in which the mRNA was depicted in a parallel orientation relative to the DNA template strand. Furthermore, participants' Grade Point Average, self-reported confidence in understanding the transcriptional process, and spatial ability were found to mediate their performance on the mRNA synthesis tasks. Collectively, these data reaffirm the need for future research and pedagogical interventions designed to enhance students' comprehension of the central dogma in a manner that makes transparent its relevance to real-world scientific phenomena. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):501-508, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs
Huang, Chunliu; Shi, Junjie; Guo, Yibin; Huang, Weijun; Huang, Shanshan; Ming, Siqi; Wu, Xingui; Zhang, Rui; Ding, Junjun; Zhao, Wei; Jia, Jie; Huang, Xi; Xiang, Andy Peng
2017-01-01
Abstract mRNA 3′ end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3′ processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mammalian mRNA 3′ processing complex. These snoRNAs primarily interact with Fip1, a component of cleavage and polyadenylation specificity factor (CPSF). We have functionally characterized one of these snoRNAs and our results demonstrated that the U/A-rich SNORD50A inhibits mRNA 3′ processing by blocking the Fip1-poly(A) site (PAS) interaction. Consistently, SNORD50A depletion altered the Fip1–RNA interaction landscape and changed the alternative polyadenylation (APA) profiles and/or transcript levels of a subset of genes. Taken together, our data revealed a novel function for snoRNAs and provided the first evidence that non-coding RNAs may play an important role in regulating mRNA 3′ processing. PMID:28911119
Expression studies of the zeaxanthin epoxidase gene in nicotiana plumbaginifolia
Audran; Borel; Frey; Sotta; Meyer; Simonneau; Marion-Poll
1998-11-01
Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors.
Expression Studies of the Zeaxanthin Epoxidase Gene in Nicotiana plumbaginifolia1
Audran, Corinne; Borel, Charlotte; Frey, Anne; Sotta, Bruno; Meyer, Christian; Simonneau, Thierry; Marion-Poll, Annie
1998-01-01
Abscisic acid (ABA) is a plant hormone involved in the control of a wide range of physiological processes, including adaptation to environmental stress and seed development. In higher plants ABA is a breakdown product of xanthophyll carotenoids (C40) via the C15 intermediate xanthoxin. The ABA2 gene of Nicotiana plumbaginifolia encodes zeaxanthin epoxidase, which catalyzes the conversion of zeaxanthin to violaxanthin. In this study we analyzed steady-state levels of ABA2 mRNA in N. plumbaginifolia. The ABA2 mRNA accumulated in all plant organs, but transcript levels were found to be higher in aerial parts (stems and leaves) than in roots and seeds. In leaves ABA2 mRNA accumulation displayed a day/night cycle; however, the ABA2 protein level remained constant. In roots no diurnal fluctuation in mRNA levels was observed. In seeds the ABA2 mRNA level peaked around the middle of development, when ABA content has been shown to increase in many species. In conditions of drought stress, ABA levels increased in both leaves and roots. A concomitant accumulation of ABA2 mRNA was observed in roots but not in leaves. These results are discussed in relation to the role of zeaxanthin epoxidase both in the xanthophyll cycle and in the synthesis of ABA precursors. PMID:9808747
RNA G-quadruplexes: emerging mechanisms in disease
Cammas, Anne
2017-01-01
Abstract RNA G-quadruplexes (G4s) are formed by G-rich RNA sequences in protein-coding (mRNA) and non-coding (ncRNA) transcripts that fold into a four-stranded conformation. Experimental studies and bioinformatic predictions support the view that these structures are involved in different cellular functions associated to both DNA processes (telomere elongation, recombination and transcription) and RNA post-transcriptional mechanisms (including pre-mRNA processing, mRNA turnover, targeting and translation). An increasing number of different diseases have been associated with the inappropriate regulation of RNA G4s exemplifying the potential importance of these structures on human health. Here, we review the different molecular mechanisms underlying the link between RNA G4s and human diseases by proposing several overlapping models of deregulation emerging from recent research, including (i) sequestration of RNA-binding proteins, (ii) aberrant expression or localization of RNA G4-binding proteins, (iii) repeat associated non-AUG (RAN) translation, (iv) mRNA translational blockade and (v) disabling of protein–RNA G4 complexes. This review also provides a comprehensive survey of the functional RNA G4 and their mechanisms of action. Finally, we highlight future directions for research aimed at improving our understanding on RNA G4-mediated regulatory mechanisms linked to diseases. PMID:28013268
The expression analysis of Sfrs10 and Celf4 during mouse retinal development
Karunakaran, Devi Krishna Priya; Congdon, Sean; Guerrette, Thomas; Banday, Abdul Rouf; Lemoine, Christopher; Chhaya, Nisarg; Kanadia, Rahul
2013-01-01
Processing of mRNAs including, alternative splicing (AS), mRNA transport and translation regulation are crucial to eukaryotic gene expression. For example, >90% of the gene in the human genome are known to undergo alternative splicing thereby expanding the proteome production capacity of a limited number of genes. Similarly, mRNA export and translation regulation plays a vital role in regulating protein production. Thus, it is important to understand how these RNA binding proteins including alternative splicing factors (ASFs) and mRNA transport and translation factors regulate these processes. Here we report the expression of an ASF, Serine-arginine rich splicing factor 10 (Sfrs10) and a mRNA translation regulation factor, CUGBP, elav like family member 4 (Celf4) in the developing mouse retina. Sfrs10 was expressed throughout postnatal (P) retinal development and was observed progressively in newly differentiating neurons. Immunofluorescence (IF) showed Sfrs10 in retinal ganglion cells (RGCs) at P0, followed by amacrine and bipolar cells, and at P8 it was enriched in red/green cone photoreceptor cells. By P22, Sfrs10 was observed in rod photoreceptors in a peri-nuclear pattern. Like Sfrs10, Celf4 was also observed in the developing retina, but with two distinct retinal isoforms. In situ hybridization (ISH) showed progressive expression of Celf4 in differentiating neurons, which was confirmed by IF that showed a dynamic shift in Celf4 localization. Early in development Celf4 expression was restricted to the nuclei of newly differentiating RGCs and later (E16 onwards) it was observed in the initial segments of RGC axons. Later, during postnatal development, Celf4 was observed in amacrine and bipolar cells, but here it was predominantly cytoplasmic and enriched in the two synaptic layers. Specifically, at P14, Celf4 was observed in the synaptic boutons of rod bipolar cells marked by Pkc-α. Thus, Celf4 might be regulating AS early in development besides its known role of regulating mRNA localization/translation. In all, our data suggests an important role for AS and mRNA localization/translation in retinal neuron differentiation. PMID:23932931
HnRNP-like proteins as post-transcriptional regulators.
Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling
2014-10-01
Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zhang, Dongyun; Liang, Yuguang; Xie, Qipeng; Gao, Guangxun; Wei, Jinlong; Huang, Haishan; Li, Jingxia; Gao, Jimin; Huang, Chuanshu
2015-01-01
Nucleolin is a ubiquitously expressed protein and participates in many important biological processes, such as cell cycle regulation and ribosomal biogenesis. The activity of nucleolin is regulated by intracellular localization and post-translational modifications, including phosphorylation, methylation, and ADP-ribosylation. Small ubiquitin-like modifier (SUMO) is a category of recently verified forms of post-translational modifications and exerts various effects on the target proteins. In the studies reported here, we discovered SUMOylational modification of human nucleolin protein at Lys-294, which facilitated the mRNA binding property of nucleolin by maintaining its nuclear localization. In response to arsenic exposure, nucleolin-SUMO was induced and promoted its binding with gadd45α mRNA, which increased gadd45α mRNA stability and protein expression, subsequently causing GADD45α-mediated cell death. On the other hand, ectopic expression of Mn-SOD attenuated the arsenite-generated superoxide radical level, abrogated nucleolin-SUMO, and in turn inhibited arsenite-induced apoptosis by reducing GADD45α expression. Collectively, our results for the first time demonstrate that nucleolin-SUMO at K294R plays a critical role in its nucleus sequestration and gadd45α mRNA binding activity. This novel biological function of nucleolin is distinct from its conventional role as a proto-oncogene. Therefore, our findings here not only reveal a new modification of nucleolin protein and its novel functional paradigm in mRNA metabolism but also expand our understanding of the dichotomous roles of nucleolin in terms of cancer development, which are dependent on multiple intracellular conditions and consequently the appropriate regulations of its modifications, including SUMOylation. PMID:25561743
Ji, Yingbiao
2017-01-01
The RNA-binding proteins (RBPs) play a pivotal role in controlling gene expression through posttranscriptional processes. As the trans-acting factors, RBPs interact with the cis-regulatory elements located within mRNAs to regulate mRNA translational efficiency. Adding a new-layer regulation, recent studies suggest that poly(ADP-ribosyl)ation of the RNA-binding proteins often inhibit the RNA-binding ability of RBPs, thus regulating RBP-dependent mRNA metabolism including translational control. Here, we describe a biotin-based UV cross-linking method to determine if excessive accumulation of pADPr in the cell disrupts the interaction between RBPs and their target mRNAs. In addition, we illustrate the protocol of using the luciferase reporter assay to determine the effect of poly(ADP-ribosyl)ation on mRNA translation.
A role for exon sequences in alternative splicing of the human fibronectin gene.
Mardon, H J; Sebastio, G; Baralle, F E
1987-01-01
Exon EDIIIA of the fibronectin (Fn) gene is alternatively spliced via pathways which either skip or include the whole exon in the messenger RNA (mRNA). We have investigated the role of EDIIIA exon sequences in the human Fn gene in determining alternative splicing of this exon during transient expression of alpha globin/Fn minigene hybrids in HeLa cells. We demonstrate that a DNA sequence of 81bp within the central region of exon EDIIIA is required for alternative splicing during processing of the primary transcript to generate both EDIIIA+ and EDIIIA- mRNA's. Furthermore, alternative splicing of EDIIIA only occurs when this sequence is present in the correct orientation since when it is in antisense orientation splicing always occurs via exon-skipping generating EDIIIA- mRNA. Images PMID:3671064
Universal Poisson Statistics of mRNAs with Complex Decay Pathways.
Thattai, Mukund
2016-01-19
Messenger RNA (mRNA) dynamics in single cells are often modeled as a memoryless birth-death process with a constant probability per unit time that an mRNA molecule is synthesized or degraded. This predicts a Poisson steady-state distribution of mRNA number, in close agreement with experiments. This is surprising, since mRNA decay is known to be a complex process. The paradox is resolved by realizing that the Poisson steady state generalizes to arbitrary mRNA lifetime distributions. A mapping between mRNA dynamics and queueing theory highlights an identifiability problem: a measured Poisson steady state is consistent with a large variety of microscopic models. Here, I provide a rigorous and intuitive explanation for the universality of the Poisson steady state. I show that the mRNA birth-death process and its complex decay variants all take the form of the familiar Poisson law of rare events, under a nonlinear rescaling of time. As a corollary, not only steady-states but also transients are Poisson distributed. Deviations from the Poisson form occur only under two conditions, promoter fluctuations leading to transcriptional bursts or nonindependent degradation of mRNA molecules. These results place severe limits on the power of single-cell experiments to probe microscopic mechanisms, and they highlight the need for single-molecule measurements. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A natural allele of Nxf1/TAP supresses retrovirus insertional mutations
Floyd, Jennifer A.; Gold, David A.; Concepcion, Dorothy; Poon, Tiffany H.; Wang, Xiaobo; Keithley, Elizabeth; Chen, Dan; Ward, Erica J.; Chinn, Steven B.; Friedman, Rick A.; Yu, Hon-Tsen; Moriwaki, Kazuo; Shiroishi, Toshihiko; Hamilton, Bruce A.
2009-01-01
Endogenous retroviruses have shaped the evolution of mammalian genomes. Host genes that control the effects of retrovirus insertions are therefore of great interest. The Modifier-of-vibrator-1 locus controls level of correctly processed mRNA from genes mutated by endogenous retrovirus insertions into introns, including the pitpnvb tremor mutation and the Eya1BOR model of human branchiootorenal syndrome. Positional complementation cloning identifies Mvb1 as the nuclear export factor Nxf1, providing an unexpected link between mRNA export receptor and pre-mRNA processing. Population structure of the suppressing allele in wild M. m. castaneus suggests selective advantage. A congenic Mvb1CAST allele is a useful tool for modifying gene expression from existing mutations and could be used to manipulate engineered mutations containing retroviral elements. PMID:14517553
Interrelations between translation and general mRNA degradation in yeast
Huch, Susanne; Nissan, Tracy
2014-01-01
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. How to cite this article: WIREs RNA 2014, 5:747–763. doi: 10.1002/wrna.1244 PMID:24944158
Interrelations between translation and general mRNA degradation in yeast.
Huch, Susanne; Nissan, Tracy
2014-01-01
Messenger RNA (mRNA) degradation is an important element of gene expression that can be modulated by alterations in translation, such as reductions in initiation or elongation rates. Reducing translation initiation strongly affects mRNA degradation by driving mRNA toward the assembly of a decapping complex, leading to decapping. While mRNA stability decreases as a consequence of translational inhibition, in apparent contradiction several external stresses both inhibit translation initiation and stabilize mRNA. A key difference in these processes is that stresses induce multiple responses, one of which stabilizes mRNAs at the initial and rate-limiting step of general mRNA decay. Because this increase in mRNA stability is directly induced by stress, it is independent of the translational effects of stress, which provide the cell with an opportunity to assess its response to changing environmental conditions. After assessment, the cell can store mRNAs, reinitiate their translation or, alternatively, embark on a program of enhanced mRNA decay en masse. Finally, recent results suggest that mRNA decay is not limited to non-translating messages and can occur when ribosomes are not initiating but are still elongating on mRNA. This review will discuss the models for the mechanisms of these processes and recent developments in understanding the relationship between translation and general mRNA degradation, with a focus on yeast as a model system. © 2014 The Authors. WIREs RNA published by John Wiley & Sons, Ltd.
The DNA damage response activates HPV16 late gene expression at the level of RNA processing.
Nilsson, Kersti; Wu, Chengjun; Kajitani, Naoko; Yu, Haoran; Tsimtsirakis, Efthymios; Gong, Lijing; Winquist, Ellenor B; Glahder, Jacob; Ekblad, Lars; Wennerberg, Johan; Schwartz, Stefan
2018-06-01
We show that the alkylating cancer drug melphalan activated the DNA damage response and induced human papillomavirus type 16 (HPV16) late gene expression in an ATM- and Chk1/2-dependent manner. Activation of HPV16 late gene expression included inhibition of the HPV16 early polyadenylation signal that resulted in read-through into the late region of HPV16. This was followed by activation of the exclusively late, HPV16 splice sites SD3632 and SA5639 and production of spliced late L1 mRNAs. Altered HPV16 mRNA processing was paralleled by increased association of phosphorylated BRCA1, BARD1, BCLAF1 and TRAP150 with HPV16 DNA, and increased association of RNA processing factors U2AF65 and hnRNP C with HPV16 mRNAs. These RNA processing factors inhibited HPV16 early polyadenylation and enhanced HPV16 late mRNA splicing, thereby activating HPV16 late gene expression.
Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal
Lackford, Brad; Yao, Chengguo; Charles, Georgette M; Weng, Lingjie; Zheng, Xiaofeng; Choi, Eun-A; Xie, Xiaohui; Wan, Ji; Xing, Yi; Freudenberg, Johannes M; Yang, Pengyi; Jothi, Raja; Hu, Guang; Shi, Yongsheng
2014-01-01
mRNA alternative polyadenylation (APA) plays a critical role in post-transcriptional gene control and is highly regulated during development and disease. However, the regulatory mechanisms and functional consequences of APA remain poorly understood. Here, we show that an mRNA 3′ processing factor, Fip1, is essential for embryonic stem cell (ESC) self-renewal and somatic cell reprogramming. Fip1 promotes stem cell maintenance, in part, by activating the ESC-specific APA profiles to ensure the optimal expression of a specific set of genes, including critical self-renewal factors. Fip1 expression and the Fip1-dependent APA program change during ESC differentiation and are restored to an ESC-like state during somatic reprogramming. Mechanistically, we provide evidence that the specificity of Fip1-mediated APA regulation depends on multiple factors, including Fip1-RNA interactions and the distance between APA sites. Together, our data highlight the role for post-transcriptional control in stem cell self-renewal, provide mechanistic insight on APA regulation in development, and establish an important function for APA in cell fate specification. PMID:24596251
Růžička, Kamil; Zhang, Mi; Campilho, Ana; Bodi, Zsuzsanna; Kashif, Muhammad; Saleh, Mária; Eeckhout, Dominique; El-Showk, Sedeer; Li, Hongying; Zhong, Silin; De Jaeger, Geert; Mongan, Nigel P; Hejátko, Jan; Helariutta, Ykä; Fray, Rupert G
2017-07-01
N6-adenosine methylation (m 6 A) of mRNA is an essential process in most eukaryotes, but its role and the status of factors accompanying this modification are still poorly understood. Using combined methods of genetics, proteomics and RNA biochemistry, we identified a core set of mRNA m 6 A writer proteins in Arabidopsis thaliana. The components required for m 6 A in Arabidopsis included MTA, MTB, FIP37, VIRILIZER and the E3 ubiquitin ligase HAKAI. Downregulation of these proteins led to reduced relative m 6 A levels and shared pleiotropic phenotypes, which included aberrant vascular formation in the root, indicating that correct m 6 A methylation plays a role in developmental decisions during pattern formation. The conservation of these proteins amongst eukaryotes and the demonstration of a role in writing m 6 A for the E3 ubiquitin ligase HAKAI is likely to be of considerable relevance beyond the plant sciences. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
A model for competition for ribosomes in the cell
Raveh, Alon; Margaliot, Michael; Sontag, Eduardo D.; Tuller, Tamir
2016-01-01
A single mammalian cell includes an order of 104–105 mRNA molecules and as many as 105–106 ribosomes. Large-scale simultaneous mRNA translation induces correlations between the mRNA molecules, as they all compete for the finite pool of available ribosomes. This has important implications for the cell's functioning and evolution. Developing a better understanding of the intricate correlations between these simultaneous processes, rather than focusing on the translation of a single isolated transcript, should help in gaining a better understanding of mRNA translation regulation and the way elongation rates affect organismal fitness. A model of simultaneous translation is specifically important when dealing with highly expressed genes, as these consume more resources. In addition, such a model can lead to more accurate predictions that are needed in the interconnection of translational modules in synthetic biology. We develop and analyse a general dynamical model for large-scale simultaneous mRNA translation and competition for ribosomes. This is based on combining several ribosome flow models (RFMs) interconnected via a pool of free ribosomes. We use this model to explore the interactions between the various mRNA molecules and ribosomes at steady state. We show that the compound system always converges to a steady state and that it always entrains or phase locks to periodically time-varying transition rates in any of the mRNA molecules. We then study the effect of changing the transition rates in one mRNA molecule on the steady-state translation rates of the other mRNAs that results from the competition for ribosomes. We show that increasing any of the codon translation rates in a specific mRNA molecule yields a local effect, an increase in the translation rate of this mRNA, and also a global effect, the translation rates in the other mRNA molecules all increase or all decrease. These results suggest that the effect of codon decoding rates of endogenous and heterologous mRNAs on protein production is more complicated than previously thought. In addition, we show that increasing the length of an mRNA molecule decreases the production rate of all the mRNAs. PMID:26962028
Chapter 17. Extension of endogenous primers as a tool to detect micro-RNA targets.
Vatolin, Sergei; Weil, Robert J
2008-01-01
Mammalian cells express a large number of small, noncoding RNAs, including micro-RNAs (miRNAs), that can regulate both the level of a target mRNA and the protein produced by the target mRNA. Recognition of miRNA targets is a complicated process, as a single target mRNA may be regulated by several miRNAs. The potential for combinatorial miRNA-mediated regulation of miRNA targets complicates diagnostic and therapeutic applications of miRNAs. Despite significant progress in understanding the biology of miRNAs and advances in computational predictions of miRNA targets, methods that permit direct physical identification of miRNA-mRNA complexes in eukaryotic cells are still required. Several groups have utilized coimmunoprecipitation of RNA associated with a protein(s) that is part of the RNA silencing macromolecular complex. This chapter describes a detailed but straightforward strategy that identifies miRNA targets based on the assumption that small RNAs base paired with a complementary target mRNA can be used as a primer to synthesize cDNA that may be used for cloning, identification, and functional analysis.
Cho, Hana; Park, Ok Hyun; Park, Joori; Ryu, Incheol; Kim, Jeonghan; Ko, Jesang; Kim, Yoon Ki
2015-03-31
Glucocorticoid receptor (GR), which was originally known to function as a nuclear receptor, plays a role in rapid mRNA degradation by acting as an RNA-binding protein. The mechanism by which this process occurs remains unknown. Here, we demonstrate that GR, preloaded onto the 5'UTR of a target mRNA, recruits UPF1 through proline-rich nuclear receptor coregulatory protein 2 (PNRC2) in a ligand-dependent manner, so as to elicit rapid mRNA degradation. We call this process GR-mediated mRNA decay (GMD). Although GMD, nonsense-mediated mRNA decay (NMD), and staufen-mediated mRNA decay (SMD) share upstream frameshift 1 (UPF1) and PNRC2, we find that GMD is mechanistically distinct from NMD and SMD. We also identify de novo cellular GMD substrates using microarray analysis. Intriguingly, GMD functions in the chemotaxis of human monocytes by targeting chemokine (C-C motif) ligand 2 (CCL2) mRNA. Thus, our data provide molecular evidence of a posttranscriptional role of the well-studied nuclear hormone receptor, GR, which is traditionally considered a transcription factor.
Differential utilization of decapping enzymes in mammalian mRNA decay pathways
Li, You; Song, Mangen; Kiledjian, Megerditch
2011-01-01
mRNA decapping is a crucial step in the regulation of mRNA stability and gene expression. Dcp2 is an mRNA decapping enzyme that has been widely studied. We recently reported the presence of a second mammalian cytoplasmic decapping enzyme, Nudt16. Here we address the differential utilization of the two decapping enzymes in specified mRNA decay processes. Using mouse embryonic fibroblast (MEF) cell lines derived from a hypomorphic knockout of the Dcp2 gene with undetectable levels of Dcp2 or MEF cell lines harboring a Nudt16-directed shRNA to generate reduced levels of Nudt16, we demonstrate the distinct roles for Dcp2 and Nudt16 in nonsense-mediated mRNA decay (NMD), decay of ARE-containing mRNA and miRNA-mediated silencing. Our results indicated that NMD preferentially utilizes Dcp2 rather than Nudt16; Dcp2 and Nudt16 are redundant in miRNA-mediated silencing; and Dcp2 and Nudt16 are differentially utilized for ARE-mRNA decay. These data demonstrate that the two distinct decapping enzymes can uniquely function in specific mRNA decay processes in mammalian cells. PMID:21224379
Expression of podocyte-associated molecules in acquired human kidney diseases.
Koop, Klaas; Eikmans, Michael; Baelde, Hans J; Kawachi, Hiroshi; De Heer, Emile; Paul, Leendert C; Bruijn, Jan A
2003-08-01
Proteinuria is a poorly understood feature of many acquired renal diseases. Recent studies concerning congenital nephrotic syndromes and findings in genetically modified mice have demonstrated that podocyte molecules make a pivotal contribution to the maintenance of the selective filtration barrier of the normal glomerulus. However, it is unclear what role podocyte molecules play in proteinuria of acquired renal diseases. This study investigated the mRNA and protein expression of several podocyte-associated molecules in acquired renal diseases. Forty-eight patients with various renal diseases were studied, including minimal change nephropathy, focal segmental glomerulosclerosis, IgA nephropathy, lupus nephritis, and diabetic nephropathy, together with 13 kidneys with normal glomerular function. Protein levels of nephrin, podocin, CD2-associated protein, and podocalyxin were investigated using quantitative immunohistochemical assays. Real-time PCR was used to determine the mRNA levels of nephrin, podocin, and podoplanin in microdissected glomeruli. The obtained molecular data were related to electron microscopic ultrastructural changes, in particular foot process width, and to clinical parameters. In most acquired renal diseases, except in IgA nephropathy, a marked reduction was observed at the protein levels of nephrin, podocin, and podocalyxin, whereas an increase of the glomerular mRNA levels of nephrin, podocin, and podoplanin was found, compared with controls. The mean width of the podocyte foot processes was inversely correlated with the protein levels of nephrin (r = -0.443, P < 0.05), whereas it was positively correlated with podoplanin mRNA levels (r = 0.468, P < 0.05) and proteinuria (r = 0.585, P = 0.001). In the diseases studied, the decrease of slit diaphragm proteins was related to the effacement of foot processes and coincided with a rise of the levels of the corresponding mRNA transcripts. This suggests that the alterations in the expression of podocyte-associated molecules represent a compensatory reaction of the podocyte that results from damage associated with proteinuria.
Plant RNA Regulatory Network and RNA Granules in Virus Infection.
Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija
2017-01-01
Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual components contribute to these processes. In this review we discuss the roles of cellular RNA regulatory mechanisms and RNA granules in plant virus infection in the light of current knowledge and compare the findings to those made in animal virus studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Zidong Donna; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu
2014-01-01
Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors.more » In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. - Highlights: • Utilized a graded CR model in male mice • The mRNA profiles of xenobiotic processing genes (XPGs) in liver were investigated. • CR up-regulates many phase-II enzymes. • CR tends to feminize the mRNA profiles of XPGs.« less
Translation of globin messenger RNA by the mouse ovum
Brinster, R. L.; Chen, H. Y.; Trumbauer, M. E.; Avarbock, M. R.
2016-01-01
It has been demonstrated that the Xenopus oocyte can translate rabbit haemoglobin messenger RNA (mRNA) following microinjection of the message into the cell1. The Xenopus oocyte has since been shown to be capable of translating a variety of messenger RNAs from different species2–4. This system has proved useful in understanding the mechanism of message translation and has also provided information about the translation capability of the Xenopus oocyte5,6. Several other cell types, including HeLa cells and fibroblasts, can also translate exogenous message injected into the cell7,8. However, there have been no reports of injection of mRNA into oocytes or fertilised one-cell ova of mammalian species. Nevertheless, the latter system could be of considerable use in studying the processing of exogenous messages in a mammalian system undergoing development, as well as providing insight into the way the early embryo processes injected messages and the protein products of such messages. We report here the results of injecting message into the fertilised one-cell mouse ovum and show that both mouse and rabbit globin mRNA are translated in this system. PMID:7352032
CSR-1 RNAi pathway positively regulates histone expression in C. elegans
Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla
2012-01-01
Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3′UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2′-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression. PMID:22863779
CSR-1 RNAi pathway positively regulates histone expression in C. elegans.
Avgousti, Daphne C; Palani, Santhosh; Sherman, Yekaterina; Grishok, Alla
2012-10-03
Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3'UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2'-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.
Star-PAP Control of BIK Expression and Apoptosis Is Regulated by Nuclear PIPKIα and PKCδ Signaling
Li, Weimin; Laishram, Rakesh S.; Ji, Zhe; Barlow, Christy A.; Tian, Bin; Anderson, Richard A.
2012-01-01
SUMMARY BIK protein is an initiator of mitochondrial apoptosis and BIK expression is induced by pro-apoptotic signals including DNA damage. Here we demonstrate that 3′-end processing and expression of BIK mRNA are controlled by the nuclear PI4,5P2-regulated poly(A) polymerase Star-PAP downstream of DNA damage. Nuclear PKCδ is a key mediator of apoptosis and DNA damage stimulates PKCδ association with the Star-PAP complex where PKCδ is required for Star-PAP-dependent BIK expression. PKCδ binds the PI4,5P2-generating enzyme PIPKIα, which is essential for PKCδ interaction with the Star-PAP complex and PKCδ activity is directly stimulated by PI4,5P2. Features in the BIK 3′-UTR uniquely define Star-PAP specificity and may block canonical PAP activity toward BIK mRNA. This reveals a nuclear phosphoinositide signaling nexus where PIPKIα, PI4,5P2 and PKCδ regulate Star-PAP control of BIK expression and induction of apoptosis. This pathway is distinct from the Star-PAP-mediated oxidative stress pathway indicating signal-specific regulation of mRNA 3′-end processing. PMID:22244330
2010-01-01
Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context. PMID:21129205
Adiabatic reduction of a model of stochastic gene expression with jump Markov process.
Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C
2014-04-01
This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.
Haag, Carl
2017-01-01
In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport. PMID:28422978
Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export
Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.
2013-01-01
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491
Georgiev, O; Birnstiel, M L
1985-01-01
Analysis of cDNA sequences obtained from the small nuclear RNA U7 has previously suggested specific contacts, by base pairing, between the conserved stem-loop structure and CAAGAAAGA sequence of the histone pre-mRNA and the 5'-terminal sequence of the U7 RNA during RNA processing. In order to test some aspects of the model we have created a series of linker scan, deletion and insertion mutants of the 3' terminus of a sea urchin H3 histone gene and have injected mutant DNAs or in vitro synthesized precursors into frog oocyte nuclei for interpretation. We find that, in addition to the stem-loop structure of the mRNA, the CAAGAAAGA spacer transcript within the histone pre-mRNA is required absolutely for RNA processing, as predicted from our model. Spacer sequences immediately downstream of the CAAGAAAGA motif are not complementary to U7 RNA. Nevertheless, they are necessary for obtaining a maximal rate of RNA processing, as is the ACCA sequence coding for the 3' terminus of the mature mRNA. An increase of distance between the mRNA palindrome and the CAAGAAAGA by as little as six nucleotides abolishes all processing. It may, therefore, be useful to regard both these sequence motifs as part of one and the same RNA processing signal with narrowly defined topologies. Interestingly, U7 RNA-dependent 3' processing of histone pre-mRNA can occur in RNA injection experiments only when the in vitro synthesized pre-mRNA contains sequence extensions well beyond the region of sequence complementarities to the U7 RNA. In addition to directing 3' processing the terminal mRNA sequences may have a role in histone mRNA stabilization in the cytoplasmic compartment. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2410259
Regulation of mRNA Trafficking by Nuclear Pore Complexes
Bonnet, Amandine; Palancade, Benoit
2014-01-01
Over the last two decades, multiple studies have explored the mechanisms governing mRNA export out of the nucleus, a crucial step in eukaryotic gene expression. During transcription and processing, mRNAs are assembled into messenger ribonucleoparticles (mRNPs). mRNPs are then exported through nuclear pore complexes (NPCs), which are large multiprotein assemblies made of several copies of a limited number of nucleoporins. A considerable effort has been put into the dissection of mRNA export through NPCs at both cellular and molecular levels, revealing the conserved contributions of a subset of nucleoporins in this process, from yeast to vertebrates. Several reports have also demonstrated the ability of NPCs to sort out properly-processed mRNPs for entry into the nuclear export pathway. Importantly, changes in mRNA export have been associated with post-translational modifications of nucleoporins or changes in NPC composition, depending on cell cycle progression, development or exposure to stress. How NPC modifications also impact on cellular mRNA export in disease situations, notably upon viral infection, is discussed. PMID:25184662
In vivo characterization of the Drosophila mRNA 3′ end processing core cleavage complex
Michalski, Daniel; Steiniger, Mindy
2015-01-01
A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3′ end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272–1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3′ end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3′ end processing similar to RNAi-depletion of histone-specific 3′ end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3′ end processing of histone mRNAs. PMID:26081560
Atypical Opioid Mechanisms of Control of Injury-Induced Cutaneous Pain by Delta Receptors
2016-07-01
treat, and current opioids (i.e. mu opioid receptor agonists such as morphine) cause unacceptable side effects including addiction . Injuries suffered...treat, and current opioids that act on mu opioid receptors such as morphine generate significant side effects including addiction . War-related...slides. Slides were then processed for fluorescent in situ hybridization with RNAscope technology (ACD Biosystems) to detect Oprd1 mRNA, as described
The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing
Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy
2016-01-01
ABSTRACT Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764
The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.
Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy
2016-01-01
Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.
Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency
Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A
2014-01-01
The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542
[Alternative splicing regulation: implications in cancer diagnosis and treatment].
Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca
2015-04-08
The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D.; Cashikar, Anil; King, Oliver D.; Auluck, Pavan K.; Geddie, Melissa L.; Valastyan, Julie S.; Karger, David R.; Lindquist, Susan; Fraenkel, Ernest
2009-01-01
Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alpha-synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470
Role of RNase Y in Clostridium perfringens mRNA Decay and Processing.
Obana, Nozomu; Nakamura, Kouji; Nomura, Nobuhiko
2017-01-15
RNase Y is a major endoribonuclease that plays a crucial role in mRNA degradation and processing. We study the role of RNase Y in the Gram-positive anaerobic pathogen Clostridium perfringens, which until now has not been well understood. Our study implies an important role for RNase Y-mediated RNA degradation and processing in virulence gene expression and the physiological development of the organism. We began by constructing an RNase Y conditional knockdown strain in order to observe the importance of RNase Y on growth and virulence. Our resulting transcriptome analysis shows that RNase Y affects the expression of many genes, including toxin-producing genes. We provide data to show that RNase Y depletion repressed several toxin genes in C. perfringens and involved the virR-virS two-component system. We also observe evidence that RNase Y is indispensable for processing and stabilizing the transcripts of colA (encoding a major toxin collagenase) and pilA2 (encoding a major pilin component of the type IV pili). Posttranscriptional regulation of colA is known to be mediated by cleavage in the 5' untranslated region (5'UTR), and we observe that RNase Y depletion diminishes colA 5'UTR processing. We show that RNase Y is also involved in the posttranscriptional stabilization of pilA2 mRNA, which is thought to be important for host cell adherence and biofilm formation. RNases have important roles in RNA degradation and turnover in all organisms. C. perfringens is a Gram-positive anaerobic spore-forming bacterial pathogen that produces numerous extracellular enzymes and toxins, and it is linked to digestive disorders and disease. A highly conserved endoribonuclease, RNase Y, affects the expression of hundreds of genes, including toxin genes, and studying these effects is useful for understanding C. perfringens specifically and RNases generally. Moreover, RNase Y is involved in processing specific transcripts, and we observed that this processing in C. perfringens results in the stabilization of mRNAs encoding a toxin and bacterial extracellular apparatus pili. Our study shows that RNase activity is associated with gene expression, helping to determine the growth, proliferation, and virulence of C. perfringens. Copyright © 2016 American Society for Microbiology.
Tsuzuki, Masayuki; Motomura, Kazuki; Kumakura, Naoyoshi; Takeda, Atsushi
2017-03-01
Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.
A link between FTO, ghrelin, and impaired brain food-cue responsivity
Karra, Efthimia; O’Daly, Owen G.; Choudhury, Agharul I.; Yousseif, Ahmed; Millership, Steven; Neary, Marianne T.; Scott, William R.; Chandarana, Keval; Manning, Sean; Hess, Martin E.; Iwakura, Hiroshi; Akamizu, Takashi; Millet, Queensta; Gelegen, Cigdem; Drew, Megan E.; Rahman, Sofia; Emmanuel, Julian J.; Williams, Steven C.R.; Rüther, Ulrich U.; Brüning, Jens C.; Withers, Dominic J.; Zelaya, Fernando O.; Batterham, Rachel L.
2013-01-01
Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO “obesity-risk” rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans. PMID:23867619
A link between FTO, ghrelin, and impaired brain food-cue responsivity.
Karra, Efthimia; O'Daly, Owen G; Choudhury, Agharul I; Yousseif, Ahmed; Millership, Steven; Neary, Marianne T; Scott, William R; Chandarana, Keval; Manning, Sean; Hess, Martin E; Iwakura, Hiroshi; Akamizu, Takashi; Millet, Queensta; Gelegen, Cigdem; Drew, Megan E; Rahman, Sofia; Emmanuel, Julian J; Williams, Steven C R; Rüther, Ulrich U; Brüning, Jens C; Withers, Dominic J; Zelaya, Fernando O; Batterham, Rachel L
2013-08-01
Polymorphisms in the fat mass and obesity-associated gene (FTO) are associated with human obesity and obesity-prone behaviors, including increased food intake and a preference for energy-dense foods. FTO demethylates N6-methyladenosine, a potential regulatory RNA modification, but the mechanisms by which FTO predisposes humans to obesity remain unclear. In adiposity-matched, normal-weight humans, we showed that subjects homozygous for the FTO "obesity-risk" rs9939609 A allele have dysregulated circulating levels of the orexigenic hormone acyl-ghrelin and attenuated postprandial appetite reduction. Using functional MRI (fMRI) in normal-weight AA and TT humans, we found that the FTO genotype modulates the neural responses to food images in homeostatic and brain reward regions. Furthermore, AA and TT subjects exhibited divergent neural responsiveness to circulating acyl-ghrelin within brain regions that regulate appetite, reward processing, and incentive motivation. In cell models, FTO overexpression reduced ghrelin mRNA N6-methyladenosine methylation, concomitantly increasing ghrelin mRNA and peptide levels. Furthermore, peripheral blood cells from AA human subjects exhibited increased FTO mRNA, reduced ghrelin mRNA N6-methyladenosine methylation, and increased ghrelin mRNA abundance compared with TT subjects. Our findings show that FTO regulates ghrelin, a key mediator of ingestive behavior, and offer insight into how FTO obesity-risk alleles predispose to increased energy intake and obesity in humans.
Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis
Aviner, Ranen; Shenoy, Anjana; Elroy-Stein, Orna; Geiger, Tamar
2015-01-01
Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degradation rates. In this work, we applied an integrative multi-omic approach to study gene expression along the mammalian cell cycle through side-by-side analysis of mRNA, translation and protein levels. Our analysis sheds new light on the significant contribution of both protein synthesis and degradation to the variance in protein expression. Furthermore, we find that translation regulation plays an important role at S-phase, while progression through mitosis is predominantly controlled by changes in either mRNA levels or protein stability. Specific molecular functions are found to be co-regulated and share similar patterns of mRNA, translation and protein expression along the cell cycle. Notably, these include genes and entire pathways not previously implicated in cell cycle progression, demonstrating the potential of this approach to identify novel regulatory mechanisms beyond those revealed by traditional expression profiling. Through this three-level analysis, we characterize different mechanisms of gene expression, discover new cycling gene products and highlight the importance and utility of combining datasets generated using different techniques that monitor distinct steps of gene expression. PMID:26439921
Urokinase receptor expression involves tyrosine phosphorylation of phosphoglycerate kinase.
Shetty, Praveenkumar; Velusamy, Thirunavukkarasu; Bhandary, Yashodhar P; Liu, Ming C; Shetty, Sreerama
2010-02-01
The interaction of urokinase-type plasminogen activator (uPA) with its receptor, uPAR, plays a central role in several pathophysiological processes, including cancer. uPA induces its own cell surface receptor expression through stabilization of uPAR mRNA. The mechanism involves binding of a 51 nt uPAR mRNA coding sequence with phosphoglycerate kinase (PGK) to down regulate cell surface uPAR expression. Tyrosine phosphorylation of PGK mediated by uPA treatment enhances uPAR mRNA stabilization. In contrast, inhibition of tyrosine phosphorylation augments PGK binding to uPAR mRNA and attenuates uPA-induced uPAR expression. Mapping the specific peptide region of PGK indicated that its first quarter (amino acids 1-100) interacts with uPAR mRNA. To determine if uPAR expression by uPA is regulated through activation of tyrosine residues of PGK, we mutated the specific tyrosine residue and tested mutant PGK for its ability to interfere with uPAR expression. Inhibition of tyrosine phosphorylation by mutating Y76 residue abolished uPAR expression induced by uPA treatment. These findings collectively demonstrate that Y76 residue present in the first quarter of the PGK molecule is involved in lung epithelial cell surface uPAR expression. This region can effectively mimic the function of a whole PGK molecule in inhibiting tumor cell growth.
Shepherd, Andrew; Wesley, Uma; Wesley, Cedric
2010-01-01
Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103
Cellular localization of thrombopoietin mRNA in the liver by in situ hybridization.
Nomura, S; Ogami, K; Kawamura, K; Tsukamoto, I; Kudo, Y; Kanakura, Y; Kitamura, Y; Miyazaki, H; Kato, T
1997-07-01
The expression of thrombopoietin (TPO) mRNA is observed in several tissues, including liver, kidney, brain, skeletal muscle, intestine, spleen, and bone marrow. Among these organs, the highest expression of TPO mRNA is detected in the liver. We identified cells producing TPO by means of in situ hybridization of adult rat liver using digoxigenin-11-UTP-labeled cRNA probes. We found that the cells expressing TPO mRNA also expressed serum albumin mRNA. TPO mRNA was detected in parenchymal cells (hepatocytes) but not in non-parenchymal cells (including endothelial cells, epithelial cells, and so forth). To determine the location of TPO expression in embryogenesis, sections of fetal mice were further analyzed by in situ hybridization. TPO mRNA was detected only in hepatocytes of fetal liver, which was also the major site of hematopoiesis. The expression of TPO mRNA in fetal liver was observed from 12.5 days postcoitus. Northern blot analysis showed that mouse liver transcribed the same size of TPO mRNA in the fetus and in the adult. These results clearly demonstrate that hepatocytes are the primary site of TPO production in the liver from fetus to adult.
mRNA stability in mammalian cells.
Ross, J
1995-01-01
This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413
Park, Hongmarn; Yakhnin, Helen; Connolly, Michael; Romeo, Tony
2015-01-01
ABSTRACT Csr is a conserved global regulatory system that represses or activates gene expression posttranscriptionally. CsrA of Escherichia coli is a homodimeric RNA binding protein that regulates transcription elongation, translation initiation, and mRNA stability by binding to the 5′ untranslated leader or initial coding sequence of target transcripts. pnp mRNA, encoding the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase), was previously identified as a CsrA target by transcriptome sequencing (RNA-seq). Previous studies also showed that RNase III and PNPase participate in a pnp autoregulatory mechanism in which RNase III cleavage of the untranslated leader, followed by PNPase degradation of the resulting 5′ fragment, leads to pnp repression by an undefined translational repression mechanism. Here we demonstrate that CsrA binds to two sites in pnp leader RNA but only after the transcript is fully processed by RNase III and PNPase. In the absence of processing, both of the binding sites are sequestered in an RNA secondary structure, which prevents CsrA binding. The CsrA dimer bridges the upstream high-affinity site to the downstream site that overlaps the pnp Shine-Dalgarno sequence such that bound CsrA causes strong repression of pnp translation. CsrA-mediated translational repression also leads to a small increase in the pnp mRNA decay rate. Although CsrA has been shown to regulate translation and mRNA stability of numerous genes in a variety of organisms, this is the first example in which prior mRNA processing is required for CsrA-mediated regulation. IMPORTANCE CsrA protein represses translation of numerous mRNA targets, typically by binding to multiple sites in the untranslated leader region preceding the coding sequence. We found that CsrA represses translation of pnp by binding to two sites in the pnp leader transcript but only after it is processed by RNase III and PNPase. Processing by these two ribonucleases alters the mRNA secondary structure such that it becomes accessible to the ribosome for translation as well as to CsrA. As one of the CsrA binding sites overlaps the pnp ribosome binding site, bound CsrA prevents ribosome binding. This is the first example in which regulation by CsrA requires prior mRNA processing and should link pnp expression to conditions affecting CsrA activity. PMID:26438818
Simsek, Meric; Quezada-Calvillo, Roberto; Nichols, Buford L; Hamaker, Bruce R
2017-05-24
Diverse natural phenolic compounds show inhibition activity of intestinal α-glucosidases, which may constitute the molecular basis for their ability to control systemic glycemia. Additionally, phenolics can modify mRNA expression for proteins involved in nutritional, metabolic or immune processes. To explore the possibility that phenolics can regulate the mRNA expression, enzymatic activity, and protein synthesis/processing of intestinal Maltase-Glucoamylase (MGAM) and Sucrase-Isomaltase (SI), small intestinal explants from Balb/c mice were cultured for 24 h in the presence or absence of gallic acid, caffeic acid, and (+)-catechin at 0.1, 0.5, and 1 mM. We measured the levels of MGAM and SI mRNA expression by qRT-PCR, maltase and sucrase activities by a standard colorimetric method and the molecular size distribution of MGAM and SI proteins by western blotting. mRNA expression for MGAM was induced by the three phenolic compounds at 0.1 mM. mRNA expression for SI was induced by caffeic and gallic acids, but not by (+)-catechin. Caffeic acid was the most effective inducer of mRNA expression of these enzymes. Total maltase and sucrase activities were not affected by treatment with phenolics. The proportion of high molecular size forms of MGAM was significantly increased by two of the three phenolic compounds, but little effect was observed on SI proteins. Thus, changes in the protein synthesis/processing, affecting the proportions of the different molecular forms of MGAM, may account for the lack of correlation between mRNA expression and enzymatic activity.
Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia
2017-01-01
Abstract Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an ‘all-or-none’ pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. PMID:28520982
RNA-Binding Proteins Revisited - The Emerging Arabidopsis mRNA Interactome.
Köster, Tino; Marondedze, Claudius; Meyer, Katja; Staiger, Dorothee
2017-06-01
RNA-protein interaction is an important checkpoint to tune gene expression at the RNA level. Global identification of proteins binding in vivo to mRNA has been possible through interactome capture - where proteins are fixed to target RNAs by UV crosslinking and purified through affinity capture of polyadenylated RNA. In Arabidopsis over 500 RNA-binding proteins (RBPs) enriched in UV-crosslinked samples have been identified. As in mammals and yeast, the mRNA interactomes came with a few surprises. For example, a plethora of the proteins caught on RNA had not previously been linked to RNA-mediated processes, for example proteins of intermediary metabolism. Thus, the studies provide unprecedented insights into the composition of the mRNA interactome, highlighting the complexity of RNA-mediated processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jourdren, Laurent; Delaveau, Thierry; Marquenet, Emelie; Jacq, Claude; Garcia, Mathilde
2010-07-01
Recent improvements in microscopy technology allow detection of single molecules of RNA, but tools for large-scale automatic analyses of particle distributions are lacking. An increasing number of imaging studies emphasize the importance of mRNA localization in the definition of cell territory or the biogenesis of cell compartments. CORSEN is a new tool dedicated to three-dimensional (3D) distance measurements from imaging experiments especially developed to access the minimal distance between RNA molecules and cellular compartment markers. CORSEN includes a 3D segmentation algorithm allowing the extraction and the characterization of the cellular objects to be processed--surface determination, aggregate decomposition--for minimal distance calculations. CORSEN's main contribution lies in exploratory statistical analysis, cell population characterization, and high-throughput assays that are made possible by the implementation of a batch process analysis. We highlighted CORSEN's utility for the study of relative positions of mRNA molecules and mitochondria: CORSEN clearly discriminates mRNA localized to the vicinity of mitochondria from those that are translated on free cytoplasmic polysomes. Moreover, it quantifies the cell-to-cell variations of mRNA localization and emphasizes the necessity for statistical approaches. This method can be extended to assess the evolution of the distance between specific mRNAs and other cellular structures in different cellular contexts. CORSEN was designed for the biologist community with the concern to provide an easy-to-use and highly flexible tool that can be applied for diverse distance quantification issues.
Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.
Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok
2014-03-28
Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin
2016-01-01
The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR mRNA molecules via dual hybridization at the 3′- and 5′-ends and reveals an unexpectedly high frequency of 1:1 pairing with mitochondria marked by the matrix StAR protein. This pairing may be central to translation-coupled cholesterol transfer. Altogether, our results show that adrenal cells exhibit high-efficiency StAR activity that needs to integrate rapid cholesterol transfer with homeostasis and pulsatile hormonal stimulation. StAR NBD, the extended 3.5-kb mRNA, SIK1, and Tis11b play important roles. PMID:27531991
Lee, Jinwoo; Tong, Tiegang; Duan, Haichuan; Foong, Yee Hoon; Musaitif, Ibrahim; Yamazaki, Takeshi; Jefcoate, Colin
2016-01-01
The cholesterol transfer function of steroidogenic acute regulatory protein (StAR) is uniquely integrated into adrenal cells, with mRNA translation and protein kinase A (PKA) phosphorylation occurring at the mitochondrial outer membrane (OMM). The StAR C-terminal cholesterol-binding domain (CBD) initiates mitochondrial intermembrane contacts to rapidly direct cholesterol to Cyp11a1 in the inner membrane (IMM). The conserved StAR N-terminal regulatory domain (NTD) includes a leader sequence targeting the CBD to OMM complexes that initiate cholesterol transfer. Here, we show how the NTD functions to enhance CBD activity delivers more efficiently from StAR mRNA in adrenal cells, and then how two factors hormonally restrain this process. NTD processing at two conserved sequence sites is selectively affected by StAR PKA phosphorylation. The CBD functions as a receptor to stimulate the OMM/IMM contacts that mediate transfer. The NTD controls the transit time that integrates extramitochondrial StAR effects on cholesterol homeostasis with other mitochondrial functions, including ATP generation, inter-organelle fusion, and the major permeability transition pore in partnership with other OMM proteins. PKA also rapidly induces two additional StAR modulators: salt-inducible kinase 1 (SIK1) and Znf36l1/Tis11b. Induced SIK1 attenuates the activity of CRTC2, a key mediator of StAR transcription and splicing, but only as cAMP levels decline. TIS11b inhibits translation and directs the endonuclease-mediated removal of the 3.5-kb StAR mRNA. Removal of either of these functions individually enhances cAMP-mediated induction of StAR. High-resolution fluorescence in situ hybridization (HR-FISH) of StAR RNA reveals asymmetric transcription at the gene locus and slow RNA splicing that delays mRNA formation, potentially to synchronize with cholesterol import. Adrenal cells may retain slow transcription to integrate with intermembrane NTD activation. HR-FISH resolves individual 3.5-kb StAR mRNA molecules via dual hybridization at the 3'- and 5'-ends and reveals an unexpectedly high frequency of 1:1 pairing with mitochondria marked by the matrix StAR protein. This pairing may be central to translation-coupled cholesterol transfer. Altogether, our results show that adrenal cells exhibit high-efficiency StAR activity that needs to integrate rapid cholesterol transfer with homeostasis and pulsatile hormonal stimulation. StAR NBD, the extended 3.5-kb mRNA, SIK1, and Tis11b play important roles.
Mo, X; Xu, L; Yang, Q; Feng, H; Peng, J; Zhang, Y; Yuan, W; Wang, Y; Li, Y; Deng, Y; Wan, Y; Chen, Z; Li, F; Wu, X
2011-08-01
To study the common molecular mechanisms of various viruses infections that might result in congential cardiovascular diseases in perinatal period, changes in mRNA expression levels of ECV304 cells infected by rubella virus (RUBV), human cytomegalovirus (HCMV), and herpes simplex virus type 2 (HSV-2) were analyzed using a microarray system representing 18,716 human genes. 99 genes were found to exhibit differential expression (80 up-regulated and 19 down-regulated). Biological process analysis showed that 33 signaling pathways including 22 genes were relevant significantly to RV, HCMV and HSV-II infections. Of these 33 biological processes, 28 belong to one-gene biological processes and 5 belong to multiple-gene biological processes. Gene annotation indicated that the 5 multiple-gene biological processes including regulation of cell growth, collagen fibril organization, mRNA transport, cell adhesion and regulation of cell shape, and seven down- or up-regulated genes [CRIM1 (cysteine rich transmembrane BMP regulator 1), WISP2 (WNT1 inducible signaling pathway protein 2), COL12A1 (collagen, type XII, alpha 1), COL11A2 (collagen, type XI, alpha 2), CNTN5 (contactin 5), DDR1 (discoidin domain receptor tyrosine kinase 1), VEGF (vascular endothelial growth factor precursor)], are significantly correlated to RUBV, HCMV and HSV-2 infections in ECV304 cells. The results obtained in this study suggested the common molecular mechanisms of viruses infections that might result in congential cardiovascular diseases.
Effects of massage on the expression of proangiogenic markers in rat skin.
Ratajczak-Wielgomas, Katarzyna; Kassolik, Krzysztof; Grzegrzolka, Jedrzej; Halski, Tomasz; Piotrowska, Aleksandra; Mieszala, Katarzyna; Wilk, Iwona; Podhorska-Okolow, Marzenna; Dziegiel, Piotr; Andrzejewski, Waldemar
2018-05-17
Massage is a physiotherapeutic treatment, commonly used in both therapy and restoration of normal body functions. The aim of this work was to determine the effects of skin massage on stimulating the expression of angiogenesis-initiating factors, i.e. VEGF-A, FGF-2 (bFGF) and CD34 and on skin regeneration processes. The study was conducted on 48 Buffalo strain rats, randomly divided into two groups. In the first group (M, the massaged group), massage was applied five times a week for 7 weeks. In the second study group (C, the control group), the massage was omitted. Massage consisted of spiral movements at the plantar surface of skin for 5 min on each rear extremity. The gene expression of proangiogenic factors, including VEGF-A, FGF-2, CD34 at the mRNA level was determined using real-time PCR. Immunohistochemistry was performed on paraffin sections of rat skin to determine VEGF-A, FGF-2 CD34 and Ki-67expression. An increase in mRNA expression in the skin of the rat's rear extremity for VEGF-A and FGF-2 in the first week of the experiment was shown in the M group compared with the control rats. The upregulation of CD34 mRNA expression was also observed in the M group. We observed positive correlations between VEGF-A mRNA expression and the expression of mRNA for FGF-2 and CD34, as well as correlation between the expression of mRNA for FGF-2 and CD34. The immunohistochemical expression of VEGF-A, FGF-2 and CD34 was at a much lower level in the skin of control rats relative to the skin of massaged animals. Moreover, significantly higher immunoreactivity was shown for nuclear protein Ki-67 in epidermal cells in the M group compared with the C group. Rat skin massage increased the expression of the main angiogenesis-stimulating factors and the proliferative activity of epidermal cells, which can stimulate skin regeneration and tissue repairing processes.
IL-1β directly suppress ghrelin mRNA expression in ghrelin-producing cells.
Bando, Mika; Iwakura, Hiroshi; Ueda, Yoko; Ariyasu, Hiroyuki; Inaba, Hidefumi; Furukawa, Yasushi; Furuta, Hiroto; Nishi, Masahiro; Akamizu, Takashi
2017-05-15
In animal models, ghrelin production is suppressed by LPS administration. To elucidate the detailed molecular mechanisms involved in the phenomenon, we investigated the effects of LPS and LPS-inducible cytokines, including TNF-α, IL-1β, and IL-6, on the expression of ghrelin in the ghrelin-producing cell line MGN3-1. These cells expressed IL-1R, and IL-1β significantly suppressed ghrelin mRNA levels. The suppressive effects of IL-1β were attenuated by knockdown of IKKβ, suggesting the involvement of the NF-κB pathway. These results suggested that IL-1β is a major regulator of ghrelin expression during inflammatory processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Synaptic control of local translation: the plot thickens with new characters.
Thomas, María Gabriela; Pascual, Malena Lucía; Maschi, Darío; Luchelli, Luciana; Boccaccio, Graciela Lidia
2014-06-01
The production of proteins from mRNAs localized at the synapse ultimately controls the strength of synaptic transmission, thereby affecting behavior and cognitive functions. The regulated transcription, processing, and transport of mRNAs provide dynamic control of the dendritic transcriptome, which includes thousands of messengers encoding multiple cellular functions. Translation is locally modulated by synaptic activity through a complex network of RNA-binding proteins (RBPs) and various types of non-coding RNAs (ncRNAs) including BC-RNAs, microRNAs, piwi-interacting RNAs, and small interference RNAs. The RBPs FMRP and CPEB play a well-established role in synaptic translation, and additional regulatory factors are emerging. The mRNA repressors Smaug, Nanos, and Pumilio define a novel pathway for local translational control that affects dendritic branching and spines in both flies and mammals. Recent findings support a role for processing bodies and related synaptic mRNA-silencing foci (SyAS-foci) in the modulation of synaptic plasticity and memory formation. The SyAS-foci respond to different stimuli with changes in their integrity thus enabling regulated mRNA release followed by translation. CPEB, Pumilio, TDP-43, and FUS/TLS form multimers through low-complexity regions related to prion domains or polyQ expansions. The oligomerization of these repressor RBPs is mechanistically linked to the aggregation of abnormal proteins commonly associated with neurodegeneration. Here, we summarize the current knowledge on how specificity in mRNA translation is achieved through the concerted action of multiple pathways that involve regulatory ncRNAs and RBPs, the modification of translation factors, and mRNA-silencing foci dynamics.
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns.
Norred, S Elizabeth; Caveney, Patrick M; Chauhan, Gaurav; Collier, Lauren K; Collier, C Patrick; Abel, Steven M; Simpson, Michael L
2018-05-18
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.
Youn, Ji-Young; Dunham, Wade H; Hong, Seo Jung; Knight, James D R; Bashkurov, Mikhail; Chen, Ginny I; Bagci, Halil; Rathod, Bhavisha; MacLeod, Graham; Eng, Simon W M; Angers, Stéphane; Morris, Quaid; Fabian, Marc; Côté, Jean-François; Gingras, Anne-Claude
2018-02-01
mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. Copyright © 2017 Elsevier Inc. All rights reserved.
