An Effect Size for Regression Predictors in Meta-Analysis
ERIC Educational Resources Information Center
Aloe, Ariel M.; Becker, Betsy Jane
2012-01-01
A new effect size representing the predictive power of an independent variable from a multiple regression model is presented. The index, denoted as r[subscript sp], is the semipartial correlation of the predictor with the outcome of interest. This effect size can be computed when multiple predictor variables are included in the regression model…
Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha
2012-05-01
Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
An improved multiple linear regression and data analysis computer program package
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1972-01-01
NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.
Ling, Ru; Liu, Jiawang
2011-12-01
To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.
Suzuki, Hideaki; Tabata, Takahisa; Koizumi, Hiroki; Hohchi, Nobusuke; Takeuchi, Shoko; Kitamura, Takuro; Fujino, Yoshihisa; Ohbuchi, Toyoaki
2014-12-01
This study aimed to create a multiple regression model for predicting hearing outcomes of idiopathic sudden sensorineural hearing loss (ISSNHL). The participants were 205 consecutive patients (205 ears) with ISSNHL (hearing level ≥ 40 dB, interval between onset and treatment ≤ 30 days). They received systemic steroid administration combined with intratympanic steroid injection. Data were examined by simple and multiple regression analyses. Three hearing indices (percentage hearing improvement, hearing gain, and posttreatment hearing level [HLpost]) and 7 prognostic factors (age, days from onset to treatment, initial hearing level, initial hearing level at low frequencies, initial hearing level at high frequencies, presence of vertigo, and contralateral hearing level) were included in the multiple regression analysis as dependent and explanatory variables, respectively. In the simple regression analysis, the percentage hearing improvement, hearing gain, and HLpost showed significant correlation with 2, 5, and 6 of the 7 prognostic factors, respectively. The multiple correlation coefficients were 0.396, 0.503, and 0.714 for the percentage hearing improvement, hearing gain, and HLpost, respectively. Predicted values of HLpost calculated by the multiple regression equation were reliable with 70% probability with a 40-dB-width prediction interval. Prediction of HLpost by the multiple regression model may be useful to estimate the hearing prognosis of ISSNHL. © The Author(s) 2014.
Tools to Support Interpreting Multiple Regression in the Face of Multicollinearity
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K.
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses. PMID:22457655
Tools to support interpreting multiple regression in the face of multicollinearity.
Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K
2012-01-01
While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.
Conjoint Analysis: A Study of the Effects of Using Person Variables.
ERIC Educational Resources Information Center
Fraas, John W.; Newman, Isadore
Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…
Advanced statistics: linear regression, part I: simple linear regression.
Marill, Keith A
2004-01-01
Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.
Advanced statistics: linear regression, part II: multiple linear regression.
Marill, Keith A
2004-01-01
The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.
Tokunaga, Makoto; Watanabe, Susumu; Sonoda, Shigeru
2017-09-01
Multiple linear regression analysis is often used to predict the outcome of stroke rehabilitation. However, the predictive accuracy may not be satisfactory. The objective of this study was to elucidate the predictive accuracy of a method of calculating motor Functional Independence Measure (mFIM) at discharge from mFIM effectiveness predicted by multiple regression analysis. The subjects were 505 patients with stroke who were hospitalized in a convalescent rehabilitation hospital. The formula "mFIM at discharge = mFIM effectiveness × (91 points - mFIM at admission) + mFIM at admission" was used. By including the predicted mFIM effectiveness obtained through multiple regression analysis in this formula, we obtained the predicted mFIM at discharge (A). We also used multiple regression analysis to directly predict mFIM at discharge (B). The correlation between the predicted and the measured values of mFIM at discharge was compared between A and B. The correlation coefficients were .916 for A and .878 for B. Calculating mFIM at discharge from mFIM effectiveness predicted by multiple regression analysis had a higher degree of predictive accuracy of mFIM at discharge than that directly predicted. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Correlation and simple linear regression.
Eberly, Lynn E
2007-01-01
This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.
NASA Astrophysics Data System (ADS)
Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said
2014-09-01
In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.
Multiple imputation for cure rate quantile regression with censored data.
Wu, Yuanshan; Yin, Guosheng
2017-03-01
The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the proposed multiple imputation method and apply it to a lung cancer study as an illustration. © 2016, The International Biometric Society.
Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.
Atem, Folefac D; Qian, Jing; Maye, Jacqueline E; Johnson, Keith A; Betensky, Rebecca A
2016-01-01
Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semiparametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.
Population heterogeneity in the salience of multiple risk factors for adolescent delinquency.
Lanza, Stephanie T; Cooper, Brittany R; Bray, Bethany C
2014-03-01
To present mixture regression analysis as an alternative to more standard regression analysis for predicting adolescent delinquency. We demonstrate how mixture regression analysis allows for the identification of population subgroups defined by the salience of multiple risk factors. We identified population subgroups (i.e., latent classes) of individuals based on their coefficients in a regression model predicting adolescent delinquency from eight previously established risk indices drawn from the community, school, family, peer, and individual levels. The study included N = 37,763 10th-grade adolescents who participated in the Communities That Care Youth Survey. Standard, zero-inflated, and mixture Poisson and negative binomial regression models were considered. Standard and mixture negative binomial regression models were selected as optimal. The five-class regression model was interpreted based on the class-specific regression coefficients, indicating that risk factors had varying salience across classes of adolescents. Standard regression showed that all risk factors were significantly associated with delinquency. Mixture regression provided more nuanced information, suggesting a unique set of risk factors that were salient for different subgroups of adolescents. Implications for the design of subgroup-specific interventions are discussed. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Regression Analysis with Dummy Variables: Use and Interpretation.
ERIC Educational Resources Information Center
Hinkle, Dennis E.; Oliver, J. Dale
1986-01-01
Multiple regression analysis (MRA) may be used when both continuous and categorical variables are included as independent research variables. The use of MRA with categorical variables involves dummy coding, that is, assigning zeros and ones to levels of categorical variables. Caution is urged in results interpretation. (Author/CH)
Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM
ERIC Educational Resources Information Center
Warner, Rebecca M.
2007-01-01
This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.
1979-01-01
The objective of this paper is to define optical physics and/or environmental conditions under which the linear multiple-regression should be applicable. An investigation of the signal-response equations is conducted and the concept is tested by application to actual remote sensing data from a laboratory experiment performed under controlled conditions. Investigation of the signal-response equations shows that the exact solution for a number of optical physics conditions is of the same form as a linearized multiple-regression equation, even if nonlinear contributions from surface reflections, atmospheric constituents, or other water pollutants are included. Limitations on achieving this type of solution are defined.
McClelland, Gary H; Irwin, Julie R; Disatnik, David; Sivan, Liron
2017-02-01
Multicollinearity is irrelevant to the search for moderator variables, contrary to the implications of Iacobucci, Schneider, Popovich, and Bakamitsos (Behavior Research Methods, 2016, this issue). Multicollinearity is like the red herring in a mystery novel that distracts the statistical detective from the pursuit of a true moderator relationship. We show multicollinearity is completely irrelevant for tests of moderator variables. Furthermore, readers of Iacobucci et al. might be confused by a number of their errors. We note those errors, but more positively, we describe a variety of methods researchers might use to test and interpret their moderated multiple regression models, including two-stage testing, mean-centering, spotlighting, orthogonalizing, and floodlighting without regard to putative issues of multicollinearity. We cite a number of recent studies in the psychological literature in which the researchers used these methods appropriately to test, to interpret, and to report their moderated multiple regression models. We conclude with a set of recommendations for the analysis and reporting of moderated multiple regression that should help researchers better understand their models and facilitate generalizations across studies.
NASA Technical Reports Server (NTRS)
Stolzer, Alan J.; Halford, Carl
2007-01-01
In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.
Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis
NASA Astrophysics Data System (ADS)
Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei
2016-10-01
Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.
Multiple Logistic Regression Analysis of Cigarette Use among High School Students
ERIC Educational Resources Information Center
Adwere-Boamah, Joseph
2011-01-01
A binary logistic regression analysis was performed to predict high school students' cigarette smoking behavior from selected predictors from 2009 CDC Youth Risk Behavior Surveillance Survey. The specific target student behavior of interest was frequent cigarette use. Five predictor variables included in the model were: a) race, b) frequency of…
Dipnall, Joanna F.
2016-01-01
Background Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. Methods The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009–2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. Results After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). Conclusion The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin. PMID:26848571
Dipnall, Joanna F; Pasco, Julie A; Berk, Michael; Williams, Lana J; Dodd, Seetal; Jacka, Felice N; Meyer, Denny
2016-01-01
Atheoretical large-scale data mining techniques using machine learning algorithms have promise in the analysis of large epidemiological datasets. This study illustrates the use of a hybrid methodology for variable selection that took account of missing data and complex survey design to identify key biomarkers associated with depression from a large epidemiological study. The study used a three-step methodology amalgamating multiple imputation, a machine learning boosted regression algorithm and logistic regression, to identify key biomarkers associated with depression in the National Health and Nutrition Examination Study (2009-2010). Depression was measured using the Patient Health Questionnaire-9 and 67 biomarkers were analysed. Covariates in this study included gender, age, race, smoking, food security, Poverty Income Ratio, Body Mass Index, physical activity, alcohol use, medical conditions and medications. The final imputed weighted multiple logistic regression model included possible confounders and moderators. After the creation of 20 imputation data sets from multiple chained regression sequences, machine learning boosted regression initially identified 21 biomarkers associated with depression. Using traditional logistic regression methods, including controlling for possible confounders and moderators, a final set of three biomarkers were selected. The final three biomarkers from the novel hybrid variable selection methodology were red cell distribution width (OR 1.15; 95% CI 1.01, 1.30), serum glucose (OR 1.01; 95% CI 1.00, 1.01) and total bilirubin (OR 0.12; 95% CI 0.05, 0.28). Significant interactions were found between total bilirubin with Mexican American/Hispanic group (p = 0.016), and current smokers (p<0.001). The systematic use of a hybrid methodology for variable selection, fusing data mining techniques using a machine learning algorithm with traditional statistical modelling, accounted for missing data and complex survey sampling methodology and was demonstrated to be a useful tool for detecting three biomarkers associated with depression for future hypothesis generation: red cell distribution width, serum glucose and total bilirubin.
González Costa, J J; Reigosa, M J; Matías, J M; Covelo, E F
2017-09-01
The aim of this study was to model the sorption and retention of Cd, Cu, Ni, Pb and Zn in soils. To that extent, the sorption and retention of these metals were studied and the soil characterization was performed separately. Multiple stepwise regression was used to produce multivariate models with linear techniques and with support vector machines, all of which included 15 explanatory variables characterizing soils. When the R-squared values are represented, two different groups are noticed. Cr, Cu and Pb sorption and retention show a higher R-squared; the most explanatory variables being humified organic matter, Al oxides and, in some cases, cation-exchange capacity (CEC). The other group of metals (Cd, Ni and Zn) shows a lower R-squared, and clays are the most explanatory variables, including a percentage of vermiculite and slime. In some cases, quartz, plagioclase or hematite percentages also show some explanatory capacity. Support Vector Machine (SVM) regression shows that the different models are not as regular as in multiple regression in terms of number of variables, the regression for nickel adsorption being the one with the highest number of variables in its optimal model. On the other hand, there are cases where the most explanatory variables are the same for two metals, as it happens with Cd and Cr adsorption. A similar adsorption mechanism is thus postulated. These patterns of the introduction of variables in the model allow us to create explainability sequences. Those which are the most similar to the selectivity sequences obtained by Covelo (2005) are Mn oxides in multiple regression and change capacity in SVM. Among all the variables, the only one that is explanatory for all the metals after applying the maximum parsimony principle is the percentage of sand in the retention process. In the competitive model arising from the aforementioned sequences, the most intense competitiveness for the adsorption and retention of different metals appears between Cr and Cd, Cu and Zn in multiple regression; and between Cr and Cd in SVM regression. Copyright © 2017 Elsevier B.V. All rights reserved.
Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya
2013-01-01
Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.
Genetic Programming Transforms in Linear Regression Situations
NASA Astrophysics Data System (ADS)
Castillo, Flor; Kordon, Arthur; Villa, Carlos
The chapter summarizes the use of Genetic Programming (GP) inMultiple Linear Regression (MLR) to address multicollinearity and Lack of Fit (LOF). The basis of the proposed method is applying appropriate input transforms (model respecification) that deal with these issues while preserving the information content of the original variables. The transforms are selected from symbolic regression models with optimal trade-off between accuracy of prediction and expressional complexity, generated by multiobjective Pareto-front GP. The chapter includes a comparative study of the GP-generated transforms with Ridge Regression, a variant of ordinary Multiple Linear Regression, which has been a useful and commonly employed approach for reducing multicollinearity. The advantages of GP-generated model respecification are clearly defined and demonstrated. Some recommendations for transforms selection are given as well. The application benefits of the proposed approach are illustrated with a real industrial application in one of the broadest empirical modeling areas in manufacturing - robust inferential sensors. The chapter contributes to increasing the awareness of the potential of GP in statistical model building by MLR.
Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung
2015-01-01
This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R (2) had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.
Default Bayes Factors for Model Selection in Regression
ERIC Educational Resources Information Center
Rouder, Jeffrey N.; Morey, Richard D.
2012-01-01
In this article, we present a Bayes factor solution for inference in multiple regression. Bayes factors are principled measures of the relative evidence from data for various models or positions, including models that embed null hypotheses. In this regard, they may be used to state positive evidence for a lack of an effect, which is not possible…
Mainou, Maria; Madenidou, Anastasia-Vasiliki; Liakos, Aris; Paschos, Paschalis; Karagiannis, Thomas; Bekiari, Eleni; Vlachaki, Efthymia; Wang, Zhen; Murad, Mohammad Hassan; Kumar, Shaji; Tsapas, Apostolos
2017-06-01
We performed a systematic review and meta-regression analysis of randomized control trials to investigate the association between response to initial treatment and survival outcomes in patients with newly diagnosed multiple myeloma (MM). Response outcomes included complete response (CR) and the combined outcome of CR or very good partial response (VGPR), while survival outcomes were overall survival (OS) and progression-free survival (PFS). We used random-effect meta-regression models and conducted sensitivity analyses based on definition of CR and study quality. Seventy-two trials were included in the systematic review, 63 of which contributed data in meta-regression analyses. There was no association between OS and CR in patients without autologous stem cell transplant (ASCT) (regression coefficient: .02, 95% confidence interval [CI] -0.06, 0.10), in patients undergoing ASCT (-.11, 95% CI -0.44, 0.22) and in trials comparing ASCT with non-ASCT patients (.04, 95% CI -0.29, 0.38). Similarly, OS did not correlate with the combined metric of CR or VGPR, and no association was evident between response outcomes and PFS. Sensitivity analyses yielded similar results. This meta-regression analysis suggests that there is no association between conventional response outcomes and survival in patients with newly diagnosed MM. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nguyen, Quynh C.; Osypuk, Theresa L.; Schmidt, Nicole M.; Glymour, M. Maria; Tchetgen Tchetgen, Eric J.
2015-01-01
Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994–2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. PMID:25693776
Kitagawa, Yasuhisa; Teramoto, Tamio; Daida, Hiroyuki
2012-01-01
We evaluated the impact of adherence to preferable behavior on serum lipid control assessed by a self-reported questionnaire in high-risk patients taking pravastatin for primary prevention of coronary artery disease. High-risk patients taking pravastatin were followed for 2 years. Questionnaire surveys comprising 21 questions, including 18 questions concerning awareness of health, and current status of diet, exercise, and drug therapy, were conducted at baseline and after 1 year. Potential domains were established by factor analysis from the results of questionnaires, and adherence scores were calculated in each domain. The relationship between adherence scores and lipid values during the 1-year treatment period was analyzed by each domain using multiple regression analysis. A total of 5,792 patients taking pravastatin were included in the analysis. Multiple regression analysis showed a significant correlation in terms of "Intake of high fat/cholesterol/sugar foods" (regression coefficient -0.58, p=0.0105) and "Adherence to instructions for drug therapy" (regression coefficient -6.61, p<0.0001). Low-density lipoprotein cholesterol (LDL-C) values were significantly lower in patients who had an increase in the adherence score in the "Awareness of health" domain compared with those with a decreased score. There was a significant correlation between high-density lipoprotein (HDL-C) values and "Awareness of health" (regression coefficient 0.26; p= 0.0037), "Preferable dietary behaviors" (regression coefficient 0.75; p<0.0001), and "Exercise" (regression coefficient 0.73; p= 0.0002). Similar relations were seen with triglycerides. In patients who have a high awareness of their health, a positive attitude toward lipid-lowering treatment including diet, exercise, and high adherence to drug therapy, is related with favorable overall lipid control even in patients under treatment with pravastatin.
A Technique of Fuzzy C-Mean in Multiple Linear Regression Model toward Paddy Yield
NASA Astrophysics Data System (ADS)
Syazwan Wahab, Nur; Saifullah Rusiman, Mohd; Mohamad, Mahathir; Amira Azmi, Nur; Che Him, Norziha; Ghazali Kamardan, M.; Ali, Maselan
2018-04-01
In this paper, we propose a hybrid model which is a combination of multiple linear regression model and fuzzy c-means method. This research involved a relationship between 20 variates of the top soil that are analyzed prior to planting of paddy yields at standard fertilizer rates. Data used were from the multi-location trials for rice carried out by MARDI at major paddy granary in Peninsular Malaysia during the period from 2009 to 2012. Missing observations were estimated using mean estimation techniques. The data were analyzed using multiple linear regression model and a combination of multiple linear regression model and fuzzy c-means method. Analysis of normality and multicollinearity indicate that the data is normally scattered without multicollinearity among independent variables. Analysis of fuzzy c-means cluster the yield of paddy into two clusters before the multiple linear regression model can be used. The comparison between two method indicate that the hybrid of multiple linear regression model and fuzzy c-means method outperform the multiple linear regression model with lower value of mean square error.
Tsygankov, B D; Malygin, Ya V; Gatin, F F
2015-01-01
Factors of patients' satisfaction with medical care vary depending on the level of care and medical specialty. Patient's satisfaction with psychiatric care is understudied. An aim of the present study is to find out the factors of satisfaction with psychiatric care in inpatients with neurotic and depressive disorders. The sample included 356 inpatients suffering from neurotic or depressive disorders. The patients were questioned using PAPI questionnaire designed for this study. Statistical analysis was performed using multiple regression. Key factors of satisfaction with medical care included quality of work of nurses and psychiatrists, hospital ward comfort, the number and quality of psychotherapeutic sessions, psychiatrists' empathy and aptitude to provide the patient with information about the disease and treatment. Multiple regression equation explained 81% of the variance of patients' satisfaction.
Pratt, Bethany; Chang, Heejun
2012-03-30
The relationship among land cover, topography, built structure and stream water quality in the Portland Metro region of Oregon and Clark County, Washington areas, USA, is analyzed using ordinary least squares (OLS) and geographically weighted (GWR) multiple regression models. Two scales of analysis, a sectional watershed and a buffer, offered a local and a global investigation of the sources of stream pollutants. Model accuracy, measured by R(2) values, fluctuated according to the scale, season, and regression method used. While most wet season water quality parameters are associated with urban land covers, most dry season water quality parameters are related topographic features such as elevation and slope. GWR models, which take into consideration local relations of spatial autocorrelation, had stronger results than OLS regression models. In the multiple regression models, sectioned watershed results were consistently better than the sectioned buffer results, except for dry season pH and stream temperature parameters. This suggests that while riparian land cover does have an effect on water quality, a wider contributing area needs to be included in order to account for distant sources of pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.
Logsdon, Benjamin A.; Carty, Cara L.; Reiner, Alexander P.; Dai, James Y.; Kooperberg, Charles
2012-01-01
Motivation: For many complex traits, including height, the majority of variants identified by genome-wide association studies (GWAS) have small effects, leaving a significant proportion of the heritable variation unexplained. Although many penalized multiple regression methodologies have been proposed to increase the power to detect associations for complex genetic architectures, they generally lack mechanisms for false-positive control and diagnostics for model over-fitting. Our methodology is the first penalized multiple regression approach that explicitly controls Type I error rates and provide model over-fitting diagnostics through a novel normally distributed statistic defined for every marker within the GWAS, based on results from a variational Bayes spike regression algorithm. Results: We compare the performance of our method to the lasso and single marker analysis on simulated data and demonstrate that our approach has superior performance in terms of power and Type I error control. In addition, using the Women's Health Initiative (WHI) SNP Health Association Resource (SHARe) GWAS of African-Americans, we show that our method has power to detect additional novel associations with body height. These findings replicate by reaching a stringent cutoff of marginal association in a larger cohort. Availability: An R-package, including an implementation of our variational Bayes spike regression (vBsr) algorithm, is available at http://kooperberg.fhcrc.org/soft.html. Contact: blogsdon@fhcrc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22563072
Byun, Bo-Ram; Kim, Yong-Il; Maki, Koutaro; Son, Woo-Sung
2015-01-01
This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6–18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R 2 had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status. PMID:25878721
Stature estimation from the lengths of the growing foot-a study on North Indian adolescents.
Krishan, Kewal; Kanchan, Tanuj; Passi, Neelam; DiMaggio, John A
2012-12-01
Stature estimation is considered as one of the basic parameters of the investigation process in unknown and commingled human remains in medico-legal case work. Race, age and sex are the other parameters which help in this process. Stature estimation is of the utmost importance as it completes the biological profile of a person along with the other three parameters of identification. The present research is intended to formulate standards for stature estimation from foot dimensions in adolescent males from North India and study the pattern of foot growth during the growing years. 154 male adolescents from the Northern part of India were included in the study. Besides stature, five anthropometric measurements that included the length of the foot from each toe (T1, T2, T3, T4, and T5 respectively) to pternion were measured on each foot. The data was analyzed statistically using Student's t-test, Pearson's correlation, linear and multiple regression analysis for estimation of stature and growth of foot during ages 13-18 years. Correlation coefficients between stature and all the foot measurements were found to be highly significant and positively correlated. Linear regression models and multiple regression models (with age as a co-variable) were derived for estimation of stature from the different measurements of the foot. Multiple regression models (with age as a co-variable) estimate stature with greater accuracy than the regression models for 13-18 years age group. The study shows the growth pattern of feet in North Indian adolescents and indicates that anthropometric measurements of the foot and its segments are valuable in estimation of stature in growing individuals of that population. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cox regression analysis with missing covariates via nonparametric multiple imputation.
Hsu, Chiu-Hsieh; Yu, Mandi
2018-01-01
We consider the situation of estimating Cox regression in which some covariates are subject to missing, and there exists additional information (including observed event time, censoring indicator and fully observed covariates) which may be predictive of the missing covariates. We propose to use two working regression models: one for predicting the missing covariates and the other for predicting the missing probabilities. For each missing covariate observation, these two working models are used to define a nearest neighbor imputing set. This set is then used to non-parametrically impute covariate values for the missing observation. Upon the completion of imputation, Cox regression is performed on the multiply imputed datasets to estimate the regression coefficients. In a simulation study, we compare the nonparametric multiple imputation approach with the augmented inverse probability weighted (AIPW) method, which directly incorporates the two working models into estimation of Cox regression, and the predictive mean matching imputation (PMM) method. We show that all approaches can reduce bias due to non-ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-specification of either one of the two working models and robust to mis-specification of the link function of the two working models. In contrast, the PMM method is sensitive to misspecification of the covariates included in imputation. The AIPW method is sensitive to the selection probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology and End Results (SEER) Program.
A population-based study on the association between rheumatoid arthritis and voice problems.
Hah, J Hun; An, Soo-Youn; Sim, Songyong; Kim, So Young; Oh, Dong Jun; Park, Bumjung; Kim, Sung-Gyun; Choi, Hyo Geun
2016-07-01
The objective of this study was to investigate whether rheumatoid arthritis increases the frequency of organic laryngeal lesions and the subjective voice complaint rate in those with no organic laryngeal lesion. We performed a cross-sectional study using the data from 19,368 participants (418 rheumatoid arthritis patients and 18,950 controls) of the 2008-2011 Korea National Health and Nutrition Examination Survey. The associations between rheumatoid arthritis and organic laryngeal lesions/subjective voice complaints were analyzed using simple/multiple logistic regression analysis with complex sample adjusting for confounding factors, including age, sex, smoking status, stress level, and body mass index, which could provoke voice problems. Vocal nodules, vocal polyp, and vocal palsy were not associated with rheumatoid arthritis in a multiple regression analysis, and only laryngitis showed a positive association (adjusted odds ratio, 1.59; 95 % confidence interval, 1.01-2.52; P = 0.047). Rheumatoid arthritis was associated with subjective voice discomfort in a simple regression analysis, but not in a multiple regression analysis. Participants with rheumatoid arthritis were older, more often female, and had higher stress levels than those without rheumatoid arthritis. These factors were associated with subjective voice complaints in both simple and multiple regression analyses. Rheumatoid arthritis was not associated with organic laryngeal diseases except laryngitis. Rheumatoid arthritis did not increase the odds ratio for subjective voice complaints. Voice problems in participants with rheumatoid arthritis originated from the characteristics of the rheumatoid arthritis group (higher mean age, female sex, and stress level) rather than rheumatoid arthritis itself.
Multiple Correlation versus Multiple Regression.
ERIC Educational Resources Information Center
Huberty, Carl J.
2003-01-01
Describes differences between multiple correlation analysis (MCA) and multiple regression analysis (MRA), showing how these approaches involve different research questions and study designs, different inferential approaches, different analysis strategies, and different reported information. (SLD)
Ng, Kar Yong; Awang, Norhashidah
2018-01-06
Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.
ERIC Educational Resources Information Center
Jaccard, James; And Others
1990-01-01
Issues in the detection and interpretation of interaction effects between quantitative variables in multiple regression analysis are discussed. Recent discussions associated with problems of multicollinearity are reviewed in the context of the conditional nature of multiple regression with product terms. (TJH)
NeCamp, Timothy; Kilbourne, Amy; Almirall, Daniel
2017-08-01
Cluster-level dynamic treatment regimens can be used to guide sequential treatment decision-making at the cluster level in order to improve outcomes at the individual or patient-level. In a cluster-level dynamic treatment regimen, the treatment is potentially adapted and re-adapted over time based on changes in the cluster that could be impacted by prior intervention, including aggregate measures of the individuals or patients that compose it. Cluster-randomized sequential multiple assignment randomized trials can be used to answer multiple open questions preventing scientists from developing high-quality cluster-level dynamic treatment regimens. In a cluster-randomized sequential multiple assignment randomized trial, sequential randomizations occur at the cluster level and outcomes are observed at the individual level. This manuscript makes two contributions to the design and analysis of cluster-randomized sequential multiple assignment randomized trials. First, a weighted least squares regression approach is proposed for comparing the mean of a patient-level outcome between the cluster-level dynamic treatment regimens embedded in a sequential multiple assignment randomized trial. The regression approach facilitates the use of baseline covariates which is often critical in the analysis of cluster-level trials. Second, sample size calculators are derived for two common cluster-randomized sequential multiple assignment randomized trial designs for use when the primary aim is a between-dynamic treatment regimen comparison of the mean of a continuous patient-level outcome. The methods are motivated by the Adaptive Implementation of Effective Programs Trial which is, to our knowledge, the first-ever cluster-randomized sequential multiple assignment randomized trial in psychiatry.
Beyond Multiple Regression: Using Commonality Analysis to Better Understand R[superscript 2] Results
ERIC Educational Resources Information Center
Warne, Russell T.
2011-01-01
Multiple regression is one of the most common statistical methods used in quantitative educational research. Despite the versatility and easy interpretability of multiple regression, it has some shortcomings in the detection of suppressor variables and for somewhat arbitrarily assigning values to the structure coefficients of correlated…
Flood characteristics of Alaskan streams
Lamke, R.D.
1979-01-01
Peak discharge data for Alaskan streams are summarized and analyzed. Multiple-regression equations relating peak discharge magnitude and frequency to climatic and physical characteristics of 260 gaged basins were determined in order to estimate average recurrence interval of floods at ungaged sites. These equations are for 1.25-, 2-, 5-, 10-, 25-, and 50-year average recurrence intervals. In this report, Alaska was divided into two regions, one having a maritime climate with fall and winter rains and floods, the other having spring and summer floods of a variety or combinations of causes. Average standard errors of the six multiple-regression equations for these two regions were 48 and 74 percent, respectively. Maximum recorded floods at more than 400 sites throughout Alaska are tabulated. Maps showing lines of equal intensity of the principal climatic variables found to be significant (mean annual precipitation and mean minimum January temperature), and location of the 260 sites used in the multiple-regression analyses are included. Little flood data have been collected in western and arctic Alaska, and the predictive equations are therefore less reliable for those areas. (Woodard-USGS)
An Interactive Version of MULR04 With Enhanced Graphic Capability
ERIC Educational Resources Information Center
Burkholder, Joel H.
1978-01-01
An existing computer program for computing multiple regression analyses is made interactive in order to alleviate core storage requirements. Also, some improvements in the graphics aspects of the program are included. (JKS)
Nguyen, Quynh C; Osypuk, Theresa L; Schmidt, Nicole M; Glymour, M Maria; Tchetgen Tchetgen, Eric J
2015-03-01
Despite the recent flourishing of mediation analysis techniques, many modern approaches are difficult to implement or applicable to only a restricted range of regression models. This report provides practical guidance for implementing a new technique utilizing inverse odds ratio weighting (IORW) to estimate natural direct and indirect effects for mediation analyses. IORW takes advantage of the odds ratio's invariance property and condenses information on the odds ratio for the relationship between the exposure (treatment) and multiple mediators, conditional on covariates, by regressing exposure on mediators and covariates. The inverse of the covariate-adjusted exposure-mediator odds ratio association is used to weight the primary analytical regression of the outcome on treatment. The treatment coefficient in such a weighted regression estimates the natural direct effect of treatment on the outcome, and indirect effects are identified by subtracting direct effects from total effects. Weighting renders treatment and mediators independent, thereby deactivating indirect pathways of the mediators. This new mediation technique accommodates multiple discrete or continuous mediators. IORW is easily implemented and is appropriate for any standard regression model, including quantile regression and survival analysis. An empirical example is given using data from the Moving to Opportunity (1994-2002) experiment, testing whether neighborhood context mediated the effects of a housing voucher program on obesity. Relevant Stata code (StataCorp LP, College Station, Texas) is provided. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran
NASA Astrophysics Data System (ADS)
Ostovari, Yaser; Ghorbani-Dashtaki, Shoja; Bahrami, Hossein-Ali; Naderi, Mehdi; Dematte, Jose Alexandre M.; Kerry, Ruth
2016-11-01
The measurement of soil erodibility (K) in the field is tedious, time-consuming and expensive; therefore, its prediction through pedotransfer functions (PTFs) could be far less costly and time-consuming. The aim of this study was to develop new PTFs to estimate the K factor using multiple linear regression, Mamdani fuzzy inference systems, and artificial neural networks. For this purpose, K was measured in 40 erosion plots with natural rainfall. Various soil properties including the soil particle size distribution, calcium carbonate equivalent, organic matter, permeability, and wet-aggregate stability were measured. The results showed that the mean measured K was 0.014 t h MJ- 1 mm- 1 and 2.08 times less than the estimated mean K (0.030 t h MJ- 1 mm- 1) using the USLE model. Permeability, wet-aggregate stability, very fine sand, and calcium carbonate were selected as independent variables by forward stepwise regression in order to assess the ability of multiple linear regression, Mamdani fuzzy inference systems and artificial neural networks to predict K. The calcium carbonate equivalent, which is not accounted for in the USLE model, had a significant impact on K in multiple linear regression due to its strong influence on the stability of aggregates and soil permeability. Statistical indices in validation and calibration datasets determined that the artificial neural networks method with the highest R2, lowest RMSE, and lowest ME was the best model for estimating the K factor. A strong correlation (R2 = 0.81, n = 40, p < 0.05) between the estimated K from multiple linear regression and measured K indicates that the use of calcium carbonate equivalent as a predictor variable gives a better estimation of K in areas with calcareous soils.
ERIC Educational Resources Information Center
Shear, Benjamin R.; Zumbo, Bruno D.
2013-01-01
Type I error rates in multiple regression, and hence the chance for false positive research findings, can be drastically inflated when multiple regression models are used to analyze data that contain random measurement error. This article shows the potential for inflated Type I error rates in commonly encountered scenarios and provides new…
Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan T.
2012-01-01
Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…
John W. Edwards; Susan C. Loeb; David C. Guynn
1994-01-01
Multiple regression and use-availability analyses are two methods for examining habitat selection. Use-availability analysis is commonly used to evaluate macrohabitat selection whereas multiple regression analysis can be used to determine microhabitat selection. We compared these techniques using behavioral observations (n = 5534) and telemetry locations (n = 2089) of...
Building Regression Models: The Importance of Graphics.
ERIC Educational Resources Information Center
Dunn, Richard
1989-01-01
Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)
Testing Different Model Building Procedures Using Multiple Regression.
ERIC Educational Resources Information Center
Thayer, Jerome D.
The stepwise regression method of selecting predictors for computer assisted multiple regression analysis was compared with forward, backward, and best subsets regression, using 16 data sets. The results indicated the stepwise method was preferred because of its practical nature, when the models chosen by different selection methods were similar…
Decreasing Multicollinearity: A Method for Models with Multiplicative Functions.
ERIC Educational Resources Information Center
Smith, Kent W.; Sasaki, M. S.
1979-01-01
A method is proposed for overcoming the problem of multicollinearity in multiple regression equations where multiplicative independent terms are entered. The method is not a ridge regression solution. (JKS)
Multiple-Instance Regression with Structured Data
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; Lane, Terran; Roper, Alex
2008-01-01
We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.
Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S
2015-04-01
Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which only revealed polytrauma and primary EF as risk factors for nonunion and deep infection, respectively. Future strategies should focus on prevention in high-risk populations such as polytrauma patients treated with EF. Copyright © 2014 Elsevier Ltd. All rights reserved.
Greensmith, David J.
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. PMID:24125908
Tighe, Elizabeth L.; Schatschneider, Christopher
2015-01-01
The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in Adult Basic Education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological awareness and vocabulary knowledge at multiple points (quantiles) along the continuous distribution of reading comprehension. To demonstrate the efficacy of our multiple quantile regression analysis, we compared and contrasted our results with a traditional multiple regression analytic approach. Our results indicated that morphological awareness and vocabulary knowledge accounted for a large portion of the variance (82-95%) in reading comprehension skills across all quantiles. Morphological awareness exhibited the greatest unique predictive ability at lower levels of reading comprehension whereas vocabulary knowledge exhibited the greatest unique predictive ability at higher levels of reading comprehension. These results indicate the utility of using multiple quantile regression to assess trajectories of component skills across multiple levels of reading comprehension. The implications of our findings for ABE programs are discussed. PMID:25351773
Black Male Labor Force Participation.
ERIC Educational Resources Information Center
Baer, Roger K.
This study attempts to test (via multiple regression analysis) hypothesized relationships between designated independent variables and age specific incidences of labor force participation for black male subpopulations in 54 Standard Metropolitan Statistical Areas. Leading independent variables tested include net migration, earnings, unemployment,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penna, M.L.; Duchiade, M.P.
The authors report the results of an investigation into the possible association between air pollution and infant mortality from pneumonia in the Rio de Janeiro Metropolitan Area. This investigation employed multiple linear regression analysis (stepwise method) for infant mortality from pneumonia in 1980, including the study population's areas of residence, incomes, and pollution exposure as independent variables. With the income variable included in the regression, a statistically significant association was observed between the average annual level of particulates and infant mortality from pneumonia. While this finding should be accepted with caution, it does suggest a biological association between these variables.more » The authors' conclusion is that air quality indicators should be included in studies of acute respiratory infections in developing countries.« less
ℓ(p)-Norm multikernel learning approach for stock market price forecasting.
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ(1)-norm multiple support vector regression model.
Almalki, Mohammed J; FitzGerald, Gerry; Clark, Michele
2012-09-12
Quality of work life (QWL) has been found to influence the commitment of health professionals, including nurses. However, reliable information on QWL and turnover intention of primary health care (PHC) nurses is limited. The aim of this study was to examine the relationship between QWL and turnover intention of PHC nurses in Saudi Arabia. A cross-sectional survey was used in this study. Data were collected using Brooks' survey of Quality of Nursing Work Life, the Anticipated Turnover Scale and demographic data questions. A total of 508 PHC nurses in the Jazan Region, Saudi Arabia, completed the questionnaire (RR = 87%). Descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression were applied for analysis using SPSS v17 for Windows. Findings suggested that the respondents were dissatisfied with their work life, with almost 40% indicating a turnover intention from their current PHC centres. Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by QWL, p < 0.001, with R2 = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, p < 0.001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables. Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes.
2012-01-01
Background Quality of work life (QWL) has been found to influence the commitment of health professionals, including nurses. However, reliable information on QWL and turnover intention of primary health care (PHC) nurses is limited. The aim of this study was to examine the relationship between QWL and turnover intention of PHC nurses in Saudi Arabia. Methods A cross-sectional survey was used in this study. Data were collected using Brooks’ survey of Quality of Nursing Work Life, the Anticipated Turnover Scale and demographic data questions. A total of 508 PHC nurses in the Jazan Region, Saudi Arabia, completed the questionnaire (RR = 87%). Descriptive statistics, t-test, ANOVA, General Linear Model (GLM) univariate analysis, standard multiple regression, and hierarchical multiple regression were applied for analysis using SPSS v17 for Windows. Results Findings suggested that the respondents were dissatisfied with their work life, with almost 40% indicating a turnover intention from their current PHC centres. Turnover intention was significantly related to QWL. Using standard multiple regression, 26% of the variance in turnover intention was explained by QWL, p < 0.001, with R2 = .263. Further analysis using hierarchical multiple regression found that the total variance explained by the model as a whole (demographics and QWL) was 32.1%, p < 0.001. QWL explained an additional 19% of the variance in turnover intention, after controlling for demographic variables. Conclusions Creating and maintaining a healthy work life for PHC nurses is very important to improve their work satisfaction, reduce turnover, enhance productivity and improve nursing care outcomes. PMID:22970764
A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults
Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni
2015-01-01
Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960
A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.
Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni
2015-01-01
Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.
Balabin, Roman M; Smirnov, Sergey V
2011-04-29
During the past several years, near-infrared (near-IR/NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields from petroleum to biomedical sectors. The NIR spectrum (above 4000 cm(-1)) of a sample is typically measured by modern instruments at a few hundred of wavelengths. Recently, considerable effort has been directed towards developing procedures to identify variables (wavelengths) that contribute useful information. Variable selection (VS) or feature selection, also called frequency selection or wavelength selection, is a critical step in data analysis for vibrational spectroscopy (infrared, Raman, or NIRS). In this paper, we compare the performance of 16 different feature selection methods for the prediction of properties of biodiesel fuel, including density, viscosity, methanol content, and water concentration. The feature selection algorithms tested include stepwise multiple linear regression (MLR-step), interval partial least squares regression (iPLS), backward iPLS (BiPLS), forward iPLS (FiPLS), moving window partial least squares regression (MWPLS), (modified) changeable size moving window partial least squares (CSMWPLS/MCSMWPLSR), searching combination moving window partial least squares (SCMWPLS), successive projections algorithm (SPA), uninformative variable elimination (UVE, including UVE-SPA), simulated annealing (SA), back-propagation artificial neural networks (BP-ANN), Kohonen artificial neural network (K-ANN), and genetic algorithms (GAs, including GA-iPLS). Two linear techniques for calibration model building, namely multiple linear regression (MLR) and partial least squares regression/projection to latent structures (PLS/PLSR), are used for the evaluation of biofuel properties. A comparison with a non-linear calibration model, artificial neural networks (ANN-MLP), is also provided. Discussion of gasoline, ethanol-gasoline (bioethanol), and diesel fuel data is presented. The results of other spectroscopic techniques application, such as Raman, ultraviolet-visible (UV-vis), or nuclear magnetic resonance (NMR) spectroscopies, can be greatly improved by an appropriate feature selection choice. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Anderson, Carolyn J.; Verkuilen, Jay; Peyton, Buddy L.
2010-01-01
Survey items with multiple response categories and multiple-choice test questions are ubiquitous in psychological and educational research. We illustrate the use of log-multiplicative association (LMA) models that are extensions of the well-known multinomial logistic regression model for multiple dependent outcome variables to reanalyze a set of…
2013-01-01
Background Colorectal cancer is the third leading cause of cancer deaths in the United States. The initial assessment of colorectal cancer involves clinical staging that takes into account the extent of primary tumor invasion, determining the number of lymph nodes with metastatic cancer and the identification of metastatic sites in other organs. Advanced clinical stage indicates metastatic cancer, either in regional lymph nodes or in distant organs. While the genomic and genetic basis of colorectal cancer has been elucidated to some degree, less is known about the identity of specific cancer genes that are associated with advanced clinical stage and metastasis. Methods We compiled multiple genomic data types (mutations, copy number alterations, gene expression and methylation status) as well as clinical meta-data from The Cancer Genome Atlas (TCGA). We used an elastic-net regularized regression method on the combined genomic data to identify genetic aberrations and their associated cancer genes that are indicators of clinical stage. We ranked candidate genes by their regression coefficient and level of support from multiple assay modalities. Results A fit of the elastic-net regularized regression to 197 samples and integrated analysis of four genomic platforms identified the set of top gene predictors of advanced clinical stage, including: WRN, SYK, DDX5 and ADRA2C. These genetic features were identified robustly in bootstrap resampling analysis. Conclusions We conducted an analysis integrating multiple genomic features including mutations, copy number alterations, gene expression and methylation. This integrated approach in which one considers all of these genomic features performs better than any individual genomic assay. We identified multiple genes that robustly delineate advanced clinical stage, suggesting their possible role in colorectal cancer metastatic progression. PMID:24308539
Screening for ketosis using multiple logistic regression based on milk yield and composition.
Kayano, Mitsunori; Kataoka, Tomoko
2015-11-01
Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (P<0.05) for the diagnosis of ketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (P<0.01). A diagnostic rule was constructed for each group of cows: (1) 9.978 × P/F ratio + 0.085 × milk yield <10 and (2) 2.327 × SNF - 2.703 × lactose + 0.225 × MUN <10. The sensitivity, specificity and the area under the curve (AUC) of the diagnostic rules were (1) 0.800, 0.729 and 0.811; (2) 0.813, 0.730 and 0.787, respectively. The P/F ratio, which is a widely used measure of ketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively.
Developing a predictive tropospheric ozone model for Tabriz
NASA Astrophysics Data System (ADS)
Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi
2013-04-01
Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.
RRegrs: an R package for computer-aided model selection with multiple regression models.
Tsiliki, Georgia; Munteanu, Cristian R; Seoane, Jose A; Fernandez-Lozano, Carlos; Sarimveis, Haralambos; Willighagen, Egon L
2015-01-01
Predictive regression models can be created with many different modelling approaches. Choices need to be made for data set splitting, cross-validation methods, specific regression parameters and best model criteria, as they all affect the accuracy and efficiency of the produced predictive models, and therefore, raising model reproducibility and comparison issues. Cheminformatics and bioinformatics are extensively using predictive modelling and exhibit a need for standardization of these methodologies in order to assist model selection and speed up the process of predictive model development. A tool accessible to all users, irrespectively of their statistical knowledge, would be valuable if it tests several simple and complex regression models and validation schemes, produce unified reports, and offer the option to be integrated into more extensive studies. Additionally, such methodology should be implemented as a free programming package, in order to be continuously adapted and redistributed by others. We propose an integrated framework for creating multiple regression models, called RRegrs. The tool offers the option of ten simple and complex regression methods combined with repeated 10-fold and leave-one-out cross-validation. Methods include Multiple Linear regression, Generalized Linear Model with Stepwise Feature Selection, Partial Least Squares regression, Lasso regression, and Support Vector Machines Recursive Feature Elimination. The new framework is an automated fully validated procedure which produces standardized reports to quickly oversee the impact of choices in modelling algorithms and assess the model and cross-validation results. The methodology was implemented as an open source R package, available at https://www.github.com/enanomapper/RRegrs, by reusing and extending on the caret package. The universality of the new methodology is demonstrated using five standard data sets from different scientific fields. Its efficiency in cheminformatics and QSAR modelling is shown with three use cases: proteomics data for surface-modified gold nanoparticles, nano-metal oxides descriptor data, and molecular descriptors for acute aquatic toxicity data. The results show that for all data sets RRegrs reports models with equal or better performance for both training and test sets than those reported in the original publications. Its good performance as well as its adaptability in terms of parameter optimization could make RRegrs a popular framework to assist the initial exploration of predictive models, and with that, the design of more comprehensive in silico screening applications.Graphical abstractRRegrs is a computer-aided model selection framework for R multiple regression models; this is a fully validated procedure with application to QSAR modelling.
Tradespace Exploration for the Engineering of Resilient Systems
2015-05-01
world scenarios. The types of tools within the SAE set include visualization, decision analysis, and M&S, so it is difficult to categorize this toolset... overpopulated , or questionable. ERS Tradespace Workshop Create predictive models using multiple techniques (e.g., regression, Kriging, neural nets
Productivity: Vocational Education's Role. Information Series No. 223.
ERIC Educational Resources Information Center
Bolino, August C.
This paper's overiew of the relationship between vocational education and productivity includes the presentation of results from a multiple regression analysis of vocational education enrollments and various productivity indices. This tentative analysis contributes additional observations to the studies reviewed and offers pertinent suggestions…
Isolating and Examining Sources of Suppression and Multicollinearity in Multiple Linear Regression
ERIC Educational Resources Information Center
Beckstead, Jason W.
2012-01-01
The presence of suppression (and multicollinearity) in multiple regression analysis complicates interpretation of predictor-criterion relationships. The mathematical conditions that produce suppression in regression analysis have received considerable attention in the methodological literature but until now nothing in the way of an analytic…
General Nature of Multicollinearity in Multiple Regression Analysis.
ERIC Educational Resources Information Center
Liu, Richard
1981-01-01
Discusses multiple regression, a very popular statistical technique in the field of education. One of the basic assumptions in regression analysis requires that independent variables in the equation should not be highly correlated. The problem of multicollinearity and some of the solutions to it are discussed. (Author)
A psycholinguistic database for traditional Chinese character naming.
Chang, Ya-Ning; Hsu, Chun-Hsien; Tsai, Jie-Li; Chen, Chien-Liang; Lee, Chia-Ying
2016-03-01
In this study, we aimed to provide a large-scale set of psycholinguistic norms for 3,314 traditional Chinese characters, along with their naming reaction times (RTs), collected from 140 Chinese speakers. The lexical and semantic variables in the database include frequency, regularity, familiarity, consistency, number of strokes, homophone density, semantic ambiguity rating, phonetic combinability, semantic combinability, and the number of disyllabic compound words formed by a character. Multiple regression analyses were conducted to examine the predictive powers of these variables for the naming RTs. The results demonstrated that these variables could account for a significant portion of variance (55.8%) in the naming RTs. An additional multiple regression analysis was conducted to demonstrate the effects of consistency and character frequency. Overall, the regression results were consistent with the findings of previous studies on Chinese character naming. This database should be useful for research into Chinese language processing, Chinese education, or cross-linguistic comparisons. The database can be accessed via an online inquiry system (http://ball.ling.sinica.edu.tw/namingdatabase/index.html).
ℓ p-Norm Multikernel Learning Approach for Stock Market Price Forecasting
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ 1-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ p-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ 1-norm multiple support vector regression model. PMID:23365561
Schilling, K.E.; Wolter, C.F.
2005-01-01
Nineteen variables, including precipitation, soils and geology, land use, and basin morphologic characteristics, were evaluated to develop Iowa regression models to predict total streamflow (Q), base flow (Qb), storm flow (Qs) and base flow percentage (%Qb) in gauged and ungauged watersheds in the state. Discharge records from a set of 33 watersheds across the state for the 1980 to 2000 period were separated into Qb and Qs. Multiple linear regression found that 75.5 percent of long term average Q was explained by rainfall, sand content, and row crop percentage variables, whereas 88.5 percent of Qb was explained by these three variables plus permeability and floodplain area variables. Qs was explained by average rainfall and %Qb was a function of row crop percentage, permeability, and basin slope variables. Regional regression models developed for long term average Q and Qb were adapted to annual rainfall and showed good correlation between measured and predicted values. Combining the regression model for Q with an estimate of mean annual nitrate concentration, a map of potential nitrate loads in the state was produced. Results from this study have important implications for understanding geomorphic and land use controls on streamflow and base flow in Iowa watersheds and similar agriculture dominated watersheds in the glaciated Midwest. (JAWRA) (Copyright ?? 2005).
Sample size determination for logistic regression on a logit-normal distribution.
Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance
2017-06-01
Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.
Aspects of porosity prediction using multivariate linear regression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrnes, A.P.; Wilson, M.D.
1991-03-01
Highly accurate multiple linear regression models have been developed for sandstones of diverse compositions. Porosity reduction or enhancement processes are controlled by the fundamental variables, Pressure (P), Temperature (T), Time (t), and Composition (X), where composition includes mineralogy, size, sorting, fluid composition, etc. The multiple linear regression equation, of which all linear porosity prediction models are subsets, takes the generalized form: Porosity = C{sub 0} + C{sub 1}(P) + C{sub 2}(T) + C{sub 3}(X) + C{sub 4}(t) + C{sub 5}(PT) + C{sub 6}(PX) + C{sub 7}(Pt) + C{sub 8}(TX) + C{sub 9}(Tt) + C{sub 10}(Xt) + C{sub 11}(PTX) + C{submore » 12}(PXt) + C{sub 13}(PTt) + C{sub 14}(TXt) + C{sub 15}(PTXt). The first four primary variables are often interactive, thus requiring terms involving two or more primary variables (the form shown implies interaction and not necessarily multiplication). The final terms used may also involve simple mathematic transforms such as log X, e{sup T}, X{sup 2}, or more complex transformations such as the Time-Temperature Index (TTI). The X term in the equation above represents a suite of compositional variable and, therefore, a fully expanded equation may include a series of terms incorporating these variables. Numerous published bivariate porosity prediction models involving P (or depth) or Tt (TTI) are effective to a degree, largely because of the high degree of colinearity between p and TTI. However, all such bivariate models ignore the unique contributions of P and Tt, as well as various X terms. These simpler models become poor predictors in regions where colinear relations change, were important variables have been ignored, or where the database does not include a sufficient range or weight distribution for the critical variables.« less
Nagano, Jun; Kakuta, Chikage; Motomura, Chikako; Odajima, Hiroshi; Sudo, Nobuyuki; Nishima, Sankei; Kubo, Chiharu
2010-10-07
To examine relationships between a mother's stress-related conditions and parenting attitudes and their children's asthmatic status. 274 mothers of an asthmatic child 2 to 12 years old completed a questionnaire including questions about their chronic stress/coping behaviors (the "Stress Inventory"), parenting attitudes (the "Ta-ken Diagnostic Test for Parent-Child Relationship, Parent Form"), and their children's disease status. One year later, a follow-up questionnaire was mailed to the mothers that included questions on the child's disease status. 223 mothers (81%) responded to the follow-up survey. After controlling for non-psychosocial factors including disease severity at baseline, multiple linear regression analysis followed by multiple logistic regression analysis found chronic irritation/anger and emotional suppression to be aggravating factors for children aged < 7 years; for children aged 7 and over, the mothers' egocentric behavior was a mitigating factor while interference was an aggravating factor. Different types of parental stress/coping behaviors and parenting styles may differently predict their children's asthmatic status, and such associations may change as children grow.
Tighe, Elizabeth L; Schatschneider, Christopher
2016-07-01
The purpose of this study was to investigate the joint and unique contributions of morphological awareness and vocabulary knowledge at five reading comprehension levels in adult basic education (ABE) students. We introduce the statistical technique of multiple quantile regression, which enabled us to assess the predictive utility of morphological awareness and vocabulary knowledge at multiple points (quantiles) along the continuous distribution of reading comprehension. To demonstrate the efficacy of our multiple quantile regression analysis, we compared and contrasted our results with a traditional multiple regression analytic approach. Our results indicated that morphological awareness and vocabulary knowledge accounted for a large portion of the variance (82%-95%) in reading comprehension skills across all quantiles. Morphological awareness exhibited the greatest unique predictive ability at lower levels of reading comprehension whereas vocabulary knowledge exhibited the greatest unique predictive ability at higher levels of reading comprehension. These results indicate the utility of using multiple quantile regression to assess trajectories of component skills across multiple levels of reading comprehension. The implications of our findings for ABE programs are discussed. © Hammill Institute on Disabilities 2014.
Stepwise versus Hierarchical Regression: Pros and Cons
ERIC Educational Resources Information Center
Lewis, Mitzi
2007-01-01
Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…
Risk factors for retinal breaks in patients with symptom of floaters.
Singalavanija, Apichart; Amornrattanapan, Chutiwan; Nitiruangjarus, Kanjanee; Tongsai, Sasima
2010-06-01
To identify the risk factors of retinal breaks in patients with the symptom of floaters, and to determine the association between those risk factors and retinal breaks. A retrospective analytic study of 184 patients (55 males and 129 females) that included 220 eyes was conducted. Patient information such as age, symptoms (multiple floaters, flashing), duration of symptom, refractive error, history of cataract surgery, family history of retinal detachment, and complete eye examination were recorded. The patients were divided into two groups, the first group (control group) had symptoms of floaters and no retinal breaks, the second group (retinal breaks group) had symptoms of floaters with retinal breaks. Chi-square test, and the multiple logistic regression were used for statistical analysis. Two hundred twenty eyes, 175 eyes of the control group and 45 eyes of the retinal breaks group were examined and included in this study. The multiple logistic regression analysis revealed that patients with multiple floaters, and floaters and flashing increased the risk of retinal breaks to 5.8 and 4.3 times, respectively, when compared to patients with single floater or floaters alone. Lattice degeneration increased the risk of retinal breaks to 5.9 times when compared to eyes that did not have lattice degeneration. Multiple floaters, flashing and lattice degeneration are risk factors of retinal breaks in patients with symptoms of floaters. Therefore, it is important for the ophthalmologists to be aware of these risk factors and the patients at risk should have follow-up examinations.
Assessing Spurious Interaction Effects in Structural Equation Modeling
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Weiss, Brandi A.; Li, Ming
2015-01-01
Several studies have stressed the importance of simultaneously estimating interaction and quadratic effects in multiple regression analyses, even if theory only suggests an interaction effect should be present. Specifically, past studies suggested that failing to simultaneously include quadratic effects when testing for interaction effects could…
Greensmith, David J
2014-01-01
Here I present an Excel based program for the analysis of intracellular Ca transients recorded using fluorescent indicators. The program can perform all the necessary steps which convert recorded raw voltage changes into meaningful physiological information. The program performs two fundamental processes. (1) It can prepare the raw signal by several methods. (2) It can then be used to analyze the prepared data to provide information such as absolute intracellular Ca levels. Also, the rates of change of Ca can be measured using multiple, simultaneous regression analysis. I demonstrate that this program performs equally well as commercially available software, but has numerous advantages, namely creating a simplified, self-contained analysis workflow. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Use of Empirical Estimates of Shrinkage in Multiple Regression: A Caution.
ERIC Educational Resources Information Center
Kromrey, Jeffrey D.; Hines, Constance V.
1995-01-01
The accuracy of four empirical techniques to estimate shrinkage in multiple regression was studied through Monte Carlo simulation. None of the techniques provided unbiased estimates of the population squared multiple correlation coefficient, but the normalized jackknife and bootstrap techniques demonstrated marginally acceptable performance with…
Enhance-Synergism and Suppression Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, W. Michael
2004-01-01
Relations between pairwise correlations and the coefficient of multiple determination in regression analysis are considered. The conditions for the occurrence of enhance-synergism and suppression effects when multiple determination becomes bigger than the total of squared correlations of the dependent variable with the regressors are discussed. It…
Ohlmacher, G.C.; Davis, J.C.
2003-01-01
Landslides in the hilly terrain along the Kansas and Missouri rivers in northeastern Kansas have caused millions of dollars in property damage during the last decade. To address this problem, a statistical method called multiple logistic regression has been used to create a landslide-hazard map for Atchison, Kansas, and surrounding areas. Data included digitized geology, slopes, and landslides, manipulated using ArcView GIS. Logistic regression relates predictor variables to the occurrence or nonoccurrence of landslides within geographic cells and uses the relationship to produce a map showing the probability of future landslides, given local slopes and geologic units. Results indicated that slope is the most important variable for estimating landslide hazard in the study area. Geologic units consisting mostly of shale, siltstone, and sandstone were most susceptible to landslides. Soil type and aspect ratio were considered but excluded from the final analysis because these variables did not significantly add to the predictive power of the logistic regression. Soil types were highly correlated with the geologic units, and no significant relationships existed between landslides and slope aspect. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.
2008-04-01
Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.
Multiple regression technique for Pth degree polynominals with and without linear cross products
NASA Technical Reports Server (NTRS)
Davis, J. W.
1973-01-01
A multiple regression technique was developed by which the nonlinear behavior of specified independent variables can be related to a given dependent variable. The polynomial expression can be of Pth degree and can incorporate N independent variables. Two cases are treated such that mathematical models can be studied both with and without linear cross products. The resulting surface fits can be used to summarize trends for a given phenomenon and provide a mathematical relationship for subsequent analysis. To implement this technique, separate computer programs were developed for the case without linear cross products and for the case incorporating such cross products which evaluate the various constants in the model regression equation. In addition, the significance of the estimated regression equation is considered and the standard deviation, the F statistic, the maximum absolute percent error, and the average of the absolute values of the percent of error evaluated. The computer programs and their manner of utilization are described. Sample problems are included to illustrate the use and capability of the technique which show the output formats and typical plots comparing computer results to each set of input data.
Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro
2017-09-01
To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Tanaka, N; Kunihiro, Y; Kubo, M; Kawano, R; Oishi, K; Ueda, K; Gondo, T
2018-05-29
To identify characteristic high-resolution computed tomography (CT) findings for individual collagen vascular disease (CVD)-related interstitial pneumonias (IPs). The HRCT findings of 187 patients with CVD, including 55 patients with rheumatoid arthritis (RA), 50 with systemic sclerosis (SSc), 46 with polymyositis/dermatomyositis (PM/DM), 15 with mixed connective tissue disease, 11 with primary Sjögren's syndrome, and 10 with systemic lupus erythematosus, were evaluated. Lung parenchymal abnormalities were compared among CVDs using χ 2 test, Kruskal-Wallis test, and multiple logistic regression analysis. A CT-pathology correlation was performed in 23 patients. In RA-IP, honeycombing was identified as the significant indicator based on multiple logistic regression analyses. Traction bronchiectasis (81.8%) was further identified as the most frequent finding based on χ 2 test. In SSc IP, lymph node enlargement and oesophageal dilatation were identified as the indicators based on multiple logistic regression analyses, and ground-glass opacity (GGO) was the most extensive based on Kruskal-Wallis test, which reflects the higher frequency of the pathological nonspecific interstitial pneumonia (NSIP) pattern present in the CT-pathology correlation. In PM/DM IP, airspace consolidation and the absence of honeycombing were identified as the indicators based on multiple logistic regression analyses, and predominance of consolidation over GGO (32.6%) and predominant subpleural distribution of GGO/consolidation (41.3%) were further identified as the most frequent findings based on χ 2 test, which reflects the higher frequency of the pathological NSIP and/or the organising pneumonia patterns present in the CT-pathology correlation. Several characteristic high-resolution CT findings with utility for estimating underlying CVD were identified. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Dong, J Q; Zhang, X Y; Wang, S Z; Jiang, X F; Zhang, K; Ma, G W; Wu, M Q; Li, H; Zhang, H
2018-01-01
Plasma very low-density lipoprotein (VLDL) can be used to select for low body fat or abdominal fat (AF) in broilers, but its correlation with AF is limited. We investigated whether any other biochemical indicator can be used in combination with VLDL for a better selective effect. Nineteen plasma biochemical indicators were measured in male chickens from the Northeast Agricultural University broiler lines divergently selected for AF content (NEAUHLF) in the fed state at 46 and 48 d of age. The average concentration of every parameter for the 2 d was used for statistical analysis. Levels of these 19 plasma biochemical parameters were compared between the lean and fat lines. The phenotypic correlations between these plasma biochemical indicators and AF traits were analyzed. Then, multiple linear regression models were constructed to select the best model used for selecting against AF content. and the heritabilities of plasma indicators contained in the best models were estimated. The results showed that 11 plasma biochemical indicators (triglycerides, total bile acid, total protein, globulin, albumin/globulin, aspartate transaminase, alanine transaminase, gamma-glutamyl transpeptidase, uric acid, creatinine, and VLDL) differed significantly between the lean and fat lines (P < 0.01), and correlated significantly with AF traits (P < 0.05). The best multiple linear regression models based on albumin/globulin, VLDL, triglycerides, globulin, total bile acid, and uric acid, had higher R2 (0.73) than the model based only on VLDL (0.21). The plasma parameters included in the best models had moderate heritability estimates (0.21 ≤ h2 ≤ 0.43). These results indicate that these multiple linear regression models can be used to select for lean broiler chickens. © 2017 Poultry Science Association Inc.
Regression Analysis: Legal Applications in Institutional Research
ERIC Educational Resources Information Center
Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.
2008-01-01
This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…
RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,
This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)
Incremental Net Effects in Multiple Regression
ERIC Educational Resources Information Center
Lipovetsky, Stan; Conklin, Michael
2005-01-01
A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…
Floating Data and the Problem with Illustrating Multiple Regression.
ERIC Educational Resources Information Center
Sachau, Daniel A.
2000-01-01
Discusses how to introduce basic concepts of multiple regression by creating a large-scale, three-dimensional regression model using the classroom walls and floor. Addresses teaching points that should be covered and reveals student reaction to the model. Finds that the greatest benefit of the model is the low fear, walk-through, nonmathematical…
Ondeck, Nathaniel T; Fu, Michael C; Skrip, Laura A; McLynn, Ryan P; Cui, Jonathan J; Basques, Bryce A; Albert, Todd J; Grauer, Jonathan N
2018-04-09
The presence of missing data is a limitation of large datasets, including the National Surgical Quality Improvement Program (NSQIP). In addressing this issue, most studies use complete case analysis, which excludes cases with missing data, thus potentially introducing selection bias. Multiple imputation, a statistically rigorous approach that approximates missing data and preserves sample size, may be an improvement over complete case analysis. The present study aims to evaluate the impact of using multiple imputation in comparison with complete case analysis for assessing the associations between preoperative laboratory values and adverse outcomes following anterior cervical discectomy and fusion (ACDF) procedures. This is a retrospective review of prospectively collected data. Patients undergoing one-level ACDF were identified in NSQIP 2012-2015. Perioperative adverse outcome variables assessed included the occurrence of any adverse event, severe adverse events, and hospital readmission. Missing preoperative albumin and hematocrit values were handled using complete case analysis and multiple imputation. These preoperative laboratory levels were then tested for associations with 30-day postoperative outcomes using logistic regression. A total of 11,999 patients were included. Of this cohort, 63.5% of patients had missing preoperative albumin and 9.9% had missing preoperative hematocrit. When using complete case analysis, only 4,311 patients were studied. The removed patients were significantly younger, healthier, of a common body mass index, and male. Logistic regression analysis failed to identify either preoperative hypoalbuminemia or preoperative anemia as significantly associated with adverse outcomes. When employing multiple imputation, all 11,999 patients were included. Preoperative hypoalbuminemia was significantly associated with the occurrence of any adverse event and severe adverse events. Preoperative anemia was significantly associated with the occurrence of any adverse event, severe adverse events, and hospital readmission. Multiple imputation is a rigorous statistical procedure that is being increasingly used to address missing values in large datasets. Using this technique for ACDF avoided the loss of cases that may have affected the representativeness and power of the study and led to different results than complete case analysis. Multiple imputation should be considered for future spine studies. Copyright © 2018 Elsevier Inc. All rights reserved.
2017-03-23
PUBLIC RELEASE; DISTRIBUTION UNLIMITED Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and... Cost and Probability of Cost and Schedule Overrun for Program Managers Ryan C. Trudelle Follow this and additional works at: https://scholar.afit.edu...afit.edu. Recommended Citation Trudelle, Ryan C., "Using Multiple and Logistic Regression to Estimate the Median Will- Cost and Probability of Cost and
The Effects of Home-School Dissonance on African American Male High School Students
ERIC Educational Resources Information Center
Brown-Wright, Lynda; Tyler, Kenneth Maurice
2010-01-01
The current study examined associations between home-school dissonance and several academic and psychological variables among 80 African American male high school students. Regression analyses revealed that home-school dissonance significantly predicted multiple academic and psychological variables, including amotivation, academic cheating,…
Addressing Gender Equity in Nonfaculty Salaries.
ERIC Educational Resources Information Center
Toukoushian, Robert K.
2000-01-01
Discusses methodology of gender equity studies on noninstructional employees of colleges and universities, including variable selection in the multiple regression model and alternative approaches for measuring wage gaps. Analysis of staff data at one institution finds that experience and market differences account for 80 percent of gender pay…
Predicting daily use of urban forest recreation sites
John F. Dwyer
1988-01-01
A multiple linear regression model explains 90% of the variance in daily use of an urban recreation site. Explanatory variables include season, day of the week, and weather. The results offer guides for recreation site planning and management as well as suggestions for improving the model.
Screening for ketosis using multiple logistic regression based on milk yield and composition
KAYANO, Mitsunori; KATAOKA, Tomoko
2015-01-01
Multiple logistic regression was applied to milk yield and composition data for 632 records of healthy cows and 61 records of ketotic cows in Hokkaido, Japan. The purpose was to diagnose ketosis based on milk yield and composition, simultaneously. The cows were divided into two groups: (1) multiparous, including 314 healthy cows and 45 ketotic cows and (2) primiparous, including 318 healthy cows and 16 ketotic cows, since nutritional status, milk yield and composition are affected by parity. Multiple logistic regression was applied to these groups separately. For multiparous cows, milk yield (kg/day/cow) and protein-to-fat (P/F) ratio in milk were significant factors (P<0.05) for the diagnosis of ketosis. For primiparous cows, lactose content (%), solid not fat (SNF) content (%) and milk urea nitrogen (MUN) content (mg/dl) were significantly associated with ketosis (P<0.01). A diagnostic rule was constructed for each group of cows: (1) 9.978 × P/F ratio + 0.085 × milk yield <10 and (2) 2.327 × SNF − 2.703 × lactose + 0.225 × MUN <10. The sensitivity, specificity and the area under the curve (AUC) of the diagnostic rules were (1) 0.800, 0.729 and 0.811; (2) 0.813, 0.730 and 0.787, respectively. The P/F ratio, which is a widely used measure of ketosis, provided the sensitivity, specificity and AUC values of (1) 0.711, 0.726 and 0.781; and (2) 0.678, 0.767 and 0.738, respectively. PMID:26074408
Impact of divorce on the quality of life in school-age children.
Eymann, Alfredo; Busaniche, Julio; Llera, Julián; De Cunto, Carmen; Wahren, Carlos
2009-01-01
To assess psychosocial quality of life in school-age children of divorced parents. A cross-sectional survey was conducted at the pediatric outpatient clinic of a community hospital. Children 5 to 12 years old from married families and divorced families were included. Child quality of life was assessed through maternal reports using a Child Health Questionnaire-Parent Form 50. A multiple linear regression model was constructed including clinically relevant variables significant on univariate analysis (beta coefficient and 95%CI). Three hundred and thirty families were invited to participate and 313 completed the questionnaire. Univariate analysis showed that quality of life was significantly associated with parental separation, child sex, time spent with the father, standard of living, and maternal education. In a multiple linear regression model, quality of life scores decreased in boys -4.5 (-6.8 to -2.3) and increased for time spent with the father 0.09 (0.01 to 0.2). In divorced families, multiple linear regression showed that quality of life scores increased when parents had separated by mutual agreement 6.1 (2.7 to 9.4), when the mother had university level education 5.9 (1.7 to 10.1) and for each year elapsed since separation 0.6 (0.2 to 1.1), whereas scores decreased in boys -5.4 (-9.5 to -1.3) and for each one-year increment of maternal age -0.4 (-0.7 to -0.05). Children's psychosocial quality of life was affected by divorce. The Child Health Questionnaire can be useful to detect a decline in the psychosocial quality of life.
Henrard, S; Speybroeck, N; Hermans, C
2015-11-01
Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Swygert, Kimberly A.
In this study, data from an operational computerized adaptive test (CAT) were examined in order to gather information concerning item response times in a CAT environment. The CAT under study included multiple-choice items measuring verbal, quantitative, and analytical reasoning. The analyses included the fitting of regression models describing the…
ERIC Educational Resources Information Center
Baylor, Carolyn; Yorkston, Kathryn; Bamer, Alyssa; Britton, Deanna; Amtmann, Dagmar
2010-01-01
Purpose: To explore variables associated with self-reported communicative participation in a sample (n = 498) of community-dwelling adults with multiple sclerosis (MS). Method: A battery of questionnaires was administered online or on paper per participant preference. Data were analyzed using multiple linear backward stepwise regression. The…
Regression modeling of ground-water flow
Cooley, R.L.; Naff, R.L.
1985-01-01
Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)
The Effects of Market Structure on Television News Pricing.
ERIC Educational Resources Information Center
Wirth, Michael O.; Wollert, James A.
Multiple regression techniques were used to examine the business side of local television news operations for November 1978. Research questions examined the effect of several variables on local television news prices (advertising rates), including type of ownership, network affiliation/signal type, market size, cable network penetration, market…
Emotional Intelligence, Cognitive Flexibility and Psychological Symptoms in Pre-Service Teachers
ERIC Educational Resources Information Center
Gunduz, Bulent
2013-01-01
The purpose of this study is to examine the relationship between emotional intelligence, cognitive flexibility and psychological symptoms in pre-service teachers. The study included 414 pre-service teachers at the Faculty of Education, Mersin University, Turkey. Pearson product-moment correlation and multiple regression analyses were used to…
Rural Economic Development: What Makes Rural Communities Grow?
ERIC Educational Resources Information Center
Aldrich, Lorna; Kusmin, Lorin
This report identifies local factors that foster rural economic growth. A review of the literature revealed potential indicators of county economic growth, and those indicators were then tested against data for nonmetro counties during the 1980s using multiple regression analysis. The principal variables examined included demographic and labor…
(The Androgyny Dimension: A Comment on Stokes, Childs, and Fuehrer: And a Response.)
ERIC Educational Resources Information Center
Lubinski, David; Stokes, Joseph
1983-01-01
Suggests a critical methodological flaw in a study done about the relationship between the Bem Sex-Role Inventory and certain indices of self-disclosure (Stokes, et al.). Notes that multiple regression analysis was not performed in appropriate hierarchical fashion. Includes Stokes reply to the critique. (PAS)
Perceived Foreign Accent: Extended Stays Abroad, Level of Instruction, and Motivation
ERIC Educational Resources Information Center
Martinsen, Rob A.; Alvord, Scott M.; Tanner, Joshua
2014-01-01
Studies have examined various factors that affect pronunciation including phonetic context, style variation, first language transfer, and experience abroad. A plethora of research has also linked motivation to higher levels of proficiency in the second language. The present study uses native speaker ratings and multiple regression analysis to…
Suzuki, Taku; Iwamoto, Takuji; Shizu, Kanae; Suzuki, Katsuji; Yamada, Harumoto; Sato, Kazuki
2017-05-01
This retrospective study was designed to investigate prognostic factors for postoperative outcomes for cubital tunnel syndrome (CubTS) using multiple logistic regression analysis with a large number of patients. Eighty-three patients with CubTS who underwent surgeries were enrolled. The following potential prognostic factors for disease severity were selected according to previous reports: sex, age, type of surgery, disease duration, body mass index, cervical lesion, presence of diabetes mellitus, Workers' Compensation status, preoperative severity, and preoperative electrodiagnostic testing. Postoperative severity of disease was assessed 2 years after surgery by Messina's criteria which is an outcome measure specifically for CubTS. Bivariate analysis was performed to select candidate prognostic factors for multiple linear regression analyses. Multiple logistic regression analysis was conducted to identify the association between postoperative severity and selected prognostic factors. Both bivariate and multiple linear regression analysis revealed only preoperative severity as an independent risk factor for poor prognosis, while other factors did not show any significant association. Although conflicting results exist regarding prognosis of CubTS, this study supports evidence from previous studies and concludes early surgical intervention portends the most favorable prognosis. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Retro-regression--another important multivariate regression improvement.
Randić, M
2001-01-01
We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.
Hossain, Md Golam; Saw, Aik; Alam, Rashidul; Ohtsuki, Fumio; Kamarul, Tunku
2013-09-01
Cephalic index (CI), the ratio of head breadth to head length, is widely used to categorise human populations. The aim of this study was to access the impact of anthropometric measurements on the CI of male Japanese university students. This study included 1,215 male university students from Tokyo and Kyoto, selected using convenient sampling. Multiple regression analysis was used to determine the effect of anthropometric measurements on CI. The variance inflation factor (VIF) showed no evidence of a multicollinearity problem among independent variables. The coefficients of the regression line demonstrated a significant positive relationship between CI and minimum frontal breadth (p < 0.01), bizygomatic breadth (p < 0.01) and head height (p < 0.05), and a negative relationship between CI and morphological facial height (p < 0.01) and head circumference (p < 0.01). Moreover, the coefficient and odds ratio of logistic regression analysis showed a greater likelihood for minimum frontal breadth (p < 0.01) and bizygomatic breadth (p < 0.01) to predict round-headedness, and morphological facial height (p < 0.05) and head circumference (p < 0.01) to predict long-headedness. Stepwise regression analysis revealed bizygomatic breadth, head circumference, minimum frontal breadth, head height and morphological facial height to be the best predictor craniofacial measurements with respect to CI. The results suggest that most of the variables considered in this study appear to influence the CI of adult male Japanese students.
Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G
2006-01-01
Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras
Morris, Mark; Sellers, William I.
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras.
Peyer, Kathrin E; Morris, Mark; Sellers, William I
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints.
Meijer, Kim A; Muhlert, Nils; Cercignani, Mara; Sethi, Varun; Ron, Maria A; Thompson, Alan J; Miller, David H; Chard, Declan; Geurts, Jeroen Jg; Ciccarelli, Olga
2016-10-01
While our knowledge of white matter (WM) pathology underlying cognitive impairment in relapsing remitting multiple sclerosis (MS) is increasing, equivalent understanding in those with secondary progressive (SP) MS lags behind. The aim of this study is to examine whether the extent and severity of WM tract damage differ between cognitively impaired (CI) and cognitively preserved (CP) secondary progressive multiple sclerosis (SPMS) patients. Conventional magnetic resonance imaging (MRI) and diffusion MRI were acquired from 30 SPMS patients and 32 healthy controls (HC). Cognitive domains commonly affected in MS patients were assessed. Linear regression was used to predict cognition. Diffusion measures were compared between groups using tract-based spatial statistics (TBSS). A total of 12 patients were classified as CI, and processing speed was the most commonly affected domain. The final regression model including demographic variables and radial diffusivity explained the greatest variance of cognitive performance (R 2 = 0.48, p = 0.002). SPMS patients showed widespread loss of WM integrity throughout the WM skeleton when compared with HC. When compared with CP patients, CI patients showed more extensive and severe damage of several WM tracts, including the fornix, superior longitudinal fasciculus and forceps major. Loss of WM integrity assessed using TBSS helps to explain cognitive decline in SPMS patients. © The Author(s), 2016.
Trick, Lana M; Mutreja, Rachna; Hunt, Kelly
2012-02-01
An individual-differences approach was used to investigate the roles of visuospatial working memory and the executive in multiple-object tracking. The Corsi Blocks and Visual Patterns Tests were used to assess visuospatial working memory. Two relatively nonspatial measures of the executive were used: operation span (OSPAN) and reading span (RSPAN). For purposes of comparison, the digit span test was also included (a measure not expected to correlate with tracking). The tests predicted substantial amounts of variance (R (2) = .33), and the visuospatial measures accounted for the majority (R (2) = .30), with each making a significant contribution. Although the executive measures correlated with each other, the RSPAN did not correlate with tracking. The correlation between OSPAN and tracking was similar in magnitude to that between digit span and tracking (p < .05 for both), and when regression was used to partial out shared variance between the two tests, the remaining variance predicted by the OSPAN was minimal (sr ( 2 ) = .029). When measures of spatial memory were included in the regression, the unique variance predicted by the OSPAN became negligible (sr ( 2 ) = .000004). This suggests that the executive, as measured by tests such as the OSPAN, plays little role in explaining individual differences in multiple-object tracking.
The Geometry of Enhancement in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2011-01-01
In linear multiple regression, "enhancement" is said to occur when R[superscript 2] = b[prime]r greater than r[prime]r, where b is a p x 1 vector of standardized regression coefficients and r is a p x 1 vector of correlations between a criterion y and a set of standardized regressors, x. When p = 1 then b [is congruent to] r and…
NASA Astrophysics Data System (ADS)
Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa
2011-08-01
In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.
ERIC Educational Resources Information Center
Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.
2013-01-01
This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)
Abnormal dynamics of language in schizophrenia.
Stephane, Massoud; Kuskowski, Michael; Gundel, Jeanette
2014-05-30
Language could be conceptualized as a dynamic system that includes multiple interactive levels (sub-lexical, lexical, sentence, and discourse) and components (phonology, semantics, and syntax). In schizophrenia, abnormalities are observed at all language elements (levels and components) but the dynamic between these elements remains unclear. We hypothesize that the dynamics between language elements in schizophrenia is abnormal and explore how this dynamic is altered. We, first, investigated language elements with comparable procedures in patients and healthy controls. Second, using measures of reaction time, we performed multiple linear regression analyses to evaluate the inter-relationships among language elements and the effect of group on these relationships. Patients significantly differed from controls with respect to sub-lexical/lexical, lexical/sentence, and sentence/discourse regression coefficients. The intercepts of the regression slopes increased in the same order above (from lower to higher levels) in patients but not in controls. Regression coefficients between syntax and both sentence level and discourse level semantics did not differentiate patients from controls. This study indicates that the dynamics between language elements is abnormal in schizophrenia. In patients, top-down flow of linguistic information might be reduced, and the relationship between phonology and semantics but not between syntax and semantics appears to be altered. Published by Elsevier Ireland Ltd.
Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L
2009-08-01
The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.
Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru
2008-12-01
Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.
Predictors of College Readiness: An Analysis of the Student Readiness Inventory
ERIC Educational Resources Information Center
Wilson, James K., III
2012-01-01
The purpose of this study was to better predict how a first semester college freshman becomes prepared for college. The theoretical framework guiding this study is Vrooms' expectancy theory, motivation plays a key role in success. This study used a hierarchical multiple regression model. The independent variables of interest included high school…
ERIC Educational Resources Information Center
Deignan, Gerard M.; And Others
This report contains a comparative analysis of the differential effectiveness of computer-assisted instruction (CAI), programmed instructional text (PIT), and lecture methods of instruction in three medical courses--Medical Laboratory, Radiology, and Dental. The summative evaluation includes (1) multiple regression analyses conducted to predict…
Military Enlistments: What Can We Learn from Geographic Variation? Technical Report 620.
ERIC Educational Resources Information Center
Brown, Charles
Some economic variables were examined that affect enlistment decisions and therefore affect the continued success of the All-Volunteer Force. The study used a multiple regression, pooled cross-section/time-series model over the 1975-1982 period, including pay, unemployment, educational benefits, and recruiting resources as independent variables.…
ERIC Educational Resources Information Center
Uy, Chin; Manalo, Ronaldo A.; Cabauatan, Ronaldo R.
2015-01-01
In the Philippines, students seeking admission to a university are usually required to meet certain entrance requirements, including passing the entrance examinations with questions on IQ and English, mathematics, and science. This paper aims to determine the factors that affect the performance of entrants into business programmes in high-stakes…
Patterns of Library Use by Undergraduate Students in a Chilean University
ERIC Educational Resources Information Center
Jara, Magdalena; Clasing, Paula; Gonzalez, Carlos; Montenegro, Maximiliano; Kelly, Nick; Alarcón, Rosa; Sandoval, Augusto; Saurina, Elvira
2017-01-01
This paper explores the patterns of use of print materials and digital resources in an undergraduate library in a Chilean university, by the students' discipline and year of study. A quantitative analysis was carried out, including descriptive analysis of contingency tables, chi-squared tests, t-tests, and multiple linear regressions. The results…
ERIC Educational Resources Information Center
Pallone, Nathaniel J.; Hennessy, James J.; Voelbel, Gerald T.
1998-01-01
A scientifically sound methodology for identifying offenders about whose presence the community should be notified is demonstrated. A stepwise multiple regression was calculated among incarcerated pedophiles (N=52) including both psychological and legal data; a precision-weighted equation produced 90.4% "true positives." This methodology can be…
Functional Changes in Children, Adolescents, and Young Adults with Cerebral Palsy
ERIC Educational Resources Information Center
Krakovsky, Gina; Huth, Myra Martz; Lin, Li; Levin, Ron S.
2007-01-01
Children with multiple handicaps, including cerebral palsy (CP), often lose or regress in their functional ability through adolescence and young adulthood. The purpose of this study was to examine functional and psychosocial changes in children, adolescents, and young adults with CP. A retrospective chart review and a prospective telephone…
Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760
Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.
The M Word: Multicollinearity in Multiple Regression.
ERIC Educational Resources Information Center
Morrow-Howell, Nancy
1994-01-01
Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…
Navarta-Sánchez, María Victoria; Senosiain García, Juana M; Riverol, Mario; Ursúa Sesma, María Eugenia; Díaz de Cerio Ayesa, Sara; Anaut Bravo, Sagrario; Caparrós Civera, Neus; Portillo, Mari Carmen
2016-08-01
The influence that social conditions and personal attitudes may have on the quality of life (QoL) of Parkinson's disease (PD) patients and informal caregivers does not receive enough attention in health care, as a result of it not being clearly identified, especially in informal caregivers. The aim of this study was to provide a comprehensive analysis of psychosocial adjustment and QoL determinants in PD patients and informal caregivers. Ninety-one PD patients and 83 caregivers participated in the study. Multiple regression analyses were performed including benefit finding, coping, disease severity and socio-demographic factors, in order to determine how these aspects influence the psychosocial adjustment and QoL in PD patients and caregivers. Regression models showed that severity of PD was the main predictor of psychosocial adjustment and QoL in patients. Nevertheless, multiple regression analyses also revealed that coping was a significant predictor of psychosocial adjustment in patients and caregivers. Furthermore, psychosocial adjustment was significantly related to QoL in patients and caregivers. Also, coping and benefit finding were predictors of QoL in caregivers but not in patients. Multidisciplinary interventions aimed at improving PD patients' QoL may have more effective outcomes if education about coping skills, and how these can help towards a positive psychosocial adjustment to illness, were included, and targeted not only at patients, but also at informal caregivers.
Gómez-Peña, Mónica; Penelo, Eva; Granero, Roser; Fernández-Aranda, Fernando; Alvarez-Moya, Eva; Santamaría, Juan José; Moragas, Laura; Neus Aymamí, Maria; Gunnard, Katarina; Menchón, José M; Jimenez-Murcia, Susana
2012-07-01
The present study analyzes the association between the motivation to change and the cognitive-behavioral group intervention, in terms of dropouts and relapses, in a sample of male pathological gamblers. The specific objectives were as follows: (a) to estimate the predictive value of baseline University of Rhode Island Change Assessment scale (URICA) scores (i.e., at the start of the study) as regards the risk of relapse and dropout during treatment and (b) to assess the incremental predictive ability of URICA scores, as regards the mean change produced in the clinical status of patients between the start and finish of treatment. The relationship between the URICA and the response to treatment was analyzed by means of a pre-post design applied to a sample of 191 patients who were consecutively receiving cognitive-behavioral group therapy. The statistical analysis included logistic regression models and hierarchical multiple linear regression models. The discriminative ability of the models including the four URICA scores regarding the likelihood of relapse and dropout was acceptable (area under the receiver operating haracteristic curve: .73 and .71, respectively). No significant predictive ability was found as regards the differences between baseline and posttreatment scores (changes in R(2) below 5% in the multiple regression models). The availability of useful measures of motivation to change would enable treatment outcomes to be optimized through the application of specific therapeutic interventions. © 2012 Wiley Periodicals, Inc.
Lam, Lawrence T; Lam, Mary K
2017-12-01
To examine the association between financial literacy and Problematic Internet Shopping in adults. This cross-sectional online survey recruited participants, aged between 18 and 60 years, through an online research facility. The sample consisted of multinational participants from mainly three continents including Europe, North America, and Asia. Problematic Internet Shopping was assessed using the Bergen Shopping Addiction Scale (BSAS). Financial Literacy was measured by the Financial Literacy subscale of the Financial Wellbeing Questionnaire. Multiple linear regression analyses were conducted to elucidate the relationship between the study and outcome variables with adjustment for other potential risk factors. Of the total of 997 respondents with an average age of 30.9 (s.d. = 8.8), 135 (13.8%) could be classified as having a high risk of being Problematic Internet Shoppers. Results from the multiple regression analyses suggested a significant and negative relationship between financial literacy and Problematic Internet Shopping with a regression coefficient of - 0.13, after controlling for the effects of potential risk factors such as age, region of birth, employment, income, shopping frequency, self-regulation and anxiety (t = - 6.42, p < 0.001). The clinical management of PIS should include a financial counselling as a component of the treatment regime. Enhancement of financial literacy in the general population, particularly among young people, will likely have a positive effect on the occurrence of PIS.