Fatih, Nadia; Camberlein, Emilie; Island, Marie Laure; Corlu, Anne; Abgueguen, Emmanuelle; Détivaud, Lénaïck; Leroyer, Patricia; Brissot, Pierre; Loréal, Olivier
2010-05-01
During the inflammatory process, hepcidin overexpression favours the development of anaemia of chronic diseases which represents the second most common form of anaemia worldwide. The identification of therapeutic agents decreasing hepcidin expression is therefore an important goal. The aim of this study was to target the STAT3 signalling involved in the development of increased hepcidin expression related to chronic inflammation. In a co-culture model associating mouse hepatocytes and rat liver epithelial cells, the mRNA levels of hepcidin1, albumin, aldolase B, Cyp3a4, Stat3, Smad4 and iron regulatory genes were measured by real-time PCR. STAT3 and phosphorylated SMAD1/5/8 proteins were analysed by Western blot. At variance of hepatocyte pure culture, co-culture provided high levels of hepcidin1 mRNA, reaching 400% of the freshly isolated hepatocyte values after 6 days of culture. Hepcidin expression was associated with the maintenance of hepatocyte phenotype, STAT3 phosphorylation and functional BMP/SMAD pathway. Stat3 siRNAs inhibited the hepcidin1 mRNA expression. STAT3 inhibitors, including curcumin, AG490 and a peptide (PpYLKTK), reduced hepcidin1 mRNA expression even when cells were additionally exposed to IL-6. Hepcidin1 mRNA was expressed at high levels by hepatocytes in the co-culture model, and STAT3 pathway activation was controlled through STAT3 inhibitors. Such inhibitors could be useful to prevent anaemia related to hepcidin overexpression during chronic inflammation.
Gene expression of regulatory enzymes of glycolysis/gluconeogenesis in regenerating rat liver.
Rosa, J L; Bartrons, R; Tauler, A
1992-01-01
Levels of mRNA for glucokinase, L-pyruvate kinase, fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase were analysed during liver regeneration. Levels of mRNA for glycolytic enzymes (glucokinase and L-pyruvate kinase) decreased rapidly after partial hepatectomy. Glucokinase mRNA increased at 16-24 h, returning to normal values after this time. L-pyruvate kinase mRNA recovered control levels at 168 h. In contrast, phosphoenolpyruvate carboxykinase mRNA increased rapidly after liver resection and remained high during the regenerative process. However, the levels of fructose-1,6-bisphosphatase mRNA were not modified significantly. These results correlate with the reported increased rate of gluconeogenesis and changes in enzyme levels after partial hepatectomy. The effect of stress on the mRNA levels was also studied. All enzymes showed variations in their mRNA levels after the surgical stress. In general, the differences were more pronounced in regenerating liver than in sham-operated animals, being practically normalized at 24 h. Images Fig. 2. Fig. 3. PMID:1329724
Quantitative studies of mRNA recruitment to the eukaryotic ribosome.
Fraser, Christopher S
2015-07-01
The process of peptide bond synthesis by ribosomes is conserved between species, but the initiation step differs greatly between the three kingdoms of life. This is illustrated by the evolution of roughly an order of magnitude more initiation factor mass found in humans compared with bacteria. Eukaryotic initiation of translation is comprised of a number of sub-steps: (i) recruitment of an mRNA and initiator methionyl-tRNA to the 40S ribosomal subunit; (ii) migration of the 40S subunit along the 5' UTR to locate the initiation codon; and (iii) recruitment of the 60S subunit to form the 80S initiation complex. Although the mechanism and regulation of initiation has been studied for decades, many aspects of the pathway remain unclear. In this review, I will focus discussion on what is known about the mechanism of mRNA selection and its recruitment to the 40S subunit. I will summarize how the 43S preinitiation complex (PIC) is formed and stabilized by interactions between its components. I will discuss what is known about the mechanism of mRNA selection by the eukaryotic initiation factor 4F (eIF4F) complex and how the selected mRNA is recruited to the 43S PIC. The regulation of this process by secondary structure located in the 5' UTR of an mRNA will also be discussed. Finally, I present a possible kinetic model with which to explain the process of mRNA selection and recruitment to the eukaryotic ribosome. Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
Soetanto, R; Hynes, C J; Patel, H R; Humphreys, D T; Evers, M; Duan, G; Parker, B J; Archer, S K; Clancy, J L; Graham, R M; Beilharz, T H; Smith, N J; Preiss, T
2016-05-01
miRNAs play critical roles in heart disease. In addition to differential miRNA expression, miRNA-mediated control is also affected by variable miRNA processing or alternative 3'-end cleavage and polyadenylation (APA) of their mRNA targets. To what extent these phenomena play a role in the heart remains unclear. We sought to explore miRNA processing and mRNA APA in cardiomyocytes, and whether these change during cardiac hypertrophy. Thoracic aortic constriction (TAC) was performed to induce hypertrophy in C57BL/6J mice. RNA extracted from cardiomyocytes of sham-treated, pre-hypertrophic (2 days post-TAC), and hypertrophic (7 days post-TAC) mice was subjected to small RNA- and poly(A)-test sequencing (PAT-Seq). Differential expression analysis matched expectations; nevertheless we identified ~400 mRNAs and hundreds of noncoding RNA loci as altered with hypertrophy for the first time. Although multiple processing variants were observed for many miRNAs, there was little change in their relative proportions during hypertrophy. PAT-Seq mapped ~48,000 mRNA 3'-ends, identifying novel 3' untranslated regions (3'UTRs) for over 7000 genes. Importantly, hypertrophy was associated with marked changes in APA with a net shift from distal to more proximal mRNA 3'-ends, which is predicted to decrease overall miRNA repression strength. We independently validated several examples of 3'UTR proportion change and showed that alternative 3'UTRs associate with differences in mRNA translation. Our work suggests that APA contributes to altered gene expression with the development of cardiomyocyte hypertrophy and provides a rich resource for a systems-level understanding of miRNA-mediated regulation in physiological and pathological states of the heart. Copyright © 2016 Elsevier B.V. All rights reserved.
Sala, Claudia; Forti, Francesca; Magnoni, Francesca; Ghisotti, Daniela
2008-01-01
Background In Mycobacterium tuberculosis and in Mycobacterium smegmatis the furA-katG loci, encoding the FurA regulatory protein and the KatG catalase-peroxidase, are highly conserved. In M. tuberculosis furA-katG constitute a single operon, whereas in M. smegmatis a single mRNA covering both genes could not be found. In both species, specific 5' ends have been identified: the first one, located upstream of the furA gene, corresponds to transcription initiation from the furA promoter; the second one is the katG mRNA 5' end, located in the terminal part of furA. Results In this work we demonstrate by in vitro transcription and by RNA polymerase Chromatin immunoprecipitation that no promoter is present in the M. smegmatis region covering the latter 5' end, suggesting that it is produced by specific processing of longer transcripts. Several DNA fragments of M. tuberculosis and M. smegmatis were inserted in a plasmid between the sigA promoter and the lacZ reporter gene, and expression of the reporter gene was measured. A polypurine sequence, located four bp upstream of the katG translation start codon, increased beta-galactosidase activity and stabilized the lacZ transcript. Mutagenesis of this sequence led to destabilization of the mRNA. Analysis of constructs, in which the polypurine sequence of M. smegmatis was followed by an increasing number of katG codons, demonstrated that mRNA stability requires translation of at least 20 amino acids. In order to define the requirements for the 5' processing of the katG transcript, we created several mutations in this region and analyzed the 5' ends of the transcripts: the distance from the polypurine sequence does not seem to influence the processing, neither the sequence around the cutting point. Only mutations which create a double stranded region around the processing site prevented RNA processing. Conclusion This is the first reported case in mycobacteria, in which both a polypurine sequence and translation initiation are shown to contribute to mRNA stability. The furA-katG mRNA is transcribed from the furA promoter and immediately processed; this processing is prevented by a double stranded RNA at the cutting site, suggesting that the endoribonuclease responsible for the cleavage cuts single stranded RNA. PMID:18394163
Stope, Matthias B; Schubert, Tina; Staar, Doreen; Rönnau, Cindy; Streitbörger, Andreas; Kroeger, Nils; Kubisch, Constanze; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin
2012-06-01
Heat shock proteins (HSP) are involved in processes of folding, activation, trafficking and transcriptional activity of most steroid receptors including the androgen receptor (AR). Accumulating evidence links rising heat shock protein 27 (HSP27) levels with the development of castration-resistant prostate cancer. In order to study the functional relationship between HSP27 and the AR, we modulated the expression of the small heat shock protein HSP27 in human prostate cancer (PC) cell lines. HSP27 protein concentrations in LNCaP and PC-3 cells were modulated by over-expression or silencing of HSP27. The effects of HSP27 on AR protein and mRNA levels were monitored by Western blotting and quantitative RT-PCR. Treatment for the AR-positive LNCaP with HSP27-specific siRNA resulted in a down-regulation of AR levels. This down-regulation of protein was paralleled by a decrease in AR mRNA. Most interestingly, over-expression of HSP27 in PC-3 cells led to a significant increase in AR mRNA although the cells were unable to produce functional AR protein. The observation that HSP27 is involved in the regulation of AR mRNA by a yet unknown mechanism highlights the complexity of HSP27-AR signaling network.
Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu
2017-07-07
Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export
Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M.; Brandl, Holger; Schwich, Oliver D.; Steiner, Michaela C.; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M.
2016-01-01
Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1–7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1–7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3′ untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3′ ends. PMID:26944680
Suzuki, Masataka G.; Ito, Haruka; Aoki, Fugaku
2014-01-01
Sexual differentiation in Bombyx mori is controlled by sex-specific splicing of Bmdsx, which results in the omission of exons 3 and 4 in a male-specific manner. In B. mori, insulin-like growth factor II mRNA-binding protein (Imp) is a male-specific factor involved in male-specific splicing of Bmdsx. Male-specific Imp mRNA results from the male-specific inclusion of exon 8. To verify the link between histone methylation and alternative RNA processing in Imp, we examined the effects of RNAi-mediated knockdown of several histone methyltransferases on the sex-specific mRNA expression of Imp. As a result, male-specific expression of Imp mRNA was completely abolished when expression of the H3K79 methyltransferase DOT1L was repressed to <10% of that in control males. Chromatin immunoprecipitation-quantitative PCR analysis revealed a higher distribution of H3K79me2 in normal males than in normal females across Imp. RNA polymerase II (RNAP II) processivity assays indicated that RNAi knockdown of DOT1L in males caused a twofold decrease in RNAP II processivity compared to that in control males, with almost equivalent levels to those observed in normal females. Inhibition of RNAP II-mediated elongation in male cells repressed the male-specific splicing of Imp. Our data suggest the possibility that H3K79me2 accumulation along Imp is associated with the male-specific alternative processing of Imp mRNA that results from increased RNAP II processivity. PMID:24758924
Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to
RNActive® Technology: Generation and Testing of Stable and Immunogenic mRNA Vaccines.
Rauch, Susanne; Lutz, Johannes; Kowalczyk, Aleksandra; Schlake, Thomas; Heidenreich, Regina
2017-01-01
Developing effective mRNA vaccines poses certain challenges concerning mRNA stability and ability to induce sufficient immune stimulation and requires a specific panel of techniques for production and testing. Here, we describe the production of stabilized mRNA with enhanced immunogenicity, generated using conventional nucleotides only, by introducing changes to the mRNA sequence and by complexation with the nucleotide-binding peptide protamine (RNActive® technology). Methods described here include the synthesis, purification, and protamine complexation of mRNA vaccines as well as a comprehensive panel of in vitro and in vivo methods for evaluation of vaccine quality and immunogenicity.
Park, Su-Hyun; Chung, Pil Joong; Juntawong, Piyada; Bailey-Serres, Julia; Kim, Youn Shic; Jung, Harin; Bang, Seung Woon; Kim, Yeon-Ki; Do Choi, Yang; Kim, Ju-Kon
2012-01-01
Abiotic stress, including drought, salinity, and temperature extremes, regulates gene expression at the transcriptional and posttranscriptional levels. Expression profiling of total messenger RNAs (mRNAs) from rice (Oryza sativa) leaves grown under stress conditions revealed that the transcript levels of photosynthetic genes are reduced more rapidly than others, a phenomenon referred to as stress-induced mRNA decay (SMD). By comparing RNA polymerase II engagement with the steady-state mRNA level, we show here that SMD is a posttranscriptional event. The SMD of photosynthetic genes was further verified by measuring the half-lives of the small subunit of Rubisco (RbcS1) and Chlorophyll a/b-Binding Protein1 (Cab1) mRNAs during stress conditions in the presence of the transcription inhibitor cordycepin. To discern any correlation between SMD and the process of translation, changes in total and polysome-associated mRNA levels after stress were measured. Total and polysome-associated mRNA levels of two photosynthetic (RbcS1 and Cab1) and two stress-inducible (Dehydration Stress-Inducible Protein1 and Salt-Induced Protein) genes were found to be markedly similar. This demonstrated the importance of polysome association for transcript stability under stress conditions. Microarray experiments performed on total and polysomal mRNAs indicate that approximately half of all mRNAs that undergo SMD remain polysome associated during stress treatments. To delineate the functional determinant(s) of mRNAs responsible for SMD, the RbcS1 and Cab1 transcripts were dissected into several components. The expressions of different combinations of the mRNA components were analyzed under stress conditions, revealing that both 3′ and 5′ untranslated regions are necessary for SMD. Our results, therefore, suggest that the posttranscriptional control of photosynthetic mRNA decay under stress conditions requires both 3′ and 5′ untranslated regions and correlates with differential polysome association. PMID:22566494
Conceptual Modeling in Systems Biology Fosters Empirical Findings: The mRNA Lifecycle
Dori, Dov; Choder, Mordechai
2007-01-01
One of the main obstacles to understanding complex biological systems is the extent and rapid evolution of information, way beyond the capacity individuals to manage and comprehend. Current modeling approaches and tools lack adequate capacity to model concurrently structure and behavior of biological systems. Here we propose Object-Process Methodology (OPM), a holistic conceptual modeling paradigm, as a means to model both diagrammatically and textually biological systems formally and intuitively at any desired number of levels of detail. OPM combines objects, e.g., proteins, and processes, e.g., transcription, in a way that is simple and easily comprehensible to researchers and scholars. As a case in point, we modeled the yeast mRNA lifecycle. The mRNA lifecycle involves mRNA synthesis in the nucleus, mRNA transport to the cytoplasm, and its subsequent translation and degradation therein. Recent studies have identified specific cytoplasmic foci, termed processing bodies that contain large complexes of mRNAs and decay factors. Our OPM model of this cellular subsystem, presented here, led to the discovery of a new constituent of these complexes, the translation termination factor eRF3. Association of eRF3 with processing bodies is observed after a long-term starvation period. We suggest that OPM can eventually serve as a comprehensive evolvable model of the entire living cell system. The model would serve as a research and communication platform, highlighting unknown and uncertain aspects that can be addressed empirically and updated consequently while maintaining consistency. PMID:17849002
Consequences of metaphase II oocyte cryopreservation on mRNA content.
Chamayou, S; Bonaventura, G; Alecci, C; Tibullo, D; Di Raimondo, F; Guglielmino, A; Barcellona, M L
2011-04-01
We studied the consequences of freezing/thawing processes on mRNA contents in MII oocytes after slow-freezing/rapid thawing (SF/RT) and vitrification/warming (V/W) protocols, and compared the results to fresh MII oocytes. We quantified the nuclear transcript mRNA responsible for the translation of proteins belonging either to trans-regulatory protein family or to functional structural proteins such as proteins involved in DNA structural organization (NAP1L1, TOP1, H1F0H1), chromosomal structure maintenance (SMC, SCC3, RAD21, SMC1A, SMC1B, STAG3, REC8), mitochondrial energetic pathways (ATP5GJ, SDHC), cell cycle regulation and processes (CLTA, MAPK6, CKS2) and staminal cell potency-development competence stage (DPPA3, OCT4, FOXJ2). Surplus MII oocytes were donated from patients in IVF cycles and divided in three groups of 15 oocytes. Group 1 was comprised of non-cryopreserved oocytes and Groups 2 and 3 underwent SF/RT and V/W procedures, respectively. There was an overall decrease of mRNA extracted from cryopreserved oocytes compared to control group. Only 39.4% of mRNA content were preserved after SF/RT while 63.3% of mRNA content were maintained after V/W. Oocyte cryopreservation is associated with molecular injury associated with the decrease of stored mRNA. However the V/W protocol is more conservative than SF/RT resulting in a level of mRNA sufficient to maintain biologic functions in the subsequent fertilized oocyte. Copyright © 2011 Elsevier Inc. All rights reserved.
Arc mRNA induction in striatal efferent neurons associated with response learning.
Daberkow, D P; Riedy, M D; Kesner, R P; Keefe, K A
2007-07-01
The dorsal striatum is involved in motor-response learning, but the extent to which distinct populations of striatal efferent neurons are differentially involved in such learning is unknown. Activity-regulated, cytoskeleton-associated (Arc) protein is an effector immediate-early gene implicated in synaptic plasticity. We examined arc mRNA expression in striatopallidal vs. striatonigral efferent neurons in dorsomedial and dorsolateral striatum of rats engaged in reversal learning on a T-maze motor-response task. Male Sprague-Dawley rats learned to turn right or left for 3 days. Half of the rats then underwent reversal training. The remaining rats were yoked to rats undergoing reversal training, such that they ran the same number of trials but ran them as continued-acquisition trials. Brains were removed and processed using double-label fluorescent in situ hybridization for arc and preproenkephalin (PPE) mRNA. In the reversal, but not the continued-acquisition, group there was a significant relation between the overall arc mRNA signal in dorsomedial striatum and the number of trials run, with rats reaching criterion in fewer trials having higher levels of arc mRNA expression. A similar relation was seen between the numbers of PPE(+) and PPE(-) neurons in dorsomedial striatum with cytoplasmic arc mRNA expression. Interestingly, in behaviourally activated animals significantly more PPE(-) neurons had cytoplasmic arc mRNA expression. These data suggest that Arc in both striatonigral and striatopallidal efferent neurons is involved in striatal synaptic plasticity mediating motor-response learning in the T-maze and that there is differential processing of arc mRNA in distinct subpopulations of striatal efferent neurons.
Determining if an mRNA is a Substrate of Nonsense-Mediated mRNA Decay in Saccharomyces cerevisiae.
Johansson, Marcus J O
2017-01-01
Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic quality control mechanism which triggers decay of mRNAs harboring premature translation termination codons. In this chapter, I describe methods for monitoring the influence of NMD on mRNA abundance and decay rates in Saccharomyces cerevisiae. The descriptions include detailed methods for growing yeast cells, total RNA isolation, and Northern blotting. Although the chapter focuses on NMD, the methods can be easily adapted to assess the effect of other mRNA decay pathways.
Molecular events regulating messenger RNA stability in eukaryotes.
Saini, K S; Summerhayes, I C; Thomas, P
1990-07-17
The regulation of mRNA turnover plays a major role in the overall control of gene expression. Transcriptional control of eukaryotic gene regulation by external and/or internal stimuli has received considerable attention and the purpose of this review is to highlight recent work elucidating the mechanisms underlying the steady-state levels of mRNAs in the cytoplasm. Protection of mRNA from the action of nucleases as it passes from the nucleus to the ribosomes for translation is achieved, at least in part, by its union with mRNA binding proteins and the presence of poly(A) tail. The half-life of a message represents a balance between the transcriptional activity and intracellular degradative processes. These properties can be modulated by the presence of specific nucleotide sequences in a mRNA along with cis- and trans-acting elements and accompanied by post-translational feed back mechanisms. Presently, various regulatory mechanisms involved in the mRNA decay process are ill-defined. The work described here illustrates the complexity of this emerging field of study and outlines its contribution to our understanding of gene regulation in eukaryotes.
Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3*
Larance, Mark; Rowland, Alexander F.; Hoehn, Kyle L.; Humphreys, David T.; Preiss, Thomas; Guilhaus, Michael; James, David E.
2010-01-01
Insulin plays an essential role in metabolic homeostasis in mammals, and many of the underlying biochemical pathways are regulated via the canonical phosphatidylinositol 3-kinase/AKT pathway. To identify novel metabolic actions of insulin, we conducted a quantitative proteomics analysis of insulin-regulated 14-3-3-binding proteins in muscle cells. These studies revealed a novel role for insulin in the post-transcriptional regulation of mRNA expression. EDC3, a component of the mRNA decay and translation repression pathway associated with mRNA processing bodies, was shown to be phosphorylated by AKT downstream of insulin signaling. The major insulin-regulated site was mapped to Ser-161, and phosphorylation at this site led to increased 14-3-3 binding. Functional studies indicated that induction of 14-3-3 binding to EDC3 causes morphological changes in processing body structures, inhibition of microRNA-mediated mRNA post-transcriptional regulation, and alterations in the protein- protein interactions of EDC3. These data highlight an important new arm of the insulin signaling cascade in the regulation of mRNA utilization. PMID:20051463
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns
Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav; ...
2018-04-24
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norred, Sarah Elizabeth; Caveney, Patrick M.; Chauhan, Gaurav
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting—the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increasemore » in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA (“spatial noise”) that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. Furthermore, these results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.« less
Calcium-Dependent Protein Kinase Genes in Corn Roots
NASA Technical Reports Server (NTRS)
Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.
1996-01-01
Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.
Kinetic analysis of the effects of target structure on siRNA efficiency
NASA Astrophysics Data System (ADS)
Chen, Jiawen; Zhang, Wenbing
2012-12-01
RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.
Kim, Kang-Hoon; Chung, Won-Seok; Kim, Yoomi; Kim, Ki-Suk; Lee, In-Seung; Park, Ji Young; Jeong, Hyeon-Soo; Na, Yun-Cheol; Lee, Chang-Hun; Jang, Hyeung-Jin
2015-08-01
Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway. Copyright © 2015 John Wiley & Sons, Ltd.
Cross-Species Translocation of mRNA from Host Plants into the Parasitic Plant Dodder1[OA
Roney, Jeannine K.; Khatibi, Piyum A.; Westwood, James H.
2007-01-01
An intriguing new paradigm in plant biology is that systemically mobile mRNAs play a role in coordinating development. In this process, specific mRNAs are loaded into the phloem transport stream for translocation to distant tissues, where they may impact on developmental processes. However, despite its potential significance for plant growth regulation, mRNA trafficking remains poorly understood and challenging to study. Here, we show that phloem-mobile mRNAs can also traffic between widely divergent species from a host to the plant parasite lespedeza dodder (Cuscuta pentagona Engelm.). Reverse transcription-polymerase chain reaction and microarray analysis were used to detect specific tomato (Lycopersicon esculentum Mill.) transcripts in dodder grown on tomato that were not present in control dodder grown on other host species. Foreign transcripts included LeGAI, which has previously been shown to be translocated in the phloem, as well as nine other transcripts not reported to be mobile. Dodders are parasitic plants that obtain resources by drawing from the phloem of a host plant and have joint plasmodesmata with host cortical cells. Although viruses are known to move between dodder and its hosts, translocation of endogenous plant mRNA has not been reported. These results point to a potentially new level of interspecies communication, and raise questions about the ability of parasites to recognize, use, and respond to transcripts acquired from their hosts. PMID:17189329
ERIC Educational Resources Information Center
Olimpo, Jeffrey T.; Quijas, Daniel A.; Quintana, Anita M.
2017-01-01
The central dogma has served as a foundational model for information flow, exchange, and storage in the biological sciences for several decades. Despite its continued importance, however, recent research suggests that novices in the domain possess several misconceptions regarding the aforementioned processes, including those pertaining…
SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.
Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M
2016-03-01
Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.
2014-01-01
Background Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission. PMID:24898526
Pfeiffer-Guglielmi, Brigitte; Dombert, Benjamin; Jablonka, Sibylle; Hausherr, Vanessa; van Thriel, Christoph; Schöbel, Nicole; Jansen, Ralf-Peter
2014-06-04
Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.
Boehm, Erik; Zornoza, María; Jourdain, Alexis A.; Delmiro Magdalena, Aitor; García-Consuegra, Inés; Torres Merino, Rebeca; Orduña, Antonio; Martín, Miguel A.; Martinou, Jean-Claude; De la Fuente, Miguel A.; Simarro, María
2016-01-01
The Fas-activated serine/threonine kinase (FASTK) family of proteins has recently emerged as a central regulator of mitochondrial gene expression through the function of an unusual RNA-binding domain named RAP (for RNA-binding domain abundant in Apicomplexans), shared by all six members of the family. Here we describe the role of one of the less characterized members, FASTKD3, in mitochondrial RNA metabolism. First, we show that, in contrast to FASTK, FASTKD2, and FASTKD5, FASTKD3 does not localize in mitochondrial RNA granules, which are sites of processing and maturation of mtRNAs and ribosome biogenesis. Second, we generated FASTKD3 homozygous knock-out cell lines by homologous recombination and observed that the absence of FASTKD3 resulted in increased steady-state levels and half-lives of a subset of mature mitochondrial mRNAs: ND2, ND3, CYTB, COX2, and ATP8/6. No aberrant processing of RNA precursors was observed. Rescue experiments demonstrated that RAP domain is required for FASTKD3 function in mRNA stability. Besides, we describe that FASTKD3 is required for efficient COX1 mRNA translation without altering mRNA levels, which results in a decrease in the steady-state levels of COX1 protein. This finding is associated with reduced mitochondrial complex IV assembly and activity. Our observations suggest that the function of this family of proteins goes beyond RNA processing and ribosome assembly and includes RNA stability and translation regulation within mitochondria. PMID:27789713
Quantitative analysis of ribosome–mRNA complexes at different translation stages
Shirokikh, Nikolay E.; Alkalaeva, Elena Z.; Vassilenko, Konstantin S.; Afonina, Zhanna A.; Alekhina, Olga M.; Kisselev, Lev L.; Spirin, Alexander S.
2010-01-01
Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture. PMID:19910372
Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats.
Der-Avakian, Andre; D'Souza, Manoranjan S; Potter, David N; Chartoff, Elena H; Carlezon, William A; Pizzagalli, Diego A; Markou, Athina
2017-05-01
Mood disorders can be triggered by stress and are characterized by deficits in reward processing, including disrupted reward learning (the ability to modulate behavior according to past rewards). Reward learning is regulated by the anterior cingulate cortex (ACC) and striatal circuits, both of which are implicated in the pathophysiology of mood disorders. Here, we assessed in rats the effects of a potent stressor (social defeat) on reward learning and gene expression in the ACC, ventral tegmental area (VTA), and striatum. Adult male Wistar rats were trained on an operant probabilistic reward task (PRT) and then exposed to 3 days of social defeat before assessment of reward learning. After testing, the ACC, VTA, and striatum were dissected, and expression of genes previously implicated in stress was assessed. Social defeat blunted reward learning (manifested as reduced response bias toward a more frequently rewarded stimulus) and was associated with increased nociceptin/orphanin FQ (N/OFQ) peptide mRNA levels in the striatum and decreased Fos mRNA levels in the VTA. Moreover, N/OFQ peptide and nociceptin receptor mRNA levels in the ACC, VTA and striatum were inversely related to reward learning. The behavioral findings parallel previous data in humans, suggesting that stress similarly disrupts reward learning in both species. Increased striatal N/OFQ mRNA in stressed rats characterized by impaired reward learning is consistent with accumulating evidence that antagonism of nociceptin receptors, which bind N/OFQ, has antidepressant-like effects. These results raise the possibility that nociceptin systems represent a molecular substrate through which stress produces reward learning deficits in mood disorders.
Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring
Cao, Yuhong; Chen, Haodong; Birey, Fikri; Leal-Ortiz, Sergio A.; Han, Crystal M.; Santiago, Juan G.; Paşca, Sergiu P.; Wu, Joseph C.; Melosh, Nicholas A.
2017-01-01
Here, we report a method for time-resolved, longitudinal extraction and quantitative measurement of intracellular proteins and mRNA from a variety of cell types. Cytosolic contents were repeatedly sampled from the same cell or population of cells for more than 5 d through a cell-culture substrate, incorporating hollow 150-nm-diameter nanostraws (NS) within a defined sampling region. Once extracted, the cellular contents were analyzed with conventional methods, including fluorescence, enzymatic assays (ELISA), and quantitative real-time PCR. This process was nondestructive with >95% cell viability after sampling, enabling long-term analysis. It is important to note that the measured quantities from the cell extract were found to constitute a statistically significant representation of the actual contents within the cells. Of 48 mRNA sequences analyzed from a population of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs), 41 were accurately quantified. The NS platform samples from a select subpopulation of cells within a larger culture, allowing native cell-to-cell contact and communication even during vigorous activity such as cardiomyocyte beating. This platform was applied both to cell lines and to primary cells, including CHO cells, hiPSC-CMs, and human astrocytes derived in 3D cortical spheroids. By tracking the same cell or group of cells over time, this method offers an avenue to understand dynamic cell behavior, including processes such as induced pluripotency and differentiation. PMID:28223521
Biomolecular engineering of intracellular switches in eukaryotes
Pastuszka, M.K.; Mackay, J.A.
2010-01-01
Tools to selectively and reversibly control gene expression are useful to study and model cellular functions. When optimized, these cellular switches can turn a protein's function “on” and “off” based on cues designated by the researcher. These cues include small molecules, drugs, hormones, and even temperature variations. Here we review three distinct areas in gene expression that are commonly targeted when designing cellular switches. Transcriptional switches target gene expression at the level of mRNA polymerization, with examples including the tetracycline gene induction system as well as nuclear receptors. Translational switches target the process of turning the mRNA signal into protein, with examples including riboswitches and RNA interference. Post-translational switches control how proteins interact with one another to attenuate or relay signals. Examples of post-translational modification include dimerization and intein splicing. In general, the delay times between switch and effect decreases from transcription to translation to post-translation; furthermore, the fastest switches may offer the most elegant opportunities to influence and study cell behavior. We discuss the pros and cons of these strategies, which directly influence their usefulness to study and implement drug targeting at the tissue and cellular level. PMID:21209849
Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression
Lutz, Carol S.; Moreira, Alexandra
2010-01-01
Alternative RNA processing mechanisms, including alternative splicing and alternative polyadenylation, are increasingly recognized as important regulators of gene expression. This article will focus on what has recently been described about alternative polyadenylation in development, differentiation, and disease in higher eukaryotes. We will also describe how the evolving global methodologies for examining the cellular transcriptome, both experimental and bioinformatic, are revealing new details about the complex nature of alternative 3′ end formation, as well as interactions with other RNA-mediated and RNA processing mechanisms. PMID:21278855
Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability.
Min, Kyung-Won; Zealy, Richard W; Davila, Sylvia; Fomin, Mikhail; Cummings, James C; Makowsky, Daniel; Mcdowell, Catherine H; Thigpen, Haley; Hafner, Markus; Kwon, Sang-Ho; Georgescu, Constantin; Wren, Jonathan D; Yoon, Je-Hyun
2018-06-01
Gene expression is dynamically regulated in a variety of mammalian physiologies. During mammalian aging, there are changes that occur in protein expression that are highly controlled by the regulatory steps in transcription, post-transcription, and post-translation. Although there are global profiles of human transcripts during the aging processes available, the mechanism(s) by which transcripts are differentially expressed between young and old cohorts remains unclear. Here, we report on N6-methyladenosine (m6A) RNA modification profiles of human peripheral blood mononuclear cells (PBMCs) from young and old cohorts. An m6A RNA profile identified a decrease in overall RNA methylation during the aging process as well as the predominant modification on proteincoding mRNAs. The m6A-modified transcripts tend to be more highly expressed than nonmodified ones. Among the many methylated mRNAs, those of DROSHA and AGO2 were heavily methylated in young PBMCs which coincided with a decreased steady-state level of AGO2 mRNA in the old PBMC cohort. Similarly, downregulation of AGO2 in proliferating human diploid fibroblasts (HDFs) also correlated with a decrease in AGO2 mRNA modifications and steady-state levels. In addition, the overexpression of RNA methyltransferases stabilized AGO2 mRNA but not DROSHA and DICER1 mRNA in HDFs. Moreover, the abundance of miRNAs also changed in the young and old PBMCs which are possibly due to a correlation with AGO2 expression as observed in AGO2-depleted HDFs. Taken together, we uncovered the role of mRNA methylation on the abundance of AGO2 mRNA resulting in the repression of miRNA expression during the process of human aging. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
In silico analysis of miRNA-mediated gene regulation in OCA and OA genes.
Kamaraj, Balu; Gopalakrishnan, Chandrasekhar; Purohit, Rituraj
2014-12-01
Albinism is an autosomal recessive genetic disorder due to low secretion of melanin. The oculocutaneous albinism (OCA) and ocular albinism (OA) genes are responsible for melanin production and also act as a potential targets for miRNAs. The role of miRNA is to inhibit the protein synthesis partially or completely by binding with the 3'UTR of the mRNA thus regulating gene expression. In this analysis, we predicted the genetic variation that occurred in 3'UTR of the transcript which can be a reason for low melanin production thus causing albinism. The single nucleotide polymorphisms (SNPs) in 3'UTR cause more new binding sites for miRNA which binds with mRNA which leads to inhibit the translation process either partially or completely. The SNPs in the mRNA of OCA and OA genes can create new binding sites for miRNA which may control the gene expression and lead to hypopigmentation. We have developed a computational procedure to determine the SNPs in the 3'UTR region of mRNA of OCA (TYR, OCA2, TYRP1 and SLC45A2) and OA (GPR143) genes which will be a potential cause for albinism. We identified 37 SNPs in five genes that are predicted to create 87 new binding sites on mRNA, which may lead to abrogation of the translation process. Expression analysis confirms that these genes are highly expressed in skin and eye regions. It is well supported by enrichment analysis that these genes are mainly involved in eye pigmentation and melanin biosynthesis process. The network analysis also shows how the genes are interacting and expressing in a complex network. This insight provides clue to wet-lab researches to understand the expression pattern of OCA and OA genes and binding phenomenon of mRNA and miRNA upon mutation, which is responsible for inhibition of translation process at genomic levels.
Detection and Analysis of Circular RNAs by RT-PCR.
Panda, Amaresh C; Gorospe, Myriam
2018-03-20
Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.
Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-01-01
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279
Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-07-20
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.
Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus
2018-04-16
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Co-ordinated expression of MMP-2 and its putative activator, MT1-MMP, in human placentation.
Bjørn, S F; Hastrup, N; Lund, L R; Danø, K; Larsen, J F; Pyke, C
1997-08-01
The spatial expression of mRNA for matrix metalloproteinase 2 (MMP-2), its putative activator, the membrane-type 1 matrix metalloproteinase (MT1-MMP), and the MMP-2 substrate type IV collagen was investigated in human placentas of both normal and tubal ectopic pregnancies and in cyclic endometrium using in-situ hybridization. Cytokeratin staining applied to adjacent sections was used to identify epithelial and trophoblast cells. In both normal and tubal pregnancies MT1-MMP, MMP-2 and type IV collagen mRNA were highly expressed and co-localized in the extravillous cytotrophoblasts of anchoring villi, in cytotrophoblasts that had penatrated into the placental bed and in cytotrophoblastic cell islands. In addition, the decidual cells of normal pregnancies in some areas co-expressed MT1-MMP and MMP-2 mRNA, with moderate signals for both components. Fibroblast-like stromal cells in tubal pregnancies were positive for MMP-2 mRNA but generally negative for MT1-MMP mRNA. The consistent co-localization of MT1-MMP with MMP-2 and type IV collagen in the same subset of cytotrophoblasts strongly suggests that all three components co-operate in the tightly regulated fetal invasion process. The co-expression of MT1-MMP and MMP-2 mRNA in some of the decidual cells indicates that these cells are also actively involved in the placentation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O.
1988-11-01
The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA andmore » DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.« less
Widespread promoter-mediated coordination of transcription and mRNA degradation
2012-01-01
Background Previous work showed that mRNA degradation is coordinated with transcription in yeast, and in several genes the control of mRNA degradation was linked to promoter elements through two different mechanisms. Here we show at the genomic scale that the coordination of transcription and mRNA degradation is promoter-dependent in yeast and is also observed in humans. Results We first demonstrate that swapping upstream cis-regulatory sequences between two yeast species affects both transcription and mRNA degradation and suggest that while some cis-regulatory elements control either transcription or degradation, multiple other elements enhance both processes. Second, we show that adjacent yeast genes that share a promoter (through divergent orientation) have increased similarity in their patterns of mRNA degradation, providing independent evidence for the promoter-mediated coupling of transcription to mRNA degradation. Finally, analysis of the differences in mRNA degradation rates between mammalian cell types or mammalian species suggests a similar coordination between transcription and mRNA degradation in humans. Conclusions Our results extend previous studies and suggest a pervasive promoter-mediated coordination between transcription and mRNA degradation in yeast. The diverse genes and regulatory elements associated with this coordination suggest that it is generated by a global mechanism of gene regulation and modulated by gene-specific mechanisms. The observation of a similar coupling in mammals raises the possibility that coupling of transcription and mRNA degradation may reflect an evolutionarily conserved phenomenon in gene regulation. PMID:23237624
Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie
2016-04-15
Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.
2012-01-01
The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003
mRNA localization: an orchestration of assembly, traffic and synthesis.
Xing, Lei; Bassell, Gary J
2013-01-01
Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals. © 2012 John Wiley & Sons A/S.
Kobayashi, Kan; Ishitani, Ryuichiro; Nureki, Osamu
2013-01-01
In the translation process, translating ribosomes usually move on an mRNA until they reach the stop codon. However, when ribosomes translate an aberrant mRNA, they stall. Then, ribosomes are rescued from the aberrant mRNA, and the aberrant mRNA is subsequently degraded. In eukaryotes, Pelota (Dom34 in yeast) and Hbs1 are responsible for solving general problems of ribosomal stall in translation. In archaea, aPelota and aEF1α, homologous to Pelota and Hbs1, respectively, are considered to be involved in that process. In recent years, great progress has been made in determining structures of Dom34/aPelota and Hbs1/aEF1α. In this review, we focus on the functional roles of Dom34/aPelota and Hbs1/aEF1α in ribosome rescue, based on recent structural studies of them. We will also present questions to be answered by future work. PMID:27493551
Komar, Carolyn M; Curry, Thomas E
2002-05-01
Structural and functional development of the corpus luteum (CL) involves tissue remodeling, angiogenesis, lipid metabolism, and steroid production. The peroxisome proliferator-activated receptors (PPARs) have been shown to play a role in these as well as in a multitude of other cellular processes. To examine the expression of mRNA corresponding to the PPAR family members (alpha, delta, and gamma) in luteal tissue, ovaries were collected from gonadotropin-treated, immature rats on Days 1, 4, 8, and 14 of pseudopregnancy and from adult, cycling animals on each day of the estrous cycle. Ovaries were processed for in situ hybridization or RNA isolation for analysis by RNase protection assay. The expression of PPARgamma mRNA was abundant in granulosa cells of developing follicles during both pseudopregnancy and the estrous cycle and was low to undetectable in CL from pseudopregnant rats. However, luteal tissue in cycling animals, especially CL remaining from previous cycles, had high levels of PPARgamma mRNA. The PPARalpha mRNA was localized mainly in the theca and stroma, and PPARdelta mRNA was expressed throughout the ovary. Levels of mRNA for PPARgamma decreased between Days 1 and 4 of pseudopregnancy, and PPARalpha mRNA levels were lower on the day of estrus compared to pro- and metestrus (P < 0.05). The PPARdelta mRNA levels remained steady throughout the estrous cycle and pseudopregnancy. These data illustrate a difference in the luteal expression of mRNA for PPARgamma between the adult, cycling rat and the immature, gonadotropin-treated rat. This differential pattern of expression may be related to the difference in timing of the preovulatory prolactin surge, because the gonadotropin-primed animals would not experience a prolactin surge coincident with the LH surge, as occurs in adult, cycling animals. Additionally, the expression pattern of PPARdelta mRNA indicates that it may be involved in cellular functions involved with maintaining basal ovarian function, whereas PPARalpha may play a role in lipid metabolism in the theca and stroma.
Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries
Toro-Ascuy, Daniela; Rojas-Araya, Bárbara; Valiente-Echeverría, Fernando; Soto-Rifo, Ricardo
2016-01-01
The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A), allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries. PMID:27886048
Shock, Jennifer L; Fischer, Kael F; DeRisi, Joseph L
2007-01-01
The rate of mRNA decay is an essential element of post-transcriptional regulation in all organisms. Previously, studies in several organisms found that the specific half-life of each mRNA is precisely related to its physiologic role, and plays an important role in determining levels of gene expression. We used a genome-wide approach to characterize mRNA decay in Plasmodium falciparum. We found that, globally, rates of mRNA decay increase dramatically during the asexual intra-erythrocytic developmental cycle. During the ring stage of the cycle, the average mRNA half-life was 9.5 min, but this was extended to an average of 65 min during the late schizont stage of development. Thus, a major determinant of mRNA decay rate appears to be linked to the stage of intra-erythrocytic development. Furthermore, we found specific variations in decay patterns superimposed upon the dominant trend of progressive half-life lengthening. These variations in decay pattern were frequently enriched for genes with specific cellular functions or processes. Elucidation of Plasmodium mRNA decay rates provides a key element for deciphering mechanisms of genetic control in this parasite, by complementing and extending previous mRNA abundance studies. Our results indicate that progressive stage-dependent decreases in mRNA decay rate function are a major determinant of mRNA accumulation during the schizont stage of intra-erythrocytic development. This type of genome-wide change in mRNA decay rate has not been observed in any other organism to date, and indicates that post-transcriptional regulation may be the dominant mechanism of gene regulation in P. falciparum.
Moraes, Karen CM
2010-01-01
Production of mature mRNAs that encode functional proteins involves highly complex pathways of synthesis, processing and surveillance. At numerous steps during the maturation process, the mRNA transcript undergoes scrutiny by cellular quality control machinery. This extensive RNA surveillance ensures that only correctly processed mature mRNAs are translated and precludes production of aberrant transcripts that could encode mutant or possibly deleterious proteins. Recent advances in elucidating the molecular mechanisms of mRNA processing have demonstrated the existence of an integrated network of events, and have revealed that a variety of human diseases are caused by disturbances in the well-coordinated molecular equilibrium of these events. From a medical perspective, both loss and gain of function are relevant, and a considerable number of different diseases exemplify the importance of the mechanistic function of RNA surveillance in a cell. Here, mechanistic hallmarks of mRNA processing steps are reviewed, highlighting the medical relevance of their deregulation and how the understanding of such mechanisms can contribute to the development of therapeutic strategies. PMID:19829759
Hoyle, Nathaniel P; Castelli, Lydia M; Campbell, Susan G; Holmes, Leah E A; Ashe, Mark P
2007-10-08
Cytoplasmic RNA granules serve key functions in the control of messenger RNA (mRNA) fate in eukaryotic cells. For instance, in yeast, severe stress induces mRNA relocalization to sites of degradation or storage called processing bodies (P-bodies). In this study, we show that the translation repression associated with glucose starvation causes the key translational mediators of mRNA recognition, eIF4E, eIF4G, and Pab1p, to resediment away from ribosomal fractions. These mediators then accumulate in P-bodies and in previously unrecognized cytoplasmic bodies, which we define as EGP-bodies. Our kinetic studies highlight the fundamental difference between EGP- and P-bodies and reflect the complex dynamics surrounding reconfiguration of the mRNA pool under stress conditions. An absence of key mRNA decay factors from EGP-bodies points toward an mRNA storage function for these bodies. Overall, this study highlights new potential control points in both the regulation of mRNA fate and the global control of translation initiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, W.R., E-mail: w.francis@swansea.ac.uk; Owens, S.E.; Wilde, C.
2014-10-24
Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2),more » a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.« less
Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration.
Ziller, Antje; Nogueira, Sara S; Hühn, Eva; Funari, Sergio S; Brezesinski, Gerald; Hartmann, Hermann; Sahin, Ugur; Haas, Heinrich; Langguth, Peter
2018-02-05
Insertion of high molecular weight messenger RNA (mRNA) into lyotropic lipid phases as model systems for controlled release formulations for the mRNA was investigated. Low fractions of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were used as an anchor to load the mRNA into a lamellar lipid matrix. Dispersions of zwitterionic lipid in the aqueous phase in the presence of increasing fractions of mRNA and cationic lipid were prepared, and the molecular organization was investigated as a function of mRNA and cationic lipid fraction. Insertion of both cationic lipid and mRNA was clearly proven from the physicochemical characteristics. The d-spacing of the lipid bilayers, as determined by small-angle X-ray scattering (SAXS) measurements, responded sensitively to the amount of inserted DOTAP and mRNA. A concise model of the insertion of the mRNA in the lipid matrices was derived, indicating that the mRNA was accommodated in the aqueous slab between lipid bilayers. Depending on the DOTAP and mRNA fraction, a different excess of water was present in this slab. Results from further physicochemical characterization, including determination of free and bound mRNA, zeta potential, and calorimetry data, were in line with this assumption. The structure of these concentrated lipid/mRNA preparations was maintained upon dilution. The functionality of the inserted mRNA was proven by cell culture experiments using C2C12 murine myoblast cells with the luciferase-encoding mRNA. The described lipid phases as carriers for the mRNA may be applicable for different routes of local administration, where control of the release kinetics and the form of the released mRNA (bound or free) is required.
SUNAMOTO, MASAAKI; KUZE, KOGO; IEHARA, NORIYUKI; TAKEOKA, HIROYA; NAGATA, KAZUHIRO; KITA, TORU; DOI, TOSHIO
1998-01-01
Glomerulosclerosis is characterized by accumulation of the mesangial extracellular matrix, including type I and IV collagen. The processing for the collagens in the glomeruli may play a critical role for development of glomerulosclerosis. We examined the expression of heat shock protein 47 (HSP47), a collagen-binding molecular chaperone in the progresive glomerulosclerosis model. Subtotally nephrectomized rats, unlike sham-operated rats, developed focal and segmental glomerulosclerosis. Immunological staining demonstrated an increased expression of HSP47 which paralleled the expression of type I and IV collagen in the glomeruli of the nephrectomized rats as the glomerulosclerosis developed. The mRNA levels encoding type I and type IV collagen and HSP47 were increased 3.4 fold, 3.6 fold and 2.8 fold, respectively, at week 7 after nephrectomy. By in situ hybridization, the expression of HSP47 mRNA was determined to be localized to the glomeruli with segmental sclerosis. These results suggest that HSP47 may play a central role in the process of extracellular matrix accumulation during the development of glomerulosclerosis. PMID:9741355
Baranova, Ancha; Hammarsund, Marianne; Ivanov, Dmitry; Skoblov, Mikhail; Sangfelt, Olle; Corcoran, Martin; Borodina, Tatiana; Makeeva, Natalia; Pestova, Anna; Tyazhelova, Tatiana; Nazarenko, Svetlana; Gorreta, Francesco; Alsheddi, Tariq; Schlauch, Karen; Nikitin, Eugene; Kapanadze, Bagrat; Shagin, Dmitry; Poltaraus, Andrey; Ivanovich Vorobiev, Andrey; Zabarovsky, Eugene; Lukianov, Sergey; Chandhoke, Vikas; Ibbotson, Rachel; Oscier, David; Einhorn, Stefan; Grander, Dan; Yankovsky, Nick
2003-12-04
In the present study, we describe the human and mouse RFP2 gene structure, multiple RFP2 mRNA isoforms in the two species that have different 5' UTRs and a human-specific antisense transcript RFP2OS. Since the human RFP2 5' UTR is not conserved in mouse, these findings might indicate a different regulation of RFP2 in the two species. The predicted human and mouse RFP2 proteins are shown to contain a tripartite RING finger-B-box-coiled-coil domain (RBCC), also known as a TRIM domain, and therefore belong to a subgroup of RING finger proteins that are often involved in developmental and tumorigenic processes. Because homozygous deletions of chromosomal region 13q14.3 are found in a number of malignancies, including chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), we suggest that RFP2 might be involved in tumor development. This study provides necessary information for evaluation of the role of RFP2 in malignant transformation and other biological processes.
mRNA–mRNA duplexes that auto-elicit Staufen1-mediated mRNA decay
Gong, Chenguang; Tang, Yalan; Maquat, Lynne E.
2013-01-01
We report a new mechanism by which human mRNAs crosstalk: an Alu element in the 3'-untranslated region (3' UTR) of one mRNA can base-pair with a partially complementary Alu element in the 3' UTR of a different mRNA thereby creating a Staufen1 (STAU1)-binding site (SBS). STAU1 binding to a 3' UTR SBS was previously shown to trigger STAU1-mediated mRNA decay (SMD) by directly recruiting the ATP-dependent RNA helicase UPF1, which is also a key factor in the mechanistically related nonsense-mediated mRNA decay (NMD) pathway. In the case of a 3' UTR SBS created via mRNA–mRNA base-pairing, we show that SMD targets both mRNAs in the duplex provided that both mRNAs are translated. If only one mRNA is translated, then it alone is targeted for SMD. We demonstrate the importance of mRNA–mRNA-triggered SMD to the processes of cell migration and invasion. PMID:24056942
Ways and means of eukaryotic mRNA decay.
Balagopal, Vidya; Fluch, Lydia; Nissan, Tracy
2012-06-01
Messenger RNA degradation is an important point of control for gene expression. Genome-wide studies on mRNA stability have demonstrated its importance in adaptation and stress response. Most of the key players in mRNA decay appear to have been identified. The study of these proteins brings insight into the mechanism of general and specific targeting of transcripts for degradation. Recruitment and assembly of mRNP complexes enhance and bring specificity to mRNA decay. mRNP complexes can form larger structures that have been found to be ubiquitous in nature. Discovery of P-Bodies, an archetype of this sort of aggregates, has generated interest in the question of where mRNA degrades. This is currently an open question under extensive investigation. This review will discuss in detail the recent developments in the regulation of mRNA decay focusing on yeast as a model system. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing. Copyright © 2012 Elsevier B.V. All rights reserved.
2'-O-methylation in mRNA disrupts tRNA decoding during translation elongation.
Choi, Junhong; Indrisiunaite, Gabriele; DeMirci, Hasan; Ieong, Ka-Weng; Wang, Jinfan; Petrov, Alexey; Prabhakar, Arjun; Rechavi, Gideon; Dominissini, Dan; He, Chuan; Ehrenberg, Måns; Puglisi, Joseph D
2018-03-01
Chemical modifications of mRNA may regulate many aspects of mRNA processing and protein synthesis. Recently, 2'-O-methylation of nucleotides was identified as a frequent modification in translated regions of human mRNA, showing enrichment in codons for certain amino acids. Here, using single-molecule, bulk kinetics and structural methods, we show that 2'-O-methylation within coding regions of mRNA disrupts key steps in codon reading during cognate tRNA selection. Our results suggest that 2'-O-methylation sterically perturbs interactions of ribosomal-monitoring bases (G530, A1492 and A1493) with cognate codon-anticodon helices, thereby inhibiting downstream GTP hydrolysis by elongation factor Tu (EF-Tu) and A-site tRNA accommodation, leading to excessive rejection of cognate aminoacylated tRNAs in initial selection and proofreading. Our current and prior findings highlight how chemical modifications of mRNA tune the dynamics of protein synthesis at different steps of translation elongation.
Chen, Chuan; Zhang, Xu; Shang, Fei; Sun, Haipeng; Sun, Baolin; Xue, Ting
2015-08-01
Staphylococcus aureus is an important Gram-positive pathogen responsible for numerous diseases ranging from localized skin infections to life-threatening systemic infections. The virulence of S. aureus is essentially determined by a wide spectrum of factors, including cell wall-associated proteins and secreted toxins that are precisely controlled in response to environmental changes. GGDEF domain protein from Staphylococcus (GdpS) is the only conserved staphylococcal GGDEF domain protein that is involved not in c-di-GMP synthesis but in the virulence regulation of S. aureus NCTC8325. Our previous study showed that the inactivation of gdpS generates an extensive change of virulence factors together with, in particular, a major Spa (protein A) surface protein. As reported, sarS is a direct positive regulator of spa. The decreased transcript levels of sarS in the gdpS mutant compared with the parental NCTC8325 strain suggest that gdpS affects spa through interaction with sarS. In this study, site mutation and complementary experiments showed that the translation product of gdpS was not involved in the regulation of transcript levels of sarS. We found that gdpS functioned through direct RNA-RNA base pairing with the 5' untranslated region (5'UTR) of sarS mRNA and that a putative 18-nucleotide region played a significant role in the regulatory process. Furthermore, the mRNA half-life analysis of sarS in the gdpS mutant showed that gdpS positively regulates the mRNA levels of sarS by contributing to the stabilization of sarS mRNA, suggesting that gdpS mRNA may regulate spa expression in an RNA-dependent pathway. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sato, Hanae; Maquat, Lynne E.
2009-01-01
Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)–protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)–CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon–exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin β (IMPβ): Inhibiting the binding of IMPβ to the complex of CBC–IMPα at an mRNA cap using the IMPα IBB (IMPβ-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPβ and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured. PMID:19884259
How Messenger RNA and Nascent Chain Sequences Regulate Translation Elongation.
Choi, Junhong; Grosely, Rosslyn; Prabhakar, Arjun; Lapointe, Christopher P; Wang, Jinfan; Puglisi, Joseph D
2018-06-20
Translation elongation is a highly coordinated, multistep, multifactor process that ensures accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of translated messenger RNA (mRNA). Although translation elongation is heavily regulated by external factors, there is clear evidence that mRNA and nascent-peptide sequences control elongation dynamics, determining both the sequence and structure of synthesized proteins. Advances in methods have driven experiments that revealed the basic mechanisms of elongation as well as the mechanisms of regulation by mRNA and nascent-peptide sequences. In this review, we highlight how mRNA and nascent-peptide elements manipulate the translation machinery to alter the dynamics and pathway of elongation.
mRNA N6-methyladenosine methylation of postnatal liver development in pig.
He, Shen; Wang, Hong; Liu, Rui; He, Mengnan; Che, Tiandong; Jin, Long; Deng, Lamei; Tian, Shilin; Li, Yan; Lu, Hongfeng; Li, Xuewei; Jiang, Zhi; Li, Diyan; Li, Mingzhou
2017-01-01
N6-methyladenosine (m6A) is a ubiquitous reversible epigenetic RNA modification that plays an important role in the regulation of post-transcriptional protein coding gene expression. Liver is a vital organ and plays a major role in metabolism with numerous functions. Information concerning the dynamic patterns of mRNA m6A methylation during postnatal development of liver has been long overdue and elucidation of this information will benefit for further deciphering a multitude of functional outcomes of mRNA m6A methylation. Here, we profile transcriptome-wide m6A in porcine liver at three developmental stages: newborn (0 day), suckling (21 days) and adult (2 years). About 33% of transcribed genes were modified by m6A, with 1.33 to 1.42 m6A peaks per modified gene. m6A was distributed predominantly around stop codons. The consensus motif sequence RRm6ACH was observed in 78.90% of m6A peaks. A negative correlation (average Pearson's r = -0.45, P < 10-16) was found between levels of m6A methylation and gene expression. Functional enrichment analysis of genes consistently modified by m6A methylation at all three stages showed genes relevant to important functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. Genes with higher m6A methylation and lower expression levels at any particular stage were associated with the biological processes required for or unique to that stage. We suggest that differential m6A methylation may be important for the regulation of nutrient metabolism in porcine liver.
Feng, Lihui; Rutherford, Steven T; Papenfort, Kai; Bagert, John D; van Kessel, Julia C; Tirrell, David A; Wingreen, Ned S; Bassler, Bonnie L
2015-01-15
Quorum sensing is a cell-cell communication process that bacteria use to transition between individual and social lifestyles. In vibrios, homologous small RNAs called the Qrr sRNAs function at the center of quorum-sensing pathways. The Qrr sRNAs regulate multiple mRNA targets including those encoding the quorum-sensing regulatory components luxR, luxO, luxM, and aphA. We show that a representative Qrr, Qrr3, uses four distinct mechanisms to control its particular targets: the Qrr3 sRNA represses luxR through catalytic degradation, represses luxM through coupled degradation, represses luxO through sequestration, and activates aphA by revealing the ribosome binding site while the sRNA itself is degraded. Qrr3 forms different base-pairing interactions with each mRNA target, and the particular pairing strategy determines which regulatory mechanism occurs. Combined mathematical modeling and experiments show that the specific Qrr regulatory mechanism employed governs the potency, dynamics, and competition of target mRNA regulation, which in turn, defines the overall quorum-sensing response. Copyright © 2015 Elsevier Inc. All rights reserved.
MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.
Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E
2014-01-10
Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer. © 2013 Elsevier B.V. All rights reserved.
An Easy Method for Plant Polysome Profiling.