Wang, Lian-Hong; Yan, Jin; Yang, Guo-Li; Long, Shuo; Yu, Yong; Wu, Xi-Lin
2015-04-01
Money boys with inconsistent condom use (less than 100% of the time) are at high risk of infection by human immunodeficiency virus (HIV) or sexually transmitted infection (STI), but relatively little research has examined their risk behaviors. We investigated the prevalence of consistent condom use (100% of the time) and associated factors among money boys. A cross-sectional study using a structured questionnaire was conducted among money boys in Changsha, China, between July 2012 and January 2013. Independent variables included socio-demographic data, substance abuse history, work characteristics, and self-reported HIV and STI history. Dependent variables included the consistent condom use with different types of sex partners. Among the participants, 82.4% used condoms consistently with male clients, 80.2% with male sex partners, and 77.1% with female sex partners in the past 3 months. A multiple stepwise logistic regression model identified four statistically significant factors associated with lower likelihoods of consistent condom use with male clients: age group, substance abuse, lack of an "employment" arrangement, and having no HIV test within the prior 6 months. In a similar model, only one factor associated significantly with lower likelihoods of consistent condom use with male sex partners was identified in multiple stepwise logistic regression analyses: having no HIV test within the prior six months. As for female sex partners, two significant variables were statistically significant in the multiple stepwise logistic regression analysis: having no HIV test within the prior 6 months and having STI history. Interventions which are linked with more realistic and acceptable HIV prevention methods are greatly warranted and should increase risk awareness and the behavior of consistent condom use in both commercial and personal relationship. © 2015 International Society for Sexual Medicine.
Qing, Si-han; Chang, Yun-feng; Dong, Xiao-ai; Li, Yuan; Chen, Xiao-gang; Shu, Yong-kang; Deng, Zhen-hua
2013-10-01
To establish the mathematical models of stature estimation for Sichuan Han female with measurement of lumbar vertebrae by X-ray to provide essential data for forensic anthropology research. The samples, 206 Sichuan Han females, were divided into three groups including group A, B and C according to the ages. Group A (206 samples) consisted of all ages, group B (116 samples) were 20-45 years old and 90 samples over 45 years old were group C. All the samples were examined lumbar vertebrae through CR technology, including the parameters of five centrums (L1-L5) as anterior border, posterior border and central heights (x1-x15), total central height of lumbar spine (x16), and the real height of every sample. The linear regression analysis was produced using the parameters to establish the mathematical models of stature estimation. Sixty-two trained subjects were tested to verify the accuracy of the mathematical models. The established mathematical models by hypothesis test of linear regression equation model were statistically significant (P<0.05). The standard errors of the equation were 2.982-5.004 cm, while correlation coefficients were 0.370-0.779 and multiple correlation coefficients were 0.533-0.834. The return tests of the highest correlation coefficient and multiple correlation coefficient of each group showed that the highest accuracy of the multiple regression equation, y = 100.33 + 1.489 x3 - 0.548 x6 + 0.772 x9 + 0.058 x12 + 0.645 x15, in group A were 80.6% (+/- lSE) and 100% (+/- 2SE). The established mathematical models in this study could be applied for the stature estimation for Sichuan Han females.
Lee, L.; Helsel, D.
2005-01-01
Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.
Meteorological adjustment of yearly mean values for air pollutant concentration comparison
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Neustadter, H. E.
1976-01-01
Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.
Assessment of Communications-related Admissions Criteria in a Three-year Pharmacy Program
Tejada, Frederick R.; Lang, Lynn A.; Purnell, Miriam; Acedera, Lisa; Ngonga, Ferdinand
2015-01-01
Objective. To determine if there is a correlation between TOEFL and other admissions criteria that assess communications skills (ie, PCAT variables: verbal, reading, essay, and composite), interview, and observational scores and to evaluate TOEFL and these admissions criteria as predictors of academic performance. Methods. Statistical analyses included two sample t tests, multiple regression and Pearson’s correlations for parametric variables, and Mann-Whitney U for nonparametric variables, which were conducted on the retrospective data of 162 students, 57 of whom were foreign-born. Results. The multiple regression model of the other admissions criteria on TOEFL was significant. There was no significant correlation between TOEFL scores and academic performance. However, significant correlations were found between the other admissions criteria and academic performance. Conclusion. Since TOEFL is not a significant predictor of either communication skills or academic success of foreign-born PharmD students in the program, it may be eliminated as an admissions criterion. PMID:26430273
Assessment of Communications-related Admissions Criteria in a Three-year Pharmacy Program.
Parmar, Jayesh R; Tejada, Frederick R; Lang, Lynn A; Purnell, Miriam; Acedera, Lisa; Ngonga, Ferdinand
2015-08-25
To determine if there is a correlation between TOEFL and other admissions criteria that assess communications skills (ie, PCAT variables: verbal, reading, essay, and composite), interview, and observational scores and to evaluate TOEFL and these admissions criteria as predictors of academic performance. Statistical analyses included two sample t tests, multiple regression and Pearson's correlations for parametric variables, and Mann-Whitney U for nonparametric variables, which were conducted on the retrospective data of 162 students, 57 of whom were foreign-born. The multiple regression model of the other admissions criteria on TOEFL was significant. There was no significant correlation between TOEFL scores and academic performance. However, significant correlations were found between the other admissions criteria and academic performance. Since TOEFL is not a significant predictor of either communication skills or academic success of foreign-born PharmD students in the program, it may be eliminated as an admissions criterion.
Melanin and blood concentration in human skin studied by multiple regression analysis: experiments
NASA Astrophysics Data System (ADS)
Shimada, M.; Yamada, Y.; Itoh, M.; Yatagai, T.
2001-09-01
Knowledge of the mechanism of human skin colour and measurement of melanin and blood concentration in human skin are needed in the medical and cosmetic fields. The absorbance spectrum from reflectance at the visible wavelength of human skin increases under several conditions such as a sunburn or scalding. The change of the absorbance spectrum from reflectance including the scattering effect does not correspond to the molar absorption spectrum of melanin and blood. The modified Beer-Lambert law is applied to the change in the absorbance spectrum from reflectance of human skin as the change in melanin and blood is assumed to be small. The concentration of melanin and blood was estimated from the absorbance spectrum reflectance of human skin using multiple regression analysis. Estimated concentrations were compared with the measured one in a phantom experiment and this method was applied to in vivo skin.
Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry
2013-08-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.
Kim, Yoonsang; Emery, Sherry
2013-01-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415
Kuiper, Gerhardus J A J M; Houben, Rik; Wetzels, Rick J H; Verhezen, Paul W M; Oerle, Rene van; Ten Cate, Hugo; Henskens, Yvonne M C; Lancé, Marcus D
2017-11-01
Low platelet counts and hematocrit levels hinder whole blood point-of-care testing of platelet function. Thus far, no reference ranges for MEA (multiple electrode aggregometry) and PFA-100 (platelet function analyzer 100) devices exist for low ranges. Through dilution methods of volunteer whole blood, platelet function at low ranges of platelet count and hematocrit levels was assessed on MEA for four agonists and for PFA-100 in two cartridges. Using (multiple) regression analysis, 95% reference intervals were computed for these low ranges. Low platelet counts affected MEA in a positive correlation (all agonists showed r 2 ≥ 0.75) and PFA-100 in an inverse correlation (closure times were prolonged with lower platelet counts). Lowered hematocrit did not affect MEA testing, except for arachidonic acid activation (ASPI), which showed a weak positive correlation (r 2 = 0.14). Closure time on PFA-100 testing was inversely correlated with hematocrit for both cartridges. Regression analysis revealed different 95% reference intervals in comparison with originally established intervals for both MEA and PFA-100 in low platelet or hematocrit conditions. Multiple regression analysis of ASPI and both tests on the PFA-100 for combined low platelet and hematocrit conditions revealed that only PFA-100 testing should be adjusted for both thrombocytopenia and anemia. 95% reference intervals were calculated using multiple regression analysis. However, coefficients of determination of PFA-100 were poor, and some variance remained unexplained. Thus, in this pilot study using (multiple) regression analysis, we could establish reference intervals of platelet function in anemia and thrombocytopenia conditions on PFA-100 and in thrombocytopenia conditions on MEA.
NASA Technical Reports Server (NTRS)
Lo, Ching F.
1999-01-01
The integration of Radial Basis Function Networks and Back Propagation Neural Networks with the Multiple Linear Regression has been accomplished to map nonlinear response surfaces over a wide range of independent variables in the process of the Modem Design of Experiments. The integrated method is capable to estimate the precision intervals including confidence and predicted intervals. The power of the innovative method has been demonstrated by applying to a set of wind tunnel test data in construction of response surface and estimation of precision interval.
Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits
Lubin, Jay H.; Colt, Joanne S.; Camann, David; Davis, Scott; Cerhan, James R.; Severson, Richard K.; Bernstein, Leslie; Hartge, Patricia
2004-01-01
Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma. PMID:15579415
Ondeck, Nathaniel T; Fu, Michael C; Skrip, Laura A; McLynn, Ryan P; Su, Edwin P; Grauer, Jonathan N
2018-03-01
Despite the advantages of large, national datasets, one continuing concern is missing data values. Complete case analysis, where only cases with complete data are analyzed, is commonly used rather than more statistically rigorous approaches such as multiple imputation. This study characterizes the potential selection bias introduced using complete case analysis and compares the results of common regressions using both techniques following unicompartmental knee arthroplasty. Patients undergoing unicompartmental knee arthroplasty were extracted from the 2005 to 2015 National Surgical Quality Improvement Program. As examples, the demographics of patients with and without missing preoperative albumin and hematocrit values were compared. Missing data were then treated with both complete case analysis and multiple imputation (an approach that reproduces the variation and associations that would have been present in a full dataset) and the conclusions of common regressions for adverse outcomes were compared. A total of 6117 patients were included, of which 56.7% were missing at least one value. Younger, female, and healthier patients were more likely to have missing preoperative albumin and hematocrit values. The use of complete case analysis removed 3467 patients from the study in comparison with multiple imputation which included all 6117 patients. The 2 methods of handling missing values led to differing associations of low preoperative laboratory values with commonly studied adverse outcomes. The use of complete case analysis can introduce selection bias and may lead to different conclusions in comparison with the statistically rigorous multiple imputation approach. Joint surgeons should consider the methods of handling missing values when interpreting arthroplasty research. Copyright © 2017 Elsevier Inc. All rights reserved.
As a fast and effective technique, the multiple linear regression (MLR) method has been widely used in modeling and prediction of beach bacteria concentrations. Among previous works on this subject, however, several issues were insufficiently or inconsistently addressed. Those is...
MULTIPLE REGRESSION MODELS FOR HINDCASTING AND FORECASTING MIDSUMMER HYPOXIA IN THE GULF OF MEXICO
A new suite of multiple regression models were developed that describe the relationship between the area of bottom water hypoxia along the northern Gulf of Mexico and Mississippi-Atchafalaya River nitrate concentration, total phosphorus (TP) concentration, and discharge. Variabil...
Khalil, Mohamed H.; Shebl, Mostafa K.; Kosba, Mohamed A.; El-Sabrout, Karim; Zaki, Nesma
2016-01-01
Aim: This research was conducted to determine the most affecting parameters on hatchability of indigenous and improved local chickens’ eggs. Materials and Methods: Five parameters were studied (fertility, early and late embryonic mortalities, shape index, egg weight, and egg weight loss) on four strains, namely Fayoumi, Alexandria, Matrouh, and Montazah. Multiple linear regression was performed on the studied parameters to determine the most influencing one on hatchability. Results: The results showed significant differences in commercial and scientific hatchability among strains. Alexandria strain has the highest significant commercial hatchability (80.70%). Regarding the studied strains, highly significant differences in hatching chick weight among strains were observed. Using multiple linear regression analysis, fertility made the greatest percent contribution (71.31%) to hatchability, and the lowest percent contributions were made by shape index and egg weight loss. Conclusion: A prediction of hatchability using multiple regression analysis could be a good tool to improve hatchability percentage in chickens. PMID:27651666
Locomotive syndrome is associated not only with physical capacity but also degree of depression.
Ikemoto, Tatsunori; Inoue, Masayuki; Nakata, Masatoshi; Miyagawa, Hirofumi; Shimo, Kazuhiro; Wakabayashi, Toshiko; Arai, Young-Chang P; Ushida, Takahiro
2016-05-01
Reports of locomotive syndrome (LS) have recently been increasing. Although physical performance measures for LS have been well investigated to date, studies including psychiatric assessment are still scarce. Hence, the aim of this study was to investigate both physical and mental parameters in relation to presence and severity of LS using a 25-question geriatric locomotive function scale (GLFS-25) questionnaire. 150 elderly people aged over 60 years who were members of our physical-fitness center and displayed well-being were enrolled in this study. Firstly, using the previously determined GLFS-25 cutoff value (=16 points), subjects were divided into two groups accordingly: an LS and non-LS group in order to compare each parameter (age, grip strength, timed-up-and-go test (TUG), one-leg standing with eye open, back muscle and leg muscle strength, degree of depression and cognitive impairment) between the groups using the Mann-Whitney U-test followed by multiple logistic regression analysis. Secondly, a multiple linear regression was conducted to determine which variables showed the strongest correlation with severity of LS. We confirmed 110 people for non-LS (73%) and 40 people for LS using the GLFS-25 cutoff value. Comparative analysis between LS and non-LS revealed significant differences in parameters in age, grip strength, TUG, one-leg standing, back muscle strength and degree of depression (p < 0.006, after Bonferroni correction). Multiple logistic regression revealed that functional decline in grip strength, TUG and one-leg standing and degree of depression were significantly associated with LS. On the other hand, we observed that the significant contributors towards the GLFS-25 score were TUG and degree of depression in multiple linear regression analysis. The results indicate that LS is associated with not only the capacity of physical performance but also the degree of depression although most participants fell under the criteria of LS. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Mean centering, multicollinearity, and moderators in multiple regression: The reconciliation redux.
Iacobucci, Dawn; Schneider, Matthew J; Popovich, Deidre L; Bakamitsos, Georgios A
2017-02-01
In this article, we attempt to clarify our statements regarding the effects of mean centering. In a multiple regression with predictors A, B, and A × B (where A × B serves as an interaction term), mean centering A and B prior to computing the product term can clarify the regression coefficients (which is good) and the overall model fit R 2 will remain undisturbed (which is also good).
2013-01-01
application of the Hammett equation with the constants rph in the chemistry of organophosphorus compounds, Russ. Chem. Rev. 38 (1969) 795–811. [13...of oximes and OP compounds and the ability of oximes to reactivate OP- inhibited AChE. Multiple linear regression equations were analyzed using...phosphonate pairs, 21 oxime/ phosphoramidate pairs and 12 oxime/phosphate pairs. The best linear regression equation resulting from multiple regression anal
He, Dan; Kuhn, David; Parida, Laxmi
2016-06-15
Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait prediction is usually represented as linear regression models. In many cases, for the same set of samples and markers, multiple traits are observed. Some of these traits might be correlated with each other. Therefore, modeling all the multiple traits together may improve the prediction accuracy. In this work, we view the multitrait prediction problem from a machine learning angle: as either a multitask learning problem or a multiple output regression problem, depending on whether different traits share the same genotype matrix or not. We then adapted multitask learning algorithms and multiple output regression algorithms to solve the multitrait prediction problem. We proposed a few strategies to improve the least square error of the prediction from these algorithms. Our experiments show that modeling multiple traits together could improve the prediction accuracy for correlated traits. The programs we used are either public or directly from the referred authors, such as MALSAR (http://www.public.asu.edu/~jye02/Software/MALSAR/) package. The Avocado data set has not been published yet and is available upon request. dhe@us.ibm.com. © The Author 2016. Published by Oxford University Press.
Robinson, J J; Wharrad, H
2001-05-01
The relationship between attendance at birth and maternal mortality rates: an exploration of United Nations' data sets including the ratios of physicians and nurses to population, GNP per capita and female literacy. This is the third and final paper drawing on data taken from United Nations (UN) data sets. The first paper examined the global distribution of health professionals (as measured by ratios of physicians and nurses to population), and its relationship to gross national product per capita (GNP) (Wharrad & Robinson 1999). The second paper explored the relationships between the global distribution of physicians and nurses, GNP, female literacy and the health outcome indicators of infant and under five mortality rates (IMR and u5MR) (Robinson & Wharrad 2000). In the present paper, the global distribution of health professionals is explored in relation to maternal mortality rates (MMRs). The proportion of births attended by medical and nonmedical staff defined as "attendance at birth by trained personnel" (physicians, nurses, midwives or primary health care workers trained in midwifery skills), is included as an additional independent variable in the regression analyses, together with the ratio of physicians and nurses to population, female literacy and GNP. To extend our earlier analyses by considering the relationships between the global distribution of health professionals (ratios of physicians and nurses to population, and the proportion of births attended by trained health personnel), GNP, female literacy and MMR.
Simple and multiple linear regression: sample size considerations.
Hanley, James A
2016-11-01
The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.
Stress and Depression among Older Residents in Religious Monasteries: Do Friends and God Matter?
ERIC Educational Resources Information Center
Bishop, Bishop J.
2008-01-01
The purpose of this investigation was to explore how friendship and attachment to God provide protective benefits against stress and depression. Participants included 235 men and women, age 64 and older, residing in religious monasteries affiliated with the Order of St. Benedict. Hierarchical multiple regression analyses were completed to assess…
Massive Open Online Course Completion Rates Revisited: Assessment, Length and Attrition
ERIC Educational Resources Information Center
Jordan, Katy
2015-01-01
This analysis is based upon enrolment and completion data collected for a total of 221 Massive Open Online Courses (MOOCs). It extends previously reported work (Jordan, 2014) with an expanded dataset; the original work is extended to include a multiple regression analysis of factors that affect completion rates and analysis of attrition rates…
ERIC Educational Resources Information Center
Hughes, Joan E.; Read, Michelle F.; Jones, Sara; Mahometa, Michael
2015-01-01
This study used multiple regression to identify predictors of middle school students' Web 2.0 activities out of school, a construct composed of 15 technology activities. Three middle schools participated, where sixth- and seventh-grade students completed a questionnaire. Independent predictor variables included three demographic and five computer…
Multi scale habitat relationships of Martes americana in northern Idaho, U.S.A.
Tzeidle N. Wasserman; Samuel A. Cushman; David O. Wallin; Jim Hayden
2012-01-01
We used bivariate scaling and logistic regression to investigate multiple-scale habitat selection by American marten (Martes americana). Bivariate scaling reveals dramatic differences in the apparent nature and strength of relationships between marten occupancy and a number of habitat variables across a range of spatial scales. These differences include reversals in...
ERIC Educational Resources Information Center
Penland, Nathan Paul
2017-01-01
Research has shown benefits to the student experience for college students when they participate in intramural sports on university campuses. These benefits include improved physical and social health as well as academic performance. This non-experimental, predictive correlational study sought to understand if a relationship exists between the…
Undergraduate Student Motivation in Modularized Developmental Mathematics Courses
ERIC Educational Resources Information Center
Pachlhofer, Keith A.
2017-01-01
This study used the Motivated Strategies for Learning Questionnaire in modularized courses at three institutions across the nation (N = 189), and multiple regression was completed to investigate five categories of student motivation that predicted academic success and course completion. The overall multiple regression analysis was significant and…
MULGRES: a computer program for stepwise multiple regression analysis
A. Jeff Martin
1971-01-01
MULGRES is a computer program source deck that is designed for multiple regression analysis employing the technique of stepwise deletion in the search for most significant variables. The features of the program, along with inputs and outputs, are briefly described, with a note on machine compatibility.
Categorical Variables in Multiple Regression: Some Cautions.
ERIC Educational Resources Information Center
O'Grady, Kevin E.; Medoff, Deborah R.
1988-01-01
Limitations of dummy coding and nonsense coding as methods of coding categorical variables for use as predictors in multiple regression analysis are discussed. The combination of these approaches often yields estimates and tests of significance that are not intended by researchers for inclusion in their models. (SLD)
HIV-related ocular microangiopathic syndrome and color contrast sensitivity.
Geier, S A; Hammel, G; Bogner, J R; Kronawitter, U; Berninger, T; Goebel, F D
1994-06-01
Color vision deficits in patients with acquired immunodeficiency syndrome (AIDS) or human immunodeficiency virus (HIV) disease were reported, and a retinal pathogenic mechanism was proposed. The purpose of this study was to evaluate the association of color vision deficits with HIV-related retinal microangiopathy. A computer graphics system was used to measure protan, deutan, and tritan color contrast sensitivity (CCS) thresholds in 60 HIV-infected patients. Retinal microangiopathy was measured by counting the number of cotton-wool spots, and conjunctival blood-flow sludging was determined. Additional predictors were CD4+ count, age, time on aerosolized pentamidine, time on zidovudine, and Walter Reed staging. The relative influence of each predictor was calculated by stepwise multiple regression analysis (inclusion criterion; incremental P value = < 0.05) using data for the right eyes (RE). The results were validated by using data for the left eyes (LE) and both eyes (BE). The only included predictors in multiple regression analyses for the RE were number of cotton-wool spots (tritan: R = .70; deutan: R = .46; and protan: R = .58; P < .0001 for all axes) and age (tritan: increment of R [Ri] = .05, P = .002; deutan: Ri = .10, P = .004; and protan: Ri = .05, P = .002). The predictors time on zidovudine (Ri = .05, P = .002) and Walter Reed staging (Ri = .03, P = .01) were additionally included in multiple regression analysis for tritan LE. The results for deutan LE were comparable to those for the RE. In the analysis for protan LE, the only included predictor was number of cotton-wool spots. In the analyses for BE, no further predictors were included. The predictors Walter Reed staging and CD4+ count showed a significant association with all three criteria in univariate analysis. Additionally, tritan CCS was significantly associated with conjunctival blood-flow sludging. CCS deficits in patients with HIV disease are primarily associated with the number of cotton-wool spots. Results of this study are in accordance with the hypothesis that CCS deficits are in a relevant part caused by neuroretinal damage secondary to HIV-related microangiopathy.
Veauthier, Christian
2013-01-01
Background The Fatigue Severity Scale (FSS) is widely used to assess fatigue, not only in the context of multiple sclerosis-related fatigue, but also in many other medical conditions. Some polysomnographic studies have shown high FSS values in sleep-disordered patients without multiple sclerosis. The Modified Fatigue Impact Scale (MFIS) has increasingly been used in order to assess fatigue, but polysomnographic data investigating sleep-disordered patients are thus far unavailable. Moreover, the pathophysiological link between sleep architecture and fatigue measured with the MFIS and the FSS has not been previously investigated. Methods This was a retrospective observational study (n = 410) with subgroups classified according to sleep diagnosis. The statistical analysis included nonparametric correlation between questionnaire results and polysomnographic data, age and sex, and univariate and multiple logistic regression. Results The multiple logistic regression showed a significant relationship between FSS/MFIS values and younger age and female sex. Moreover, there was a significant relationship between FSS values and number of arousals and between MFIS values and number of awakenings. Conclusion Younger age, female sex, and high number of awakenings and arousals are predictive of fatigue in sleep-disordered patients. Further investigations are needed to find the pathophysiological explanation for these relationships. PMID:24109185
Advanced Statistics for Exotic Animal Practitioners.
Hodsoll, John; Hellier, Jennifer M; Ryan, Elizabeth G
2017-09-01
Correlation and regression assess the association between 2 or more variables. This article reviews the core knowledge needed to understand these analyses, moving from visual analysis in scatter plots through correlation, simple and multiple linear regression, and logistic regression. Correlation estimates the strength and direction of a relationship between 2 variables. Regression can be considered more general and quantifies the numerical relationships between an outcome and 1 or multiple variables in terms of a best-fit line, allowing predictions to be made. Each technique is discussed with examples and the statistical assumptions underlying their correct application. Copyright © 2017 Elsevier Inc. All rights reserved.
Pagano, Matthew J; De Fazio, Adam; Levy, Alison; RoyChoudhury, Arindam; Stahl, Peter J
2016-04-01
To identify clinical predictors of testosterone deficiency (TD) in men with erectile dysfunction (ED), thereby identifying subgroups that are most likely to benefit from targeted testosterone screening. Retrospective review was conducted on 498 men evaluated for ED between January 2013 and July 2014. Testing for TD by early morning serum measurement was offered to all eligible men. Patients with history of prostate cancer or testosterone replacement were excluded. Univariable linear regression was conducted to analyze 19 clinical variables for associations with serum total testosterone (TT), calculated free testosterone (cFT), and TD (T <300 ng/dL or cFT <6.5 ng/dL). Variables significant on univariable analysis were included in multiple regression models. A total of 225 men met inclusion criteria. Lower TT levels were associated with greater body mass index (BMI), less frequent sexual activity, and absence of clinical depression on multiple regression analysis. TT decreased by 49.5 ng/dL for each 5-point increase in BMI. BMI and age were the only independent predictors of cFT levels on multivariable analysis. Overall, 62 subjects (27.6%) met criteria for TD. Older age, greater BMI, and less frequent sexual activity were the only independent predictors of TD on multiple regression. We observed a 2.2-fold increase in the odds of TD for every 5-point increase in BMI, and a 1.8-fold increase for every 10 year increase in age. Men with ED and elevated BMI, advanced age, or infrequent sexual activity appear to be at high risk of TD, and such patients represent excellent potential candidates for targeted testosterone screening. Copyright © 2016 Elsevier Inc. All rights reserved.
Di Donato, Violante; Kontopantelis, Evangelos; Aletti, Giovanni; Casorelli, Assunta; Piacenti, Ilaria; Bogani, Giorgio; Lecce, Francesca; Benedetti Panici, Pierluigi
2017-06-01
Primary cytoreductive surgery (PDS) followed by platinum-based chemotherapy is the cornerstone of treatment and the absence of residual tumor after PDS is universally considered the most important prognostic factor. The aim of the present analysis was to evaluate trend and predictors of 30-day mortality in patients undergoing primary cytoreduction for ovarian cancer. Literature was searched for records reporting 30-day mortality after PDS. All cohorts were rated for quality. Simple and multiple Poisson regression models were used to quantify the association between 30-day mortality and the following: overall or severe complications, proportion of patients with stage IV disease, median age, year of publication, and weighted surgical complexity index. Using the multiple regression model, we calculated the risk of perioperative mortality at different levels for statistically significant covariates of interest. Simple regression identified median age and proportion of patients with stage IV disease as statistically significant predictors of 30-day mortality. When included in the multiple Poisson regression model, both remained statistically significant, with an incidence rate ratio of 1.087 for median age and 1.017 for stage IV disease. Disease stage was a strong predictor, with the risk estimated to increase from 2.8% (95% confidence interval 2.02-3.66) for stage III to 16.1% (95% confidence interval 6.18-25.93) for stage IV, for a cohort with a median age of 65 years. Metaregression demonstrated that increased age and advanced clinical stage were independently associated with an increased risk of mortality, and the combined effects of both factors greatly increased the risk.
NASA Technical Reports Server (NTRS)
Jacobsen, R. T.; Stewart, R. B.; Crain, R. W., Jr.; Rose, G. L.; Myers, A. F.
1976-01-01
A method was developed for establishing a rational choice of the terms to be included in an equation of state with a large number of adjustable coefficients. The methods presented were developed for use in the determination of an equation of state for oxygen and nitrogen. However, a general application of the methods is possible in studies involving the determination of an optimum polynomial equation for fitting a large number of data points. The data considered in the least squares problem are experimental thermodynamic pressure-density-temperature data. Attention is given to a description of stepwise multiple regression and the use of stepwise regression in the determination of an equation of state for oxygen and nitrogen.
Estimation of standard liver volume in Chinese adult living donors.
Fu-Gui, L; Lu-Nan, Y; Bo, L; Yong, Z; Tian-Fu, W; Ming-Qing, X; Wen-Tao, W; Zhe-Yu, C
2009-12-01
To determine a formula predicting the standard liver volume based on body surface area (BSA) or body weight in Chinese adults. A total of 115 consecutive right-lobe living donors not including the middle hepatic vein underwent right hemi-hepatectomy. No organs were used from prisoners, and no subjects were prisoners. Donor anthropometric data including age, gender, body weight, and body height were recorded prospectively. The weights and volumes of the right lobe liver grafts were measured at the back table. Liver weights and volumes were calculated from the right lobe graft weight and volume obtained at the back table, divided by the proportion of the right lobe on computed tomography. By simple linear regression analysis and stepwise multiple linear regression analysis, we correlated calculated liver volume and body height, body weight, or body surface area. The subjects had a mean age of 35.97 +/- 9.6 years, and a female-to-male ratio of 60:55. The mean volume of the right lobe was 727.47 +/- 136.17 mL, occupying 55.59% +/- 6.70% of the whole liver by computed tomography. The volume of the right lobe was 581.73 +/- 96.137 mL, and the estimated liver volume was 1053.08 +/- 167.56 mL. Females of the same body weight showed a slightly lower liver weight. By simple linear regression analysis and stepwise multiple linear regression analysis, a formula was derived based on body weight. All formulae except the Hong Kong formula overestimated liver volume compared to this formula. The formula of standard liver volume, SLV (mL) = 11.508 x body weight (kg) + 334.024, may be applied to estimate liver volumes in Chinese adults.
Use of Thematic Mapper for water quality assessment
NASA Technical Reports Server (NTRS)
Horn, E. M.; Morrissey, L. A.
1984-01-01
The evaluation of simulated TM data obtained on an ER-2 aircraft at twenty-five predesignated sample sites for mapping water quality factors such as conductivity, pH, suspended solids, turbidity, temperature, and depth, is discussed. Using a multiple regression for the seven TM bands, an equation is developed for the suspended solids. TM bands 1, 2, 3, 4, and 6 are used with logarithm conductivity in a multiple regression. The assessment of regression equations for a high coefficient of determination (R-squared) and statistical significance is considered. Confidence intervals about the mean regression point are calculated in order to assess the robustness of the regressions used for mapping conductivity, turbidity, and suspended solids, and by regressing random subsamples of sites and comparing the resultant range of R-squared, cross validation is conducted.
Due to the complexity of the processes contributing to beach bacteria concentrations, many researchers rely on statistical modeling, among which multiple linear regression (MLR) modeling is most widely used. Despite its ease of use and interpretation, there may be time dependence...
Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network are used to estimate organic mass to organic carbon (OM/OC) ratios across the United States by extending previously published multiple regression techniques. Our new methodology addresses com...
Analysis and Interpretation of Findings Using Multiple Regression Techniques
ERIC Educational Resources Information Center
Hoyt, William T.; Leierer, Stephen; Millington, Michael J.
2006-01-01
Multiple regression and correlation (MRC) methods form a flexible family of statistical techniques that can address a wide variety of different types of research questions of interest to rehabilitation professionals. In this article, we review basic concepts and terms, with an emphasis on interpretation of findings relevant to research questions…
Tracking the Gender Pay Gap: A Case Study
ERIC Educational Resources Information Center
Travis, Cheryl B.; Gross, Louis J.; Johnson, Bruce A.
2009-01-01
This article provides a short introduction to standard considerations in the formal study of wages and illustrates the use of multiple regression and resampling simulation approaches in a case study of faculty salaries at one university. Multiple regression is especially beneficial where it provides information on strength of association, specific…
Estimating air drying times of lumber with multiple regression
William T. Simpson
2004-01-01
In this study, the applicability of a multiple regression equation for estimating air drying times of red oak, sugar maple, and ponderosa pine lumber was evaluated. The equation allows prediction of estimated air drying times from historic weather records of temperature and relative humidity at any desired location.
Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan
2013-01-01
The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…
Multiple Regression: A Leisurely Primer.
ERIC Educational Resources Information Center
Daniel, Larry G.; Onwuegbuzie, Anthony J.
Multiple regression is a useful statistical technique when the researcher is considering situations in which variables of interest are theorized to be multiply caused. It may also be useful in those situations in which the researchers is interested in studies of predictability of phenomena of interest. This paper provides an introduction to…
Using Monte Carlo Techniques to Demonstrate the Meaning and Implications of Multicollinearity
ERIC Educational Resources Information Center
Vaughan, Timothy S.; Berry, Kelly E.
2005-01-01
This article presents an in-class Monte Carlo demonstration, designed to demonstrate to students the implications of multicollinearity in a multiple regression study. In the demonstration, students already familiar with multiple regression concepts are presented with a scenario in which the "true" relationship between the response and…
ERIC Educational Resources Information Center
Bates, Reid A.; Holton, Elwood F., III; Burnett, Michael F.
1999-01-01
A case study of learning transfer demonstrates the possible effect of influential observation on linear regression analysis. A diagnostic method that tests for violation of assumptions, multicollinearity, and individual and multiple influential observations helps determine which observation to delete to eliminate bias. (SK)
Sloas, Stacey B; Keith, Becky; Whitehead, Malcolm T
2013-01-01
This study investigated a pretest strategy that identified physical therapist assistant (PTA) students who were at risk of failure on the National Physical Therapy Examination (NPTE). Program assessment data from five cohorts of PTA students (2005-2009) were used to develop a stepwise multiple regression formula that predicted first-time NPTE licensure scores. Data used included the Nelson-Denny Reading Test, grades from eight core courses, grade point average upon admission to the program, and scores from three mock NPTE exams given during the program. Pearson correlation coefficients were calculated between each of the 15 variables and NPTE scores. Stepwise multiple regression analysis was performed using data collected at the ends of the first, second, and third (final) semesters of the program. Data from the class of 2010 were then used to validate the formula. The end-of-program formula accounted for the greatest variance (57%) in predicted scores. Those students scoring below a predicted scaled score of 620 were identified to be at risk of failure of the licensure exam. These students were counseled, and a remedial plan was developed based on regression predictions prior to them sitting for the licensure exam.
Andruszkow, Hagen; Hildebrand, Frank; Lefering, Rolf; Pape, Hans-Christoph; Hoffmann, Reinhard; Schweigkofler, Uwe
2014-10-01
Helicopter emergency medical service (HEMS) has been established in the preclinical treatment of multiple traumatised patients despite an ongoing controversy towards the potential benefit. Celebrating the 20th anniversary of TraumaRegister DGU(®) of the German Trauma Society (DGU) the presented study intended to provide an overview of HEMS rescue in Germany over the last 10 years analysing the potential beneficial impact of a nationwide helicopter rescue in multiple traumatised patients. We analysed TraumaRegister DGU(®) including multiple traumatised patients (ISS ≥ 16) between 2002 and 2012. In-hospital mortality was defined as main outcome. An adjusted, multivariate regression with 13 confounders was performed to evaluate the potential survival benefit. 42,788 patients were included in the present study. 14,275 (33.4%) patients were rescued by HEMS and 28,513 (66.6%) by GEMS. Overall, 66.8% (n=28,569) patients were transported to a level I trauma centre and 28.2% (n=12,052) to a level II trauma centre. Patients rescued by HEMS sustained a higher injury severity compared to GEMS (ISS HEMS: 29.5 ± 12.6 vs. 27.5 ± 11.8). Helicopter rescue teams performed more on-scene interventions, and mission times were increased in HEMS rescue (HEMS: 77.2 ± 28.7 min. vs. GEMS: 60.9 ± 26.9 min.). Linear regression analysis revealed that the frequency of HEMS rescue has decreased significantly between 2002 and 2012. In case of transportation to level I trauma centres a decrease of 1.7% per year was noted (p<0.001) while a decline of 1.6% per year (p<0.001) was measured for level II trauma centre admissions. According to multivariate logistic regression HEMS was proven a positive independent survival predictor between 2002 and 2012 (OR 0.863; 95%-CI 0.800-0.930; Nagelkerkes-R(2) 0.539) with only little differences between each year. This study was able to prove an independent survival benefit of HEMS in multiple traumatised patients during the last 10 years. Despite this fact, a constant decline of HEMS rescue missions was found in multiple trauma patients due to unknown reasons. We concluded that HEMS should be used more often in case of trauma in order to guarantee the proven benefit for multiple traumatised patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multiple Sclerosis and Catastrophic Health Expenditure in Iran.
Juyani, Yaser; Hamedi, Dorsa; Hosseini Jebeli, Seyede Sedighe; Qasham, Maryam
2016-09-01
There are many disabling medical conditions which can result in catastrophic health expenditure. Multiple Sclerosis is one of the most costly medical conditions through the world which encounter families to the catastrophic health expenditures. This study aims to investigate on what extent Multiple sclerosis patients face catastrophic costs. This study was carried out in Ahvaz, Iran (2014). The study population included households that at least one of their members suffers from MS. To analyze data, Logit regression model was employed by using the default software STATA12. 3.37% of families were encountered with catastrophic costs. Important variables including brand of drug, housing, income and health insurance were significantly correlated with catastrophic expenditure. This study suggests that although a small proportion of MS patients met the catastrophic health expenditure, mechanisms that pool risk and cost (e.g. health insurance) are required to protect them and improve financial and access equity in health care.
Parental education predicts change in intelligence quotient after childhood epilepsy surgery.
Meekes, Joost; van Schooneveld, Monique M J; Braams, Olga B; Jennekens-Schinkel, Aag; van Rijen, Peter C; Hendriks, Marc P H; Braun, Kees P J; van Nieuwenhuizen, Onno
2015-04-01
To know whether change in the intelligence quotient (IQ) of children who undergo epilepsy surgery is associated with the educational level of their parents. Retrospective analysis of data obtained from a cohort of children who underwent epilepsy surgery between January 1996 and September 2010. We performed simple and multiple regression analyses to identify predictors associated with IQ change after surgery. In addition to parental education, six variables previously demonstrated to be associated with IQ change after surgery were included as predictors: age at surgery, duration of epilepsy, etiology, presurgical IQ, reduction of antiepileptic drugs, and seizure freedom. We used delta IQ (IQ 2 years after surgery minus IQ shortly before surgery) as the primary outcome variable, but also performed analyses with pre- and postsurgical IQ as outcome variables to support our findings. To validate the results we performed simple regression analysis with parental education as the predictor in specific subgroups. The sample for regression analysis included 118 children (60 male; median age at surgery 9.73 years). Parental education was significantly associated with delta IQ in simple regression analysis (p = 0.004), and also contributed significantly to postsurgical IQ in multiple regression analysis (p = 0.008). Additional analyses demonstrated that parental education made a unique contribution to prediction of delta IQ, that is, it could not be replaced by the illness-related variables. Subgroup analyses confirmed the association of parental education with IQ change after surgery for most groups. Children whose parents had higher education demonstrate on average a greater increase in IQ after surgery and a higher postsurgical--but not presurgical--IQ than children whose parents completed at most lower secondary education. Parental education--and perhaps other environmental variables--should be considered in the prognosis of cognitive function after childhood epilepsy surgery. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Kontic, Dean; Zenic, Natasa; Uljevic, Ognjen; Sekulic, Damir; Lesnik, Blaz
2017-06-01
Swimming capacities are hypothesized to be important determinants of water polo performance but there is an evident lack of studies examining different swimming capacities in relation to specific offensive and defensive performance variables in this sport. The aim of this study was to determine the relationship between five swimming capacities and six performance determinants in water polo. The sample comprised 79 high-level youth water polo players (all males, 17-18 years of age). The variables included six performance-related variables (agility in offence and defense, efficacy in offence and defense, polyvalence in offence and defense), and five swimming-capacity tests (water polo sprint test [15 m], swimming sprint test [25 m], short-distance [100 m], aerobic endurance [400 m] and an anaerobic lactate endurance test [4× 50 m]). First, multiple regressions were calculated for one-half of the sample of subjects which were then validated with the remaining half of the sample. The 25-m swim was not included in the regression analyses due to the multicollinearity with other predictors. The originally calculated regression models were validated for defensive agility (R=0.67 and R=0.55 for the original regression calculation and validation subsample, respectively) offensive agility (R=0.59 and R=0.61), and offensive efficacy (R=0.64 and R=0.58). Anaerobic lactate endurance is a significant predictor of offensive and defensive agility, while 15 m sprint significantly contributes to offensive efficacy. Swimming capacities are not found to be related to the polyvalence of the players. The most superior offensive performance can be expected from those players with a high level of anaerobic lactate endurance and advanced sprinting capacity, while anaerobic lactate endurance is recognized as most important quality in defensive duties. Future studies should observe players' polyvalence in relation to (theoretical) knowledge of technical and tactical tasks. Results reinforce the need for the cross-validation of the prediction-models in sport and exercise sciences.
Shen, Minxue; Tan, Hongzhuan; Zhou, Shujin; Retnakaran, Ravi; Smith, Graeme N.; Davidge, Sandra T.; Trasler, Jacquetta; Walker, Mark C.; Wen, Shi Wu
2016-01-01
Background It has been reported that higher folate intake from food and supplementation is associated with decreased blood pressure (BP). The association between serum folate concentration and BP has been examined in few studies. We aim to examine the association between serum folate and BP levels in a cohort of young Chinese women. Methods We used the baseline data from a pre-conception cohort of women of childbearing age in Liuyang, China, for this study. Demographic data were collected by structured interview. Serum folate concentration was measured by immunoassay, and homocysteine, blood glucose, triglyceride and total cholesterol were measured through standardized clinical procedures. Multiple linear regression and principal component regression model were applied in the analysis. Results A total of 1,532 healthy normotensive non-pregnant women were included in the final analysis. The mean concentration of serum folate was 7.5 ± 5.4 nmol/L and 55% of the women presented with folate deficiency (< 6.8 nmol/L). Multiple linear regression and principal component regression showed that serum folate levels were inversely associated with systolic and diastolic BP, after adjusting for demographic, anthropometric, and biochemical factors. Conclusions Serum folate is inversely associated with BP in non-pregnant women of childbearing age with high prevalence of folate deficiency. PMID:27182603
[Associations between dormitory environment/other factors and sleep quality of medical students].
Zheng, Bang; Wang, Kailu; Pan, Ziqi; Li, Man; Pan, Yuting; Liu, Ting; Xu, Dan; Lyu, Jun
2016-03-01
To investigate the sleep quality and related factors among medical students in China, understand the association between dormitory environment and sleep quality, and provide evidence and recommendations for sleep hygiene intervention. A total of 555 undergraduate students were selected from a medical school of an university in Beijing through stratified-cluster random-sampling to conduct a questionnaire survey by using Chinese version of Pittsburgh Sleep Quality Index (PSQI) and self-designed questionnaire. Analyses were performed by using multiple logistic regression model as well as multilevel linear regression model. The prevalence of sleep disorder was 29.1%(149/512), and 39.1%(200/512) of the students reported that the sleep quality was influenced by dormitory environment. PSQI score was negatively correlated with self-reported rating of dormitory environment (γs=-0.310, P<0.001). Logistic regression analysis showed the related factors of sleep disorder included grade, sleep regularity, self-rated health status, pressures of school work and employment, as well as dormitory environment. RESULTS of multilevel regression analysis also indicated that perception on dormitory environment (individual level) was associated with sleep quality with the dormitory level random effects under control (b=-0.619, P<0.001). The prevalence of sleep disorder was high in medical students, which was associated with multiple factors. Dormitory environment should be taken into consideration when the interventions are taken to improve the sleep quality of students.
Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.