Lecampion, Cécile; Floris, Maïna; Fantino, Jean Raphaël; Robaglia, Christophe; Laloi, Christophe
2016-08-28
Translation of mRNA to protein is a fundamental and highly regulated biological process. Polysome profiling is considered as a gold standard for the analysis of translational regulation. The method described here is an easy and economical way for fractionating polysomes from various plant tissues. A sucrose gradient is made without the need for a gradient maker by sequentially freezing each layer. Cytosolic extracts are then prepared in a buffer containing cycloheximide and chloramphenicol to immobilize the cytosolic and chloroplastic ribosomes to mRNA and are loaded onto the sucrose gradient. After centrifugation, six fractions are directly collected from the bottom to the top of the gradient, without piercing the ultracentrifugation tube. During collection, the absorbance at 260 nm is read continuously to generate a polysome profile that gives a snapshot of global translational activity. Fractions are then pooled to prepare three different mRNA populations: the polysomes, mRNAs bound to several ribosomes; the monosomes, mRNAs bound to one ribosome; and mRNAs that are not bound to ribosomes. mRNAs are then extracted. This protocol has been validated for different plants and tissues including Arabidopsis thaliana seedlings and adult plants, Nicotiana benthamiana, Solanum lycopersicum, and Oryza sativa leaves.
Sun, Jie; Wei, Xuelei; Lu, Yandong; Cui, Meng; Li, Fangguo; Lu, Jie; Liu, Yunjiao; Zhang, Xi
2017-10-01
GRX1 (glutaredoxin1), a sulfhydryl disulfide oxidoreductase, is involved in many cellular processes, including anti-oxidation, anti-apoptosis, and regulation of cell differentiation. However, the role of GRX1 in the oxidative stress and apoptosis of osteoarthritis chondrocytes remains unclear, prompting the current study. Protein and mRNA expressions were measured by Western blot and RT-qPCR. Oxidative stress was detected by the measurement of MDA and SOD contents. Cells apoptosis were detected by Annexin V-FITC/PI and caspase-3 activity assays. We found that the mRNA and protein expressions of GRX1 were significantly down-regulated in osteoarthritis tissues and cells. GRX1 overexpression increased the mRNA and protein expression of CREB and HO-1. Meanwhile, GRX1 overexpression inhibited oxidative stress and apoptosis in osteoarthritis chondrocytes. Furthermore, we found that GRX1 overexpression regulated HO-1 by increasing CREB, and that HO-1 regulated oxidative stress and apoptosis in osteoarthritis chondrocytes. Thus, GRX1 overexpression constrains oxidative stress and apoptosis in osteoarthritis chondrocytes by regulating CREB/HO-1, providing a novel insight into the molecular mechanism and potential treatment of osteoarthritis. Copyright © 2017. Published by Elsevier Ltd.
The Chloroplast atpA Gene Cluster in Chlamydomonas reinhardtii1
Drapier, Dominique; Suzuki, Hideki; Levy, Haim; Rimbault, Blandine; Kindle, Karen L.; Stern, David B.; Wollman, Francis-André
1998-01-01
Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter. PMID:9625716
Xiong, Kun; Long, Lingling; Zhang, Xudong; Qu, Hongke; Deng, Haixiao; Ding, Yanjun; Cai, Jifeng; Wang, Shuchao; Wang, Mi; Liao, Lvshuang; Huang, Jufang; Yi, Chun-Xia; Yan, Jie
2017-10-01
Long non-coding RNAs (lncRNAs) display multiple functions including regulation of neuronal injury. However, their impact in methamphetamine (METH)-induced neurotoxicity has rarely been reported. Here, using microarray analysis, we investigated the expression profiling of lncRNAs and mRNAs in primary cultured prefrontal cortical neurons after METH treatment. We observed a difference in lncRNA and mRNA expression between the experimental and sham control groups. Using bioinformatics, we analyzed the highest enriched gene ontology (GO) terms of biological process, cellular component, and molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and pathway network analysis. Furthermore, an lncRNA-mRNA co-expression sub-network for aberrantly expressed terms revealed possible interactions of lncRNA NR_110713 and NR_027943 with their related genes. Afterwards, three lncRNAs (NR_110713, NR_027943, GAS5) and two mRNAs (Ddit3, Casp12) were targeted to validate the microarray data by qRT-PCR. This presented an overview of lncRNA and mRNA expression profiling and indicated that lncRNA might participate in METH-induced neuronal apoptosis by regulating the coding genes of neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Handlogten, Michael W; Lee-O'Brien, Allison; Roy, Gargi; Levitskaya, Sophia V; Venkat, Raghavan; Singh, Shailendra; Ahuja, Sanjeev
2018-01-01
A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in-depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra- and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally, processes with the optimized media maintained an oxidizing intracellular environment, important for correct disulfide bond pairing, which likely contributed to reduced aggregate formation. These findings shed important understanding into how cells respond to process changes and can be useful to guide future development efforts to enhance productivity and improve product quality. © 2017 Wiley Periodicals, Inc.
RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation.
Gill, Tina; Cai, Ti; Aulds, Jason; Wierzbicki, Sara; Schmitt, Mark E
2004-02-01
RNase mitochondrial RNA processing (RNase MRP) mutants have been shown to have an exit-from-mitosis defect that is caused by an increase in CLB2 mRNA levels, leading to increased Clb2p (B-cyclin) levels and a resulting late anaphase delay. Here we describe the molecular defect behind this delay. CLB2 mRNA normally disappears rapidly as cells complete mitosis, but the level remains high in RNase MRP mutants. This is in direct contrast to other exit-from-mitosis mutants and is the result of an increase in CLB2 mRNA stability. We found that highly purified RNase MRP cleaved the 5' untranslated region (UTR) of the CLB2 mRNA in several places in an in vitro assay. In vivo, we identified RNase MRP-dependent cleavage products on the CLB2 mRNA that closely matched in vitro products. Disposal of these products was dependent on the 5'-->3' exoribonuclease Xrn1 and not the exosome. Our results demonstrate that the endoribonuclease RNase MRP specifically cleaves the CLB2 mRNA in its 5'-UTR to allow rapid 5' to 3' degradation by the Xrn1 nuclease. Degradation of the CLB2 mRNA by the RNase MRP endonuclease provides a novel way to regulate the cell cycle that complements the protein degradation machinery. In addition, these results denote a new mechanism of mRNA degradation not seen before in the yeast Saccharomyces cerevisiae.
Wang, Jingkui; Yeung, Jake; Gobet, Cédric; Sobel, Jonathan; Lück, Sarah; Molina, Nacho; Naef, Felix
2018-01-01
The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver. PMID:29432155
Expression of calmodulin mRNA in rat olfactory neuroepithelium.
Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L
1991-04-01
A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.
Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc
2014-01-01
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [(35)S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment.
Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc
2014-01-01
During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433
Zhao, Meijuan; Tang, Dan; Lechpammer, Stanislav; Hoffman, Alexander; Asea, Alexzander; Stevenson, Mary Ann; Calderwood, Stuart K
2002-11-15
We have investigated the role of the double-stranded RNA-dependent protein kinase gene (pkr) in the regulation of the heat shock response. We show that the pkr gene is essential for efficient activation of the heat shock response and that pkr disruption profoundly inhibits heat shock protein 70 (HSP70) synthesis and blocks the development of thermotolerance. Despite these profound effects, pkr disruption did not markedly affect the activation of heat shock factor 1 by heat and did not reduce the rate of transcription of the HSP70 gene after heat shock. However, despite the lack of effect of pkr disruption on HSP70 gene transcription, we found a significant decrease in the expression of HSP70 mRNA in pkr-/- cells after heat shock. Kinetic studies of mRNA turnover suggested a block in the thermal stabilization of HSP70 mRNA in pkr-/- cells. As the thermal stabilization of HSP70 mRNA is thought to involve cis-acting A+U rich (ARE) elements in the 3'-untranslated region (UTR), we examined a potential role for pkr in this process. We found that a reporter beta-galactosidase mRNA destabilized by introduction of a functional ARE into the 3'-UTR became stabilized by heat but only in cells containing an intact pkr gene. Our studies suggest therefore that pkr plays a significant role in the stabilization of mRNA species containing ARE destruction sequences in the 3'-UTR and through this mechanism, contributes to the regulation of the heat shock response and other processes.
Dai, Xing-Ping; Li, Jia-Bang; Liu, Zhao-Qian; Ding, Xiang; Huang, Cheng-Hui; Zhou, Bing
2005-09-21
To investigate the effect of Jianweiyuyang (JWYY) granule on gastric ulcer recurrence and its mechanism in the treatment of gastric ulcer in rats. Gastric ulcer in rats was induced according to Okeba's method with minor modification and the recurrence model was induced by IL-1beta. The expression of vascular endothelial growth factor mRNA (VEGF mRNA) was examined by reverse transcription polymerase chain reaction in gastric ulcer and microvessel density (MVD) adjacent to the ulcer margin was examined by immunohistochemistry. MVD was higher in the JWYY treatment group (14.0+/-2.62) compared with the normal, model and ranitidine treatment groups (2.2+/-0.84, 8.8+/-0.97, 10.4+/-0.97) in rats (P<0.01). The expression level of VEGF mRNA in gastric tissues during the healing process of JWYY treatment group rats significantly increased compared with other groups (normal group: 0.190+/-0.019, model group: 0.642+/-0.034, ranitidine group: 0.790+/-0.037, P<0.01). JWYY granules can stimulate angiogenesis and enhance the expression of VEGF mRNA in gastric ulcer rats. This might be the mechanism for JWYY accelerating the ulcer healing, and preventing the recurrence of gastric ulcer.
Mimida, Naozumi; Kidou, Shin-Ichiro; Iwanami, Hiroshi; Moriya, Shigeki; Abe, Kazuyuki; Voogd, Charlotte; Varkonyi-Gasic, Erika; Kotoda, Nobuhiro
2011-05-01
Understanding the flowering process in apple (Malus × domestica Borkh.) is essential for developing methods to shorten the breeding period and regulate fruit yield. It is known that FLOWERING LOCUS T (FT) acts as a transmissible floral inducer in the Arabidopsis flowering network system. To clarify the molecular network of two apple FT orthologues, MdFT1 and MdFT2, we performed a yeast two-hybrid screen to identify proteins that interact with MdFT1. We identified several transcription factors, including two members of the TCP (TEOSINTE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL FACTORs) family, designated MdTCP2 and MdTCP4, and an Arabidopsis thaliana VOZ1 (Vascular plant One Zinc finger protein1)-like protein, designated MdVOZ1. MdTCP2 and MdVOZ1 also interacted with MdFT2 in yeast. The expression domain of MdTCP2 and MdVOZ1 partially overlapped with that of MdFT1 and MdFT2, most strikingly in apple fruit tissue, further suggesting a potential interaction in vivo. Constitutive expression of MdTCP2, MdTCP4 and MdVOZ1 in Arabidopsis affected plant size, leaf morphology and the formation of leaf primordia on the adaxial side of cotyledons. On the other hand, chimeric MdTCP2, MdTCP4 and MdVOZ1 repressors that included the ethylene-responsive transcription factors (ERF)-associated amphiphilic repression (EAR) domain motif influenced reproduction and inflorescence architecture in transgenic Arabidopsis. These results suggest that MdFT1 and/or MdFT2 might be involved in the regulation of cellular proliferation and the formation of new tissues and that they might affect leaf and fruit development by interacting with TCP- and VOZ-family proteins. DDBJ accession nos. AB531019 (MdTCP2a mRNA), AB531020 (MdTCP2b mRNA), AB531021 (MdTCP4a mRNA), AB531022 (MdTCP4b mRNA) and AB531023 (MdVOZ1a mRNA). © The Author 2011. Published by Oxford University Press. All rights reserved.
Düvel, Katrin; Valerius, Oliver; Mangus, David A; Jacobson, Allan; Braus, Gerhard H
2002-01-01
The mRNA poly(A) tail serves different purposes, including the facilitation of nuclear export, mRNA stabilization, efficient translation, and, finally, specific degradation. The posttranscriptional addition of a poly(A) tail depends on sequence motifs in the 3' untranslated region (3' UTR) of the mRNA and a complex trans-acting protein machinery. In this study, we have replaced the 3' UTR of the yeast TRP4 gene with sequences encoding a hammerhead ribozyme that efficiently cleaves itself in vivo. Expression of the TRP4-ribozyme allele resulted in the accumulation of a nonpolyadenylated mRNA. Cells expressing the TRP4-ribozyme mRNA showed a reduced growth rate due to a reduction in Trp4p enzyme activity. The reduction in enzyme activity was not caused by inefficient mRNA export from the nucleus or mRNA destabilization. Rather, analyses of mRNA association with polyribosomes indicate that translation of the ribozyme-containing mRNA is impaired. This translational defect allows sufficient synthesis of Trp4p to support growth of trp4 cells, but is, nevertheless, of such magnitude as to activate the general control network of amino acid biosynthesis. PMID:12003493
Spichiger, A C; Allenspach, K; Ontsouka, E; Gaschen, F; Morel, C; Blum, J W; Sauter, S N
2005-12-01
Repair processes of the inflamed intestine are very important for dissolution of chronic enteropathies (CE). Therefore, we examined the mRNA abundance of growth hormone receptor (GHR), insulin-like growth factors (IGF)-1 and -2 in duodenal and colonic biopsies of dogs with CE such as food-responsive diarrhoea (FRD) and inflammatory bowel disease (IBD) before and after treatment as compared with each other and healthy dogs. A clinical score (Canine IBD Activity Index = CIBDAI) was applied to judge the severity of CE. Biopsies of duodenum and colon from client-owned dogs with CE were sampled before (FRD(bef), n = 5; IBD(bef), n = 5) and after treatment (FRD(aft), n = 5; IBD(aft), n = 5). Intestinal control samples were available from a homogenous control population (n = 15; C). Intestinal samples were homogenized, total RNA was extracted, reverse transcribed and analysed by real-time polymerase chain reaction to measure mRNA levels of GHR, IGF-1 and IGF-2. Results were normalized with glyceraldehyde phosphate dehydrogenase as housekeeping gene. The CIBDAI decreased during the treatment period in FRD and IBD (P < 0.01). In duodenum, GHR mRNA levels were higher in all groups than in C (P < 0.001). Duodenal IGF-1 mRNA levels in FRD(aft) and IBD(aft) tended to be higher than in C (P < 0.1). The IGF-2 mRNA abundance in FRD(aft) was higher than in C (P < 0.05) in duodenum. In colon, mRNA levels of IGF-1 in IBD(aft) were higher than in FRD(aft) (P < 0.05) and levels differed between IBD(aft) and C (P < 0.05). In conclusion, mRNA levels of GHR, IGF-1 and IGF-2 in the gastrointestinal tract were increased during CE when compared with gastrointestinally healthy dogs. The data suggest that GHR, IGF-1 and IGF-2 are involved in gastrointestinal repair processes.
Betz, Matthias Johannes; Slawik, Marc; Lidell, Martin E; Osswald, Andrea; Heglind, Mikael; Nilsson, Daniel; Lichtenauer, Urs Daniel; Mauracher, Brigitte; Mussack, Thomas; Beuschlein, Felix; Enerbäck, Sven
2013-10-01
Brown adipose tissue (BAT) is a metabolically highly active organ with increased thermogenic activity in rodents exposed to cold temperature. Recently its presence in the cervical adipose tissue of human adults and its association with a favorable metabolic phenotype have been reported. The objective of the study was to determine the prevalence of retroperitoneal BAT in human adults. This was an observational cohort study. The study was conducted at a tertiary referral hospital. Fifty-seven patients who underwent surgery for benign adrenal tumors were included in this study. Prevalence of retroperitoneal BAT adjacent to the removed adrenal tumor as determined by uncoupling protein 1 (UCP1) protein and mRNA expression was measured. Using protein and mRNA expression analysis, we detected UCP1 protein in 26 of 57 patients (45.6%) as well as high mRNA expression of genes characteristic for brown adipocytes, independent of the adrenal tumor type. The presence of brown adipocytes within the retroperitoneal fat was associated with a significantly lower outdoor temperature during the month prior to surgery. Importantly, UCP1 expression on both mRNA and protein level was inversely correlated to outdoor temperature, whereas body mass index, sex, age, and diabetes status were not. These findings suggest that human retroperitoneal adipose tissue can acquire a BAT phenotype, thereby adapting to environmental challenges. These adaptive processes might provide a valuable therapeutic target in the treatment of obesity and insulin resistance.
Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways.
Wang, Q; Shi, C-J; Lv, S-H
2017-03-30
Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.
Factors influencing alternative splice site utilization in vivo.
Fu, X Y; Manley, J L
1987-01-01
To study factors that influence the choice of alternative pre-mRNA splicing pathways, we introduced plasmids expressing either wild-type or mutated simian virus 40 (SV40) early regions into tissue culture cells and then measured the quantities of small-t and large-T RNAs produced. One important element controlling splice site selection was found to be the size of the intron removed in the production of small-t mRNA; expansion of this intron (from 66 to 77 or more nucleotides) resulted in a substantial increase in the amount of small-t mRNA produced relative to large-T mRNA. This suggests that in the normal course of SV40 early pre-mRNA processing, large-T splicing is at a competitive advantage relative to small-t splicing because of the small size of the latter intron. Several additional features of the pre-mRNA that can influence splice site selection were also identified by analyzing the effects of mutations containing splice site duplications. These include the strengths of competing 5' splice sites and the relative positions of splice sites in the pre-mRNA. Finally, we showed that the ratio of small-t to large-T mRNA was 10 to 15-fold greater in human 293 cells than in HeLa cells or other mammalian cell types. These results suggest the existence of cell-specific trans-acting factors that can dramatically alter the pattern of splice site selection in a pre-mRNA. Images PMID:3029566
Quality control of mRNP biogenesis: networking at the transcription site.
Eberle, Andrea B; Visa, Neus
2014-08-01
Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wilson, G M; Vasa, M Z; Deeley, R G
1998-05-01
The mRNA encoding the human low density lipoprotein (LDL) receptor is transiently stabilized after phorbol ester treatment of HepG2 cells and has been shown to associate with components of the cytoskeleton in this cell line (G. M. Wilson, E. A. Roberts, and R. G. Deeley, J. Lipid Res. 1997. 38: 437-446). Using an episomal expression system, fragments of the 3' untranslated region (3'UTR) of LDL receptor mRNA were transcribed in fusion with the coding region of beta-globin mRNA in HepG2 cells. Analyses of the decay kinetics of these beta-globin-LDL receptor fusion mRNA deletion mutants showed that sequences in the proximal 3'UTR of LDL receptor mRNA including several AU-rich elements (AREs) were sufficient to confer short constitutive mRNA half-life in the heterologous system. Stabilization of LDL receptor mRNA in the presence of PMA required sequences in the distal 3'UTR, at or near three Alu-like repetitive elements. Furthermore, the 3'UTR of LDL receptor mRNA conferred cytoskeletal association on the otherwise unassociated beta-globin mRNA, by a mechanism involving at least two distinct RNA elements. Comparisons of decay kinetics and subcellular localization of endogenous LDL receptor mRNA and beta-globin-LDL receptor mRNA fusions in HepG2 cells have demonstrated that several cis-acting elements in the receptor 3'UTR contribute to post-transcriptional regulation of receptor expression, and provide further support for involvement of the cytoskeleton in the regulation of LDL receptor mRNA turnover.
Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline
2006-10-01
Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.
Zucchelli, Silvia; Patrucco, Laura; Persichetti, Francesca; Gustincich, Stefano; Cotella, Diego
2016-01-01
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Therapeutic Interventions to Disrupt the Protein Synthetic Machinery in Melanoma
Kardos, Gregory R.; Robertson, Gavin P.
2015-01-01
Control of the protein synthetic machinery is deregulated in many cancers, including melanoma, in order to increase protein production. Tumor suppressors and oncogenes play key roles in protein synthesis from the transcription of rRNA and ribosome biogenesis to mRNA translation initiation and protein synthesis. Major signaling pathways are altered in melanoma to modulate the protein synthetic machinery thereby promoting tumor development. However, despite the importance of this process in melanoma development, involvement of the protein synthetic machinery in this cancer type is an underdeveloped area of study. Here, we review the coupling of melanoma development to deregulation of the protein synthetic machinery. We examine existing knowledge regarding RNA Polymerase I inhibition and mRNA translation focusing on their inhibition for therapeutic applications in melanoma. Furthermore, the contribution of amino acid biosynthesis and involvement of ribosomal proteins are also reviewed as future therapeutic strategies to target deregulated protein production in melanoma. PMID:26139519
Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.
Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C
2016-04-01
Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.
Update: Mechanisms underlying N6-methyladenosine modification of eukaryotic mRNA
Wang, Yang; Zhao, Jing Crystal
2016-01-01
Summary Eukaryotic messenger RNA (mRNA) undergoes chemical modification both at the 5′cap [1, 2] and internally [3–14]. Among internal modifications, m6A, by far the most abundant, is present in all eukaryotes examined, including mammals [3–6], flies [15], plants [16, 17] and yeast [18, 19]. m6A modification plays an essential role in diverse biological processes. Over the past few years, our knowledge relevant to establishment and function of this modification has grown rapidly. This review focuses on technologies that have facilitated m6A detection in mRNAs, identification of m6A methylation enzymes and binding proteins, and potential functions of the modification at the molecular level. Regarding m6A function at cellular or organismal levels or in disease, please refer to other recent reviews [20–23]. PMID:27793360
Signaling Pathways Involved in the Regulation of mRNA Translation
2018-01-01
ABSTRACT Translation is a key step in the regulation of gene expression and one of the most energy-consuming processes in the cell. In response to various stimuli, multiple signaling pathways converge on the translational machinery to regulate its function. To date, the roles of phosphoinositide 3-kinase (PI3K)/AKT and the mitogen-activated protein kinase (MAPK) pathways in the regulation of translation are among the best understood. Both pathways engage the mechanistic target of rapamycin (mTOR) to regulate a variety of components of the translational machinery. While these pathways regulate protein synthesis in homeostasis, their dysregulation results in aberrant translation leading to human diseases, including diabetes, neurological disorders, and cancer. Here we review the roles of the PI3K/AKT and MAPK pathways in the regulation of mRNA translation. We also highlight additional signaling mechanisms that have recently emerged as regulators of the translational apparatus. PMID:29610153
RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes
Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.
2011-01-01
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430
A Contemporary, Laboratory-Intensive Course on Messenger RNA Transcription and Processing
ERIC Educational Resources Information Center
Carson, Sue; Miller, Heather
2012-01-01
Messenger ribonucleic acid (mRNA) plays a pivotal role in the central dogma of molecular biology. Importantly, molecular events occurring during and after mRNA synthesis have the potential to create multiple proteins from one gene, leading to some of the remarkable protein diversity that genomes hold. The North Carolina State University…
Viral and Cellular mRNA Translation in Coronavirus-Infected Cells
Nakagawa, K.; Lokugamage, K.G.; Makino, S.
2017-01-01
Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623
Park, Eonyoung; Maquat, Lynne E.
2013-01-01
Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base-pairing of 3'UTR sequences or by intermolecular base-pairing of 3'UTR sequences with a long noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Since both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1, SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. PMID:23681777
Pace, Elisabetta; Di Vincenzo, Serena; Ferraro, Maria; Siena, Liboria; Chiappara, Giuseppina; Dino, Paola; Vitulo, Patrizio; Bertani, Alessandro; Saibene, Federico; Lanata, Luigi; Gjomarkaj, Mark
2017-10-01
Histone deacetylase expression/activity may control inflammation, cell senescence, and responses to corticosteroids. Cigarette smoke exposure, increasing oxidative stress, may negatively affect deacetylase expression/activity. The effects of cigarette smoke extracts (CSE), carbocysteine, and beclomethasone dipropionate on chromatin remodeling processes in human bronchial epithelial cells are largely unknown. The present study was aimed to assess the effects of cigarette smoke, carbocysteine, and beclomethasone dipropionate on histone deacetylase 3 (HDAC3) expression/activity, N-CoR (nuclear receptor corepressor) expression, histone acetyltransferases (HAT) (p300/CBP) expression, p-CREB and IL-1 m-RNA expression, neutrophil chemotaxis. Increased p-CREB expression was observed in the bronchial epithelium of smokers. CSE increased p-CREB expression and decreased HDAC3 expression and activity and N-CoR m-RNA and protein expression. At the same time, CSE increased the expression of the HAT, p300/CBP. All these events increased acetylation processes within the cells and were associated to increased IL-1 m-RNA expression and neutrophil chemotaxis. The incubation of CSE exposed cells with carbocysteine and beclomethasone counteracted the effects of cigarette smoke on HDAC3 and N-CoR but not on p300/CBP. The increased deacetylation processes due to carbocysteine and beclomethasone dipropionate incubation is associated to reduced p-CREB, IL-1 m-RNA expression, neutrophil chemotaxis. These findings suggest a new role of combination therapy with carbocysteine and beclomethasone dipropionate in restoring deacetylation processes compromised by cigarette smoke exposure. J. Cell. Physiol. 232: 2851-2859, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava
2016-01-01
Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712
Luna, Rosa; Jimeno, Sonia; Marín, Mercedes; Huertas, Pablo; García-Rubio, María; Aguilera, Andrés
2005-06-10
The conserved eukaryotic THO-TREX complex acts at the interface between transcription and mRNA export and affects transcription-associated recombination. To investigate the interdependence of nuclear mRNA processes and their impact on genomic integrity, we analyzed transcript accumulation and recombination of 40 selected mutants covering representative steps of the biogenesis and export of the messenger ribonucleoprotein particle (mRNP). None of the mutants analyzed shared the strong transcript-accumulation defect and hyperrecombination of THO mutants. Nevertheless, mutants in 3' end cleavage/polyadenylation, nuclear exosome, and mRNA export showed a weak but significant effect on recombination and transcript accumulation. Mutants of the nuclear exosome (rrp6) and 3' end processing factors (rna14 and rna15) showed inefficient transcription elongation and genetic interactions with THO. The results suggest a tight interdependence among mRNP biogenesis steps and transcription and an unexpected effect of the nuclear exosome and the cleavage/polyadenylation factors on transcription elongation and genetic integrity.
Zur, Hadas; Tuller, Tamir
2016-01-01
mRNA translation is the fundamental process of decoding the information encoded in mRNA molecules by the ribosome for the synthesis of proteins. The centrality of this process in various biomedical disciplines such as cell biology, evolution and biotechnology, encouraged the development of dozens of mathematical and computational models of translation in recent years. These models aimed at capturing various biophysical aspects of the process. The objective of this review is to survey these models, focusing on those based and/or validated on real large-scale genomic data. We consider aspects such as the complexity of the models, the biophysical aspects they regard and the predictions they may provide. Furthermore, we survey the central systems biology discoveries reported on their basis. This review demonstrates the fundamental advantages of employing computational biophysical translation models in general, and discusses the relative advantages of the different approaches and the challenges in the field. PMID:27591251
Ávila, Andréa Rodrigues; Cabezas-Cruz, Alexjandro; Gissot, Mathieu
2018-01-25
Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.
Histone mRNA degradation in vivo: the first detectable step occurs at or near the 3' terminus.
Ross, J; Peltz, S W; Kobs, G; Brewer, G
1986-01-01
The first detectable step in the degradation of human H4 histone mRNA occurs at the 3' terminus in a cell-free mRNA decay system (J. Ross and G. Kobs, J. Mol. Biol. 188:579-593, 1986). Most or all of the remainder of the mRNA is then degraded in a 3'-to-5' direction. The experiments described here were designed to determine whether a similar degradation pathway is followed in whole cells. Two sets of short-lived histone mRNA decay products were detected in logarithmically growing erythroleukemia (K562) cells. These products, designated the -5 and -12 RNAs, were generated by the loss of approximately 4 to 6 and 11 to 13 nucleotides, respectively, from the 3' terminus of histone mRNA. The same decay products were observed after a brief incubation in vitro. They were in low abundance or absent from cells that were not degrading histone mRNA. In contrast, they were readily detectable in cells that degraded the mRNA at an accelerated rate, i.e., in cells cultured with a DNA synthesis inhibitor, either cytosine arabinoside or hydroxyurea. During the initial stages of the decay process, as the 3' terminus of the mRNA was being degraded, the 5'-terminal region remained intact. These results indicate that the first detectable step in human H4 histone mRNA decay occurs at the 3' terminus and that degradation proceeds 3' to 5', both in cells and in cell-free reactions. Images PMID:3467177
Histone mRNA degradation in vivo: the first detectable step occurs at or near the 3' terminus.
Ross, J; Peltz, S W; Kobs, G; Brewer, G
1986-12-01
The first detectable step in the degradation of human H4 histone mRNA occurs at the 3' terminus in a cell-free mRNA decay system (J. Ross and G. Kobs, J. Mol. Biol. 188:579-593, 1986). Most or all of the remainder of the mRNA is then degraded in a 3'-to-5' direction. The experiments described here were designed to determine whether a similar degradation pathway is followed in whole cells. Two sets of short-lived histone mRNA decay products were detected in logarithmically growing erythroleukemia (K562) cells. These products, designated the -5 and -12 RNAs, were generated by the loss of approximately 4 to 6 and 11 to 13 nucleotides, respectively, from the 3' terminus of histone mRNA. The same decay products were observed after a brief incubation in vitro. They were in low abundance or absent from cells that were not degrading histone mRNA. In contrast, they were readily detectable in cells that degraded the mRNA at an accelerated rate, i.e., in cells cultured with a DNA synthesis inhibitor, either cytosine arabinoside or hydroxyurea. During the initial stages of the decay process, as the 3' terminus of the mRNA was being degraded, the 5'-terminal region remained intact. These results indicate that the first detectable step in human H4 histone mRNA decay occurs at the 3' terminus and that degradation proceeds 3' to 5', both in cells and in cell-free reactions.
Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo
2013-01-01
Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982
Subclinical Pregnancy Toxemia-Induced Gene Expression Changes in Ovine Placenta and Uterus
Kasimanickam, Ramanathan K.
2016-01-01
The objective was to elucidate gene expression differences in uterus, caruncle, and cotyledon of ewes with subclinical pregnancy toxemia (SCPT) and healthy ewes, and to identify associated biological functions and pathways involved in pregnancy toxemia. On Day 136 (±1 day) post-breeding, ewes (n = 18) had body condition score (BCS; 1–5; 1, emaciated; 5, obese) assessed, and blood samples were collected for plasma glucose and β-hydroxybutyrate (BHBA) analyses. The ewes were euthanized, and tissue samples were collected from the gravid uterus and placentomes. Based on BCS (2.0 ± 0.02), glucose (2.4 ± 0.33), and BHBA (0.97 ± 0.06) concentrations, ewes (n = 10) were grouped as healthy (n = 5) and subclinical SCPT (n = 5) ewes. The mRNA expressions were determined by quantitative PCR method, and prediction of miRNA partners and target genes for the predicted miRNA were identified using miRDB (http://mirdb.org/miRDB/). Top ranked target genes were used to identify associated biological functions and pathways in response to SPCT using PANTHER. The angiogenesis genes VEGF and PlGF, and AdipoQ, AdipoR2, PPARG, LEP, IGF1, IGF2, IL1b, and TNFα mRNA expressions were lower in abundances, whereas hypoxia genes eNOS, HIF1a, and HIF 2a, and sFlt1 and KDR mRNA expressions were greater in abundances in uterus and placenta of SCPT ewes compared to healthy ewes (P < 0.05). The predicted miRNA and associated target genes contributed to several biological processes, including apoptosis, biological adhesion, biological regulation, cellular component biogenesis, cellular process, developmental process, immune system process, localization, metabolic process, multicellular organismal process, reproduction, and response to stimulus. The target genes were involved in several pathways including angiogenesis, cytoskeletal regulation, hypoxia response via HIF activation, interleukin signaling, ubiquitin proteasome, and VEGF signaling pathway. In conclusion, genes associated with blood vessel remodeling were lower in abundances and that the genes associated with hypoxic conditions were greater in abundances in the uteroplacental compartment of SCPT ewes. It is obvious that the factors that influence placental vascular development and angiogenesis as noted in this study set the course for hemodynamic changes and hence have a major impact on the rate of transplacental nutrient exchange, fetal growth, and health of the dam. PMID:27626035
Wang, Junying; Duanmu, Chenlin; Feng, Xiumei; Yan, Yaxia
2016-01-01
Chronic pain is a common disability influencing quality of life. Results of previous studies showed that acupuncture has a cumulative analgesic effect, but the relationship with spinal cytokines neurotrophic factors released by astrocytes remains unknown. The present study was designed to observe the effect of electroacupuncture (EA) treatment on spinal cytokines neurotrophic factors in chronic neuropathic pain rats. The chronic neuropathic pain was established by chronic constrictive injury (CCI). EA treatment was applied at Zusanli (ST36) and Yanglingquan (GB34) (both bilateral) once a day, for 30 min. IL-1β mRNA, TNF-α mRNA, and IL-1 mRNA were detected by quantitative real-time PCR, and the proteins of BDNF, NGF, and NT3/4 were detected by Western blot. The expression levels of cytokines such as IL-1β mRNA, TNF-α mRNA, IL-6 mRNA, and neurotrophic factors such as BDNF, NGF, and NT3/4 in the spinal cord were increased significantly after CCI. The astrocytes released more IL-1β and BDNF after CCI. Repeated EA treatment could suppress the elevated expression of IL-1β mRNA, TNFα mRNA, and BDNF, NGF, and NT3/4 but had no effect on IL-6 mRNA. It is suggested that cytokines and neurotrophic factors which may be closely associated with astrocytes participated in the process of EA relieving chronic pain. PMID:27800006
2015-01-01
Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492
Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan
2014-12-23
Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.
Single-cell analysis of transcription kinetics across the cell cycle
Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido
2016-01-01
Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388
Recruitment of Staufen2 Enhances Dendritic Localization of an Intron-Containing CaMKIIα mRNA.
Ortiz, Raúl; Georgieva, Maya V; Gutiérrez, Sara; Pedraza, Neus; Fernández-Moya, Sandra M; Gallego, Carme
2017-07-05
Regulation of mRNA localization is a conserved cellular process observed in many types of cells and organisms. Asymmetrical mRNA distribution plays a particularly important role in the nervous system, where local translation of localized mRNA represents a key mechanism in synaptic plasticity. CaMKIIα is a very abundant mRNA detected in neurites, consistent with its crucial role at glutamatergic synapses. Here, we report the presence of CaMKIIα mRNA isoforms that contain intron i16 in dendrites, RNA granules, and synaptoneurosomes from primary neurons and brain. This subpopulation of unspliced mRNA preferentially localizes to distal dendrites in a synaptic-activity-dependent manner. Staufen2, a well-established marker of RNA transport in dendrites, interacts with intron i16 sequences and enhances its distal dendritic localization, pointing to the existence of intron-mediated mechanisms in the molecular pathways that modulate dendritic transport and localization of synaptic mRNAs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.
Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J
2014-03-01
Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.
Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.
Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M
2000-03-10
The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.
Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel
2012-06-01
We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.
Somekh, Judith; Choder, Mordechai; Dori, Dov
2012-01-01
We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM), a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure—the objects that comprise the system, and behavior—how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point—the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model. PMID:23308089
2010-01-01
Background The existence of circulating tumor cells (CTCs) in peripheral blood as an indicator of tumor recurrence has not been clearly established, particularly for gastric cancer patients. We conducted a retrospective analysis of the relationship between CTCs in peripheral blood at initial diagnosis and clinicopathologic findings in patients with gastric carcinoma. Methods Blood samples were obtained from 123 gastric carcinoma patients at initial diagnosis. mRNA was extracted and amplified for carcinoembryonic antigen (CEA) mRNA detection using real-time RT-PCR. Periodic 3-month follow-up examinations included serum CEA measurements and imaging. Results The minimum threshold for corrected CEA mRNA score [(CEA mRNA/GAPDH mRNA) × 106] was set at 100. Forty-five of 123 patients (36.6%) were positive for CEA mRNA expression. CEA mRNA expression significantly correlated with T stage and postoperative recurrence status (P = 0.001). Recurrent disease was found in 44 of 123 cases (35.8%), and 25 of these (56.8%) were positive for CEA mRNA. Of these patients, CEA mRNA was more sensitive than serum CEA in indicating recurrence. Three-year disease-free survival of patients positive for CEA mRNA was significantly poorer than of patients negative for CEA mRNA (P < 0.001). Only histological grade and CEA mRNA positivity were independent factors for disease-free survival using multivariate analysis. Conclusions CEA mRNA copy number in peripheral blood at initial diagnosis was significantly associated with disease recurrence in gastric adenocarcinoma patients. Real-time RT-PCR detection of CEA mRNA levels at initial diagnosis appears to be a promising predictor for disease recurrence in gastric adenocarcinoma patients. PMID:21040522
Qiu, Miao-Zhen; Li, Zhuang-Hua; Zhou, Zhi-Wei; Li, Yu-Hong; Wang, Zhi-Qiang; Wang, Feng-Hua; Huang, Peng; Aziz, Fahad; Wang, Dao-Yuan; Xu, Rui-Hua
2010-10-31
The existence of circulating tumor cells (CTCs) in peripheral blood as an indicator of tumor recurrence has not been clearly established, particularly for gastric cancer patients. We conducted a retrospective analysis of the relationship between CTCs in peripheral blood at initial diagnosis and clinicopathologic findings in patients with gastric carcinoma. Blood samples were obtained from 123 gastric carcinoma patients at initial diagnosis. mRNA was extracted and amplified for carcinoembryonic antigen (CEA) mRNA detection using real-time RT-PCR. Periodic 3-month follow-up examinations included serum CEA measurements and imaging. The minimum threshold for corrected CEA mRNA score [(CEA mRNA/GAPDH mRNA) × 106] was set at 100. Forty-five of 123 patients (36.6%) were positive for CEA mRNA expression. CEA mRNA expression significantly correlated with T stage and postoperative recurrence status (P = 0.001). Recurrent disease was found in 44 of 123 cases (35.8%), and 25 of these (56.8%) were positive for CEA mRNA. Of these patients, CEA mRNA was more sensitive than serum CEA in indicating recurrence. Three-year disease-free survival of patients positive for CEA mRNA was significantly poorer than of patients negative for CEA mRNA (P < 0.001). Only histological grade and CEA mRNA positivity were independent factors for disease-free survival using multivariate analysis. CEA mRNA copy number in peripheral blood at initial diagnosis was significantly associated with disease recurrence in gastric adenocarcinoma patients. Real-time RT-PCR detection of CEA mRNA levels at initial diagnosis appears to be a promising predictor for disease recurrence in gastric adenocarcinoma patients.
Ibrahim, M; Peter, S; Gärtner, M A; Michel, G; Jung, M; Einspanier, R; Gabler, C
2016-11-01
In the uterus, the first pathogen confrontations take place at the luminal endometrial epithelium. Therefore, it is required that these cells have the potential to recognize and respond to a bacterial infection. Antimicrobial peptides (AMP), part of the innate immune system in addition to cytokines, are principal effector molecules of mucosal immunity against pathogens. One important family of AMP that can permeabilize bacterial membranes is the beta-defensin (DEFB) family, which includes the following members: DEFB1, DEFB4A, and DEFB5, lingual AMP, and tracheal AMP. The bactericidal/permeability-increasing protein is also a cationic AMP that results in the death of bacteria. Another AMP family is the S100 calcium-binding protein (S100A) family including the following members: S100A8, S100A9, S100A11, and S100A12. These AMP exert their antimicrobial action through chelation of several ions. The aim of the present study was to evaluate mRNA expression patterns of selected AMP in bovine endometrial cells collected (1) at different stages of the estrous cycle (postovulatory, early-to-mid luteal, late luteal, and pre-ovulatory phase); (2) during the puerperium depending on uterine health status (healthy, subclinical, or clinical endometritis) starting on Day 24 to 30 postpartum for 3 weeks on a weekly basis; and (3) in vitro after co-culturing with Bacillus pumilus at three different multiplicities of infection (MOI 1, 5, and 10) up to 6 hours. The results reported that the mRNA expression of all candidate AMP, except DEFB1, S100A8, and S100A9, was estrous cycle dependent. In particular, around the time of ovulation, the transcription level of most AMP was higher (P < 0.05) compared with the luteal phase. Almost all candidate AMP mRNA expression was dependent on uterine health status, with a higher transcription level (P < 0.05) in inflamed endometrial tissues, especially during the late stage of the puerperium (Day 45-51 postpartum). Members of the DEFB family were nearly unaffected in their mRNA expression in primary endometrial cells co-incubated with B. pumilus. However, S100A8 and S100A9 mRNA contents were higher after 4 and 6 hours of co-incubation with B. pumilus compared with untreated controls. In conclusion, higher mRNA expression of the candidate AMP around ovulation or in inflamed endometrial tissue during the puerperium suggests their crucial role in uterine innate immunity in the defense against invading bacteria. Copyright © 2016 Elsevier Inc. All rights reserved.
Luo, Li; Dong, Bi-rong; Teng, Li-hua
2008-07-01
To explore the effects of Houttuynia Cordata on expression of human beta-defensin-2 (HBD-2) in pulmonary epithelial cells (SPC-A-1) in vitro; and to observe the correlationship between the level of HBD-2 mRNA and the concentrations or treatment times of Houttuynia Cordata. The SPC-A-1 cells were cultured with different concentrations of Houttuynia Cordata in vitro, including 0, 12.5, 25, 50, 100 and 200 microg/ml. And then, the SPC-A-1 cells were cultured with the optimal concentration of Houttuynia Cordata in different lengths of time, including 1, 2, 4, 8, 16 and 24 hours. After the treatment, the mRNA level of HBD-2 in pulmonary epithelial cells was detected by means of semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). After being cultured with Houttuynia Cordata, the expression of HBD-2 mRNA had positive correlation with the stimulus concentrations (rs=0.829, P=0.042) and stimulus time (rs=0.914, P=0.003). The highest expression of HBD-2 mRNA was induced by 100 microg/ml Houttuynia Cordata after 8-hour treatment. In comparison with the normal control group and the interleukin-1beta group, 100 microg/ml Houttuynia Cordata could significantly up-regulate the expression of HBD-2 mRNA in SPC-A-1 cells after 8-hour treatment (P<0.01). Houttuynia Cordata can up-regulate expression of HBD-2 mRNA in SPC-A-1 cells, and the highest expression level of HBD-2 mRNA can be obtained by culture with 100 microg/ml Houttuynia Cordata for 8 hours.
Yamaguchi, Takeshi; Kataoka, Kensuke; Watanabe, Kenji; Orii, Hidefumi
2014-02-01
DEADSouth mRNA encoding the RNA helicase DDX25 is a component of the germ plasm in Xenopus laevis. We investigated the mechanisms underlying its specific mRNA expression in primordial germ cells (PGCs). Based on our previous findings of several microRNA miR-427 recognition elements (MREs) in the 3' untranslated region of the mRNA, we first examined whether DEADSouth mRNA was degraded by miR-427 targeting in somatic cells. Injection of antisense miR-427 oligomer and reporter mRNA for mutated MREs revealed that DEADSouth mRNA was potentially degraded in somatic cells via miR-427 targeting, but not in PGCs after the mid-blastula transition (MBT). The expression level of miR-427 was very low in PGCs, which probably resulted in the lack of miR-427-mediated degradation. In addition, the DEADSouth gene was expressed zygotically after MBT. Thus, the predominant expression of DEADSouth mRNA in the PGCs is ensured by multiple mechanisms including zygotic expression and prohibition from miR-427-mediated degradation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
microRNA in Cerebral Spinal Fluid as Biomarkers of Alzheimer’s Disease Risk After Brain Injury
2016-08-01
protein processing is a key feature of AD. MiRNAs are small non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein...non- coding RNA that regulate mRNA transcription, and may be a significant cause of protein dysregulation. Our investigative team has generated
Dupont, Chris L; McCrow, John P; Valas, Ruben; Moustafa, Ahmed; Walworth, Nathan; Goodenough, Ursula; Roth, Robyn; Hogle, Shane L; Bai, Jing; Johnson, Zackary I; Mann, Elizabeth; Palenik, Brian; Barbeau, Katherine A; Craig Venter, J; Allen, Andrew E
2015-01-01
Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM. PMID:25333462
Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines
Noguchi, Ken; Dalton, Annamarie C.; Howley, Breege V.; McCall, Buckley J.; Yoshida, Akihiro; Diehl, J. Alan
2017-01-01
ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines. PMID:28545079
Wang, Yeda; Kuang, Ming; Lu, Yuanan; Lin, Li; Liu, Xueqin
2017-09-05
The TRIM family protein was known to play an important role in many cellular processes, including potential antiviral activity, which has attracted lots of attention. In this study, a TRIM47 homolog from common carp (Cyprinus carpio) was cloned and the full length coding DNA sequence (CDS) of this gene was analyzed, results showed that there was a 97% similarity between common carp and zebrafish (Danio rerio), but only 18% similarity with that of human (Homo sapiens) and mouse (Mus musculus). The tissue distribution analysis showed TRIM47 had the highest mRNA level in the brain, a few immune related organs such as liver and kidney also had a relatively high level of TRIM47 expression. SVCV infection decreased TRIM47 mRNA level significantly both in vitro and in vivo, but its expression was not affected by the virus at the protein level. The recombinant plasmid pcDNA4-TRIM47-His was constructed, the subcellular localization in FHM cells showed that TRIM47 uniformly distributed in the cytoplasm at the form of tiny spots, and partially localized in the mitochondria. Overexpression TRIM47 in FHM cells significantly decreased the mRNA level of SVCV-G gene, and it was accompanied with the increasing of IFN1, a member of type I IFN, at the case of SVCV stimulation. In summary, our results had first demonstrated that TRIM47 of the common carp played an important role in viral resistance processes as well as the regulation of IFN signaling pathway. Copyright © 2017. Published by Elsevier B.V.
Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites
Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You
2013-01-01
AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465
Post-transcriptional regulation tends to attenuate the mRNA noise and to increase the mRNA gain
NASA Astrophysics Data System (ADS)
Shi, Changhong; Wang, Shuqiang; Zhou, Tianshou; Jiang, Yiguo
2015-10-01
Post-transcriptional regulation is ubiquitous in prokaryotic and eukaryotic cells, but how it impacts gene expression remains to be fully explored. Here, we analyze a simple gene model in which we assume that mRNAs are produced in a constitutive manner but are regulated post-transcriptionally by a decapping enzyme that switches between the active state and the inactive state. We derive the analytical mRNA distribution governed by a chemical master equation, which can be well used to analyze the mechanism of how post-transcription regulation influences the mRNA expression level including the mRNA noise. We demonstrate that the mean mRNA level in the stochastic case is always higher than that in the deterministic case due to the stochastic effect of the enzyme, but the size of the increased part depends mainly on the switching rates between two enzyme states. More interesting is that we find that in contrast to transcriptional regulation, post-transcriptional regulation tends to attenuate noise in mRNA. Our results provide insight into the role of post-transcriptional regulation in controlling the transcriptional noise.
Ishida; Wu; Shi; Fujita; Sauvage; Hammond; Wijelath
2000-03-01
Previous studies of neointima formation on Dacron vascular grafts mainly focused on the late stages using immunohistochemistry staining for von Willebrand factor (vWF) and smooth muscle (SM) alpha-actin. However, it is impossible to use immunohistochemistry to study the early events of neointima formation, because graft samples lack sufficient cellular material. Therefore, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to demonstrate dynamic changes of SM and endothelial markers during the early stages of neointima formation. Preclotted Dacron grafts were implanted in the descending thoracic aorta of 14 mongrel dogs. Specimens were retrieved at 1-4 weeks. Total RNAs were extracted from mid-portion of graft flow surfaces, and RT-PCR for vWF, SM myosin heavy chain (MHC), and SM alpha-actin were performed and expressed as a ratio to the ribosome s17 signal. SM MHC and vWF mRNA expression was low at 1-2 weeks but elevated at 3-4 weeks (P < 0.05). However, SM alpha-actin mRNA levels were expressed consistently throughout the study period. At 3-4 weeks, vWF mRNA expression was inversely correlated to thrombus formation on the graft flow surface. Increased expressions of SM MHC and vWF mRNA corresponded to the formation of neointima and an endothelial layer at the later stages. However, SM alpha-actin mRNA expression did not vary during the healing process. The application of RT-PCR should permit further studies of gene regulation in the early vascular graft healing process in vivo. This model can also be used to study the molecular events that are involved in SM cell differentiation.
Orefice, Lauren L.; Waterhouse, Emily G.; Partridge, John G.; Lalchandani, Rupa R.; Vicini, Stefano
2013-01-01
Dendritic spines undergo the processes of formation, maturation, and pruning during development. Molecular mechanisms controlling spine maturation and pruning remain largely unknown. The gene for brain-derived neurotrophic factor (BDNF) produces two pools of mRNA, with either a short or long 3′ untranslated region (3′ UTR). Our previous results show that short 3′ UTR Bdnf mRNA is restricted to cell bodies, whereas long 3′ UTR Bdnf mRNA is also trafficked to dendrites for local translation. Mutant mice lacking long 3′ UTR Bdnf mRNA display normal spines at 3 weeks of age, but thinner and denser spines in adults compared to wild-type littermates. These observations suggest that BDNF translated from long 3′ UTR Bdnf mRNA, likely in dendrites, is required for spine maturation and pruning. In this study, using rat hippocampal neuronal cultures, we found that knocking down long 3′ UTR Bdnf mRNA blocked spine head enlargement and spine elimination, whereas overexpressing long 3′ UTR Bdnf mRNA had the opposite effect. The effect of long 3′ UTR Bdnf mRNA on spine head enlargement and spine elimination was diminished by a human single-nucleotide polymorphism (SNP, rs712442) in its 3′ UTR that inhibited dendritic localization of Bdnf mRNA. Furthermore, we found that overexpression of either Bdnf mRNA increased spine density at earlier time points. Spine morphological alterations were associated with corresponding changes in density, size, and function of synapses. These results indicate that somatically synthesized BDNF promotes spine formation, whereas dendritically synthesized BDNF is a key regulator of spine head growth and spine pruning. PMID:23843530
Okamura, Masumi; Yamanaka, Yasutaka; Shigemoto, Maki; Kitadani, Yuya; Kobayashi, Yuhko; Kambe, Taiho; Nagao, Masaya; Kobayashi, Issei; Okumura, Katsuzumi
2018-01-01
DBP5, also known as DDX19, GLE1 and inositol hexakisphosphate (IP6) function in messenger RNA (mRNA) export at the cytoplasmic surface of the nuclear pore complex in eukaryotic cells. DBP5 is a DEAD-box RNA helicase, and its activity is stimulated by interactions with GLE1 and IP6. In addition, these three factors also have unique role(s). To investigate how these factors influenced the cytoplasmic mRNA expression and cell phenotype change, we performed RNA microarray analysis to detect the effect and function of DBP5, GLE1 and IP6 on the cytoplasmic mRNA expression. The expression of some cytoplasmic mRNA subsets (e.g. cell cycle, DNA replication) was commonly suppressed by the knock-down of DBP5, GLE1 and IPPK (IP6 synthetic enzyme). The GLE1 knock-down selectively reduced the cytoplasmic mRNA expression required for mitotic progression, results in an abnormal spindle phenotype and caused the delay of mitotic process. Meanwhile, G1/S cell cycle arrest was observed in DBP5 and IPPK knock-down cells. Several factors that function in immune response were also down-regulated in DBP5 or IPPK knock-down cells. Thereby, IFNβ-1 mRNA transcription evoked by poly(I:C) treatment was suppressed. These results imply that DBP5, GLE1 and IP6 have a conserved and individual function in the cytoplasmic mRNA expression. Variations in phenotype are due to the difference in each function of DBP5, GLE1 and IPPK in intracellular mRNA metabolism. PMID:29746542
Connor, E E; Baldwin, R L; Capuco, A V; Evock-Clover, C M; Ellis, S E; Sciabica, K S
2010-11-01
Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, has several physiological effects on the intestine of monogastric species, including promotion of growth of intestinal epithelium, reduction of epithelial cell apoptosis, and enhancement of intestinal blood flow, nutrient absorption, and epithelial barrier function. The regulatory functions of GLP-2 in the ruminant gastrointestinal tract (GIT) have not been well studied. The objectives of this investigation were to characterize the mRNA expression of 4 members of the GLP-2 pathway throughout the bovine GIT, including (1) proglucagon (GCG), the parent peptide from which GLP-2 is derived through cleavage by prohormone convertase; (2) prohormone convertase (PCSK1); (3) GLP-2 receptor (GLP2R); and (4) dipeptidyl peptidase IV (DPP4), the enzyme that inactivates GLP-2. Gene expression was evaluated in rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, and rectum collected at slaughter from prepubertal heifers, mature cows in early, mid, and late lactation, and nonlactating cows (n=3 per stage) by a gene expression profiling assay. In addition, mRNA expression of 14 genes involved in nutrient transport, enzyme activity, blood flow, apoptosis, and proliferation were evaluated in the 9 GIT tissues for their association with GCG and GLP2R mRNA expression. Immunohistochemistry was used to localize GLP2R protein in tissues of the lower GIT. Results indicated that mRNA expression of GCG, PCSK1, GLP2R, and DPP4 varies across the 9 GIT tissues, with greatest expression in small and large intestines, and generally nondetectable levels in forestomachs. Expression of DPP4 and GLP2R mRNA varied by developmental stage or lactational state in intestinal tissues. Expression of GCG or GLP2R mRNA was correlated with molecular markers of proliferation, apoptosis, blood flow, enzyme activity, and urea transport, depending on the tissue examined, which suggests a potential for involvement of GLP-2 in these physiological processes in the ruminant GIT. The GLP2R protein was expressed in intestinal crypts of the bovine GIT, which is consistent with the distribution in monogastric species. Our findings support a functional role of the GLP-2 pathway in bovine GIT and the potential for use of GLP-2 as a therapy to improve intestinal function and nutrient absorption in ruminants. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wang, J S; Wang, W J; Wang, T; Zhang, Y
2016-04-01
To investigate the expression of mRNA and proteins of β-catenin, TCF-4 (ICAT) and Wnt signaling pathway-related genes in the monocytic differentiation of acute myeloid leukemia HL-60 cells induced by a new steroidal drug NSC67657. Wright's staining and α-NBE staining were used to observe the differentiation of HL-60 cells after 5 days of 10 μmol/L NSC67657 treatment. Flow cytometry (FCM) was used to detect the differentiation and cell cycles. The expressions of mRNA and proteins of ICAT and Wnt signaling pathway-related factors, including β-catenin, TCF-4, c-myc, cyclin D1 and TCF-1 before and after differentiation, were detected by RT-PCR and Western blot. Morphological observation showed that NSC67657 induced monocytic differentiation of HL-60 cells. At 5 days after 10 μmol/L NSC67657 treatment, the number of CD14(+) HL-60 cells was (94.37±2.84)%, significantly higher than the (1.31±0.09)% in control group (P<0.01). The flow cytometry assay revealed that NSC67657 induced (76.46±2.83)% of G1/G0 phase arrest, significantly higher than that of (59.40±5.42)% in the control group (P<0.05), while the S phase cells were of (18.76±0.98)%, significantly lower than that of (34.38±2.61) % in the control group (P<0.05). The NSC67657 treatment also up-regulated the expression of ICAT mRNA and protein, and down-regulated the expression of β-catenin mRNA and protin (P<0.01 for all). However, the nuclear expression of β-catenin was down-regulated (P<0.01). The NSC67657 treatment induced nonsignificant alterations of TCF-4 mRNA, total protein and nuclear protein in the HL-60 cells (P>0.05 for all). The target genes of Wnt signaling pathway, including c-myc, cyclinD1 and TCF-1 mRNA and proteins in the HL-60 cells were significantly down-regulated after NSC67657 treatment (P<0.05). The new steroidal drug NSC67657 induces monocytic differentiation of HL-60 cells, and down-regulates the expression of β-catenin and target genes of Wnt signaling pathway. These results indicate that Wnt signaling pathway may be directly or indirectly involved in the monocytic differentiation process of HL-60 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yanlong; Department of Medicine, University of Louisville, Louisville, KY; Wang, Chunhong
2012-10-15
Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physicalmore » hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption. -- Graphical abstract: Physical and chemical hypoxia decrease FGF-21 expression, which is inhibited by antioxidant, N-acetyl cysteine (NAC), in Caco-2 cells. Highlights: ► Hypoxia down-regulates FGF21 expression in Caco-2 cells. ► FGF21 down-regulation is HIF-α independent. ► FGF21 down-regulation is modulated by oxidative stress-mediated mRNA stability. ► FGF21 is involved in hypoxia‐induced triglyceride accumulation in Caco-2 cells.« less
A manganese-dependent ribozyme in the 3'-untranslated region of Xenopus Vg1 mRNA.
Kolev, Nikolay G; Hartland, Emilia I; Huber, Paul W
2008-10-01
The smallest catalytic RNA identified to date is a manganese-dependent ribozyme that requires only a complex between GAAA and UUU to effect site-specific cleavage. We show here that this ribozyme occurs naturally in the 3'-UTR of Vg1 and beta-actin mRNAs. In accord with earlier studies with model RNAs, cleavage occurs only in the presence of manganese or cadmium ions and proceeds optimally near 30 degrees C and physiological pH. The time course of cleavage in Vg1 mRNA best fits a two-step process in which both steps are first-order. In Vg1 mRNA, the ribozyme is positioned adjacent to a polyadenylation signal, but has no influence on translation of the mRNA in Xenopus oocytes. Putative GAAA ribozyme structures are also near polyadenylation sites in yeast and rat actin mRNAs. Analysis of sequences in the PolyA Cleavage Site and 3'-UTR Database (PACdb) revealed no particular bias in the frequency or distribution of the GAAA motif that would suggest that this ribozyme is currently or was recently used for cleavage to generate processed transcripts. Nonetheless, we speculate that the complementary strands that comprise the ribozyme may account for the origin of sequence elements that direct present-day 3'-end processing of eukaryotic mRNAs.