2014-01-01
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574
Okello, James; Nakimuli-Mpungu, Etheldreda; Musisi, Seggane; Broekaert, Eric; Derluyn, Ilse
2013-11-01
The relationship between war-related trauma exposure, depressive symptoms and multiple risk behaviors among adolescents is less clear in sub-Saharan Africa. We analyzed data collected from a sample of school-going adolescents four years postwar. Participants completed interviews assessing various risk behaviors defined by the Youth Self Report (YSR) and a sexual risk behavior survey, and were screened for post-traumatic stress, anxiety and depression symptoms based on the Impact of Events Scale Revised (IESR) and Hopkins Symptom Checklist for Adolescents (HSCL-37A) respectively. Multivariate logistic regression was used to assess factors independently associated with multiple risk behaviors. The logistic regression model of Baron and Kenny (1986) was used to evaluate the mediating role of depression in the relationship between stressful war events and multiple risk behaviors. Of 551 participants, 139 (25%) reported multiple (three or more) risk behaviors in the past year. In the multivariate analyses, depression symptoms remained uniquely associated with multiple risk behavior after adjusting for potential confounders including socio-demographic characteristics, war-related trauma exposure variables, anxiety and post-traumatic stress symptoms. In mediation analysis, depression symptoms mediated the associations between stressful war events and multiple risk behaviors. The psychometric properties of the questionnaires used in this study are not well established in war affected African samples thus ethno cultural variation may decrease the validity of our measures. Adolescents with depression may be at a greater risk of increased engagement in multiple risk behaviors. Culturally sensitive and integrated interventions to treat and prevent depression among adolescents in post-conflict settings are urgently needed. © 2013 Elsevier B.V. All rights reserved.
Quality of search strategies reported in systematic reviews published in stereotactic radiosurgery.
Faggion, Clovis M; Wu, Yun-Chun; Tu, Yu-Kang; Wasiak, Jason
2016-06-01
Systematic reviews require comprehensive literature search strategies to avoid publication bias. This study aimed to assess and evaluate the reporting quality of search strategies within systematic reviews published in the field of stereotactic radiosurgery (SRS). Three electronic databases (Ovid MEDLINE(®), Ovid EMBASE(®) and the Cochrane Library) were searched to identify systematic reviews addressing SRS interventions, with the last search performed in October 2014. Manual searches of the reference lists of included systematic reviews were conducted. The search strategies of the included systematic reviews were assessed using a standardized nine-question form based on the Cochrane Collaboration guidelines and Assessment of Multiple Systematic Reviews checklist. Multiple linear regression analyses were performed to identify the important predictors of search quality. A total of 85 systematic reviews were included. The median quality score of search strategies was 2 (interquartile range = 2). Whilst 89% of systematic reviews reported the use of search terms, only 14% of systematic reviews reported searching the grey literature. Multiple linear regression analyses identified publication year (continuous variable), meta-analysis performance and journal impact factor (continuous variable) as predictors of higher mean quality scores. This study identified the urgent need to improve the quality of search strategies within systematic reviews published in the field of SRS. This study is the first to address how authors performed searches to select clinical studies for inclusion in their systematic reviews. Comprehensive and well-implemented search strategies are pivotal to reduce the chance of publication bias and consequently generate more reliable systematic review findings.
Pareto fronts for multiobjective optimization design on materials data
NASA Astrophysics Data System (ADS)
Gopakumar, Abhijith; Balachandran, Prasanna; Gubernatis, James E.; Lookman, Turab
Optimizing multiple properties simultaneously is vital in materials design. Here we apply infor- mation driven, statistical optimization strategies blended with machine learning methods, to address multi-objective optimization tasks on materials data. These strategies aim to find the Pareto front consisting of non-dominated data points from a set of candidate compounds with known character- istics. The objective is to find the pareto front in as few additional measurements or calculations as possible. We show how exploration of the data space to find the front is achieved by using uncer- tainties in predictions from regression models. We test our proposed design strategies on multiple, independent data sets including those from computations as well as experiments. These include data sets for Max phases, piezoelectrics and multicomponent alloys.
Kono, Kenichi; Nishida, Yusuke; Moriyama, Yoshihumi; Taoka, Masahiro; Sato, Takashi
2015-06-01
The assessment of nutritional states using fat free mass (FFM) measured with near-infrared spectroscopy (NIRS) is clinically useful. This measurement should incorporate the patient's post-dialysis weight ("dry weight"), in order to exclude the effects of any change in water mass. We therefore used NIRS to investigate the regression, independent variables, and absolute reliability of FFM in dry weight. The study included 47 outpatients from the hemodialysis unit. Body weight was measured before dialysis, and FFM was measured using NIRS before and after dialysis treatment. Multiple regression analysis was used to estimate the FFM in dry weight as the dependent variable. The measured FFM before dialysis treatment (Mw-FFM), and the difference between measured and dry weight (Mw-Dw) were independent variables. We performed Bland-Altman analysis to detect errors between the statistically estimated FFM and the measured FFM after dialysis treatment. The multiple regression equation to estimate the FFM in dry weight was: Dw-FFM = 0.038 + (0.984 × Mw-FFM) + (-0.571 × [Mw-Dw]); R(2) = 0.99). There was no systematic bias between the estimated and the measured values of FFM in dry weight. Using NIRS, FFM in dry weight can be calculated by an equation including FFM in measured weight and the difference between the measured weight and the dry weight. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.
Afantitis, Antreas; Melagraki, Georgia; Sarimveis, Haralambos; Koutentis, Panayiotis A; Markopoulos, John; Igglessi-Markopoulou, Olga
2006-08-01
A quantitative-structure activity relationship was obtained by applying Multiple Linear Regression Analysis to a series of 80 1-[2-hydroxyethoxy-methyl]-6-(phenylthio) thymine (HEPT) derivatives with significant anti-HIV activity. For the selection of the best among 37 different descriptors, the Elimination Selection Stepwise Regression Method (ES-SWR) was utilized. The resulting QSAR model (R (2) (CV) = 0.8160; S (PRESS) = 0.5680) proved to be very accurate both in training and predictive stages.
Inoue, Akiomi; Kawakami, Norito; Eguchi, Hisashi; Miyaki, Koichi; Tsutsumi, Akizumi
2015-12-01
Growing evidence has shown that lack of organizational justice (i.e., procedural justice and interactional justice) is associated with coronary heart disease (CHD) while biological mechanisms underlying this association have not yet been fully clarified. The purpose of the present study was to investigate the cross-sectional association of organizational justice with physiological CHD risk factors (i.e., blood pressure, high-density lipoprotein [HDL] cholesterol, low-density lipoprotein [LDL] cholesterol, and triglyceride) in Japanese employees. Overall, 3598 male and 901 female employees from two manufacturing companies in Japan completed self-administered questionnaires measuring organizational justice, demographic characteristics, and lifestyle factors. They completed health checkup, which included blood pressure and serum lipid measurements. Multiple logistic regression analyses and trend tests were conducted. Among male employees, multiple logistic regression analyses and trend tests showed significant associations of low procedural justice and low interactional justice with high triglyceride (defined as 150 mg/dL or greater) after adjusting for demographic characteristics and lifestyle factors. Among female employees, trend tests showed significant dose-response relationship between low interactional justice and high LDL cholesterol (defined as 140 mg/dL or greater) while multiple logistic regression analysis showed only marginally significant or insignificant odds ratio of high LDL cholesterol among the low interactional justice group. Neither procedural justice nor interactional justice was associated with blood pressure or HDL cholesterol. Organizational justice may be an important psychosocial factor associated with increased triglyceride at least among Japanese male employees.
NASA Astrophysics Data System (ADS)
Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh
2017-11-01
Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.
Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L
2017-01-01
Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).
Empirical analyses of plant-climate relationships for the western United States
Gerald E. Rehfeldt; Nicholas L. Crookston; Marcus V. Warwell; Jeffrey S. Evans
2006-01-01
The Random Forests multiple-regression tree was used to model climate profiles of 25 biotic communities of the western United States and nine of their constituent species. Analyses of the communities were based on a gridded sample of ca. 140,000 points, while those for the species used presence-absence data from ca. 120,000 locations. Independent variables included 35...
Nie, Z Q; Ou, Y Q; Zhuang, J; Qu, Y J; Mai, J Z; Chen, J M; Liu, X Q
2016-05-01
Conditional logistic regression analysis and unconditional logistic regression analysis are commonly used in case control study, but Cox proportional hazard model is often used in survival data analysis. Most literature only refer to main effect model, however, generalized linear model differs from general linear model, and the interaction was composed of multiplicative interaction and additive interaction. The former is only statistical significant, but the latter has biological significance. In this paper, macros was written by using SAS 9.4 and the contrast ratio, attributable proportion due to interaction and synergy index were calculated while calculating the items of logistic and Cox regression interactions, and the confidence intervals of Wald, delta and profile likelihood were used to evaluate additive interaction for the reference in big data analysis in clinical epidemiology and in analysis of genetic multiplicative and additive interactions.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Multiple regression for physiological data analysis: the problem of multicollinearity.
Slinker, B K; Glantz, S A
1985-07-01
Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.
[Effect of social desirability on dietary intake estimated from a food questionnaire].
Barros, Renata; Moreira, Pedro; Oliveira, Bruno
2005-01-01
Self-report of dietary intake could be biased by social thus affecting risk estimates in epidemiological studies. The objective of study was to assess the effect of social desirability on dietary intake from a food frequency questionnaire (FFQ). A convenience sample of 483 Portuguese university students was recruited. Subjects were invited to complete a two-part self-administered questionnaire: the first part included the Marlowe-Crowne Social Desirability Scale (M-CSDS), a physical activity questionnaire and self-reported height and weight; the second part, included a semi-quantitative FFQ validated for Portuguese adults, that should be returned after fulfillment. All subjects completed the first part of the questionnaire and 40.4% returned the FFQ fairly completed. In multiple regression analysis, after adjustment for energy and confounders, social desirability produced a significant positive effect in the estimates of dietary fibre, vitamin C, vitamin E, magnesium and potassium, in both genders. In multiple regression, after adjustment for energy and confounders, social desirability had a significant positive effect in the estimates of vegetable consumption, for both genders, and a negative effect in white bread and beer, for women. Social desirability affected nutritional and food intake estimated from a food frequency questionnaire.
Nagai, Takashi; Lovalekar, Mita; Wohleber, Meleesa F; Perlsweig, Katherine A; Wirt, Michael D; Beals, Kim
2017-11-01
Musculoskeletal injuries have negatively impacted tactical readiness. The identification of prospective and modifiable risk factors of preventable musculoskeletal injuries can guide specific injury prevention strategies for Soldiers and health care providers. To analyze physiological and neuromuscular characteristics as predictors of preventable musculoskeletal injuries. Prospective-cohort study. A total of 491 Soldiers were enrolled and participated in the baseline laboratory testing, including body composition, aerobic capacity, anaerobic power/capacity, muscular strength, flexibility, static balance, and landing biomechanics. After reviewing their medical charts, 275 male Soldiers who met the criteria were divided into two groups: with injuries (INJ) and no injuries (NOI). Simple and multiple logistic regression analyses were used to calculate the odds ratio (OR) and significant predictors of musculoskeletal injuries (p<0.05). The final multiple logistic regression model included the static balance with eyes-closed and peak anaerobic power as predictors of future injuries (p<0.001). The current results highlighted the importance of anaerobic power/capacity and static balance. High intensity training and balance exercise should be incorporated in their physical training as countermeasures. Copyright © 2017 Sports Medicine Australia. All rights reserved.
ERIC Educational Resources Information Center
Li, Spencer D.
2011-01-01
Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…
A Simple and Convenient Method of Multiple Linear Regression to Calculate Iodine Molecular Constants
ERIC Educational Resources Information Center
Cooper, Paul D.
2010-01-01
A new procedure using a student-friendly least-squares multiple linear-regression technique utilizing a function within Microsoft Excel is described that enables students to calculate molecular constants from the vibronic spectrum of iodine. This method is advantageous pedagogically as it calculates molecular constants for ground and excited…
An Exploratory Study of Face-to-Face and Cyberbullying in Sixth Grade Students
ERIC Educational Resources Information Center
Accordino, Denise B.; Accordino, Michael P.
2011-01-01
In a pilot study, sixth grade students (N = 124) completed a questionnaire assessing students' experience with bullying and cyberbullying, demographic information, quality of parent-child relationship, and ways they have dealt with bullying/cyberbullying in the past. Two multiple regression analyses were conducted. The multiple regression analysis…
ERIC Educational Resources Information Center
Campbell, S. Duke; Greenberg, Barry
The development of a predictive equation capable of explaining a significant percentage of enrollment variability at Florida International University is described. A model utilizing trend analysis and a multiple regression approach to enrollment forecasting was adapted to investigate enrollment dynamics at the university. Four independent…
ERIC Educational Resources Information Center
Fraas, John W.; Newman, Isadore
1996-01-01
In a conjoint-analysis consumer-preference study, researchers must determine whether the product factor estimates, which measure consumer preferences, should be calculated and interpreted for each respondent or collectively. Multiple regression models can determine whether to aggregate data by examining factor-respondent interaction effects. This…
Double Cross-Validation in Multiple Regression: A Method of Estimating the Stability of Results.
ERIC Educational Resources Information Center
Rowell, R. Kevin
In multiple regression analysis, where resulting predictive equation effectiveness is subject to shrinkage, it is especially important to evaluate result replicability. Double cross-validation is an empirical method by which an estimate of invariance or stability can be obtained from research data. A procedure for double cross-validation is…
Patino, Reynaldo; VanLandeghem, Matthew M.; Goodbred, Steven L.; Orsak, Erik; Jenkins, Jill A.; Echols, Kathy R.; Rosen, Michael R.; Torres, Leticia
2015-01-01
Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes.
Patiño, Reynaldo; VanLandeghem, Matthew M; Goodbred, Steven L; Orsak, Erik; Jenkins, Jill A; Echols, Kathy; Rosen, Michael R; Torres, Leticia
2015-08-01
Adult male Common Carp were sampled in 2007/08 over a full reproductive cycle at Lake Mead National Recreation Area. Sites sampled included a stream dominated by treated wastewater effluent, a lake basin receiving the streamflow, an upstream lake basin (reference), and a site below Hoover Dam. Individual body burdens for 252 contaminants were measured, and biological variables assessed included physiological [plasma vitellogenin (VTG), estradiol-17β (E2), 11-ketotestosterone (11KT)] and organ [gonadosomatic index (GSI)] endpoints. Patterns in contaminant composition and biological condition were determined by Principal Component Analysis, and their associations modeled by Principal Component Regression. Three spatially distinct but temporally stable gradients of contaminant distribution were recognized: a contaminant mixture typical of wastewaters (PBDEs, methyl triclosan, galaxolide), PCBs, and DDTs. Two spatiotemporally variable patterns of biological condition were recognized: a primary pattern consisting of reproductive condition variables (11KT, E2, GSI), and a secondary pattern including general condition traits (condition factor, hematocrit, fork length). VTG was low in all fish, indicating low estrogenic activity of water at all sites. Wastewater contaminants associated negatively with GSI, 11KT and E2; PCBs associated negatively with GSI and 11KT; and DDTs associated positively with GSI and 11KT. Regression of GSI on sex steroids revealed a novel, nonlinear association between these variables. Inclusion of sex steroids in the GSI regression on contaminants rendered wastewater contaminants nonsignificant in the model and reduced the influence of PCBs and DDTs. Thus, the influence of contaminants on GSI may have been partially driven by organismal modes-of-action that include changes in sex steroid production. The positive association of DDTs with 11KT and GSI suggests that lifetime, sub-lethal exposures to DDTs have effects on male carp opposite of those reported by studies where exposure concentrations were relatively high. Lastly, this study highlighted advantages of multivariate/multiple regression approaches for exploring associations between complex contaminant mixtures and gradients and reproductive condition in wild fishes. Published by Elsevier Inc.
Parent-reported suicidal behavior and correlates among adolescents in China.
Liu, Xianchen; Sun, Zhenxiao; Yang, Yanyun
2008-01-01
Suicidal risk begins to increase during adolescence and is associated with multiple biological, psychological, social, and cultural factors. This study examined the prevalence and psychosocial factors of parent-reported suicidal behavior in Chinese adolescents. A community sample of 1920 adolescents in China participated in an epidemiological study. Parents completed a structured questionnaire including child suicidal behavior, illness history, mental health problems, family history, parenting, and family environment. Multiple logistic regression was used for data analysis. Overall, 2.4% of the sample talked about suicide in the previous 6 months, 3.2% had deliberately hurt themselves or attempted suicide, and 5.1% had either suicidal talk or self-harm. The rate of suicidal behavior increased as adolescents aged. Multivariate logistic regression indicated that the following factors were significantly associated with elevated risk for suicidal behavior: depressive/anxious symptoms, poor maternal health, family conflict, and physical punishment of parental discipline style. Suicidal behavior was reported by parents. No causal relationships could be made based on cross-sectional data. The prevalence rate of parent-reported suicidal behavior is markedly lower than self-reported rate in previous research. Depressive/anxious symptoms and multiple family environmental factors are associated with suicidal behavior in Chinese adolescents.
Caries risk assessment in schoolchildren - a form based on Cariogram® software
CABRAL, Renata Nunes; HILGERT, Leandro Augusto; FABER, Jorge; LEAL, Soraya Coelho
2014-01-01
Identifying caries risk factors is an important measure which contributes to best understanding of the cariogenic profile of the patient. The Cariogram® software provides this analysis, and protocols simplifying the method were suggested. Objectives The aim of this study was to determine whether a newly developed Caries Risk Assessment (CRA) form based on the Cariogram® software could classify schoolchildren according to their caries risk and to evaluate relationships between caries risk and the variables in the form. Material and Methods 150 schoolchildren aged 5 to 7 years old were included in this survey. Caries prevalence was obtained according to International Caries Detection and Assessment System (ICDAS) II. Information for filling in the form based on Cariogram® was collected clinically and from questionnaires sent to parents. Linear regression and a forward stepwise multiple regression model were applied to correlate the variables included in the form with the caries risk. Results Caries prevalence, in primary dentition, including enamel and dentine carious lesions was 98.6%, and 77.3% when only dentine lesions were considered. Eighty-six percent of the children were classified as at moderate caries risk. The forward stepwise multiple regression model result was significant (R2=0.904; p<0.00001), showing that the most significant factors influencing caries risk were caries experience, oral hygiene, frequency of food consumption, sugar consumption and fluoride sources. Conclusion The use of the form based on the Cariogram® software enabled classification of the schoolchildren at low, moderate and high caries risk. Caries experience, oral hygiene, frequency of food consumption, sugar consumption and fluoride sources are the variables that were shown to be highly correlated with caries risk. PMID:25466473
Ridge: a computer program for calculating ridge regression estimates
Donald E. Hilt; Donald W. Seegrist
1977-01-01
Least-squares coefficients for multiple-regression models may be unstable when the independent variables are highly correlated. Ridge regression is a biased estimation procedure that produces stable estimates of the coefficients. Ridge regression is discussed, and a computer program for calculating the ridge coefficients is presented.
Zhu, Xiang; Stephens, Matthew
2017-01-01
Bayesian methods for large-scale multiple regression provide attractive approaches to the analysis of genome-wide association studies (GWAS). For example, they can estimate heritability of complex traits, allowing for both polygenic and sparse models; and by incorporating external genomic data into the priors, they can increase power and yield new biological insights. However, these methods require access to individual genotypes and phenotypes, which are often not easily available. Here we provide a framework for performing these analyses without individual-level data. Specifically, we introduce a “Regression with Summary Statistics” (RSS) likelihood, which relates the multiple regression coefficients to univariate regression results that are often easily available. The RSS likelihood requires estimates of correlations among covariates (SNPs), which also can be obtained from public databases. We perform Bayesian multiple regression analysis by combining the RSS likelihood with previously proposed prior distributions, sampling posteriors by Markov chain Monte Carlo. In a wide range of simulations RSS performs similarly to analyses using the individual data, both for estimating heritability and detecting associations. We apply RSS to a GWAS of human height that contains 253,288 individuals typed at 1.06 million SNPs, for which analyses of individual-level data are practically impossible. Estimates of heritability (52%) are consistent with, but more precise, than previous results using subsets of these data. We also identify many previously unreported loci that show evidence for association with height in our analyses. Software is available at https://github.com/stephenslab/rss. PMID:29399241
Shin, Sunny H; McDonald, Shelby Elaine; Conley, David
2018-03-01
Adverse childhood experiences (ACEs) have been strongly linked with subsequent substance use. The aim of this study was to investigate how different patterns of ACEs influence substance use in young adulthood. Using a community sample of young individuals (N=336; ages 18-25), we performed latent class analyses (LCA) to identify homogenous groups of young people with similar patterns of ACEs. Exposure to ACEs incorporates 13 childhood adversities including childhood maltreatment, household dysfunction, and community violence. Multiple linear and logistic regression models were used in an effort to examine the associations between ACEs classes and four young adult outcomes such as alcohol-related problems, current tobacco use, drug dependence symptoms, and psychological distress. LCA identified four heterogeneous classes of young people distinguished by different patterns of ACEs exposure: Low ACEs (56%), Household Dysfunction/Community Violence (14%), Emotional ACEs (14%), and High/Multiple ACEs (16%). Multiple regression analyses found that compared to those in the Low ACEs class, young adults in the High/Multiple ACEs class reported more alcohol-related problems, current tobacco use, and psychological symptoms, controlling for sociodemographic characteristics and common risk factors for substance use such as peer substance use. Our findings confirm that for many young people, ACEs occur as multiple rather than single experiences. The results of this research suggest that exposure to poly-victimization during childhood is particularly related to substance use during young adulthood. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang
2017-04-01
This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.
NASA Astrophysics Data System (ADS)
Kiss, I.; Cioată, V. G.; Ratiu, S. A.; Rackov, M.; Penčić, M.
2018-01-01
Multivariate research is important in areas of cast-iron brake shoes manufacturing, because many variables interact with each other simultaneously. This article focuses on expressing the multiple linear regression model related to the hardness assurance by the chemical composition of the phosphorous cast irons destined to the brake shoes, having in view that the regression coefficients will illustrate the unrelated contributions of each independent variable towards predicting the dependent variable. In order to settle the multiple correlations between the hardness of the cast-iron brake shoes, and their chemical compositions several regression equations has been proposed. Is searched a mathematical solution which can determine the optimum chemical composition for the hardness desirable values. Starting from the above-mentioned affirmations two new statistical experiments are effectuated related to the values of Phosphorus [P], Manganese [Mn] and Silicon [Si]. Therefore, the regression equations, which describe the mathematical dependency between the above-mentioned elements and the hardness, are determined. As result, several correlation charts will be revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clegg, Samuel M; Barefield, James E; Wiens, Roger C
2008-01-01
The ChemCam instrument on the Mars Science Laboratory (MSL) will include a laser-induced breakdown spectrometer (LIBS) to quantify major and minor elemental compositions. The traditional analytical chemistry approach to calibration curves for these data regresses a single diagnostic peak area against concentration for each element. This approach contrasts with a new multivariate method in which elemental concentrations are predicted by step-wise multiple regression analysis based on areas of a specific set of diagnostic peaks for each element. The method is tested on LIBS data from igneous and metamorphosed rocks. Between 4 and 13 partial regression coefficients are needed to describemore » each elemental abundance accurately (i.e., with a regression line of R{sup 2} > 0.9995 for the relationship between predicted and measured elemental concentration) for all major and minor elements studied. Validation plots suggest that the method is limited at present by the small data set, and will work best for prediction of concentration when a wide variety of compositions and rock types has been analyzed.« less
Assessing risk factors for periodontitis using regression
NASA Astrophysics Data System (ADS)
Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa
2013-10-01
Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.
SOCIAL STABILITY AND HIV RISK BEHAVIOR: EVALUATING THE ROLE OF ACCUMULATED VULNERABILITY
German, Danielle; Latkin, Carl A.
2011-01-01
This study evaluated a cumulative and syndromic relationship among commonly co-occurring vulnerabilites (homelessness, incarceration, low-income, residential transition) in association with HIV-related risk behaviors among 635 low-income women in Baltimore. Analysis included descriptive statistics, logistic regression, latent class analysis and latent class regression. Both methods of assessing multidimensional instability showed significant associations with risk indicators. Risk of multiple partners, sex exchange, and drug use decreased significantly with each additional domain. Higher stability class membership (77%) was associated with decreased likelihood of multiple partners, exchange partners, recent drug use, and recent STI. Multidimensional social vulnerabilities were cumulatively and synergistically linked to HIV risk behavior. Independent instability measures may miss important contextual determinants of risk. Social stability offers a useful framework to understand the synergy of social vulnerabilities that shape sexual risk behavior. Social policies and programs aiming to enhance housing and overall social stability are likely to be beneficial for HIV prevention. PMID:21259043
Estimating carcass fat and protein in northern pintails during the nonbreeding season
Miller, M.R.
1989-01-01
I used northern pintails (Anas acuta) collected from August through March 1979-82 in the Sacramento Valley, California to derive equations to predict ether-extracted carcass fat, carcass protein, and skeletal lean dry weight. Ether-extracted carcass fat was best predicted by total fat depot weight (wet skin, abdominal fat, and intestinal fat) (r2 = 0.94) and estimates based on carcass water content (r2 = 0.93-0.98). Measured carcass protein was best predicted by a multiple regression including total protein depot weight (breast muscles, leg muscles, and gizzard) and tarsus length (R2 = 0.79). I predicted skeletal lean dry weight by a multiple regression incorporating culmen, tarsus, and wing length (R2 = 0.77). Predicted carcass fat agreed well with measured carcass fat in an independent data set of 30 pintails using total fat depot (r2 = 0.92-0.96) and carcass water (r2 = 0.97-0.99), but predicted carcass protein agreed less well with measured protein.
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Robinson-Cimpian, Joseph P.
2014-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
ERIC Educational Resources Information Center
Hafner, Lawrence E.
A study developed a multiple regression prediction equation for each of six selected achievement variables in a popular standardized test of achievement. Subjects, 42 fourth-grade pupils randomly selected across several classes in a large elementary school in a north Florida city, were administered several standardized tests to determine predictor…
ERIC Educational Resources Information Center
Muller, Veronica; Brooks, Jessica; Tu, Wei-Mo; Moser, Erin; Lo, Chu-Ling; Chan, Fong
2015-01-01
Purpose: The main objective of this study was to determine the extent to which physical and cognitive-affective factors are associated with fibromyalgia (FM) fatigue. Method: A quantitative descriptive design using correlation techniques and multiple regression analysis. The participants consisted of 302 members of the National Fibromyalgia &…
ERIC Educational Resources Information Center
Choi, Kilchan
2011-01-01
This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…
ERIC Educational Resources Information Center
Richter, Tobias
2006-01-01
Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…
Some Applied Research Concerns Using Multiple Linear Regression Analysis.
ERIC Educational Resources Information Center
Newman, Isadore; Fraas, John W.
The intention of this paper is to provide an overall reference on how a researcher can apply multiple linear regression in order to utilize the advantages that it has to offer. The advantages and some concerns expressed about the technique are examined. A number of practical ways by which researchers can deal with such concerns as…
A Spreadsheet Tool for Learning the Multiple Regression F-Test, T-Tests, and Multicollinearity
ERIC Educational Resources Information Center
Martin, David
2008-01-01
This note presents a spreadsheet tool that allows teachers the opportunity to guide students towards answering on their own questions related to the multiple regression F-test, the t-tests, and multicollinearity. The note demonstrates approaches for using the spreadsheet that might be appropriate for three different levels of statistics classes,…
ERIC Educational Resources Information Center
Anderson, Joan L.
2006-01-01
Data from graduate student applications at a large Western university were used to determine which factors were the best predictors of success in graduate school, as defined by cumulative graduate grade point average. Two statistical models were employed and compared: artificial neural networking and simultaneous multiple regression. Both models…
ERIC Educational Resources Information Center
Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.
2006-01-01
Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…
Regression Models for the Analysis of Longitudinal Gaussian Data from Multiple Sources
O’Brien, Liam M.; Fitzmaurice, Garrett M.
2006-01-01
We present a regression model for the joint analysis of longitudinal multiple source Gaussian data. Longitudinal multiple source data arise when repeated measurements are taken from two or more sources, and each source provides a measure of the same underlying variable and on the same scale. This type of data generally produces a relatively large number of observations per subject; thus estimation of an unstructured covariance matrix often may not be possible. We consider two methods by which parsimonious models for the covariance can be obtained for longitudinal multiple source data. The methods are illustrated with an example of multiple informant data arising from a longitudinal interventional trial in psychiatry. PMID:15726666
Moderation analysis using a two-level regression model.
Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott
2014-10-01
Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.
GLOBALLY ADAPTIVE QUANTILE REGRESSION WITH ULTRA-HIGH DIMENSIONAL DATA
Zheng, Qi; Peng, Limin; He, Xuming
2015-01-01
Quantile regression has become a valuable tool to analyze heterogeneous covaraite-response associations that are often encountered in practice. The development of quantile regression methodology for high dimensional covariates primarily focuses on examination of model sparsity at a single or multiple quantile levels, which are typically prespecified ad hoc by the users. The resulting models may be sensitive to the specific choices of the quantile levels, leading to difficulties in interpretation and erosion of confidence in the results. In this article, we propose a new penalization framework for quantile regression in the high dimensional setting. We employ adaptive L1 penalties, and more importantly, propose a uniform selector of the tuning parameter for a set of quantile levels to avoid some of the potential problems with model selection at individual quantile levels. Our proposed approach achieves consistent shrinkage of regression quantile estimates across a continuous range of quantiles levels, enhancing the flexibility and robustness of the existing penalized quantile regression methods. Our theoretical results include the oracle rate of uniform convergence and weak convergence of the parameter estimators. We also use numerical studies to confirm our theoretical findings and illustrate the practical utility of our proposal. PMID:26604424
Interpretation of commonly used statistical regression models.
Kasza, Jessica; Wolfe, Rory
2014-01-01
A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.
Applied Multiple Linear Regression: A General Research Strategy
ERIC Educational Resources Information Center
Smith, Brandon B.
1969-01-01
Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)
Work ability in vibration-exposed workers.
Gerhardsson, L; Hagberg, M
2014-12-01
Hand-arm vibration exposure may cause hand-arm vibration syndrome (HAVS) including sensorineural disturbances. To investigate which factors had the strongest impact on work ability in vibration-exposed workers. A cross-sectional study in which vibration-exposed workers referred to a department of occupational and environmental medicine were compared with a randomized sample of unexposed subjects from the general population of the city of Gothenburg. All participants underwent a structured interview, answered several questionnaires and had a physical examination including measurements of hand and finger muscle strength and vibrotactile and thermal perception thresholds. The vibration-exposed group (47 subjects) showed significantly reduced sensitivity to cold and warmth in digit 2 bilaterally (P < 0.01) and in digit 5 in the left hand (P < 0.05) and to warmth in digit 5 in the right hand (P < 0.01), compared with the 18 referents. Similarly, tactilometry showed significantly raised vibration perception thresholds among the workers (P < 0.05). A strong relationship was found for the following multiple regression model: estimated work ability = 11.4 - 0.1 × age - 2.3 × current stress level - 2.5 × current pain in hands/arms (multiple r = 0.68; P < 0.001). Vibration-exposed workers showed raised vibrotactile and thermal perception thresholds, compared with unexposed referents. Multiple regression analysis indicated that stress disorders and muscle pain in hands/arms must also be considered when evaluating work ability among subjects with HAVS. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine.
Determinants of preterm birth rates in Canada from 1981 through 1983 and from 1992 through 1994.
Joseph, K S; Kramer, M S; Marcoux, S; Ohlsson, A; Wen, S W; Allen, A; Platt, R
1998-11-12
The rates of preterm birth have increased in many countries, including Canada, over the past 20 years. However, the factors underlying the increase are poorly understood. We used data from the Statistics Canada live-birth and stillbirth data bases to determine the effects of changes in the frequency of multiple births, registration of births occurring very early in gestation, patterns of obstetrical intervention, and use of ultrasonographic dating of gestational age on the rates of preterm birth in Canada from 1981 through 1983 and from 1992 through 1994. All births in 9 of the 12 provinces and territories of Canada were included. Logistic-regression analysis and Poisson regression analysis were used to estimate changes between the two three-year periods, after adjustment for the above-mentioned determinants of the likelihood of preterm births. Preterm births increased from 6.3 percent of live births in 1981 through 1983 to 6.8 percent in 1992 through 1994, a relative increase of 9 percent (95 percent confidence interval, 7 to 10 percent). Among singleton births, preterm births increased by 5 percent (95 percent confidence interval, 3 to 6 percent). Multiple births increased from 1.9 percent to 2.1 percent of all live births; the rates of preterm birth among live births resulting from multiple gestations increased by 25 percent (95 percent confidence interval, 21 to 28 percent). Adjustment for the determinants of the likelihood of preterm birth reduced the increase in the rate of preterm birth to 3 percent among all live births and 1 percent among singleton births. The recent increase in preterm births in Canada is largely attributable to changes in the frequency of multiple births, obstetrical intervention, and the use of ultrasound-based estimates of gestational age.
Bankfull characteristics of Ohio streams and their relation to peak streamflows
Sherwood, James M.; Huitger, Carrie A.
2005-01-01
Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and statistical techniques. The logarithms of the annual peak discharges for the 40 gaged study sites were fit by a Pearson Type III frequency distribution to develop flood-peak discharges associated with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The peak-frequency data were related to geomorphic, basin, and climatic variables by multiple-regression analysis. Simple-regression equations were developed to estimate 2-, 5-, 10-, 25-, 50-, and 100-year flood-peak discharges of rural, unregulated streams in Ohio from bankfull channel cross-sectional area. The average standard errors of prediction are 31.6, 32.6, 35.9, 41.5, 46.2, and 51.2 percent, respectively. The study and methods developed are intended to improve understanding of the relations between geomorphic, basin, and flood characteristics of streams in Ohio and to aid in the design of hydraulic structures, such as culverts and bridges, where stability of the stream and structure is an important element of the design criteria. The study was done in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.
Results of the 2005 AORN salary survey--trends for perioperative nursing.
Bacon, Donald
2005-12-01
AORN conducted its annual compensation survey for perioperative nurses in August 2005. A multiple regression model was used to examine how a variety of variables, including job title, education level, certification, experience, and geographic region, affect nursing compensation. This survey also examines the effect of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differential) on average base compensation rates.
Results of the 2006 AORN salary survey: trends for perioperative nursing.
Bacon, Donald
2006-12-01
AORN CONDUCTED ITS ANNUAL compensation survey for perioperative nurses in August 2006. MULTIPLE REGRESSION MODEL was used to examine how a variety of variables, including job title, education level, certification, experience, and geographic region, affect nursing compensation. THIS SURVEY ALSO EXAMINES the effect of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differential) on average base compensation rates.
ERIC Educational Resources Information Center
Jerue, Gary A.
2013-01-01
There are a limited number of studies that examine the predictors of academic success in charter schools (Lawton, 2009). This study utilized a multiple regression analysis to identify the best predictors of academic success in language arts literacy (LAL) and math on state assessments in New Jersey charter schools. This study included four student…
Marcus V. Warwell; Gerald E. Rehfeldt; Nicholas L. Crookston
2006-01-01
The Random Forests multiple regression tree was used to develop an empirically-based bioclimate model for the distribution of Pinus albicaulis (whitebark pine) in western North America, latitudes 31° to 51° N and longitudes 102° to 125° W. Independent variables included 35 simple expressions of temperature and precipitation and their interactions....
The Influence of the Student Mobility Rate on the Graduation Rate in the State of New Jersey
ERIC Educational Resources Information Center
Ross, Lavetta S.
2016-01-01
This study examined the influence of the student mobility rate on the high school graduation rate of schools in the state of New Jersey. Variables found to have an influence on the graduation rate in the extant literature were evaluated and reported. The analysis included multiple and hierarchical regression models for school variables (i.e.,…
Regression: The Apple Does Not Fall Far From the Tree.
Vetter, Thomas R; Schober, Patrick
2018-05-15
Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Schomas, David A.; Salama, Joseph K.
Purpose: To test the hypothesis that the volume of pelvic bone marrow (PBM) receiving 10 and 20 Gy or more (PBM-V{sub 10} and PBM-V{sub 20}) is associated with acute hematologic toxicity (HT) in anal cancer patients treated with concurrent chemoradiotherapy. Methods and Materials: We analyzed 48 consecutive anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiation therapy. The median radiation dose to gross tumor and regional lymph nodes was 50.4 and 45 Gy, respectively. Pelvic bone marrow was defined as the region extending from the iliac crests to the ischial tuberosities, including the os coxae, lumbosacral spine, and proximalmore » femora. Endpoints included the white blood cell count (WBC), absolute neutrophil count (ANC), hemoglobin, and platelet count nadirs. Regression models with multiple independent predictors were used to test associations between dosimetric parameters and HT. Results: Twenty patients (42%) had Stage T3-4 disease; 15 patients (31%) were node positive. Overall, 27 (56%), 24 (50%), 4 (8%), and 13 (27%) experienced acute Grade 3-4 leukopenia, neutropenia, anemia, and thrombocytopenia, respectively. On multiple regression analysis, increased PBM-V{sub 5}, V{sub 10}, V{sub 15}, and V{sub 20} were significantly associated with decreased WBC and ANC nadirs, as were female gender, decreased body mass index, and increased lumbosacral bone marrow V{sub 10}, V{sub 15}, and V{sub 20} (p < 0.05 for each association). Lymph node positivity was significantly associated with a decreased WBC nadir on multiple regression analysis (p < 0.05). Conclusion: This analysis supports the hypothesis that increased low-dose radiation to PBM is associated with acute HT during chemoradiotherapy for anal cancer. Techniques to limit bone marrow irradiation may reduce HT in anal cancer patients.« less
do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro
2015-01-01
Abstract Objective: To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. Methods: This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95%, was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α <5%. Results: From 226 women included, 200 (88.5%) were 20-44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. Conclusions: This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. PMID:26100593
Spencer, Monique E; Jain, Alka; Matteini, Amy; Beamer, Brock A; Wang, Nae-Yuh; Leng, Sean X; Punjabi, Naresh M; Walston, Jeremy D; Fedarko, Neal S
2010-08-01
Neopterin, a GTP metabolite expressed by macrophages, is a marker of immune activation. We hypothesize that levels of this serum marker alter with donor age, reflecting increased chronic immune activation in normal aging. In addition to age, we assessed gender, race, body mass index (BMI), and percentage of body fat (%fat) as potential covariates. Serum was obtained from 426 healthy participants whose age ranged from 18 to 87 years. Anthropometric measures included %fat and BMI. Neopterin concentrations were measured by competitive ELISA. The paired associations between neopterin and age, BMI, or %fat were analyzed by Spearman's correlation or by linear regression of log-transformed neopterin, whereas overall associations were modeled by multiple regression of log-transformed neopterin as a function of age, gender, race, BMI, %fat, and interaction terms. Across all participants, neopterin exhibited a positive association with age, BMI, and %fat. Multiple regression modeling of neopterin in women and men as a function of age, BMI, and race revealed that each covariate contributed significantly to neopterin values and that optimal modeling required an interaction term between race and BMI. The covariate %fat was highly correlated with BMI and could be substituted for BMI to yield similar regression coefficients. The association of age and gender with neopterin levels and their modification by race, BMI, or %fat reflect the biology underlying chronic immune activation and perhaps gender differences in disease incidence, morbidity, and mortality.
Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A
2014-07-15
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
A sampling study on rock properties affecting drilling rate index (DRI)
NASA Astrophysics Data System (ADS)
Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal
2018-05-01
Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2015-06-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.
Developmental Regression, Depression, and Psychosocial Stress in an Adolescent with Down Syndrome
Stein, David S.; Munir, Kerim M.; Karweck, Andrea J.; Davidson, Emily J.; Stein, Martin T.
2013-01-01
CASE: Kristen is a 13-year-old girl with Down syndrome (DS) who was seen urgently with concerns of cognitive and developmental regression including loss of language, social, and toileting skills. The evaluation in the DS clinic focused on potential medical diagnoses including atlantoaxial joint instability, vitamin deficiency, obstructive sleep apnea (OSA), and seizures. A comprehensive medical evaluation yielded only a finding of moderate OSA. A reactive depression was considered in association with several psychosocial factors including moving homes, entering puberty/onset of menses, and classroom change from an integrated setting to a self-contained classroom comprising unfamiliar peers with behavior challenges. Urgent referrals for psychological and psychiatric evaluations were initiated. Neuropsychological testing did not suggest true regression in cognitive, language, and academic skills, although decreases in motivation and performance were noted with a reaction to stress and multiple environmental changes as a potential causative factor. Psychiatry consultation supported this finding in that psychosocial stress temporally correlated with Kristen’s regression in skills. Working collaboratively, the team determined that Kristen’s presentation was consistent with a reactive form of depression (DSM-IV-TR: depressive disorder, not otherwise specified). Kristen’s presentation was exacerbated by salient environmental stress and sleep apnea, rather than a cognitive regression associated with a medical cause. Treatment consisted of an antidepressant medication, continuous positive airway pressure for OSA, and increased psychosocial supports. Her school initiated a change in classroom placement. With this multimodal approach to evaluation and intervention, Kristen steadily improved and she returned to her baseline function. PMID:23572173
Developmental Regression, Depression, and Psychosocial Stress in an Adolescent with Down Syndrome
Stein, David S.; Munir, Kerim M.; Karweck, Andrea J.; Davidson, Emily J.; Stein, Martin T.
2017-01-01
CASE Kristen is a 13-year-old girl with Down syndrome (DS) who was seen urgently with concerns of cognitive and developmental regression including loss of language, social, and toileting skills. The evaluation in the DS clinic focused on potential medical diagnoses including atlantoaxial joint instability, vitamin deficiency, obstructive sleep apnea (OSA), and seizures. A comprehensive medical evaluation yielded only a finding of moderate OSA. A reactive depression was considered in association with several psychosocial factors including moving homes, entering puberty/onset of menses, and classroom change from an integrated setting to a self- contained classroom comprising unfamiliar peers with behavior challenges. Urgent referrals for psychological and psychiatric evaluations were initiated. Neuropsychological testing did not suggest true regression in cognitive, language, and academic skills, although decreases in motivation and performance were noted with a reaction to stress and multiple environmental changes as a potential causative factor. Psychiatry consultation supported this finding in that psychosocial stress temporally correlated with Kristen’s regression in skills. Working collaboratively, the team determined that Kristen’s presentation was consistent with a reactive form of depression (DSM-IV-TR: depressive disorder, not otherwise specified). Kristen’s presentation was exacerbated by salient environmental stress and sleep apnea, rather than a cognitive regression associated with a medical cause. Treatment consisted of an antidepressant medication, continuous positive airway pressure for OSA, and increased psychosocial supports. Her school initiated a change in classroom placement. With this multimodal approach to evaluation and intervention, Kristen steadily improved and she returned to her baseline function. PMID:28141713
ERIC Educational Resources Information Center
Porter, Kristin E.; Reardon, Sean F.; Unlu, Fatih; Bloom, Howard S.; Cimpian, Joseph R.
2017-01-01
A valuable extension of the single-rating regression discontinuity design (RDD) is a multiple-rating RDD (MRRDD). To date, four main methods have been used to estimate average treatment effects at the multiple treatment frontiers of an MRRDD: the "surface" method, the "frontier" method, the "binding-score" method, and…
ERIC Educational Resources Information Center
Woolley, Kristin K.