BAG3 is upregulated by c-Jun and stabilizes JunD.
Li, Chao; Li, Si; Kong, De-Hui; Meng, Xin; Zong, Zhi-Hong; Liu, Bao-Qin; Guan, Yifu; Du, Zhen-Xian; Wang, Hua-Qin
2013-12-01
BAG3 plays a regulatory role in a number of cellular processes, including cell proliferation, apoptosis, adhesion and migration, epithelial-mesenchymal transition (EMT), autophagy activation, and virus infection. The AP-1 transcription factors are implicated in a variety of important biological processes including cell differentiation, proliferation, apoptosis and oncogenesis. Recently, it has been reported that AP-1 protein c-Jun inhibits autophagy and enhances apoptotic cell death mediated by starvation. However, the molecular mechanisms remain unclear. For the first time, the current study demonstrated that serum starvation downregulated BAG3 at the transcriptional level via c-Jun. In addition, the current study reported that BAG3 stabilized JunD mRNA, which was, at least in part, responsible for the promotion of serum starvation mediated-growth inhibition by BAG3. © 2013.
Quantitative imaging of single mRNA splice variants in living cells
NASA Astrophysics Data System (ADS)
Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph
2014-06-01
Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.
A deterministic mathematical model for bidirectional excluded flow with Langmuir kinetics.
Zarai, Yoram; Margaliot, Michael; Tuller, Tamir
2017-01-01
In many important cellular processes, including mRNA translation, gene transcription, phosphotransfer, and intracellular transport, biological "particles" move along some kind of "tracks". The motion of these particles can be modeled as a one-dimensional movement along an ordered sequence of sites. The biological particles (e.g., ribosomes or RNAPs) have volume and cannot surpass one another. In some cases, there is a preferred direction of movement along the track, but in general the movement may be bidirectional, and furthermore the particles may attach or detach from various regions along the tracks. We derive a new deterministic mathematical model for such transport phenomena that may be interpreted as a dynamic mean-field approximation of an important model from mechanical statistics called the asymmetric simple exclusion process (ASEP) with Langmuir kinetics. Using tools from the theory of monotone dynamical systems and contraction theory we show that the model admits a unique steady-state, and that every solution converges to this steady-state. Furthermore, we show that the model entrains (or phase locks) to periodic excitations in any of its forward, backward, attachment, or detachment rates. We demonstrate an application of this phenomenological transport model for analyzing ribosome drop off in mRNA translation.
Transcriptional profiling of the parr–smolt transformation in Atlantic salmon
Robertson, Laura S.; McCormick, Stephen D.
2012-01-01
The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. We used GRASP 16K cDNA microarrays to identify genes that are differentially expressed in the liver, gill, hypothalamus, pituitary, and olfactory rosettes of smolts compared to parr. Smolts had higher levels of gill Na+/K+-ATPase activity, plasma cortisol and plasma thyroid hormones relative to parr. Across all five tissues, stringent microarray analyses identified 48 features that were differentially expressed in smolts compared to parr. Using a less stringent method we found 477 features that were differentially expressed at least 1.2-fold in smolts, including 172 features in the gill. Smolts had higher mRNA levels of genes involved in transcription, protein biosynthesis and folding, electron transport, oxygen transport, and sensory perception and lower mRNA levels for genes involved in proteolysis. Quantitative RT-PCR was used to confirm differential expression in select genes identified by microarray analyses and to quantify expression of other genes known to be involved in smolting. This study expands our understanding of the molecular processes that underlie smolting in Atlantic salmon and identifies genes for further investigation.
Dou, Yun-De; Huang, Tao; Wang, Qun; Shu, Xin; Zhao, Shi-Gang; Li, Lei; Liu, Tao; Lu, Gang; Chan, Wai-Yee; Liu, Hong-Bin
2018-01-29
Characterization of the genetic landscapes of familial ovarian cancer through integrated analysis of microRNA and mRNA by partial least squares (PLS) and Monte Carlo technique based on genome-wide association studies (GWAS). The miRNA and mRNA transcriptional data in familial ovarian cancer were characterized from the Gene Expression Omnibus (GEO) database. The miRNA and mRNA expression profiles in peripheral blood lymphocytes (PBLs) of 74 familial ovarian cancer patients and 47 control subjects were analyzed with the integration of partial least squares (PLS) and Monte Carlo techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also performed. Total of 16 miRNA-mRNA pairs were identified with the target gene prediction results of miRNAs and mRNAs. An innovated miRNA-mRNA integrated network was constructed in which 6 downregulated miRNAs and 1 upregulated miRNAs were included. KEGG and GO pathway enrichment analysis revealed over-representation of dysregulated miRNAs in various biological processes especially in cancer pathology. Hsa-miR-34b played a pivotal role in this network and interacted with other miRNAs. Hsa-miR-136 and hsa-miR-335 were associated with p53 and Erk1/2 pathways and tumor suppressors, such as PTEN. The results from this research provide insights on miRNA-mRNA networks and offer new tools for studying transcriptional variants in familial ovarian cancer. Copyright © 2018 Elsevier Inc. All rights reserved.
Hoffman, Ann N.; Parga, Alejandro; Paode, Pooja; Watterson, Lucas R.; Nikulina, Ella M.; Hammer, Ronald P.; Conrad, Cheryl D.
2015-01-01
The chronically stressed brain may present a vulnerability to develop maladaptive fear-related behaviors in response to a traumatic event. In rodents, chronic stress leads to amygdala hyperresponsivity and dendritic hypertrophy and produces a post traumatic stress disorder (PTSD)-like phenotype that includes exaggerated fear learning following Pavlovian fear conditioning and resistance to extinction. It is unknown whether chronic stress-induced enhanced fear memories are vulnerable to disruption via reconsolidation blockade, as a novel therapeutic approach for attenuating exaggerated fear memories. We used a chronic stress procedure in a rat model (wire mesh restraint for 6h/d/21d) to create a vulnerable brain that leads to a PTSD-like phenotype. We then examined freezing behavior during acquisition, reactivation and after post-reactivation rapamycin administration (i.p., 40 mg/kg) in a Pavlovian fear conditioning paradigm to determine its effects on reconsolidation as well as the subsequent functional activation of limbic structures using zif268 mRNA. Chronic stress increased amygdala zif268 mRNA during fear memory retrieval at reactivation. Moreover, these enhanced fear memories were unaffected by post reactivation rapamycin to disrupt long-term fear memory. Also, post-reactivation long term memory processing was also associated with increased amygdala (LA and BA), and decreased hippocampal CA1 zif268 mRNA expression. These results suggest potential challenges for reconsolidation blockade as an effective approach in treating exaggerated fear memories, as in PTSD. Our findings also support chronic stress manipulations combined with fear conditioning as a useful preclinical approach to study a PTSD-like phenotype. PMID:25732249
Niepielko, Matthew G; Eagle, Whitby V I; Gavis, Elizabeth R
2018-06-18
The formation of ribonucleoprotein assemblies called germ granules is a conserved feature of germline development. In Drosophila, germ granules form at the posterior of the oocyte in a specialized cytoplasm called the germ plasm, which specifies germline fate during embryogenesis. mRNAs, including nanos (nos) and polar granule component (pgc), that function in germline development are localized to the germ plasm through their incorporation into germ granules, which deliver them to the primordial germ cells. Germ granules are nucleated by Oskar (Osk) protein and contain varying combinations and quantities of their constituent mRNAs, which are organized as spatially distinct, multi-copy homotypic clusters. The process that gives rise to such heterogeneous yet organized granules remains unknown. Here, we show that individual nos and pgc transcripts can populate the same nascent granule, and these first transcripts then act as seeds, recruiting additional like transcripts to form homotypic clusters. Within a granule, homotypic clusters grow independently of each other but depend on the simultaneous acquisition of additional Osk. Although granules can contain multiple clusters of a particular mRNA, granule mRNA content is dominated by cluster size. These results suggest that the accumulation of mRNAs in the germ plasm is controlled by the mRNAs themselves through their ability to form homotypic clusters; thus, RNA self-association drives germ granule mRNA localization. We propose that a stochastic seeding and self-recruitment mechanism enables granules to simultaneously incorporate many different mRNAs while ensuring that each becomes enriched to a functional threshold. Copyright © 2018 Elsevier Ltd. All rights reserved.
Clyde, Karen; Glaunsinger, Britt A.
2011-01-01
One characteristic of lytic infection with gammaherpesviruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and murine herpesvirus 68 (MHV68), is the dramatic suppression of cellular gene expression in a process known as host shutoff. The alkaline exonuclease proteins (KSHV SOX, MHV-68 muSOX and EBV BGLF5) have been shown to induce shutoff by destabilizing cellular mRNAs. Here we extend previous analyses of cellular mRNA abundance during lytic infection to characterize the effects of SOX and muSOX, in the absence of other viral genes, utilizing deep sequencing technology (RNA-seq). Consistent with previous observations during lytic infection, the majority of transcripts are downregulated in cells expressing either SOX or muSOX, with muSOX acting as a more potent shutoff factor than SOX. Moreover, most cellular messages fall into the same expression class in both SOX- and muSOX-expressing cells, indicating that both factors target similar pools of mRNAs. More abundant mRNAs are more efficiently downregulated, suggesting a concentration effect in transcript targeting. However, even among highly expressed genes there are mRNAs that escape host shutoff. Further characterization of select escapees reveals multiple mechanisms by which cellular genes can evade downregulation. While some mRNAs are directly refractory to SOX, the steady state levels of others remain unchanged, presumably as a consequence of downstream effects on mRNA biogenesis. Collectively, these studies lay the framework for dissecting the mechanisms underlying the susceptibility of mRNA to destruction during lytic gammaherpesvirus infection. PMID:21573023
Post-transcriptional inducible gene regulation by natural antisense RNA.
Nishizawa, Mikio; Ikeya, Yukinobu; Okumura, Tadayoshi; Kimura, Tominori
2015-01-01
Accumulating data indicate the existence of natural antisense transcripts (asRNAs), frequently transcribed from eukaryotic genes and do not encode proteins in many cases. However, their importance has been overlooked due to their heterogeneity, low expression level, and unknown function. Genes induced in responses to various stimuli are transcriptionally regulated by the activation of a gene promoter and post-transcriptionally regulated by controlling mRNA stability and translatability. A low-copy-number asRNA may post-transcriptionally regulate gene expression with cis-controlling elements on the mRNA. The asRNA itself may act as regulatory RNA in concert with trans-acting factors, including various RNA-binding proteins that bind to cis-controlling elements, microRNAs, and drugs. A novel mechanism that regulates mRNA stability includes the interaction of asRNA with mRNA by hybridization to loops in secondary structures. Furthermore, recent studies have shown that the functional network of mRNAs, asRNAs, and microRNAs finely tunes the levels of mRNA expression. The post-transcriptional mechanisms via these RNA-RNA interactions may play pivotal roles to regulate inducible gene expression and present the possibility of the involvement of asRNAs in various diseases.
Than, Nandor Gabor; Romero, Roberto; Tarca, Adi L.; Draghici, Sorin; Erez, Offer; Chaiworapongsa, Tinnakorn; Kim, Yeon Mee; Kim, Sun Kwon; Vaisbuch, Edi; Tromp, Gerard
2010-01-01
Objective Human parturition is characterized by the activation of genes involved in acute inflammatory in the fetal membranes. Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that scavenges reactive oxygen species (ROS). MnSOD is up-regulated in sites of inflammation and has an important role in the down-regulation of acute inflammatory processes. Therefore, the aim of this study was to determine the differences in MnSOD mRNA expression in the fetal membranes in patients with term and preterm labor as well as in acute chorioamnionitis. Study design Fetal membranes were obtained from patients in the following groups: 1) term not in labor (n=29); 2) term in labor (n=29); 3) spontaneous preterm labor with intact mebranes (n=16); 4) PTL with histological chorioamnionitis (n=12); 5) preterm prelabor rupture of membranes (PPROM; n=17); and 6) PPROM with histological chorioamnionitis (n=21). MnSOD mRNA expression in the membranes was determined by quantitative real-time RT-PCR. Results 1) MnSOD mRNA expression was higher in the fetal membranes of patients at term in labor than those not in labor (2.4-fold; p=0.02); 2) the amount of MnSOD mRNA in the fetal membranes was higher in PTL than in term labor or in PPROM (7.2-fold, p=0.03; 3.2-fold, p=0.03, respectively); 3) MnSOD mRNA expression was higher when histological chorioamnionitis was present both among patients with PPROM (3.8-fold, p=0.02) and with PTL (5.4-fold, p=0.02) than in patients with these conditions without histological chorioamnionitis; 4) expression of MnSOD mRNA was higher in PTL with chorioamnionitis than in PPROM with chorioamnionitis (4.3-fold, p=0.03); Conclusion The increase in MnSOD mRNA expression by fetal membranes in term labor and in histological chorioamnionitis in PTL and PPROM suggests that the fetus deploys anti-oxidant mechanisms to constrain the inflammatory processes in the chorioamniotic membranes. PMID:19900038
The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes.
Yin, Yiran; Tang, Lian; Shi, Lei
2017-03-01
The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells.
Predicting the Dynamics of Protein Abundance
Mehdi, Ahmed M.; Patrick, Ralph; Bailey, Timothy L.; Bodén, Mikael
2014-01-01
Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA–protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency. The software and data used in this research are available at http://bioinf.scmb.uq.edu.au/proteinabundance/. PMID:24532840
Predicting the dynamics of protein abundance.
Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael
2014-05-01
Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency. The software and data used in this research are available at http://bioinf.scmb.uq.edu.au/proteinabundance/.
Yu, Ya-Qiong; Guo, Jia-Jie; Qiu, Li-Hong; Li, Xiao-Lin; Yang, Di; Guo, Yan
2017-02-01
To investigate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (P.e) on the expression of interleukin-34 (IL-34) mRNA in MC3T3-E1 cells and the role of p38MAPK, ERK1/2, NF-κB and SIRT1 in the process. MC3T3-E1 cells were treated with different concentrations of P.e-LPS(0-50 mg/L) and 20 mg/L P.e-LPS for different time (0-24 h). The expression of IL-34 mRNA was detected by real-time reverse transcription-polymerase chain reaction (real time RT-PCR). MC3T3-E1 cells were pretreated with inhibitor of NF-κB(BAY 11-7082),inhibitor of p38MAPK (SB203580), inhibitor of ERK1/2 (PD98059), agonist of sirtuin1 (SIRT1) [resveratrol (RES)] and inhibitor of SIRT1 (EX-527) for 1 h, and then were treated with 20 mg/L P.e-LPS. The expression of IL-34 mRNA was detected by real time RT-PCR. Statistical analysis was performed using one-way ANOVA and Dunnett t test with SPSS 13.0 software package. The level of IL-34 mRNA increased significantly after treatment with different concentrations of P.e-LPS(0-50 mg/L),which indicated that P.e-LPS induced osteoblasts to express IL-34 mRNA in a dose-dependent manner. Maximal induction of IL-34 mRNA expression was observed in MC3T3-E1 cells treated with 20 mg/L P.e-LPS for 24 h.At 48 h, the expression of IL-34 mRNA decreased gradually. The mRNA of IL-34 decreased significantly after pretreatment with 10 μmol/L BAY-117082, SB203580 and PD98059 for 1 h. P.e-LPS-induced IL-34 upregulation was attenuated by pretreatment with RES, but increased by EX-527. These results suggest that P.e-LPS may mediate IL-34 mRNA expression in MC3T3-E1 cells. This process is dependent, at least in part, on p38MAPK, ERK1/2, NF-κB and SIRT1 signaling pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzybowska, Ewa A., E-mail: ewag@coi.waw.pl
2012-07-20
Highlights: Black-Right-Pointing-Pointer Functional characteristics of intronless genes (IGs). Black-Right-Pointing-Pointer Diseases associated with IGs. Black-Right-Pointing-Pointer Origin and evolution of IGs. Black-Right-Pointing-Pointer mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associatedmore » diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.« less
Nakagawa, Tateo; Shimada, Mitsuo; Kurita, Nobuhiro; Iwata, Takashi; Nishioka, Masanori; Yoshikawa, Kozo; Higashijima, Jun; Utsunomiya, Tohru
2012-06-01
The role of intratumoral thymidylate synthase (TS) mRNA or protein expression is still controversial and little has been reported regarding relation of them in colorectal cancer. Forty-six patients with advanced colorectal cancer who underwent surgical resection were included. TS mRNA expression was determined by the Danenberg tumor profile method based on laser-captured micro-dissection of the tumor cells. TS protein expression was evaluated using immunohistochemical staining. TS mRNA expression tended to relate TS protein expression. Statistical significance was not found in overall survival between the TS mRNA high group and low group regardless of performing adjuvant chemotherapy. The overall survival in the TS protein negative group was significantly higher than that in positive group in all and the patients without adjuvant chemotherapy. Multivariate analysis showed TS protein expression was as an independent prognostic factor. TS protein expression tends to be related TS mRNA expression and is an independent prognostic factor in advanced colorectal cancer.
Park, Eonyoung; Maquat, Lynne E
2013-01-01
Staufen1 (STAU1)-mediated mRNA decay (SMD) is an mRNA degradation process in mammalian cells that is mediated by the binding of STAU1 to a STAU1-binding site (SBS) within the 3'-untranslated region (3'-UTR) of target mRNAs. During SMD, STAU1, a double-stranded (ds) RNA-binding protein, recognizes dsRNA structures formed either by intramolecular base pairing of 3'-UTR sequences or by intermolecular base pairing of 3'-UTR sequences with a long-noncoding RNA (lncRNA) via partially complementary Alu elements. Recently, STAU2, a paralog of STAU1, has also been reported to mediate SMD. Both STAU1 and STAU2 interact directly with the ATP-dependent RNA helicase UPF1, a key SMD factor, enhancing its helicase activity to promote effective SMD. Moreover, STAU1 and STAU2 form homodimeric and heterodimeric interactions via domain-swapping. Because both SMD and the mechanistically related nonsense-mediated mRNA decay (NMD) employ UPF1; SMD and NMD are competitive pathways. Competition contributes to cellular differentiation processes, such as myogenesis and adipogenesis, placing SMD at the heart of various physiologically important mechanisms. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Ma, Zihao; Carr, Steven A.
Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC).more » Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. Molecular & Cellular Proteomics 16: 10.1074/mcp.M116.060301, 121–134, 2017.« less
Altered profile of mRNA expression in atrioventricular node of streptozotocin-induced diabetic rats
Howarth, Frank Christopher; Parekh, Khatija; Jayaprakash, Petrilla; Inbaraj, Edward Samuel; Oz, Murat; Dobrzynski, Halina; Adrian, Thomas Edward
2017-01-01
Prolonged action potential duration, reduced action potential firing rate, upstroke velocity and rate of diastolic depolarization have been demonstrated in atrioventricular node (AVN) cells from streptozotocin (STZ)-induced diabetic rats. To further clarify the molecular basis of these electrical disturbances, the mRNA profiles encoding a variety of proteins associated with the generation and conduction of electrical activity in the AVN, were evaluated in the STZ-induced diabetic rat heart. Expression of mRNA was measured in AVN biopsies using reverse transcription-quantitative polymerase chain reaction techniques. Notable differences in mRNA expression included upregulation of genes encoding membrane and intracellular Ca2+ transport, including solute carrier family 8 member A1, transient receptor potential channel 1, ryanodine receptor 2/3, hyperpolarization-activated cyclic-nucleotide 2 and 3, calcium channel voltage-dependent, β2 subunit and sodium channels 3a, 4a, 7a and 3b. In addition to this, potassium channels potassium voltage-gated channel subfamily A member 4, potassium channel calcium activated intermediate/small conductance subfamily N α member 2, potassium voltage-gated channel subfamily J members 3, 5, and 11, potassium channel subfamily K members 1, 2, 3 and natriuretic peptide B (BNP) were upregulated in AVN of STZ heart, compared with controls. Alterations in gene expression were associated with upregulation of various proteins including the inwardly rectifying, potassium channel Kir3.4, NCX1 and BNP. The present study demonstrated notable differences in the profile of mRNA encoding proteins associated with the generation, conduction and regulation of electrical signals in the AVN of the STZ-induced diabetic rat heart. These data will provide a basis for a substantial range of future studies to investigate whether variations in mRNA translate into alterations in electrophysiological function. PMID:28731153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naranjo, J.R.; Mocchetti, I.; Schwartz, J.P.
1986-03-01
In cultured bovine chromaffin cells, changes in the dynamic state of enkephalin stores elicited experimentally were studied by measuring cellular proenkephalin mRNA, as well as enkephalin precursors and authentic enkephalin content of cells and culture media. In parallel, tyrosine hydroxylase mRNA and catecholamine cell content were also determined. Low concentrations (0.5-100 pM) of dexamethasone increased the cell contents of proenkephalin mRNA and enkephalin-containing peptides. High concentrations of the hormone(1 ..mu..M) were required to increase the cell contents of tyrosine hydroxylase mRNA and catecholamines. Depolarization of the cells with 10 ..mu..M veratridine resulted in a depletion of enkephalin and catecholamine storesmore » after 24 hr. The enkephalin, but not the catecholamine, content was restored by 48 hr. An increase in proenkephalin mRNA content might account for the recovery; this increase was curtailed by tetrodotoxin and enhanced by 10 pM dexamethasone. Tyrosine hydroxylase mRNA content was not significantly modified by depolarization, even in the presence of 1 ..mu..M dexamethasone. Aldosterone, progesterone, testosterone, or estradiol (1 ..mu..M) failed to change proenkephalin mRNA. Hence, dexamethasone appears to exert a specific permissive action on the stimulation of the proenkephalin gene elicited by depolarization. Though the catecholamines and enkephalins are localized in the same chromaffin granules and are coreleased by depolarization, the genes coding for the processes that are rate limiting in the production of these neuromodulators can be differentially regulated.« less
NASA Technical Reports Server (NTRS)
Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)
2002-01-01
A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.
Philippe, Lucas; Vasseur, Jean-Jacques; Debart, Françoise
2018-01-01
Abstract Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5′ terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5′ cap structure. Recent studies have also implicated La-related protein 1 (LARP1), which competes with eIF4F for binding to mRNA 5′ ends. However, it has remained controversial whether LARP1 represses TOP mRNA translation directly and, if so, what features define its mRNA targets. Here, we show that the C-terminal half of LARP1 is necessary and sufficient to control TOP mRNA translation in cells. This fragment contains the DM15 cap-binding domain as well as an adjacent regulatory region that we identified. We further demonstrate that purified LARP1 represses TOP mRNA translation in vitro through the combined recognition of both the TOP sequence and cap structure, and that its intrinsic repressive activity and affinity for these features are subject to regulation. These results support a model whereby the translation of TOP mRNAs is controlled by a growth-regulated competition between eIF4F and LARP1 for their 5′ ends. PMID:29244122
Transcriptional activation of the lipoprotein lipase gene in macrophages by dexamethasone.
Domin, W S; Chait, A; Deeb, S S
1991-03-12
The effect of dexamethasone on lipoprotein lipase (LPL) gene expression during macrophage differentiation was investigated by using the human monocytic leukemia cell line THP-1 and human monocyte-derived macrophages. Addition of dexamethasone to THP-1 cells increased steady-state levels of LPL mRNA and LPL mass accumulation in the medium during PMA-induced differentiation by 4-fold. Studies with human monocyte-derived macrophages showed a similar effect of dexamethasone on LPL expression. Peak LPL mRNA levels were achieved 24-h post-dexamethasone addition to THP-1 cells. Optimal stimulation of LPL mRNA occurred when dexamethasone was added 24 h after induction with PMA. Thereafter, there was rapid decline in responsiveness to dexamethasone. Induction of LPL mRNA in THP-1 cells was completely blocked by actinomycin D, suggesting that induction was transcription dependent. The stability of LPL mRNA was not influenced by dexamethasone. Treatment of THP-1 cells with PMA led to a 2-fold increase in specific binding of dexamethasone and a 4-fold increase in glucocorticoid receptor mRNA within 12 h. Thus, dexamethasone stimulates LPL gene expression during differentiation of human macrophages, a process that involves induction of glucocorticoid receptor synthesis and activation.
Kim, Na Na; Jin, Deuk-Hee; Lee, Jehee; Kil, Gyung-Suk; Choi, Cheol Young
2010-10-01
In the present study, we investigated the expression pattern of estrogen receptors (esr) and vitellogenin (vtg) mRNA in the gonads and liver during sex change in cinnamon clownfish by using quantitative polymerase chain reaction. We divided gonadal development during the sex change from male to female into 3 stages (mature male, male at 90days after removing female, and mature female) and investigated esr and vtg mRNA expressions during the sex change. With female, the esr and vtg mRNA expressions increased. In western blot analysis, Esr1 protein was detected only in the ovaries of female cinnamon clownfish. Also, to understand the effect of 17beta-estradiol (E(2)), we investigated the esr and vtg mRNA expression patterns in the gonads and liver, and the changes in plasma E(2) level after E(2) injection. E(2) treatment increased both mRNA expression levels of esr and vtg and plasma E(2) levels. The present study describes the molecular characterization of esr subtypes and the interactions between esr and vtg after E(2) treatment in cinnamon clownfish. 2010 Elsevier Inc. All rights reserved.
Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E
2016-09-01
Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Thiel, Christian T. ; Mortier, Geert ; Kaitila, Ilkka ; Reis, André ; Rauch, Anita
2007-01-01
Mutations in the RMRP gene lead to a wide spectrum of autosomal recessive skeletal dysplasias, ranging from the milder phenotypes metaphyseal dysplasia without hypotrichosis and cartilage hair hypoplasia (CHH) to the severe anauxetic dysplasia (AD). This clinical spectrum includes different degrees of short stature, hair hypoplasia, defective erythrogenesis, and immunodeficiency. The RMRP gene encodes the untranslated RNA component of the mitochondrial RNA–processing ribonuclease, RNase MRP. We recently demonstrated that mutations may affect both messenger RNA (mRNA) and ribosomal RNA (rRNA) cleavage and thus cell-cycle regulation and protein synthesis. To investigate the genotype-phenotype correlation, we analyzed the position and the functional effect of 13 mutations in patients with variable features of the CHH-AD spectrum. Those at the end of the spectrum include a novel patient with anauxetic dysplasia who was compound heterozygous for the null mutation g.254_263delCTCAGCGCGG and the mutation g.195C→T, which was previously described in patients with milder phenotypes. Mapping of nucleotide conservation to the two-dimensional structure of the RMRP gene revealed that disease-causing mutations either affect evolutionarily conserved nucleotides or are likely to alter secondary structure through mispairing in stem regions. In vitro testing of RNase MRP multiprotein-specific mRNA and rRNA cleavage of different mutations revealed a strong correlation between the decrease in rRNA cleavage in ribosomal assembly and the degree of bone dysplasia, whereas reduced mRNA cleavage, and thus cell-cycle impairment, predicts the presence of hair hypoplasia, immunodeficiency, and hematological abnormalities and thus increased cancer risk. PMID:17701897
Maniar, Jay M.; Fire, Andrew Z.
2011-01-01
SUMMARY Background The development of the germline in Caenorhabditis elegans is a complex process involving the regulation of thousands of genes in a coordinated manner. Several genes required for small RNA biogenesis and function are among those required for the proper organization of the germline. EGO-1 is a putative RNA-directed RNA polymerase (RdRP) that is required for multiple aspects of C. elegans germline development and efficient RNAi of germline-expressed genes. RdRPs have been proposed to act through a variety of mechanisms including the post-transcriptional targeting of specific mRNAs as well as through a direct interaction with chromatin. Despite extensive investigation, the molecular role of EGO-1 has remained enigmatic. Results Here we use high-throughput small RNA and messenger RNA sequencing to investigate EGO-1 function. We found that EGO-1 is required to produce a distinct pool of small RNAs antisense to a number of germline-expressed mRNAs through several developmental stages. These potential mRNA targets fall into distinct classes, including genes required for kinetochore and nuclear pore assembly, histone-modifying activities and centromeric proteins. We also found several RNAi-related genes to be targets of EGO-1. Finally, we show a strong association between the loss of small RNAs and the rise of mRNA levels in ego-1(−) animals. Conclusions Our data support the conclusion that EGO-1 produces triphosphorylated small RNAs derived from mRNA templates and that these small RNAs modulate gene expression through the targeting of their cognate mRNAs. PMID:21396820
The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation.
Zubiaga, A M; Belasco, J G; Greenberg, M E
1995-01-01
Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the features of AU-rich elements (AREs) that are crucial for their function as determinants of mRNA instability in mammalian cells by testing the ability of various mutant c-fos AREs and synthetic AREs to direct rapid mRNA deadenylation and decay when inserted within the 3' UTR of the normally stable beta-globin mRNA. Evidence is presented that the pentamer AUUUA, which previously was suggested to be the minimal determinant of instability present in mammalian AREs, cannot direct rapid mRNA deadenylation and decay. Instead, the nonomer UUAUUUAUU is the elemental AU-rich sequence motif that destabilizes mRNA. Removal of one uridine residue from either end of the nonamer (UUAUUUAU or UAUUUAUU) results in a decrease of potency of the element, while removal of a uridine residue from both ends of the nonamer (UAUUUAU) eliminates detectable destabilizing activity. The inclusion of an additional uridine residue at both ends of the nonamer (UUUAUUUAUUU) does not further increase the efficacy of the element. Taken together, these findings suggest that the nonamer UUAUUUAUU is the minimal AU-rich motif that effectively destabilizes mRNA. Additional ARE potency is achieved by combining multiple copies of this nonamer in a single mRNA 3' UTR. Furthermore, analysis of poly(A) shortening rates for ARE-containing mRNAs reveals that the UUAUUUAUU sequence also accelerates mRNA deadenylation and suggests that the UUAUUUAUU motif targets mRNA for rapid deadenylation as an early step in the mRNA decay process. PMID:7891716
Synthesis and biological activity of artificial mRNA prepared with novel phosphorylating reagents
Nagata, Seigo; Hamasaki, Tomohiro; Uetake, Koichi; Masuda, Hirofumi; Takagaki, Kazuchika; Oka, Natsuhisa; Wada, Takeshi; Ohgi, Tadaaki; Yano, Junichi
2010-01-01
Though medicines that target mRNA are under active investigation, there has been little or no effort to develop mRNA itself as a medicine. Here, we report the synthesis of a 130-nt mRNA sequence encoding a 33-amino-acid peptide that includes the sequence of glucagon-like peptide-1, a peptide that stimulates glucose-dependent insulin secretion from the pancreas. The synthesis method used, which had previously been developed in our laboratory, was based on the use of 2-cyanoethoxymethyl as the 2′-hydroxy protecting group. We also developed novel, highly reactive phosphotriester pyrophosphorylating reagents to pyrophosphorylate the 5′-end of the 130-mer RNA in preparation for capping. We completed the synthesis of the artificial mRNA by the enzymatic addition of a 5′-cap and a 3′-poly(A) tail to the pyrophosphorylated 130-mer and showed that the resulting mRNA supported protein synthesis in a cell-free system and in whole cells. As far as we know, this is the first time that mRNA has been prepared from a chemically synthesized RNA sequence. As well as providing a research tool for the intracellular expression of peptides, the technology described here may be used for the production of mRNA for medical applications. PMID:20660478
Feeder-free reprogramming of human fibroblasts with messenger RNA.
Warren, Luigi; Wang, Jiwu
2013-11-13
This unit describes a feeder-free protocol for deriving induced pluripotent stem cells (iPSCs) from human fibroblasts by transfection of synthetic mRNA. The reprogramming of somatic cells requires transient expression of a set of transcription factors that collectively activate an endogenous gene regulatory network specifying the pluripotent phenotype. The necessary ectopic factor expression was first effected using retroviruses; however, as viral integration into the genome is problematic for cell therapy applications, the use of footprint-free vectors such as mRNA is increasingly preferred. Strong points of the mRNA approach include high efficiency, rapid kinetics, and obviation of a clean-up phase to purge the vector. Still, the method is relatively laborious and has, up to now, involved the use of feeder cells, which brings drawbacks including poor applicability to clinically oriented iPSC derivation. Using the methods described here, mRNA reprogramming can be performed without feeders at much-reduced labor and material costs relative to established protocols. Copyright © 2013 John Wiley & Sons, Inc.
Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations
Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul
2014-01-01
Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191
NASA Technical Reports Server (NTRS)
Breault, D. T.; Lichtler, A. C.; Rowe, D. W.
1997-01-01
Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.
Fu, Zidong Donna; Klaassen, Curtis D
2014-01-01
Calorie restriction (CR) is one of the most effective anti-aging interventions in mammals. A modern theory suggests that aging results from a decline in detoxification capabilities and thus accumulation of damaged macromolecules. The present study aimed to determine how short-term CR alters mRNA profiles of genes that encode metabolism and detoxification machinery in the liver. Male C57BL/6 mice were fed CR (0, 15, 30, or 40%) diets for one month, followed by mRNA quantification of 98 xenobiotic processing genes (XPGs) in the liver, including 7 uptake transporters, 39 phase-I enzymes, 37 phase-II enzymes, 10 efflux transporters, and 5 transcription factors. In general, 15% CR did not alter mRNAs of most XPGs, whereas 30 and 40% CR altered over half of the XPGs (32 increased and 29 decreased). CR up-regulated some phase-I enzymes (fold increase), such as Cyp4a14 (12), Por (2.3), Nqo1 (1.4), Fmo2 (5.4), and Fmo3 (346), and numerous number of phase-II enzymes, such as Sult1a1 (1.2), Sult1d1 (2.0), Sult1e1 (33), Sult3a1 (2.2), Gsta4 (1.3), Gstm2 (1.3), Gstm3 (1.7), and Mgst3 (2.2). CR feminized the mRNA profiles of 32 XPGs in livers of male mice. For instance, CR decreased the male-predominantly expressed Oatp1a1 (97%) and increased the female-predominantly expressed Oatp1a4 (11). In conclusion, short-term CR alters the mRNA levels of over half of the 98 XPGs quantified in livers of male mice, and over half of these alterations appear to be due to feminization of the liver. Copyright © 2013 Elsevier Inc. All rights reserved.
Robertson, Laura S.; Ottinger, Christopher A.; Burdick, Summer M.; VanderKooi, Scott P.
2012-01-01
The Nature Conservancy is in the process of restoring the Williamson River Delta in an attempt to recreate important juvenile habitat for the endangered shortnose sucker Chasmistes brevirostris and the endangered Lost River sucker Deltistes luxatus. Measurement of TGF-β mRNA expression level was one of the indicators chosen to evaluate juvenile sucker health during the restoration process. TGF-β mRNA expression level has been correlated with disease status in several laboratory studies and TGF-β mRNA expression level has been used as a species-specific indicator of immune status in field-based fish health assessments. We describe here the identification of TGF-β and a possible splice variant from shortnose sucker and from Lost River sucker. The performance of a quantitative RT-PCR assay to measure TGF-β mRNA expression level was evaluated in field-collected spleen and kidney tissue samples. The quality of extracted RNA was higher in tissues harvested in September compared to July and higher in tissues harvested at lower temperature compared to higher temperature. In addition, the expression level of both TGF-β and 18S as assessed by qRT-PCR was higher in samples with higher quality RNA. TGF-β mRNA expression was lower in kidney than in spleen in both Lost River sucker and shortnose sucker.
Bodero, Marcia; Hoogenboom, Ron L A P; Bovee, Toine F H; Portier, Liza; de Haan, Laura; Peijnenburg, Ad; Hendriksen, Peter J M
2018-02-01
A study with DNA microarrays was performed to investigate the effects of two diarrhetic and one azaspiracid shellfish poison, okadaic acid (OA), dinophysistoxin-1 (DTX-1) and azaspiracid-1 (AZA-1) respectively, on the whole-genome mRNA expression of undifferentiated intestinal Caco-2 cells. Previously, the most responding genes were used to develop a dedicated array tube test to screen shellfish samples on the presence of these toxins. In the present study the whole genome mRNA expression was analyzed in order to reveal modes of action and obtain hints on potential biomarkers suitable to be used in alternative bioassays. Effects on key genes in the most affected pathways and processes were confirmed by qPCR. OA and DTX-1 induced almost identical effects on mRNA expression, which strongly indicates that OA and DTX-1induce similar toxic effects. Biological interpretation of the microarray data indicates that both compounds induce hypoxia related pathways/processes, the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress. The gene expression profile of AZA-1 is different and shows increased mRNA expression of genes involved in cholesterol synthesis and glycolysis, suggesting a different mode of action for this toxin. Future studies should reveal whether identified pathways provide suitable biomarkers for rapid detection of DSPs in shellfish. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Sroubek, Jakub; Krishnan, Yamini; McDonald, Thomas V.
2013-01-01
Human ether-á-gogo-related gene (HERG) encodes a potassium channel that is highly susceptible to deleterious mutations resulting in susceptibility to fatal cardiac arrhythmias. Most mutations adversely affect HERG channel assembly and trafficking. Why the channel is so vulnerable to missense mutations is not well understood. Since nothing is known of how mRNA structural elements factor in channel processing, we synthesized a codon-modified HERG cDNA (HERG-CM) where the codons were synonymously changed to reduce GC content, secondary structure, and rare codon usage. HERG-CM produced typical IKr-like currents; however, channel synthesis and processing were markedly different. Translation efficiency was reduced for HERG-CM, as determined by heterologous expression, in vitro translation, and polysomal profiling. Trafficking efficiency to the cell surface was greatly enhanced, as assayed by immunofluorescence, subcellular fractionation, and surface labeling. Chimeras of HERG-NT/CM indicated that trafficking efficiency was largely dependent on 5′ sequences, while translation efficiency involved multiple areas. These results suggest that HERG translation and trafficking rates are independently governed by noncoding information in various regions of the mRNA molecule. Noncoding information embedded within the mRNA may play a role in the pathogenesis of hereditary arrhythmia syndromes and could provide an avenue for targeted therapeutics.—Sroubek, J., Krishnan, Y., McDonald, T V. Sequence- and structure-specific elements of HERG mRNA determine channel synthesis and trafficking efficiency. PMID:23608144
Lai, L P; Su, M J; Lin, J L; Tsai, C H; Lin, F Y; Chen, Y S; Hwang, J J; Huang, S K; Tseng, Y Z; Lien, W P
1999-07-01
The funny current (I(f)) contributes to phase IV spontaneous depolarization in cardiac pacemaker tissue. Enhanced I(f) activity in myocardial tissue may lead to increased automaticity and therefore tachyarrhythmia. We measured the amount of I(f) activity in the messenger ribonucleic acid (mRNA) in human atrial tissue and correlated the mRNA amount to left atrial filling pressure and atrial fibrillation (AF). A total of 34 patients undergoing open heart surgery were included (15 men and 19 women, aged 55+/-10 years). Atrial tissue was obtained from the right atrial free wall, the right atrial appendage, the left atrial free wall, and the left atrial appendage, respectively. The mRNA amount of the I(f) channel was measured by reverse transcription polymerase chain reaction and was normalized to the mRNA levels of glyceraldehyde 3-phosphate dehydrogenase. We found that the I(f) channel mRNA was present at all the atrial sampling sites. A higher left atrial filling pressure, an indicator of congestive heart failure, was associated with a higher I(f) mRNA level (r2 = 0.446, P < 0.01 by linear regression). We also found that the mRNA amount was significantly higher in patients with AF than in patients without AF (1.68+/-0.49 vs 1.27+/-0.43; P < 0.05). Age, sex, right atrial filling pressure, left atrial dimension, and left ventricular ejection fraction had no significant effect on the mRNA level. The mRNA of the I(f) channel is present in the free-wall area and appendage area from both atria. Increased left atrial filling pressure and clinical AF are associated with increased I(f) mRNA level.
Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B
2016-02-05
Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.
Roles of miRNAs in microcystin-LR-induced Sertoli cell toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuan; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093; Wang, Hui
2015-08-15
Microcystin (MC)-LR, a cyclic heptapeptide, is a potent reproductive system toxin. To understand the molecular mechanisms of MC-induced reproductive system cytotoxicity, we evaluated global changes of miRNA and mRNA expression in mouse Sertoli cells following MC-LR treatment. Our results revealed that the exposure to MC-LR resulted in an altered miRNA expression profile that might be responsible for the modulation of mRNA expression. Bio-functional analysis indicated that the altered genes were involved in specific cellular processes, including cell death and proliferation. Target gene analysis suggested that junction injury in Sertoli cells exposed to MC-LR might be mediated by miRNAs through themore » regulation of the Sertoli cell-Sertoli cell pathway. Collectively, these findings may enhance our understanding on the modes of action of MC-LR on mouse Sertoli cells as well as the molecular mechanisms underlying the toxicity of MC-LR on the male reproductive system. - Highlights: • miRNAs were altered in Sertoli cells exposed to MC-LR. • Alerted genes were involved in different cell functions including the cell morphology. • MC-LR adversely affected Sertoli cell junction formation through the regulating miRNAs.« less
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; ...
2015-08-20
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
Yu, Hong; Li, Hui; Cui, Yongan; Xiao, Wei; Dai, Guihong; Huang, Junxing; Wang, Chaofu
2016-01-01
Hereditary nonpolyposis colorectal cancer (HNPCC) is caused by functional defects in mismatch repair (MMR) genes, including mutL homolog 1 (MLH1) and mutS homolog 2 (MSH2). This study aimed to assess whether the mRNA expression of MLH1 in peripheral blood could be used as a biomarkers for the diagnosis of HNPCC. The mRNA level of MLH1 was determined in 19 HNPCC families (46 members) using real-time quantitative polymerase chain reaction (qPCR). The mRNA levels of MLH1 in HNPCC were significantly lower than controls (P < 0.001). Receiver operating characteristic (ROC) curve showed a high diagnostic value of the mRNA level of MLH1 for the diagnosis of HNPCC with the area under curve of 0.858. At an optimal cut-off value (0.511), the mRNA level of MLH1 had a sensitivity of 81.3% and a specificity of 86.7% for distinguishing HNPCC from controls. In conclusion, the mRNA expression of MLH1 in peripheral blood may serve as a biomarker for the diagnosis of HNPCC.
Li, Ping; Stumpf, Maria; Müller, Rolf; Eichinger, Ludwig; Glöckner, Gernot; Noegel, Angelika A
2017-08-22
SUN1, a component of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, functions in mammalian mRNA export through the NXF1-dependent pathway. It associates with mRNP complexes by direct interaction with NXF1. It also binds to the NPC through association with the nuclear pore component Nup153, which is involved in mRNA export. The SUN1-NXF1 association is at least partly regulated by a protein kinase C (PKC) which phosphorylates serine 113 (S113) in the N-terminal domain leading to reduced interaction. The phosphorylation appears to be important for the SUN1 function in nuclear mRNA export since GFP-SUN1 carrying a S113A mutation was less efficient in restoring mRNA export after SUN1 knockdown as compared to the wild type protein. By contrast, GFP-SUN1-S113D resembling the phosphorylated state allowed very efficient export of poly(A)+RNA. Furthermore, probing a possible role of the LINC complex component Nesprin-2 in this process we observed impaired mRNA export in Nesprin-2 knockdown cells. This effect might be independent of SUN1 as expression of a GFP tagged SUN-domain deficient SUN1, which no longer can interact with Nesprin-2, did not affect mRNA export.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.C.
The present study was undertaken to compare the temporal characteristics of iron-induced hepatic MT mRNA accumulation to that effected by endotoxin. Young chicks were given (ip) either endotoxin, ferrous gluconate or an equivalent volume of saline. At various times following injections, liver was obtained from 5 chicks per treatment for total RNA extraction. Equal amounts of total hepatic RNA from each chick were pooled and 10 {mu}g separated by denaturing agarose gel electrophoresis. Hepatic MT mRNA and albumin mRNA were analyzed by Northern blot analysis using synthetic oligonucleotides. The results indicated little temporal difference in the accumulation of hepatic MTmore » mRNA as affected by either endotoxin or iron. In both treatments, MT mRNA was minimally affected at 3 hours post-injection. Maximum accumulation was achieved during a 6 h period from 6 to 12 hours post-injection. At 24 hours, MT mRNA was considerably higher in liver of endotoxin-injected chicks when compared to that of iron-injection chicks. Albumin expression appeared not to be substantially affected by either treatment. The results suggest that the induction of hepatic MT by iron injection is not substantially different than that observed following endotoxin administration. It would be speculative to suggest that the processes by which MT is induced under these conditions are also similar.« less
mRNA export: threading the needle
Gaouar, Ouassila; Germain, Hugo
2013-01-01
After mRNA biogenesis, several proteins interact with the messenger to ensure its proper export to the cytoplasm. Some of these proteins will bind RNA early on, at the onset of transcription by RNA polymerase II holoenzyme, while others will join later for downstream processing steps, such as poly-adenylation or splicing, or may direct mRNA ribonucleoprotein particle migration to the nucleopore. We recently discovered that Arabidopsis plant knockout for the protein MOS11 (MODIFIER OF SNC1, 11) partially suppresses autoimmune responses observed in the TNL-type [TIR/NBS/LRR (Toll-interleukin-like receptor/nucleotide-binding site/C-terminal leucine-rich repeat)] R gene gain-of-function variant snc1 (suppressor of npr1-1, constitutive 1). This suppression of resistance to pathogens appears to be caused by a decrease in nuclear mRNA export in mos11-1 snc1 plants. In humans, the putative ortholog of MOS11, CIP29 (29-kDa cytokine-induced protein), interacts with three proteins that are also involved in mRNA export: DDX39 (DEAD-box RNA helicase), TAF15 of the FUS family (FUSED IN SARCOMA), and ALY (ALWAYS EARLY), a protein implicated in mRNA export in mammalian systems. These proteins have received very little attention in plants. Here, we will discuss their particularities and role in mRNA export and biotic stress. PMID:23526740
Shen, Yong; Gong, Jiaomei; He, Yanxia; Cheng, Guomei; Okunieff, Paul; Li, Xiaofu
2013-02-01
Human papillomavirus (HPV) infection is the primary cause of cervical cancer. The Quantivirus(®) HPV E6/E7 RNA 3.0 assay (DiaCarta, CA, USA) detects E6/E7 mRNA of 13 high risk subtypes and 6 low risk subtypes. Cervical specimens collected in PreservCyt were processed for HPV detection. Cervical biopsies were taken only from those women with abnormal colposcopy. 200 out of 272 (73.5%) cases were mRNA positive. The percentage of HPV E6/E7 mRNA positive samples increases with the severity of the cytological diagnosis, but not in histological diagnosis. In 146 patients with both tests, the E6/E7 mRNA assay had significant higher positivity rate than the Hybrid Capture 2 assay (75.3% versus 62.3%). The HPV mRNA assay and the HC2 assay had the same sensitivity of high grade cervical intraepithelial neoplasia (CIN 2+), 82.4% (14/17) (95% confidence interval [CI], 64.3, 100). However, the specificity of CIN 2+ for the HPV mRNA assay was significantly lower than HC2 assay. Receiver operating characteristic curve analysis was used to compare the diagnostic performance of the E6/E7 mRNA and HC2. E6/E7 mRNA achieved 58.8% sensitivity with 74.1% specificity, HC2, achieved 47.1% sensitivity with 70.7% specificity. The overall performance of HPV E6/E7 mRNA assay for detecting CIN 2+ was lower than HC2. This study does not support the use of this assay in screening for cervical cancer prevention alone. Copyright © 2012 Elsevier B.V. All rights reserved.
Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.
Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A
2010-01-01
Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.
Roux, Pierre-François; Frésard, Laure; Boutin, Morgane; Leroux, Sophie; Klopp, Christophe; Djari, Anis; Esquerré, Diane; Martin, Pascal G P; Zerjal, Tatiana; Gourichon, David; Pitel, Frédérique; Lagarrigue, Sandrine
2015-12-04
RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors. Copyright © 2016 Roux et al.
Roux, Pierre-François; Frésard, Laure; Boutin, Morgane; Leroux, Sophie; Klopp, Christophe; Djari, Anis; Esquerré, Diane; Martin, Pascal GP; Zerjal, Tatiana; Gourichon, David; Pitel, Frédérique; Lagarrigue, Sandrine
2015-01-01
RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors. PMID:26637431
Yuan, Li-Xing; Liu, Han-Min; Li, Mi; Gao, Ju; Zhou, Tong-Fu
2005-09-01
To study the expression of heme oxygenase-1 mRNA and pulmonary remodeling before and after surgical establishment of left-to-right shunt in volume-overloaded SD rats and rats with Losartan intervention. Left-to-right shunt volume-overloaded SD rat models were established by aortocaval shunt operation. Seven rats with shunt were placed on Losartan (Losartan group), 7 rats with but not given Losartan were included in the operation group, and 4 rats after sham operation served as controls. Pulmonary pressure and right ventricular pressure were measured during catheterization. The relative weights ventricles were determined after execution of the rats. Pulmonary vascular remodeling parameters, including percentage arterial wall thickness and percentage muscularized small arteries, were assessed by morphometry. Heme oxygenase-1 (HO-1) mRNA expression and heme oxygenase-2 (HO-2) mRNA expression were detected RT-PCR method. Pulmonary artery pressure and right ventricular relative weight decreased significantly in the rats of Losartan group; in addition, the percentage arterial wall thickness and percentage of muscularized small arteries in the Losartan group were reduced as compared with those in the operation group. The level 1 mRAN expression in rats with shunt was significantly higher than that in rats without shunt. The level mRNA expression in the Losartan group decreased remarkably as compared against that in the operation The level of HO-1 mRNA expression in lungs was significantly higher than that in ventricles. There statistically significant differences in HO-2 mRNA expression levels between the three rat groups. Losartan intervention can markedly reduce pulmonary pressure, inhibit vascular remodeling in volume-overloaded left-to-right shunt rats, and result in down-regulation of HO-1 mRNA expression.
Molecular cloning and mRNA expression pattern of Sox10 in Paramisgurnus dabryanus.
Xia, Xiaohua; Chen, Jianjun; Zhang, Linxia; Du, Qiyan; Sun, Jinsheng; Chang, Zhongjie
2013-04-01
A number of genetic studies have established that Sox10 involved in a wide range of developmental processes including sex differentiation and neurogenesis in vertebrates. A Sox10 homologue was cloned from brain of Paramisgurnus dabryanus by using homologous cloning and RACE method, designated as PdSox10. The full-length cDNA of PdSox10 contains a 312 bp 5' UTR, a 1,476 bp open reading frame (ORF) encoding 492 amino acids and a 262 bp 3' UTR (Accession no.: JQ217143). The overall topology of the phylogenetic tree shows that the PdSox10 fits within the Sox10 clade. During embryogenesis, PdSox10 gene seemed to be de novo synthesized in the embryos from gastrulae stage. From the somitogenesis stage and thereafter, distinct expression of PdSox10 was observed in the medial neural tube, extending from the hindbrain through the posterior trunk. In adult, PdSox10 mRNA was detected primarily in the gonads, as well as in brain and heart by RT-PCR. In situ hybridization on gonadal sections further demonstrated that PdSox10 is expressed especially in premature germ cells, in early perinucleolus stage oocytes and cortical-alveolar stage oocytes in ovaries and in spermatogonia and spermatocytes in testes. These preliminary findings suggested that PdSox10 is highly conserved during vertebrate evolution and involved in a wide range of developmental processes including neurogenesis and sex differentiation in vertebrates.
Kuroda, Hiroshi; Sugiura, Masahiro
2014-12-01
The chloroplast psbB operon includes five genes encoding photosystem II and cytochrome b 6 /f complex components. The psbN gene is located on the opposite strand. PsbN is localized in the thylakoid and is present even in the dark, although its level increases upon illumination and then decreases. However, the translation mechanism of the psbN mRNA remains unclear. Using an in vitro translation system from tobacco chloroplasts and a green fluorescent protein as a reporter protein, we show that translation occurs from a tobacco primary psbN 5'-UTR of 47 nucleotides (nt). Unlike many other chloroplast 5'-UTRs, the psbN 5'-UTR has two processing sites, at -39 and -24 upstream from the initiation site. Processing at -39 enhanced the translation rate fivefold. In contrast, processing at -24 did not affect the translation rate. These observations suggest that the two distinct processing events regulate, at least in part, the level of PsbN during development. The psbN 5'-UTR has no Shine-Dalgarno (SD)-like sequence. In vitro translation assays with excess amounts of the psbN 5'-UTR or with deleted psbN 5'-UTR sequences demonstrated that protein factors are required for translation and that their binding site is an 18 nt sequence in the 5'-UTR. Mobility shift assays using 10 other chloroplast 5'-UTRs suggested that common or similar proteins are involved in translation of a set of mRNAs lacking SD-like sequences.
Lebid', Iu V; Dosenko, V Ie; Skybo, H H
2010-01-01
There is a huge body of evidence showing that long-termed diabetes mellitus is followed with hippocampal dysfunction. The goal of this work was to investigate the expression of proteasome subunits PSMB5 and PSMB9 mRNA in CA1, CA2 and CA3 areas of hippocampus in parallel with processes of cell death (apoptosis and necrosis) in development dynamics of streptozotocine-induced diabetes. We have studied hippocampal neurons using chromatine dye Hoechst-33342 and immunohistochemical detection of apoptotic cell death marker caspase-3. At day 3 and 7 after injection of streptozotocine we have performed visualization of caspase-3-immunopositive neurons showing signs of neurodegeneration in hippocampal sections using confocal microscope Olympus FV1000. The rate of proteasome subunits PSMB5 and PSMB9 mRNA expression was determined with RT-PCR. The results indicated elevation of PSMB9 mRNA content (from 4807 +/- 0.392 arbU up to 20,023 +/- 4949 arbU on day 3 and up to 20,253 +/- 5141 arbU on day 7). A maximal number of cells with signs of chromatin condensation was observed at day 3 and day 7 in CA2 and CA3 area (11.51% and 12.49% respectively). That indicates an intensification of proapoptotic processes. Summarizing the results presented above we can conclude that during the first week of diabetes mellitus development, hippocampal cells undergo the process of impairment and degeneration.
Makeyev, A V; Chkheidze, A N; Liebhaber, S A
1999-08-27
Gene families normally expand by segmental genomic duplication and subsequent sequence divergence. Although copies of partially or fully processed mRNA transcripts are occasionally retrotransposed into the genome, they are usually nonfunctional ("processed pseudogenes"). The two major cytoplasmic poly(C)-binding proteins in mammalian cells, alphaCP-1 and alphaCP-2, are implicated in a spectrum of post-transcriptional controls. These proteins are highly similar in structure and are encoded by closely related mRNAs. Based on this close relationship, we were surprised to find that one of these proteins, alphaCP-2, was encoded by a multiexon gene, whereas the second gene, alphaCP-1, was identical to and colinear with its mRNA. The alphaCP-1 and alphaCP-2 genes were shown to be single copy and were mapped to separate chromosomes. The linkage groups encompassing each of the two loci were concordant between mice and humans. These data suggested that the alphaCP-1 gene was generated by retrotransposition of a fully processed alphaCP-2 mRNA and that this event occurred well before the mammalian radiation. The stringent structural conservation of alphaCP-1 and its ubiquitous tissue distribution suggested that the retrotransposed alphaCP-1 gene was rapidly recruited to a function critical to the cell and distinct from that of its alphaCP-2 progenitor.
Highley, J Robin; Kirby, Janine; Jansweijer, Joeri A; Webb, Philip S; Hewamadduma, Channa A; Heath, Paul R; Higginbottom, Adrian; Raman, Rohini; Ferraiuolo, Laura; Cooper-Knock, Johnathan; McDermott, Christopher J; Wharton, Stephen B; Shaw, Pamela J; Ince, Paul G
2014-10-01
Loss of nuclear TDP-43 characterizes sporadic and most familial forms of amyotrophic lateral sclerosis (ALS). TDP-43 (encoded by TARDBP) has multiple roles in RNA processing. We aimed to determine whether (1) RNA splicing dysregulation is present in lower motor neurones in ALS and in a motor neurone-like cell model; and (2) TARDBP mutations (mtTARDBP) are associated with aberrant RNA splicing using patient-derived fibroblasts. Affymetrix exon arrays were used to study mRNA expression and splicing in lower motor neurones obtained by laser capture microdissection of autopsy tissue from individuals with sporadic ALS and TDP-43 proteinopathy. Findings were confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in NSC34 motor neuronal cells following shRNA-mediated TDP-43 depletion. Exon arrays and immunohistochemistry were used to study mRNA splicing and TDP-43 expression in fibroblasts from patients with mtTARDBP-associated, sporadic and mutant SOD1-associated ALS. We found altered expression of spliceosome components in motor neurones and widespread aberrations of mRNA splicing that specifically affected genes involved in ribonucleotide binding. This was confirmed in TDP-43-depleted NSC34 cells. Fibroblasts with mtTARDBP showed loss of nuclear TDP-43 protein and demonstrated similar changes in splicing and gene expression, which were not present in fibroblasts from patients with sporadic or SOD1-related ALS. Loss of nuclear TDP-43 is associated with RNA processing abnormalities in ALS motor neurones, patient-derived cells with mtTARDBP, and following artificial TDP-43 depletion, suggesting that splicing dysregulation directly contributes to disease pathogenesis. Key functional pathways affected include those central to RNA metabolism. © 2014 British Neuropathological Society.
Dupont, Chris L.; McCrow, John P.; Valas, Ruben; ...
2014-10-21
Here, transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO 2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteriamore » enriched in the>3.0-μm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.« less
The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2
Kerr, Niall; Holmes, Fiona E.; Hobson, Sally-Ann; Vanderplank, Penny; Leard, Alan; Balthasar, Nina; Wynick, David
2015-01-01
The neuropeptide galanin has diverse roles in the central and peripheral nervous systems, by activating the G protein-coupled receptors Gal1, Gal2 and the less studied Gal3 (GalR1–3 gene products). There is a wealth of data on expression of Gal1–3 at the mRNA level, but not at the protein level due to the lack of specificity of currently available antibodies. Here we report the generation of knock-in mice expressing Gal1 or Gal2 receptor fluorescently tagged at the C-terminus with, respectively, mCherry or hrGFP (humanized Renilla green fluorescent protein). In dorsal root ganglia (DRG) neurons expressing the highest levels of Gal1-mCherry, localization to the somatic cell membrane was detected by live-cell fluorescence and immunohistochemistry, and that fluorescence decreased upon addition of galanin. In spinal cord, abundant Gal1-mCherry immunoreactive processes were detected in the superficial layers of the dorsal horn, and highly expressing intrinsic neurons of the lamina III/IV border showed both somatic cell membrane localization and outward transport of receptor from the cell body, detected as puncta within cell processes. In brain, high levels of Gal1-mCherry immunofluorescence were detected within thalamus, hypothalamus and amygdala, with a high density of nerve endings in the external zone of the median eminence, and regions with lesser immunoreactivity included the dorsal raphe nucleus. Gal2-hrGFP mRNA was detected in DRG, but live-cell fluorescence was at the limits of detection, drawing attention to both the much lower mRNA expression than to Gal1 in mice and the previously unrecognized potential for translational control by upstream open reading frames (uORFs). PMID:26292267
Zhao, W; Busto, R; Truettner, J; Ginsberg, M D
2001-07-30
The analysis of pixel-based relationships between local cerebral blood flow (LCBF) and mRNA expression can reveal important insights into brain function. Traditionally, LCBF and in situ hybridization studies for genes of interest have been analyzed in separate series. To overcome this limitation and to increase the power of statistical analysis, this study focused on developing a double-label method to measure local cerebral blood flow (LCBF) and gene expressions simultaneously by means of a dual-autoradiography procedure. A 14C-iodoantipyrine autoradiographic LCBF study was first performed. Serial brain sections (12 in this study) were obtained at multiple coronal levels and were processed in the conventional manner to yield quantitative LCBF images. Two replicate sections at each bregma level were then used for in situ hybridization. To eliminate the 14C-iodoantipyrine from these sections, a chloroform-washout procedure was first performed. The sections were then processed for in situ hybridization autoradiography for the probes of interest. This method was tested in Wistar rats subjected to 12 min of global forebrain ischemia by two-vessel occlusion plus hypotension, followed by 2 or 6 h of reperfusion (n=4-6 per group). LCBF and in situ hybridization images for heat shock protein 70 (HSP70) were generated for each rat, aligned by disparity analysis, and analyzed on a pixel-by-pixel basis. This method yielded detailed inter-modality correlation between LCBF and HSP70 mRNA expressions. The advantages of this method include reducing the number of experimental animals by one-half; and providing accurate pixel-based correlations between different modalities in the same animals, thus enabling paired statistical analyses. This method can be extended to permit correlation of LCBF with the expression of multiple genes of interest.
Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.
2013-01-01
CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of nucleolin's actions on CSF-1 mRNA and describe the dependence of miR-130a- and miR-301a-directed CSF-1 mRNA decay and inhibition of ovarian cancer cell motility on nucleolin. PMID:23471483
Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.
2013-01-01
Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108
Vasques, Enio Rodrigues; Cunha, José Eduardo Monteiro; Kubrusly, Marcia Saldanha; Coelho, Ana Maria; Sanpietri, Sandra N; Nader, Helena B; Tersariol, Ivarne L S; Lima, Marcelo A; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro
2018-06-21
Intracellular calcium overload is known to be a precipitating factor of pancreatic cell injury in acute pancreatitis (AP). Intracellular calcium homeostasis depends of Plasmatic Membrane Calcium ATPase (PMCA), Sarcoplasmic Endothelial Reticulum Calcium ATPase 2 (SERCA 2) and the Sodium Calcium Exchanger (NCX1). The antioxidant melatonin (Mel) and Trisulfate Disaccharide (TD) that accelerates NCX1 action could reduce the cell damage determined by the AP. To evaluate m-RNA expressions of SERCA2 and NCX1 in acute pancreatitis induced by sodium taurocholate in Wistar rats pre-treated with melatonin and/or TD. Wistar rats were divided in groups: 1) without AP; 2) AP without pre-treatment; 3) AP and Melatonin; 4) AP and TD; 5) AP and Melatonin associated to TD. Pancreatic tissue samples were collected for detection of SERCA2 and NCX1 m-R NA levels by polymerase chain reaction (PCR). Increased m-RNA expression of SERCA2 in the melatonin treated group, without increase of m-RNA expression of the NCX1. The TD did not affect levels of SERCA2 and NCX1 m-RNA expressions. The combined melatonin and TD treatment reduced the m-RNA expression of SERCA2. The effect of melatonin is restricted to increased m-RNA expression of SERCA2. Although TD does not affect gene expression, its action in accelerating calcium exchanger function can explain the slightest expression of SERCA2 m-RNA when associated with Melatonin, perhaps by a joint action of drugs with different and but possibly complementary mechanisms.
RNA Polymerase II cluster dynamics predict mRNA output in living cells
Cho, Won-Ki; Jayanth, Namrata; English, Brian P; Inoue, Takuma; Andrews, J Owen; Conway, William; Grimm, Jonathan B; Spille, Jan-Hendrik; Lavis, Luke D; Lionnet, Timothée; Cisse, Ibrahim I
2016-01-01
Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output. DOI: http://dx.doi.org/10.7554/eLife.13617.001 PMID:27138339
m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells
Cui, Qi; Shi, Hailing; Ye, Peng; Li, Li; Qu, Qiuhao; Sun, Guoqiang; Sun, Guihua; Lu, Zhike; Huang, Yue; Yang, Cai-Guang; Riggs, Arthur D.
2017-01-01
Summary RNA modifications play critical roles in important biological processes. However, the functions of N6-methyladenosine (m6A) mRNA modification in cancer biology and cancer stem cells remain largely unknown. Here, we show that m6A mRNA modification is critical for glioblastoma stem cell (GSC) self-renewal and tumorigenesis. Knockdown of METTL3 or METTL14, key components of the RNA methyltransferase complex, dramatically promotes human GSC growth, self-renewal, and tumorigenesis. In contrast, overexpression of METTL3 or inhibition of the RNA demethylase FTO suppresses GSC growth and self-renewal. Moreover, inhibition of FTO suppresses tumor progression and prolongs lifespan of GSC-grafted mice substantially. m6A sequencing reveals that knockdown of METTL3 or METTL14 induced changes in mRNA m6A enrichment and altered mRNA expression of genes (e.g., ADAM19) with critical biological functions in GSCs. In summary, this study identifies the m6A mRNA methylation machinery as promising therapeutic targets for glioblastoma. PMID:28297667
Fe Lanfranco, Maria; Loane, David J.; Mocchetti, Italo; Burns, Mark P.; Villapol, Sonia
2017-01-01
Microglia and macrophage cells are the primary producers of cytokines in response to neuroinflammatory processes. But these cytokines are also produced by other glial cells, endothelial cells, and neurons. It is essential to identify the cells that produce these cytokines to target their different levels of activation. We used dual RNAscope® fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) techniques to visualize the mRNA expression pattern of pro- and anti-inflammatory cytokines in microglia/macrophages cells. Using these methods, we can associate one mRNA to specific cell types when combining with different cellular markers by immunofluorescence. Results from RNAscope® probes IL-1β, TNFα, TGFβ, IL-10 or Arg1, showed colocalization with antibodies for microglia/macrophage cells. These target probes showed adequate sensitivity and specificity to detect mRNA expression. New FISH detection techniques combined with immunohistochemical techniques will help to jointly determine the protein and mRNA localization, as well as provide reliable quantification of the mRNA expression levels. PMID:29238736
Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications.
Patel, Siddharth; Athirasala, Avathamsa; Menezes, Paula P; Ashwanikumar, N; Zou, Ting; Sahay, Gaurav; Bertassoni, Luiz E
2018-06-07
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Plante, Isabelle; Provost, Patrick
2006-01-01
MicroRNA (miRNA)-guided messenger RNA (mRNA) translational repression is believed to be mediated by effector miRNA-containing ribonucleoprotein (miRNP) complexes harboring fragile X mental retardation protein (FMRP). Recent studies documented the nucleic acid chaperone properties of FMRP and characterized its role and importance in RNA silencing in mammalian cells. We propose a model in which FMRP could facilitate miRNA assembly on target mRNAs in a process involving recognition of G quartet structures. Functioning within a duplex miRNP, FMRP may also mediate mRNA targeting through a strand exchange mechanism, in which the miRNA* of the duplex is swapped for the mRNA. Furthermore, FMRP may contribute to the relief of miRNA-guided mRNA repression through a reverse strand exchange reaction, possibly initiated by a specific cellular signal, that would liberate the mRNA for translation. Suboptimal utilization of miRNAs may thus account for some of the molecular defects in patients with the fragile X syndrome. PMID:17057359
Nomura, Nobuhiko; Nakamura, Kouji
2013-01-01
The Gram-positive anaerobic bacterium Clostridium perfringens is pathogenic to humans and animals, and the production of its toxins is strictly regulated during the exponential phase. We recently found that the 5′ leader sequence of the colA transcript encoding collagenase, which is a major toxin of this organism, is processed and stabilized in the presence of the small RNA VR-RNA. The primary colA 5′-untranslated region (5′UTR) forms a long stem-loop structure containing an internal bulge and masks its own ribosomal binding site. Here we found that VR-RNA directly regulates colA expression through base pairing with colA mRNA in vivo. However, when the internal bulge structure was closed by point mutations in colA mRNA, translation ceased despite the presence of VR-RNA. In addition, a mutation disrupting the colA stem-loop structure induced mRNA processing and ColA-FLAG translational activation in the absence of VR-RNA, indicating that the stem-loop and internal bulge structure of the colA 5′ leader sequence is important for regulation by VR-RNA. On the other hand, processing was required for maximal ColA expression but was not essential for VR-RNA-dependent colA regulation. Finally, colA processing and translational activation were induced at a high temperature without VR-RNA. These results suggest that inhibition of the colA 5′ leader structure through base pairing is the primary role of VR-RNA in colA regulation and that the colA 5′ leader structure is a possible thermosensor. PMID:23585542
Impact of STAT/SOCS mRNA Expression Levels after Major Injury
Brumann, M.; Matz, M.; Kusmenkov, T.; Stegmaier, J.; Biberthaler, P.; Kanz, K.-G.; Mutschler, W.; Bogner, V.
2014-01-01
Background. Fulminant changes in cytokine receptor signalling might provoke severe pathological alterations after multiple trauma. The aim of this study was to evaluate the posttraumatic imbalance of the innate immune system with a special focus on the STAT/SOCS family. Methods. 20 polytraumatized patients were included. Blood samples were drawn 0 h–72 h after trauma; mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3 were quantified by qPCR. Results. IL-10 mRNA expression increased significantly in the early posttraumatic period. STAT 3 mRNA expressions showed a significant maximum at 6 h after trauma. SOCS 1 levels significantly decreased 6 h–72 h after trauma. SOCS 3 levels were significantly higher in nonsurvivors 6 h after trauma. Conclusion. We present a serial, sequential investigation in human neutrophil granulocytes of major trauma patients evaluating mRNA expression profiles of IL-10, STAT 3, SOCS 1, and SOCS 3. Posttraumatically, immune disorder was accompanied by a significant increase of IL-10 and STAT 3 mRNA expression, whereas SOCS 1 mRNA levels decreased after injury. We could demonstrate that death after trauma was associated with higher SOCS 3 mRNA levels already at 6 h after trauma. To support our results, further investigations have to evaluate protein levels of STAT/SOCS family in terms of posttraumatic immune imbalance. PMID:24648661
hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye
We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). Amore » super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.« less
Neymotin, Benjamin; Ettorre, Victoria; Gresham, David
2016-01-01
Degradation of mRNA contributes to variation in transcript abundance. Studies of individual mRNAs have shown that both cis and trans factors affect mRNA degradation rates. However, the factors underlying transcriptome-wide variation in mRNA degradation rates are poorly understood. We investigated the contribution of different transcript properties to transcriptome-wide degradation rate variation in the budding yeast, Saccharomyces cerevisiae, using multiple regression analysis. We find that multiple transcript properties are significantly associated with variation in mRNA degradation rates, and that a model incorporating these properties explains ∼50% of the genome-wide variance. Predictors of mRNA degradation rates include transcript length, ribosome density, biased codon usage, and GC content of the third position in codons. To experimentally validate these factors, we studied individual transcripts expressed from identical promoters. We find that decreasing ribosome density by mutating the first translational start site of a transcript increases its degradation rate. Using coding sequence variants of green fluorescent protein (GFP) that differ only at synonymous sites, we show that increased GC content of the third position of codons results in decreased rates of mRNA degradation. Thus, in steady-state conditions, a large fraction of genome-wide variation in mRNA degradation rates is determined by inherent properties of transcripts, many of which are related to translation, rather than specific regulatory mechanisms. PMID:27633789
Transcriptional dynamics with time-dependent reaction rates
NASA Astrophysics Data System (ADS)
Nandi, Shubhendu; Ghosh, Anandamohan
2015-02-01
Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.
Protein interactions and complexes in human microRNA biogenesis and function
Perron, Marjorie P.; Provost, Patrick
2010-01-01
Encoded in the genome of most eukaryotes, microRNAs (miRNAs) have been proposed to regulate specifically up to 90% of human genes through a process known as miRNA-guided RNA silencing. The aim of this review is to present this process as the integration of a succession of specialized molecular machines exerting well defined functions. The nuclear microprocessor complex initially recognizes and processes its primary miRNA substrate into a miRNA precursor (pre-miRNA). This structure is then exported to the cytoplasm by the Exportin-5 complex where it is presented to the pre-miRNA processing complex. Following pre-miRNA conversion into a miRNA:miRNA* duplex, this complex is assembled into a miRNA-containing ribonucleoprotein (miRNP) complex, after which the miRNA strand is selected. The degree of complementarity of the miRNA for its messenger RNA (mRNA) target guides the recruitment of the miRNP complex. Initially repressing its translation, the miRNP-silenced mRNA is directed to the P-bodies, where the mRNA is either released from its inhibition upon a cellular signal and/or actively degraded. The potency and specificity of miRNA biogenesis and function rely on the distinct protein·protein, protein·RNA and RNA:RNA interactions found in different complexes, each of which fulfill a specific function in a well orchestrated process. PMID:17981733
Decidual activin: its role in the apoptotic process and its regulation by prolactin.
Tessier, Christian; Prigent-Tessier, Anne; Bao, Lei; Telleria, Carlos M; Ferguson-Gottschall, Susan; Gibori, Gil B; Gu, Yan; Bowen-Shauver, Jennifer M; Horseman, Nelson D; Gibori, Geula
2003-05-01
Successful pregnancy requires profound differentiation and reorganization of the uterine tissues including, as pregnancy progresses, extensive apoptosis of decidual tissue to accommodate the developing conceptus. We have previously shown a positive correlation between expression of activin A and apoptosis in the decidua and have also shown that expression of activin A occurs at the time when prolactin (PRL) receptors disappear from decidual cells. The goals of this study were to examine whether activin A plays a role in decidual apoptosis and whether expression of activin A in the decidua is regulated by PRL and placental lactogens. Studies were carried out using primary rat decidual cells, a decidual cell line (GG-AD), and PRL null mice. Treatment of decidual cells with activin A significantly increased DNA degradation, caspase 3 activity, and caspase 3 mRNA expression. However, this effect was observed only in the absence of endogenous activin production by these cells. Addition of follistatin to decidual cells that were producing activin A decreased both caspase 3 activity and mRNA expression. Similarly, addition of activin-blocking antibodies to cultures of GG-AD cells, which also produce activin A, caused a reduction in both DNA degradation and caspase 3 activity. PRL and placental lactogens caused an inhibition of activin A mRNA expression in primary decidual cells. Even more convincingly, decidua of PRL null mice expressed abundant activin A at a time when no expression of this hormone is detected in wild-type mice and treatment of PRL null mice with PRL caused a profound inhibition of activin A mRNA expression. In summary, our investigations into the role and regulation of decidual activin have revealed that activin A can induce cell death in the decidua and that its expression is under tight regulation by PRL and placental lactogens.
Piekielko-Witkowska, Agnieszka; Kedzierska, Hanna; Poplawski, Piotr; Wojcicka, Anna; Rybicka, Beata; Maksymowicz, Maria; Grajkowska, Wieslawa; Matyja, Ewa; Mandat, Tomasz; Bonicki, Wieslaw; Nauman, Pawel
2013-06-01
Pituitary tumors belong to the group of most common neoplasms of the sellar region. Iodothyronine deiodinase types 1 (DIO1) and 2 (DIO2) are enzymes contributing to the levels of locally synthesized T3, a hormone regulating key physiological processes in the pituitary, including its development, cellular proliferation, and hormone secretion. Previous studies revealed that the expression of deiodinases in pituitary tumors is variable and, moreover, there is no correlation between mRNA and protein products of the particular gene, suggesting the potential role of posttranscriptional regulatory mechanisms. In this work we hypothesized that one of such mechanisms could be the alternative splicing. Therefore, we analyzed expression and sequences of DIO1 and DIO2 splicing variants in 30 pituitary adenomas and 9 non-tumorous pituitary samples. DIO2 mRNA was expressed as only two mRNA isoforms. In contrast, nine splice variants of DIO1 were identified. Among them, five were devoid of exon 3. In silico sequence analysis of DIO1 revealed multiple putative binding sites for splicing factor SF2/ASF, of which the top-ranked sites were located in exon 3. Silencing of SF2/ASF in pituitary tumor GH3 cells resulted in change of ratio between DIO1 isoforms with or without exon 3, favoring the expression of variants without exon 3. The expression of SF2/ASF mRNA in pituitary tumors was increased when compared with non-neoplastic control samples. In conclusion, we provide a new mechanism of posttranscriptional regulation of DIO1 and show deregulation of DIO1 expression in pituitary adenoma, possibly resulting from disturbed expression of SF2/ASF. Copyright © 2013 Elsevier B.V. All rights reserved.
Ferensztajn-Rochowiak, Ewa; Tarnowski, Maciej; Samochowiec, Jerzy; Michalak, Michal; Ratajczak, Mariusz Z; Rybakowski, Janusz K
2016-10-01
The aim was to evaluate the peripheral mRNA expression of pluripotency master transcriptional factors such as octamer-binding transcription factor 4 (Oct4), sex-determining region Y-box 2 (Sox2) and homeobox protein Nanog, in patients with bipolar disorder (BD), and the effect of long-term lithium treatment. Fifteen BD patients (aged 53±7years) not treated with lithium, with duration of illness>10years, 15 BD patients (aged 55±6years) treated with lithium for 8-40 years (mean 16years) and 15 control subjects (aged 50±5years) were included. Assessment of the mRNA levels of pluripotency markers (Oct-4, Sox 2 and Nanog) was performed, using the Real-time quantitative reverse transcription PCR (RQ-PCR) procedure, and the number of CD34+ very small embryonic-like stem cells (VSELs) was measured by flow cytometric analysis. In those BD patients not treated with lithium the expression of all three pluripotency genes was significantly higher than that in the control subjects. Oct-4, Sox2 and Nanog also positively correlated with the number of CD34+ VSELs/[ul] in this group. In the lithium-treated patients the mRNA levels of Nanog were significantly higher than in the control individuals and correlated with the number and % of CD34+ VSELs. The overexpression of the pluripotency master transcriptional factors in patients with a long duration of BD not treated with lithium, may contribute to the pathogenesis of the illness and make them potential biological markers of BD. Long-term lithium treatment may attenuate these excessive regenerative processes, especially in relation to the transcription factors Oct-4 and Sox2. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.
The nif Gene Operon of the Methanogenic Archaeon Methanococcus maripaludis
Kessler, Peter S.; Blank, Carrine; Leigh, John A.
1998-01-01
Nitrogen fixation occurs in two domains, Archaea and Bacteria. We have characterized a nif (nitrogen fixation) gene cluster in the methanogenic archaeon Methanococcus maripaludis. Sequence analysis revealed eight genes, six with sequence similarity to known nif genes and two with sequence similarity to glnB. The gene order, nifH, ORF105 (similar to glnB), ORF121 (similar to glnB), nifD, nifK, nifE, nifN, and nifX, was the same as that found in part in other diazotrophic methanogens and except for the presence of the glnB-like genes, also resembled the order found in many members of the Bacteria. Using transposon insertion mutagenesis, we determined that an 8-kb region required for nitrogen fixation corresponded to the nif gene cluster. Northern analysis revealed the presence of either a single 7.6-kb nif mRNA transcript or 10 smaller mRNA species containing portions of the large transcript. Polar effects of transposon insertions demonstrated that all of these mRNAs arose from a single promoter region, where transcription initiated 80 bp 5′ to nifH. Distinctive features of the nif gene cluster include the presence of the six primary nif genes in a single operon, the placement of the two glnB-like genes within the cluster, the apparent physical separation of the cluster from any other nif genes that might be in the genome, the fragmentation pattern of the mRNA, and the regulation of expression by a repression mechanism described previously. Our study and others with methanogenic archaea reporting multiple mRNAs arising from gene clusters with only a single putative promoter sequence suggest that mRNA processing following transcription may be a common occurrence in methanogens. PMID:9515920
Feng, Ling; Wang, Ru; Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao
2016-01-01
Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monaco, L.; Murtagh, J.J.; Newman, K.B.
1990-03-01
ADP-ribosylation factors (ARFs) are {approx}20-kDa proteins that act as GTP-dependent allosteric activators of cholera toxin. With deoxyinosine-containing degenerate oligonucleotide primers corresponding to conserved GTP-binding domains in ARFs, the polymerase chain reaction (PCR) was used to amplify simultaneously from human DNA portions of three ARF genes that include codons for 102 amino acids, with intervening sequences. Amplification products that differed in size because of differences in intron sizes were separated by agarose gel electrophoresis. One amplified DNA contained no introns and had a sequence different from those of known AFRs. Based on this sequence, selective oligonucleotide probes were prepared and usedmore » to isolate clone {Psi}ARF 4, a putative ARF pseudogene, from a human genomic library in {lambda} phage EMBL3. Reverse transcription-PCR was then used to clone from human poly(A){sup +} RNA the cDNA corresponding to the expressed homolog of {Psi}ARF 4, referred to as human ARF 4. It appears that {Psi}ARF 4 arose during human evolution by integration of processed ARF 4 mRNA into the genome. Human ARF 4 differs from previously identified mammalian ARFs 1, 2, and 3. Hybridization of ARF 4-specific oligonucleotide probes with human, bovine, and rat RNA revealed a single 1.8-kilobase mRNA, which was clearly distinguished from the 1.9-kilobase mRNA for ARF 1 in these tissues. The PCR provides a powerful tool for investigating diversity in this and other multigene families, especially with primers targeted at domains believed to have functional significance.« less
Building a bridge between neurobiology and mental illness.
Costa, E
1992-10-01
GABA (gamma amino butyric acid) is the most abundant and important inhibitory transmitter in mammalian CNS. It counterbalances the glutamate mediated neuronal excitation. Abnormalities of the interaction of these two transmitters might change the mechanisms of neuronal group selection that according to Edelman [Neural Darwinism. Basic Books, New York] play a role in mediating several brain functions including cognition processes. Indeed imbalances in GABAergic functions were shown to elicit psychoses. They can be obtained by administration of drugs that affect synthesis, metabolism and uptake of GABA and thereby cause a persistent stimulation of GABAA receptors or perhaps by genetic abnormalities in DNA transcription, pre-mRNA splicing, mRNA translation and posttranslation modifications of GABAA receptor subunits. The complexities in the regulation of GABAA receptor subunit structure, synthesis, assembly and the brain location of specific mRNA encoding for these subunits are investigated with in situ mRNA hybridization specific for subunits of GABAA receptors. The role of the variability resulting from the complexities in the regulation of GABAA receptor allosteric modulation by drugs and putative endogenous allosteric modulators of GABA action at GABAA receptors is discussed. This discussion gives relevance to the possibility that genetic abnormalities in the expression of proteins participating in GABAergic function are to be considered as a possible target of the genetic defects operative in psychoses. In line with this thinking, it is suggested that partial allosteric modulators (partial agonists) of GABAA receptors and the phosphothioate or methylphosphonate analogs antisense to specific mRNA oligonucleotides that mediate the expression of genetic information concerning GABAA and glutamate receptor subunits may become valuable tools in psychiatric research. Perhaps in the future these studies might generate new ideas useful in the therapy of genetically determined psychiatric illness.
L-Dopa decarboxylase expression profile in human cancer cells.
Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido
2011-02-01
L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.
Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4.
Marçais, Antoine; Coupet, Charles-Antoine; Walzer, Thierry; Tomkowiak, Martine; Ghittoni, Raffaella; Marvel, Jacqueline
2006-10-01
Immunological memory is associated with the display of improved effector functions. The maintenance by CD8 memory cells of high levels of untranslated CCL5 mRNA allows these cells to immediately secrete this chemokine upon Ag stimulation. Untranslated mRNA storage is a newly described process supporting the immediate display of an effector function by memory lymphocytes. We have tested the capacity of different cytokines to regulate the memorization of CCL5 by memory CD8 T cells. We found that IL-4 treatment of murine CD8 T cells impairs immediate CCL5 secretion capacity by inhibiting CCL5 mRNA transcription through a STAT6-dependent pathway. The inhibition by IL-4 is reversible, as memory CD8 T cells reconstitute their CCL5 mRNA stores and reacquire their immediate CCL5 secretion capacity when IL-4 is withdrawn. This recovery is cell autonomous because it proceeds in culture medium in the absence of exogenous growth factors, suggesting that CCL5 expression by memory CD8 T cells is a default process. Overall, these results indicate that the expression of CCL5 is an intrinsic property acquired by memory CD8 T cells that is regulated by environmental factors.
The role of mammalian Staufen on mRNA traffic: a view from its nucleocytoplasmic shuttling function.
Miki, Takashi; Takano, Keizo; Yoneda, Yoshihiro
2005-01-01
The localization of mRNA in neuronal dendrites plays a role in both locally and temporally regulated protein synthesis, which is required for certain forms of synaptic plasticity. RNA granules constitute a dendritic mRNA transport machinery in neurons, which move along microtubules. RNA granules contain densely packed clusters of ribosomes, but lack some factors that are required for translation, suggesting that they are translationally incompetent. Recently some of the components of RNA granules have been identified, and their functions are in the process of being examined, in attempts to better understand the properties of RNA granules. Mammalian Staufen, a double-stranded RNA binding protein, is a component of RNA granules. Staufen is localized in the somatodendritic domain of neurons, and plays an important role in dendritic mRNA targeting. Recently, one of the mammalian homologs of Staufen, Staufen2 (Stau2), was shown to shuttle between the nucleus and the cytoplasm. This finding suggests the possibility that Stau2 binds RNA in the nucleus and that this ribonucleoprotein particle is transported from the nucleus to RNA granules in the cytoplasm. A closer study of this process might provide a clue to the mechanism by which RNA granules are formed.
Quaglino, D; Nanney, L B; Kennedy, R; Davidson, J M
1990-09-01
The effect of transforming growth factor-beta 1 (TGF-beta 1) on matrix gene expression has been investigated during the process of wound repair, where the formation of new connective tissue represents a critical step in restoring tissue integrity. Split-thickness excisional wounds in the pig were studied by in situ hybridization in order to obtain subjective findings on the activity and location of cells involved in matrix gene expression after the administration of recombinant TGF-beta 1. Data focus on the stimulatory role of this growth factor in granulation tissue formation, on the enhanced mRNA content of collagen types I and III, fibronectin, TGF-beta 1 itself, and on the reduction in stromelysin mRNA, suggesting that increased matrix formation measured after treatment with TGF-beta 1 is due to fibroplasia regulated by the abundance of mRNAs for several different structural, matrix proteins as well as inhibition of proteolytic phenomena elicited by metalloproteinases. These studies reveal elastin mRNA early in the repair process, and elastin mRNA expression is enhanced by administration of TGF-beta 1. Moreover, we show that TGF-beta 1 was auto-stimulating in wounds, accounting, at least in part, for the persistent effects of single doses of this multipotential cytokine.
A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki, Yasumichi; Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp; Tanaka, Hiroki
2016-08-05
Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncatedmore » peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.« less
Oh, Bong-Kyeong; Kim, Young-Joo; Park, Young Nyun; Choi, Jinsub; Kim, Kyung Sik; Park, Chanil
2006-04-01
Telomerase reverse transcriptase (hTERT) is the rate-limiting determinant of telomerase, which is critical for carcinogenesis. Dysplastic nodules (DNs) appear to be preneoplastic lesions of hepatocellular carcinomas (HCCs). In this study, in order to characterize DNs, hTERT mRNA, hTERT gene dosage, and mRNA for c-myc, a transcriptional activator of hTERT were studied in human multi-step hepatocarcinogenesis. Fifty four hepatic nodules including 5 large regenerative nodules, 14 low-grade DNs, 7 high-grade DNs, 11 DNs with HCC foci and 17 HCCs, 23 livers with chronic hepatitis/cirrhosis, and 6 normal livers were examined. Transcript levels were measured by real-time quantitative RT-PCR and gene dosages by real-time PCR and Southern blotting. The hTERT mRNA levels increased with the progression of hepatocarcinogenesis, and a significant induction in the transition between low- and high-grade DNs was seen. Most high-grade DNs strongly expressed hTERT mRNA at levels similar to those of HCCs. Twenty-one percent of low-grade DNs had high levels of hTERT mRNA, up to those of high-grade DNs and there was no difference in the pathological features between low-grade DNs with and without increased hTERT mRNA levels. No correlation was found between hTERT mRNA levels, hTERT gene dosage, and c-myc mRNA levels. These results suggest that the induction of hTERT mRNA is an important early event and that its measurement by real-time quantitative RT-PCR is a useful tool to detect premalignant/malignant tendencies in hepatic nodules. However, hTERT gene dosage and c-myc expression are not the main mechanisms regulating hTERT expression in hepatocarcinogenesis.
Brogna, S
1999-01-01
From bacteria to mammals, mutations that generate premature termination codons have been shown to result in the reduction in the abundance of the corresponding mRNA. In mammalian cells, more often than not, the reduction happens while the RNA is still associated with the nucleus. Here, it is reported that mutations in the alcohol dehydrogenase gene (Adh) of Drosophila melanogaster that generate premature termination codons lead to reduced levels of cytoplasmic and nuclear mRNA. Unexpectedly, it has been found that the poly(A) tails of Adh mRNAs and pre-mRNAs that carry a premature termination codon are longer than in the wild-type transcript. The more 5' terminal the mutation is, the longer is the poly(A) tail of the transcript. These findings suggest that the integrity of the coding region may be required for accurate mRNA 3' end processing. PMID:10199572
Protein-mRNA interactome capture: cartography of the mRNP landscape
Ryder, Sean P.
2016-01-01
RNA-binding proteins play a variety of roles in cellular physiology. Some regulate mRNA processing, mRNA abundance, and translation efficiency. Some fight off invader RNA through small RNA-driven silencing pathways. Others sense foreign sequences in the form of double-stranded RNA and activate the innate immune response. Yet others, for example cytoplasmic aconitase, act as bi-functional proteins, processing metabolites in one conformation and regulating metabolic gene expression in another. Not all are involved in gene regulation. Some play structural roles, for example, connecting the translational machinery to the endoplasmic reticulum outer membrane. Despite their pervasive role and relative importance, it has remained difficult to identify new RNA-binding proteins in a systematic, unbiased way. A recent body of literature from several independent labs has defined robust, easily adaptable protocols for mRNA interactome discovery. In this review, I summarize the methods and review some of the intriguing findings from their application to a wide variety of biological systems. PMID:29098073
Determination of in vivo regulation kinetics of small non-coding RNA in bacteria
NASA Astrophysics Data System (ADS)
Fei, Jingyi
Small RNAs (sRNAs) play important roles in regulating gene expression through a variety of mechanisms. As one of the most common strategies, sRNA induced target messenger RNA (mRNA) includes two major steps: target search by base-pairing interactions with the and downstream execution by modulating translation or the stability of the mRNA. Here we describe a new imaging and analysis platform based on super-resolution fluorescence microscopy, which enabled the first in vivo kinetic measurement of sRNA-mediated gene regulation. Specifically, this platform was used to investigate a sugar-phosphate stress-induced bacterial sRNA that induces the degradation of target mRNAs. The data reveal that the sRNA binds to a primary target mRNA in a reversible and dynamic fashion, and that formation of the sRNA-mRNA complexes is the rate-limiting step, dictating the overall efficiency of regulation in vivo; whereas the downstream co-degradation of sRNA-mRNA complex can kinetically compete with the fast complex disassembly. Examination of a secondary target of this sRNA indicated that differences in the target search kinetics contribute to setting the regulation priority among different target mRNAs. This super-resolution imaging and analysis approach provides a conceptual framework that can be generalized to other sRNA systems and other target search processes.
Berger, Stefan M; Fernández-Lamo, Iván; Schönig, Kai; Fernández Moya, Sandra M; Ehses, Janina; Schieweck, Rico; Clementi, Stefano; Enkel, Thomas; Grothe, Sascha; von Bohlen Und Halbach, Oliver; Segura, Inmaculada; Delgado-García, José María; Gruart, Agnès; Kiebler, Michael A; Bartsch, Dusan
2017-11-17
Dendritic messenger RNA (mRNA) localization and subsequent local translation in dendrites critically contributes to synaptic plasticity and learning and memory. Little is known, however, about the contribution of RNA-binding proteins (RBPs) to these processes in vivo. To delineate the role of the double-stranded RBP Staufen2 (Stau2), we generate a transgenic rat model, in which Stau2 expression is conditionally silenced by Cre-inducible expression of a microRNA (miRNA) targeting Stau2 mRNA in adult forebrain neurons. Known physiological mRNA targets for Stau2, such as RhoA, Complexin 1, and Rgs4 mRNAs, are found to be dysregulated in brains of Stau2-deficient rats. In vivo electrophysiological recordings reveal synaptic strengthening upon stimulation, showing a shift in the frequency-response function of hippocampal synaptic plasticity to favor long-term potentiation and impair long-term depression in Stau2-deficient rats. These observations are accompanied by deficits in hippocampal spatial working memory, spatial novelty detection, and in tasks investigating associative learning and memory. Together, these experiments reveal a critical contribution of Stau2 to various forms of synaptic plasticity including spatial working memory and cognitive management of new environmental information. These findings might contribute to the development of treatments for conditions associated with learning and memory deficits.
Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions.
Tatomer, Deirdre C; Rizzardi, Lindsay F; Curry, Kaitlin P; Witkowski, Alison M; Marzluff, William F; Duronio, Robert J
2014-01-01
The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.
The polyadenylation code: a unified model for the regulation of mRNA alternative polyadenylation*
Davis, Ryan; Shi, Yongsheng
2014-01-01
The majority of eukaryotic genes produce multiple mRNA isoforms with distinct 3′ ends through a process called mRNA alternative polyadenylation (APA). Recent studies have demonstrated that APA is dynamically regulated during development and in response to environmental stimuli. A number of mechanisms have been described for APA regulation. In this review, we attempt to integrate all the known mechanisms into a unified model. This model not only explains most of previous results, but also provides testable predictions that will improve our understanding of the mechanistic details of APA regulation. Finally, we briefly discuss the known and putative functions of APA regulation. PMID:24793760
Human Cytomegalovirus Strategies to Maintain and Promote mRNA Translation
Vincent, Heather A.; Ziehr, Benjamin; Moorman, Nathaniel J.
2016-01-01
mRNA translation requires the ordered assembly of translation initiation factors and ribosomal subunits on a transcript. Host signaling pathways regulate each step in this process to match levels of protein synthesis to environmental cues. In response to infection, cells activate multiple defenses that limit viral protein synthesis, which viruses must counteract to successfully replicate. Human cytomegalovirus (HCMV) inhibits host defenses that limit viral protein expression and manipulates host signaling pathways to promote the expression of both host and viral proteins necessary for virus replication. Here we review key regulatory steps in mRNA translation, and the strategies used by HCMV to maintain protein synthesis in infected cells. PMID:27089357
Tissue-specific mRNA expression profiling in grape berry tissues
Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C
2007-01-01
Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented. Conclusion These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality. PMID:17584945
Schwarz, Alexander P; Trofimov, Alexander N; Zubareva, Olga E; Lioudyno, Victoria I; Kosheverova, Vera V; Ischenko, Alexander M; Klimenko, Victor M
2017-08-30
Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1β (1μg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1β. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1β-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge. Copyright © 2017 Elsevier B.V. All rights reserved.
NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway
Bühlmann, Melanie; Walrad, Pegine; Rico, Eva; Ivens, Alasdair; Capewell, Paul; Naguleswaran, Arunasalam; Roditi, Isabel; Matthews, Keith R.
2015-01-01
Trypanosomes mostly regulate gene expression through post-transcriptional mechanisms, particularly mRNA stability. However, much mRNA degradation is cytoplasmic such that mRNA nuclear export must represent an important level of regulation. Ribosomal RNAs must also be exported from the nucleus and the trypanosome orthologue of NMD3 has been confirmed to be involved in rRNA processing and export, matching its function in other organisms. Surprisingly, we found that TbNMD3 depletion also generates mRNA accumulation of procyclin-associated genes (PAGs), these being co-transcribed by RNA polymerase I with the procyclin surface antigen genes expressed on trypanosome insect forms. By whole transcriptome RNA-seq analysis of TbNMD3-depleted cells we confirm the regulation of the PAG transcripts by TbNMD3 and using reporter constructs reveal that PAG1 regulation is mediated by its 5′UTR. Dissection of the mechanism of regulation demonstrates that it is not dependent upon translational inhibition mediated by TbNMD3 depletion nor enhanced transcription. However, depletion of the nuclear export factors XPO1 or MEX67 recapitulates the effects of TbNMD3 depletion on PAG mRNAs and mRNAs accumulated in the nucleus of TbNMD3-depleted cells. These results invoke a novel RNA regulatory mechanism involving the NMD3-dependent nuclear export of mRNA cargos, suggesting a shared platform for mRNA and rRNA export. PMID:25873624
Deng, Dawei; Li, Yang; Xue, Jianpeng; Wang, Jie; Ai, Guanhua; Li, Xin; Gu, Yueqing
2015-01-01
Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem-loop-stem oligonucleotide sequences attached by Au-S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.
Deng, Dawei; Li, Yang; Xue, Jianpeng; Wang, Jie; Ai, Guanhua; Li, Xin; Gu, Yueqing
2015-01-01
Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem–loop–stem oligonucleotide sequences attached by Au–S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis. PMID:25987838
A U-Rich Element in the 5′ Untranslated Region Is Necessary for the Translation of p27 mRNA
Millard, S. Sean; Vidal, Anxo; Markus, Maurice; Koff, Andrew
2000-01-01
Increased translation of p27 mRNA correlates with withdrawal of cells from the cell cycle. This raised the possibility that antimitogenic signals might mediate their effects on p27 expression by altering complexes that formed on p27 mRNA, regulating its translation. In this report, we identify a U-rich sequence in the 5′ untranslated region (5′UTR) of p27 mRNA that is necessary for efficient translation in proliferating and nonproliferating cells. We show that a number of factors bind to the 5′UTR in vitro in a manner dependent on the U-rich element, and their availability in the cytosol is controlled in a growth- and cell cycle-dependent fashion. One of these factors is HuR, a protein previously implicated in mRNA stability, transport, and translation. Another is hnRNP C1 and C2, proteins implicated in mRNA processing and the translation of a specific subset of mRNAs expressed in differentiated cells. In lovastatin-treated MDA468 cells, the mobility of the associated hnRNP C1 and C2 proteins changed, and this correlated with increased p27 expression. Together, these data suggest that the U-rich dependent RNP complex on the 5′UTR may regulate the translation of p27 mRNA and may be a target of antimitogenic signals. PMID:10913178
Perron, Gabrielle; Jandaghi, Pouria; Solanki, Shraddha; Safisamghabadi, Maryam; Storoz, Cristina; Karimzadeh, Mehran; Papadakis, Andreas I; Arseneault, Madeleine; Scelo, Ghislaine; Banks, Rosamonde E; Tost, Jorg; Lathrop, Mark; Tanguay, Simon; Brazma, Alvis; Huang, Sidong; Brimo, Fadi; Najafabadi, Hamed S; Riazalhosseini, Yasser
2018-05-08
Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Kim, Bo-Eun; Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Kang, Insung; Lee, Byung-Chul; Lee, Jin Young; Kook, Myoung Geun; Kang, Kyung-Sun
2018-01-01
Neural stem cells (NSCs) are a prominent cell source for understanding neural pathogenesis and for developing therapeutic applications to treat neurodegenerative disease because of their regenerative capacity and multipotency. Recently, a variety of cellular reprogramming technologies have been developed to facilitate in vitro generation of NSCs, called induced NSCs (iNSCs). However, the genetic safety aspects of established virus-based reprogramming methods have been considered, and non-integrating reprogramming methods have been developed. Reprogramming with in vitro transcribed (IVT) mRNA is one of the genetically safe reprogramming methods because exogenous mRNA temporally exists in the cell and is not integrated into the chromosome. Here, we successfully generated expandable iNSCs from human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via transfection with IVT mRNA encoding SOX2 (SOX2 mRNA) with properly optimized conditions. We confirmed that generated human UCB-MSC-derived iNSCs (UM-iNSCs) possess characteristics of NSCs, including multipotency and self-renewal capacity. Additionally, we transfected human dermal fibroblasts (HDFs) with SOX2 mRNA. Compared with human embryonic stem cell-derived NSCs, HDFs transfected with SOX2 mRNA exhibited neural reprogramming with similar morphologies and NSC-enriched mRNA levels, but they showed limited proliferation ability. Our results demonstrated that human UCB-MSCs can be used for direct reprogramming into NSCs through transfection with IVT mRNA encoding a single factor, which provides an integration-free reprogramming tool for future therapeutic application.
Kreipe, L; Deniz, A; Bruckmaier, R M; van Dorland, H A
2011-10-01
The primary aim was to investigate the effect of combined butafosfan and cyanocobalamin on liver metabolism in early lactating cows through mRNA expression measurements of genes encoding 31 enzymes and transport proteins of major metabolic processes in the liver using 16 multiparous early lactating dairy cows. The treatments included i.v. injection of 10 mL/100 kg of body weight combined butafosfan and cyanocobalamin (TG, n = 8) on 3 d consecutively at 25 ± 3 d in milk or injection with physiological saline solution similarly applied (CG, n = 8). Results include a higher daily milk production for TG cows (41.1 ± 0.9 kg, mean ± SEM) compared with CG cows (39.5 ± 0.7 kg). In plasma, the concentration of inorganic phosphorus was lower in the TG cows (1.25 ± 0.08 mmol/L) after the treatment than in the CG cows (1.33 ± 0.07 mmol/L). The plasma β-hydroxybutyrate concentration was 0.65 ± 0.13 mmol/L for all cows before the treatment, and remained unaffected post treatment. The unique result was that in the liver, the mRNA abundance of acyl-coenzyme A synthetase long-chain family member 1, involved in fatty acid oxidation and biosynthesis, was lower across time points after the treatment for TG compared with CG cows (17.5 ± 0.15 versus 18.1 ± 0.24 cycle threshold, log(2), respectively). In conclusion, certain effects of combined butafosfan and cyanocobalamin were observed on mRNA abundance of a gene in the liver of nonketotic early lactating cows. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Comparative proteomic analysis of outer membrane protein 43 (omp43)-deficient Bartonella henselae.
Kang, Jun-Gu; Lee, Hee-Woo; Ko, Sungjin; Chae, Joon-Seok
2018-01-31
Outer membrane proteins (OMPs) of Gram-negative bacteria constitute the first line of defense protecting cells against environmental stresses including chemical, biophysical, and biological attacks. Although the 43-kDa OMP (OMP43) is major porin protein among Bartonella henselae -derived OMPs, its function remains unreported. In this study, OMP43-deficient mutant B. henselae (Δomp43) was generated to investigate OMP43 function. Interestingly, Δ omp 43 exhibited weaker proliferative ability than that of wild-type (WT) B. henselae . To study the differences in proteomic expression between WT and Δ omp 43, two-dimensional gel electrophoresis-based proteomic analysis was performed. Based on Clusters of Orthologus Groups functional assignments, 12 proteins were associated with metabolism, 7 proteins associated with information storage and processing, and 3 proteins associated with cellular processing and signaling. By semi-quantitative reverse transcriptase polymerase chain reaction, increases in tld D, efp, ntr X, pdh A, pur B, and ATPA mRNA expression and decreases in Rho and yfe A mRNA expression were confirmed in Δ omp 43. In conclusion, this is the first report showing that a loss of OMP43 expression in B. henselae leads to retarded proliferation. Furthermore, our proteomic data provide useful information for the further investigation of mechanisms related to the growth of B. henselae.
Translation initiation events on structured eukaryotic mRNAs generate gene expression noise
Dacheux, Estelle; Malys, Naglis; Meng, Xiang; Ramachandran, Vinoy; Mendes, Pedro
2017-01-01
Abstract Gene expression stochasticity plays a major role in biology, creating non-genetic cellular individuality and influencing multiple processes, including differentiation and stress responses. We have addressed the lack of knowledge about posttranscriptional contributions to noise by determining cell-to-cell variations in the abundance of mRNA and reporter protein in yeast. Two types of structural element, a stem–loop and a poly(G) motif, not only inhibit translation initiation when inserted into an mRNA 5΄ untranslated region, but also generate noise. The noise-enhancing effect of the stem–loop structure also remains operational when combined with an upstream open reading frame. This has broad significance, since these elements are known to modulate the expression of a diversity of eukaryotic genes. Our findings suggest a mechanism for posttranscriptional noise generation that will contribute to understanding of the generally poor correlation between protein-level stochasticity and transcriptional bursting. We propose that posttranscriptional stochasticity can be linked to cycles of folding/unfolding of a stem–loop structure, or to interconversion between higher-order structural conformations of a G-rich motif, and have created a correspondingly configured computational model that generates fits to the experimental data. Stochastic events occurring during the ribosomal scanning process can therefore feature alongside transcriptional bursting as a source of noise. PMID:28521011
Dong, Qiongye; Wei, Lei; Zhang, Michael Q; Wang, Xiaowo
2018-06-24
Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the common splicing alterations on the whole transcriptome shared by various types of senescence are poorly understood. In order to systematically identify senescence-associated transcriptomic changes in genome-wide scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-inducing methods from public databases and performed meta-analysis. First, we discovered that a group of RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment analysis of their RNA binding information, including motif scanning and enhanced cross-linking immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These findings would help to better understand the coordinating splicing alterations in cellular senescence.
Differences in expression of retinal pigment epithelium mRNA between normal canines
2004-01-01
Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545
Hoang, Thu-Huong; Aliane, Verena; Manahan-Vaughan, Denise
2018-05-01
The specific roles of hippocampal subfields in spatial information processing and encoding are, as yet, unclear. The parallel map theory postulates that whereas the CA1 processes discrete environmental features (positional cues used to generate a "sketch map"), the dentate gyrus (DG) processes large navigation-relevant landmarks (directional cues used to generate a "bearing map"). Additionally, the two-streams hypothesis suggests that hippocampal subfields engage in differentiated processing of information from the "where" and the "what" streams. We investigated these hypotheses by analyzing the effect of exploration of discrete "positional" features and large "directional" spatial landmarks on hippocampal neuronal activity in rats. As an indicator of neuronal activity we measured the mRNA induction of the immediate early genes (IEGs), Arc and Homer1a. We observed an increase of this IEG mRNA in CA1 neurons of the distal neuronal compartment and in proximal CA3, after novel spatial exploration of discrete positional cues, whereas novel exploration of directional cues led to increases in IEG mRNA in the lower blade of the DG and in proximal CA3. Strikingly, the CA1 did not respond to directional cues and the DG did not respond to positional cues. Our data provide evidence for both the parallel map theory and the two-streams hypothesis and suggest a precise compartmentalization of the encoding and processing of "what" and "where" information occurs within the hippocampal subfields. © 2018 The Authors. Hippocampus Published by Wiley Periodicals, Inc.
Szot, Patricia; Franklin, Allyn; Figlewicz, Dianne P; Beuca, Timothy Petru; Bullock, Kristin; Hansen, Kim; Banks, William A; Raskind, Murray A; Peskind, Elaine R
2017-07-04
Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders. Published by Elsevier Ltd.
Postage for the messenger: Designating routes for Nuclear mRNA Export
Natalizio, Barbara J.; Wente, Susan R.
2013-01-01
Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578
Sørensen, Brian B; Ehrnsberger, Hans F; Esposito, Silvia; Pfab, Alexander; Bruckmann, Astrid; Hauptmann, Judith; Meister, Gunter; Merkl, Rainer; Schubert, Thomas; Längst, Gernot; Melzer, Michael; Grasser, Marion; Grasser, Klaus D
2017-02-01
We identify proteins that associate with the THO core complex, and show that the TEX1 and MOS11 components functionally interact, affecting mRNA export and splicing as well as plant development. TREX (TRanscription-EXport) is a multiprotein complex that plays a central role in the coordination of synthesis, processing and nuclear export of mRNAs. Using targeted proteomics, we identified proteins that associate with the THO core complex of Arabidopsis TREX. In addition to the RNA helicase UAP56 and the mRNA export factors ALY2-4 and MOS11 we detected interactions with the mRNA export complex TREX-2 and multiple spliceosomal components. Plants defective in the THO component TEX1 or in the mRNA export factor MOS11 (orthologue of human CIP29) are mildly affected. However, tex1 mos11 double-mutant plants show marked defects in vegetative and reproductive development. In tex1 plants, the levels of tasiRNAs are reduced, while miR173 levels are decreased in mos11 mutants. In nuclei of mos11 cells increased mRNA accumulation was observed, while no mRNA export defect was detected with tex1 cells. Nevertheless, in tex1 mos11 double-mutants, the mRNA export defect was clearly enhanced relative to mos11. The subnuclear distribution of TEX1 substantially overlaps with that of splicing-related SR proteins and in tex1 plants the ratio of certain alternative splicing events is altered. Our results demonstrate that Arabidopsis TEX1 and MOS11 are involved in distinct steps of the biogenesis of mRNAs and small RNAs, and that they interact regarding some aspects, but act independently in others.
Alves, Agnelo Neves; Ribeiro, Beatriz Guimarães; Fernandes, Kristianne Porta Santos; Souza, Nadhia Helena Costa; Rocha, Lília Alves; Nunes, Fabio Daumas; Bussadori, Sandra Kalil; Mesquita-Ferrari, Raquel Agnelli
2016-05-01
This study analyzed the effect of pre-injury and post-injury irradiation with low-level laser therapy (LLLT) on the mRNA expression of myogenic regulatory factors and interleukin 6 (IL-6) during the skeletal muscle repair. Male rats were divided into six groups: control group, sham group, LLLT group, injury group; pre-injury LLLT group, and post-injury LLLT group. LLLT was performed with a diode laser (wavelength 780 nm; output power 40 mW' and total energy 3.2 J). Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly onto the belly of the tibialis anterior (TA) muscle. After euthanasia, the TA muscle was removed for the isolation of total RNA and analysis of MyoD, myogenin, and IL-6 using real-time quantitative PCR. Significant increases were found in the expression of MyoD mRNA at 3 and 7 days as well as the expression of myogenin mRNA at 14 days in the post-injury LLLT group in comparison to injury group. A significant reduction was found in the expression of IL-6 mRNA at 3 and 7 days in the pre-injury LLLT and post-injury LLLT groups. A significant increase in IL-6 mRNA was found at 14 days in the post-injury LLLT group in comparison to the injury group. LLLT administered following muscle injury modulates the mRNA expression of MyoD and myogenin. Moreover, the both forms of LLLT administration were able to modulate the mRNA expression of IL-6 during the muscle repair process.
Lechuga, Carmen G; Hernández-Nazara, Zamira H; Domínguez Rosales, José-Alfredo; Morris, Elena R; Rincón, Ana Rosa; Rivas-Estilla, Ana María; Esteban-Gamboa, Andrés; Rojkind, Marcos
2004-11-01
Transforming growth factor-beta1 (TGF-beta1), the main cytokine involved in liver fibrogenesis, induces expression of the type I collagen genes in hepatic stellate cells by a transcriptional mechanism, which is hydrogen peroxide and de novo protein synthesis dependent. Our recent studies have revealed that expression of type I collagen and matrix metalloproteinase-13 (MMP-13) mRNAs in hepatic stellate cells is reciprocally modulated. Because TGF-beta1 induces a transient elevation of alpha1(I) collagen mRNA, we investigated whether this cytokine was able to induce the expression of MMP-13 mRNA during the downfall of the alpha1(I) collagen mRNA. In the present study, we report that TGF-beta1 induces a rapid decline in steady-state levels of MMP-13 mRNA at the time that it induces the expression of alpha1(I) collagen mRNA. This change in MMP-13 mRNA expression occurs within the first 6 h postcytokine administration and is accompanied by a twofold increase in gene transcription and a fivefold decrease in mRNA half-life. This is followed by increased expression of MMP-13 mRNA, which reaches maximal values by 48 h. Our results also show that this TGF-beta1-mediated effect is de novo protein synthesis-dependent and requires the activity of p38MAPK, phosphatidylinositol 3-kinase, AKT, and p70(S6k). Altogether, our data suggest that regulation of MMP-13 by TGF-beta1 is a complex process involving transcriptional and posttranscriptional mechanisms.
Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel
2014-08-01
The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.
Holmes, Kristen J; Klass, Daniel M; Guiney, Evan L; Cyert, Martha S
2013-01-01
RNA binding proteins (RBPs) are vital to the regulation of mRNA transcripts, and can alter mRNA localization, degradation, translation, and storage. Whi3 was originally identified in a screen for small cell size mutants, and has since been characterized as an RBP. The identification of Whi3-interacting mRNAs involved in mediating cellular responses to stress suggested that Whi3 might be involved in stress-responsive RNA processing. We show that Whi3 localizes to stress granules in response to glucose deprivation or heat shock. The kinetics and pattern of Whi3 localization in response to a range of temperatures were subtly but distinctly different from those of known components of RNA processing granules. Deletion of Whi3 resulted in an increase in the relative abundance of Whi3 target RNAs, either in the presence or absence of heat shock. Increased levels of the CLN3 mRNA in whi3Δ cells may explain their decreased cell size. Another mRNA target of Whi3 encodes the zinc-responsive transcription factor Zap1, suggesting a role for Whi3 in response to zinc stress. Indeed, we found that whi3Δ cells have enhanced sensitivity to zinc toxicity. Together our results suggest an expanded model for Whi3 function: in addition to its role as a regulator of the cell cycle, Whi3 may have a role in stress-dependent RNA processing and responses to a variety of stress conditions.
Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy
Ames, EG; Lawson, MJ; Mackey, AJ; Holmes, JW
2013-01-01
Cardiac hypertrophy has been well-characterized at the level of transcription. During cardiac hypertrophy, genes normally expressed primarily during fetal heart development are reexpressed, and this fetal gene program is believed to be a critical component of the hypertrophic process. Recently, alternative splicing of mRNA transcripts has been shown to be temporally regulated during heart development, leading us to consider whether fetal patterns of splicing also reappear during hypertrophy. We hypothesized that patterns of alternative splicing occurring during heart development are recapitulated during cardiac hypertrophy. Here we present a study of isoform expression during pressure-overload cardiac hypertrophy induced by 10 days of transverse aortic constriction (TAC) in rats and in developing fetal rat hearts compared to sham-operated adult rat hearts, using high-throughput sequencing of poly(A) tail mRNA. We find a striking degree of overlap between the isoforms expressed differentially in fetal and pressure-overloaded hearts compared to control: forty-four percent of the isoforms with significantly altered expression in TAC hearts are also expressed at significantly different levels in fetal hearts compared to control (P < 0.001). The isoforms that are shared between hypertrophy and fetal heart development are significantly enriched for genes involved in cytoskeletal organization, RNA processing, developmental processes, and metabolic enzymes. Our data strongly support the concept that mRNA splicing patterns normally associated with heart development recur as part of the hypertrophic response to pressure overload. These findings suggest that cardiac hypertrophy shares post-transcriptional as well as transcriptional regulatory mechanisms with fetal heart development. PMID:23688780
Gustafson, E. L.; Durkin, M. M.; Bard, J. A.; Zgombick, J.; Branchek, T. A.