Many researchers are unfamiliar with suppressor variables and how they operate in multiple regression analyses. This paper describes the role suppressor variables play in a multiple regression model and provides practical examples that explain how they can change research results. A variable that when added as another predictor increases the total…
ERIC Educational Resources Information Center
Martz, Erin
2004-01-01
Because the onset of a spinal cord injury may involve a brush with death and because serious injury and disability can act as a reminder of death, death anxiety was examined as a predictor of posttraumatic stress levels among individuals with disabilities. This cross-sectional study used multiple regression and multivariate multiple regression to…
Social capital, political trust, and health locus of control: a population-based study.
Lindström, Martin
2011-02-01
To investigate the association between political trust in the Riksdag and lack of belief in the possibility to influence one's own health (external locus of control), taking horizontal trust into account. The 2008 public health survey in Skåne is a cross-sectional postal questionnaire study with a 55% participation rate. A random sample of 28,198 persons aged 18-80 years participated. Logistic regression models were used to investigate the associations between political trust in the Riksdag (an aspect of vertical trust) and lack of belief in the possibility to influence one's own health (external locus of control). The multiple regression analyses included age, country of birth, education, and horizontal trust in other people. A 33.7% of all men and 31.8% of all women lack internal locus of control. Low (external) health locus of control is more common in higher age groups, among people born outside Sweden, with lower education, low horizontal trust, low political trust, and no opinion concerning political trust. Respondents with not particularly strong political trust, no political trust at all and no opinion have significantly higher odds ratios of external locus of control throughout the multiple regression analyses. Low political trust in the Riksdag seems to be independently associated with external health locus of control.
Confidence intervals for distinguishing ordinal and disordinal interactions in multiple regression.
Lee, Sunbok; Lei, Man-Kit; Brody, Gene H
2015-06-01
Distinguishing between ordinal and disordinal interaction in multiple regression is useful in testing many interesting theoretical hypotheses. Because the distinction is made based on the location of a crossover point of 2 simple regression lines, confidence intervals of the crossover point can be used to distinguish ordinal and disordinal interactions. This study examined 2 factors that need to be considered in constructing confidence intervals of the crossover point: (a) the assumption about the sampling distribution of the crossover point, and (b) the possibility of abnormally wide confidence intervals for the crossover point. A Monte Carlo simulation study was conducted to compare 6 different methods for constructing confidence intervals of the crossover point in terms of the coverage rate, the proportion of true values that fall to the left or right of the confidence intervals, and the average width of the confidence intervals. The methods include the reparameterization, delta, Fieller, basic bootstrap, percentile bootstrap, and bias-corrected accelerated bootstrap methods. The results of our Monte Carlo simulation study suggest that statistical inference using confidence intervals to distinguish ordinal and disordinal interaction requires sample sizes more than 500 to be able to provide sufficiently narrow confidence intervals to identify the location of the crossover point. (c) 2015 APA, all rights reserved).
Aghamolaei, Teamur; Sadat Tavafian, Sedigheh; Madani, Abdoulhossain
2012-09-01
This study aimed to apply the conceptual framework of the theory of planned behavior (TPB) to explain fish consumption in a sample of people who lived in Bandar Abbass, Iran. We investigated the role of three traditional constructs of TPB that included attitude, social norms, and perceived behavioral control in an effort to characterize the intention to consume fish as well as the behavioral trends that characterize fish consumption. Data were derived from a cross-sectional sample of 321 subjects. Alpha coefficient correlation and linear regression analysis were applied to test the relationships between constructs. The predictors of fish consumption frequency were also evaluated. Multiple regression analysis revealed that attitude, subjective norms, and perceived behavioral control significantly predicted intention to eat fish (R2 = 0.54, F = 128.4, P < 0.001). Multiple regression analysis for the intention to eat fish and perceived behavioral control revealed that both factors significantly predicted fish consumption frequency (R2 = 0.58, F = 223.1, P < 0.001). The results indicated that the models fit well with the data. Attitude, subjective norms, and perceived behavioral control all had significant positive impacts on behavioral intention. Moreover, both intention and perceived behavioral control could be used to predict the frequency of fish consumption.
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Liu, Qi; Wu, Youcong; Yuan, Youhua; Bai, Li; Niu, Kun
2011-12-01
To research the relationship between the virulence factors of Saccharomyces albicans (S. albicans) and the random amplified polymorphic DNA (RAPD) bands of them, and establish the regression model by multiple regression analysis. Extracellular phospholipase, secreted proteinase, ability to generate germ tubes and adhere to oral mucosal cells of 92 strains of S. albicans were measured in vitro; RAPD-polymerase chain reaction (RAPD-PCR) was used to get their bands. Multiple regression for virulence factors of S. albicans and RAPD-PCR bands was established. The extracellular phospholipase activity was associated with 4 RAPD bands: 350, 450, 650 and 1 300 bp (P < 0.05); secreted proteinase activity of S. albicans was associated with 2 bands: 350 and 1 200 bp (P < 0.05); the ability of germ tube produce was associated with 2 bands: 400 and 550 bp (P < 0.05). Some RAPD bands will reflect the virulence factors of S. albicans indirectly. These bands would contain some important messages for regulation of S. albicans virulence factors.
Simultaneous multiple non-crossing quantile regression estimation using kernel constraints
Liu, Yufeng; Wu, Yichao
2011-01-01
Quantile regression (QR) is a very useful statistical tool for learning the relationship between the response variable and covariates. For many applications, one often needs to estimate multiple conditional quantile functions of the response variable given covariates. Although one can estimate multiple quantiles separately, it is of great interest to estimate them simultaneously. One advantage of simultaneous estimation is that multiple quantiles can share strength among them to gain better estimation accuracy than individually estimated quantile functions. Another important advantage of joint estimation is the feasibility of incorporating simultaneous non-crossing constraints of QR functions. In this paper, we propose a new kernel-based multiple QR estimation technique, namely simultaneous non-crossing quantile regression (SNQR). We use kernel representations for QR functions and apply constraints on the kernel coefficients to avoid crossing. Both unregularised and regularised SNQR techniques are considered. Asymptotic properties such as asymptotic normality of linear SNQR and oracle properties of the sparse linear SNQR are developed. Our numerical results demonstrate the competitive performance of our SNQR over the original individual QR estimation. PMID:22190842
Regression analysis of current-status data: an application to breast-feeding.
Grummer-strawn, L M
1993-09-01
"Although techniques for calculating mean survival time from current-status data are well known, their use in multiple regression models is somewhat troublesome. Using data on current breast-feeding behavior, this article considers a number of techniques that have been suggested in the literature, including parametric, nonparametric, and semiparametric models as well as the application of standard schedules. Models are tested in both proportional-odds and proportional-hazards frameworks....I fit [the] models to current status data on breast-feeding from the Demographic and Health Survey (DHS) in six countries: two African (Mali and Ondo State, Nigeria), two Asian (Indonesia and Sri Lanka), and two Latin American (Colombia and Peru)." excerpt
Determinants of spirometric abnormalities among silicotic patients in Hong Kong.
Leung, Chi C; Chang, Kwok C; Law, Wing S; Yew, Wing W; Tam, Cheuk M; Chan, Chi K; Wong, Man Y
2005-09-01
Silicosis is the second commonest notified occupational disease in Hong Kong. To characterize the determinants of spirometric abnormalities in silicosis. The spirometric patterns of consecutive silicotic patients on confirmation by the Pneumoconiosis Medical Board from 1991 to 2002 were correlated with demographic characteristics, occupational history, smoking history, tuberculosis (TB) history and radiographic features by univariate and multiple regression analyses. Of 1576 silicotic patients included, 55.6% showed normal spirometry, 28.5% normal forced vital capacity (FVC>or=80% predicted) but reduced forced expiratory ratio (FER<70%), 7.6% reduced FVC but normal FER, and 8.4% reduced both FVC and FER. Age, ever-smoking, cigarette pack-years, industry, job type, history of TB, size of lung nodules and progressive massive fibrosis (PMF) were all significantly associated with airflow limitation on univariate analysis (all P<0.05), while sex and profusion of nodules were not. Only age, cigarette pack-years, history of TB, size of lung nodules and PMF remained as significant independent predictors of airflow obstruction in multiple logistic regression analysis. After controlling for airflow obstruction, only shorter exposure duration, history of TB and profusion of nodules were significant independent predictors of reduced FVC. As well as age, history of TB, cigarette pack-years, PMF and nodule size contributed comparable effects to airflow obstruction in multiple linear regression analyses, while profusion of nodules was the strongest factor for reduced vital capacity. In an occupational compensation setting, disease indices and history of tuberculosis are independent predictors of both airflow obstruction and reduced vital capacity for silicotic patients.
Determinants of adolescent suicidal ideation: rural versus urban.
Murphy, Sean M
2014-01-01
The existing literature on disparities between rural and urban adolescents as they pertain to suicidal behavior is limited; identifying these distinctions could be pivotal in the decision of how to efficiently allocate scarce resources to reduce youth suicide rates. This study aimed to identify dissimilarities in predictors of suicidal ideation across the rural/urban threshold, as ideation is one of the most important predictors of suicide. Given that substance abuse is generally considered one of the strongest risk factors for suicidal behavior, a secondary aim was the isolation of the differences in usage of particular substances between rural and urban adolescents, and their effects on the likelihood of suicidal ideation, which is something that previous studies have had difficulty addressing. A global test determined that individual predictors of suicidal ideation differed across rural and urban adolescents, and simply including a rural/urban indicator in a multiple regression would result in biased estimates. Therefore, this paper assessed rural/urban differences among a comprehensive list of traditionally perceived risk and protective factors via bivariate analyses and separate multiple full-information-maximum-likelihood regressions, which account for missing data. Somewhat contrary to the extant literature, the findings indicate important differences among predictors of suicidal ideation for rural and urban youths. These differences should be taken into consideration when developing plans to combat adolescent suicide. The results further indicate that analyzing potential predictors of suicidal ideation for rural and urban adolescents via bivariate analyses alone, or a rural/urban indicator in a multiple regression, is not sufficient. © 2013 National Rural Health Association.
Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L
2016-02-10
Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.
Shah, Kalpit N; Defroda, Steven F; Wang, Bo; Weiss, Arnold-Peter C
2017-12-01
The first carpometacarpal (CMC) joint is a common site of osteoarthritis, with arthroplasty being a common procedure to provide pain relief and improve function with low complications. However, little is known about risk factors that may predispose a patient for postoperative complications. All CMC joint arthroplasty from 2005 to 2015 in the prospectively collected American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database were identified. Bivariate testing and multiple logistic regressions were performed to determine which patient demographics, surgical variables and medical comorbidities were significant predictors for complications. These included wound related, cardiopulmonary, neurological and renal complications, return to the operating room (OR) and readmission. A total of 3344 patients were identified from the database. Of those, 45 patients (1.3%) experienced a complication including wound issues (0.66%), return to the OR (0.15%) and readmission (0.27%) amongst others. When performing bivariate analysis, age over 65, American Society of Anesthesiologists (ASA) Class, diabetes and renal dialysis were significant risk factors. Multiple logistic regression after adjusting for confounding factors demonstrated that insulin-dependent diabetes and ASA Class 4 had a strong trend while renal dialysis was a significant risk factor. CMC arthroplasty has a very low overall complication rate of 1.3% and wound complication rate of 0.66%. Diabetes requiring insulin and ASA Class 4 trended towards significance while renal dialysis was found to be a significant risk factors in logistic regression. This information may be useful for preoperative counseling and discussion with patients who have these risk factors.
Color vision impairment in multiple sclerosis points to retinal ganglion cell damage.
Lampert, E J; Andorra, M; Torres-Torres, R; Ortiz-Pérez, S; Llufriu, S; Sepúlveda, M; Sola, N; Saiz, A; Sánchez-Dalmau, B; Villoslada, P; Martínez-Lapiscina, Elena H
2015-11-01
Multiple Sclerosis (MS) results in color vision impairment regardless of optic neuritis (ON). The exact location of injury remains undefined. The objective of this study is to identify the region leading to dyschromatopsia in MS patients' NON-eyes. We evaluated Spearman correlations between color vision and measures of different regions in the afferent visual pathway in 106 MS patients. Regions with significant correlations were included in logistic regression models to assess their independent role in dyschromatopsia. We evaluated color vision with Hardy-Rand-Rittler plates and retinal damage using Optical Coherence Tomography. We ran SIENAX to measure Normalized Brain Parenchymal Volume (NBPV), FIRST for thalamus volume and Freesurfer for visual cortex areas. We found moderate, significant correlations between color vision and macular retinal nerve fiber layer (rho = 0.289, p = 0.003), ganglion cell complex (GCC = GCIP) (rho = 0.353, p < 0.001), thalamus (rho = 0.361, p < 0.001), and lesion volume within the optic radiations (rho = -0.230, p = 0.030). Only GCC thickness remained significant (p = 0.023) in the logistic regression model. In the final model including lesion load and NBPV as markers of diffuse neuroaxonal damage, GCC remained associated with dyschromatopsia [OR = 0.88 95 % CI (0.80-0.97) p = 0.016]. This association remained significant when we also added sex, age, and disease duration as covariates in the regression model. Dyschromatopsia in NON-eyes is due to damage of retinal ganglion cells (RGC) in MS. Color vision can serve as a marker of RGC damage in MS.
Seghatoleslam, T; Habi, H; Rashid, R Abdul; Mosavi, N; Asmaee, S; Naseri, A
2012-01-01
THE CURRENT STUDY AIMED TO TEST THE HYPOTHESIS: Is suicide predictable? And try to classify the predictive factors in multiple suicide attempts. A cross-sectional study was administered to 223 multiple attempters, women who came to a medical poison centre after a suicide attempt. The participants were young, poor, and single. A Logistic Regression Analiysis was used to classify the predictive factors of suicide. Women who had multiple suicide attempts exhibited a significant tendency to attempt suicide again. They had a history for more than two years of multiple suicide attempts, from three to as many as 18 times, plus mental illnesses such as depression and substance abuse. They also had a positive history of mental illnesses. Results indicate that contributing factors for another suicide attempt include previous suicide attempts, mental illness (depression), or a positive history of mental illnesses in the family affecting them at a young age, and substance abuse.
Seasonal forecasting of high wind speeds over Western Europe
NASA Astrophysics Data System (ADS)
Palutikof, J. P.; Holt, T.
2003-04-01
As financial losses associated with extreme weather events escalate, there is interest from end users in the forestry and insurance industries, for example, in the development of seasonal forecasting models with a long lead time. This study uses exceedences of the 90th, 95th, and 99th percentiles of daily maximum wind speed over the period 1958 to present to derive predictands of winter wind extremes. The source data is the 6-hourly NCEP Reanalysis gridded surface wind field. Predictor variables include principal components of Atlantic sea surface temperature and several indices of climate variability, including the NAO and SOI. Lead times of up to a year are considered, in monthly increments. Three regression techniques are evaluated; multiple linear regression (MLR), principal component regression (PCR), and partial least squares regression (PLS). PCR and PLS proved considerably superior to MLR with much lower standard errors. PLS was chosen to formulate the predictive model since it offers more flexibility in experimental design and gave slightly better results than PCR. The results indicate that winter windiness can be predicted with considerable skill one year ahead for much of coastal Europe, but that this deteriorates rapidly in the hinterland. The experiment succeeded in highlighting PLS as a very useful method for developing more precise forecasting models, and in identifying areas of high predictability.
Aggression at Age 5 as a Function of Prenatal Exposure to Cocaine, Gender, and Environmental Risk
Bendersky, Margaret; Bennett, David; Lewis, Michael
2006-01-01
Objective To examine childhood aggression at age 5 in a multiple risk model that includes cocaine exposure, environmental risk, and gender as predictors. Methods Aggression was assessed in 206 children by using multiple methods including teacher report, parent report, child’s response to hypothetical provocations, and child’s observed behavior. Also examined was a composite score that reflected high aggression across contexts. Results Multiple regression analyses indicated that a significant amount of variance in each of the aggression measures and the composite was explained by the predictors. The variables that were independently related differed depending on the outcome. Cocaine exposure, gender, and environmental risk were all related to the composite aggression score. Conclusions Cocaine exposure, being male, and a high-risk environment were all predictive of aggressive behavior at 5 years. It is this group of exposed boys at high environmental risk that is most likely to show continued aggression over time. PMID:15827351
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.; Roberts, J.W.
1990-01-01
Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)
Forecasting USAF JP-8 Fuel Needs
2009-03-01
versus complex ones. When we consider long -term forecasts, 5-years in this case, multiple regression outperforms ANN modeling within the specified...with more simple and easy-to-implement methods, versus complex ones. When we consider long -term 5-year forecasts, our multiple regression model...effort. The insight and experience was certainly appreciated. Special thanks to my Turkish peers for their continuous support and help during this long
ERIC Educational Resources Information Center
Le, Huy; Marcus, Justin
2012-01-01
This study used Monte Carlo simulation to examine the properties of the overall odds ratio (OOR), which was recently introduced as an index for overall effect size in multiple logistic regression. It was found that the OOR was relatively independent of study base rate and performed better than most commonly used R-square analogs in indexing model…
ERIC Educational Resources Information Center
Pecorella, Patricia A.; Bowers, David G.
Multiple regression in a double cross-validated design was used to predict two performance measures (total variable expense and absence rate) by multi-month period in five industrial firms. The regressions do cross-validate, and produce multiple coefficients which display both concurrent and predictive effects, peaking 18 months to two years…
USDA-ARS?s Scientific Manuscript database
A technique of using multiple calibration sets in partial least squares regression (PLS) was proposed to improve the quantitative determination of ammonia from open-path Fourier transform infrared spectra. The spectra were measured near animal farms, and the path-integrated concentration of ammonia...
Lorenzo-Seva, Urbano; Ferrando, Pere J
2011-03-01
We provide an SPSS program that implements currently recommended techniques and recent developments for selecting variables in multiple linear regression analysis via the relative importance of predictors. The approach consists of: (1) optimally splitting the data for cross-validation, (2) selecting the final set of predictors to be retained in the equation regression, and (3) assessing the behavior of the chosen model using standard indices and procedures. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from brm.psychonomic-journals.org/content/supplemental.
Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis
ERIC Educational Resources Information Center
Kim, Rae Seon
2011-01-01
When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…
Nakamura, Ryo; Nakano, Kumiko; Tamura, Hiroyasu; Mizunuma, Masaki; Fushiki, Tohru; Hirata, Dai
2017-08-01
Many factors contribute to palatability. In order to evaluate the palatability of Japanese alcohol sake paired with certain dishes by integrating multiple factors, here we applied an evaluation method previously reported for palatability of cheese by multiple regression analysis based on 3 subdomain factors (rewarding, cultural, and informational). We asked 94 Japanese participants/subjects to evaluate the palatability of sake (1st evaluation/E1 for the first cup, 2nd/E2 and 3rd/E3 for the palatability with aftertaste/afterglow of certain dishes) and to respond to a questionnaire related to 3 subdomains. In E1, 3 factors were extracted by a factor analysis, and the subsequent multiple regression analyses indicated that the palatability of sake was interpreted by mainly the rewarding. Further, the results of attribution-dissections in E1 indicated that 2 factors (rewarding and informational) contributed to the palatability. Finally, our results indicated that the palatability of sake was influenced by the dish eaten just before drinking.
Statistical Tutorial | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018. The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean differences, simple and multiple linear regression, ANOVA tests, and Chi-Squared distribution.
Souza-Oliveira, Ana Carolina; Cunha, Thúlio Marquez; Passos, Liliane Barbosa da Silva; Lopes, Gustavo Camargo; Gomes, Fabiola Alves; Röder, Denise Von Dolinger de Brito
2016-01-01
Ventilator-associated pneumonia is the most prevalent nosocomial infection in intensive care units and is associated with high mortality rates (14-70%). This study evaluated factors influencing mortality of patients with Ventilator-associated pneumonia (VAP), including bacterial resistance, prescription errors, and de-escalation of antibiotic therapy. This retrospective study included 120 cases of Ventilator-associated pneumonia admitted to the adult adult intensive care unit of the Federal University of Uberlândia. The chi-square test was used to compare qualitative variables. Student's t-test was used for quantitative variables and multiple logistic regression analysis to identify independent predictors of mortality. De-escalation of antibiotic therapy and resistant bacteria did not influence mortality. Mortality was 4 times and 3 times higher, respectively, in patients who received an inappropriate antibiotic loading dose and in patients whose antibiotic dose was not adjusted for renal function. Multiple logistic regression analysis revealed the incorrect adjustment for renal function was the only independent factor associated with increased mortality. Prescription errors influenced mortality of patients with Ventilator-associated pneumonia, underscoring the challenge of proper Ventilator-associated pneumonia treatment, which requires continuous reevaluation to ensure that clinical response to therapy meets expectations. Copyright © 2016. Published by Elsevier Editora Ltda.
Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study
NASA Astrophysics Data System (ADS)
Takeshita, Toru; Kageyama, Shinya; Furuta, Michiko; Tsuboi, Hidenori; Takeuchi, Kenji; Shibata, Yukie; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Yamashita, Yoshihisa
2016-02-01
This population-based study determined the salivary microbiota composition of 2,343 adult residents of Hisayama town, Japan, using 16S rRNA gene next-generation high-throughput sequencing. Of 550 identified species-level operational taxonomic units (OTUs), 72 were common, in ≥75% of all individuals, as well as in ≥75% of the individuals in the lowest quintile of phylogenetic diversity (PD). These “core” OTUs constituted 90.9 ± 6.1% of each microbiome. The relative abundance profiles of 22 of the core OTUs with mean relative abundances ≥1% were stratified into community type I and community type II by partitioning around medoids clustering. Multiple regression analysis revealed that a lower PD was associated with better conditions for oral health, including a lower plaque index, absence of decayed teeth, less gingival bleeding, shallower periodontal pockets and not smoking, and was also associated with tooth loss. By contrast, multiple Poisson regression analysis demonstrated that community type II, as characterized by a higher ratio of the nine dominant core OTUs, including Neisseria flavescens, was implicated in younger age, lower body mass index, fewer teeth with caries experience, and not smoking. Our large-scale data analyses reveal variation in the salivary microbiome among Japanese adults and oral health-related conditions associated with the salivary microbiome.
Bioavailability of atrazine, pyrene and benzo[a]pyrene in European river waters
Akkanen, J.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K.
2001-01-01
Thirteen river waters and one humic lake water were characterized. The effects of dissolved organic matter (DOM) on the bioavailability of atrazine, pyrene and benzo[a]pyrene (B[a]P) was evaluated. Binding of the chemicals by DOM was analyzed with the equilibrium dialysis technique. For each of the water samples, 24 h bioconcentration factors (BCFs) of the chemicals were measured in Daphnia magna. The relationship between DOM and other water characteristics (including conductivity, water hardness and pH), and bioavailability of the chemicals was studied by performing several statistical analyses, including multiple regression analyses, to determine how much of the variation of BCF values could be explained by the quantity and quality of DOM. The bioavailability of atrazine was not affected by DOM or any other water characteristics. Although equilibrium dialysis showed binding of pyrene to DOM, the bioavailability of pyrene was not significantly affected by DOM. The bioavailability of B[a]P was significantly affected by both the quality and quantity of DOM. Multiple regression analyses, using the quality (ABS270 and HbA%) and quantity of DOM as variables, explainedup to 70% of the variation in BCF of B[a]P in the waters studied. ?? 2001 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagano, Hirohiko; Iwata, Hiroki
2017-03-01
Alaska wildfires may play an important role in nitrogen (N) dry deposition in Alaskan boreal forests. Here we used annual N dry deposition data measured by CASTNET at Denali National Park (DEN417) during 1999-2013, to evaluate the relationships between wildfire extent and N dry deposition in Alaska. We established six potential factors for multiple regression analysis, including burned area within 100 km of DEN417 (BA100km) and in other distant parts of Alaska (BAAK), the sum of indexes of North Atlantic Oscillation and Arctic Oscillation (OI), number of days with negative OI (OIday), precipitation (PRCP), and number of days with PRCP (PRCPday). Multiple regression analysis was conducted for both time scales, annual (using only annual values of factors) and six-month (using annual values of BAAK and BA100km, and fire and non-fire seasons' values of other four factors) time scales. Together, BAAK, BA100km, and OIday, along with PRCPday in the case of the six-month scale, explained more than 92% of the interannual variation in N dry deposition. The influence of BA100km on N dry deposition was ten-fold greater than from BAAK; the qualitative contribution was almost zero, however, due to the small BA100km. BAAK was the leading explanatory factor, with a 15 ± 14% contribution. We further calculated N dry deposition during 1950-2013 using the obtained regression equation and long-term records for the factors. The N dry deposition calculated for 1950-2013 revealed that an increased occurrence of wildfires during the 2000s led to the maximum N dry deposition exhibited during this decade. As a result, the effect of BAAK on N dry deposition remains sufficiently large, even when large possible uncertainties (>40%) in the measurement of N dry deposition are taken into account for the multiple regression analysis.
NASA Astrophysics Data System (ADS)
Kiram, J. J.; Sulaiman, J.; Swanto, S.; Din, W. A.
2015-10-01
This study aims to construct a mathematical model of the relationship between a student's Language Learning Strategy usage and English Language proficiency. Fifty-six pre-university students of University Malaysia Sabah participated in this study. A self-report questionnaire called the Strategy Inventory for Language Learning was administered to them to measure their language learning strategy preferences before they sat for the Malaysian University English Test (MUET), the results of which were utilised to measure their English language proficiency. We attempted the model assessment specific to Multiple Linear Regression Analysis subject to variable selection using Stepwise regression. We conducted various assessments to the model obtained, including the Global F-test, Root Mean Square Error and R-squared. The model obtained suggests that not all language learning strategies should be included in the model in an attempt to predict Language Proficiency.
Reported gum disease as a cardiovascular risk factor in adults with intellectual disabilities.
Hsieh, K; Murthy, S; Heller, T; Rimmer, J H; Yen, G
2018-03-01
Several risk factors for cardiovascular disease (CVD) have been identified among adults with intellectual disabilities (ID). Periodontitis has been reported to increase the risk of developing a CVD in the general population. Given that individuals with ID have been reported to have a higher prevalence of poor oral health than the general population, the purpose of this study was to determine whether adults with ID with informant reported gum disease present greater reported CVD than those who do not have reported gum disease and whether gum disease can be considered a risk factor for CVD. Using baseline data from the Longitudinal Health and Intellectual Disability Study from which informant survey data were collected, 128 participants with reported gum disease and 1252 subjects without reported gum disease were identified. A series of univariate logistic regressions was conducted to identify potential confounding factors for a multiple logistic regression. The series of univariate logistic regressions identified age, Down syndrome, hypercholesterolemia, hypertension, reported gum disease, daily consumption of fruits and vegetables and the addition of table salt as significant risk factors for reported CVD. When the significant factors from the univariate logistic regression were included in the multiple logistic analysis, reported gum disease remained as an independent risk factor for reported CVD after adjusting for the remaining risk factors. Compared with the adults with ID without reported gum disease, adults in the gum disease group demonstrated a significantly higher prevalence of reported CVD (19.5% vs. 9.7%; P = .001). After controlling for other risk factors, reported gum disease among adults with ID may be associated with a higher risk of CVD. However, further research that also includes clinical indices of periodontal disease and CVD for this population is needed to determine if there is a causal relationship between gum disease and CVD. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea
NASA Astrophysics Data System (ADS)
Um, Myoung-Jin; Yun, Hyeseon; Jeong, Chang-Sam; Heo, Jun-Haeng
2011-11-01
SummaryIn this study, new factors that influence precipitation were extracted from geographic variables using factor analysis, which allow for an accurate estimation of orographic precipitation. Correlation analysis was also used to examine the relationship between nine topographic variables from digital elevation models (DEMs) and the precipitation in Jeju Island. In addition, a spatial analysis was performed in order to verify the validity of the regression model. From the results of the correlation analysis, it was found that all of the topographic variables had a positive correlation with the precipitation. The relations between the variables also changed in accordance with a change in the precipitation duration. However, upon examining the correlation matrix, no significant relationship between the latitude and the aspect was found. According to the factor analysis, eight topographic variables (latitude being the exception) were found to have a direct influence on the precipitation. Three factors were then extracted from the eight topographic variables. By directly comparing the multiple regression model with the factors (model 1) to the multiple regression model with the topographic variables (model 3), it was found that model 1 did not violate the limits of statistical significance and multicollinearity. As such, model 1 was considered to be appropriate for estimating the precipitation when taking into account the topography. In the study of model 1, the multiple regression model using factor analysis was found to be the best method for estimating the orographic precipitation on Jeju Island.
Houseknecht, D.W.; Bird, K.J.
2004-01-01
Beaufortian strata (Jurassic-Lower Cretaceous) in the National Petroleum Reserve in Alaska (NPRA) are a focus of exploration since the 1994 discovery of the nearby Alpine oil field (>400 MMBO). These strata include the Kingak Shale, a succession of depositional sequences influenced by rift opening of the Arctic Ocean Basin. Interpretation of sequence stratigraphy and depositional facies from a regional two-dimensional seismic grid and well data allows the definition of four sequence sets that each displays unique stratal geometries and thickness trends across NPRA. A Lower to Middle Jurassic sequence set includes numerous transgressive-regressive sequences that collectively built a clastic shelf in north-central NPRA. Along the south-facing, lobate shelf margin, condensed shales in transgressive systems tracts downlap and coalesce into a basinal condensed section that is likely an important hydrocarbon source rock. An Oxfordian-Kimmeridgian sequence set, deposited during pulses of uplift on the Barrow arch, includes multiple transgressive-regressive sequences that locally contain well-winnowed, shoreface sandstones at the base of transgressive systems tracts. These shoreface sandstones and overlying shales, deposited during maximum flooding, form stratigraphic traps that are the main objective of exploration in the Alpine play in NPRA. A Valanginian sequence set includes at least two transgressive-regressive sequences that display relatively distal characteristics, suggesting high relative sea level. An important exception is the presence of a basal transgressive systems tract that locally contains shoreface sandstones of reservoir quality. A Hauterivian sequence set includes two transgressive-regressive sequences that constitute a shelf-margin wedge developed as the result of tectonic uplift along the Barrow arch during rift opening of the Arctic Ocean Basin. This sequence set displays stratal geometries suggesting incision and synsedimentary collapse of the shelf margin. ?? 2004. The American Association of Petroleum Geologists. All rights reserved.
Lardier, David T; Barrios, Veronica R; Garcia-Reid, Pauline; Reid, Robert J
2016-10-01
Prior research has identified multiple factors that influence suicidal ideation (SI) among bullied youth. The effects of school bullying on SI cannot be considered in isolation. In this study, we examined the influence of school bullying on SI, through a constellation of risks, which include depressive and anxiety symptoms, family conflict, and alcohol, tobacco, and other drug (ATOD) use. We also provide recommendations for therapists working with bullied youth. Our sample consisted of 488 adolescents (ages 10-18 years) from a northern New Jersey, United States suburban community. Students were recruited through the district's physical education and health classes. Students responded to multiple measures, which included family cohesion/conflict, ATOD use, mental health indicators, SI, and school bullying experiences. Following preliminary analyses, several logistic regression models were used to assess the direct influence of bullying on SI, as well as the unique effects of family conflict, depressive and anxiety symptoms, and substance use. In addition, a parallel multiple mediating model with the PROCESS macro in SPSS was used to further assess mediating effects. Logistic regression results indicated that school bullying increased the odds of SI among males and females and that when mediating variables were added to the model, bullying no longer had a significant influence on SI. Overall, these results display that for both males and females, school bullying was a significant contributor to SI. Results from the parallel multiple mediating model further illustrated the mediating effects that family conflict, depression, and ATOD use had between bullying and SI. Some variation was noted based on gender. This study draws attention to the multiple experiences associated with school bullying on SI, and how these results may differ by gender. The results of this study are particularly important for those working directly and indirectly with bullied youth. Therapists that engage bullied youth need to consider the multiple spheres of influence that may increase SI among male and female clients. To holistically and adequately assess SI among bullied youth, therapists must also consider how these mechanisms vary between gender groups.
Weather Impact on Airport Arrival Meter Fix Throughput
NASA Technical Reports Server (NTRS)
Wang, Yao
2017-01-01
Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.
Akkus, Zeki; Camdeviren, Handan; Celik, Fatma; Gur, Ali; Nas, Kemal
2005-09-01
To determine the risk factors of osteoporosis using a multiple binary logistic regression method and to assess the risk variables for osteoporosis, which is a major and growing health problem in many countries. We presented a case-control study, consisting of 126 postmenopausal healthy women as control group and 225 postmenopausal osteoporotic women as the case group. The study was carried out in the Department of Physical Medicine and Rehabilitation, Dicle University, Diyarbakir, Turkey between 1999-2002. The data from the 351 participants were collected using a standard questionnaire that contains 43 variables. A multiple logistic regression model was then used to evaluate the data and to find the best regression model. We classified 80.1% (281/351) of the participants using the regression model. Furthermore, the specificity value of the model was 67% (84/126) of the control group while the sensitivity value was 88% (197/225) of the case group. We found the distribution of residual values standardized for final model to be exponential using the Kolmogorow-Smirnow test (p=0.193). The receiver operating characteristic curve was found successful to predict patients with risk for osteoporosis. This study suggests that low levels of dietary calcium intake, physical activity, education, and longer duration of menopause are independent predictors of the risk of low bone density in our population. Adequate dietary calcium intake in combination with maintaining a daily physical activity, increasing educational level, decreasing birth rate, and duration of breast-feeding may contribute to healthy bones and play a role in practical prevention of osteoporosis in Southeast Anatolia. In addition, the findings of the present study indicate that the use of multivariate statistical method as a multiple logistic regression in osteoporosis, which maybe influenced by many variables, is better than univariate statistical evaluation.
Modeling Longitudinal Data Containing Non-Normal Within Subject Errors
NASA Technical Reports Server (NTRS)
Feiveson, Alan; Glenn, Nancy L.
2013-01-01
The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.
O'Keefe, Daniel; McCormack, Angus; Cogger, Shelley; Aitken, Campbell; Burns, Lucinda; Bruno, Raimondo; Stafford, Jenny; Butler, Kerryn; Breen, Courtney; Dietze, Paul
2017-08-01
Recent work by McCormack et al. (2016) showed that the inclusion of syringe stockpiling improves the measurement of individual-level syringe coverage. We explored whether including the use of a new parameter, multiple sterile syringes per injecting episode, further improves coverage measures. Data comes from 838 people who inject drugs, interviewed as part of the 2015 Illicit Drug Reporting System. Along with syringe coverage questions, the survey recorded the number of sterile syringes used on average per injecting episode. We constructed three measures of coverage: one adapted from Bluthenthal et al. (2007), the McCormack et al. measure, and a new coverage measure that included use of multiple syringes. Predictors of multiple syringe use and insufficient coverage (<100% of injecting episodes using a sterile syringe) using the new measure, were tested in logistic regression and the ability of the measures to discriminate key risk behaviours was compared using ROC curve analysis. 134 (16%) participants reported needing multiple syringes per injecting episode. Women showed significantly increased odds of multiple syringe use, as did those reporting injection related injuries/diseases and injecting of opioid substitution drugs or pharmaceutical opioids. Levels of insufficient coverage across the three measures were substantial (20%-28%). ROC curve analysis suggested that our new measure was no better at discriminating injecting risk behaviours than the existing measures. Based on our findings, there appears to be little need for adding a multiple syringe use parameter to existing coverage formulae. Hence, we recommend that multiple syringe use is not included in the measurement of individual-level syringe coverage. Copyright © 2017 Elsevier B.V. All rights reserved.
A Statistical Multimodel Ensemble Approach to Improving Long-Range Forecasting in Pakistan
2012-03-01
Impact of global warming on monsoon variability in Pakistan. J. Anim. Pl. Sci., 21, no. 1, 107–110. Gillies, S., T. Murphree, and D. Meyer, 2012...are generated by multiple regression models that relate globally distributed oceanic and atmospheric predictors to local predictands. The...generated by multiple regression models that relate globally distributed oceanic and atmospheric predictors to local predictands. The predictands are
Suppression Situations in Multiple Linear Regression
ERIC Educational Resources Information Center
Shieh, Gwowen
2006-01-01
This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…
Meng, Xing; Jiang, Rongtao; Lin, Dongdong; Bustillo, Juan; Jones, Thomas; Chen, Jiayu; Yu, Qingbao; Du, Yuhui; Zhang, Yu; Jiang, Tianzi; Sui, Jing; Calhoun, Vince D.
2016-01-01
Neuroimaging techniques have greatly enhanced the understanding of neurodiversity (human brain variation across individuals) in both health and disease. The ultimate goal of using brain imaging biomarkers is to perform individualized predictions. Here we proposed a generalized framework that can predict explicit values of the targeted measures by taking advantage of joint information from multiple modalities. This framework also enables whole brain voxel-wise searching by combining multivariate techniques such as ReliefF, clustering, correlation-based feature selection and multiple regression models, which is more flexible and can achieve better prediction performance than alternative atlas-based methods. For 50 healthy controls and 47 schizophrenia patients, three kinds of features derived from resting-state fMRI (fALFF), sMRI (gray matter) and DTI (fractional anisotropy) were extracted and fed into a regression model, achieving high prediction for both cognitive scores (MCCB composite r = 0.7033, MCCB social cognition r = 0.7084) and symptomatic scores (positive and negative syndrome scale [PANSS] positive r = 0.7785, PANSS negative r = 0.7804). Moreover, the brain areas likely responsible for cognitive deficits of schizophrenia, including middle temporal gyrus, dorsolateral prefrontal cortex, striatum, cuneus and cerebellum, were located with different weights, as well as regions predicting PANSS symptoms, including thalamus, striatum and inferior parietal lobule, pinpointing the potential neuromarkers. Finally, compared to a single modality, multimodal combination achieves higher prediction accuracy and enables individualized prediction on multiple clinical measures. There is more work to be done, but the current results highlight the potential utility of multimodal brain imaging biomarkers to eventually inform clinical decision-making. PMID:27177764
NASA Astrophysics Data System (ADS)
Yoshida, Kenichiro; Nishidate, Izumi; Ojima, Nobutoshi; Iwata, Kayoko
2014-01-01
To quantitatively evaluate skin chromophores over a wide region of curved skin surface, we propose an approach that suppresses the effect of the shading-derived error in the reflectance on the estimation of chromophore concentrations, without sacrificing the accuracy of that estimation. In our method, we use multiple regression analysis, assuming the absorbance spectrum as the response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as the predictor variables. The concentrations of melanin and total hemoglobin are determined from the multiple regression coefficients using compensation formulae (CF) based on the diffuse reflectance spectra derived from a Monte Carlo simulation. To suppress the shading-derived error, we investigated three different combinations of multiple regression coefficients for the CF. In vivo measurements with the forearm skin demonstrated that the proposed approach can reduce the estimation errors that are due to shading-derived errors in the reflectance. With the best combination of multiple regression coefficients, we estimated that the ratio of the error to the chromophore concentrations is about 10%. The proposed method does not require any measurements or assumptions about the shape of the subjects; this is an advantage over other studies related to the reduction of shading-derived errors.
ERIC Educational Resources Information Center
Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.
2012-01-01
Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…
Knol, Mirjam J; van der Tweel, Ingeborg; Grobbee, Diederick E; Numans, Mattijs E; Geerlings, Mirjam I
2007-10-01
To determine the presence of interaction in epidemiologic research, typically a product term is added to the regression model. In linear regression, the regression coefficient of the product term reflects interaction as departure from additivity. However, in logistic regression it refers to interaction as departure from multiplicativity. Rothman has argued that interaction estimated as departure from additivity better reflects biologic interaction. So far, literature on estimating interaction on an additive scale using logistic regression only focused on dichotomous determinants. The objective of the present study was to provide the methods to estimate interaction between continuous determinants and to illustrate these methods with a clinical example. and results From the existing literature we derived the formulas to quantify interaction as departure from additivity between one continuous and one dichotomous determinant and between two continuous determinants using logistic regression. Bootstrapping was used to calculate the corresponding confidence intervals. To illustrate the theory with an empirical example, data from the Utrecht Health Project were used, with age and body mass index as risk factors for elevated diastolic blood pressure. The methods and formulas presented in this article are intended to assist epidemiologists to calculate interaction on an additive scale between two variables on a certain outcome. The proposed methods are included in a spreadsheet which is freely available at: http://www.juliuscenter.nl/additive-interaction.xls.
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.
Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-04-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.
Raj, Retheep; Sivanandan, K S
2017-01-01
Estimation of elbow dynamics has been the object of numerous investigations. In this work a solution is proposed for estimating elbow movement velocity and elbow joint angle from Surface Electromyography (SEMG) signals. Here the Surface Electromyography signals are acquired from the biceps brachii muscle of human hand. Two time-domain parameters, Integrated EMG (IEMG) and Zero Crossing (ZC), are extracted from the Surface Electromyography signal. The relationship between the time domain parameters, IEMG and ZC with elbow angular displacement and elbow angular velocity during extension and flexion of the elbow are studied. A multiple input-multiple output model is derived for identifying the kinematics of elbow. A Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural network (MLPNN) model is proposed for the estimation of elbow joint angle and elbow angular velocity. The proposed NARX MLPNN model is trained using Levenberg-marquardt based algorithm. The proposed model is estimating the elbow joint angle and elbow movement angular velocity with appreciable accuracy. The model is validated using regression coefficient value (R). The average regression coefficient value (R) obtained for elbow angular displacement prediction is 0.9641 and for the elbow anglular velocity prediction is 0.9347. The Nonlinear Auto Regressive with eXogenous inputs (NARX) structure based multiple layer perceptron neural networks (MLPNN) model can be used for the estimation of angular displacement and movement angular velocity of the elbow with good accuracy.
do Prado, Mara Rúbia Maciel Cardoso; Oliveira, Fabiana de Cássia Carvalho; Assis, Karine Franklin; Ribeiro, Sarah Aparecida Vieira; do Prado Junior, Pedro Paulo; Sant'Ana, Luciana Ferreira da Rocha; Priore, Silvia Eloiza; Franceschini, Sylvia do Carmo Castro
2015-01-01
To assess the prevalence of vitamin D deficiency and its associated factors in women and their newborns in the postpartum period. This cross-sectional study evaluated vitamin D deficiency/insufficiency in 226 women and their newborns in Viçosa (Minas Gerais, BR) between December 2011 and November 2012. Cord blood and venous maternal blood were collected to evaluate the following biochemical parameters: vitamin D, alkaline phosphatase, calcium, phosphorus and parathyroid hormone. Poisson regression analysis, with a confidence interval of 95% was applied to assess vitamin D deficiency and its associated factors. Multiple linear regression analysis was performed to identify factors associated with 25(OH)D deficiency in the newborns and women from the study. The criteria for variable inclusion in the multiple linear regression model was the association with the dependent variable in the simple linear regression analysis, considering p<0.20. Significance level was α<5%. From 226 women included, 200 (88.5%) were 20 to 44 years old; the median age was 28 years. Deficient/insufficient levels of vitamin D were found in 192 (85%) women and in 182 (80.5%) neonates. The maternal 25(OH)D and alkaline phosphatase levels were independently associated with vitamin D deficiency in infants. This study identified a high prevalence of vitamin D deficiency and insufficiency in women and newborns and the association between maternal nutritional status of vitamin D and their infants' vitamin D status. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Jeong, Jin-Seok; Lee, Seung-Youp; Chang, Moontaek
2016-06-01
The aim of this study was to evaluate alterations of papilla dimensions after orthodontic closure of the diastema between maxillary central incisors. Sixty patients who had a visible diastema between maxillary central incisors that had been closed by orthodontic approximation were selected for this study. Various papilla dimensions were assessed on clinical photographs and study models before the orthodontic treatment and at the follow-up examination after closure of the diastema. Influences of the variables assessed before orthodontic treatment on the alterations of papilla height (PH) and papilla base thickness (PBT) were evaluated by univariate regression analysis. To analyze potential influences of the 3-dimensional papilla dimensions before orthodontic treatment on the alterations of PH and PBT, a multiple regression model was formulated including the 3-dimensional papilla dimensions as predictor variables. On average, PH decreased by 0.80 mm and PBT increased after orthodontic closure of the diastema (P<0.01). Univariate regression analysis revealed that the PH (P=0.002) and PBT (P=0.047) before orthodontic treatment influenced the alteration of PH. With respect to the alteration of PBT, the diastema width (P=0.045) and PBT (P=0.000) were found to be influential factors. PBT before the orthodontic treatment significantly influenced the alteration of PBT in the multiple regression model. PH decreased but PBT increased after orthodontic closure of the diastema. The papilla dimensions before orthodontic treatment influenced the alterations of PH and PBT after closure of the diastema. The PBT increased more when the diastema width before the orthodontic treatment was larger.