1996-01-01
1. Receptor autoradiography and in situ hybridization histochemistry have been used to delineate the distribution of the 5-ht7 receptor and its mRNA in rat brain. Receptor autoradiographic studies were performed using [3H]-5-carboxamidotryptamine (5-CT) as the radioligand. The binding characteristics of the masking compounds were determined in Cos-7 cells transfected with a panel of 5-HT receptor subtype cDNAs, including the rat 5-ht7 cDNA. In situ hybridization studies were carried out with 35S-labelled oligonucleotide probes to the rat 5-ht7 mRNA. 2. Specific binding of [3H]-5-CT was observed in many areas of the rat brain. Following co-incubation with 1 microM ergotamine, this binding was completely eliminated. After addition of the masking ligands, [3H]-5-CT binding remained in layers 1-3 of cortex, septum, globus pallidus, thalamus, hypothalamus, centromedial amygdala, substantia nigra, periaquaductal gray, and superior colliculus. Addition of the antagonist, methiothepin, to the incubation regimen eliminated most of the remaining [3H]-5-CT binding in the brain, with the exception of the globus pallidus and substantia nigra. 3. The 5-ht7 mRNA was discretely localized in rat brain. The most intense hybridization signals were observed over the thalamus, the anterior hippocampal rudiment, and over the CA3 region of the hippocampus. Other regions containing hybridization signals included the septum, the hypothalamus, the centromedial amygdala and the periaquaductal gray. The regions exhibiting a modest receptor binding signal after methiothepin incubation, the globus pallidus and the substantia nigra, contained no 5-ht7 hybridization signals, suggesting a non-5-ht7 subtype in these two related structures. 4. The distribution of the 5-ht7 receptor and its mRNA is suggestive of multiple roles for this novel 5-HT receptor, within several brain systems. The limbic system (centromedial amygdala, anterior hippocampal rudiment, hypothalamus) is particularly well-represented, indicating a potential role for the 5-ht7 receptor in affective processes. Images Figure 2 Figure 3 Figure 4 PMID:8646411
2010-01-01
Background Captopril is an angiotensin-converting enzyme (ACE) inhibitor widely used in the treatment of arterial hypertension and cardiovascular diseases. Our objective was to study whether captopril is able to attenuate the cardiac inflammatory process associated with arterial hypertension. Methods Left ventricle mRNA expression and plasma levels of pro-inflammatory (interleukin-1β (IL-1β) and IL-6) and anti-inflammatory (IL-10) cytokines, were measured in spontaneously hypertensive rats (SHR) and their control normotensive, Wistar-Kyoto (WKY) rats, with or without a 12-week treatment with captopril (80 mg/Kg/day; n = six animals per group). To understand the mechanisms involved in the effect of captopril, mRNA expression of ACE, angiotensin II type I receptor (AT1R) and p22phox (a subunit of NADPH oxidase), as well as NF-κB activation and expression, were measured in the left ventricle of these animals. Results In SHR, the observed increases in blood pressures, heart rate, left ventricle relative weight, plasma levels and cardiac mRNA expression of IL-1β and IL-6, as well as the reductions in the plasma levels and in the cardiac mRNA expression of IL-10, were reversed after the treatment with captopril. Moreover, the mRNA expressions of ACE, AT1R and p22phox, which were enhanced in the left ventricle of SHR, were reduced to normal values after captopril treatment. Finally, SHR presented an elevated cardiac mRNA expression and activation of the transcription nuclear factor, NF-κB, accompanied by a reduced expression of its inhibitor, IκB; captopril administration corrected the observed changes in all these parameters. Conclusion These findings show that captopril decreases the inflammation process in the left ventricle of hypertensive rats and suggest that NF-κB-driven inflammatory reactivity might be responsible for this effect through an inactivation of NF-κB-dependent pro-inflammatory factors. PMID:20462420
Pasquinelli, Rosa; Pignata, Sandro; Greggi, Stefano; Vuttariello, Emilia; Bello, Anna Maria; Calise, Celeste; Scaffa, Cono; Pisano, Carmela; Losito, Nunzia Simona; Fusco, Alfredo; Califano, Daniela; Chiappetta, Gennaro
2015-01-01
Ovarian cancer is the most lethal gynecological malignancy and the high mortality rate is associated with advanced-stage disease at the time of the diagnosis. In order to find new tools to make diagnosis of Epithelial Ovarian Cancer (EOC) at early stages we have analyzed the presence of specific HMGA2 mRNA in the plasma of patients affected by this neoplasm. HMGA2 overexpression represents a feature of several malignances including ovarian carcinomas. Notably, we detected HMGA2 specific mRNA in the plasma of 40 out 47 patients with EOC, but not in the plasma of healthy donors. All cases found positive for HMGA2 mRNA in the plasma showed HMGA2 protein expression in EOC tissues. Therefore, on the basis of these results, the analysis of circulating HMGA2 specific mRNA might be considered a very promising tool for the early diagnosis of EOC. PMID:25749380
Post-Transcriptional Regulation of BCL2 mRNA by the RNA-Binding Protein ZFP36L1 in Malignant B Cells
Zekavati, Anna; Nasir, Asghar; Alcaraz, Amor; Aldrovandi, Maceler; Marsh, Phil; Norton, John D.; Murphy, John J.
2014-01-01
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3′ untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the ‘maximum information coefficient’ (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3′ untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3′ untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells. PMID:25014217
Hodko, Domagoj; Ward, Taylor; Chanfreau, Guillaume
2016-01-01
Rtr1p is a phosphatase that impacts gene expression by modulating the phosphorylation status of the C-terminal domain of the large subunit of RNA polymerase II. Here, we show that Rtr1p is a component of a novel mRNA degradation pathway that promotes its autoregulation through turnover of its own mRNA. We show that the 3′UTR of the RTR1 mRNA contains a cis element that destabilizes this mRNA. RTR1 mRNA turnover is achieved through binding of Rtr1p to the RTR1 mRNP in a manner that is dependent on this cis element. Genetic evidence shows that Rtr1p-mediated decay of the RTR1 mRNA involves the 5′-3′ DExD/H-box RNA helicase Dhh1p and the 3′-5′ exonucleases Rex2p and Rex3p. Rtr1p and Rex3p are found associated with Dhh1p, suggesting a model for recruiting the REX exonucleases to the RTR1 mRNA for degradation. Rtr1p-mediated decay potentially impacts additional transcripts, including the unspliced BMH2 pre-mRNA. We propose that Rtr1p may imprint its RNA targets cotranscriptionally and determine their downstream degradation mechanism by directing these transcripts to a novel turnover pathway that involves Rtr1p, Dhh1p, and the REX family of exonucleases. PMID:26843527
Kinetics of lipid-nanoparticle-mediated intracellular mRNA delivery and function
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2017-10-01
mRNA delivery into cells forms the basis for one of the new and promising ways to treat various diseases. Among suitable carriers, lipid nanoparticles (LNPs) with a size of about 100 nm are now often employed. Despite high current interest in this area, the understanding of the basic details of LNP-mediated mRNA delivery and function is limited. To clarify the kinetics of mRNA release from LNPs, the author uses three generic models implying (i) exponential, (ii) diffusion-controlled, and (iii) detachment-controlled kinetic regimes, respectively. Despite the distinct differences in these kinetics, the associated transient kinetics of mRNA translation to the corresponding protein and its degradation are shown to be not too sensitive to the details of the mRNA delivery by LNPs (or other nanocarriers). In addition, the author illustrates how this protein may temporarily influence the expression of one gene or a few equivalent genes. The analysis includes positive or negative regulation of the gene transcription via the attachment of the protein without or with positive or negative feedback in the gene expression. Stable, bistable, and oscillatory schemes have been scrutinized in this context.
Iwakura, Nobuhiro; Yokoyama, Takeshi; Quaglia, Fabio; Mitsuoka, Kaoru; Mio, Kazuhiro; Shigematsu, Hideki; Shirouzu, Mikako; Kaji, Akira; Kaji, Hideko
2017-01-01
A model Post-Termination Complex (PoTC) used for the discovery of Ribosome Recycling Factor (RRF) was purified and characterized by cryo-electron microscopic analysis and biochemical methods. We established that the model PoTC has mostly one tRNA, at the P/E or P/P position, together with one mRNA. The structural studies were supported by the biochemical measurement of bound tRNA and mRNA. Using this substrate, we establish that the release of tRNA, release of mRNA and splitting of ribosomal subunits occur during the recycling reaction. Order of these events is tRNA release first followed by mRNA release and splitting almost simultaneously. Moreover, we demonstrate that IF3 is not involved in any of the recycling reactions but simply prevents the re-association of split ribosomal subunits. Our finding demonstrates that the important function of RRF includes the release of mRNA, which is often missed by the use of a short ORF with the Shine-Dalgarno sequence near the termination site. PMID:28542628
microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.
Singh, Nagendra Kumar
2017-09-01
microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.
Luttmer, Roosmarijn; Berkhof, Johannes; Dijkstra, Maaike G; van Kemenade, Folkert J; Snijders, Peter J F; Heideman, Daniëlle A M; Meijer, Chris J L M
2015-06-01
High-risk human papillomavirus (hrHPV) DNA positive women require triage testing to identify those with high-grade cervical intraepithelial neoplasia or cancer (≥CIN2). Comparing three triage algorithms (1) E7 mRNA testing following HPV16/18/31/33/45/52/58 genotyping (E7 mRNA test), (2) HPV16/18 DNA genotyping and (3) cytology, for ≥CIN2 detection in hrHPV DNA-positive women. hrHPV DNA-positive women aged 18-63 years visiting gynecology outpatient clinics were included in a prospective observational cohort study. From these women a cervical scrape and colposcopy-directed biopsies were obtained. Cervical scrapes were evaluated by cytology, HPV DNA genotyping by bead-based multiplex genotyping of GP5+6+-PCR-products, and presence of HPV16/18/31/33/45/52/58 E7 mRNA using nucleic acid sequence-based amplification (NASBA) in DNA positive women for respective HPV types. Sensitivities and specificities for ≥CIN2 were compared between E7 mRNA test and HPV16/18 DNA genotyping in the total group (n=348), and E7 mRNA test and cytology in a subgroup of women referred for non-cervix-related gynecological complaints (n=133). Sensitivity for ≥CIN2 of the E7 mRNA test was slightly higher than that of HPV16/18 DNA genotyping (66.9% versus 60.9%; ratio 1.10, 95% CI: 1.0002-1.21), at similar specificity (54.8% versus 52.3%; ratio 1.05, 95% CI: 0.93-1.18). Neither sensitivity nor specificity of the E7 mRNA test differed significantly from that of cytology (sensitivity: 68.8% versus 75.0%; ratio 0.92, 95% CI: 0.72-1.17; specificity: 59.4% versus 65.3%; ratio 0.91, 95% CI: 0.75-1.10). For detection of ≥CIN2 in hrHPV DNA-positive women, an algorithm including E7 mRNA testing following HPV16/18/31/33/45/52/58 DNA genotyping performs similar to HPV16/18 DNA genotyping or cytology. Copyright © 2015 Elsevier B.V. All rights reserved.
Erber, Ramona; Stöhr, Robert; Herlein, Stefanie; Giedl, Claudia; Rieker, Ralf Joachim; Fuchs, Florian; Ficker, Joachim H; Hartmann, Arndt; Veltrup, Elke; Wirtz, Ralph M; Brueckl, Wolfgang M
2017-12-01
Immunohistochemical (IHC) assessment of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC) has become important since the development of anti-PD-1/-PD-L1 directed drugs. Various PD-L1 antibodies and cut-offs have been used in different trials to predict response to these drugs, thus comparison of those studies is difficult. We compared PD-L1 mRNA expression measured by RT-qPCR with PD-L1 protein expression evaluated by IHC. Moreover, we investigated the impact of different tumour tissue acquisition methods on the reliability of PD-L1 measurement techniques. NSCLC cases (N=22), including n=9 mediastinal lymph node biopsies acquired by endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and n=5 metastases, were evaluated prospectively for PD-L1 protein on tumor cells (TC) and immune cells (IC) using E1L3N and 28-8 antibodies and PD-L1 mRNA using the CheckPoint TYPER® assay. In primary NSCLC tissues, agreement between PD-L1 mRNA and TC staining using the 28-8 antibody was excellent (ĸ=0.85, p=0.0002). Comparing both PD-L1 antibodies against each other showed a kappa value of 0.58 (p=0.0106). In EBUS-TBNA, PD-L1 mRNA correlated perfectly with the 28-8 antibody (ĸ=1.0, p=0.0023). PD-L1 mRNA levels significantly differed when comparing 28-8 TC staining of tumours >49% with 1-49% and 0% (p=0.0040; p=0.0081, respectively). In metastatic lesions, differences between PD-L1 mRNA and IHC became apparent (ĸ=0.2, p=0.2525). Testing of PD-L1 mRNA and 28-8 IHC showed an excellent agreement in NSCLC samples including mediastinal lymph node biopsies. Since PD-L1 expression in >50% TC detected by 28-8 IHC can be reliably detected by RT-qPCR, quantitative PD-L1 mRNA determination should be considered as an alternative to IHC as there is no interobserver variability in RNA results. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Cotton, Sarah; Brown, Robert E; Nugent, Elizabeth K; Robazetti, Sonia C; Berens, Pamela D; Smith, Judith A
2018-04-01
To assess the consistency between human papillomavirus (HPV) mRNA testing in women with a history of previous HPV infections diagnosed by HPV DNA assay and the potential effects on follow-up HPV screening. This was a quality improvement study that used data from a pathology laboratory software database reviewed from November 2014 to June 2016 to identify female patients aged 30 years or older with greater than one HPV-positive result, including one or more HPV mRNA assay results and one or more documented HPV DNA assay results for comparison. Previous correlative cytology and colposcopic histopathology were also documented. American College of Obstetricians and Gynecologists' cervical cancer screening guidelines were used to compare potential differences in follow-up recommendations. Four hundred twenty-five charts for female patients 30 years of age or older were identified with one or more prior high-risk HPV infections by DNA assay. There was a 69.3% difference in HPV mRNA results compared with previous HPV DNA-positive results. There was a potential change in follow-up for 71.7% of patients with one prior high-risk-HPV-positive result and 60.0% of patients with two or more prior high-risk HPV-positive results. There were 231 colposcopy reports evaluated in this study. Of these, 62 (26.8%) were abnormal colposcopy reports, including 45 low-grade squamous intraepithelial lesions, 15 high-grade squamous intraepithelial lesions, and two cancers. Twenty-five (40.3%) abnormal colposcopy findings were in patients with a history of at least than two prior HPV DNA-positive results and a report of currently being HPV-negative with the mRNA assay. The HPV mRNA assays are less sensitive for detection of latent HPV infections compared with HPV DNA assays. Based on these data and the potential change in follow-up care, the HPV mRNA assay should not be used for a primary screening tool for cervical cancer. Many pathology laboratories have shifted to using the HPV mRNA assay without clear discussion with gynecologists about the effects on patient follow-up. The type of HPV assay being used should be documented and any HPV mRNA result confirmed by HPV DNA assay.
Pavlícek, Adam; Paces, Jan; Elleder, Daniel; Hejnar, Jirí
2002-03-01
We report here the presence of numerous processed pseudogenes derived from the W family of endogenous retroviruses in the human genome. These pseudogenes are structurally colinear with the retroviral mRNA followed by a poly(A) tail. Our analysis of insertion sites of HERV-W processed pseudogenes shows a strong preference for the insertion motif of long interspersed nuclear element (LINE) retrotransposons. The genomic distribution, stability during evolution, and frequent truncations at the 5' end resemble those of the pseudogenes generated by LINEs. We therefore suggest that HERV-W processed pseudogenes arose by multiple and independent LINE-mediated retrotransposition of retroviral mRNA. These data document that the majority of HERV-W copies are actually nontranscribed promoterless pseudogenes. The current search for HERV-Ws associated with several human diseases should concentrate on a small subset of transcriptionally competent elements.
Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.
Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment
Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon
2012-01-01
Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence. PMID:23085987
Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.
Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon
2012-11-14
Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.
Sensitivity of mRNA Translation
Poker, Gilad; Margaliot, Michael; Tuller, Tamir
2015-01-01
Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process (TASEP), we investigate the effect of small changes in the initiation, elongation, and termination rates along the mRNA strand on the steady-state protein translation rate. We show that the sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results as well as efficient numerical schemes that are applicable for large-scale models. Our results show that in the usual endogenous case, when initiation is more rate-limiting than elongation, the sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation rate. These results are in agreement with previous molecular evolutionary and synthetic biology experimental studies. PMID:26238363
Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors
NASA Astrophysics Data System (ADS)
Ibarra-Junquera, V.; Torres, L. A.; Rosu, H. C.; Argüello, G.; Collado-Vides, J.
2005-07-01
Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B. C. Goodwin, Temporal Oscillations in Cells (Academic, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comput. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein and metabolite concentrations. Further, we present results for a three gene case in coregulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological system.
Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability.
Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina
2016-06-06
Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.
Detection of MDR1 mRNA expression with optimized gold nanoparticle beacon
NASA Astrophysics Data System (ADS)
Zhou, Qiumei; Qian, Zhiyu; Gu, Yueqing
2016-03-01
MDR1 (multidrug resistance gene) mRNA expression is a promising biomarker for the prediction of doxorubicin resistance in clinic. However, the traditional technical process in clinic is complicated and cannot perform the real-time detection mRNA in living single cells. In this study, the expression of MDR1 mRNA was analyzed based on optimized gold nanoparticle beacon in tumor cells. Firstly, gold nanoparticle (AuNP) was modified by thiol-PEG, and the MDR1 beacon sequence was screened and optimized using a BLAST bioinformatics strategy. Then, optimized MDR1 molecular beacons were characterized by transmission electron microscope, UV-vis and fluorescence spectroscopies. The cytotoxicity of MDR1 molecular beacon on L-02, K562 and K562/Adr cells were investigated by MTT assay, suggesting that MDR1 molecular beacon was low inherent cytotoxicity. Dark field microscope was used to investigate the cellular uptake of hDAuNP beacon assisted with ultrasound. Finally, laser scanning confocal microscope images showed that there was a significant difference in MDR1 mRNA expression in K562 and K562/Adr cells, which was consistent with the results of q-PCR measurement. In summary, optimized MDR1 molecular beacon designed in this study is a reliable strategy for detection MDR1 mRNA expression in living tumor cells, and will be a promising strategy for in guiding patient treatment and management in individualized medication.
AthMethPre: a web server for the prediction and query of mRNA m6A sites in Arabidopsis thaliana.
Xiang, Shunian; Yan, Zhangming; Liu, Ke; Zhang, Yaou; Sun, Zhirong
2016-10-18
N 6 -Methyladenosine (m 6 A) is the most prevalent and abundant modification in mRNA that has been linked to many key biological processes. High-throughput experiments have generated m 6 A-peaks across the transcriptome of A. thaliana, but the specific methylated sites were not assigned, which impedes the understanding of m 6 A functions in plants. Therefore, computational prediction of mRNA m 6 A sites becomes emergently important. Here, we present a method to predict the m 6 A sites for A. thaliana mRNA sequence(s). To predict the m 6 A sites of an mRNA sequence, we employed the support vector machine to build a classifier using the features of the positional flanking nucleotide sequence and position-independent k-mer nucleotide spectrum. Our method achieved good performance and was applied to a web server to provide service for the prediction of A. thaliana m 6 A sites. The server also provides a comprehensive database of predicted transcriptome-wide m 6 A sites and curated m 6 A-seq peaks from the literature for query and visualization. The AthMethPre web server is the first web server that provides a user-friendly tool for the prediction and query of A. thaliana mRNA m 6 A sites, which is freely accessible for public use at .
Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka
2013-01-01
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. PMID:23826286
Kinetic models of gene expression including non-coding RNAs
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2011-03-01
In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.
Forensic molecular pathology of violent deaths.
Maeda, Hitoshi; Zhu, Bao-li; Ishikawa, Takaki; Michiue, Tomomi
2010-12-15
In forensic pathology, while classical morphology remains a core procedure to investigate deaths, a spectrum of ancillary procedures has been developed and incorporated to detail the pathology. Among them, postmortem biochemistry is important to investigate the systemic pathophysiological changes involved in the dying process that cannot be detected by morphology. In addition, recent advances in molecular biology have provided a procedure to investigate genetic bases of diseases that might present with sudden death, which is called 'molecular autopsy'. Meanwhile, the practical application of RNA analyses to postmortem investigation has not been accepted due to rapid decay after death; however, recent experimental and practical studies using real-time reverse transcription-PCR have suggested that the relative quantification of mRNA transcripts can be applied in molecular pathology for postmortem investigation of deaths, which may be called 'advanced molecular autopsy'. In a broad sense, forensic molecular pathology implies applied medical sciences to investigate the genetic basis of diseases, and the pathophysiology of diseases and traumas leading to death at a biological molecular level in the context of forensic pathology. The possible applications include analyses of local pathology, including tissue injury, ischemia/hypoxia and inflammation at the site of insult or specific tissue damage from intoxication, systemic responses to violence or environmental hazards, disorders due to intoxication, and systemic pathophysiology of fatal process involving major life-support organs. A review of previous studies suggests that systematic postmortem quantitative analysis of mRNA transcripts can be established from multi-faceted aspects of molecular biology and incorporated into death investigations in forensic pathology, to support and reinforce morphological evidence. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Brené, S; Lindefors, N; Herrera-Marschitz, M; Persson, H
1990-01-01
In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarly, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudate-putamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.
Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation.
el-Mahdani, N.; Vaillant, J. C.; Guiguet, M.; Prévot, S.; Bertrand, V.; Bernard, C.; Parc, R.; Béréziat, G.; Hermelin, B.
1997-01-01
We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes stage. PMID:9052405
Downie, Bruce; Gurusinghe, Sunitha; Dahal, Petambar; Thacker, Richard R.; Snyder, John C.; Nonogaki, Hiroyuki; Yim, Kyuock; Fukanaga, Keith; Alvarado, Veria; Bradford, Kent J.
2003-01-01
Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance. PMID:12644684
Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M
2018-01-01
In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.
Changes in beta-actin mRNA expression in remodeling canine myocardium.
Carlyle, W C; Toher, C A; Vandervelde, J R; McDonald, K M; Homans, D C; Cohn, J N
1996-01-01
Beta-actin, a cytoskeletal protein important in the maintenance of cytoarchitecture, has long been thought to be expressed constitutively in myocardial tissue. As such, beta-actin mRNA has been used as a control gene in a wide range of experiments. However, we have uncovered consistent changes in beta-actin mRNA expression in canine myocardium remodeling as a result of insult to the left ventricle. The experimental canine models used were either DC shock damage to the left ventricle or volume overload resulting from severe mitral regurgitation. The remodeling process in both canine models is characterized by an increase in left ventricular mass. PCR amplification using primers designed to selectively amplify the 3' end and a portion of the 3' untranslated region of beta-actin mRNA resulted in the generation of a 297 base pair product predominant only in normal canine myocardium and a 472 base pair product that became increasingly prominent from 1 to 30 days after DC shock damage to the left ventricle and from 10 to 90 days after creation of mitral regurgitation. Northern analysis showed a three-fold increase in beta-actin mRNA after either DC shock or creation of mitral regurgitation. Western analysis revealed an early increase in beta-actin protein followed by an apparent decrease to below baseline levels. These observations suggest that changes in beta-actin mRNA expression accompany the structural alterations that occur in response to myocardial damage. Whether or not the changes in beta-actin mRNA expression play a role in mediating these structural alterations remains to be determined.
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-05-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells.
Chaperone Hsp27 Modulates AUF1 Proteolysis and AU-Rich Element-Mediated mRNA Degradation▿
Knapinska, Anna M.; Gratacós, Frances M.; Krause, Christopher D.; Hernandez, Kristina; Jensen, Amber G.; Bradley, Jacquelyn J.; Wu, Xiangyue; Pestka, Sidney; Brewer, Gary
2011-01-01
AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues—Ser15, Ser78, and Ser82—by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2–Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization. PMID:21245386
Moretti, Francesca; Rolando, Chiara; Winker, Moritz; Ivanek, Robert; Rodriguez, Javier; Von Kriegsheim, Alex; Taylor, Verdon; Bustin, Michael
2015-01-01
Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus. PMID:25825524
A case of cervical cancer expressed three mRNA variant of Hyaluronan-mediated motility receptor
Villegas-Ruíz, Vanessa; Salcedo, Mauricio; Zentella-Dehesa, Alejandro; de Oca, Edén V Montes; Román-Basaure, Edgar; Mantilla-Morales, Alejandra; Dávila-Borja, Víctor M; Juárez-Méndez, Sergio
2014-01-01
Cervical cancer is the second malignancy in Mexico, little is known about the prognostic factors associated with this disease. Several cellular components are important in their transformation and progression. Alternative mRNA splice is an important mechanism for generating protein diversity, nevertheless, in cancer unknown mRNA diversity is expressed. Hyaluronan-mediated motility receptor (HMMR, RHAMM, CD168) is a family member of proteins, hyaluronan acid dependent, and has been associated with different malignant processes such as: angiogenesis, cell invasiveness, proliferation, metastasis and poor outcome in some tumors. In the present study we identified expression of HMMR in cervical cancer by means of RT-PCR and sequencing. Our results indicate co-expression of two HMMR variants in all samples, and one case expressed three alternative HMMR splice transcripts. These results showed the heterogeneity of mRNA transcripts of HMMR that could express in cancer and the expression of HMMR could be marker of malignancy in CC. PMID:24966934
Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp
Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli
2016-01-01
In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015
Blevins, Tana; Aliev, Fazil; Adkins, Amy; Hack, Laura; Bigdeli, Tim; D. van der Vaart, Andrew; Web, Bradley Todd; Bacanu, Silviu-Alin; Kalsi, Gursharan; Kendler, Kenneth S.; Miles, Michael F.; Dick, Danielle; Riley, Brien P.; Dumur, Catherine; Vladimirov, Vladimir I.
2015-01-01
Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD. PMID:26381263
Poblete-Naredo, Irais; Rodríguez-Yáñez, Yury; Corona-Núñez, Rogelio O; González-Monroy, Stuart; Salinas, Juan E; Albores, Arnulfo
2018-05-17
Hypertension disorders (HD) and pre-eclampsia (PRE) are leading causes of maternal deaths worldwide. PRE is associated with vascular endothelial dysfunction and with deregulation of the fibrinolysis pathway genes. Fibrinolysis is the fibrin clot hydrolysis process catalyzed by plasmin, a proteolytic enzyme formed from plasminogen. Plasminogen is cleaved by tissue-type (tPA) and urokinase-type (uPA) activators and inhibited by the plasminogen activator inhibitors type-1 (PAI-1) and type-2 (PAI-2). The whole process maintains blood hemostasis. This study aims to assess PAI-1, PAI-2, tPA and uPA mRNA expression in primary cultured human umbilical vein endothelial cells (HUVEC) isolated and cultured from healthy, HD and PRE women. Results show that PAI-1 and PAI-2 mRNA decreased in HD-HUVEC, whereas PAI-1 and uPA decreased in PRE-HUVEC cultures compared to control ones. Notably, the expression ratio between pro- and anti-fibrinolytic actors remained unchanged among the studied groups. It seems that newborn's hemostasis is maintained balanced probably by a compensatory mechanism that involves changes in the fibrinolysis gene expression profile. The real impact of these changes in mRNA expression is unknown, however, it is suggested that these changes could be associated with an increased predisposition to vascular disease development in the progeny. Copyright © 2018. Published by Elsevier Ltd.
5′ to 3′ mRNA Decay Contributes to the Regulation of Arabidopsis Seed Germination by Dormancy1
Basbouss-Serhal, Isabelle; Pateyron, Stéphanie; Cochet, Françoise
2017-01-01
The regulation of plant gene expression, necessary for development and adaptive responses, relies not only on RNA transcription but also on messenger RNA (mRNA) fate. To understand whether seed germination relies on the degradation of specific subsets of mRNA, we investigated whether the 5′ to 3′ RNA decay machinery participated in the regulation of this process. Arabidopsis (Arabidopsis thaliana) seeds of exoribonuclease4 (xrn4) and varicose (vcs) mutants displayed distinct dormancy phenotypes. Transcriptome analysis of xrn4-5 and vcs-8 mutant seeds allowed us to identify genes that are likely to play a role in the control of germination. Study of 5′ untranslated region features of these transcripts revealed that specific motifs, secondary energy, and GC content could play a role in their degradation by XRN4 and VCS, and Gene Ontology clustering revealed novel actors of seed dormancy and germination. Several specific transcripts identified as being putative targets of XRN4 and VCS in seeds (PECTIN LYASE-LIKE, ASPARTYL PROTEASE, DWD-HYPERSENSITIVE-TO-ABA3, and YELLOW STRIPE-LIKE5) were further studied by reverse genetics, and their functional roles in the germination process were confirmed by mutant analysis. These findings suggest that completion of germination and its regulation by dormancy also depend on the degradation of specific subsets of mRNA. PMID:28126845
[Schizophrenia and cortical GABA neurotransmission].
Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A
2010-01-01
Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra-synaptic GABA-A receptors. Our recent analyses demonstrated that this pattern exists across diverse cortical areas including the prefrontal, anterior cingulate, primary motor, and primary visual cortices. GABA neurotransmission by PV-containing and SST-containing neurons is important for the generation of cortical oscillatory activities in the gamma (30-100 Hz) and theta (4-7 Hz) bands, respectively. These oscillatory activities have been proposed to play critical roles in regulating the efficiency of information transfer between neurons and neuronal networks in the cortex. Altered cortical GABA neurotransmission appears to contribute to disturbances in diverse functions through affecting the generation of cortical oscillations in schizophrenia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.
2011-09-10
Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenousmore » nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.« less
Earp, Justin C; Dubois, Debra C; Molano, Diana S; Pyszczynski, Nancy A; Almon, Richard R; Jusko, William J
2008-08-01
A mechanism-based model for pharmacodynamic effects of dexamethasone (DEX) was incorporated into our model for arthritis disease progression in the rat to aid in identification of the primary factors responsible for edema and bone loss. Collagen-induced arthritis was produced in male Lewis rats after injection of type II porcine collagen. DEX was given subcutaneously in single doses of 0.225 or 2.25 mg/kg or 7-day multiple doses of 0.045 or 0.225 mg/kg at 21 days postdisease induction. Effects on disease progression were measured by paw swelling, bone mineral density (BMD), body weights, plasma corticosterone (CST), and tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and glucocorticoid receptor (GR) mRNA expression in paw tissue. Lumbar and femur BMD was determined by PIXImus II dual-energy X-ray absorptiometry. Plasma CST was assayed by high-performance liquid chromatography. Cytokine and GR mRNA were assayed by quantitative real-time polymerase chain reaction. Indirect response models, drug interaction models, transduction processes, and the fifth-generation model of corticosteroid dynamics were integrated and applied using S-ADAPT software to describe how dexamethasone binding to GR can regulate diverse processes. Cytokine mRNA, GR mRNA, plasma CST, and paw edema were suppressed after DEX administration. TNF-alpha mRNA expression and BMD seemed to increase immediately after dosing but were ultimately reduced. Model parameters indicated that IL-6 and IL-1beta were most sensitive to inhibition by DEX. TNF-alpha seemed to primarily influence edema, whereas IL-6 contributed the most to bone loss. Lower doses of corticosteroids may be sufficient to suppress the cytokines most relevant to bone erosion.
Pinsonneault, Julia K; Frater, John T; Kompa, Benjamin; Mascarenhas, Roshan; Wang, Danxin; Sadee, Wolfgang
2017-01-01
Genetic variants of ESR1 have been implicated in multiple diseases, including behavioral disorders, but causative variants remain uncertain. We have searched for regulatory variants affecting ESR1 expression in human brain, measuring allelic ESR1 mRNA expression in human brain tissues with marker SNPs in exon4 representing ESR1-008 (or ESRα-36), and in the 3'UTR of ESR1-203, two main ESR1 isoforms in brain. In prefrontal cortex from subjects with bipolar disorder, schizophrenia, and controls (n = 35 each; Stanley Foundation brain bank), allelic ESR1 mRNA ratios deviated from unity up to tenfold at the exon4 marker SNP, with large allelic ratios observed primarily in bipolar and schizophrenic subjects. SNP scanning and targeted sequencing identified rs2144025, associated with large allelic mRNA ratios (p = 1.6E10-6). Moreover, rs2144025 was significantly associated with ESR1 mRNA levels in the Brain eQTL Almanac and in brain regions in the Genotype-Tissue Expression project. In four GWAS cohorts, rs2104425 was significantly associated with behavioral traits, including: hypomanic episodes in female bipolar disorder subjects (GAIN bipolar disorder study; p = 0.0004), comorbid psychological symptoms in both males and females with attention deficit hyperactivity disorder (GAIN ADHD, p = 0.00002), psychological diagnoses in female children (eMERGE study of childhood health, subject age ≥9, p = 0.0009), and traits in schizophrenia (e.g., grandiose delusions, GAIN schizophrenia, p = 0.0004). The first common ESR1 variant (MAF 12-33% across races) linked to regulatory functions, rs2144025 appears conditionally to affect ESR1 mRNA expression in the brain and modulate traits in behavioral disorders.
Kompa, Benjamin; Mascarenhas, Roshan; Wang, Danxin; Sadee, Wolfgang
2017-01-01
Genetic variants of ESR1 have been implicated in multiple diseases, including behavioral disorders, but causative variants remain uncertain. We have searched for regulatory variants affecting ESR1 expression in human brain, measuring allelic ESR1 mRNA expression in human brain tissues with marker SNPs in exon4 representing ESR1-008 (or ESRα-36), and in the 3’UTR of ESR1-203, two main ESR1 isoforms in brain. In prefrontal cortex from subjects with bipolar disorder, schizophrenia, and controls (n = 35 each; Stanley Foundation brain bank), allelic ESR1 mRNA ratios deviated from unity up to tenfold at the exon4 marker SNP, with large allelic ratios observed primarily in bipolar and schizophrenic subjects. SNP scanning and targeted sequencing identified rs2144025, associated with large allelic mRNA ratios (p = 1.6E10-6). Moreover, rs2144025 was significantly associated with ESR1 mRNA levels in the Brain eQTL Almanac and in brain regions in the Genotype-Tissue Expression project. In four GWAS cohorts, rs2104425 was significantly associated with behavioral traits, including: hypomanic episodes in female bipolar disorder subjects (GAIN bipolar disorder study; p = 0.0004), comorbid psychological symptoms in both males and females with attention deficit hyperactivity disorder (GAIN ADHD, p = 0.00002), psychological diagnoses in female children (eMERGE study of childhood health, subject age ≥9, p = 0.0009), and traits in schizophrenia (e.g., grandiose delusions, GAIN schizophrenia, p = 0.0004). The first common ESR1 variant (MAF 12–33% across races) linked to regulatory functions, rs2144025 appears conditionally to affect ESR1 mRNA expression in the brain and modulate traits in behavioral disorders. PMID:28617822
Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Huang, S K; Tseng, Y Z; Lien, W P
1999-04-01
We investigated the gene expression of calcium-handling genes including L-type calcium channel, sarcoplasmic reticular calcium adenosine triphosphatase (Ca(2+)-ATPase), ryanodine receptor, calsequestrin and phospholamban in human atrial fibrillation. Recent studies have demonstrated that atrial electrical remodeling in atrial fibrillation is associated with intracellular calcium overload. However, the changes of calcium-handling proteins remain unclear. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The messenger ribonucleic acid (mRNA) amount of the genes was measured by reverse transcription-polymerase chain reaction and normalized to the mRNA levels of glyceraldehyde 3-phosphate dehydrogenase. The mRNA of L-type calcium channel and of Ca(2+)-ATPase was significantly decreased in patients with persistent atrial fibrillation for more than 3 months (0.36+/-0.26 vs. 0.90+/-0.88 for L-type calcium channel; 0.69+/-0.42 vs. 1.21+/-0.68 for Ca(2+)-ATPase; both p < 0.05, all data in arbitrary unit). We further demonstrated that there was no spatial dispersion of the gene expression among the four atrial tissue sampling sites. Age, gender and underlying cardiac disease had no significant effects on the gene expression. In contrast, the mRNA levels of ryanodine receptor, calsequestrin and phospholamban showed no significant change in atrial fibrillation. L-type calcium channel and the sarcoplasmic reticular Ca(2+)-ATPase gene were down-regulated in atrial fibrillation. These changes may be a consequence of, as well as a contributory factor for, atrial fibrillation.
The "periodic table" of the genetic code: A new way to look at the code and the decoding process.
Komar, Anton A
2016-01-01
Henri Grosjean and Eric Westhof recently presented an information-rich, alternative view of the genetic code, which takes into account current knowledge of the decoding process, including the complex nature of interactions between mRNA, tRNA and rRNA that take place during protein synthesis on the ribosome, and it also better reflects the evolution of the code. The new asymmetrical circular genetic code has a number of advantages over the traditional codon table and the previous circular diagrams (with a symmetrical/clockwise arrangement of the U, C, A, G bases). Most importantly, all sequence co-variances can be visualized and explained based on the internal logic of the thermodynamics of codon-anticodon interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Ling, E-mail: fangling_1984@126.com; Zhan, Shuxiang; Huang, Cheng
2013-11-01
TRPM7, a non-selective cation channel of the TRP channel superfamily, is implicated in diverse physiological and pathological processes including cell proliferation. Recently, TRPM7 has been reported in hepatic stellate cells (HSCs). Here, we investigated the contribution role of TRPM7 in activated HSC-T6 cell (a rat hepatic stellate cell line) proliferation. TRPM7 mRNA and protein were measured by RT-PCR and Western blot in rat model of liver fibrosis in vivo and PDGF-BB-activated HSC-T6 cells in vitro. Both mRNA and protein of TRPM7 were dramatically increased in CCl{sub 4}-treated rat livers. Stimulation of HSC-T6 cells with PDGF-BB resulted in a time-dependent increasemore » of TRPM7 mRNA and protein. However, PDGF-BB-induced HSC-T6 cell proliferation was inhibited by non-specific TRPM7 blocker 2-aminoethoxydiphenyl borate (2-APB) or synthetic siRNA targeting TRPM7, and this was accompanied by downregulation of cell cycle proteins, cyclin D1, PCNA and CDK4. Blockade of TRPM7 channels also attenuated PDGF-BB induced expression of myofibroblast markers as measured by the induction of α-SMA and Col1α1. Furthermore, the phosphorylation of ERK and AKT, associated with cell proliferation, decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TRPM7 channels contribute to perpetuated fibroblast activation and proliferation of PDGF-BB induced HSC-T6 cells via the activation of ERK and PI3K pathways. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 mRNA and protein in the fibrotic livers from CCl{sub 4}-treated rats. • Increasing expression of TRPM7 mRNA and protein during HSC activation. • Blockade of TRPM7 inhibited the PDGF-BB induced proliferation of HSC-T6 cells. • Blockade of TRPM7 decreased α-SMA and Col1α1 expressions in activated HSC-T6 cells. • TRPM7 up-regulation contributes to the activation of ERK and AKT pathways.« less
Pélerin, Hélène; Jouin, Mélanie; Lallemand, Marie-Sylvie; Alessandri, Jean-Marc; Cunnane, Stephen C; Langelier, Bénédicte; Guesnet, Philippe
2014-11-01
Specific mechanisms for maintaining docosahexaenoic acid (DHA) concentration in brain cells but also transporting DHA from the blood across the blood-brain barrier (BBB) are not agreed upon. Our main objective was therefore to evaluate the level of gene expression of fatty acid transport and fatty acid binding proteins in the cerebral cortex and at the BBB level during the perinatal period of active brain DHA accretion, at weaning, and until the adult age. We measured by real time RT-PCR the mRNA expression of different isoforms of fatty acid transport proteins (FATPs), long-chain acyl-CoA synthetases (ACSLs), fatty acid binding proteins (FABPs) and the fatty acid transporter (FAT)/CD36 in cerebral cortex and isolated microvessels at embryonic day 18 (E18) and postnatal days 14, 21 and 60 (P14, P21 and P60, respectively) in rats receiving different n-3 PUFA dietary supplies (control, totally deficient or DHA-supplemented). In control rats, all the genes were expressed at the BBB level (P14 to P60), the mRNA levels of FABP5 and ACSL3 having the highest values. Age-dependent differences included a systematic decrease in the mRNA expressions between P14-P21 and P60 (2 to 3-fold), with FABP7 mRNA abundance being the most affected (10-fold). In the cerebral cortex, mRNA levels varied differently since FATP4, ACSL3 and ACSL6 and the three FABPs genes were highly expressed. There were no significant differences in the expression of the 10 genes studied in n-3 deficient or DHA-supplemented rats despite significant differences in their brain DHA content, suggesting that brain DHA uptake from the blood does not necessarily require specific transporters within cerebral endothelial cells and could, under these experimental conditions, be a simple passive diffusion process. Copyright © 2014 Elsevier Ltd. All rights reserved.
A software pipeline for prediction of allele-specific alternative RNA processing events using single RNA-seq data. The current version focuses on prediction of alternative splicing and alternative polyadenylation modulated by genetic variants.
Wang, Yuliang; Shen, Zhongyang; Zhu, Zhijun; Han, Ruifa; Huai, Mingsheng
2011-03-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Annually, about 200,000 patients died of HCC in China. Liver transplantation (LT) holds great theoretical appeal in treating HCC. However, the high recurrence rate after transplantation is the most important limiting factor for long-term survival. To assess the value of alpha-fetoprotein (AFP) messenger RNA (mRNA), Glypican-3 (GPC3) mRNA-expressing cells in the peripheral blood (PB) for prediction of HCC recurrence following orthotopic liver transplantation (OLT). 29 patients with HCC who underwent OLT with a minimum clinical follow-up of 12 months were included in this retrospective study. We detected AFP mRNA, GPC3 mRNA-expressing cells in the PB by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR), pre-, intra- and post-operatively. The early recurrence of patients was evaluated. 8 (28%), 15 (52%), and 9 (31%) patients had AFP mRNA detected pre-, intra-, and post-operatively, respectively. With 12 months of follow-up, HCC recurred in 7 (24%) patients. Univariate analysis revealed that positive pre- and post-operative AFP mRNA, TNM stage as well as vascular invasion were significant predictors for the HCC recurrence. Multivariate analysis revealed that being positive for AFP mRNA pre-operatively remained a significant risk factor for HCC recurrence after OLT. GPC3 mRNA was expressed in all PB samples. There was no significant difference in the expression levels of GPC3 mRNA between the HCC and control groups. There were no significant differences in GPC3 mRNA expression values between those patients with and without tumor recurrence. The pre-operative detection of circulating AFP mRNA-expressing cells could be a useful predictor for HCC recurrence following OLT. GPC3 mRNA-expressing cells in PB seem to have no diagnostic value.
Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.
O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard
2017-11-07
To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [ P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [ P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. This first study providing "tri-omics" analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression.
Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine
O’Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O’Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard
2017-01-01
AIM To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. METHODS Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward’s clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. RESULTS Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. CONCLUSION This first study providing “tri-omics” analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression. PMID:29151691
Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.
Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T
2014-12-16
Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.
Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong
2014-01-01
Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531
Distinct Protein Expression Profiles of Solid-Pseudopapillary Neoplasms of the Pancreas.
Park, Minhee; Lim, Jong-Sun; Lee, Hyoung-Joo; Na, Keun; Lee, Min Jung; Kang, Chang Moo; Paik, Young-Ki; Kim, Hoguen
2015-08-07
Solid-pseudopapillary neoplasm (SPN) is an uncommon pancreatic tumor with mutation in CTNNB1 and distinct clinical and pathological features. We compared the proteomic profiles of SPN to mRNA expression. Pooled SPNs and pooled non-neoplastic pancreatic tissues were examined with high-resolution mass spectrometry. We identified 329 (150 up-regulated and 179 down-regulated) differentially expressed proteins in SPN. We identified 191 proteins (58.1% of the 329 dysregulated proteins) with the same expression tendencies in SPN based on mRNA data. Many overexpressed proteins were related to signaling pathways known to be activated in SPNs. We found that several proteins involved in Wnt signaling, including DKK4 and β-catenin, and proteins that bind β-catenin, such as FUS and NONO, were up-regulated in SPNs. Molecules involved in glycolysis, including PKM2, ENO2, and HK1, were overexpressed in accordance to their mRNA levels. In summary, SPN showed (1) distinct protein expression changes that correlated with mRNA expression, (2) overexpression of Wnt signaling proteins and proteins that bind directly to β-catenin, and (3) overexpression of proteins involved in metabolism. These findings may help develop early diagnostic biomarkers and molecular targets.
Hauler, Aron; Jonietz, Christian; Stoll, Birgit; Stoll, Katrin; Braun, Hans-Peter; Binder, Stefan
2013-05-01
The 5' ends of many mitochondrial transcripts are generated post-transcriptionally. Recently, we identified three RNA PROCESSING FACTORs required for 5' end maturation of different mitochondrial mRNAs in Arabidopsis thaliana. All of these factors are pentatricopeptide repeat proteins (PPRPs), highly similar to RESTORERs OF FERTILTY (RF), that rescue male fertility in cytoplasmic male-sterile lines from different species. Therefore, we suggested a general role of these RF-like PPRPs in mitochondrial 5' processing. We now identified RNA PROCESSING FACTOR 5, a PPRP not classified as an RF-like protein, required for the efficient 5' maturation of the nad6 and atp9 mRNAs as well as 26S rRNA. The precursor molecules of these RNAs share conserved sequence elements, approximately ranging from positions -50 to +9 relative to mature 5' mRNA termini, suggesting these sequences to be at least part of the cis elements required for processing. The knockout of RPF5 has only a moderate influence on 5' processing of atp9 mRNA, whereas the generation of the mature nad6 mRNA and 26S rRNA is almost completely abolished in the mutant. The latter leads to a 50% decrease of total 26S rRNA species, resulting in an imbalance between the large rRNA and 18S rRNA. Despite these severe changes in RNA levels and in the proportion between the 26S and 18S rRNAs, mitochondrial protein levels appear to be unaltered in the mutant, whereas seed germination capacity is markedly reduced. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Golan-Lavi, Roni; Giacomelli, Chiara; Fuks, Garold; Zeisel, Amit; Sonntag, Johanna; Sinha, Sanchari; Köstler, Wolfgang; Wiemann, Stefan; Korf, Ulrike; Yarden, Yosef; Domany, Eytan
2017-03-28
Protein responses to extracellular cues are governed by gene transcription, mRNA degradation and translation, and protein degradation. In order to understand how these time-dependent processes cooperate to generate dynamic responses, we analyzed the response of human mammary cells to the epidermal growth factor (EGF). Integrating time-dependent transcript and protein data into a mathematical model, we inferred for several proteins their pre-and post-stimulus translation and degradation coefficients and found that they exhibit complex, time-dependent variation. Specifically, we identified strategies of protein production and degradation acting in concert to generate rapid, transient protein bursts in response to EGF. Remarkably, for some proteins, for which the response necessitates rapidly decreased abundance, cells exhibit a transient increase in the corresponding degradation coefficient. Our model and analysis allow inference of the kinetics of mRNA translation and protein degradation, without perturbing cells, and open a way to understanding the fundamental processes governing time-dependent protein abundance profiles. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Linear RNA amplification for the production of microarray hybridization probes.
Klebes, Ansgar; Kornberg, Thomas B
2008-01-01
To understand Drosophila development and other genetically controlled processes, it is often desirable to identify differences in gene expression levels. An experimental approach to investigate these processes is to catalog the transcriptome by hybridization of mRNA to DNA microbar-rays. In these experiments mRNA-derived hybridization probes are produced and hybridized to an array of DNA spots on a solid support. The labeled cDNAs of the complex hybridization probe will bind to their complementary sequences and provide quantification of the relative concentration of the corresponding transcript in the starting material. However, such approaches are often limited by the scarcity of the experimental sample because standard methods of probe preparation require microgram quantities of mRNA template. Linear RNA amplification can alleviate such limitations to support the generation of microarray hybridization probes from a few 100 pg of mRNA. These smaller quantities can be isolated from a few 100 cells. Here, we present a linear amplification protocol designed to preserve both the relative abundance of transcripts as well as their sequence complexity.
Multi-Scale Modeling to Improve Single-Molecule, Single-Cell Experiments
NASA Astrophysics Data System (ADS)
Munsky, Brian; Shepherd, Douglas
2014-03-01
Single-cell, single-molecule experiments are producing an unprecedented amount of data to capture the dynamics of biological systems. When integrated with computational models, observations of spatial, temporal and stochastic fluctuations can yield powerful quantitative insight. We concentrate on experiments that localize and count individual molecules of mRNA. These high precision experiments have large imaging and computational processing costs, and we explore how improved computational analyses can dramatically reduce overall data requirements. In particular, we show how analyses of spatial, temporal and stochastic fluctuations can significantly enhance parameter estimation results for small, noisy data sets. We also show how full probability distribution analyses can constrain parameters with far less data than bulk analyses or statistical moment closures. Finally, we discuss how a systematic modeling progression from simple to more complex analyses can reduce total computational costs by orders of magnitude. We illustrate our approach using single-molecule, spatial mRNA measurements of Interleukin 1-alpha mRNA induction in human THP1 cells following stimulation. Our approach could improve the effectiveness of single-molecule gene regulation analyses for many other process.
APP mRNA splicing is upregulated in the brain of biglycan transgenic mice.
Bjelik, Annamária; Pákáski, Magdolna; Bereczki, Erika; Gonda, Szilvia; Juhász, Anna; Rimanóczy, Agnes; Zana, Marianna; Janka, Zoltán; Sántha, Miklós; Kálmán, János
2007-01-01
Many of the risk factors for cerebrovascular disease and atherosclerosis also increase the risk of Alzheimer's disease, characterized by the cerebral deposition of beta-amyloid plaques resulting from the abnormal processing of the transmembrane amyloid precursor protein (APP). The initiating event of cholesterol-induced atherosclerosis is the retention and accumulation of atherogenic apolipoprotein B (apoB) together with low-density lipoproteins in the vascular intima. Biglycan, a member of the small leucine-rich protein family, was suspected of contributing to this process. The individual and combined overexpressions of biglycan and apoB-100 were therefore examined on the cortical APP mRNA levels of transgenic mice by means of semiquantitative PCR. As compared with the control littermates, transgenic biglycan mice had significantly increased cortical APP695 (122%) and APP770 (157%) mRNA levels, while the double transgenic (apoB(+/-)xbiglycan(+/-)) mice did not exhibit any changes. These results provide the first experimental evidence that the atherogenic risk factor biglycan alters APP splicing and may participate in the pathogenesis of both Alzheimer and vascular dementias.
Mustroph, Angelika; Bailey-Serres, Julia
2010-03-01
Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.
Architecture of eukaryotic mRNA 3′-end processing machinery
Hill, Chris H.; Easter, Ashley D.; Emsley, Paul; Degliesposti, Gianluca; Gordiyenko, Yuliya; Santhanam, Balaji; Wolf, Jana; Wiederhold, Katrin; Dornan, Gillian L.; Skehel, Mark; Robinson, Carol V.; Passmore, Lori A.
2018-01-01
Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3′ ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four β propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3′-end processing. PMID:29074584
Cain, B M; Connolly, K; Blum, A C; Vishnuvardhan, D; Marchand, J E; Zhu, X; Steiner, D F; Beinfeld, M C
2004-04-01
Prohormone convertase (PC1) is found in endocrine cell lines that express cholecystokinin (CCK) mRNA and process pro CCK to biologically active products. Other studies have demonstrated that PC1 may be a one of the enzymes responsible for the endoproteolytic cleavages that occur in pro CCK during its biosynthesis and processing. Prohormone convertase 1 (PC1) has a distribution that is similar to cholecystokinin (CCK) in rat brain. A moderate to high percentage of CCK mRNA-positive neurons express PC1 mRNA. CCK levels were measured in PC1 knockout and control mice to assess the degree to which loss of PC1 changed CCK content. CCK levels were decreased 62% in hippocampus, 53% in amygdala and 57% in pons-medulla in PC1 knockout mice as compared to controls. These results are highly correlated with the colocalization of CCK and PC1. The majority of CCK mRNA-positive neurons in the pyramidal cell layer of the hippocampus express PC1 mRNA and greater than 50% of CCK mRNA-positive neurons in several nuclei of the amygdala also express PC1. These results demonstrate that PC1 is important for CCK processing. PC2 and PC5 are also widely colocalized with CCK. It may be that PC2, PC5 or another non-PC enzyme are able to substitute for PC1 and sustain production of some amidated CCK. Together these enzymes may represent a redundant system to insure the production of CCK.
Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng
2012-01-01
Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380
Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses
KIKUCHI, Kohta; SASAKI, Keisuke; AKIZAWA, Hiroki; TSUKAHARA, Hayato; BAI, Hanako; TAKAHASHI, Masashi; NAMBO, Yasuo; HATA, Hiroshi; KAWAHARA, Manabu
2017-01-01
Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and 3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal development of mammals, including horses. PMID:29151450
RNA granules: the good, the bad and the ugly
Thomas, María Gabriela; Loschi, Mariela; Desbats, María Andrea; Boccaccio, Graciela Lidia
2010-01-01
Processing bodies (PBs) and Stress granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbor transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor elF2alpha, and tRNA cleavage among others. PBs and SGs with different composition may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of nuclear stress bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA—the UV granules and the Ire1 foci—, all them induced by specific cell damage factors, contribute to cell survival. PMID:20813183
Cirelli, C; Tononi, G
1999-06-01
The consequences of sleep and sleep deprivation at the molecular level are largely unexplored. Knowledge of such molecular events is essential to understand the restorative processes occurring during sleep as well as the cellular mechanisms of sleep regulation. Here we review the available data about changes in neural gene expression across different behavioural states using candidate gene approaches such as in situ hybridization and immunocytochemistry. We then describe new techniques for systematic screening of gene expression in the brain, such as subtractive hybridization, mRNA differential display, and cDNA microarray technology, outlining advantages and disadvantages of these methods. Finally, we summarize our initial results of a systematic screening of gene expression in the rat brain across behavioural states using mRNA differential display and cDNA microarray technology. The expression pattern of approximately 7000 genes was analysed in the cerebral cortex of rats after 3 h of spontaneous sleep, 3 h of spontaneous waking, or 3 h of sleep deprivation. While the majority of transcripts were expressed at the same level among these three conditions, 14 mRNAs were modulated by sleep and waking. Six transcripts, four more expressed in waking and two more expressed in sleep, corresponded to novel genes. The eight known transcripts were all expressed at higher levels in waking than in sleep and included transcription factors and mitochondrial genes. A possible role for these known transcripts in mediating neural plasticity during waking is discussed.
NASA Astrophysics Data System (ADS)
Munsky, Brian
2015-03-01
MAPK signal-activated transcription plays central roles in myriad biological processes including stress adaptation responses and cell fate decisions. Recent single-cell and single-molecule experiments have advanced our ability to quantify the spatial, temporal, and stochastic fluctuations for such signals and their downstream effects on transcription regulation. This talk explores how integrating such experiments with discrete stochastic computational analyses can yield quantitative and predictive understanding of transcription regulation in both space and time. We use single-molecule mRNA fluorescence in situ hybridization (smFISH) experiments to reveal locations and numbers of multiple endogenous mRNA species in 100,000's of individual cells, at different times and under different genetic and environmental perturbations. We use finite state projection methods to precisely and efficiently compute the full joint probability distributions of these mRNA, which capture measured spatial, temporal and correlative fluctuations. By combining these experimental and computational tools with uncertainty quantification, we systematically compare models of varying complexity and select those which give optimally precise and accurate predictions in new situations. We use these tools to explore two MAPK-activated gene regulation pathways. In yeast adaptation to osmotic shock, we analyze Hog1 kinase activation of transcription for three different genes STL1 (osmotic stress), CTT1 (oxidative stress) and HSP12 (heat shock). In human osteosarcoma cells under serum induction, we analyze ERK activation of c-Fos transcription.
Characterization of rat calcitonin mRNA.