The weighted priors approach for combining expert opinions in logistic regression experiments
Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.
2017-04-24
When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less
Mental ability and psychological work performance in Chinese workers.
Zhong, Fei; Yano, Eiji; Lan, Yajia; Wang, Mianzhen; Wang, Zhiming; Wang, Xiaorong
2006-10-01
This study was to explore the relationship among mental ability, occupational stress, and psychological work performance in Chinese workers, and to identify relevant modifiers of mental ability and psychological work performance. Psychological Stress Intensity (PSI), psychological work performance, and mental ability (Mental Function Index, MFI) were determined among 485 Chinese workers (aged 33 to 62 yr, 65% of men) with varied work occupations. Occupational Stress Questionnaire (OSQ) and mental ability with 3 tests (including immediate memory, digit span, and cipher decoding) were used. The relationship between mental ability and psychological work performance was analyzed with multiple linear regression approach. PSI, MFI, or psychological work performance were significantly different among different work types and educational level groups (p<0.01). Multiple linear regression analysis showed that MFI was significantly related to gender, age, educational level, and work type. Higher MFI and lower PSI predicted a better psychological work performance, even after adjusted for gender, age, educational level, and work type. The study suggests that occupational stress and low mental ability are important predictors for poor psychological work performance, which is modified by both gender and educational level.
Yu, Cai-Xia; Zhang, Xiu-Zhen; Zhang, Keqin; Tang, Zihui
2015-12-09
The main aim of this study was to evaluate the association between education level and osteoporosis (OP) in general Chinese Men. We conducted a large-scale, community-based, cross-sectional study to investigate the association by using self-report questionnaire to assess education levels. The data of 1092 men were available for analysis in this study. Multiple regression models controlling for confounding factors to include education level were performed to explore the relationship between education level and OP. Positive correlations between education level and T-score of quantitative bone ultrasound (QUS-T score) were reported (β = 0.108, P value < 0.001). Multiple regression analysis indicated that the education level was independently and significantly associated with OP (P < 0.1 for all models). The men with lower education level had a higher prevalence of OP. The education level was independently and significantly associated with OP. The prevalence of OP was more frequent in Chinese men with lower education level. ClinicalTrials.gov Identifier: NCT02451397 ; date of registration: 05/28/2015).
Lange, Dustin D; Wong, Alex W K; Strauser, David R; Wagner, Stacia
2014-12-01
The aims of this study were as follows: (a) to compare levels of career thoughts and vocational identity between young adult childhood central nervous system (CNS) cancer survivors and noncancer peers and (b) to investigate the contribution of vocational identity and affect on career thoughts among cancer survivors. Participants included 45 young adult CNS cancer survivors and a comparison sample of 60 college students. Participants completed Career Thoughts Inventory, My Vocational Situation, and the Positive and Negative Affect Schedule. Multivariate analysis of variance and multiple regression analysis were used to analyze the data in this study. CNS cancer survivors had a higher level of decision-making confusion than the college students. Multiple regression analysis indicated that vocational identity and positive affect significantly predicted the career thoughts of CNS survivors. The differences in decision-making confusion suggest that young adult CNS survivors would benefit from interventions that focus on providing knowledge of how to make decisions, while increasing vocational identity and positive affect for this specific population could also be beneficial.
Yubero, Santiago; Larrañaga, Elisa; Villora, Beatriz; Navarro, Raúl
2017-10-05
The present study examines the relationship between different roles in cyberbullying behaviors (cyberbullies, cybervictims, cyberbullies-victims, and uninvolved) and self-reported digital piracy. In a region of central Spain, 643 (49.3% females, 50.7% males) students (grades 7-10) completed a number of self-reported measures, including cyberbullying victimization and perpetration, self-reported digital piracy, ethical considerations of digital piracy, time spent on the Internet, and leisure activities related with digital content. The results of a series of hierarchical multiple regression models for the whole sample indicate that cyberbullies and cyberbullies-victims are associated with more reports of digital piracy. Subsequent hierarchical multiple regression analyses, done separately for males and females, indicate that the relationship between cyberbullying and self-reported digital piracy is sustained only for males. The ANCOVA analysis show that, after controlling for gender, self-reported digital piracy and time spent on the Internet, cyberbullies and cyberbullies-victims believe that digital piracy is a more ethically and morally acceptable behavior than victims and uninvolved adolescents believe. The results provide insight into the association between two deviant behaviors.
[Domestic violence during pregnancy and its relationship with birth weight].
Valdez-Santiago, R; Sanín-Aguirre, L H
1996-01-01
To determine the prevalence of domestic violence during pregnancy and its impact on birth weight and the immediate post-partum period. We conducted a survey of 110 pregnant women who delivered at the Hospital Civil in Cuernavaca, Morelos. The questionnaire was applied by specialized personal. We used multiple linear regression to adjust for differences between birth weight means and multiple logistic regression for complications. In our study, women who suffered violence during pregnancy had three times more complications during delivery (Cl 95% 1.3-7.9). The difference in birth weight of newborns of these women was 560 g less (p < 0.01 adjusted by age and parity) in comparison with women who did not undergo violence during pregnancy. Women who suffered violence during pregnancy had a four times greater risk for having low birth weight babies (Cl 95% 1.3-12.3) than the non-battered women. We propose more research be done on this topic, including studies of other population groups. Also, health personnel should be educated that violence towards women could constitute a reproductive risk.
The weighted priors approach for combining expert opinions in logistic regression experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinlan, Kevin R.; Anderson-Cook, Christine M.; Myers, Kary L.
When modeling the reliability of a system or component, it is not uncommon for more than one expert to provide very different prior estimates of the expected reliability as a function of an explanatory variable such as age or temperature. Our goal in this paper is to incorporate all information from the experts when choosing a design about which units to test. Bayesian design of experiments has been shown to be very successful for generalized linear models, including logistic regression models. We use this approach to develop methodology for the case where there are several potentially non-overlapping priors under consideration.more » While multiple priors have been used for analysis in the past, they have never been used in a design context. The Weighted Priors method performs well for a broad range of true underlying model parameter choices and is more robust when compared to other reasonable design choices. Finally, we illustrate the method through multiple scenarios and a motivating example. Additional figures for this article are available in the online supplementary information.« less
A Semiparametric Change-Point Regression Model for Longitudinal Observations.
Xing, Haipeng; Ying, Zhiliang
2012-12-01
Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject-specific, and the number, locations and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure which combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference, and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real data set is also given.
Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
NASA Astrophysics Data System (ADS)
Minh, Vu Trieu; Katushin, Dmitri; Antonov, Maksim; Veinthal, Renno
2017-03-01
This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM) based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), rock brittleness index (BI), the distance between planes of weakness (DPW), and the alpha angle (Alpha) between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP). Four
Hydrology and trout populations of cold-water rivers of Michigan and Wisconsin
Hendrickson, G.E.; Knutilla, R.L.
1974-01-01
Statistical multiple-regression analyses showed significant relationships between trout populations and hydrologic parameters. Parameters showing the higher levels of significance were temperature, hardness of water, percentage of gravel bottom, percentage of bottom vegetation, variability of streamflow, and discharge per unit drainage area. Trout populations increase with lower levels of annual maximum water temperatures, with increase in water hardness, and with increase in percentage of gravel and bottom vegetation. Trout populations also increase with decrease in variability of streamflow, and with increase in discharge per unit drainage area. Most hydrologic parameters were significant when evaluated collectively, but no parameter, by itself, showed a high degree of correlation with trout populations in regression analyses that included all the streams sampled. Regression analyses of stream segments that were restricted to certain limits of hardness, temperature, or percentage of gravel bottom showed improvements in correlation. Analyses of trout populations, in pounds per acre and pounds per mile and hydrologic parameters resulted in regression equations from which trout populations could be estimated with standard errors of 89 and 84 per cent, respectively.
Regression Commonality Analysis: A Technique for Quantitative Theory Building
ERIC Educational Resources Information Center
Nimon, Kim; Reio, Thomas G., Jr.
2011-01-01
When it comes to multiple linear regression analysis (MLR), it is common for social and behavioral science researchers to rely predominately on beta weights when evaluating how predictors contribute to a regression model. Presenting an underutilized statistical technique, this article describes how organizational researchers can use commonality…
Precision Efficacy Analysis for Regression.
ERIC Educational Resources Information Center
Brooks, Gordon P.
When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…
Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.
2009-01-01
In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.
Schnittger, Rebecca I B; Wherton, Joseph; Prendergast, David; Lawlor, Brian A
2012-01-01
To develop biopsychosocial models of loneliness and social support thereby identifying their key risk factors in an Irish sample of community-dwelling older adults. Additionally, to investigate indirect effects of social support on loneliness through mediating risk factors. A total of 579 participants (400 females; 179 males) were given a battery of biopsychosocial assessments with the primary measures being the De Jong Gierveld Loneliness Scale and the Lubben Social Network Scale along with a broad range of secondary measures. Bivariate correlation analyses identified items to be included in separate psychosocial, cognitive, biological and demographic multiple regression analyses. The resulting model items were then entered into further multiple regression analyses to obtain overall models. Following this, bootstrapping mediation analyses was conducted to examine indirect effects of social support on the subtypes (emotional and social) of loneliness. The overall model for (1) emotional loneliness included depression, neuroticism, perceived stress, living alone and accommodation type, (2) social loneliness included neuroticism, perceived stress, animal naming and number of grandchildren and (3) social support included extraversion, executive functioning (Trail Making Test B-time), history of falls, age and whether the participant drives or not. Social support influenced emotional loneliness predominantly through indirect means, while its effect on social loneliness was more direct. These results characterise the biopsychosocial risk factors of emotional loneliness, social loneliness and social support and identify key pathways by which social support influences emotional and social loneliness. These findings highlight issues with the potential for consideration in the development of targeted interventions.
Modeling the impact of COPD on the brain.
Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing
2008-01-01
Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable-COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p < or = 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities.
Modeling the impact of COPD on the brain
Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing
2008-01-01
Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities. PMID:18990971
NASA Technical Reports Server (NTRS)
Callis, S. L.; Sakamoto, C.
1984-01-01
A model based on multiple regression was developed to estimate soybean yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the soybean growing area. Predictor variables for the model were derived from monthly total precipitation and monthly average temperature. A trend variable was included for the years 1969 to 1978 since an increasing trend in yields due to technology was observed between these years.
Results of the 2008 AORN Salary Survey.
Bacon, Donald
2008-12-01
AORN conducted its sixth annual compensation survey for perioperative nurses in August of 2008. A multiple regression model was used to examine how a variety of variables including job title, education level, certification, experience, and geographic region affect nursing compensation. Comparisons between the 2008 and previous years' data are presented. The effects of other forms of compensation, such as on-call compensation, overtime, bonuses, and shift differentials on average base compensation rates also are examined.
Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques
NASA Astrophysics Data System (ADS)
El Kenawy, A.
2009-09-01
This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.
The prediction of intelligence in preschool children using alternative models to regression.
Finch, W Holmes; Chang, Mei; Davis, Andrew S; Holden, Jocelyn E; Rothlisberg, Barbara A; McIntosh, David E
2011-12-01
Statistical prediction of an outcome variable using multiple independent variables is a common practice in the social and behavioral sciences. For example, neuropsychologists are sometimes called upon to provide predictions of preinjury cognitive functioning for individuals who have suffered a traumatic brain injury. Typically, these predictions are made using standard multiple linear regression models with several demographic variables (e.g., gender, ethnicity, education level) as predictors. Prior research has shown conflicting evidence regarding the ability of such models to provide accurate predictions of outcome variables such as full-scale intelligence (FSIQ) test scores. The present study had two goals: (1) to demonstrate the utility of a set of alternative prediction methods that have been applied extensively in the natural sciences and business but have not been frequently explored in the social sciences and (2) to develop models that can be used to predict premorbid cognitive functioning in preschool children. Predictions of Stanford-Binet 5 FSIQ scores for preschool-aged children is used to compare the performance of a multiple regression model with several of these alternative methods. Results demonstrate that classification and regression trees provided more accurate predictions of FSIQ scores than does the more traditional regression approach. Implications of these results are discussed.
Borgquist, Ola; Wise, Matt P; Nielsen, Niklas; Al-Subaie, Nawaf; Cranshaw, Julius; Cronberg, Tobias; Glover, Guy; Hassager, Christian; Kjaergaard, Jesper; Kuiper, Michael; Smid, Ondrej; Walden, Andrew; Friberg, Hans
2017-08-01
Dysglycemia and glycemic variability are associated with poor outcomes in critically ill patients. Targeted temperature management alters blood glucose homeostasis. We investigated the association between blood glucose concentrations and glycemic variability and the neurologic outcomes of patients randomized to targeted temperature management at 33°C or 36°C after cardiac arrest. Post hoc analysis of the multicenter TTM-trial. Primary outcome of this analysis was neurologic outcome after 6 months, referred to as "Cerebral Performance Category." Thirty-six sites in Europe and Australia. All 939 patients with out-of-hospital cardiac arrest of presumed cardiac cause that had been included in the TTM-trial. Targeted temperature management at 33°C or 36°C. Nonparametric tests as well as multiple logistic regression and mixed effects logistic regression models were used. Median glucose concentrations on hospital admission differed significantly between Cerebral Performance Category outcomes (p < 0.0001). Hyper- and hypoglycemia were associated with poor neurologic outcome (p = 0.001 and p = 0.054). In the multiple logistic regression models, the median glycemic level was an independent predictor of poor Cerebral Performance Category (Cerebral Performance Category, 3-5) with an odds ratio (OR) of 1.13 in the adjusted model (p = 0.008; 95% CI, 1.03-1.24). It was also a predictor in the mixed model, which served as a sensitivity analysis to adjust for the multiple time points. The proportion of hyperglycemia was higher in the 33°C group compared with the 36°C group. Higher blood glucose levels at admission and during the first 36 hours, and higher glycemic variability, were associated with poor neurologic outcome and death. More patients in the 33°C treatment arm had hyperglycemia.
Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students
Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed
2013-01-01
Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004
Predictive ability of a comprehensive incremental test in mountain bike marathon.
Ahrend, Marc-Daniel; Schneeweiss, Patrick; Martus, Peter; Niess, Andreas M; Krauss, Inga
2018-01-01
Traditional performance tests in mountain bike marathon (XCM) primarily quantify aerobic metabolism and may not describe the relevant capacities in XCM. We aimed to validate a comprehensive test protocol quantifying its intermittent demands. Forty-nine athletes (38.8±9.1 years; 38 male; 11 female) performed a laboratory performance test, including an incremental test, to determine individual anaerobic threshold (IAT), peak power output (PPO) and three maximal efforts (10 s all-out sprint, 1 min maximal effort and 5 min maximal effort). Within 2 weeks, the athletes participated in one of three XCM races (n=15, n=9 and n=25). Correlations between test variables and race times were calculated separately. In addition, multiple regression models of the predictive value of laboratory outcomes were calculated for race 3 and across all races (z-transformed data). All variables were correlated with race times 1, 2 and 3: 10 s all-out sprint (r=-0.72; r=-0.59; r=-0.61), 1 min maximal effort (r=-0.85; r=-0.84; r=-0.82), 5 min maximal effort (r=-0.57; r=-0.85; r=-0.76), PPO (r=-0.77; r=-0.73; r=-0.76) and IAT (r=-0.71; r=-0.67; r=-0.68). The best-fitting multiple regression models for race 3 (r 2 =0.868) and across all races (r 2 =0.757) comprised 1 min maximal effort, IAT and body weight. Aerobic and intermittent variables correlated least strongly with race times. Their use in a multiple regression model confirmed additional explanatory power to predict XCM performance. These findings underline the usefulness of the comprehensive incremental test to predict performance in that sport more precisely.
Optimization of fixture layouts of glass laser optics using multiple kernel regression.
Su, Jianhua; Cao, Enhua; Qiao, Hong
2014-05-10
We aim to build an integrated fixturing model to describe the structural properties and thermal properties of the support frame of glass laser optics. Therefore, (a) a near global optimal set of clamps can be computed to minimize the surface shape error of the glass laser optic based on the proposed model, and (b) a desired surface shape error can be obtained by adjusting the clamping forces under various environmental temperatures based on the model. To construct the model, we develop a new multiple kernel learning method and call it multiple kernel support vector functional regression. The proposed method uses two layer regressions to group and order the data sources by the weights of the kernels and the factors of the layers. Because of that, the influences of the clamps and the temperature can be evaluated by grouping them into different layers.
Prediction of anthropometric foot characteristics in children.
Morrison, Stewart C; Durward, Brian R; Watt, Gordon F; Donaldson, Malcolm D C
2009-01-01
The establishment of growth reference values is needed in pediatric practice where pathologic conditions can have a detrimental effect on the growth and development of the pediatric foot. This study aims to use multiple regression to evaluate the effects of multiple predictor variables (height, age, body mass, and gender) on anthropometric characteristics of the peripubescent foot. Two hundred children aged 9 to 12 years were recruited, and three anthropometric measurements of the pediatric foot were recorded (foot length, forefoot width, and navicular height). Multiple regression analysis was conducted, and coefficients for gender, height, and body mass all had significant relationships for the prediction of forefoot width and foot length (P < or = .05, r > or = 0.7). The coefficients for gender and body mass were not significant for the prediction of navicular height (P > or = .05), whereas height was (P < or = .05). Normative growth reference values and prognostic regression equations are presented for the peripubescent foot.
Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method.
Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza
2015-11-18
Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available.
Birthweight Related Factors in Northwestern Iran: Using Quantile Regression Method
Fallah, Ramazan; Kazemnejad, Anoshirvan; Zayeri, Farid; Shoghli, Alireza
2016-01-01
Introduction: Birthweight is one of the most important predicting indicators of the health status in adulthood. Having a balanced birthweight is one of the priorities of the health system in most of the industrial and developed countries. This indicator is used to assess the growth and health status of the infants. The aim of this study was to assess the birthweight of the neonates by using quantile regression in Zanjan province. Methods: This analytical descriptive study was carried out using pre-registered (March 2010 - March 2012) data of neonates in urban/rural health centers of Zanjan province using multiple-stage cluster sampling. Data were analyzed using multiple linear regressions andquantile regression method and SAS 9.2 statistical software. Results: From 8456 newborn baby, 4146 (49%) were female. The mean age of the mothers was 27.1±5.4 years. The mean birthweight of the neonates was 3104 ± 431 grams. Five hundred and seventy-three patients (6.8%) of the neonates were less than 2500 grams. In all quantiles, gestational age of neonates (p<0.05), weight and educational level of the mothers (p<0.05) showed a linear significant relationship with the i of the neonates. However, sex and birth rank of the neonates, mothers age, place of residence (urban/rural) and career were not significant in all quantiles (p>0.05). Conclusion: This study revealed the results of multiple linear regression and quantile regression were not identical. We strictly recommend the use of quantile regression when an asymmetric response variable or data with outliers is available. PMID:26925889
Luck, Tobias; Pabst, Alexander; Rodriguez, Francisca S; Schroeter, Matthias L; Witte, Veronica; Hinz, Andreas; Mehnert, Anja; Engel, Christoph; Loeffler, Markus; Thiery, Joachim; Villringer, Arno; Riedel-Heller, Steffi G
2018-05-01
To provide new age-, sex-, and education-specific reference values for an extended version of the well-established Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery (CERAD-NAB) that additionally includes the Trail Making Test and the Verbal Fluency Test-S-Words. Norms were calculated based on the cognitive performances of n = 1,888 dementia-free participants (60-79 years) from the population-based German LIFE-Adult-Study. Multiple regressions were used to examine the association of the CERAD-NAB scores with age, sex, and education. In order to calculate the norms, quantile and censored quantile regression analyses were performed estimating marginal means of the test scores at 2.28, 6.68, 10, 15.87, 25, 50, 75, and 90 percentiles for age-, sex-, and education-specific subgroups. Multiple regression analyses revealed that younger age was significantly associated with better cognitive performance in 15 CERAD-NAB measures and higher education with better cognitive performance in all 17 measures. Women performed significantly better than men in 12 measures and men than women in four measures. The determined norms indicate ceiling effects for the cognitive performances in the Boston Naming, Word List Recognition, Constructional Praxis Copying, and Constructional Praxis Recall tests. The new norms for the extended CERAD-NAB will be useful for evaluating dementia-free German-speaking adults in a broad variety of relevant cognitive domains. The extended CERAD-NAB follows more closely the criteria for the new DSM-5 Mild and Major Neurocognitive Disorder. Additionally, it could be further developed to include a test for social cognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake
Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.
2009-01-01
We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.
Weighted regression analysis and interval estimators
Donald W. Seegrist
1974-01-01
A method for deriving the weighted least squares estimators for the parameters of a multiple regression model. Confidence intervals for expected values, and prediction intervals for the means of future samples are given.
Chen, Ying-Jen; Ho, Meng-Yang; Chen, Kwan-Ju; Hsu, Chia-Fen; Ryu, Shan-Jin
2009-08-01
The aims of the present study were to (i) investigate if traditional Chinese word reading ability can be used for estimating premorbid general intelligence; and (ii) to provide multiple regression equations for estimating premorbid performance on Raven's Standard Progressive Matrices (RSPM), using age, years of education and Chinese Graded Word Reading Test (CGWRT) scores as predictor variables. Four hundred and twenty-six healthy volunteers (201 male, 225 female), aged 16-93 years (mean +/- SD, 41.92 +/- 18.19 years) undertook the tests individually under supervised conditions. Seventy percent of subjects were randomly allocated to the derivation group (n = 296), and the rest to the validation group (n = 130). RSPM score was positively correlated with CGWRT score and years of education. RSPM and CGWRT scores and years of education were also inversely correlated with age, but the declining trend for RSPM performance against age was steeper than that for CGWRT performance. Separate multiple regression equations were derived for estimating RSPM scores using different combinations of age, years of education, and CGWRT score for both groups. The multiple regression coefficient of each equation ranged from 0.71 to 0.80 with the standard error of estimate between 7 and 8 RSPM points. When fitting the data of one group to the equations derived from its counterpart group, the cross-validation multiple regression coefficients ranged from 0.71 to 0.79. There were no significant differences in the 'predicted-obtained' RSPM discrepancies between any equations. The regression equations derived in the present study may provide a basis for estimating premorbid RSPM performance.
Tay, Cheryl Sihui; Sterzing, Thorsten; Lim, Chen Yen; Ding, Rui; Kong, Pui Wah
2017-05-01
This study examined (a) the strength of four individual footwear perception factors to influence the overall preference of running shoes and (b) whether these perception factors satisfied the nonmulticollinear assumption in a regression model. Running footwear must fulfill multiple functional criteria to satisfy its potential users. Footwear perception factors, such as fit and cushioning, are commonly used to guide shoe design and development, but it is unclear whether running-footwear users are able to differentiate one factor from another. One hundred casual runners assessed four running shoes on a 15-cm visual analogue scale for four footwear perception factors (fit, cushioning, arch support, and stability) as well as for overall preference during a treadmill running protocol. Diagnostic tests showed an absence of multicollinearity between factors, where values for tolerance ranged from .36 to .72, corresponding to variance inflation factors of 2.8 to 1.4. The multiple regression model of these four footwear perception variables accounted for 77.7% to 81.6% of variance in overall preference, with each factor explaining a unique part of the total variance. Casual runners were able to rate each footwear perception factor separately, thus assigning each factor a true potential to improve overall preference for the users. The results also support the use of a multiple regression model of footwear perception factors to predict overall running shoe preference. Regression modeling is a useful tool for running-shoe manufacturers to more precisely evaluate how individual factors contribute to the subjective assessment of running footwear.
Predicting MHC-II binding affinity using multiple instance regression
EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2011-01-01
Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923
Burgette, Lane F; Reiter, Jerome P
2013-06-01
Multinomial outcomes with many levels can be challenging to model. Information typically accrues slowly with increasing sample size, yet the parameter space expands rapidly with additional covariates. Shrinking all regression parameters towards zero, as often done in models of continuous or binary response variables, is unsatisfactory, since setting parameters equal to zero in multinomial models does not necessarily imply "no effect." We propose an approach to modeling multinomial outcomes with many levels based on a Bayesian multinomial probit (MNP) model and a multiple shrinkage prior distribution for the regression parameters. The prior distribution encourages the MNP regression parameters to shrink toward a number of learned locations, thereby substantially reducing the dimension of the parameter space. Using simulated data, we compare the predictive performance of this model against two other recently-proposed methods for big multinomial models. The results suggest that the fully Bayesian, multiple shrinkage approach can outperform these other methods. We apply the multiple shrinkage MNP to simulating replacement values for areal identifiers, e.g., census tract indicators, in order to protect data confidentiality in public use datasets.
Cuttability Assessment of Selected Rocks Through Different Brittleness Values
NASA Astrophysics Data System (ADS)
Dursun, Arif Emre; Gokay, M. Kemal
2016-04-01
Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.
NASA Astrophysics Data System (ADS)
Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.
2018-03-01
Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.
Quantile Regression in the Study of Developmental Sciences
ERIC Educational Resources Information Center
Petscher, Yaacov; Logan, Jessica A. R.
2014-01-01
Linear regression analysis is one of the most common techniques applied in developmental research, but only allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but across multiple points of…
Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)
1987-10-01
Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE
Curcic, Marijana; Buha, Aleksandra; Stankovic, Sanja; Milovanovic, Vesna; Bulat, Zorica; Đukić-Ćosić, Danijela; Antonijević, Evica; Vučinić, Slavica; Matović, Vesna; Antonijevic, Biljana
2017-02-01
The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200-240g for 28days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight antagonism for the effects on RBC and WBC while no interactions were proved for the joint effect on PLT count. These results confirm that the assessment of interactions between chemicals in the mixture greatly depends on the concept or method used for this evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo
2017-11-01
[Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.
Šabanagić-Hajrić, Selma; Alajbegović, Azra
2015-02-01
To evaluate the impacts of education level and employment status on health-related quality of life (HRQoL) in multiple sclerosis patients. This study included 100 multiple sclerosis patients treated at the Department of Neurology, Clinical Center of the University of Sarajevo. Inclusion criteria were the Expanded Disability Status Scale (EDSS) score between 1.0 and 6.5, age between 18 and 65 years, stable disease on enrollment. Quality of life (QoL) was evaluated by the Multiple Sclerosis Quality of Life-54 questionnaire (MSQoL-54). Mann-Whitney and Kruskal-Wallis test were used for comparisons. Linear regression analyses were performed to evaluate prediction value of educational level and employment status in predicting MSQOL-54 physical and mental composite scores. Full employment status had positive impact on physical health (54.85 vs. 37.90; p les than 0.001) and mental health (59.55 vs. 45.90; p les than 0.001) composite scores. Employment status retained its independent predictability for both physical (r(2)=0.105) and mental (r(2)=0.076) composite scores in linear regression analysis. Patients with college degree had slightly higher median value of physical (49.36 vs. 45.30) and mental health composite score (66.74 vs. 55.62) comparing to others, without statistically significant difference. Employment proved to be an important factor in predicting quality of life in multiple sclerosis patients. Higher education level may determine better QOL but without significant predictive value. Sustained employment and development of vocational rehabilitation programs for MS patients living in the country with high unemployment level is an important factor in improving both physical and mental health outcomes in MS patients.
Sullivan, Timothy; Aberg, Judith
2017-01-01
Abstract Background The timely identification of carbapenem resistance is essential in the management of patients with Klebsiella pneumoniae bloodstream infection (BSI). An algorithm using electronic medical record (EMR) data to quickly predict resistance could potentially help guide therapy until more definitive resistance testing results are available. Methods All cases of K. pneumoniae BSI at Mount Sinai Hospital from September 2012 through September 2016 were identified. Cases of persistent BSI or recurrent BSI within 2 weeks were included only once. Patients with recurrent BSI after more than 2 weeks of negative blood cultures were considered distinct cases and included more than once. Carbapenem resistance was defined as an imipenem minimum inhibitory concentration of ≥2 μg/ml. Extensive EMR data for each patient were compiled into a relational database using SQLite. Possible risk factors for carbapenem resistance were queried from the database and analyzed via univariate methods. Significant factors were then entered into a multiple logistic regression model in a forward stepwise approach using SPSS. Results A total of 613 cases of K. pneumoniae BSI were identified in 540 unique patients. The overall incidence of imipenem resistance was 10% (61 cases). Significant markers of resistance included in the final model were (1) prior colonization with imipenem-resistant Klebsiella pneumoniae; (2) hospital unit (defined as high-risk unit, low-risk unit, and emergency department); (3) total inpatient days in the previous 5 years; (4) total days of oral or parenteral antibiotics in the past 2 years; and (5) age >60 years old (Figure 1). The model generated a receiver operating characteristic curve with an area under the curve of 0.75 (Figure 2). At a cut point of 0.083, the model correctly predicted 72% of imipenem-resistant cases while incorrectly labeling 32% of susceptible cases as resistant (Sn = 72%, Sp = 63%, Figure 3). Conclusion A multiple logistic regression model using EMR data can generate immediate, clinically useful predictions of carbapenem resistance in patients with K. pneumoniae BSI. Larger data sets are needed to improve and validate these findings. Figure 1. Algorithm variables Figure 2. Receiver operating characteristic curve Figure 3. Classification table Disclosures All authors: No reported disclosures.
NASA Astrophysics Data System (ADS)
Hofer, Marlis; Nemec, Johanna
2016-04-01
This study presents first steps towards verifying the hypothesis that uncertainty in global and regional glacier mass simulations can be reduced considerably by reducing the uncertainty in the high-resolution atmospheric input data. To this aim, we systematically explore the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in geo-environmentally and climatologically very distinct settings, all within highly complex topography and in the close proximity to mountain glaciers: (1) the Vernagtbach station in the Northern European Alps (VERNAGT), (2) the Artesonraju measuring site in the tropical South American Andes (ARTESON), and (3) the Brewster measuring site in the Southern Alps of New Zealand (BREWSTER). As the large-scale predictors, ERA interim reanalysis data are used. In the applied downscaling model training and evaluation procedures, particular emphasis is put on appropriately accounting for the pitfalls of limited and/or patchy observation records that are usually the only (if at all) available data from the glacierized mountain sites. Generalized linear models and beta regression are investigated as alternatives to ordinary least squares regression for the non-Gaussian target variables. By analyzing results for the three different sites, five predictands and for different times of the year, we look for systematic improvements in the downscaling models' skill specifically obtained by (i) using predictor data at the optimum scale rather than the minimum scale of the reanalysis data, (ii) identifying the optimum predictor allocation in the vertical, and (iii) considering multiple (variable, level and/or grid point) predictor options combined with state-of-art empirical feature selection tools. First results show that in particular for air temperature, those downscaling models based on direct predictor selection show comparative skill like those models based on multiple predictors. For all other target variables, however, multiple predictor approaches can considerably outperform those models based on single predictors. Including multiple variable types emerges as the most promising predictor option (in particular for wind speed at all sites), even if the same predictor set is used across the different cases.
Cross Validation of Selection of Variables in Multiple Regression.
1979-12-01
55 vii CROSS VALIDATION OF SELECTION OF VARIABLES IN MULTIPLE REGRESSION I Introduction Background Long term DoD planning gcals...028545024 .31109000 BF * SS - .008700618 .0471961 Constant - .70977903 85.146786 55 had adequate predictive capabilities; the other two models (the...71ZCO F111D Control 54 73EGO FlIID Computer, General Purpose 55 73EPO FII1D Converter-Multiplexer 56 73HAO flllD Stabilizer Platform 57 73HCO F1ID
Adjusted variable plots for Cox's proportional hazards regression model.
Hall, C B; Zeger, S L; Bandeen-Roche, K J
1996-01-01
Adjusted variable plots are useful in linear regression for outlier detection and for qualitative evaluation of the fit of a model. In this paper, we extend adjusted variable plots to Cox's proportional hazards model for possibly censored survival data. We propose three different plots: a risk level adjusted variable (RLAV) plot in which each observation in each risk set appears, a subject level adjusted variable (SLAV) plot in which each subject is represented by one point, and an event level adjusted variable (ELAV) plot in which the entire risk set at each failure event is represented by a single point. The latter two plots are derived from the RLAV by combining multiple points. In each point, the regression coefficient and standard error from a Cox proportional hazards regression is obtained by a simple linear regression through the origin fit to the coordinates of the pictured points. The plots are illustrated with a reanalysis of a dataset of 65 patients with multiple myeloma.
Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.
2009-01-01
Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358
NASA Astrophysics Data System (ADS)
Sahabiev, I. A.; Ryazanov, S. S.; Kolcova, T. G.; Grigoryan, B. R.
2018-03-01
The three most common techniques to interpolate soil properties at a field scale—ordinary kriging (OK), regression kriging with multiple linear regression drift model (RK + MLR), and regression kriging with principal component regression drift model (RK + PCR)—were examined. The results of the performed study were compiled into an algorithm of choosing the most appropriate soil mapping technique. Relief attributes were used as the auxiliary variables. When spatial dependence of a target variable was strong, the OK method showed more accurate interpolation results, and the inclusion of the auxiliary data resulted in an insignificant improvement in prediction accuracy. According to the algorithm, the RK + PCR method effectively eliminates multicollinearity of explanatory variables. However, if the number of predictors is less than ten, the probability of multicollinearity is reduced, and application of the PCR becomes irrational. In that case, the multiple linear regression should be used instead.
A Solution to Separation and Multicollinearity in Multiple Logistic Regression
Shen, Jianzhao; Gao, Sujuan
2010-01-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27–38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth’s penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study. PMID:20376286
A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Shen, Jianzhao; Gao, Sujuan
2008-10-01
In dementia screening tests, item selection for shortening an existing screening test can be achieved using multiple logistic regression. However, maximum likelihood estimates for such logistic regression models often experience serious bias or even non-existence because of separation and multicollinearity problems resulting from a large number of highly correlated items. Firth (1993, Biometrika, 80(1), 27-38) proposed a penalized likelihood estimator for generalized linear models and it was shown to reduce bias and the non-existence problems. The ridge regression has been used in logistic regression to stabilize the estimates in cases of multicollinearity. However, neither solves the problems for each other. In this paper, we propose a double penalized maximum likelihood estimator combining Firth's penalized likelihood equation with a ridge parameter. We present a simulation study evaluating the empirical performance of the double penalized likelihood estimator in small to moderate sample sizes. We demonstrate the proposed approach using a current screening data from a community-based dementia study.
JadidMilani, Maryam; Ashktorab, Tahereh; AbedSaeedi, Zhila; AlaviMajd, Hamid
2015-12-01
This study aimed to investigate the effect of self-transcendence on the physical health of multiple sclerosis (MS) patients attending peer support groups. This study was a quasi-experimental before-and-after design including 33 MS patients in three groups: 10 men in the men-only group, 11 women in the women-only group, and 12 men and women in the mixed group. Participants were required to attend eight weekly sessions of 2 h each. Instruments included the physical health section of the Multiple Sclerosis Quality of Life Inventory and Reed's Self-Transcendence Scale. Peer support group attendance was found to have a significant positive effect on the physical health and self-transcendence of MS patients when comparing average scores before and after attendance. Regression analysis showed that improvement in self-transcendence predicted improvement in physical health. Results show the positive effects of peer support groups on self-transcendence and physical health in MS patients, and suggest that improvement in well-being can be gained by promoting self-transcendence and physical health. © 2015 Wiley Publishing Asia Pty Ltd.
Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis
2014-01-01
Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the detection of multiple potentially influential low outliers. Streamgage basin characteristics were determined using geographical information system techniques. Initial ordinary least squares regression simulations reduced the number of basin characteristics on the basis of such factors as statistical significance, coefficient of determination, Mallow’s Cp statistic, and ease of measurement of the explanatory variable. Application of generalized least squares regression techniques produced final predictive (regression) equations for estimating the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability flows for urban and small, rural ungaged basins for three hydrologic regions (HR1, Piedmont–Ridge and Valley; HR3, Sand Hills; and HR4, Coastal Plain), which previously had been defined from exploratory regression analysis in the Southeast rural flood-frequency investigation. Because of the limited availability of urban streamgages in the Coastal Plain of Georgia, South Carolina, and North Carolina, additional urban streamgages in Florida and New Jersey were used in the regression analysis for this region. Including the urban streamgages in New Jersey allowed for the expansion of the applicability of the predictive equations in the Coastal Plain from 3.5 to 53.5 square miles. Average standard error of prediction for the predictive equations, which is a measure of the average accuracy of the regression equations when predicting flood estimates for ungaged sites, range from 25.0 percent for the 10-percent annual exceedance probability regression equation for the Piedmont–Ridge and Valley region to 73.3 percent for the 0.2-percent annual exceedance probability regression equation for the Sand Hills region.
Zeckey, C; Wendt, K; Mommsen, P; Winkelmann, M; Frömke, C; Weidemann, J; Stübig, T; Krettek, C; Hildebrand, F
2015-01-01
Chest trauma is a relevant risk factor for mortality after multiple trauma. Kinetic therapy (KT) represents a potential treatment option in order to restore pulmonary function. Decision criteria for performing kinetic therapy are not fully elucidated. The purpose of this study was to investigate the decision making process to initiate kinetic therapy in a well defined multiple trauma cohort. A retrospective analysis (2000-2009) of polytrauma patients (age > 16 years, ISS ⩾ 16) with severe chest trauma (AIS(Chest) ⩾ 3) was performed. Patients with AIS(Head) ⩾ 3 were excluded. Patients receiving either kinetic (KT+) or lung protective ventilation strategy (KT-) were compared. Chest trauma was classified according to the AIS(Chest), Pulmonary Contusion Score (PCS), Wagner Jamieson Score and Thoracic Trauma Severity Score (TTS). There were multiple outcome parameters investigated included mortality, posttraumatic complications and clinical data. A multivariate regression analysis was performed. Two hundred and eighty-three patients were included (KT+: n=160; KT-: n=123). AIS(Chest), age and gender were comparable in both groups. There were significant higher values of the ISS, PCS, Wagner Jamieson Score and TTS in group KT+. The incidence of posttraumatic complications and mortality was increased compared to group KT- (p< 0.05). Despite that, kinetic therapy failed to be an independent risk factor for mortality in multivariate logistic regression analysis. Kinetic therapy is an option in severely injured patients with severe chest trauma. Decision making is not only based on anatomical aspects such as the AIS(Chest), but on overall injury severity, pulmonary contusions and physiological deterioration. It could be assumed that the increased mortality in patients receiving KT is primarily caused by these factors and does not reflect an independent adverse effect of KT. Furthermore, KT was not shown to be an independent risk factor for mortality.
NASA Technical Reports Server (NTRS)
Callis, S. L.; Sakamoto, C.
1984-01-01
Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.
NASA Technical Reports Server (NTRS)
Callis, S. L.; Sakamoto, C.
1984-01-01
A model based on multiple regression was developed to estimate corn yields for the country of Argentina. A meteorological data set was obtained for the country by averaging data for stations within the corn-growing area. Predictor variables for the model were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. A trend variable was included for the years 1965 to 1980 since an increasing trend in yields due to technology was observed between these years.
Learning style and concept acquisition of community college students in introductory biology
NASA Astrophysics Data System (ADS)
Bobick, Sandra Burin
This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous multiple regression indicated that demographic variables were significant positive predictors for Methodical, Deep and Elaborative Learning Styles. Stepwise multiple regression resulted in number of credits, Read Science and gender (female) as significant predictors of learning styles. The findings of this study emphasize the importance of learning styles in conceptual understanding of the gene and the correlation of nonformal exposure to science information with learning style and conceptual understanding.
Relationships between use of television during meals and children's food consumption patterns.
Coon, K A; Goldberg, J; Rogers, B L; Tucker, K L
2001-01-01
We examined relationships between the presence of television during meals and children's food consumption patterns to test whether children's overall food consumption patterns, including foods not normally advertised, vary systematically with the extent to which television is part of normal mealtime routines. Ninety-one parent-child pairs from suburbs adjacent to Washington, DC, recruited via advertisements and word of mouth, participated. Children were in the fourth, fifth, or sixth grades. Socioeconomic data and information on television use were collected during survey interviews. Three nonconsecutive 24-hour dietary recalls, conducted with each child, were used to construct nutrient and food intake outcome variables. Independent sample t tests were used to compare mean food and nutrient intakes of children from families in which the television was usually on during 2 or more meals (n = 41) to those of children from families in which the television was either never on or only on during one meal (n = 50). Multiple linear regression models, controlling for socioeconomic factors and other covariates, were used to test strength of associations between television and children's consumption of food groups and nutrients. Children from families with high television use derived, on average, 6% more of their total daily energy intake from meats; 5% more from pizza, salty snacks, and soda; and nearly 5% less of their energy intake from fruits, vegetables, and juices than did children from families with low television use. Associations between television and children's consumption of food groups remained statistically significant in multiple linear regression models that controlled for socioeconomic factors and other covariates. Children from high television families derived less of their total energy from carbohydrate and consumed twice as much caffeine as children from low television families. There continued to be a significant association between television and children's consumption of caffeine when these relationships were tested in multiple linear regression models. The dietary patterns of children from families in which television viewing is a normal part of meal routines may include fewer fruits and vegetables and more pizzas, snack foods, and sodas than the dietary patterns of children from families in which television viewing and eating are separate activities.