Amara, S G; David, D N; Rosenfeld, M G; Roos, B A; Evans, R M
1980-01-01
A chimeric plasmic containing cDNA complementary to rat calcitonin mRNA has been constructed. Partial sequence analysis shows that the insert contains a nucleotide sequence encoding the complete amino acid sequence of calcitonin. Two basic amino acids precede and three basic amino acids follow the hormone sequence, suggesting that calcitonin is generated by the proteolytic cleavage of a larger precursor in a manner analogous to that of other small polypeptide hormones. The COOH-terminal proline, known to be amidated in the secreted hormone, is followed by a glycine in the precursor. The cloned calcitonin DNA was used to characterize the expression of calcitonin mRNA. Cytoplasmic mRNAs from calcitonin-producing rat medullary thyroid carcinoma lines and from normal rat thyroid glands contain a single species, 1050 nucleotides long, whch hybridizes to the cloned calcitonin cDNA. The concentration of calcitonin mRNA sequences is greater in those tumors that produce larger amounts of immunoreactive calcitonin. RNAs from other endocrine tissues, including anterior and neurointermediate lobes of rat pituitary, contain no detectable calcitonin mRNA. Images PMID:6933496
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel
Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.« less
Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.
2016-01-01
Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065
Identification of microRNA-mRNA modules using microarray data.
Jayaswal, Vivek; Lutherborrow, Mark; Ma, David D F; Yang, Yee H
2011-03-06
MicroRNAs (miRNAs) are post-transcriptional regulators of mRNA expression and are involved in numerous cellular processes. Consequently, miRNAs are an important component of gene regulatory networks and an improved understanding of miRNAs will further our knowledge of these networks. There is a many-to-many relationship between miRNAs and mRNAs because a single miRNA targets multiple mRNAs and a single mRNA is targeted by multiple miRNAs. However, most of the current methods for the identification of regulatory miRNAs and their target mRNAs ignore this biological observation and focus on miRNA-mRNA pairs. We propose a two-step method for the identification of many-to-many relationships between miRNAs and mRNAs. In the first step, we obtain miRNA and mRNA clusters using a combination of miRNA-target mRNA prediction algorithms and microarray expression data. In the second step, we determine the associations between miRNA clusters and mRNA clusters based on changes in miRNA and mRNA expression profiles. We consider the miRNA-mRNA clusters with statistically significant associations to be potentially regulatory and, therefore, of biological interest. Our method reduces the interactions between several hundred miRNAs and several thousand mRNAs to a few miRNA-mRNA groups, thereby facilitating a more meaningful biological analysis and a more targeted experimental validation.
Haïli, Nawel; Planchard, Noelya; Arnal, Nadège; Quadrado, Martine; Vrielynck, Nathalie; Dahan, Jennifer; des Francs-Small, Catherine Colas; Mireau, Hakim
2016-01-01
Mitochondrial translation involves a complex interplay of ancient bacteria-like features and host-derived functionalities. Although the basic components of the mitochondrial translation apparatus have been recognized, very few protein factors aiding in recruiting ribosomes on mitochondria-encoded messenger RNA (mRNAs) have been identified in higher plants. In this study, we describe the identification of the Arabidopsis (Arabidopsis thaliana) MITOCHONDRIAL TRANSLATION FACTOR1 (MTL1) protein, a new member of the Pentatricopeptide Repeat family, and show that it is essential for the translation of the mitochondrial NADH dehydrogenase subunit7 (nad7) mRNA. We demonstrate that mtl1 mutant plants fail to accumulate the Nad7 protein, even though the nad7 mature mRNA is produced and bears the same 5' and 3' extremities as in wild-type plants. We next observed that polysome association of nad7 mature mRNA is specifically disrupted in mtl1 mutants, indicating that the absence of Nad7 results from a lack of translation of nad7 mRNA. These findings illustrate that mitochondrial translation requires the intervention of gene-specific nucleus-encoded PPR trans-factors and that their action does not necessarily involve the 5' processing of their target mRNA, as observed previously. Interestingly, a partial decrease in nad7 intron 2 splicing was also detected in mtl1 mutants, suggesting that MTL1 is also involved in group II intron splicing. However, this second function appears to be less essential for nad7 expression than its role in translation. MTL1 will be instrumental to understand the multifunctionality of PPR proteins and the mechanisms governing mRNA translation and intron splicing in plant mitochondria. © 2016 American Society of Plant Biologists. All Rights Reserved.
Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana.
Yamasaki, Shotaro; Matsuura, Hideyuki; Demura, Taku; Kato, Ko
2015-11-01
Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Brenet, Fabienne; Dussault, Nadège; Borch, Jonas; Ferracci, Géraldine; Delfino, Christine; Roepstorff, Peter; Miquelis, Raymond; Ouafik, L'Houcine
2005-01-01
Peptidylglycine α-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal α-amidation of peptidylglycine substrates, yielding amidated products. We have previously reported a putative regulatory RNA binding protein (PAM mRNA-BP) that binds specifically to the 3′ untranslated region (UTR) of PAM-mRNA. Here, the PAM mRNA-BP was isolated and revealed to be La protein using affinity purification onto a 3′ UTR PAM RNA, followed by tandem mass spectrometry identification. We determined that the core binding sequence is approximately 15-nucleotides (nt) long and is located 471 nt downstream of the stop codon. Moreover, we identified the La autoantigen as a protein that specifically binds the 3′ UTR of PAM mRNA in vivo and in vitro. Furthermore, La protein overexpression caused a nuclear retention of PAM mRNAs and resulted in the down-regulation of endogenous PAM activity. Most interestingly, the nuclear retention of PAM mRNA is lost upon expressing the La proteins that lack a conserved nuclear retention element, suggesting a direct association between PAM mRNA and La protein in vivo. Reporter assays using a chimeric mRNA that combined luciferase and the 3′ UTR of PAM mRNA demonstrated a decrease of the reporter activity due to an increase in the nuclear localization of reporter mRNAs, while the deletion of the 15-nt La binding site led to their clear-cut cytoplasmic relocalization. The results suggest an important role for the La protein in the modulation of PAM expression, possibly by mechanisms that involve a nuclear retention and perhaps a processing of pre-PAM mRNA molecules. PMID:16107699
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-01-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells. Images PMID:3785169
Stornetta, Ruth L; Sevigny, Charles P; Schreihofer, Ann M; Rosin, Diane L; Guyenet, Patrice G
2002-03-12
The main source of excitatory drive to the sympathetic preganglionic neurons that control blood pressure is from neurons located in the rostral ventrolateral medulla (RVLM). This monosynaptic input includes adrenergic (C1), peptidergic, and noncatecholaminergic neurons. Some of the cells in this pathway are suspected to be glutamatergic, but conclusive evidence is lacking. In the present study we sought to determine whether these presympathetic neurons express the vesicular glutamate transporter BNPI/VGLUT1 or the closely related gene DNPI, the rat homolog of the mouse vesicular glutamate transporter VGLUT2. Both BNPI/VGLUT1 and DNPI/VGLUT2 mRNAs were detected in the medulla oblongata by in situ hybridization, but only DNPI/VGLUT2 mRNA was present in the RVLM. Moreover, BNPI immunoreactivity was absent from the thoracic spinal cord lateral horn. DNPI/VGLUT2 mRNA was present in many medullary cells retrogradely labeled with Fluoro-Gold from the spinal cord (T2; four rats). Within the RVLM, 79% of the bulbospinal C1 cells contained DNPI/VGLUT2 mRNA. Bulbospinal noradrenergic A5 neurons did not contain DNPI/VGLUT2 mRNA. The RVLM of six unanesthetized rats subjected to 2 hours of hydralazine-induced hypotension contained tenfold more c-Fos-ir DNPI/VGLUT2 neurons than that of six saline-treated controls. c-Fos-ir DNPI/VGLUT2 neurons included C1 and non-C1 neurons (3:2 ratio). In seven barbiturate-anesthetized rats, 16 vasomotor presympathetic neurons were filled with biotinamide and analyzed for the presence of tyrosine hydroxylase immunoreactivity and/or DNPI/VGLUT2 mRNA. Biotinamide-labeled neurons included C1 and non-C1 cells. Most non-C1 (9/10) and C1 presympathetic cells (5/6) contained DNPI/VGLUT2 mRNA. In conclusion, DNPI/VGLUT2 is expressed by most blood pressure-regulating presympathetic cells of the RVLM. The data suggest that these neurons may be glutamatergic and that the C1 adrenergic phenotype is one of several secondary phenotypes that are differentially expressed by subgroups of these cells. Copyright 2002 Wiley-Liss, Inc.
Eshleman, Nichole; Liu, Guangbo; McGrath, Kaitlyn; Parker, Roy; Buchan, J. Ross
2016-01-01
The nuclear THO and TREX-2 complexes are implicated in several steps of nuclear mRNP biogenesis, including transcription, 3′ end processing and export. In a recent genomic microscopy screen in Saccharomyces cerevisiae for mutants with constitutive stress granules, we identified that absence of THO and TREX-2 complex subunits leads to the accumulation of Pab1-GFP in cytoplasmic foci. We now show that these THO/TREX-2 mutant induced foci (“TT foci”) are not stress granules but instead are a mRNP granule containing poly(A)+ mRNA, some mRNP components also found in stress granules, as well several proteins involved in mRNA 3′ end processing and export not normally seen in stress granules. In addition, TT foci are resistant to cycloheximide-induced disassembly, suggesting the presence of mRNPs impaired for entry into translation. THO mutants also exhibit defects in normal stress granule assembly. Finally, our data also suggest that TT foci are targeted by autophagy. These observations argue that defects in nuclear THO and TREX-2 complexes can affect cytoplasmic mRNP function by producing aberrant mRNPs that are exported to cytosol, where they accumulate in TT foci and ultimately can be cleared by autophagy. This identifies a novel mechanism of quality control for aberrant mRNPs assembled in the nucleus. PMID:27251550
Dynamics of Cytokine-like Activity in the Hyperplasic Ovary of Ex-fissiparous Planarians.
Harrath, Abdel Halim; Semlali, Abdelhabib; Mansour, Lamjed; Aldahmash, Waleed; Omar, Suliman Y Al; Anazi, Mohamed S Al; Nyengaard, Jens R; Alwasel, Saleh
2017-02-01
The origin of infertility in the hyperplasic ovary of ex-fissiparous planarians remains poorly understood. In a previous study we demonstrated that a complex process of early autophagy, followed by apoptotic processes, occurs in the hyperplasic ovary of the freshwater planarian Dugesia arabica. The present study aimed to investigate whether the mRNA expression levels of selected mRNA-like genes are altered in the hyperplasic ovary of the ex-fissiparous freshwater planarian D. arabica compared to the normal ovary. Using human cytokine-specific primers including interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), we have successfully amplified by real-time polymerase chain reaction some transcripts that could be similar to those amplified in human. The transcript levels of the human-like transcript (IL-1-like and TNF-α-like) were significantly higher, 4.89- and 3.41-fold, respectively, in the hyperplasic ovary compared to the normal ovary (P < 0.05). However, although IL-6-like levels were higher in the hyperplasic ovary than the normal ovary (2.57-fold), this difference was not significant (P > 0.05). Immunohistochemical labeling supported the quantitative real-time PCR, showing that, like their respective mRNA expression levels, IL-1, IL-6, and TNF-α-like proteins are more highly expressed in the hyperplasic ovary than in the normal ovary.
Basu, Swaraj; Larsson, Erik
2016-01-01
Identification of cancer driver genes using somatic mutation patterns indicative of positive selection has become a major goal in cancer genomics. However, cancer cells additionally depend on a large number of genes involved in basic cellular processes. While such genes should in theory be subject to strong purifying (negative) selection against damaging somatic mutations, these patterns have been elusive and purifying selection remains inadequately explored in cancer. Here, we hypothesized that purifying selection should be evident in hemizygous genomic regions, where damaging mutations cannot be compensated for by healthy alleles. Using a 7,781-sample pan-cancer dataset, we first confirmed this in POLR2A, an essential gene where hemizygous deletions are known to confer elevated sensitivity to pharmacological suppression. We next used this principle to identify several genes and pathways that show patterns indicative of purifying selection to avoid deleterious mutations. These include the POLR2A interacting protein INTS10 as well as genes involved in mRNA splicing, nonsense-mediated mRNA decay and other RNA processing pathways. Many of these genes belong to large protein complexes, and strong overlaps were observed with recent functional screens for gene essentiality in human cells. Our analysis supports that purifying selection acts to preserve the remaining function of many hemizygously deleted essential genes in tumors, indicating vulnerabilities that might be exploited by future therapeutic strategies. PMID:28027311
PABPN1-Dependent mRNA Processing Induces Muscle Wasting
Raz, Yotam; van Putten, Maaike; Paniagua-Soriano, Guillem; Krom, Yvonne D.; Florea, Bogdan I.; Raz, Vered
2016-01-01
Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3’-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting. PMID:27152426
Effect of negative pressure wound therapy on molecular markers in diabetic foot ulcers.
Karam, Rehab A; Rezk, Noha A; Abdel Rahman, Tamer M; Al Saeed, Mohamed
2018-08-15
Diabetic foot ulcers are one of the most common complications of diabetes with high morbidity and mortality. Negative pressure wound therapy (NPWT) is one of the treatment modalities that facilitates the wound healing process; however, its molecular mechanism remains unclear. The aim of this study was to investigate the mechanism of action of NPWT in the treatment of diabetic foot ulcers via measuring the tissue expression of genes related to the wound healing process. The study included 40 patients with diabetic foot ulceration, 20 of them received NPWT and the other 20 were a control group treated with advanced moist therapy. Granulation tissue biopsies were obtained before and 10 days after treatment in both groups and subjected to real-time polymerase chain reaction to measure the mRNA expression of TGF-β1, VEGF, TNF-α, IL-1β, MMP-1, MMP-9 and TIMP-1 which are involved in the wound healing pathway. After 10 days of treatment with NPWT, the mRNA levels of IL-1β, TNF-α, MMP-1, and MMP-9 were significantly downregulated, while the levels of VEGF, TGF-β1 and TIMP-1 were significantly increased. Our study demonstrated that NPWT promotes wound healing in diabetic foot ulcers possibly by affecting growth factors, inflammatory cytokines, and matrix metalloproteinases. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of cyclooxygenase-2 in intestinal injury in neonatal rats.
Lu, Hui; Zhu, Bing
2014-11-01
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC.
Nakamura, Takuma; Shiomi, Inori; Shimizu, Takashi
2017-11-01
We have cloned and characterized the expression of a novel maternal gene festina lente (designated Ttu-fel) from the clitellate annelid Tubifex tubifex. Northern blot analyses have shown that Ttu-fel mRNA is approximately 8 kbp in length and that its expression is restricted to oocytes undergoing maturation division and early embryos up to 22-cell stage. Maternal transcripts of Ttu-fel are first detected in oocytes in the ovary of young adults (ca. 40 days after hatching); its expression continues in growing oocytes in the ovisac. Ttu-fel mRNA is distributed broadly throughout the egg undergoing maturation divisions. During the process of ooplasmic segregation that results in the pole plasm formation, Ttu-fel mRNA becomes concentrated to the animal and vegetal poles. The RNA in the animal hemisphere is distributed in a gradient with highest concentration in the cortical region. During the first two cleavages, Ttu-fel mRNA is segregated to CD cell then to D cell; it is subsequently inherited by the three D quadtrant micromeres, 1d, 2d and 3d. Around the time of transition to 22-cell stage, Ttu-fel mRNA becomes undetectable throughout the embryo. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiple-Targeted Graphene-based Nanocarrier for Intracellular Imaging of mRNAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ying; Li, Zhaohui; Liu, Misha
Simultaneous detection and imaging of multiple intracellular messenger RNA (mRNAs) hold great significant for early cancer diagnostics and preventive medicine development. Herein, we propose a multiple-targeted graphene oxide (GO) nanocarrier that can simultaneously detect and image different type mRNAs in living cells. First of all, in vitro detection of multiple targets have been realized successfully based on the multiple-targeted GO nanocarrier with linear relationship ranging from 3 nM to 200 nM, as well as sensitive detection limit of 1.84 nM for manganese superoxide dismutase (Mn-SOD) mRNA and 2.45 nM for β-actin mRNA. Additionally, this nanosensing platform composed of fluorescent labeledmore » single strand DNA probes and GO nanocarrier can identify Mn-SOD mRNA and endogenous mRNA of β-actin in living cancer cells, showing rapid response, high specificity, nuclease stability, and good biocompatibility during the cell imaging. Thirdly, changes of the expression levels of mRNA in living cells before or after the drug treatment can be monitored successfully. By using multiple ssDNA as probes and GO nanocarrier as the cellular delivery cargo, the proposed simultaneous multiple-targeted sensing platform will be of great potential as a powerful tool for intracellular trafficking process from basic research to clinical diagnosis.« less
MicroRNA networks in mouse lung organogenesis.
Dong, Jie; Jiang, Guoqian; Asmann, Yan W; Tomaszek, Sandra; Jen, Jin; Kislinger, Thomas; Wigle, Dennis A
2010-05-26
MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.
Role of β1-Integrin in Colorectal Cancer: Case-Control Study
Oh, Bo-Young; Kim, Kwang Ho; Chung, Soon Sup; Hong, Kyoung Sook
2014-01-01
Purpose In the metastatic process, interactions between circulating tumor cells (CTCs) and the extracellular matrix or surrounding cells are required. β1-Integrin may mediate these interactions. The aim of this study was to investigate whether β1-integrin is associated with the detection of CTCs in colorectal cancer. Methods We enrolled 30 patients with colorectal cancer (experimental group) and 30 patients with benign diseases (control group). Blood samples were obtained from each group, carcinoembryonic antigen (CEA) mRNA for CTCs marker and β1-integrin mRNA levels were estimated by using reverse transcription-polymerase chain reaction, and the results were compared between the two groups. In the experimental group, preoperative results were compared with postoperative results for each marker. In addition, we analyzed the correlation between the expressions of β1-integrin and CEA. Results CEA mRNA was detected more frequently in colorectal cancer patients than in control patients (P = 0.008). CEA mRNA was significantly reduced after surgery in the colorectal cancer patients (P = 0.032). β1-Integrin mRNA was detected more in colorectal cancer patients than in the patients with benign diseases (P < 0.001). In colorectal cancer patients, expression of β1-integrin mRNA was detected more for advanced-stage cancer than for early-stage cancer (P = 0.033) and was significantly decreased after surgery (P < 0.001). In addition, expression of β1-integrin mRNA was significantly associated with that of CEA mRNA in colorectal cancer patients (P = 0.001). Conclusion In conclusion, β1-integrin is a potential factor for forming a prognosis following surgical resection in colorectal cancer patients. β1-Integrin may be a candidate for use as a marker for early detection of micrometastatic tumor cells and for monitoring the therapeutic response in colorectal cancer patients. PMID:24851215
Exon 2-mediated c-myc mRNA decay in vivo is independent of its translation.
Pistoi, S; Roland, J; Babinet, C; Morello, D
1996-01-01
We have previously shown that the steady-state level of c-myc mRNA in vivo is primarily controlled by posttranscriptional regulatory mechanisms. To identify the sequences involved in this process, we constructed a series of H-2/myc transgenic lines in which various regions of the human c-MYC gene were placed under the control of the quasi-ubiquitous H-2K class I regulatory sequences. We demonstrated that the presence of one of the two coding exons, exon 2 or exon 3, is sufficient to confer a level of expression of transgene mRNA similar to that of endogenous c-myc in various adult tissues as well as after partial hepatectomy or after protein synthesis inhibition. We now focus on the molecular mechanisms involved in modulation of expression of mRNAs containing c-myc exon 2 sequences, with special emphasis on the coupling between translation and c-myc mRNA turnover. We have undertaken an analysis of expression, both at the mRNA level and at the protein level, of new transgenic constructs in which the translation is impaired either by disruption of the initiation codon or by addition of stop codons upstream of exon 2. Our results show that the translation of c-myc exon 2 is not required for regulated expression of the transgene in the different situations analyzed, and therefore they indicate that the mRNA destabilizing function of exon 2 is independent of translation by ribosomes. Our investigations also reveal that, in the thymus, some H-2/myc transgenes express high levels of mRNA but low levels of protein. Besides the fact that these results suggest the existence of tissue-specific mechanisms that control c-myc translatability in vivo, they also bring another indication of the uncoupling of c-myc mRNA translation and degradation. PMID:8756668
Kong, Shuang-yan; Li, Qi-fu; Yang, Jie; He, Li
2007-06-01
To study the expressions of BDNF, BDNF mRNA, NGF and NGF mRNA in the permanent focal cerebral ischemia tissues of rats. METHHODS: Healthy male Sprague-Dawley rats were taken for this study project. According to the procedure of Zea-Longa, the rat model with permanent cerebral ischemia was established by rat middle cerebral artery obstructed (MCAO) with a nylon thread, and the model rats of neurobehavioral evaluation as 1-3 grade were randomly divided into two groups: butylphthalide group (A group) and control group (B group). A group was given with 25 mg/kg butylphthalide, B group was given with edible oil, two times every day. 3 days after occlusion, all rats were sacrificed after evaluated the neurobehavioral scores, and the samples of cerebrum were obtained after in situ perfusion and fixation with 40 g/L paraformaldehyde. 5 rats in each group were taken to tetrazolium chloride (TTC) staining for macroscopic observation of cerebral infarction area, the rest samples were processed by immunohistochemistry to evaluate effects of butylphthalide on BDNF and NGF expression, hybridization in situ to evaluate effects of butylphthalide on BDNF mRNA and NGF mRNA expression. SPSS12. 0 for statistical analysis, it was P<0. 05 as having statistical significance. Comparing to control group (B group), butylphthalide group (A group) did not have significantly pathological difference, but the grade of behavior and infarction area were apparently reduced (P<0. 05). In butylphthalide group, there was a significant expression up-regulation to BDNF, NGF, BDNF mRNA and NGF mRNA in the peripheral around infarction and cornu ammonis or hippocampus area (P<0. 05). However in the infarction area, the expressions of BDNF, NGF, BDNF mRNA and NGF mRNA had no significantly statistical difference (P> 0. 05). Comparing to control group, butylphthalide can significantly up-regulate the expressions of BDNF and NGF in genetic transcription level, and protect from the ischemia injury.
Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro
2003-01-01
We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.
Tsuruta, Lilian Rumi; Lopes Dos Santos, Mariana; Yeda, Fernanda Perez; Okamoto, Oswaldo Keith; Moro, Ana Maria
2016-12-01
Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30-35, and 50-55 of the stability program. At generations 0 and 30-35, LC gene expression level was higher than HC gene, whereas at generation 50-55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).
NASA Astrophysics Data System (ADS)
Cheglakov, Zoya
Unequal spreading of mRNA is a frequent experience observed in varied cell lines. The study of cellular processes dynamics and precise localization of mRNAs offers a vital toolbox to target specific proteins in precise cytoplasmic areas and provides a convenient instrument to uncover their mechanisms and functions. Latest methodological innovations have allowed imaging of a single mRNA molecule in situ and in vivo. Today, Fluorescent In Situ Hybridization (FISH) methods allow the studying of mRNA expression and offer a vital toolbox for accurate biological models. Studies enable analysis of the dynamics of an individual mRNA, have uncovered the multiplex RNA transport systems. With all current approaches, a single mRNA tracking in the mammalian cells is still challenging. This thesis describes mRNA detection methods based on programmable fluorophore-labeled DNA structures complimentary to native targets providing an accurate mRNA imaging in mammalian cells. First method represents beta-actin (ACTB) transcripts in situ detection in human cells, the technique strategy is based on programmable DNA probes, amplified by rolling circle amplification (RCA). The method reports precise localization of molecule of interest with an accuracy of a single-cell. Visualization and localization of specific endogenous mRNA molecules in real-time in vivo has the promising to innovate cellular biology studies, medical analysis and to provide a vital toolbox in drugs invention area. Second method described in this thesis represents miR-21 miRNA detection within a single live-cell resolution. The method using fluorophore-labeled short synthetic DNAs probes forming a stem-loop shape and generating Fluorescent Resonance Energy Transfer (FRET) as a result of target-probes hybridization. Catalytic nucleic acid (DNAzymes) probes are cooperative tool for precise detection of different mRNA targets. With assistance of a complementary fluorophore-quencher labeled substrate, the DNAzymes provide a beneficial strategy for simultaneous tracking readily accomplished by multicolor imaging with diverse fluorescent tags. The third method in this thesis will demonstrate the advantage of DNAzymes probes amplification, and offers potential strategy to monitor miRNAs in mammalian live cells.
Shen, Mo; Zhou, Lianlian; Zhou, Ping; Zhou, Wu; Lin, Xiangyang
2017-07-01
The role of inflammation in tumorigenesis and development is currently well established. Lymphotoxin β receptor (LTβR) activation induces canonical and noncanonical nuclear factor (NF)‑κB signaling pathways, which are linked to inflammation‑induced carcinogenesis. In the present study, 5,637 bladder cancer cells were cultured and the activation of LTβR was induced by functional ligand, lymphotoxin (LT) α1β2, and silencing with shRNA. Reverse transcription‑quantitative polymerase chain reaction was utilized to detect the mRNA expression levels of NF‑κB family members RelA and RelB, cytokines including LTα, LTβ, tumor necrosis factor (TNF)α, TNF superfamily member 14, interleukin (IL)‑6 and IL‑1β, and proliferation‑related genes including CyclinD1 and Survivin. The expression of phospho‑p65 was determined by western blotting. Activation of LTβR on bladder cancer 5,637 cells was demonstrated to upregulate the mRNA expression levels of the RELA proto‑oncogene, RelA, by 2.5‑fold compared with unstimulated cells, while no significant change was observed in the RELB proto‑oncogene NF‑κB member mRNA levels. Expression of pro‑inflammatory cytokines tumor necrosis factor (TNF)α and interleukin (IL)‑1β mRNA levels were significantly increased nearly 5‑fold and 1.5‑fold, respectively, following LTβR activation compared with unstimulated cells. The LTβR‑induced upregulation of RelA, TNFα and IL‑1β was decreased by ~33, 27, and 26% respectively when LTβR was silenced via short hairpin RNA. Activation of LTβR had no effect on 5,637 cell growth, despite CyclinD1 and Survivin mRNA levels increasing by ~2.7 and 1.3‑fold, respectively, compared with unstimulated cells. In conclusion, activation of LTβR induced the expression of RelA mRNA levels. LTβR activation might be an important mediator in promoting an inflammatory microenvironment in bladder cancer, via the upregulation of TNFα and IL‑1β mRNA levels. LTβR may be a potential therapeutic target for bladder cancer.
Prieto, Humberto; Utz, Daniella; Castro, Alvaro; Aguirre, Carlos; González-Agüero, Mauricio; Valdés, Héctor; Cifuentes, Nicolas; Defilippi, Bruno G; Zamora, Pablo; Zúñiga, Gustavo; Campos-Vargas, Reinaldo
2007-10-31
Cherimoya (Annona cherimola Mill.) fruit is an attractive candidate for food processing applications as fresh cut. However, along with its desirable delicate taste, cherimoya shows a marked susceptibility to browning. This condition is mainly attributed to polyphenol oxidase activity (PPO). A general lack of knowledge regarding PPO and its role in the oxidative loss of quality in processed cherimoya fruit requires a better understanding of the mechanisms involved. The work carried out included the cloning of a full-length cDNA, an analysis of its properties in the deduced amino sequence, and linkage of its mRNA levels with enzyme activity in mature and ripe fruits after wounding. The results showed one gene different at the nucleotide level when compared with previously reported genes, but a well-conserved protein, either in functional and in structural terms. Cherimoya PPO gene (Ac-ppo, GenBank DQ990911) showed to be present apparently in one copy of the genome, and its transcripts could be significantly detected in leaves and less abundantly in flowers and fruits. Analysis of wounded matured and ripened fruits revealed an inductive behavior for mRNA levels in the flesh of mature cherimoya after 16 h. Although the highest enzymatic activity was observed on rind, a consistent PPO activity was detected on flesh samples. A lack of correlation between PPO mRNA level and PPO activity was observed, especially in flesh tissue. This is probably due to the presence of monophenolic substrates inducing a lag period, enzyme inhibitors and/or diphenolic substrates causing suicide inactivation, and proenzyme or latent isoforms of PPO. To our knowledge this is the first report of a complete PPO sequence in cherimoya. Furthermore, the gene is highly divergent from known nucleotide sequences but shows a well conserved protein in terms of its function, deduced structure, and physiological role.
Su, Zhenhong; Si, Wenxia; Li, Lei; Zhou, Bisheng; Li, Xiuchun; Xu, Yan; Xu, Chengqi; Jia, Haibo; Wang, Qing K
2014-04-01
Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dong, Xianglin; Xu, Tao; Ma, Shaolin; Wen, Hao
2015-06-01
The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues.
DONG, XIANGLIN; XU, TAO; MA, SHAOLIN; WEN, HAO
2015-01-01
The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues. PMID:26136958
S100A8/A9 mRNA induction in an ex vivo model of endotoxin tolerance: roles of IL-10 and IFNγ.
Fontaine, Mathieu; Planel, Séverine; Peronnet, Estelle; Turrel-Davin, Fanny; Piriou, Vincent; Pachot, Alexandre; Monneret, Guillaume; Lepape, Alain; Venet, Fabienne
2014-01-01
Septic syndromes are the leading cause of death in intensive care units. They are characterized by the development of immune dysfunctions such as endotoxin tolerance (ET), whose intensity and duration are associated with increased risk of nosocomial infections and mortality. Alarmins S100A8 and S100A9 have been shown to be increased after septic shock. Importantly, a delayed S100A9 mRNA increase predicts hospital-acquired infection in patients. The aim of this study was to investigate the regulation of S100A8 and S100A9 mRNA expression in an ex vivo model of ET. ET was reproduced ex vivo by priming healthy peripheral blood mononuclear cells (number of donors = 9 to 10) with low-dose endotoxin (2 ng/ml) before stimulation with high dose endotoxin (100 ng/ml). S100A8 and S100A9 mRNA levels were measured by quantitative real-time polymerase chain reactions. ET was established by observing decreased TNFα and increased IL-10 transcriptomic responses to two subsequent endotoxin challenges. Interestingly, ET was associated with increased S100A8 and S100A9 mRNA expression ex vivo. We showed that IL-10 played a role in this process, since S100A8 and S100A9 mRNA increases were significantly abrogated by IL-10 blockade in the model. Conversely, treatment with rIFN-γ, a pro-inflammatory and immunostimulating molecule known to block ET induction, was able to restore normal S100A8 and S100A9 mRNA in this model. In this ex vivo model, we observed that S100A8 and S100A9 mRNA expression was significantly increased during ET. This reproduced ex vivo the observations we had previously made in septic shock patients. Interestingly, IL-10 blockade and rIFN-γ treatment partially abrogated S100A8/A9 mRNA increases in this model. Pending confirmation in larger, independent clinical studies, these preliminary results suggest that S100A8 and S100A9 mRNA levels might be used as surrogate markers of ET and as stratification tools for personalized immunotherapy in septic shock patients.
Triage of women with low-grade cervical lesions--HPV mRNA testing versus repeat cytology.
Sørbye, Sveinung Wergeland; Arbyn, Marc; Fismen, Silje; Gutteberg, Tore Jarl; Mortensen, Elin Synnøve
2011-01-01
In Norway, women with low-grade squamous intraepithelial lesions (LSIL) are followed up after six months in order to decide whether they should undergo further follow-up or be referred back to the screening interval of three years. A high specificity and positive predictive value (PPV) of the triage test is important to avoid unnecessary diagnostic and therapeutic procedures. At the University Hospital of North Norway, repeat cytology and the HPV mRNA test PreTect HPV-Proofer, detecting E6/E7 mRNA from HPV types 16, 18, 31, 33 and 45, are used in triage of women with ASC-US and LSIL. In this study, women with LSIL cytology in the period 2005-2008 were included (n = 522). Two triage methods were evaluated in two separate groups: repeat cytology only (n = 225) and HPV mRNA testing in addition to repeat cytology (n = 297). Histologically confirmed cervical intraepithelial neoplasia of grade 2 or worse (CIN2+) was used as the study endpoint. Of 522 women with LSIL, 207 had biopsies and 125 of them had CIN2+. The sensitivity and specificity of repeat cytology (ASC-US or worse) were 85.7% (95% confidence interval (CI): 72.1, 92.2) and 54.4 % (95% CI: 46.9, 61.9), respectively. The sensitivity and specificity of the HPV mRNA test were 94.2% (95% CI: 88.7, 99.7) and 86.0% (95% CI: 81.5, 90.5), respectively. The PPV of repeat cytology was 38.4% (95% CI: 29.9, 46.9) compared to 67.0% (95% CI: 57.7, 76.4) of the HPV mRNA test. HPV mRNA testing was more sensitive and specific than repeat cytology in triage of women with LSIL cytology. In addition, the HPV mRNA test showed higher PPV. These data indicate that the HPV mRNA test is a better triage test for women with LSIL than repeat cytology.
Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.
Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A
2013-01-01
Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.
Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing
2017-08-02
As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.
Dong, J G; Kim, W T; Yip, W K; Thompson, G A; Li, L; Bennett, A B; Yang, S F
1991-08-01
1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)(+) RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3'-end was intact, it lacked a portion of sequence at the 5'-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5'-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.
Genome-wide meta-analysis identifies novel determinants of circulating serum progranulin.
Tönjes, Anke; Scholz, Markus; Krüger, Jacqueline; Krause, Kerstin; Schleinitz, Dorit; Kirsten, Holger; Gebhardt, Claudia; Marzi, Carola; Grallert, Harald; Ladenvall, Claes; Heyne, Henrike; Laurila, Esa; Kriebel, Jennifer; Meisinger, Christa; Rathmann, Wolfgang; Gieger, Christian; Groop, Leif; Prokopenko, Inga; Isomaa, Bo; Beutner, Frank; Kratzsch, Jürgen; Fischer-Rosinsky, Antje; Pfeiffer, Andreas; Krohn, Knut; Spranger, Joachim; Thiery, Joachim; Blüher, Matthias; Stumvoll, Michael; Kovacs, Peter
2018-02-01
Progranulin is a secreted protein with important functions in processes including immune and inflammatory response, metabolism and embryonic development. The present study aimed at identification of genetic factors determining progranulin concentrations. We conducted a genome-wide association meta-analysis for serum progranulin in three independent cohorts from Europe: Sorbs (N = 848) and KORA (N = 1628) from Germany and PPP-Botnia (N = 335) from Finland (total N = 2811). Single nucleotide polymorphisms (SNPs) associated with progranulin levels were replicated in two additional German cohorts: LIFE-Heart Study (Leipzig; N = 967) and Metabolic Syndrome Berlin Potsdam (Berlin cohort; N = 833). We measured mRNA expression of genes in peripheral blood mononuclear cells (PBMC) by micro-arrays and performed mRNA expression quantitative trait and expression-progranulin association studies to functionally substantiate identified loci. Finally, we conducted siRNA silencing experiments in vitro to validate potential candidate genes within the associated loci. Heritability of circulating progranulin levels was estimated at 31.8% and 26.1% in the Sorbs and LIFE-Heart cohort, respectively. SNPs at three loci reached study-wide significance (rs660240 in CELSR2-PSRC1-MYBPHL-SORT1, rs4747197 in CDH23-PSAP and rs5848 in GRN) explaining 19.4%/15.0% of the variance and 61%/57% of total heritability in the Sorbs/LIFE-Heart Study. The strongest evidence for association was at rs660240 (P = 5.75 × 10-50), which was also associated with mRNA expression of PSRC1 in PBMC (P = 1.51 × 10-21). Psrc1 knockdown in murine preadipocytes led to a consecutive 30% reduction in progranulin secretion. In conclusion, the present meta-GWAS combined with mRNA expression identified three loci associated with progranulin and supports the role of PSRC1 in the regulation of progranulin secretion. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Velazquez, J R; Lacy, P; Mahmudi-Azer, S; Bablitz, B; Milne, C D; Denburg, J A; Moqbel, R
2000-01-01
Eosinophils elaborate a number of proinflammatory mediators, including immunoregulatory cytokines and chemokines. Interleukin (IL)-4 and RANTES are important cytokines that have previously been shown to be expressed by mature eosinophils. We hypothesized that de novo synthesis of IL-4 and RANTES occurs in nascent eosinophils, leading to storage of newly produced proteins in crystalloid granule-like structures. Cytokine mRNA and protein expression were examined in cultured eosinophil colonies, which were derived from purified cord blood CD34+ cells and generated in semisolid media (methylcellulose) in the presence of recombinant human (rh)IL-3 and rhIL-5. Cytokine mRNA profiles were analysed by the reverse transcription–polymerase chain reaction (RT–PCR) to determine transcription of IL-4 and RANTES in cells on days 0, 7, 14, 21 and 28 of culture. The expression of translated cytokine products and granule major basic protein (MBP) was confirmed, from day 23 onwards, for colonies cultured in semisolid media, by immunofluorescent labelling and confocal laser-scanning microscopy (CLSM). We found that mRNA sequences encoding IL-4 and RANTES were expressed in freshly prepared, non-differentiated CD34+ cells. Furthermore, RANTES mRNA localized to carbol chromotrope 2R-positive colony cells, as assessed using in situ RT–PCR on day 21 of culture in semisolid media, and was found to gradually decrease (relative to β2-microglobulin) in rhIL-3- and rhIL-5-treated colony cells (comprising > 90% eosinophil-like cells) up to day 28. Immunoreactivity for IL-4 and RANTES co-localized with MBP in maturing colony eosinophils on day 23 of culture in semisolid media, as judged by CLSM. These results suggest that synthesis and storage of immunoregulatory cytokines, essential for processes associated with adaptive immunity, occurs in nascent eosinophils during their growth and differentiation. PMID:11106947
Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates
Tsunekawa, Yuji; Britto, Joanne M; Takahashi, Masanori; Polleux, Franck; Tan, Seong-Seng; Osumi, Noriko
2012-01-01
Asymmetric cell division plays an indispensable role during corticogenesis for producing new neurons while maintaining a self-renewing pool of apical progenitors. The cellular and molecular determinants favouring asymmetric division are not completely understood. Here, we identify a novel mechanism for generating cellular asymmetry through the active transportation and local translation of Cyclin D2 mRNA in the basal process. This process is regulated by a unique cis-regulatory sequence found in the 3′ untranslated region (3′UTR) of the mRNA. Unequal inheritance of Cyclin D2 protein to the basally positioned daughter cell with the basal process confers renewal of the apical progenitor after asymmetric division. Conversely, depletion of Cyclin D2 in the apically positioned daughter cell results in terminal neuronal differentiation. We demonstrate that Cyclin D2 is also expressed in the developing human cortex within similar domains, thus indicating that its role as a fate determinant is ancient and conserved. PMID:22395070
De, B P; Galinski, M S; Banerjee, A K
1990-03-01
A cell extract derived from human parainfluenza virus type 3-infected human lung carcinoma (HLC) cells synthesized mRNA in vitro. Under optimal conditions, the extract was able to support transcription of all virus-encoded genes as determined by hybridization analyses. The RNA products contained full-length poly(A)-containing mRNA species similar to those observed in acutely infected cells. Further purification of the viral nucleocapsids from the infected HLC cell extract resulted in total loss of the capacity of the extract to synthesize mRNA in vitro. However, the addition of cytoplasmic extracts from uninfected HLC cells to the nucleocapsid preparations restored transcription to levels observed in the infected cell lysates, indicating requirement of a host factor(s) in the human parainfluenza virus type 3 transcription process. In distinction to the abundant transcription observed in the cell extract from HLC cells, cell extract prepared from CV-1 cells failed to support transcription in vitro. High levels of RNase activity in the cell extract from CV-1 cells appears to be the principal reason for this difference.
The expression of ADAM12 (meltrin alpha) in human giant cell tumours of bone.
Tian, B L; Wen, J M; Zhang, M; Xie, D; Xu, R B; Luo, C J
2002-12-01
To examine the expression of ADAM12 (meltrin alpha), a member of the disintegrin and metalloprotease (ADAM) family, in human giant cell tumours of the bone, skeletal muscle tissue from human embryos, and human adult skeletal muscle tissue. ADAM12 mRNA was detected by reverse transcription polymerase chain reaction and in situ hybridisation. ADAM12 mRNA was detected in 14 of the 20 giant cell tumours of bone and in three of the six tumour cell cultures. The expression of ADAM12 in cells cultured from the tumour was linked to the presence of multinucleated giant cells. ADAM12 mRNA could not be detected in the five adult skeletal muscle tissue samples, although it was found in the two embryonic skeletal muscle tissue samples. ADAM12 mRNA was localised to the cytoplasm of multinucleated giant cells and some mononuclear stromal cells. These results indicate that multinucleated giant cells are formed by the cell fusion of mononuclear stromal cells in giant cell tumours of bone and that ADAM12 is involved in the cell fusion process.
Javier, David J.; Castellanos-Gonzalez, Alejandro; Weigum, Shannon E.; White, A. Clinton; Richards-Kortum, Rebecca
2009-01-01
We report on a novel strategy for the detection of mRNA targets derived from Cryptosporidium parvum oocysts by the use of oligonucleotide-gold nanoparticles. Gold nanoparticles are functionalized with oligonucleotides which are complementary to unique sequences present on the heat shock protein 70 (HSP70) DNA/RNA target. The results indicate that the presence of HPS70 targets of increasing complexity causes the formation of oligonucleotide-gold nanoparticle networks which can be visually monitored via a simple colorimetric readout measured by a total internal reflection imaging setup. Furthermore, the induced expression of HSP70 mRNA in Cryptosporidium parvum oocysts via a simple heat shock process provides nonenzymatic amplification such that the HSP70 mRNA derived from as few as 5 × 103 purified C. parvum oocysts was successfully detected. Taken together, these results support the use of oligonucleotide-gold nanoparticles for the molecular diagnosis of cryptosporidiosis, offering new opportunities for the further development of point-of-care diagnostic assays with low-cost, robust reagents and simple colorimetric detection. PMID:19828740
Chishti, Yasmin Z; Feswick, April; Martyniuk, Christopher J
2014-04-01
Progesterone (P4) is a metabolic precursor for a number of steroids, including estrogens and androgens. P4 also has diverse roles within the vertebrate ovary that include oocyte growth and development. The objectives of this study were to measure the effects of P4 on testosterone (T) and 17β-estradiol (E2) production in the fathead minnow (FHM) ovary and on the mRNA abundance of transcripts involved in steroidogenesis and steroid receptor signaling. Ovary explants were treated with P4 (10(-6)M) for 6 and 12h. P4 administration significantly increased T production ∼3-fold at both 6 and 12h, whereas E2 production was not affected, consistent with the hypothesis that excess P4 is not converted to terminal estrogens in the mature ovary. Nuclear progesterone receptor mRNA was decreased at 6h and membrane progesterone receptor gamma-2 mRNA was significantly down-regulated at both 6 and 12h; however there was no change in membrane progesterone receptor alpha or beta mRNA levels. Androgen receptor (ar) and estrogen receptor 2a (esr2a) mRNA were significantly reduced at 6h with P4 treatment, but there was no change in esr2b mRNA at either time point. Transcripts for enzymes in the steroid pathway (star, hsd11b2) were significantly lower at 6h compared to controls, whereas cyp17a and cyp19a mRNA abundance did not change with treatments at either time point. These data suggest that P4 incubation can lead to increased T production in the FHM ovary without a concomitant change in E2, and that the membrane bound progestin receptors are differentially regulated by P4 in the teleost ovary. As environmental progestins have received increased attention due to their suspected role as endocrine disruptors, mechanistic data on the role of exogenous P4 treatments in the male and female gonad is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.
Odors regulate Arc expression in neuronal ensembles engaged in odor processing.
Guthrie, K; Rayhanabad, J; Kuhl, D; Gall, C
2000-06-26
Synaptic activity is critical to developmental and plastic processes that produce long-term changes in neuronal connectivity and function. Genes expressed by neurons in an activity-dependent fashion are of particular interest since the proteins they encode may mediate neuronal plasticity. One such gene encodes the activity-regulated cytoskeleton-associated protein, Arc. The present study evaluated the effects of odor stimulation on Arc expression in rat olfactory bulb. Arc mRNA was rapidly increased in functionally linked cohorts of neurons topographically activated by odor stimuli. These included neurons surrounding individual glomeruli, mitral cells and transynaptically activated granule cells. Dendritic Arc immunoreactivity was also increased in odor-activated glomeruli. Our results suggest that odor regulation of Arc expression may contribute to activity-dependent structural changes associated with olfactory experience.
[The chemerin production changes in obese patients with different carbohydrate metabolism state].
Vasilenko, M A; Kirienkova, E V; Skuratovskaya, D A; Zatolokin, P A; Mironyuk, N I; Litvinova, L S
2017-11-01
Chemerin is a mediator of adipose tissue involved in the regulation of many processes, including lipogenesis, and inflammatory response. The role of chemerin in the development of insulin resistance has been insufficiently studied and needs detailed understanding. The aim of the study was to investigate chemerin production in obese patients with different states of carbohydrate metabolism. The study included 155 patients with a diagnosis of obesity; 34 patients with overweight. The control group 1 consisted of 43 conditionally healthy donors who did not have obesity. For comparison of the results of a study to determine the levels of tissue-specific mRNA expression of the genes IL-6, TNF-a, RARRES2, (encoding IL-6, TNF-a and chemerin) in adipose tissue introduced a control group 2 - 30 patients without obesity. Study on the relative level of mRNA expression of the genes IL-6, TNF-a and RARRES2 (encoding IL-6, TNF-a and chemerin) was carried out using real time PCR. Concentrations of IL-6, TNF-a, and chemerin were measured in serum/plasma using an enzyme-linked immunosorbent assay (ELISA). We found significant differences in the plasma level of chemerin and tissue-specific features of RARRES2 gene expression in obese patients, depending on the degree of obesity and the state of carbohydrate metabolism. Multidirectional associations of RARRES2 gene expression with TNF-a and IL-6 genes in adipose tissues of different localization are shown: in obese patients (BMI £40 kg/m2) without type 2 diabetes - negative, and type 2 diabetes - positive. Identified relationship chemerin plasma content and the expression level of its gene in biopsies with various parameters of carbohydrate and lipid metabolism, proinflammatory molecules indicate chemerin involved in metabolic and immune processes in obesity.
MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans.
Corrêa, Régis L; Steiner, Florian A; Berezikov, Eugene; Ketting, René F
2010-04-08
RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi-related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer.
MicroRNA–Directed siRNA Biogenesis in Caenorhabditis elegans
Corrêa, Régis L.; Steiner, Florian A.; Berezikov, Eugene; Ketting, René F.
2010-01-01
RNA interference (RNAi) is a post-transcriptional silencing process, triggered by double-stranded RNA (dsRNA), leading to the destabilization of homologous mRNAs. A distinction has been made between endogenous RNAi–related pathways and the exogenous RNAi pathway, the latter being essential for the experimental use of RNAi. Previous studies have shown that, in Caenorhabditis elegans, a complex containing the enzymes Dicer and the Argonaute RDE-1 process dsRNA. Dicer is responsible for cleaving dsRNA into short interfering RNAs (siRNAs) while RDE-1 acts as the siRNA acceptor. RDE-1 then guides a multi-protein complex to homologous targets to trigger mRNA destabilization. However, endogenous role(s) for RDE-1, if any, have remained unexplored. We here show that RDE-1 functions as a scavenger protein, taking up small RNA molecules from many different sources, including the microRNA (miRNA) pathway. This is in striking contrast to Argonaute proteins functioning directly in the miRNA pathway, ALG-1 and ALG-2: these proteins exclusively bind miRNAs. While playing no significant role in the biogenesis of the main pool of miRNAs, RDE-1 binds endogenous miRNAs and triggers RdRP activity on at least one perfectly matching, endogenous miRNA target. The resulting secondary siRNAs are taken up by a set of Argonaute proteins known to act as siRNA acceptors in exogenous RNAi, resulting in strong mRNA destabilization. Our results show that RDE-1 in an endogenous setting is actively screening the transcriptome using many different small RNAs, including miRNAs, as a guide, with implications for the evolution of transcripts with a potential to be recognized by Dicer. PMID:20386745
Wu, N; Qin, H; Wang, M; Bian, Y; Dong, B; Sun, G; Zhao, W; Chang, G; Xu, Q; Chen, G
2017-04-01
1. Endothelin receptor B subtype 2 (EDNRB2) is a paralog of EDNRB, which encodes a 7-transmembrane G-protein coupled receptor. Previous studies reported that EDNRB was essential for melanoblast migration in mammals and ducks. 2. Muscovy ducks have different plumage colour phenotypes. Variations in EDNRB2 coding sequences (CDSs) and mRNA expression levels were investigated in 4 different Muscovy duck plumage colour phenotypes, including black, black mutant, silver and white head. 3. The EDNRB2 gene from Muscovy duck was cloned; it had a length of 6435 bp and encoded 437 amino acids. The coding region was screened and potential single nucleotide polymorphisms were identified. Eight mutations were obtained, including one missense variant (c.64C > T) and 7 synonymous substitutions. The substitutions were associated with plumage colour phenotypes. 4. The EDNRB2 mRNA expression levels were compared between feather pulp from black birds and black mutant birds. The results indicated that EDNRB2 transcripts in feather pulp were significantly higher in black feathers than in white feathers. 5. The results determined the variation of EDNRB2 CDS and mRNA expression in Muscovy ducks of various plumage colours.
Lim, Boram
2015-01-01
ABSTRACT The enzymatic activity of Escherichia coli endo-RNase III determines the stability of a subgroup of mRNA species, including bdm, betT, and proU, whose protein products are associated with the cellular response to osmotic stress. Here, we report that the stability of proP mRNA, which encodes a transporter of osmoprotectants, is controlled by RNase III in response to osmotic stress. We observed that steady-state levels of proP mRNA and ProP protein are inversely correlated with cellular RNase III activity and, in turn, affect the proline uptake capacity of the cell. In vitro and in vivo analyses of proP mRNA revealed RNase III cleavage sites in a stem-loop within the 5′ untranslated region present only in proP mRNA species synthesized from the osmoregulated P1 promoter. Introduction of nucleotide substitutions in the cleavage site identified inhibited the ribonucleolytic activity of RNase III on proP mRNA, increasing the steady-state levels and half-life of the mRNA. In addition, decreased RNase III activity coincided with a significant increase in both the half-life and abundance of proP mRNA under hyperosmotic stress conditions. Analysis of the RNA bound to RNase III via in vivo cross-linking and immunoprecipitation indicated that this phenomenon is related to the decreased RNA binding capacity of RNase III. Our findings suggest the existence of an RNase III-mediated osmoregulatory network that rapidly balances the expression levels of factors associated with the cellular response to osmotic stress in E. coli. IMPORTANCE Our results demonstrate that RNase III activity on proP mRNA degradation is downregulated in Escherichia coli cells under osmotic stress. In addition, we show that the downregulation of RNase III activity is associated with decreased RNA binding capacity of RNase III under hyperosmotic conditions. In particular, our findings demonstrate a link between osmotic stress and RNase III activity, underscoring the growing importance of posttranscriptional regulation in modulating rapid physiological adjustment to environmental changes. PMID:25645556
Kreth, Simone; Thon, Niklas; Eigenbrod, Sabina; Lutz, Juergen; Ledderose, Carola; Egensperger, Rupert; Tonn, Joerg C.; Kretzschmar, Hans A.; Hinske, Ludwig C.; Kreth, Friedrich W.
2011-01-01
Background We analyzed prospectively whether MGMT (O6-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylation is associated with upregulation of DNMT expression. Methodology/Principal Findings Adult patients with a histologically proven malignant astrocytoma (glioblastoma: N = 53, anaplastic astrocytoma: N = 10) were included. MGMT promoter methylation was determined by methylation-specific PCR (MSP) and sequencing analysis. Expression of MGMT and DNMTs mRNA were analysed by real-time qPCR. Prognostic factors were obtained from proportional hazards models. Correlation between MGMT mRNA expression and MGMT methylation status was validated using data from the Cancer Genome Atlas (TCGA) database (N = 229 glioblastomas). Low MGMT mRNA expression was strongly predictive for prolonged time to progression, treatment response, and length of survival in univariate and multivariate models (p<0.0001); the degree of MGMT mRNA expression was highly correlated with the MGMT promoter methylation status (p<0.0001); however, discordant findings were seen in 12 glioblastoma patients: Patients with methylated tumors with high MGMT mRNA expression (N = 6) did significantly worse than those with low transcriptional activity (p<0.01). Conversely, unmethylated tumors with low MGMT mRNA expression (N = 6) did better than their counterparts. A nearly identical frequency of concordant and discordant findings was obtained by analyzing the TCGA database (p<0.0001). Expression of DNMT1 and DNMT3b was strongly upregulated in tumor tissue, but not correlated with MGMT promoter methylation and MGMT mRNA expression. Conclusions/Significance MGMT mRNA expression plays a direct role for mediating tumor sensitivity to alkylating agents. Discordant findings indicate methylation-independent pathways of MGMT expression regulation. DNMT1 and DNMT3b are likely to be involved in CGI methylation. However, their exact role yet has to be defined. PMID:21365007
Ferron, Laurent; Davies, Anthony; Page, Karen M.; Cox, David J.; Leroy, Jerôme; Waithe, Dominic; Butcher, Adrian J.; Sellaturay, Priya; Bolsover, Steven; Pratt, Wendy S.; Moss, Fraser J.; Dolphin, Annette C.
2009-01-01
The role(s) of the novel stargazin-like γ-subunit proteins remain controversial. We have shown previously that the neuron-specific γ7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of γ7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA, and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of γ7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous γ7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed γ7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C-terminus of γ7 is essential for all its effects, and we show that γ7 binds directly via its C-terminus to a ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa and this enhancement is prevented by a concentration of γ7 that alone has no effect on IBa. The effect of γ7 is selective for certain mRNAs as it had no effect on α2δ-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride co-transporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that γ7 plays a role in stabilizing CaV2.2 mRNA. PMID:18923037
Burgos, Jonathan R; Iresjö, Britt-Marie; Smedh, Ulrika
2016-04-01
The aim of the present study was to explore central and peripheral host responses to an anorexia-cachexia producing tumor. We focused on neuroendocrine anorexigenic signals in the hypothalamus, brainstem, pituitary and from the tumor per se. Expression of mRNA for corticotropin-releasing hormone (CRH), cocaine- and amphetamine-regulated transcript (CART), nesfatin-1, thyrotropin (TSH) and the TSH receptor were explored. In addition, we examined changes in plasma TSH, CART peptides (CARTp) and serum amyloid P component (SAP). C57BL/6 mice were implanted with MCG101 tumors or sham-treated. A sham-implanted, pair‑fed (PF) group was included to delineate between primary tumor and secondary effects from reduced feeding. Food intake and body weight were measured daily. mRNA levels from microdissected mouse brain samples were assayed using qPCR, and plasma levels were determined using ELISA. MCG101 tumors expectedly induced anorexia and loss of body weight. Tumor-bearing (TB) mice exhibited an increase in nesfatin-1 mRNA as well as a decrease in CART mRNA in the paraventricular area (PVN). The CART mRNA response was secondary to reduced caloric intake whereas nesfatin-1 mRNA appeared to be tumor-specifically induced. In the pituitary, CART and TSH mRNA were upregulated in the TB and PF animals compared to the freely fed controls. Plasma levels for CARTp were significantly elevated in TB but not PF mice whereas levels of TSH were unaffected. The plasma CARTp response was correlated to the degree of inflammation represented by SAP. The increase in nesfatin-1 mRNA in the PVN highlights nesfatin-1 as a plausible candidate for causing tumor-induced anorexia. CART mRNA expression in the PVN is likely an adaptation to reduced caloric intake secondary to a cancer anorexia-cachexia syndrome (CACS)‑inducing tumor. The MCG101 tumor did not express CART mRNA, thus the elevation of plasma CARTp is host derived and likely driven by inflammation.
Zhang, Ting; Shan, Ke-Ren; Tu, Xi; He, Yan; Pei, Jin-Jing; Guan, Zhi-Zhong
2013-06-01
The myeloperoxidase (MPO) activity and its corresponding mRNA expression as well as gene polymorphism were investigated in the population who live in the endemic fluorosis area. In the study, 150 people were selected from the coal-burning endemic fluorosis area and 150 normal persons from the non-fluorosis area in Guizhou province of China. The blood samples were collected from these people. The activity of MPO in the plasma was determined by spectrophotometer; the expression of MPO mRNA was measured by employing real-time polymerase chain reaction; DNAs were extracted from the leucocytes in blood and five SNP genotypes of MPO promoter gene detected by a multiplex genotyping method, adapter-ligation-mediated allele-specific amplification. The results showed that the MPO activity and its corresponding mRNA in blood were significantly increased in the population living in the area of fluorosis. The different genotype frequencies of MPO, including -1228G/A, -585T/C, -463G/A, and -163C/T, and the three haplotypes with higher frequencies, including -163C-463G-585T-1228G-1276T, -163C-463G-585T-1228G-1276C, and -163C-463G-585T-1228A-1276T, were significantly associated with fluorosis. The results indicated that the elevated activity of MPO induced by endemic fluorosis may be connected in mechanism to the stimulated expression of MPO mRNA and the changed gene polymorphism.
Lin, J H; Levin, H L
1997-01-15
All retroviruses and LTR-containing retrotransposons are thought to require specific tRNA molecules to serve as primers of reverse transcription. An exception is the LTR-containing retrotransposon Tf1, isolated from Schizosaccharomyces pombe. Instead of requiring a tRNA, the reverse transcriptase of Tf1 uses the first 11 bases of the Tf1 transcript as the primer for reverse transcription. The primer is generated by a cleavage that occurs between bases 11 and 12 of the Tf1 mRNA. Sequence analysis of the 5' untranslated region of the Tf1 mRNA resulted in the identification of a region with the potential to form an RNA structure of 89 bases that included the primer binding site and the first 11 bases of the Tf1 mRNA. Systematic mutagenesis of this region revealed 34 single-point mutants in the structure that resulted in reduced transposition activity. The defects in transposition correlated with reduced level of Tf1 reverse transcripts as determined by DNA blot analysis. Evidence that the RNA structure did form in vivo included the result that strains with second site mutations that restored complementarity resulted in increased levels of reverse transcripts and Tf1 transposition. The majority of the mutants defective for reverse transcription were unable to cleave the Tf1 mRNA between bases 11 and 12. These data indicate that formation of an extensive RNA structure was required for the cleavage reaction that generated the primer for Tf1 reverse transcription.
Droplet Microfluidic and Magnetic Particles Platform for Cancer Typing.
Ferraro, Davide; Champ, Jérôme; Teste, Bruno; Serra, M; Malaquin, Laurent; Descroix, Stéphanie; de Cremoux, Patricia; Viovy, Jean-Louis
2017-01-01
Analyses of nucleic acids are routinely performed in hospital laboratories to detect gene alterations for cancer diagnosis and treatment decision. Among the different possible investigations, mRNA analysis provides information on abnormal levels of genes expression. Standard laboratory methods are still not adapted to the isolation and quantitation of low mRNA amounts and new techniques needs to be developed in particular for rare subsets analysis. By reducing the volume involved, time process, and the contamination risks, droplet microfluidics provide numerous advantages to perform analysis down to the single cell level.We report on a droplet microfluidic platform based on the manipulation of magnetic particles that allows the clinical analysis of tumor tissues. In particular, it allows the extraction of mRNA from the total-RNA sample, Reverse Transcription, and cDNA amplification, all in droplets.
Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology.
Sui, Weiguo; Shi, Zhoufang; Xue, Wen; Ou, Minglin; Zhu, Ying; Chen, Jiejing; Lin, Hua; Liu, Fuhua; Dai, Yong
2017-03-01
The aim of the present study was to screen gastric cancer (GC) tissue and adjacent tissue for differences in mRNA and circular (circRNA) expression, to analyze the differences in circRNA and mRNA expression, and to investigate the circRNA expression in gastric carcinoma and its mechanism. circRNA and mRNA differential expression profiles generated using Agilent microarray technology were analyzed in the GC tissues and adjacent tissues. qRT-PCR was used to verify the differential expression of circRNAs and mRNAs according to the interactions between circRNAs and miRNAs as well as the possible existence of miRNA and mRNA interactions. We found that: i) the circRNA expression profile revealed 1,285 significant differences in circRNA expression, with circRNA expression downregulated in 594 samples and upregulated in 691 samples via interactions with miRNAs. The qRT-PCR validation experiments showed that hsa_circRNA_400071, hsa_circRNA_000543 and hsa_circRNA_001959 expression was consistent with the microarray analysis results. ii) 29,112 genes were found in the GC tissues and adjacent tissues, including 5,460 differentially expressed genes. Among them, 2,390 differentially expressed genes were upregulated and 3,070 genes were downregulated. Gene Ontology (GO) analysis of the differentially expressed genes revealed these genes involved in biological process classification, cellular component classification and molecular function classification. Pathway analysis of the differentially expressed genes identified 83 significantly enriched genes, including 28 upregulated genes and 55 downregulated genes. iii) 69 differentially expressed circRNAs were found that might adsorb specific miRNAs to regulate the expression of their target gene mRNAs. The conclusions are: i) differentially expressed circRNAs had corresponding miRNA binding sites. These circRNAs regulated the expression of target genes through interactions with miRNAs and might become new molecular biomarkers for GC in the future. ii) Differentially expressed genes may be involved in the occurrence of GC via a variety of mechanisms. iii) CD44, CXXC5, MYH9, MALAT1 and other genes may have important implications for the occurrence and development of GC through the regulation, interaction, and mutual influence of circRNA-miRNA-mRNA via different mechanisms.
Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang
2017-02-06
Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.
McDermott, Suzanne M.; Davis, Ilan
2013-01-01
In the Drosophila oocyte, gurken (grk) mRNA encodes a secreted TGF-α signal that specifies the future embryonic dorso-ventral axes by altering the fate of the surrounding epithelial follicle cells. We previously identified a number of RNA binding proteins that associate specifically with the 64 nucleotide grk localization signal, including the Drosophila orthologue of polypyrimidine tract-binding protein (PTB), Hephaestus (Heph). To test whether Heph is required for correct grk mRNA or protein function, we used immunoprecipitation to validate the association of Heph with grk mRNA and characterized the heph mutant phenotype. We found that Heph is a component of grk mRNP complexes but heph germline clones show that Heph is not required for grk mRNA localization. Instead, we identify a novel function for Heph in the germline and show that it is required for proper Grk protein localization. Furthermore, we show that Heph is required in the oocyte for the correct organization of the actin cytoskeleton and dorsal appendage morphogenesis. Our results highlight a requirement for an mRNA binding protein in the localization of Grk protein, which is independent of mRNA localization, and we propose that Heph is required in the germline for efficient Grk signalling to the somatic follicle cells during dorso-ventral patterning. PMID:23894566
Ono, Hiroyuki; Saitsu, Hirotomo; Horikawa, Reiko; Nakashima, Shinichi; Ohkubo, Yumiko; Yanagi, Kumiko; Nakabayashi, Kazuhiko; Fukami, Maki; Fujisawa, Yasuko; Ogata, Tsutomu
2018-02-02
Although partial androgen insensitivity syndrome (PAIS) is caused by attenuated responsiveness to androgens, androgen receptor gene (AR) mutations on the coding regions and their splice sites have been identified only in <25% of patients with a diagnosis of PAIS. We performed extensive molecular studies including whole exome sequencing in a Japanese family with PAIS, identifying a deep intronic variant beyond the branch site at intron 6 of AR (NM_000044.4:c.2450-42 G > A). This variant created the splice acceptor motif that was accompanied by pyrimidine-rich sequence and two candidate branch sites. Consistent with this, reverse transcriptase (RT)-PCR experiments for cycloheximide-treated lymphoblastoid cell lines revealed a relatively large amount of aberrant mRNA produced by the newly created splice acceptor site and a relatively small amount of wildtype mRNA produced by the normal splice acceptor site. Furthermore, most of the aberrant mRNA was shown to undergo nonsense mediated decay (NMD) and, if a small amount of aberrant mRNA may have escaped NMD, such mRNA was predicted to generate a truncated AR protein missing some functional domains. These findings imply that the deep intronic mutation creating an alternative splice acceptor site resulted in the production of a relatively small amount of wildtype AR mRNA, leading to PAIS.
Nuclease footprint analyses of the interactions between RNase P ribozyme and a model mRNA substrate.
Trang, P; Hsu, A W; Liu, F
1999-01-01
RNase P ribozyme cleaves an RNA helix substrate which resembles the acceptor stem and T-stem structures of its natural tRNA substrate. By linking the ribozyme covalently to a sequence (guide sequence) complementary to a target RNA, the catalytic RNA can be converted into a sequence-specific ribozyme, M1GS RNA. We have previously shown that M1GS RNA can efficiently cleave the mRNA sequence encoding thymidine kinase (TK) of herpes simplex virus 1. In this study, a footprint procedure using different nucleases was carried out to map the regions of a M1GS ribozyme that potentially interact with the TK mRNA substrate. The ribozyme regions that are protected from nuclease degradation in the presence of the TK mRNA substrate include those that interact with the acceptor stem and T-stem, the 3' terminal CCA sequence and the cleavage site of a tRNA substrate. However, some of the protected regions (e.g. P13 and P14) are unique and not among those protected in the presence of a tRNA substrate. Identification of the regions that interact with a mRNA substrate will allow us to study how M1GS RNA recognizes a mRNA substrate and facilitate the development of mRNA-cleaving ribozymes for gene-targeting applications. PMID:10556315
Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex
Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro
2009-01-01
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625
Liu, Jiqin; Ren, Dangli; Du, Zhenhua; Wang, Hekong; Zhang, Hua; Jin, Ying
2018-08-25
N 6 -Methyladenosine (m 6 A) represents the most prevalent internal modification in mammalian mRNAs. Emerging evidences suggest that m 6 A modification is profoundly implicated in many biological processes, including cancer development. However, limited knowledge is available about the functional importance of m 6 A in lung cancer. In this study, by data mining The Cancer Genome Atlas (TCGA) database, we first identified fat mass- and obesity-associated protein (FTO) as a prognostic factor for lung squamous cell carcinoma (LUSC). Then we showed that FTO, but not other m 6 A modification genes including METTL3, METTL14 and ALKBH5, was the major dysregulated factor responsible for aberrant m 6 A modification in LUSC. Loss-of-function studies suggested that FTO knockdown effectively inhibited cell proliferation and invasion, while promoted cell apoptosis of L78 and NCI-H520 cells. Furthermore, overexpression of FTO, but not its mutant form, facilitated the malignant phenotypes of CHLH-1 cells. Mechanistically, FTO enhanced MZF1 expression by reducing m 6 A levels and mRNA stability in MZF1 mRNA transcript, leading to oncogenic functions. Taken together, our study demonstrates the functional importance of FTO in the tumor progression of LUSC and provides a potential therapeutic target for LUSC treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Cripto-1 in Mammary Gland Development and Carcinogenesis
1999-06-01
4). T.O. 2 We have designed and tested a hammerhead ribozyme [22, 23] that recognizes nucleotides 12-28 of the murine CR-I mRNA and cuts after the GUC...III C AGCCGG U A G GA U FIG. 1. CR-i-specific hammerhead ribozyme . (A) Diagram of the processed CR-1 mRNA, showing the ribozyme recognition sequence...diagram of the CR-1 message and ribozyme is shown RT-PCR reactions were electrophoresed through 1.5% agarose-TAE in Figure 1A, and the folded hammerhead
Selenocysteine incorporation: A trump card in the game of mRNA decay
Shetty, Sumangala P.; Copeland, Paul R.
2015-01-01
The incorporation of the 21st amino acid, selenocysteine (Sec), occurs on mRNAs that harbor in-frame stop codons because the Sec-tRNASec recognizes a UGA codon. This sets up an intriguing interplay between translation elongation, translation termination and the complex machinery that marks mRNAs that contain premature termination codons for degradation, leading to nonsense mediated mRNA decay (NMD). In this review we discuss the intricate and complex relationship between this key quality control mechanism and the process of Sec incorporation in mammals. PMID:25622574
Regulation of c-Myc mRNA by L11 in Response to UV and Gamma irradiation
2011-10-01
release of L11 from the nucleolus to the nucleoplasm, where it binds to c-Myc protein, and to the cytoplasm, where it binds to c-myc mRNA. We also found...rRNA and ribosomal proteins (RPs), rRNA processing, and the as- sembly of the mature ribosome subunits in the nucleolus fol- lowed by their transport...from the nucleolus or from intact ribosomes to suppress MDM2 (68). However, whether L11 suppresses c-Myc in response to ribosomal stress is not known
Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation.
Di Francesco, Andrea; Di Germanio, Clara; Panda, Amaresh C; Huynh, Phu; Peaden, Robert; Navas-Enamorado, Ignacio; Bastian, Paul; Lehrmann, Elin; Diaz-Ruiz, Alberto; Ross, David; Siegel, David; Martindale, Jennifer L; Bernier, Michel; Gorospe, Myriam; Abdelmohsen, Kotb; de Cabo, Rafael
2016-10-01
NAD(P)H: quinone oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor α-1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3' untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3'UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase (NE), one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as an RNA-binding protein may help to explain its pleiotropic biological effects. Published by Elsevier Inc.
Changes in the mRNA levels of delayed rectifier potassium channels in human atrial fibrillation.
Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Tseng, Y Z; Lien, W P; Huang, S K
1999-01-01
We measured mRNA levels of delayed rectifier potassium channels in human atrial tissue to investigate the mechanism of the shortening of the atrial effective refractory period and the loss of rate-adaptive shortening of the atrial effective refractory period in human atrial fibrillation. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The mRNA amounts of KVLQT1 (IKs), minK (beta-subunit of IKs), HERG (IKr), and KV1.5 (IKur) were measured by reverse transcription-polymerase chain reaction and normalized to the mRNA amount of GAPDH. We found that the mRNA levels of KV1.5, HERG and KVLQT1 were all significantly decreased in patients with persistent atrial fibrillation for more than 3 months. In contrast, the mRNA level of minK was significantly increased in patients with persistent atrial fibrillation for more than 3 months. We further showed that these changes were independent of the underlying cardiac disease, atrial filling pressure, gender and age. We also found that there was no spatial dispersion of mRNA levels among the four atrial sampling sites. Because the decrease in potassium currents results in a prolonged action potential, the shortening of the atrial effective refractory period in atrial fibrillation should be attributed to other factors. However, the decrease in IKs might contribute, at least in part, to the loss of rate-adaptive shortening of the atrial refractory period.
Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F
2014-07-24
MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.
Gene and genon concept: coding versus regulation
2007-01-01
We analyse here the definition of the gene in order to distinguish, on the basis of modern insight in molecular biology, what the gene is coding for, namely a specific polypeptide, and how its expression is realized and controlled. Before the coding role of the DNA was discovered, a gene was identified with a specific phenotypic trait, from Mendel through Morgan up to Benzer. Subsequently, however, molecular biologists ventured to define a gene at the level of the DNA sequence in terms of coding. As is becoming ever more evident, the relations between information stored at DNA level and functional products are very intricate, and the regulatory aspects are as important and essential as the information coding for products. This approach led, thus, to a conceptual hybrid that confused coding, regulation and functional aspects. In this essay, we develop a definition of the gene that once again starts from the functional aspect. A cellular function can be represented by a polypeptide or an RNA. In the case of the polypeptide, its biochemical identity is determined by the mRNA prior to translation, and that is where we locate the gene. The steps from specific, but possibly separated sequence fragments at DNA level to that final mRNA then can be analysed in terms of regulation. For that purpose, we coin the new term “genon”. In that manner, we can clearly separate product and regulative information while keeping the fundamental relation between coding and function without the need to introduce a conceptual hybrid. In mRNA, the program regulating the expression of a gene is superimposed onto and added to the coding sequence in cis - we call it the genon. The complementary external control of a given mRNA by trans-acting factors is incorporated in its transgenon. A consequence of this definition is that, in eukaryotes, the gene is, in most cases, not yet present at DNA level. Rather, it is assembled by RNA processing, including differential splicing, from various pieces, as steered by the genon. It emerges finally as an uninterrupted nucleic acid sequence at mRNA level just prior to translation, in faithful correspondence with the amino acid sequence to be produced as a polypeptide. After translation, the genon has fulfilled its role and expires. The distinction between the protein coding information as materialised in the final polypeptide and the processing information represented by the genon allows us to set up a new information theoretic scheme. The standard sequence information determined by the genetic code expresses the relation between coding sequence and product. Backward analysis asks from which coding region in the DNA a given polypeptide originates. The (more interesting) forward analysis asks in how many polypeptides of how many different types a given DNA segment is expressed. This concerns the control of the expression process for which we have introduced the genon concept. Thus, the information theoretic analysis can capture the complementary aspects of coding and regulation, of gene and genon. PMID:18087760
The Cytidine Analog Fluorocyclopentenylcytosine (RX-3117) Is Activated by Uridine-Cytidine Kinase 2
Smid, Kees; de Klerk, Daniël; van Kuilenburg, André B. P.; Meinsma, Rutger; Lee, Young B.; Kim, Deog J.; Peters, Godefridus J.
2016-01-01
Fluorocyclopentenylcytosine (RX-3117) is an orally available cytidine analog, currently in Phase I clinical trial. RX-3117 has promising antitumor activity in various human tumor xenografts including gemcitabine resistant tumors. RX-3117 is activated by uridine-cytidine kinase (UCK). Since UCK exists in two forms, UCK1 and UCK2, we investigated which form is responsible for RX-3117 phosphorylation. For that purpose we transfected A549 and SW1573 cell lines with UCK-siRNAs. Transfection of UCK1-siRNA efficiently downregulated UCK1-mRNA, but not UCK2-mRNA expression, and did not affect sensitivity to RX-3117. However, transfection of UCK2-siRNA completely downregulated UCK2-mRNA and protein and protected both A549 and SW1573 against RX-3117. UCK enzyme activity in two panels of tumor cell lines and xenograft cells correlated only with UCK2-mRNA expression (r = 0.803 and 0.915, respectively), but not with UCK1-mRNA. Moreover, accumulation of RX-3117 nucleotides correlated with UCK2 expression. In conclusion, RX-3117 is activated by UCK2 which may be used to select patients potentially sensitive to RX-3117. PMID:27612203
Unmasking Upstream Gene Expression Regulators with miRNA-corrected mRNA Data
Bollmann, Stephanie; Bu, Dengpan; Wang, Jiaqi; Bionaz, Massimo
2015-01-01
Expressed micro-RNA (miRNA) affects messenger RNA (mRNA) abundance, hindering the accuracy of upstream regulator analysis. Our objective was to provide an algorithm to correct such bias. Large mRNA and miRNA analyses were performed on RNA extracted from bovine liver and mammary tissue. Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%). Using four levels of target scores from TargetScan (all miRNA:mRNA target gene pairs or only the top 25%, 50%, or 75%) and four levels of the magnitude of miRNA effect (ME) on mRNA expression (30%, 50%, 75%, and 83% mRNA reduction), we generated 17 different datasets (including the original dataset). For each dataset, we performed upstream regulator analysis using two bioinformatics tools. We detected an increased effect on the upstream regulator analysis with larger miRNA:mRNA pair bins and higher ME. The miRNA correction allowed identification of several upstream regulators not present in the analysis of the original dataset. Thus, the proposed algorithm improved the prediction of upstream regulators. PMID:27279737
L'Hernault, S. W.; Benian, G. M.; Emmons, R. B.
1993-01-01
Two self-sterile mutations that define the spermatogenesis-defective gene spe-17 have been analyzed. These mutations affect unc-22 and fail to complement each other for both Unc-22 and spermatogenesis defects. Both of these mutations are deficiencies (hcDf1 and hDf13) that affect more than one transcription unit. Genomic DNA adjacent to and including the region deleted by the smaller deficiency (hcDf1) has been sequenced and four mRNAs (including unc-22) have been localized to this sequenced region. The three non unc-22 mRNAs are shown to be sex-specific: a 1.2-kb mRNA that can be detected in sperm-free hermaphrodites and 1.2- and 0.56-kb mRNAs found in males. hDf13 deletes at least 55 kb of chromosome IV, including all of unc-22, both male-specific mRNAs and at least part of the female-specific mRNA. hcDf1, which is approximately 15.6 kb, deletes only the 5' end of unc-22 and the gene that encodes the 0.56-kb male-specific mRNA. The common defect that apparently accounts for the defective sperm in hcDf1 and hDf13 homozygotes is deletion of the spe-17 gene, which encodes the 0.56-kb mRNA. Strains carrying two copies of either deletion are self-fertile when they are transgenic for any of four extrachromosomal array that include spe-17. We have sequenced two spe-17 cDNAs, and the deduced 142 amino acid protein sequence is highly charged and rich in serine and threonine, but shows no significant homology to any previously determined protein sequence. PMID:8349108
Conformational changes accompany activation of reovirus RNA-dependent RNA transcription
Mendez, Israel I.; Weiner, Scott G.; She, Yi-Min; Yeager, Mark; Coombs, Kevin M.
2009-01-01
Many critical biologic processes involve dynamic interactions between proteins and nucleic acids. Such dynamic processes are often difficult to delineate by conventional static methods. For example, while a variety of nucleic acid polymerase structures have been determined at atomic resolution, the details of how some multi-protein transcriptase complexes actively produce mRNA, as well as conformational changes associated with activation of such complexes, remain poorly understood. The mammalian reovirus innermost capsid (core) manifests all enzymatic activities necessary to produce mRNA from each of the 10 encased double-stranded RNA genes. We used rapid freezing and electron cryo-microscopy to trap and visualize transcriptionally active reovirus core particles and compared them to inactive core images. Rod-like density centered within actively transcribing core spike channels was attributed to exiting nascent mRNA. Comparative radial density plots of active and inactive core particles identified several structural changes in both internal and external regions of the icosahedral core capsid. Inactive and transcriptionally active cores were partially digested with trypsin and identities of initial tryptic peptides determined by mass spectrometry. Differentially-digested peptides, which also suggest transcription-associated conformational changes, were placed within the known 3-dimensional structures of major core proteins. PMID:18321727
Detection of survivin mRNA in healthy oral mucosa, oral leucoplakia and oral cancer.
Lodi, G; Franchini, R; Bez, C; Sardella, A; Moneghini, L; Pellegrini, C; Bosari, S; Manfredi, M; Vescovi, P; Carrassi, A
2010-01-01
Survivin is involved in modulation of cell death and cell division processes. Survivin expression in normal adult tissues has not been fully understood, although it is markedly lower than in cancer, where it is over-expressed. To investigate survivin expression in normal, potentially malignant and cancerous oral mucosa. We measured survivin mRNA levels by real-time RT-PCR in specimens of oral mucosa (15 from normal mucosa, 17 from potentially malignant lesions, 17 from neoplasms). Scores were compared using Kruskal-Wallis test and post hoc according to Conover. Chi-squared test was used for dichotomous data. The median relative levels of survivin mRNA resulted six for normal mucosa, eight for potentially malignant lesions, 13 for cancers: differences among these three groups were statistically significant, as between cancer and potentially malignant lesions. Expression in normal mucosa and potentially lesions group showed no significant difference. Low, but not marginal expression of survivin in normal mucosa is a new finding, and it could be explained with the higher sensibility of our methods. Survivin expression in oral potentially malignant lesions might indicate a progressive deregulation of expression paralleling oncogenesis, particularly during the first stages of process, suggesting a putative predictive role for survivin.
Shukla, Smita; Elson, Genie; Blackshear, Perry J.; Lutz, Carol S.; Leibovich, S. Joseph
2017-01-01
We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of Phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA. To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators and proto-oncogenes. Adenylate and Uridylate (AU)-rich elements (AREs) in 3′UTRs are specific recognition sites for RNA-binding proteins including Tristetraprolin (TTP), HuR and AUF1, and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3′UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed Luciferase expression from this reporter. Luciferase expression from mutant 3′UTR constructs lacking AREs was similarly down-regulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP. LPS suppressed PLCβ-2 expression to the same extent in wild type and TTP−/− macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in wild type and TTP−/− macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages. PMID:28124257
Shukla, Smita; Elson, Genie; Blackshear, Perry J; Lutz, Carol S; Leibovich, S Joseph
2017-04-01
We have shown previously that bacterial lipopolysaccharide (LPS)-mediated suppression of phospholipase-Cβ-2 (PLCβ-2) expression is involved in M1 (inflammatory) to M2-like (wound healing) phenotypic switching of macrophages triggered by adenosine. This suppression is mediated post-transcriptionally by destabilization of PLCβ-2 mRNA (messenger ribonucleic acid). To investigate the mechanism of this LPS-mediated destabilization, we examined the roles of RNA-binding agents including microRNAs and RNA-binding proteins that are involved in regulating stability of mRNAs encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenylate and uridylate (AU)-rich elements (AREs) in 3'UTRs are specific recognition sites for RNA-binding proteins including tristetraprolin (TTP), HuR, and AUF1 and for microRNAs that are involved in regulating mRNA stability. In this study, we investigated the role of TTP and AREs in regulating PLCβ-2 mRNA stability. The 3'UTR of the PLCβ-2 gene was inserted into the pLightswitch luciferase reporter plasmid and transfected into RAW264.7 cells. LPS suppressed luciferase expression from this reporter. Luciferase expression from mutant 3'UTR constructs lacking AREs was similarly downregulated, suggesting that these regions are not required for LPS-mediated suppression of PLCβ-2. TTP was rapidly upregulated in both primary murine macrophages and RAW264.7 cells in response to LPS. Suppression of PLCβ-2 by LPS was examined using macrophages from mice lacking TTP (TTP -/- ). LPS suppressed PLCβ-2 expression to the same extent in wild type (WT) and TTP -/- macrophages. Also, the rate of decay of PLCβ-2 mRNA in LPS-treated macrophages following transcriptional blockade was similar in WT and TTP -/- macrophages, clearly indicating that TTP is not involved in LPS-mediated destabilization of PLCβ-2 mRNA in macrophages.
Wolf, Louise; Gao, Chun S.; Gueta, Karen; Xie, Qing; Chevallier, Tiphaine; Podduturi, Nikhil R.; Sun, Jian; Conte, Ivan; Zelenka, Peggy S.; Ashery-Padan, Ruth; Zavadil, Jiri; Cvekl, Ales
2013-01-01
MicroRNAs (miRNAs) and fibroblast growth factor (FGF) signaling regulate a wide range of cellular functions, including cell specification, proliferation, migration, differentiation, and survival. In lens, both these systems control lens fiber cell differentiation; however, a possible link between these processes remains to be examined. Herein, the functional requirement for miRNAs in differentiating lens fiber cells was demonstrated via conditional inactivation of Dicer1 in mouse (Mus musculus) lens. To dissect the miRNA-dependent pathways during lens differentiation, we used a rat (Rattus norvegicus) lens epithelial explant system, induced by FGF2 to differentiate, followed by mRNA and miRNA expression profiling. Transcriptome and miRNome analysis identified extensive FGF2-regulated cellular responses that were both independent and dependent on miRNAs. We identified 131 FGF2-regulated miRNAs. Seventy-six of these miRNAs had at least two in silico predicted and inversely regulated target mRNAs. Genes modulated by the greatest number of FGF-regulated miRNAs include DNA-binding transcription factors Nfib, Nfat5/OREBP, c-Maf, Ets1, and N-Myc. Activated FGF signaling influenced bone morphogenetic factor/transforming growth factor-β, Notch, and Wnt signaling cascades implicated earlier in lens differentiation. Specific miRNA:mRNA interaction networks were predicted for c-Maf, N-Myc, and Nfib (DNA-binding transcription factors); Cnot6, Cpsf6, Dicer1, and Tnrc6b (RNA to miRNA processing); and Ash1l, Med1/PBP, and Kdm5b/Jarid1b/Plu1 (chromatin remodeling). Three miRNAs, including miR-143, miR-155, and miR-301a, down-regulated expression of c-Maf in the 3′-UTR luciferase reporter assays. These present studies demonstrate for the first time global impact of activated FGF signaling in lens cell culture system and predicted novel gene regulatory networks connected by multiple miRNAs that regulate lens differentiation. PMID:24142921
2012-01-01
Background MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs. Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single software environment with the added capability to interact with public data sources and visual analytic tools for HTP data analysis at a systems level. BRM is developed using Java™ and other open-source technologies for free distribution (http://www.sysbio.org/dataresources/brm.stm). PMID:23174015
NASA Astrophysics Data System (ADS)
Minchenko, D. O.; Yavorovsky, O. P.; Zinchenko, T. O.; Komisarenko, S. V.; Minchenko, O. H.
2012-09-01
Circadian factors PER1, PER2, ARNTL and CLOCK are important molecular components of biological clock system and play a fundamental role in the metabolism at both the behavioral and molecular levels and potentially have great importance for understanding metabolic health and disease, because disturbance the circadian processes lead to developing of different pathology. The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronics, home products, and for water disinfection, but little is yet known about their toxicity. These nanoparticles induce blood-brain barrier destruction, astrocyte swelling, cause degeneration of neurons and impair neurodevelopment as well as embryonic development. We studied the expression of genes encoded the key molecular components of circadian clock system in different rat organs after intratracheally instilled silver nanoparticles which quite rapidly translocate from the lungs into the blood stream and accumulate in different tissues. We have shown that silver nanoparticles significantly affect the expression levels of PER1, PER2, ARNTL and CLOCK mRNA in different rat tissues in time-dependent and tissue-specific manner. High level of PER1, ARNTL and CLOCK mRNA expression was observed in the lung on the 1st 3rd and 14th day after treatment of rats with silver nanoparticles. At the same time, the expression level of PER1 mRNA in the brain and liver increases predominantly on the 1st and 14th day but decreases in the testis. Significant increase of the expression level of PER2 and ARNTL mRNA was detected only in the brain of treated by silver nanoparticles rats. Besides that, intratracheally instilled silver nanoparticles significantly reduced the expression levels of CLOCK mRNA in the brain, heart and kidney. No significant changes in the expression level of PER2 mRNA were found in the lung, liver, heart and testis, except kidney where this mRNA expression decreases on the 3rd and 14th day after treatment of rats with silver nanoparticles. It was also shown that expression level of PFKFB4, a key enzyme of glycolysis regulation, gradually reduces in the brain from 1st to 14th day being up to 4 fold less on 14th day after treatment of animals with silver nanoparticles. Thus, the intratracheally instilled silver nanoparticles significantly affect the expression of PER1, PER2, ARNTL, and CLOCK genes which are an important molecular component of circadian clock system. This is because a disruption of the circadian processes leads to a development of various pathologic processes. The results of this study clearly demonstrate that circadian genes could be a sensitive test for detection of silver nanoparticles toxic action and suggest that more caution is needed in biomedical applications of silver nanoparticles as well as higher level of safety in silver nanoparticles production industry.
Fang, Qi; Yao, Shuang; Luo, Guanghua; Zhang, Xiaoying
2018-01-01
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER+) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER+- than in ER--breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER+-tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER+ MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways. PMID:29416786
Fang, Qi; Yao, Shuang; Luo, Guanghua; Zhang, Xiaoying
2018-01-05
While tamoxifen (TAM) is used for treating estrogen receptor (ER)a-positive breast cancer patients, its anti-breast cancer mechanisms are not completely elucidated. This study aimed to examine effects of 4-hydroxyltamoxifen (4-OH-TAM) on ER-positive (ER + ) breast cancer MCF-7 cell growth and gene expression profiles. MCF-7 cell growth was inhibited by 4-OH-TAM dose-dependently with IC 50 of 29 μM. 332 genes were up-regulated while 320 genes were down-regulated. The mRNA levels of up-regulated genes including STAT1, STAT2, EIF2AK2, TGM2, DDX58, PARP9, SASH1, RBL2 and USP18 as well as down-regulated genes including CCDN1, S100A9, S100A8, ANXA1 and PGR were confirmed by quantitative real-time PCR (qRT-PCR). In human breast tumor tissues, mRNA levels of EIF2Ak2, USP18, DDX58, RBL2, STAT2, PGR, S1000A9, and CCND1 were significantly higher in ER + - than in ER - -breast cancer tissues. The mRNA levels of EIF2AK2, TGM2, USP18, DDX58, PARP9, STAT2, STAT1, PGR and CCND1 were all significantly higher in ER + -tumor tissues than in their corresponding tumor-adjacent tissues. These genes, except PGR and CCND1 which were down-regulated, were also up-regulated in ER + MCF-7 cells by 4-OH-TAM. Total 14 genes mentioned above are involved in regulation of cell proliferation, apoptosis, cell cycles, and estrogen and interferon signal pathways. Bioinformatics analysis also revealed other novel and important regulatory factors that are associated with these genes and involved in the mentioned functional processes. This study has paved a foundation for elucidating TAM anti-breast cancer mechanisms in E2/ER-dependent and independent pathways.
Vallerie, Sara N; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E; Breyer, Richard M; Andreasson, Katrin I; Bornfeldt, Karin E
2016-01-01
Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis.
Vallerie, Sara N.; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E.; Breyer, Richard M.; Andreasson, Katrin I.; Bornfeldt, Karin E.
2016-01-01
Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis. PMID:27351842
Kim, Sung-Bae; Wildiers, Hans; Krop, Ian E; Smitt, Melanie; Yu, Ron; Lysbet de Haas, Sanne; Gonzalez-Martin, Antonio
2016-11-15
In the phase III TH3RESA study (NCT01419197), 602 patients with HER2-positive advanced breast cancer who received prior taxane therapy and ≥2 HER2-directed regimens, including trastuzumab and lapatinib (advanced setting), were randomized to trastuzumab emtansine (T-DM1) or treatment of physician's choice (TPC). A statistically significant progression-free survival (PFS) benefit favoring T-DM1 was demonstrated. Here, we examine the relationship between HER2-related biomarkers and PFS in an exploratory analysis. Biomarkers assessed included HER2 (n = 505) and HER3 (n = 505) mRNA expression, PIK3CA mutation status (n = 410) and PTEN protein expression (n = 358). For biomarkers with continuous data (HER2, HER3, PTEN), subgroups were defined using median values (>median and ≤median). For all biomarker subgroups, median PFS was longer with T-DM1 vs. TPC. The PFS benefit favoring T-DM1 vs. TPC was numerically greater in the HER2 mRNA >median subgroup (7.2 vs. 3.4 months; unstratified hazard ratio [HR], 0.40; 95% CI, 0.28-0.59; p < 0.0001) vs. ≤median subgroup (5.5 vs. 3.9 months; HR, 0.68; 95% CI, 0.49-0.92; p = 0.0131). The PFS benefit with T-DM1 was similar among HER3, PIK3CA and PTEN subgroups. Consistent with other reports, benefit was seen with T-DM1 regardless of PIK3CA mutation status. In a multivariate analysis including an interaction term (treatment group by log2-transformed HER2 mRNA), patients with higher HER2 mRNA levels benefited more from receiving T-DM1 (HR, 0.84; 95% CI, 0.75-0.94; interaction p value = 0.0027). In summary, T-DM1 prolonged median PFS in all biomarker subgroups analyzed, including activating PIK3CA mutations, with numerically greater benefit in patients with tumors expressing HER2 mRNA >median vs. ≤median. © 2016 UICC.
Yau, Edwin H.; Butler, Mark C.; Sullivan, Jack M.
2016-01-01
Major bottlenecks in development of therapeutic post transcriptional gene silencing (PTGS) agents (e.g. ribozymes, RNA interference, antisense) include the challenge of mapping rare accessible regions of the mRNA target that are open for annealing and cleavage, testing and optimization of agents in human cells to identify lead agents, testing for cellular toxicity, and preclinical evaluation in appropriate animal models of disease. Methods for rapid and reliable cellular testing of PTGS agents are needed to identify potent lead candidates for optimization. Our goal was to develop a means of rapid assessment of many RNA agents to identify a lead candidate for a given mRNA associated with a disease state. We developed a rapid human cell-based screening platform to test efficacy of hammerhead ribozyme (hhRz) or RNA interference (RNAi) constructs, using a model retinal degeneration target, human rod opsin (RHO) mRNA. The focus is on RNA Drug Discovery for diverse retinal degeneration targets. To validate the approach, candidate hhRzs were tested against NUH↓ cleavage sites (N=G,C,A,U; H=C,A,U) within the target mRNA of secreted alkaline phosphatase (SEAP), a model gene expression reporter, based upon in silico predictions of mRNA accessibility. HhRzs were embedded in a larger stable adenoviral VAI RNA scaffold for high cellular expression, cytoplasmic trafficking, and stability. Most hhRz expression plasmids exerted statistically significant knockdown of extracellular SEAP enzyme activity when readily assayed by a fluorescence enzyme assay intended for high throughput screening (HTS). Kinetics of PTGS knockdown of cellular targets is measureable in live cells with the SEAP reporter. The validated SEAP HTS platform was transposed to identify lead PTGS agents against a model hereditary retinal degeneration target, RHO mRNA. Two approaches were used to physically fuse the model retinal gene target mRNA to the SEAP reporter mRNA. The most expedient way to evaluate a large set of potential VAI-hhRz expression plasmids against diverse NUH↓ cleavage sites uses cultured human HEK293S cells stably expressing a dicistronic Target-IRES-SEAP target fusion mRNA. Broad utility of this rational RNA drug discovery approach is feasible for any ophthalmological disease-relevant mRNA targets and any disease mRNA targets in general. The approach will permit rank ordering of PTGS agents based on potency to identify a lead therapeutic compound for further optimization. PMID:27233447
APP processing and the APP-KPI domain involvement in the amyloid cascade.
Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B
2005-01-01
Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.
Lee, Sindre; Norheim, Frode; Langleite, Torgrim M; Noreng, Hans J; Storås, Trygve H; Afman, Lydia A; Frost, Gary; Bell, Jimmy D; Thomas, E Louise; Kolnes, Kristoffer J; Tangen, Daniel S; Stadheim, Hans K; Gilfillan, Gregor D; Gulseth, Hanne L; Birkeland, Kåre I; Jensen, Jørgen; Drevon, Christian A; Holen, Torgeir
2016-11-01
Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54
Chu, Chia-ying
2006-01-01
RNA interference is triggered by double-stranded RNA that is processed into small interfering RNAs (siRNAs) by Dicer enzyme. Endogenously, RNA interference triggers are created from small noncoding RNAs called microRNAs (miRNAs). RNA-induced silencing complexes (RISC) in human cells can be programmed by exogenously introduced siRNA or endogenously expressed miRNA. siRNA-programmed RISC (siRISC) silences expression by cleaving a perfectly complementary target mRNA, whereas miRNA-induced silencing complexes (miRISC) inhibits translation by binding imperfectly matched sequences in the 3′ UTR of target mRNA. Both RISCs contain Argonaute2 (Ago2), which catalyzes target mRNA cleavage by siRISC and localizes to cytoplasmic mRNA processing bodies (P-bodies). Here, we show that RCK/p54, a DEAD box helicase, interacts with argonaute proteins, Ago1 and Ago2, in affinity-purified active siRISC or miRISC from human cells; directly interacts with Ago1 and Ago2 in vivo, facilitates formation of P-bodies, and is a general repressor of translation. Disrupting P-bodies by depleting Lsm1 did not affect RCK/p54 interactions with argonaute proteins and its function in miRNA-mediated translation repression. Depletion of RCK/p54 disrupted P-bodies and dispersed Ago2 throughout the cytoplasm but did not significantly affect siRNA-mediated RNA functions of RISC. Depleting RCK/p54 released general, miRNA-induced, and let-7-mediated translational repression. Therefore, we propose that translation repression is mediated by miRISC via RCK/p54 and its specificity is dictated by the miRNA sequence binding multiple copies of miRISC to complementary 3′ UTR sites in the target mRNA. These studies also suggest that translation suppression by miRISC does not require P-body structures, and location of miRISC to P-bodies is the consequence of translation repression. PMID:16756390
Kastenmayer, J. P.; Green, P. J.
2000-01-01
The 5′-3′ exoribonucleases Xrn1p and Xrn2p/Rat1p function in the degradation and processing of several classes of RNA in Saccharomyces cerevisiae. Xrn1p is the main enzyme catalyzing cytoplasmic mRNA degradation in multiple decay pathways, whereas Xrn2p/Rat1p functions in the processing of rRNAs and small nucleolar RNAs (snoRNAs) in the nucleus. Much less is known about the XRN-like proteins of multicellular eukaryotes; however, differences in their activities could explain differences in mRNA degradation between multicellular and unicellular eukaryotes. One such difference is the lack in plants and animals of mRNA decay intermediates like those generated in yeast when Xrn1p is blocked by poly(G) tracts that are inserted within mRNAs. We investigated the XRN-family in Arabidopsis thaliana and found it to have several novel features. First, the Arabidopsis genome contains three XRN-like genes (AtXRNs) that are structurally similar to Xrn2p/Rat1p, a characteristic unique to plants. Furthermore, our experimental results and sequence database searches indicate that Xrn1p orthologs may be absent from higher plants. Second, the lack of poly(G) mRNA decay intermediates in plants cannot be explained by the activity of the AtXRNs, because they are blocked by poly(G) tracts. Finally, complementation of yeast mutants and localization studies indicate that two of the AtXRNs likely function in the nucleus, whereas the third acts in the cytoplasm. Thus, the XRN-family in plants is more complex than in other eukaryotes, and, if an XRN-like enzyme plays a role in mRNA decay in plants, the likely participant is a cytoplasmic Xrn2p/Rat1p ortholog, rather than an Xrn1p ortholog. PMID:11106401
Schwartz, Elena I; Intine, Robert V; Maraia, Richard J
2004-11-01
La protein binds precursors to 5S rRNA, tRNAs, and other transcripts that contain 3' UUU-OH and also promotes their maturation in the nucleus. Separate from this function, human La has been shown to positively modulate the translation of mRNAs that contain complex 5' regulatory motifs that direct internal initiation of translation. Nonphosphorylated La (npLa) inhibits pre-tRNA processing, while phosphorylation of human La serine-366 (S(366)) promotes pre-tRNA processing. npLa was found specifically associated with a class of mRNAs that have unusually short 5' untranslated regions comprised of terminal oligopyrimidine (5'TOP) tracts and that encode ribosomal proteins and translation elongation factors. Although La S(366) represents a CK2 phosphorylation site, there was no evidence that CK2 phosphorylates it in vivo. We used the CK2-specific inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), and antisense-mediated knockdown to demonstrate that CK2 is responsible for La S(366) phosphorylation in vivo. Hypophosphorylation was not associated with significant change in total La levels or proteolytic cleavage. Quantitative reverse transcription-PCR revealed increased association of the 5'TOP-mRNA encoding ribosomal protein L37 (rpL37) with La after TBB treatment. Transfection revealed more rpL37 mRNA associated with nonphosphorylatable La A(366) than with La S(366), concomitant with La A(366)-specific shift of a fraction of L37 mRNA off polysomes. The data indicate that CK2 phosphorylates La S(366) in vivo, that this limits 5'TOP mRNA binding, and that increasing npLa leads to greater association with potentially negative effects on TOP mRNA translation. Consistent with data that indicate that phosphorylation reverses negative effects of npLa on tRNA production, the present data suggest that CK2 phosphorylation of La can affect production of the translational machinery.
Human hnRNP protein A1 gene expression. Structural and functional characterization of the promoter.
Biamonti, G; Bassi, M T; Cartegni, L; Mechta, F; Buvoli, M; Cobianchi, F; Riva, S
1993-03-05
hnRNP protein A1 (34 kDa, pl 9.5) is a prominent member of the family of proteins (hnRNP proteins) that associate with the nascent transcripts of RNA polymerase II and that accompany the hnRNA through the maturation process and the export to the cytoplasm. New evidence suggests an active and specific role for some of these proteins, including protein A1, in splicing and transport. Contrary to the other hnRNP proteins, the intracellular level of protein A1 was reported to change as a function of proliferation state and cell type. In this work we analyse the A1 gene expression in different cells under different growth and differentiation conditions. Proliferation dependent expression was observed in lymphocytes and fibroblasts while purified neurons express high A1 mRNA levels both in the proliferative (before birth) and in the quiescent (after birth) state. Transformed cell lines exhibit very high (proliferation independent) A1 mRNA levels compared to differentiated tissues. A structural and functional characterization of the A1 gene promoter was carried out by means of DNase I footprinting and CAT assays. The observed promoter features can account for both elevated and regulated mRNA transcription. At least 12 control elements are contained in the 734 nucleotides upstream of the transcription start site. Assays with the deleted and/or mutated promoter indicate a co-operation of multiple transcriptional elements, distributed over the entire promoter, in determining the overall activity and the response to proliferative stimuli (serum).
Gałecki, Piotr; Szemraj, Janusz; Bartosz, Grzegorz; Bieńkiewicz, Małgorzata; Gałecka, Elzbieta; Florkowski, Antoni; Lewiński, Andrzej; Karbownik-Lewińska, Małgorzata
2010-05-01
Depressive disorder (DD) is characterised by disturbances in blood melatonin concentration. It is well known that melatonin is involved in the control of circadian rhythms, sleep included. The use of melatonin and its analogues has been found to be effective in depression therapy. Melatonin synthesis is a multistage process, where the last stage is catalysed by acetylserotonin methyltransferase (ASMT), the reported rate-limiting melatonin synthesis enzyme. Taking into account the significance of genetic factors in depression development, the gene for ASMT may become an interesting focus for studies in patients with recurrent DD. The goal of the study was to evaluate two single-nucleotide polymorphisms (SNPs) (rs4446909; rs5989681) of the ASMT gene, as well as mRNA expression for ASMT in recurrent DD-affected patients. We genotyped two polymorphisms in a group of 181 recurrent DD patients and in 149 control subjects. The study was performed using the polymerase chain reaction/restriction fragment length polymorphism method. The distribution of genotypes in both studied SNPs in the ASMT gene differed significantly between DD and healthy subjects. The presence of AA genotype of rs4446909 polymorphism and of GG genotype of rs5989681 polymorphism was associated with lower risk for having recurrent DD. In turn, patients with depression were characterised by reduced mRNA expression for ASMT. In addition, ASMT transcript level in both recurrent DD patients and in healthy subjects depended significantly on genotype distributions in both polymorphisms. In conclusion, our results suggest the ASMT gene as a susceptibility gene for recurrent DD.
Weinberg, Marc S.; Bhatt, Aadra P.; Girotti, Milena; Masini, Cher V.; Day, Heidi E. W.; Campeau, Serge; Spencer, Robert L.
2009-01-01
Repeated exposure to a moderately intense stressor typically produces attenuation of the hypothalamic-pituitary-adrenal (HPA) axis response (habituation) on re-presentation of the same stressor; however, if a novel stressor is presented to the same animals, the HPA axis response may be augmented (sensitization). The extent to which this adaptation is also evident within neural activity patterns is unknown. This study tested whether repeated ferret odor (FO) exposure, a moderately intense psychological stressor for rats, leads to both same-stressor habituation and novel-stressor sensitization of the HPA axis response and neuronal activity as determined by immediate early gene induction (c-fos mRNA). Rats were presented with FO in their home cages for 30 min a day for up to 2 wk and subsequently challenged with FO or restraint. Rats displayed HPA axis activity habituation and widespread habituation of c-fos mRNA expression (in situ hybridization) throughout the brain in as few as three repeated presentations of FO. However, repeated FO exposure led to a more gradual development of sensitized HPA-axis and c-fos mRNA responses to restraint that were not fully evident until after 14 d of prior FO exposure. The sensitized response was evident in many of the same brain regions that displayed habituation, including primary sensory cortices and the prefrontal cortex. The shared spatial expression but distinct temporal development of habituation and sensitization neural response patterns suggests two independent processes with opposing influences across overlapping brain systems. PMID:18845631
The antagonism between MCT-1 and p53 affects the tumorigenic outcomes
2010-01-01
Background MCT-1 oncoprotein accelerates p53 protein degradation via a proteosome pathway. Synergistic promotion of the xenograft tumorigenicity has been demonstrated in circumstance of p53 loss alongside MCT-1 overexpression. However, the molecular regulation between MCT-1 and p53 in tumor development remains ambiguous. We speculate that MCT-1 may counteract p53 through the diverse mechanisms that determine the tumorigenic outcomes. Results MCT-1 has now identified as a novel target gene of p53 transcriptional regulation. MCT-1 promoter region contains the response elements reactive with wild-type p53 but not mutant p53. Functional p53 suppresses MCT-1 promoter activity and MCT-1 mRNA stability. In a negative feedback regulation, constitutively expressed MCT-1 decreases p53 promoter function and p53 mRNA stability. The apoptotic events are also significantly prevented by oncogenic MCT-1 in a p53-dependent or a p53-independent fashion, according to the genotoxic mechanism. Moreover, oncogenic MCT-1 promotes the tumorigenicity in mice xenografts of p53-null and p53-positive lung cancer cells. In support of the tumor growth are irrepressible by p53 reactivation in vivo, the inhibitors of p53 (MDM2, Pirh2, and Cop1) are constantly stimulated by MCT-1 oncoprotein. Conclusions The oppositions between MCT-1 and p53 are firstly confirmed at multistage processes that include transcription control, mRNA metabolism, and protein expression. MCT-1 oncogenicity can overcome p53 function that persistently advances the tumor development. PMID:21138557
The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.
Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B
2014-11-01
Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.
Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection.
Martel, Ralph R; Botros, Ihab W; Rounseville, Matthew P; Hinton, James P; Staples, Robin R; Morales, David A; Farmer, John B; Seligmann, Bruce E
2002-11-01
The principles and performance are described for the ArrayPlate mRNA assay, a multiplexed mRNA assay for high-throughput and high-content screening and drug development. THP-1 monocytes grown and subjected to compound treatments in 96-well plates were subjected to a multiplexed nuclease protection assay in situ. The nuclease protection assay destroyed all cell-derived mRNA, but left intact stoichiometric amounts of 16 target-specific oligonucleotide probes. Upon transfer of processed cell lysates to a microplate that contained a 16-element oligonucleotide array at the bottom of each well, the various probe species were separated by immobilization at predefined elements of the array. Quantitative detection of array-bound probes was by enzyme-mediated chemiluminescence. A high-resolution charge-coupled device imager was used for the simultaneous readout of all 1536 array elements in a 96-well plate. For the measurement of 16 genes in samples of 25000 cells, the average standard deviation from well to well within a plate was 8.6% of signal intensity and was 10.8% from plate to plate. Assay response was linear and reproducibility was constant for all detected genes in samples ranging from 1000 to 50000 cells. When THP-1 monocytes were differentiated with phorbol ester and subsequently activated with bacterial lipopolysaccharide that contained different concentrations of dexamethasone, dose-dependent effects of dexamethasone on the mRNA levels of several genes were observed.
Tao, Ming; Yu, Peng; Nguyen, Binh T; Mizrahi, Boaz; Savion, Naphtali; Kolodgie, Frank D; Virmani, Renu; Hao, Shuai; Ozaki, C Keith; Schneiderman, Jacob
2013-02-01
Leptin promotes atherosclerosis and vessel wall remodeling. As abdominal aortic aneurysm (AAA) formation involves tissue remodeling, we hypothesized that local leptin synthesis initiates and promotes this process. Human surgical AAA walls were analyzed for antigen and mRNA levels of leptin and leptin receptor, as well as mRNA for matrix metalloproteinases (MMP)-9 and MMP-12. Leptin and leptin receptor antigen were evident in all AAAs, and leptin, MMP-9, and MMP-12 mRNA was increased relative to age-matched nondilated controls. To simulate in vivo local leptin synthesis, ApoE(-/-) mice were subjected to a paravisceral periaortic application of low-dose leptin. Leptin-treated aortas exhibited decreased transforming growth factor-β and increased MMP-9 mRNA levels 5 days after surgery, and leptin receptor mRNA was upregulated by day 28. Serial ultrasonography demonstrated accelerated regional aortic diameter growth after 28 days, correlating with local medial degeneration, increased MMP-9, MMP-12, and periadventitial macrophage clustering. Furthermore, the combination of local periaortic leptin and systemic angiotensin II administration augmented medial MMP-9 synthesis and aortic aneurysm size. Leptin is locally synthesized in human AAA wall. Paravisceral aortic leptin in ApoE(-/-) mice induces local medial degeneration and augments angiotensin II-induced AAA, thus suggesting novel mechanistic links between leptin and AAA formation.
Tao, Ming; Yu, Peng; Nguyen, Binh T.; Mizrahi, Boaz; Savion, Naphtali; Kolodgie, Frank D.; Virmani, Renu; Hao, Shuai; Ozaki, C. Keith; Schneiderman, Jacob
2013-01-01
Objective Leptin promotes atherosclerosis and vessel wall remodeling. As abdominal aorta aneurysm (AAA) formation involves tissue remodeling, we hypothesized that local leptin synthesis initiates and promotes this process. Methods and Results Human surgical AAA walls were analyzed for antigen and mRNA levels of leptin and leptin receptor (ObR), as well as mRNA for matrix metalloproteinases (MMP)-9, and MMP-12. Leptin and ObR antigen were evident in all AAAs, and, leptin, MMP-9, and MMP-12 mRNA was increased relative to age-matched non-dilated controls. To simulate in vivo local leptin synthesis, ApoE-/- mice were subjected to a para-visceral peri-aortic application of low-dose leptin. Leptin-treated aortas exhibited decreased TGFβ and increased MMP-9 mRNA levels 5 days after surgery, and ObR mRNA was up-regulated by day 28. Serial ultrasonography demonstrated accelerated regional aortic diameter growth after 28 days, correlating with local medial degeneration, increased MMP-9, MMP-12 and peri-adventitial macrophage clustering. Furthermore, the combination of local peri-aortic leptin and systemic angiotensin II administration augmented medial MMP-9 synthesis and aortic aneurysm size. Conclusions Leptin is locally synthesized in human AAA wall. Para-visceral aortic leptin in ApoE-/- mice induces local medial degeneration, and augments angiotensin II-induced AAA, thus suggesting novel mechanistic links between leptin and AAA formation. PMID:23220275
Mulinti, Prashanthi; Florea, Simona; Schardl, Christopher L; Panaccione, Daniel G
2016-06-22
The profile of ergot alkaloids in perennial ryegrass (Lolium perenne) containing the endophytic fungus Epichloë typhina × festucae includes high concentrations of the early pathway metabolites ergotryptamine and chanoclavine-I in addition to the pathway end-product ergovaline. Because these alkaloids differ in activity, we investigated strategies to alter their relative concentrations. An RNAi-based approach reduced the concentration of mRNA from the gene easA, which encodes an enzyme required for a ring closure that separates ergotryptamine and chanoclavine-I from ergovaline. Lower easA mRNA concentrations correlated with lower concentrations of ergovaline and higher concentrations of ergotryptamine and chanoclavine-I. Overexpression of easA led to higher concentrations of ergovaline in leaf blades but not in pseudostems; concentrations of the early pathway metabolites were not altered in overexpression strains. The data indicate that altering the concentration of mRNA from a single gene can change alkaloid flux, but the magnitude of the change was limited and variable.
Du, Qiang; Yao, Haidong; Yao, Linlin; Zhang, Ziwei; Lei, Xingen; Xu, Shiwen
2016-10-01
Selenium deficiency is known to cause cardiovascular diseases. However, the role of Se deficiency in causing oxidative damage and inflammation injury to the aorta vessels of chickens is not well known. In the present study, 180 1-day-old chickens were randomly divided into two groups, a low-Se group (L group) and a control-Se group (C group). The messenger RNA (mRNA) levels of 25 selenoproteins, the mRNA and protein expression levels of inflammatory cytokines (including NF-κB, TNF-α, COX-2, and PTGES), and the antioxidant levels in chicken aorta vessels were examined. The results showed that the mRNA levels of 25 selenoproteins and the activity of Gpx were decreased, while the mRNA and protein expression levels of inflammatory cytokines and the MDA content were increased by Se deficiency in chicken aorta vessels. The data from the present study indicated that Se deficiency decreases the expression of selenoproteins, reduces antioxidant function, and increases the expression of inflammatory factors in chicken aorta vessels.
Developmental expression of VGF mRNA in the prenatal and postnatal rat.
Snyder, S E; Pintar, J E; Salton, S R
1998-04-27
VGF is a developmentally regulated, secretory peptide precursor that is expressed by neurons and neuroendocrine cells and that has its transcription and secretion induced rapidly by neurotrophins and by depolarization. To gain insight into the possible functions and regulation of VGF in vivo, we have characterized the distribution of VGF mRNA in the developing rat nervous system. VGF expression was first detectable at embryonic day 11.5 in the primordia of cranial, sympathetic, and dorsal root ganglia, and its distribution expanded throughout development to include significant expression throughout the brain, spinal cord, and retina of the adult rat. The earliest expression of VGF, therefore, appeared in the peripheral nervous system as developing neurons settled in their designated ganglia. In many regions of the brain, VGF mRNA levels were found to be highest during periods when axonal outgrowth and synaptogenesis predominate. Areas of the central nervous system that contain predominantly dividing cells never displayed any VGF mRNA expression, nor did the vast majority of nonneural tissues.
Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease.
Mattijssen, Sandy; Hinson, Ella R; Onnekink, Carla; Hermanns, Pia; Zabel, Bernhard; Cresswell, Peter; Pruijn, Ger J M
2011-07-01
RNase MRP is a conserved endoribonuclease, in humans consisting of a 267-nucleotide RNA associated with 7-10 proteins. Mutations in its RNA component lead to several autosomal recessive skeletal dysplasias, including cartilage-hair hypoplasia (CHH). Because the known substrates of mammalian RNase MRP, pre-ribosomal RNA, and RNA involved in mitochondrial DNA replication are not likely involved in CHH, we analyzed the effects of RNase MRP (and the structurally related RNase P) depletion on mRNAs using DNA microarrays. We confirmed the upregulation of the interferon-inducible viperin mRNA by RNAi experiments and this appeared to be independent of the interferon response. We detected two cleavage sites for RNase MRP/RNase P in the coding sequence of viperin mRNA. This is the first study providing direct evidence for the cleavage of a mRNA by RNase MRP/RNase P in human cells. Implications for the involvement in the pathophysiology of CHH are discussed.