Hayashi, Tatsuya; Saitoh, Satoshi; Fukuzawa, Kei; Tsuji, Yoshinori; Takahashi, Junji; Kawamura, Yusuke; Akuta, Norio; Kobayashi, Masahiro; Ikeda, Kenji; Fujii, Takeshi; Miyati, Tosiaki; Kumada, Hiromitsu
2017-09-15
Noninvasive liver fibrosis evaluation was performed in patients with nonalcoholic fatty liver disease (NAFLD). We used a quantitative method based on the hepatic volume acquired from gadoxetate disodium-enhanced (Gd-EOB-DTPA-enhanced) magnetic resonance imaging (MRI) for diagnosing advanced fibrosis in patients with NAFLD. A total of 130 patients who were diagnosed with NAFLD and underwent Gd-EOB-DTPA-enhanced MRI were retrospectively included. Histological data were available for 118 patients. Hepatic volumetric parameters, including the left hepatic lobe to right hepatic lobe volume ratio (L/R ratio), were measured. The usefulness of the L/R ratio for diagnosing fibrosis ≥F3-4 and F4 was assessed using the area under the receiver operating characteristic (AUROC) curve. Multiple regression analysis was performed to identify variables (age, body mass index, serum fibrosis markers, and histological features) that were associated with the L/R ratio. The L/R ratio demonstrated good performance in differentiating advanced fibrosis (AUROC, 0.80; 95% confidence interval, 0.72 to 0.88) from cirrhosis (AUROC, 0.87; 95% confidence interval, 0.75 to 0.99). Multiple regression analysis showed that only fibrosis was significantly associated with the L/R ratio (coefficient, 0.121; p<0.0001). The L/R ratio, which is not influenced by pathological parameters other than fibrosis, is useful for diagnosing cirrhosis in patients with NAFLD.
Pfleger, C C H; Flachs, E M; Koch-Henriksen, N
2010-11-01
Time to disability pension is one of the endpoints to be used to determine the prognosis of multiple sclerosis (MS) in prospective studies. To assess the time to cessation of work and receiving disability pension in MS, and how it may depend on gender, type of work and age and symptom at onset. A total of 2240 Danes with onset of definite/probable MS 1980-1989, identified from the Danish MS-Registry, were included. Information on social endpoints was retrieved from Statistics Denmark. Cox regression analyses were used with onset as starting point. Afferent onset symptoms [hazard ratio (HR 0.57)] and non-physical type of work (HR 0.70) were favourable prognostic factors compared with high age at onset, physical work and efferent symptoms at onset. The mean time to disability pension was 13 years for patients with afferent/brainstem onset symptom but 8.7 years for those with efferent onset symptoms (P < 0.0001). The effect of onset symptom was reduced and the effect of sex became significant when all covariates and age at onset were included in multivariate Cox regression. Onset age, type of onset symptom and work are robust predictors of disability pension in MS. Disability pension proves to be a reliable milestone in estimation of the prognosis of MS. © 2010 The Author(s). Journal compilation © 2010 EFNS.
Respiratory health effects associated with restoration work in post-Hurricane Katrina New Orleans.
Rando, Roy J; Lefante, John J; Freyder, Laurie M; Jones, Robert N
2012-01-01
This study examines prevalence of respiratory conditions in New Orleans-area restoration workers after Hurricane Katrina. Between 2007 and 2010, spirometry and respiratory health and occupational questionnaire were administered to 791 New Orleans-area adults who mostly worked in the building construction and maintenance trades or custodial services. The associations between restoration work hours and lung function and prevalence of respiratory symptoms were examined by multiple linear regression, χ², or multiple logistic regression. 74% of participants performed post-Katrina restoration work (median time: 620 hours). Symptoms reported include episodes of transient fever/cough (29%), sinus symptoms (48%), pneumonia (3.7%), and new onset asthma (4.5%). Prevalence rate ratios for post-Katrina sinus symptoms (PRR = 1.3; CI: 1.1, 1.7) and fever and cough (PRR = 1.7; CI: 1.3, 2.4) were significantly elevated overall for those who did restoration work and prevalence increased with restoration work hours. Prevalence rate ratios with restoration work were also elevated for new onset asthma (PRR = 2.2; CI: 0.8, 6.2) and pneumonia (PRR = 1.3; CI: 0.5, 3.2) but were not statistically significant. Overall, lung function was slightly depressed but was not significantly different between those with and without restoration work exposure. Post-Katrina restoration work is associated with moderate adverse effects on respiratory health, including sinusitis and toxic pneumonitis.
Schwab, Bianca; Daniel, Heloisa Silveira; Lutkemeyer, Carine; Neves, João Arthur Lange Lins; Zilli, Louise Nassif; Guarnieri, Ricardo; Diaz, Alexandre Paim; Michels, Ana Maria Maykot Prates
2015-01-01
Health-related quality of life (HRQOL) assessment tools have been broadly used in the medical context. These tools are used to measure the subjective impact of the disease on patients. The objective of this study was to evaluate the variables associated with HRQOL in a Brazilian sample of patients followed up in a tertiary outpatient clinic for depression and anxiety disorders. Cross-sectional study. Independent variables were those included in a sociodemographic questionnaire and the Hospital Anxiety and Depression Scale (HADS) scores. Dependent variables were those included in the short version of the World Health Organization Quality of Life (WHOQOL-BREF) and the scores for its subdomains (overall quality of life and general health, physical health, psychological health, social relationships, and environment). A multiple linear regression analysis was used to find the variables independently associated with each outcome. Seventy-five adult patients were evaluated. After multiple linear regression analysis, the HADS scores were associated with all outcomes, except social relationships (p = 0.08). Female gender was associated with poor total scores, as well as psychological health and environment. Unemployment was associated with poor physical health. Identifying the factors associated with HRQOL and recognizing that depression and anxiety are major factors are essential to improve the care of patients.
Lee, Chun-Hsien; Chang, Fong-Ching; Hsu, Sheng-Der; Chi, Hsueh-Yun; Huang, Li-Jung; Yeh, Ming-Kung
2017-01-01
While self-medication is common, inappropriate self-medication has potential risks. This study assesses inappropriate self-medication among adolescents and examines the relationships among medication literacy, substance use, and inappropriate self-medication. In 2016, a national representative sample of 6,226 students from 99 primary, middle, and high schools completed an online self-administered questionnaire. Multiple logistic regression analysis was used to examine factors related to inappropriate self-medication. The prevalence of self-medication in the past year among the adolescents surveyed was 45.8%, and the most frequently reported drugs for self-medication included nonsteroidal anti-inflammatory drugs or pain relievers (prevalence = 31.1%), cold or cough medicines (prevalence = 21.6%), analgesics (prevalence = 19.3%), and antacids (prevalence = 17.3%). Of the participants who practiced self-medication, the prevalence of inappropriate self-medication behaviors included not reading drug labels or instructions (10.1%), using excessive dosages (21.6%), and using prescription and nonprescription medicine simultaneously without advice from a health provider (polypharmacy) (30.3%). The results of multiple logistic regression analysis showed that after controlling for school level, gender, and chronic diseases, the participants with lower medication knowledge, lower self-efficacy, lower medication literacy, and who consumed tobacco or alcohol were more likely to engage in inappropriate self-medication. Lower medication literacy and substance use were associated with inappropriate self-medication among adolescents.
Real, J; Cleries, R; Forné, C; Roso-Llorach, A; Martínez-Sánchez, J M
In medicine and biomedical research, statistical techniques like logistic, linear, Cox and Poisson regression are widely known. The main objective is to describe the evolution of multivariate techniques used in observational studies indexed in PubMed (1970-2013), and to check the requirements of the STROBE guidelines in the author guidelines in Spanish journals indexed in PubMed. A targeted PubMed search was performed to identify papers that used logistic linear Cox and Poisson models. Furthermore, a review was also made of the author guidelines of journals published in Spain and indexed in PubMed and Web of Science. Only 6.1% of the indexed manuscripts included a term related to multivariate analysis, increasing from 0.14% in 1980 to 12.3% in 2013. In 2013, 6.7, 2.5, 3.5, and 0.31% of the manuscripts contained terms related to logistic, linear, Cox and Poisson regression, respectively. On the other hand, 12.8% of journals author guidelines explicitly recommend to follow the STROBE guidelines, and 35.9% recommend the CONSORT guideline. A low percentage of Spanish scientific journals indexed in PubMed include the STROBE statement requirement in the author guidelines. Multivariate regression models in published observational studies such as logistic regression, linear, Cox and Poisson are increasingly used both at international level, as well as in journals published in Spanish. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.
Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L
2011-10-01
Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.
Lin, Feng-Chang; Zhu, Jun
2012-01-01
We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.
Oral health literacy and information sources among adults in Tehran, Iran.
Sistani, M M Naghibi; Yazdani, R; Virtanen, J; Pakdaman, A; Murtomaa, H
2013-09-01
To assess oral health literacy level and oral health information of Iranian adults in Tehran, and to determine the factors related to oral health literacy. A cross-sectional population study. A random sample of 1,031 adults in Tehran, Iran. Oral health literacy was measured using an oral health adult literacy questionnaire (OHL-AQ). Variation in use of information sources by socio-economic and demographic background was estimated by odds ratios. A multiple linear regression model served to determine predictor factors of OHL-AQ scores controlling for characteristics of the subjects and number of information sources. The mean OHL-AQ score was 10.5 (sd 3.0). Women (p < 0.001), younger (p < 0.001), and better educated participants (p < 0.001) had higher OHL-AQ scores. The most common sources of oral health information were dentists (52.6%), and TV/Radio (49.5%). According to the regression model, females (p = 0.001), high educational level (p < 0.001), and use of multiple information sources (two sources p = 0.01, three sources or more p = 0.002) were the main predictor factors of OHL-AQ scores. The average oral health literacy level of Iranian adults was low. Disseminating evidence-based oral health care information from multiple sources including TV/radio, dentists, and other health professionals in different settings should improve public oral health literacy.
Sex differences in estimating multiple intelligences in self and others: a replication in Russia.
Furnham, Adrian; Shagabutdinova, Ksenia
2012-01-01
This was a crosscultural study that focused on sex differences in self- and other-estimates of multiple intelligences (including 10 that were specified by Gardner, 1999 and three by Sternberg, 1988) as well as in an overall general intelligence estimate. It was one of a programmatic series of studies done in over 30 countries that has demonstrated the female "humility" and male "hubris" effect in self-estimated and other-estimated intelligence. Two hundred and thirty Russian university students estimated their own and their parents' overall intelligence and "multiple intelligences." Results revealed no sex difference in estimates of overall intelligence for both self and parents, but men rated themselves higher on spatial intelligence. This contradicted many previous findings in the area which have shown that men rate their own overall intelligence and mathematical intelligence significantly higher than do women. Regressions indicated that estimates of verbal, logical, and spatial intelligences were the best predictors of estimates of overall intelligence, which is a consistent finding over many studies. Regressions also showed that participants' openness to experience and self-respect were good predictors of intelligence estimates. A comparison with a British sample showed that Russians gave higher mother estimates, and were less likely to believe that IQ tests measure intelligence. Results were discussed in relation to the influence of gender role stereotypes on lay conception of intelligence across cultures.
Gromisch, Elizabeth S; Portnoy, Jeffrey G; Foley, Frederick W
2018-05-15
Cognitive impairment is a prevalent and often intrusive problem among persons with multiple sclerosis (PwMS). Valid and reliable assessments, including quick screening measures, are crucial. The Brief International Cognitive Assessment for MS (BICAMS) was developed for this reason. While it lends itself to use in locations where formal neuropsychological resources might be limited, it does not include measures of verbal fluency or executive functioning, domains assessed as part of the Minimal Assessment of Cognitive Function in MS (MACFIMS). Given previous evidence that shortened MACFIMS measures have strong criterion validity, this study aimed to determine which of these should be included in the abbreviated MACFIMS (aMACFIMS), and how the aMACFIMS compares to the BICAMS. One hundred forty-seven PwMS were included in the analyses. A stepwise logistic regression was used to determine the measures in the aMACFIMS. Receiver-operating-characteristic (ROC) curves assessed the classification accuracy, sensitivity, and specificity. The batteries' sensitivity, specificity, and predictive values were then compared. Compared to the BICAMS, the final aMACFIMS had higher specificity (87% versus 72%) and positive predictive value (86% versus 77%), but lower sensitivity (71% versus 81%). The aMACFIMS has several benefits, including reduced administration time and the addition of a verbal fluency/executive functioning measure. Copyright © 2018 Elsevier B.V. All rights reserved.
Antecedents of self-care in adults with congenital heart defects.
McCabe, Nancy; Dunbar, Sandra B; Butler, Javed; Higgins, Melinda; Book, Wendy; Reilly, Carolyn
2015-12-15
Adults with congenital heart defects (ACHD) face long-term complications related to prior surgery, abnormal anatomy, and acquired cardiovascular conditions. Although self-care is an important part of chronic illness management, few studies have explored self-care in the ACHD population. The purpose of this study is to describe self-care and its antecedents in the ACHD population. Persons with moderate or severe ACHD (N=132) were recruited from a single ACHD center. Self-care (health maintenance behaviors, monitoring and management of symptoms), and potential antecedents including sociodemographic and clinical characteristics, ACHD knowledge, behavioral characteristics (depressive symptoms and self-efficacy), and family-related factors (parental overprotection and perceived family support) were collected via self-report and chart review. Multiple regression was used to identify antecedents of self-care maintenance, monitoring, and management. Only 44.7%, 27.3%, and 23.3% of participants performed adequate levels of self-care maintenance, monitoring and management, respectively. In multiple regression analysis, self-efficacy, education, gender, perceived family support, and comorbidities explained 25% of the variance in self-care maintenance (R(2)=.248, F(5, 123)=9.44, p<.001). Age, depressive symptoms, self-efficacy, and NYHA Class explained 23% of the variance in self-care monitoring (R(2)=.232, F(2, 124)=10.66, p<.001). Self-efficacy and NYHA Class explained 9% of the variance in self-care management (R(2)=.094, F(2, 80)=5.27, p=.007). Low levels of self-care are common among persons with ACHD. Multiple factors, including modifiable factors of self-efficacy, depressive symptoms, and perceived family support, are associated with self-care and should be considered in designing future interventions to improve outcomes in the ACHD population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Antecedents of Self-Care in Adults with Congenital Heart Defects
McCabe, Nancy; Dunbar, Sandra B.; Butler, Javed; Higgins, Melinda; Book, Wendy; Reilly, Carolyn
2015-01-01
Background Adults with congenital heart defects (ACHD) face long-term complications related to prior surgery, abnormal anatomy, and acquired cardiovascular conditions. Although self-care is an important part of chronic illness management, few studies have explored self-care in the ACHD population. The purpose of this study is to describe self-care and its antecedents in the ACHD population. Methods Persons with moderate or severe ACHD (N=132) were recruited from a single ACHD center. Self-care (health maintenance behaviors, monitoring and management of symptoms), and potential antecedents including sociodemographic and clinical characteristics, ACHD knowledge, behavioral characteristics (depressive symptoms and self-efficacy), and family-related factors (parental overprotection and perceived family support) were collected via self-report and chart review. Multiple regression was used to identify antecedents of self-care maintenance, monitoring, and management. Results Only 44.7%, 27.3%, and 23.3% of participants performed adequate levels of self-care maintenance, monitoring and management, respectively. In multiple regression analysis, self-efficacy, education, gender, perceived family support, and comorbidities explained 25% of the variance in self-care maintenance (R2=.248, F(5, 123)=9.44, p<.001). Age, depressive symptoms, self-efficacy, and NYHA Class explained 23% of the variance in self-care monitoring (R2=.232, F(2, 124)=10.66, p<.001). Self-efficacy and NYHA Class explained 9% of the variance in self-care management (R2=.094, F(2, 80)=5.27, p=.007). Conclusions Low levels of self-care are common among persons with ACHD. Multiple factors, including modifiable factors of self-efficacy, depressive symptoms, and perceived family support, are associated with self-care and should be considered in designing future interventions to improve outcomes in the ACHD population. PMID:26340127
Rauch, Eden R; Smulian, John C; DePrince, Kristin; Ananth, Cande V; Marcella, Stephen W
2005-10-01
The purpose of this study was to identify factors that predict a decision to interrupt a pregnancy in which there are fetal anomalies in the second trimester. The New Jersey Fetal Abnormalities Registry prospectively recruits and collects information on pregnancies (> or = 15 weeks of gestation) from New Jersey residents in whom a fetal structural anomaly has been suspected by maternal-fetal medicine specialists. Enrolled pregnancies that have major fetal structural abnormalities identified from 15 to 23 weeks of gestation were included. Outcomes were classified as either elective interruption or a natural pregnancy course, which might include a spontaneous fetal death or live birth. Predictors of elective interruption of pregnancy were examined with univariable and multivariable logistic regression analyses. Of the 97 cases, 33% of the women (n = 32) interrupted the pregnancy. Significant variables in the regression model that were associated with a decision to interrupt a pregnancy were earlier identification of fetal anomalies (19.0 +/- 2 weeks of gestation vs 20.5 +/- 2 weeks of gestation; P = .003), the presence of multiple anomalies (78% [25/32] vs 52% [33/63]; P = .01], and a presumption of lethality (56% [18/32] vs 14% [9/65]; P = .0001). These variables corresponded to an odds ratio for pregnancy interruption of 4.2 (95% CI, 1.0, 17.0) for multiple anomalies, 0.8 (95% CI, 0.7, 1.0) for each week of advancing gestational age, and 36.1 (95% CI, 2.9, 450.7) for presumed lethal abnormalities. Early diagnosis, the identification of multiple abnormalities, and an assessment of likely lethality of fetal anomalies are important factors for the optimization of parental autonomy in deciding pregnancy management.
Estimation of Magnitude and Frequency of Floods for Streams on the Island of Oahu, Hawaii
Wong, Michael F.
1994-01-01
This report describes techniques for estimating the magnitude and frequency of floods for the island of Oahu. The log-Pearson Type III distribution and methodology recommended by the Interagency Committee on Water Data was used to determine the magnitude and frequency of floods at 79 gaging stations that had 11 to 72 years of record. Multiple regression analysis was used to construct regression equations to transfer the magnitude and frequency information from gaged sites to ungaged sites. Oahu was divided into three hydrologic regions to define relations between peak discharge and drainage-basin and climatic characteristics. Regression equations are provided to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges at ungaged sites. Significant basin and climatic characteristics included in the regression equations are drainage area, median annual rainfall, and the 2-year, 24-hour rainfall intensity. Drainage areas for sites used in this study ranged from 0.03 to 45.7 square miles. Standard error of prediction for the regression equations ranged from 34 to 62 percent. Peak-discharge data collected through water year 1988, geographic information system (GIS) technology, and generalized least-squares regression were used in the analyses. The use of GIS seems to be a more flexible and consistent means of defining and calculating basin and climatic characteristics than using manual methods. Standard errors of estimate for the regression equations in this report are an average of 8 percent less than those published in previous studies.
Cejka, Pavel; Culík, Jiří; Horák, Tomáš; Jurková, Marie; Olšovská, Jana
2013-12-26
The rate of beer aging is affected by storage conditions including largely time and temperature. Although bottled beer is commonly stored for up to 1 year, sensorial damage of it is quite frequent. Therefore, a method for retrospective determination of temperature of stored beer was developed. The method is based on the determination of selected carbonyl compounds called as "aging indicators", which are formed during beer aging. The aging indicators were determined using GC-MS after precolumn derivatization with O-(2,3,4,5,6-pentaflourobenzyl)hydroxylamine hydrochloride, and their profile was correlated with the development of old flavor evolving under defined conditions (temperature, time) using both a mathematical and statistical apparatus. Three approaches, including calculation from regression graph, multiple linear regression, and neural networks, were employed. The ultimate uncertainty of the method ranged from 3.0 to 11.0 °C depending on the approach used. Furthermore, the assay was extended to include prediction of beer tendency to sensory aging from freshly bottled beer.
Louys, Julien; Meloro, Carlo; Elton, Sarah; Ditchfield, Peter; Bishop, Laura C
2015-01-01
We test the performance of two models that use mammalian communities to reconstruct multivariate palaeoenvironments. While both models exploit the correlation between mammal communities (defined in terms of functional groups) and arboreal heterogeneity, the first uses a multiple multivariate regression of community structure and arboreal heterogeneity, while the second uses a linear regression of the principal components of each ecospace. The success of these methods means the palaeoenvironment of a particular locality can be reconstructed in terms of the proportions of heavy, moderate, light, and absent tree canopy cover. The linear regression is less biased, and more precisely and accurately reconstructs heavy tree canopy cover than the multiple multivariate model. However, the multiple multivariate model performs better than the linear regression for all other canopy cover categories. Both models consistently perform better than randomly generated reconstructions. We apply both models to the palaeocommunity of the Upper Laetolil Beds, Tanzania. Our reconstructions indicate that there was very little heavy tree cover at this site (likely less than 10%), with the palaeo-landscape instead comprising a mixture of light and absent tree cover. These reconstructions help resolve the previous conflicting palaeoecological reconstructions made for this site. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa
2008-01-01
This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.
Multiple role adaptation among women who have children and re-enter nursing school in Taiwan.
Lin, Li-Ling
2005-03-01
This study assessed multiple role adaptation within maternal and student roles among female RNs who had children and returned to school for baccalaureate degrees in Taiwan. Using Roy's Adaptation Model as the theoretical framework, relationships were explored among demographic (number of children, age of youngest child, employment status), physical (sleep quality, health perception, activity), and psychosocial factors (self-identity, role expectation, role involvement, social support) and multiple role adaptation (role accumulation). The sample included 118 mother-students who had at least one child younger than age 18 and who were studying in nursing programs in Taiwan. The highest correlation was found between activity and role accumulation followed by significant correlations between sleep quality, health perception, maternal role expectation, and age of youngest child and role accumulation. In regression analyses, the complete model explained 46% of the variance in role accumulation. Implications for education and future research are identified.
Physical Activity and Depressive Symptoms in Four Ethnic Groups of Midlife Women
Im, Eun-Ok; Ham, Ok Kyung; Chee, Eunice; Chee, Wonshik
2014-01-01
The purpose of this study was to determine the associations between physical activity and depression and the multiple contextual factors influencing these associations in four major ethnic-groups of midlife women in the U.S. This was a secondary analysis of the data from 542 midlife women. The instruments included questions on background characteristics and health and menopausal status; the Depression Index for Midlife Women; and the Kaiser Physical Activity Survey. The data were analyzed using chi-square tests, the ANOVA, twoway ANOVA, correlation analyses, and hierarchical multiple regression analyses. The women's depressive symptoms were negatively correlated with active living and sports/exercise physical activities whereas they were positively correlated with occupational physical activities (p < .01). Family income was the strongest predictor of their depressive symptoms. Increasing physical activity may improve midlife women's depressive symptoms, but the types of physical activity and multiple contextual factors need to be considered in intervention development. PMID:24879749
2016-01-01
Purpose The aim of this study was to evaluate alterations of papilla dimensions after orthodontic closure of the diastema between maxillary central incisors. Methods Sixty patients who had a visible diastema between maxillary central incisors that had been closed by orthodontic approximation were selected for this study. Various papilla dimensions were assessed on clinical photographs and study models before the orthodontic treatment and at the follow-up examination after closure of the diastema. Influences of the variables assessed before orthodontic treatment on the alterations of papilla height (PH) and papilla base thickness (PBT) were evaluated by univariate regression analysis. To analyze potential influences of the 3-dimensional papilla dimensions before orthodontic treatment on the alterations of PH and PBT, a multiple regression model was formulated including the 3-dimensional papilla dimensions as predictor variables. Results On average, PH decreased by 0.80 mm and PBT increased after orthodontic closure of the diastema (P<0.01). Univariate regression analysis revealed that the PH (P=0.002) and PBT (P=0.047) before orthodontic treatment influenced the alteration of PH. With respect to the alteration of PBT, the diastema width (P=0.045) and PBT (P=0.000) were found to be influential factors. PBT before the orthodontic treatment significantly influenced the alteration of PBT in the multiple regression model. Conclusions PH decreased but PBT increased after orthodontic closure of the diastema. The papilla dimensions before orthodontic treatment influenced the alterations of PH and PBT after closure of the diastema. The PBT increased more when the diastema width before the orthodontic treatment was larger. PMID:27382507
Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna
2018-05-18
The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).
1981-09-01
corresponds to the same square footage that consumed the electrical energy. 3. The basic assumptions of multiple linear regres- sion, as enumerated in...7. Data related to the sample of bases is assumed to be representative of bases in the population. Limitations Basic limitations on this research were... Ratemaking --Overview. Rand Report R-5894, Santa Monica CA, May 1977. Chatterjee, Samprit, and Bertram Price. Regression Analysis by Example. New York: John
David, Ingrid; Garreau, Hervé; Balmisse, Elodie; Billon, Yvon; Canario, Laurianne
2017-01-20
Some genetic studies need to take into account correlations between traits that are repeatedly measured over time. Multiple-trait random regression models are commonly used to analyze repeated traits but suffer from several major drawbacks. In the present study, we developed a multiple-trait extension of the structured antedependence model (SAD) to overcome this issue and validated its usefulness by modeling the association between litter size (LS) and average birth weight (ABW) over parities in pigs and rabbits. The single-trait SAD model assumes that a random effect at time [Formula: see text] can be explained by the previous values of the random effect (i.e. at previous times). The proposed multiple-trait extension of the SAD model consists in adding a cross-antedependence parameter to the single-trait SAD model. This model can be easily fitted using ASReml and the OWN Fortran program that we have developed. In comparison with the random regression model, we used our multiple-trait SAD model to analyze the LS and ABW of 4345 litters from 1817 Large White sows and 8706 litters from 2286 L-1777 does over a maximum of five successive parities. For both species, the multiple-trait SAD fitted the data better than the random regression model. The difference between AIC of the two models (AIC_random regression-AIC_SAD) were equal to 7 and 227 for pigs and rabbits, respectively. A similar pattern of heritability and correlation estimates was obtained for both species. Heritabilities were lower for LS (ranging from 0.09 to 0.29) than for ABW (ranging from 0.23 to 0.39). The general trend was a decrease of the genetic correlation for a given trait between more distant parities. Estimates of genetic correlations between LS and ABW were negative and ranged from -0.03 to -0.52 across parities. No correlation was observed between the permanent environmental effects, except between the permanent environmental effects of LS and ABW of the same parity, for which the estimate of the correlation was strongly negative (ranging from -0.57 to -0.67). We demonstrated that application of our multiple-trait SAD model is feasible for studying several traits with repeated measurements and showed that it provided a better fit to the data than the random regression model.
Child Maltreatment Among Singletons and Multiple Births in Japan: A Population-Based Study.
Yokoyama, Yoshie; Oda, Terumi; Nagai, Noriyo; Sugimoto, Masako; Mizukami, Kenji
2015-12-01
The occurrence of multiple births has been recognized as a risk factor for child maltreatment. However, few population-based studies have examined the relationship between multiple births and child maltreatment. This study aimed to evaluate the degree of risk of child maltreatment among singletons and multiple births in Japan and to identify factors associated with increased risk. Using population-based data, we analyzed the database of records on child maltreatment and medical checkups for infants aged 1.5 years filed at Nishinomiya City Public Health Center between April 2007 and March 2011. To protect personal information, the data were transferred to anonymized electronic files for analysis. After adjusting by logistic regression for each associated factor and gestation number, multiples themselves were not associated with the risk of child maltreatment. However, compared with singletons, multiples had a significantly higher rate of risk factors for child maltreatment, including low birth weight and neural abnormality. Moreover, compared with mothers of singleton, mothers of twins had a significantly higher rate of poor health, which is a risk factor of child maltreatment. Multiples were not associated with the risk of child maltreatment. However, compared with singletons, multiples and their mothers had a significantly higher rate of risk factors of child maltreatment.
Accounting for Multiple Births in Neonatal and Perinatal Trials: Systematic Review and Case Study
Hibbs, Anna Maria; Black, Dennis; Palermo, Lisa; Cnaan, Avital; Luan, Xianqun; Truog, William E; Walsh, Michele C; Ballard, Roberta A
2010-01-01
Objectives To determine the prevalence in the neonatal literature of statistical approaches accounting for the unique clustering patterns of multiple births. To explore the sensitivity of an actual trial to several analytic approaches to multiples. Methods A systematic review of recent perinatal trials assessed the prevalence of studies accounting for clustering of multiples. The NO CLD trial served as a case study of the sensitivity of the outcome to several statistical strategies. We calculated odds ratios using non-clustered (logistic regression) and clustered (generalized estimating equations, multiple outputation) analyses. Results In the systematic review, most studies did not describe the randomization of twins and did not account for clustering. Of those studies that did, exclusion of multiples and generalized estimating equations were the most common strategies. The NO CLD study included 84 infants with a sibling enrolled in the study. Multiples were more likely than singletons to be white and were born to older mothers (p<0.01). Analyses that accounted for clustering were statistically significant; analyses assuming independence were not. Conclusions The statistical approach to multiples can influence the odds ratio and width of confidence intervals, thereby affecting the interpretation of a study outcome. A minority of perinatal studies address this issue. PMID:19969305
Accounting for multiple births in neonatal and perinatal trials: systematic review and case study.
Hibbs, Anna Maria; Black, Dennis; Palermo, Lisa; Cnaan, Avital; Luan, Xianqun; Truog, William E; Walsh, Michele C; Ballard, Roberta A
2010-02-01
To determine the prevalence in the neonatal literature of statistical approaches accounting for the unique clustering patterns of multiple births and to explore the sensitivity of an actual trial to several analytic approaches to multiples. A systematic review of recent perinatal trials assessed the prevalence of studies accounting for clustering of multiples. The Nitric Oxide to Prevent Chronic Lung Disease (NO CLD) trial served as a case study of the sensitivity of the outcome to several statistical strategies. We calculated odds ratios using nonclustered (logistic regression) and clustered (generalized estimating equations, multiple outputation) analyses. In the systematic review, most studies did not describe the random assignment of twins and did not account for clustering. Of those studies that did, exclusion of multiples and generalized estimating equations were the most common strategies. The NO CLD study included 84 infants with a sibling enrolled in the study. Multiples were more likely than singletons to be white and were born to older mothers (P < .01). Analyses that accounted for clustering were statistically significant; analyses assuming independence were not. The statistical approach to multiples can influence the odds ratio and width of confidence intervals, thereby affecting the interpretation of a study outcome. A minority of perinatal studies address this issue. Copyright 2010 Mosby, Inc. All rights reserved.
Factors associated with developing a fear of falling in subjects with primary open-angle glaucoma.
Adachi, Sayaka; Yuki, Kenya; Awano-Tanabe, Sachiko; Ono, Takeshi; Shiba, Daisuke; Murata, Hiroshi; Asaoka, Ryo; Tsubota, Kazuo
2018-02-13
To investigate the relationship between clinical risk factors, including visual field (VF) defects and visual acuity, and a fear of falling, among patients with primary open-angle glaucoma (POAG). All participants answered the following question at a baseline ophthalmic examination: Are you afraid of falling? The same question was then answered every 12 months for 3 years. A binocular integrated visual field was calculated by merging a patient's monocular Humphrey field analyzer VFs, using the 'best sensitivity' method. The means of total deviation values in the whole, superior peripheral, superior central, inferior central, and inferior peripheral VFs were calculated. The relationship between these mean VF measurements, and various clinical factors, against patients' baseline fear of falling and future fear of falling was analyzed using multiple logistic regression. Among 392 POAG subjects, 342 patients (87.2%) responded to the fear of falling question at least twice in the 3 years study period. The optimal regression model for patients' baseline fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. The optimal regression equation for future fear of falling included age, gender, mean of total deviation values in the inferior peripheral VF and number of previous falls. Defects in the inferior peripheral VF area are significantly related to the development of a fear of falling.
5 CFR 591.219 - How does OPM compute shelter price indexes?
Code of Federal Regulations, 2014 CFR
2014-01-01
... estimates in hedonic regressions (a type of multiple regression) to compute for each COLA survey area the price index for rental and/or rental equivalent units of comparable quality and size between the COLA...
5 CFR 591.219 - How does OPM compute shelter price indexes?
Code of Federal Regulations, 2011 CFR
2011-01-01
... estimates in hedonic regressions (a type of multiple regression) to compute for each COLA survey area the price index for rental and/or rental equivalent units of comparable quality and size between the COLA...
5 CFR 591.219 - How does OPM compute shelter price indexes?
Code of Federal Regulations, 2013 CFR
2013-01-01
... estimates in hedonic regressions (a type of multiple regression) to compute for each COLA survey area the price index for rental and/or rental equivalent units of comparable quality and size between the COLA...
5 CFR 591.219 - How does OPM compute shelter price indexes?
Code of Federal Regulations, 2012 CFR
2012-01-01
... estimates in hedonic regressions (a type of multiple regression) to compute for each COLA survey area the price index for rental and/or rental equivalent units of comparable quality and size between the COLA...
Krasikova, Dina V; Le, Huy; Bachura, Eric
2018-06-01
To address a long-standing concern regarding a gap between organizational science and practice, scholars called for more intuitive and meaningful ways of communicating research results to users of academic research. In this article, we develop a common language effect size index (CLβ) that can help translate research results to practice. We demonstrate how CLβ can be computed and used to interpret the effects of continuous and categorical predictors in multiple linear regression models. We also elaborate on how the proposed CLβ index is computed and used to interpret interactions and nonlinear effects in regression models. In addition, we test the robustness of the proposed index to violations of normality and provide means for computing standard errors and constructing confidence intervals around its estimates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Steen, Paul J.; Passino-Reader, Dora R.; Wiley, Michael J.
2006-01-01
As a part of the Great Lakes Regional Aquatic Gap Analysis Project, we evaluated methodologies for modeling associations between fish species and habitat characteristics at a landscape scale. To do this, we created brook trout Salvelinus fontinalis presence and absence models based on four different techniques: multiple linear regression, logistic regression, neural networks, and classification trees. The models were tested in two ways: by application to an independent validation database and cross-validation using the training data, and by visual comparison of statewide distribution maps with historically recorded occurrences from the Michigan Fish Atlas. Although differences in the accuracy of our models were slight, the logistic regression model predicted with the least error, followed by multiple regression, then classification trees, then the neural networks. These models will provide natural resource managers a way to identify habitats requiring protection for the conservation of fish species.
Schistosomiasis Breeding Environment Situation Analysis in Dongting Lake Area
NASA Astrophysics Data System (ADS)
Li, Chuanrong; Jia, Yuanyuan; Ma, Lingling; Liu, Zhaoyan; Qian, Yonggang
2013-01-01
Monitoring environmental characteristics, such as vegetation, soil moisture et al., of Oncomelania hupensis (O. hupensis)’ spatial/temporal distribution is of vital importance to the schistosomiasis prevention and control. In this study, the relationship between environmental factors derived from remotely sensed data and the density of O. hupensis was analyzed by a multiple linear regression model. Secondly, spatial analysis of the regression residual was investigated by the semi-variogram method. Thirdly, spatial analysis of the regression residual and the multiple linear regression model were both employed to estimate the spatial variation of O. hupensis density. Finally, the approach was used to monitor and predict the spatial and temporal variations of oncomelania of Dongting Lake region, China. And the areas of potential O. hupensis habitats were predicted and the influence of Three Gorges Dam (TGB)project on the density of O. hupensis was analyzed.
Heyman, Gene M; Dunn, Brian J; Mignone, Jason
2014-01-01
Years-of-school is negatively correlated with illicit drug use. However, educational attainment is positively correlated with IQ and negatively correlated with impulsivity, two traits that are also correlated with drug use. Thus, the negative correlation between education and drug use may reflect the correlates of schooling, not schooling itself. To help disentangle these relations we obtained measures of working memory, simple memory, IQ, disposition (impulsivity and psychiatric status), years-of-school and frequency of illicit and licit drug use in methadone clinic and community drug users. We found strong zero-order correlations between all measures, including IQ, impulsivity, years-of-school, psychiatric symptoms, and drug use. However, multiple regression analyses revealed a different picture. The significant predictors of illicit drug use were gender, involvement in a methadone clinic, and years-of-school. That is, psychiatric symptoms, impulsivity, cognition, and IQ no longer predicted illicit drug use in the multiple regression analyses. Moreover, high risk subjects (low IQ and/or high impulsivity) who spent 14 or more years in school used stimulants and opiates less than did low risk subjects who had spent <14 years in school. Smoking and drinking had a different correlational structure. IQ and years-of-school predicted whether someone ever became a smoker, whereas impulsivity predicted the frequency of drinking bouts, but years-of-school did not. Many subjects reported no use of one or more drugs, resulting in a large number of "zeroes" in the data sets. Cragg's Double-Hurdle regression method proved the best approach for dealing with this problem. To our knowledge, this is the first report to show that years-of-school predicts lower levels of illicit drug use after controlling for IQ and impulsivity. This paper also highlights the advantages of Double-Hurdle regression methods for analyzing the correlates of drug use in community samples.
Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi
2007-10-01
Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.
Matsuguma, Shinichiro; Kawashima, Motoko; Negishi, Kazuno; Sano, Fumiya; Mimura, Masaru; Tsubota, Kazuo
2018-01-01
It is well recognized that visual impairments (VI) worsen individuals' mental condition. However, little is known about the positive aspects including subjective happiness, positive emotions, and strengths. Therefore, the purpose of this study was to investigate the positive aspects of persons with VI including their subjective happiness, positive emotions, and strengths use. Positive aspects of persons with VI were measured using the Subjective Happiness Scale (SHS), the Scale of Positive and Negative Experience-Balance (SPANE-B), and the Strengths Use Scale (SUS). A cross-sectional analysis was utilized to examine personal information in a Tokyo sample (N = 44). We used a simple regression analysis and found significant relationships between the SHS or SPANE-B and SUS; on the contrary, VI-related variables were not correlated with them. A multiple regression analysis confirmed that SUS was a significant factor associated with both the SHS and SPANE-B. Strengths use might be a possible protective factor from the negative effects of VI.
Jin, Yonghong; Zhang, Qi; Shan, Lifei; Li, Sai-Ping
2015-01-01
Financial networks have been extensively studied as examples of real world complex networks. In this paper, we establish and study the network of venture capital (VC) firms in China. We compute and analyze the statistical properties of the network, including parameters such as degrees, mean lengths of the shortest paths, clustering coefficient and robustness. We further study the topology of the network and find that it has small-world behavior. A multiple linear regression model is introduced to study the relation between network parameters and major regional economic indices in China. From the result of regression, we find that, economic aggregate (including the total GDP, investment, consumption and net export), upgrade of industrial structure, employment and remuneration of a region are all positively correlated with the degree and the clustering coefficient of the VC sub-network of the region, which suggests that the development of the VC industry has substantial effects on regional economy in China.
Jin, Yonghong; Zhang, Qi; Shan, Lifei; Li, Sai-Ping
2015-01-01
Financial networks have been extensively studied as examples of real world complex networks. In this paper, we establish and study the network of venture capital (VC) firms in China. We compute and analyze the statistical properties of the network, including parameters such as degrees, mean lengths of the shortest paths, clustering coefficient and robustness. We further study the topology of the network and find that it has small-world behavior. A multiple linear regression model is introduced to study the relation between network parameters and major regional economic indices in China. From the result of regression, we find that, economic aggregate (including the total GDP, investment, consumption and net export), upgrade of industrial structure, employment and remuneration of a region are all positively correlated with the degree and the clustering coefficient of the VC sub-network of the region, which suggests that the development of the VC industry has substantial effects on regional economy in China. PMID:26340555
Estimating a child's age from an image using whole body proportions.
Lucas, Teghan; Henneberg, Maciej
2017-09-01
The use and distribution of child pornography is an increasing problem. Forensic anthropologists are often asked to estimate a child's age from a photograph. Previous studies have attempted to estimate the age of children from photographs using ratios of the face. Here, we propose to include body measurement ratios into age estimates. A total of 1603 boys and 1833 girls aged 5-16 years were measured over a 10-year period. They are 'Cape Coloured' children from South Africa. Their age was regressed on ratios derived from anthropometric measurements of the head as well as the body. Multiple regression equations including four ratios for each sex (head height to shoulder and hip width, knee width, leg length and trunk length) have a standard error of 1.6-1.7 years. The error is of the same order as variation of differences between biological and chronological ages of the children. Thus, the error cannot be minimised any further as it is a direct reflection of a naturally occurring phenomenon.
Probabilistic lifetime strength of aerospace materials via computational simulation
NASA Technical Reports Server (NTRS)
Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.
1991-01-01
The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.
Agha, Salah R; Alnahhal, Mohammed J
2012-11-01
The current study investigates the possibility of obtaining the anthropometric dimensions, critical to school furniture design, without measuring all of them. The study first selects some anthropometric dimensions that are easy to measure. Two methods are then used to check if these easy-to-measure dimensions can predict the dimensions critical to the furniture design. These methods are multiple linear regression and neural networks. Each dimension that is deemed necessary to ergonomically design school furniture is expressed as a function of some other measured anthropometric dimensions. Results show that out of the five dimensions needed for chair design, four can be related to other dimensions that can be measured while children are standing. Therefore, the method suggested here would definitely save time and effort and avoid the difficulty of dealing with students while measuring these dimensions. In general, it was found that neural networks perform better than multiple linear regression in the current study. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying
2018-01-01
Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.
Oka, Mayumi; Yamamoto, Mio; Mure, Kanae; Takeshita, Tatsuya; Arita, Mikio
2016-01-01
This study aims to investigate factors that contribute to the differences in incidence of hypertension between different regions in Japan, by accounting for not only individual lifestyles, but also their living environments. The target participants of this survey were individuals who received medical treatment for hypertension, as well as hypertension patients who have not received any treatment. The objective variable for analysis was the incidence of hypertension as data aggregated per prefecture. We used data (in men) including obesity, salt intake, vegetable intake, habitual alcohol consumption, habitual smoking, and number of steps walked per day. The variables within living environment included number of rail stations, standard/light vehicle usage, and slope of habitable land. In addition, we analyzed data for the variables related to medical environment including, participation rate in medical check-ups and number of hospitals. We performed multiple stepwise regression analyses to elucidate the correlation of these variables by using hypertension incidence as the objective variable. Hypertension incidence showed a significant negative correlation with walking and medical check-ups, and a significant positive correlation with light-vehicle usage and slope. Between the number of steps and variables related to the living environment, number of rail stations showed a significant positive correlation, while, standard- and light-vehicle usage showed significant negative correlation. Moreover, with stepwise multiple regression analysis, walking showed the strongest effect. The differences in daily walking based on living environment were associated with the disparities in the hypertension incidence in Japan. PMID:27788198
NASA Astrophysics Data System (ADS)
Mundava, C.; Helmholz, P.; Schut, A. G. T.; Corner, R.; McAtee, B.; Lamb, D. W.
2014-09-01
The objective of this paper is to test the relationships between Above Ground Biomass (AGB) and remotely sensed vegetation indices for AGB assessments in the Kimberley area in Western Australia. For 19 different sites, vegetation indices were derived from eight Landsat ETM+ scenes over a period of two years (2011-2013). The sites were divided into three groups (Open plains, Bunch grasses and Spinifex) based on similarities in dominant vegetation types. Dry and green biomass fractions were measured at these sites. Single and multiple regression relationships between vegetation indices and green and total AGB were calibrated and validated using a "leave site out" cross validation. Four tests were compared: (1) relationships between AGB and vegetation indices combining all sites; (2) separate relationships per site group; (3) multiple regressions including selected vegetation indices per site group; and (4) as in 3 but including rainfall and elevation data. Results indicate that relationships based on single vegetation indices are moderately accurate for green biomass in wide open plains covered with annual grasses. The cross-validation results for green AGB improved for a combination of indices for the Open plains and Bunch grasses sites, but not for Spinifex sites. When rainfall and elevation data are included, cross validation improved slightly with a Q2 of 0.49-0.72 for Open plains and Bunch grasses sites respectively. Cross validation results for total AGB were moderately accurate (Q2 of 0.41) for Open plains but weak or absent for other site groups despite good calibration results, indicating strong influence of site-specific factors.
Lopilly Park, H-Y; Jung, K I; Park, C K
2012-09-01
To investigate serial changes of the Ahmed glaucoma valve (AGV) implant tube in the anterior chamber by anterior segment optical coherence tomography (AS-OCT). Patients who had received AGV implantation without complications (n=48) were included in this study. Each patient received follow-up examinations including AS-OCT at days 1 and 2, week 1, and months 1, 3, 6, and 12. Tube parameters were defined to measure its length and position. The intracameral length of the tube was from the tip of the bevel-edged tube to the sclerolimbal junction. The distance between the extremity of the tube and the anterior iris surface (T-I distance), and the angle between the tube and the posterior endothelial surface of the cornea (T-C angle) were defined. Factors that were related to tube parameters were analysed by multiple regression analysis. The mean change in tube length was -0.20 ± 0.17 mm, indicating that the tube length shortened from the initial inserted length. The mean T-I distance change was 0.11 ± 0.07 mm and the mean T-C angle change was -6.7 ± 5.6°. Uveitic glaucoma and glaucoma following penetrating keratoplasty showed the most changes in tube parameters. By multiple regression analysis, diagnosis of glaucoma including uveitic glaucoma (P=0.049) and glaucoma following penetrating keratoplasty (P=0.008) were related to the change of intracameral tube length. These results suggest that the length and position of the AGV tube changes after surgery. The change was prominent in uveitic glaucoma and glaucoma following penetrating keratoplasty.
Marston, Louise; Peacock, Janet L; Yu, Keming; Brocklehurst, Peter; Calvert, Sandra A; Greenough, Anne; Marlow, Neil
2009-07-01
Studies of prematurely born infants contain a relatively large percentage of multiple births, so the resulting data have a hierarchical structure with small clusters of size 1, 2 or 3. Ignoring the clustering may lead to incorrect inferences. The aim of this study was to compare statistical methods which can be used to analyse such data: generalised estimating equations, multilevel models, multiple linear regression and logistic regression. Four datasets which differed in total size and in percentage of multiple births (n = 254, multiple 18%; n = 176, multiple 9%; n = 10 098, multiple 3%; n = 1585, multiple 8%) were analysed. With the continuous outcome, two-level models produced similar results in the larger dataset, while generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) produced divergent estimates using the smaller dataset. For the dichotomous outcome, most methods, except generalised least squares multilevel modelling (ML GH 'xtlogit' in Stata) gave similar odds ratios and 95% confidence intervals within datasets. For the continuous outcome, our results suggest using multilevel modelling. We conclude that generalised least squares multilevel modelling (ML GLS 'xtreg' in Stata) and maximum likelihood multilevel modelling (ML MLE 'xtmixed' in Stata) should be used with caution when the dataset is small. Where the outcome is dichotomous and there is a relatively large percentage of non-independent data, it is recommended that these are accounted for in analyses using logistic regression with adjusted standard errors or multilevel modelling. If, however, the dataset has a small percentage of clusters greater than size 1 (e.g. a population dataset of children where there are few multiples) there appears to be less need to adjust for clustering.
A simulation study on Bayesian Ridge regression models for several collinearity levels
NASA Astrophysics Data System (ADS)
Efendi, Achmad; Effrihan
2017-12-01
When analyzing data with multiple regression model if there are collinearities, then one or several predictor variables are usually omitted from the model. However, there sometimes some reasons, for instance medical or economic reasons, the predictors are all important and should be included in the model. Ridge regression model is not uncommon in some researches to use to cope with collinearity. Through this modeling, weights for predictor variables are used for estimating parameters. The next estimation process could follow the concept of likelihood. Furthermore, for the estimation nowadays the Bayesian version could be an alternative. This estimation method does not match likelihood one in terms of popularity due to some difficulties; computation and so forth. Nevertheless, with the growing improvement of computational methodology recently, this caveat should not at the moment become a problem. This paper discusses about simulation process for evaluating the characteristic of Bayesian Ridge regression parameter estimates. There are several simulation settings based on variety of collinearity levels and sample sizes. The results show that Bayesian method gives better performance for relatively small sample sizes, and for other settings the method does perform relatively similar to the likelihood method.
Emerson, Douglas G.; Vecchia, Aldo V.; Dahl, Ann L.
2005-01-01
The drainage-area ratio method commonly is used to estimate streamflow for sites where no streamflow data were collected. To evaluate the validity of the drainage-area ratio method and to determine if an improved method could be developed to estimate streamflow, a multiple-regression technique was used to determine if drainage area, main channel slope, and precipitation were significant variables for estimating streamflow in the Red River of the North Basin. A separate regression analysis was performed for streamflow for each of three seasons-- winter, spring, and summer. Drainage area and summer precipitation were the most significant variables. However, the regression equations generally overestimated streamflows for North Dakota stations and underestimated streamflows for Minnesota stations. To correct the bias in the residuals for the two groups of stations, indicator variables were included to allow both the intercept and the coefficient for the logarithm of drainage area to depend on the group. Drainage area was the only significant variable in the revised regression equations. The exponents for the drainage-area ratio were 0.85 for the winter season, 0.91 for the spring season, and 1.02 for the summer season.
Evaluation and application of regional turbidity-sediment regression models in Virginia
Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James S.; Chanat, Jeffrey G.
2015-01-01
Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.
Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara
2017-01-01
In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.
Estimation of stature from the foot and its segments in a sub-adult female population of North India
2011-01-01
Background Establishing personal identity is one of the main concerns in forensic investigations. Estimation of stature forms a basic domain of the investigation process in unknown and co-mingled human remains in forensic anthropology case work. The objective of the present study was to set up standards for estimation of stature from the foot and its segments in a sub-adult female population. Methods The sample for the study constituted 149 young females from the Northern part of India. The participants were aged between 13 and 18 years. Besides stature, seven anthropometric measurements that included length of the foot from each toe (T1, T2, T3, T4, and T5 respectively), foot breadth at ball (BBAL) and foot breadth at heel (BHEL) were measured on both feet in each participant using standard methods and techniques. Results The results indicated that statistically significant differences (p < 0.05) between left and right feet occur in both the foot breadth measurements (BBAL and BHEL). Foot length measurements (T1 to T5 lengths) did not show any statistically significant bilateral asymmetry. The correlation between stature and all the foot measurements was found to be positive and statistically significant (p-value < 0.001). Linear regression models and multiple regression models were derived for estimation of stature from the measurements of the foot. The present study indicates that anthropometric measurements of foot and its segments are valuable in the estimation of stature. Foot length measurements estimate stature with greater accuracy when compared to foot breadth measurements. Conclusions The present study concluded that foot measurements have a strong relationship with stature in the sub-adult female population of North India. Hence, the stature of an individual can be successfully estimated from the foot and its segments using different regression models derived in the study. The regression models derived in the study may be applied successfully for the estimation of stature in sub-adult females, whenever foot remains are brought for forensic examination. Stepwise multiple regression models tend to estimate stature more accurately than linear regression models in female sub-adults. PMID:22104433
Krishan, Kewal; Kanchan, Tanuj; Passi, Neelam
2011-11-21
Establishing personal identity is one of the main concerns in forensic investigations. Estimation of stature forms a basic domain of the investigation process in unknown and co-mingled human remains in forensic anthropology case work. The objective of the present study was to set up standards for estimation of stature from the foot and its segments in a sub-adult female population. The sample for the study constituted 149 young females from the Northern part of India. The participants were aged between 13 and 18 years. Besides stature, seven anthropometric measurements that included length of the foot from each toe (T1, T2, T3, T4, and T5 respectively), foot breadth at ball (BBAL) and foot breadth at heel (BHEL) were measured on both feet in each participant using standard methods and techniques. The results indicated that statistically significant differences (p < 0.05) between left and right feet occur in both the foot breadth measurements (BBAL and BHEL). Foot length measurements (T1 to T5 lengths) did not show any statistically significant bilateral asymmetry. The correlation between stature and all the foot measurements was found to be positive and statistically significant (p-value < 0.001). Linear regression models and multiple regression models were derived for estimation of stature from the measurements of the foot. The present study indicates that anthropometric measurements of foot and its segments are valuable in the estimation of stature. Foot length measurements estimate stature with greater accuracy when compared to foot breadth measurements. The present study concluded that foot measurements have a strong relationship with stature in the sub-adult female population of North India. Hence, the stature of an individual can be successfully estimated from the foot and its segments using different regression models derived in the study. The regression models derived in the study may be applied successfully for the estimation of stature in sub-adult females, whenever foot remains are brought for forensic examination. Stepwise multiple regression models tend to estimate stature more accurately than linear regression models in female sub-adults.
Passenger comfort during terminal-area flight maneuvers. M.S. Thesis.
NASA Technical Reports Server (NTRS)
Schoonover, W. E., Jr.
1976-01-01
A series of flight experiments was conducted to obtain passenger subjective responses to closely controlled and repeatable flight maneuvers. In 8 test flights, reactions were obtained from 30 passenger subjects to a wide range of terminal-area maneuvers, including descents, turns, decelerations, and combinations thereof. Analysis of the passenger rating variance indicated that the objective of a repeatable flight passenger environment was achieved. Multiple linear regression models developed from the test data were used to define maneuver motion boundaries for specified degrees of passenger acceptance.
Intelligible machine learning with malibu.
Langlois, Robert E; Lu, Hui
2008-01-01
malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.
Mortality rates in OECD countries converged during the period 1990-2010.
Bremberg, Sven G
2017-06-01
Since the scientific revolution of the 18th century, human health has gradually improved, but there is no unifying theory that explains this improvement in health. Studies of macrodeterminants have produced conflicting results. Most studies have analysed health at a given point in time as the outcome; however, the rate of improvement in health might be a more appropriate outcome. Twenty-eight OECD member countries were selected for analysis in the period 1990-2010. The main outcomes studied, in six age groups, were the national rates of decrease in mortality in the period 1990-2010. The effects of seven potential determinants on the rates of decrease in mortality were analysed in linear multiple regression models using least squares, controlling for country-specific history constants, which represent the mortality rate in 1990. The multiple regression analyses started with models that only included mortality rates in 1990 as determinants. These models explained 87% of the intercountry variation in the children aged 1-4 years and 51% in adults aged 55-74 years. When added to the regression equations, the seven determinants did not seem to significantly increase the explanatory power of the equations. The analyses indicated a decrease in mortality in all nations and in all age groups. The development of mortality rates in the different nations demonstrated significant catch-up effects. Therefore an important objective of the national public health sector seems to be to reduce the delay between international research findings and the universal implementation of relevant innovations.
Mckay, Garrett; Huang, Wenxi; Romera-Castillo, Cristina; Crouch, Jenna E; Rosario-Ortiz, Fernando L; Jaffé, Rudolf
2017-05-16
The antioxidant capacity and formation of photochemically produced reactive intermediates (RI) was studied for water samples collected from the Florida Everglades with different spatial (marsh versus estuarine) and temporal (wet versus dry season) characteristics. Measured RI included triplet excited states of dissolved organic matter ( 3 DOM*), singlet oxygen ( 1 O 2 ), and the hydroxyl radical ( • OH). Single and multiple linear regression modeling were performed using a broad range of extrinsic (to predict RI formation rates, R RI ) and intrinsic (to predict RI quantum yields, Φ RI ) parameters. Multiple linear regression models consistently led to better predictions of R RI and Φ RI for our data set but poor prediction of Φ RI for a previously published data set,1 probably because the predictors are intercorrelated (Pearson's r > 0.5). Single linear regression models were built with data compiled from previously published studies (n ≈ 120) in which E2:E3, S, and Φ RI values were measured, which revealed a high degree of similarity between RI-optical property relationships across DOM samples of diverse sources. This study reveals that • OH formation is, in general, decoupled from 3 DOM* and 1 O 2 formation, providing supporting evidence that 3 DOM* is not a • OH precursor. Finally, Φ RI for 1 O 2 and 3 DOM* correlated negatively with antioxidant activity (a surrogate for electron donating capacity) for the collected samples, which is consistent with intramolecular oxidation of DOM moieties by 3 DOM*.
Salazar, Edwin; Buitrago, Carolina; Molina, Federico; Alzate, Catalina Arango
2015-05-01
Determine the trend in mortality from external causes in pregnant and postpartum women and its relationship to socioeconomic factors. Descriptive study, based on the official registries of deaths reported by the National Statistics Agency, 1998-2010. The trend was analyzed using Poisson regressions. Bivariate correlations and multiple linear regression models were constructed to explore the relationship between mortality and socioeconomic factors: human development index, Gini index, gross domestic product, unsatisfied basic needs, unemployment rate, poverty, extreme poverty, quality of life index, illiteracy rate, and percentage of affiliation to the Social Security System. A total of 2 223 female deaths from external causes were recorded, of which 1 429 occurred during pregnancy and 794 in the postpartum period. The gross mortality rate dropped from 30.7 per 100 000 live births plus fetal deaths in 1998 to 16.7 in 2010. A downward curve with no significant inflection points was shown in the risk of dying from this cause. The multiple linear regression model showed a correlation between mortality and extreme poverty and the illiteracy rate, suggesting that these indicators could explain 89.4% of the change in mortality from external causes in pregnant and postpartum women each year in Colombia. Mortality from external causes in pregnant and postpartum women showed a significant downward trend that may be explained by important socioeconomic changes in the country, including a decrease in extreme poverty and in the illiteracy rate.
Inflammation, homocysteine and carotid intima-media thickness.
Baptista, Alexandre P; Cacdocar, Sanjiva; Palmeiro, Hugo; Faísca, Marília; Carrasqueira, Herménio; Morgado, Elsa; Sampaio, Sandra; Cabrita, Ana; Silva, Ana Paula; Bernardo, Idalécio; Gome, Veloso; Neves, Pedro L
2008-01-01
Cardiovascular disease is the main cause of morbidity and mortality in chronic renal patients. Carotid intima-media thickness (CIMT) is one of the most accurate markers of atherosclerosis risk. In this study, the authors set out to evaluate a population of chronic renal patients to determine which factors are associated with an increase in intima-media thickness. We included 56 patients (F=22, M=34), with a mean age of 68.6 years, and an estimated glomerular filtration rate of 15.8 ml/min (calculated by the MDRD equation). Various laboratory and inflammatory parameters (hsCRP, IL-6 and TNF-alpha) were evaluated. All subjects underwent measurement of internal carotid artery intima-media thickness by high-resolution real-time B-mode ultrasonography using a 10 MHz linear transducer. Intima-media thickness was used as a dependent variable in a simple linear regression model, with the various laboratory parameters as independent variables. Only parameters showing a significant correlation with CIMT were evaluated in a multiple regression model: age (p=0.001), hemoglobin (p=00.3), logCRP (p=0.042), logIL-6 (p=0.004) and homocysteine (p=0.002). In the multiple regression model we found that age (p=0.001) and homocysteine (p=0.027) were independently correlated with CIMT. LogIL-6 did not reach statistical significance (p=0.057), probably due to the small population size. The authors conclude that age and homocysteine correlate with carotid intima-media thickness, and thus can be considered as markers/risk factors in chronic renal patients.
Excessive weight loss in exclusively breastfed full-term newborns in a Baby-Friendly Hospital.
Mezzacappa, Maria Aparecida; Ferreira, Bruna Gil
2016-09-01
To determine the risk factors for weight loss over 8% in full-term newborns at postpartum discharge from a Baby Friendly Hospital. The cases were selected from a cohort of infants belonging to a previous study. Healthy full-term newborns with birth weight ≥2.000g, who were exclusively breastfed, and excluding twins and those undergoing phototherapy as well as those discharged after 96 hours of life, were included. The analyzed maternal variables were maternal age, parity, ethnicity, type of delivery, maternal diabetes, gender, gestational age and appropriate weight for age. Adjusted multiple and univariate Cox regression analyses were used, considering as significant p<0.05. We studied 414 newborns, of whom 107 (25.8%) had excessive weight loss. Through the univariate regression, risk factors associated with weight loss >8% were caesarean delivery and older maternal age. At the adjusted multiple regression analysis, the model to explain the weight loss was cesarean delivery (relative risk: 2.27 and 95% of confidence interval: 1.54 to 3.35). The independent predictor for weight loss >8% in exclusively breastfed full-term newborns in a Baby-Friendly Hospital was the cesarean delivery. It is possible to reduce the number of cesarean sections to minimize neonatal excessive weight loss and the resulting use of infant formula during the first week of life. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Multiple sex partner behavior in female undergraduate students in China: a multi-campus survey.
Yan, Hong; Chen, Weiqi; Wu, Haocheng; Bi, Yongyi; Zhang, Miaoxuan; Li, Shiyue; Braun, Kathryn L
2009-08-22
China is realizing increases in women engaged in premarital sex and multiple sex partner behavior. Our aim was to examine prevalence and determinants of multiple sex partner behavior among female undergraduates in China. Anonymously completed questionnaires were received from 4,769 unmarried female undergraduates, recruited using randomized cluster sampling by type of university and students' major and grade. Items captured demographic, family, peer and work influence, and student factors (major, academic performance, and sex-related knowledge and attitudes). To examine risk factors for sexual behaviors, we used multi-level logistic regression, yielding odds ratios (OR) and 95% confidence intervals (95% CI). Of 4,769 female students, 863 (18.10%) reported ever having sexual intercourse, and 5.31% reported having multiple sex partners (29.32% of all women having sexual intercourse). Several demographic, family, peer and work influences, and student factors (including major, performance, knowledge, and attitude toward sex) were risk factors for ever having sex. However, risk factors for multiple sex partners only included working in a place of entertainment, having current close friends that were living with boyfriends, poor academic performance, and positive attitudes toward multiple partners. These women also were more likely to practice masturbation, start having sex at a younger age, have sex with married men and/or men not their "boyfriends" at first coitus, and not use condoms consistently. A small but important subset of Chinese female undergraduates is engaged in unprotected sex with multiple sex partners. Interventions need to target at risk women, stressing the importance of consistent condom use.
Multiple sex partner behavior in female undergraduate students in China: A multi-campus survey
Yan, Hong; Chen, Weiqi; Wu, Haocheng; Bi, Yongyi; Zhang, Miaoxuan; Li, Shiyue; Braun, Kathryn L
2009-01-01
Background China is realizing increases in women engaged in premarital sex and multiple sex partner behavior. Our aim was to examine prevalence and determinants of multiple sex partner behavior among female undergraduates in China. Methods Anonymously completed questionnaires were received from 4,769 unmarried female undergraduates, recruited using randomized cluster sampling by type of university and students' major and grade. Items captured demographic, family, peer and work influence, and student factors (major, academic performance, and sex-related knowledge and attitudes). To examine risk factors for sexual behaviors, we used multi-level logistic regression, yielding odds ratios (OR) and 95% confidence intervals (95% CI). Results Of 4,769 female students, 863 (18.10%) reported ever having sexual intercourse, and 5.31% reported having multiple sex partners (29.32% of all women having sexual intercourse). Several demographic, family, peer and work influences, and student factors (including major, performance, knowledge, and attitude toward sex) were risk factors for ever having sex. However, risk factors for multiple sex partners only included working in a place of entertainment, having current close friends that were living with boyfriends, poor academic performance, and positive attitudes toward multiple partners. These women also were more likely to practice masturbation, start having sex at a younger age, have sex with married men and/or men not their "boyfriends" at first coitus, and not use condoms consistently. Conclusion A small but important subset of Chinese female undergraduates is engaged in unprotected sex with multiple sex partners. Interventions need to target at risk women, stressing the importance of consistent condom use. PMID:19698132
Dysfunctional Metacognitive Beliefs in Body Dysmorphic Disorder
Zeinodini, Zahra; Sedighi, Sahar; Rahimi, Mandana Baghertork; Noorbakhsh, Simasadat; Esfahani, Sepideh Rajezi
2016-01-01
The present study aims to examine the correlation of body dysmorphic disorder, with metacognitive subscales, metaworry and thought-fusion. The study was conducted in a correlation framework. Sample included 155 high school students in Isfahan, Iran in 2013-2014, gathered through convenience sampling. To gather data about BDD, Yale-Brown Obsessive Compulsive Scale Modified for BDD was applied. Then, Meta Cognitive Questionnaire, Metaworry Questionnaire, and Thought-Fusion Inventory were used to assess metacognitive subscales, metaworry and thought-fusion. Data obtained from this study were analyzed using Pearson correlation and multiple regressions in SPSS 18. Result indicated YBOCS-BDD scores had a significant correlation with scores from MCQ (P<0.05), MWG (P<0.05), and TFI (P<0.05). Also, multiple regressions were run to predict YBOCS from TFI, MWQ, and MCQ-30. These variables significantly predicted YBOCS [F (3,151) =32.393, R2=0.57]. Findings indicated that body dysmorphic disorder was significantly related to metacognitive subscales, metaworry, and thought fusion in high school students in Isfahan, which is in line with previous studies. A deeper understanding of these processes can broaden theory and treatment of BDD, thereby improve the lives of sufferers and potentially protect others from developing this devastating disorder. PMID:26493420
Drug use, mental health and problems related to crime and violence: cross-sectional study1
Claro, Heloísa Garcia; de Oliveira, Márcia Aparecida Ferreira; Bourdreaux, Janet Titus; Fernandes, Ivan Filipe de Almeida Lopes; Pinho, Paula Hayasi; Tarifa, Rosana Ribeiro
2015-01-01
Objective: to investigate the correlation between disorders related to the use of alcohol and other drugs and symptoms of mental disorders, problems related to crime and violence and to age and gender. Methods: cross-sectional descriptive study carried out with 128 users of a Psychosocial Care Center for Alcohol and other Drugs, in the city of São Paulo, interviewed by means of the instrument entitled Global Appraisal of Individual Needs - Short Screener. Univariate and multiple linear regression models were used to verify the correlation between the variables. Results: using univariate regression models, internalizing and externalizing symptoms and problems related to crime/violence proved significant and were included in the multiple model, in which only the internalizing symptoms and problems related to crime and violence remained significant. Conclusions: there is a correlation between the severity of problems related to alcohol use and severity of mental health symptoms and crime and violence in the study sample. The results emphasize the need for an interdisciplinary and intersectional character of attention to users of alcohol and other drugs, since they live in a socially vulnerable environment. PMID:26626010
Köke, Albère J; Smeets, Rob J E M; Perez, Roberto S; Kessels, Alphons; Winkens, Bjorn; van Kleef, Maarten; Patijn, Jacob
2015-03-01
Evidence for effectiveness of transcutaneous electrical nerve stimulation (TENS) is still inconclusive. As heterogeneity of chronic pain patients might be an important factor for this lack of efficacy, identifying factors for a successful long-term outcome is of great importance. A prospective study was performed to identify variables with potential predictive value for 2 outcome measures on long term (6 months); (1) continuation of TENS, and (2) a minimally clinical important pain reduction of ≥ 33%. At baseline, a set of risk factors including pain-related variables, psychological factors, and disability was measured. In a multiple logistic regression analysis, higher patient's expectations, neuropathic pain, no severe pain (< 80 mm visual analogue scale [VAS]) were independently related to long-term continuation of TENS. For the outcome "minimally clinical important pain reduction," the multiple logistic regression analysis indicated that no multisited pain (> 2 pain locations) and intermittent pain were positively and independently associated with a minimally clinical important pain reduction of ≥ 33%. The results showed that factors associated with a successful outcome in the long term are dependent on definition of successful outcome. © 2014 World Institute of Pain.
Yubero, Santiago; Larrañaga, Elisa; Villora, Beatriz
2017-01-01
The present study examines the relationship between different roles in cyberbullying behaviors (cyberbullies, cybervictims, cyberbullies-victims, and uninvolved) and self-reported digital piracy. In a region of central Spain, 643 (49.3% females, 50.7% males) students (grades 7–10) completed a number of self-reported measures, including cyberbullying victimization and perpetration, self-reported digital piracy, ethical considerations of digital piracy, time spent on the Internet, and leisure activities related with digital content. The results of a series of hierarchical multiple regression models for the whole sample indicate that cyberbullies and cyberbullies-victims are associated with more reports of digital piracy. Subsequent hierarchical multiple regression analyses, done separately for males and females, indicate that the relationship between cyberbullying and self-reported digital piracy is sustained only for males. The ANCOVA analysis show that, after controlling for gender, self-reported digital piracy and time spent on the Internet, cyberbullies and cyberbullies-victims believe that digital piracy is a more ethically and morally acceptable behavior than victims and uninvolved adolescents believe. The results provide insight into the association between two deviant behaviors. PMID:28981466
Kang, Seung-Gul; Lee, Yu Jin; Kim, Seog Ju; Lim, Weonjeong; Lee, Heon-Jeong; Park, Young-Min; Cho, In Hee; Cho, Seong-Jin; Hong, Jin Pyo
2014-02-01
The current study aims to determine the associations of insufficient sleep with suicide attempts and self-injury in a large, school-based Korean adolescent sample. A sample of 4553 middle- and high-school students (grades 7-10) was recruited in this study. Finally, 4145 students completed self-report questionnaires including items on sleep duration (weekday/weekend), self-injury, suicide attempts during the past year, the Suicidal Ideation Questionnaire (SIQ), and the Beck Depression Inventory (BDI). A multiple linear regression model showed that higher SIQ scores were associated with longer weekend catch-up sleep duration (p=0.009), higher BDI score (p<0.001), and longer time spent in a private educational institute (p=0.025). The multiple logistic regression analysis revealed that longer weekend catch-up sleep duration (p=0.011), higher BDI score (p<0.001), longer time spent in a private educational institute (p=0.046), and poorer academic record (p=0.029) were associated with suicide attempt and self-injury during the past year. The present results suggest that weekend catch-up sleep duration--which is an indicator of insufficient weekday sleep--might be associated with suicide attempts and self-injury in Korean adolescents. © 2014.
The impact of green stormwater infrastructure installation on surrounding health and safety.
Kondo, Michelle C; Low, Sarah C; Henning, Jason; Branas, Charles C
2015-03-01
We investigated the health and safety effects of urban green stormwater infrastructure (GSI) installments. We conducted a difference-in-differences analysis of the effects of GSI installments on health (e.g., blood pressure, cholesterol and stress levels) and safety (e.g., felonies, nuisance and property crimes, narcotics crimes) outcomes from 2000 to 2012 in Philadelphia, Pennsylvania. We used mixed-effects regression models to compare differences in pre- and posttreatment measures of outcomes for treatment sites (n=52) and randomly chosen, matched control sites (n=186) within multiple geographic extents surrounding GSI sites. Regression-adjusted models showed consistent and statistically significant reductions in narcotics possession (18%-27% less) within 16th-mile, quarter-mile, half-mile (P<.001), and eighth-mile (P<.01) distances from treatment sites and at the census tract level (P<.01). Narcotics manufacture and burglaries were also significantly reduced at multiple scales. Nonsignificant reductions in homicides, assaults, thefts, public drunkenness, and narcotics sales were associated with GSI installation in at least 1 geographic extent. Health and safety considerations should be included in future assessments of GSI programs. Subsequent studies should assess mechanisms of this association.
The impact of menopausal symptoms on work ability.
Geukes, Marije; van Aalst, Mariëlle P; Nauta, Mary C E; Oosterhof, Henk
2012-03-01
Menopause is an important life event that may have a negative influence on quality of life. Work ability, a concept widely used in occupational health, can predict both future impairment and duration of sickness absence. The aim of this study was to examine the impact of menopausal symptoms on work ability. This was a cross-sectional study that used a sample of healthy working Dutch women aged 44 to 60 years. Work ability was measured using the Work Ability Index, and menopausal symptoms were measured using the Greene Climacteric Scale. Stepwise multiple linear regression models were used to examine the relationship between menopausal symptoms and work ability. A total of 208 women were included in this study. There was a significant negative correlation between total Greene Climacteric Scale score and Work Ability Index score. Total Greene Climacteric Scale score predicted 33.8% of the total variance in the Work Ability Index score. Only the psychological and somatic subscales of the Greene Climacteric Scale were significant predictors in multiple linear regression analysis. Together, they accounted for 36.5% of total variance in Work Ability Index score. Menopausal symptoms are negatively associated with work ability and may increase the risk of sickness absence.
Dental calculus is associated with death from heart infarction.
Söder, Birgitta; Meurman, Jukka H; Söder, Per-Östen
2014-01-01
We studied whether the amount of dental calculus is associated with death from heart infarction in the dental infection-atherosclerosis paradigm. Participants were 1676 healthy young Swedes followed up from 1985 to 2011. At the beginning of the study all subjects underwent oral clinical examination including dental calculus registration scored with calculus index (CI). Outcome measure was cause of death classified according to WHO International Classification of Diseases. Unpaired t-test, Chi-square tests, and multiple logistic regressions were used. Of the 1676 participants, 2.8% had died during follow-up. Women died at a mean age of 61.5 years and men at 61.7 years. The difference in the CI index score between the survivors versus deceased patients was significant by the year 2009 (P < 0.01). In multiple regression analysis of the relationship between death from heart infarction as a dependent variable and CI as independent variable with controlling for age, gender, dental visits, dental plaque, periodontal pockets, education, income, socioeconomic status, and pack-years of smoking, CI score appeared to be associated with 2.3 times the odds ratio for cardiac death. The results confirmed our study hypothesis by showing that dental calculus indeed associated statistically with cardiac death due to infarction.
An Optimization of Inventory Demand Forecasting in University Healthcare Centre
NASA Astrophysics Data System (ADS)
Bon, A. T.; Ng, T. K.
2017-01-01
Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.
Female homicide in Rio Grande do Sul, Brazil.
Leites, Gabriela Tomedi; Meneghel, Stela Nazareth; Hirakata, Vania Noemi
2014-01-01
This study aimed to assess the female homicide rate due to aggression in Rio Grande do Sul, Brazil, using this as a "proxy" of femicide. This was an ecological study which correlated the female homicide rate due to aggression in Rio Grande do Sul, according to the 35 microregions defined by the Brazilian Institute of Geography and Statistics (IBGE), with socioeconomic and demographic variables access and health indicators. Pearson's correlation test was performed with the selected variables. After this, multiple linear regressions were performed with variables with p < 0.20. The standardized average of female homicide rate due to aggression in the period from 2003 to 2007 was 3.1 obits per 100 thousand. After multiple regression analysis, the final model included male mortality due to aggression (p = 0.016), the percentage of hospital admissions for alcohol (p = 0.005) and the proportion of ill-defined deaths (p = 0.015). The model have an explanatory power of 39% (adjusted r2 = 0.391). The results are consistent with other studies and indicate a strong relationship between structural violence in society and violence against women, in addition to a higher incidence of female deaths in places with high alcohol hospitalization.
[Breast feeding and systemic blood pressure in infants].
Hernández-González, Martha A; Díaz-De-León, Luz V; Guízar-Mendoza, Juan M; Amador-Licona, Norma; Cipriano-González, Marisol; Díaz-Pérez, Raúl; Murillo-Ortiz, Blanca O; De-la-Roca-Chiapas, José María; Solorio-Meza, Sergio Eduardo
2012-01-01
Blood pressure levels in childhood influence these levels in adulthood, and breastfeeding has been considered such as a cardioprotective. We evaluated the association between blood pressure levels and feeding type in a group of infants. We conducted a comparative cross-sectional study in term infants with appropriate weight at birth, to compare blood pressure levels in those children with exclusively breastfeeding, mixed-feeding and formula feeding. The comparison of groups was performed using ANOVA and multiple regression analysis was used to identify variables associated with mean arterial blood pressure levels. A p value < 0.05 was considered significant. We included 20 men and 24 women per group. Infant Formula Feeding had higher current weight and weight gain compared with the other two groups (p < 0.05). Systolic, diastolic and mean blood pressure levels, as well as respiratory and heart rate were higher in the groups of exclusively formula feeding and mixed-feeding than in those with exclusively breastfeeding (p < 0.05). Multiple regression analysis identified that variables associated with mean blood pressure levels were current body mass index, weight gain and formula feeding. Infants in breastfeeding show lower blood pressure, BMI and weight gain.
Atkinson, Sarah; Haran, Dave
2004-01-01
OBJECTIVE: To examine whether decentralization has improved health system performance in the State of Ceara, north-east Brazil. METHODS: Ceara is strongly committed to decentralization. A survey across 45 local (municipio) health systems collected data on performance and formal organization, including decentralization, informal management and local political culture. The indicators for informal management and local political culture were based on prior ethnographic research. Data were analysed using analysis of variance, Duncan's post-hoc test and multiple regression. FINDINGS: Decentralization was associated with improved performance, but only for 5 of our 22 performance indicators. Moreover, in the multiple regression, decentralization explained the variance in only one performance indicator; indicators for informal management and political culture appeared to be more important influences. However, some indicators for informal management were themselves associated with decentralization but not any of the political culture indicators. CONCLUSION: Good management practices in the study led to decentralized local health systems rather than vice versa. Any apparent association between decentralization and performance seems to be an artefact of the informal management, and the wider political culture in which a local health system is embedded strongly influences the performance of local health systems. PMID:15640917
The Impact of Green Stormwater Infrastructure Installation on Surrounding Health and Safety
Low, Sarah C.; Henning, Jason; Branas, Charles C.
2015-01-01
Objectives. We investigated the health and safety effects of urban green stormwater infrastructure (GSI) installments. Methods. We conducted a difference-in-differences analysis of the effects of GSI installments on health (e.g., blood pressure, cholesterol and stress levels) and safety (e.g., felonies, nuisance and property crimes, narcotics crimes) outcomes from 2000 to 2012 in Philadelphia, Pennsylvania. We used mixed-effects regression models to compare differences in pre- and posttreatment measures of outcomes for treatment sites (n = 52) and randomly chosen, matched control sites (n = 186) within multiple geographic extents surrounding GSI sites. Results. Regression-adjusted models showed consistent and statistically significant reductions in narcotics possession (18%–27% less) within 16th-mile, quarter-mile, half-mile (P < .001), and eighth-mile (P < .01) distances from treatment sites and at the census tract level (P < .01). Narcotics manufacture and burglaries were also significantly reduced at multiple scales. Nonsignificant reductions in homicides, assaults, thefts, public drunkenness, and narcotics sales were associated with GSI installation in at least 1 geographic extent. Conclusions. Health and safety considerations should be included in future assessments of GSI programs. Subsequent studies should assess mechanisms of this association. PMID:25602887
NASA Astrophysics Data System (ADS)
Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.
2009-09-01
The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.
Neutropenia is independently associated with sub-therapeutic serum concentration of vancomycin.
Choi, Min Hyuk; Choe, Yeon Hwa; Lee, Sang-Guk; Jeong, Seok Hoon; Kim, Jeong-Ho
2017-02-01
We aimed to identify the impact of the presence of neutropenia on serum vancomycin concentration (SVC). A retrospective study was conducted from January 2005 to December 2015. The study population was comprised of adult patients who were performed serum concentration of vancomycin. Patients with renal failure or using non-conventional dosages of vancomycin were excluded. A total of 1307 adult patients were included in this study, of whom 163 (12.4%) were neutropenic. Patients with neutropenia presented significantly lower SVCs than non-neutropenic patients (P<0.0001). Multiple linear regressions showed significant association between neutropenia and trough SVC (beta coefficients, -2.351; P=0.004). Multiple logistic regression analysis also revealed a significant association between sub-therapeutic vancomycin concentrations (trough SVC values<10mg/l) and neutropenia (odds ratio, 1.75, P=0.029) CONCLUSIONS: The presence of neutropenia is significantly associated with low SVC, even after adjusting for other variables. Therefore, neutropenic patients had a higher risk of sub-therapeutic SVC compared with non-neutropenic patients. We recommended that vancomycin therapy should be monitored with TDM-guided optimization of dosage and intervals, especially in neutropenic patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Analyzing the association between fish consumption and osteoporosis in a sample of Chinese men.
Li, Xia; Lei, Tao; Tang, Zihui; Dong, Jingcheng
2017-04-19
The main purpose of this study was to estimate the associations between frequency of fish food consumption and osteoporosis (OP) in general Chinese men. We conducted a large-scale, community-based, cross-sectional study to investigate the associations by using self-report questionnaire to access frequency of fish food intake. A total of 1092 men were available for data analysis in this study. Multiple regression models controlling for confounding factors to include frequency of fish food consumption variable were performed to investigate the relationships for OP. Positive correlations between frequency of fish food consumption and T score were reported (β = 0.084, P value = 0.025). Multiple regression analysis indicated that the frequency of fish food consumption was significantly associated with OP (P < 0.05 for model 1 and model 2). The men with high frequency of fish food consumption had a lower prevalence of OP. The findings indicated that frequency of fish food consumption was independently and significantly associated with OP. The prevalence of OP was less frequent in Chinese men preferring fish food habits. ClinicalTrials.gov Identifier: NCT02451397 retrospectively registered 28 May 2015.
Barriers to pelvic floor physical therapy utilization for treatment of female urinary incontinence.
Washington, Blair B; Raker, Christina A; Sung, Vivian W
2011-08-01
The purpose of this study was to estimate the effect of insurance status on pelvic floor physical therapy (PFPT) nonparticipation for the treatment of urinary incontinence. A cross-sectional study of women referred to PFPT for urinary incontinence between January 2009 and June 2010 was conducted. A telephone questionnaire was administered. Multiple logistic regression was used to identify risk factors for nonparticipation. Thirty-three percent of women with private insurance and 17% with other insurance were PFPT nonparticipants. On multiple logistic regression, women with Medicare were more likely to participate in PFPT (odds ratio [OR], 0.12; 95% confidence interval [CI], 0.01-0.72). Risk factors for nonparticipation included insurance noncoverage (OR, 103.85; 95% CI, 6.21-infinity) and a negative perception regarding the benefit of PFPT (OR, 5.07; 95% CI, 2.16-12.49). Among women who were referred to PFPT for urinary incontinence, insurance noncoverage and negative patient perception of efficacy were risk factors for nonparticipation, although having Medicare was protective. Improving patient education and insurance coverage for PFPT may increase usage. Copyright © 2011 Mosby, Inc. All rights reserved.
Holstiege, J; Kaluscha, R; Jankowiak, S; Krischak, G
2017-02-01
Study Objectives: The aim was to investigate the predictive value of the employment status measured in the 6 th , 12 th , 18 th and 24 th month after medical rehabilitation for long-term employment trajectories during 4 years. Methods: A retrospective study was conducted based on a 20%-sample of all patients receiving inpatient rehabilitation funded by the German pension fund. Patients aged <62 years who were treated due to musculoskeletal, cardiovascular or psychosomatic disorders during the years 2002-2005 were included and followed for 4 consecutive years. The predictive value of the employment status in 4 predefined months after discharge (6 th , 12 th , 18 th and 24 th month), for the total number of months in employment in 4 years following rehabilitative treatment was analyzed using multiple linear regression. Per time point, separate regression analyses were conducted, including the employment status (employed vs. unemployed) at the respective point in time as explanatory variable, besides a standard set of additional prognostic variables. Results: A total of 252 591 patients were eligible for study inclusion. The level of explained variance of the regression models increased with the point in time used to measure the employment status, included as explanatory variable. Overall the R²-measure increased by 30% from the regression model that included the employment status in the 6 th month (R²=0.60) to the model that included the work status in the 24 th month (R²=0.78). Conclusion: The degree of accuracy in the prognosis of long-term employment biographies increases with the point in time used to measure employment in the first 2 years following rehabilitation. These findings should be taken into consideration for the predefinition of time points used to measure the employment status in future studies. © Georg Thieme Verlag KG Stuttgart · New York.
Detection of epistatic effects with logic regression and a classical linear regression model.
Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata
2014-02-01
To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.
Nam, Kijoeng; Henderson, Nicholas C; Rohan, Patricia; Woo, Emily Jane; Russek-Cohen, Estelle
2017-01-01
The Vaccine Adverse Event Reporting System (VAERS) and other product surveillance systems compile reports of product-associated adverse events (AEs), and these reports may include a wide range of information including age, gender, and concomitant vaccines. Controlling for possible confounding variables such as these is an important task when utilizing surveillance systems to monitor post-market product safety. A common method for handling possible confounders is to compare observed product-AE combinations with adjusted baseline frequencies where the adjustments are made by stratifying on observable characteristics. Though approaches such as these have proven to be useful, in this article we propose a more flexible logistic regression approach which allows for covariates of all types rather than relying solely on stratification. Indeed, a main advantage of our approach is that the general regression framework provides flexibility to incorporate additional information such as demographic factors and concomitant vaccines. As part of our covariate-adjusted method, we outline a procedure for signal detection that accounts for multiple comparisons and controls the overall Type 1 error rate. To demonstrate the effectiveness of our approach, we illustrate our method with an example involving febrile convulsion, and we further evaluate its performance in a series of simulation studies.
Zheng, Qian-Yin; Xu, Wen; Liang, Guan-Lu; Wu, Jing; Shi, Jun-Ting
2016-01-01
To investigate the correlation between the preoperative biometric parameters of the anterior segment and the vault after implantable Collamer lens (ICL) implantation via this retrospective study. Retrospective clinical study. A total of 78 eyes from 41 patients who underwent ICL implantation surgery were included in this study. Preoperative biometric parameters, including white-to-white (WTW) diameter, central corneal thickness, keratometer, pupil diameter, anterior chamber depth, sulcus-to-sulcus diameter, anterior chamber area (ACA) and central curvature radius of the anterior surface of the lens (Lenscur), were measured. Lenscur and ACA were measured with Rhinoceros 5.0 software on the image scanned with ultrasound biomicroscopy (UBM). The vault was assessed by UBM 3 months after surgery. Multiple stepwise regression analysis was employed to identify the variables that were correlated with the vault. The results showed that the vault was correlated with 3 variables: ACA (22.4 ± 4.25 mm2), WTW (11.36 ± 0.29 mm) and Lenscur (9.15 ± 1.21 mm). The regressive equation was: vault (mm) = 1.785 + 0.017 × ACA + 0.051 × Lenscur - 0.203 × WTW. Biometric parameters of the anterior segment (ACA, WTW and Lenscur) can predict the vault after ICL implantation using a new regression equation. © 2016 The Author(s) Published by S. Karger AG, Basel.
Multiple tobacco product use among US adolescents and young adults
Soneji, Samir; Sargent, James; Tanski, Susanne
2016-01-01
Objective To assess the extent to which multiple tobacco product use among adolescents and young adults falls outside current Food and Drug Administration (FDA) regulatory authority. Methods We conducted a web-based survey of 1596 16–26-year-olds to assess use of 11 types of tobacco products. We ascertained current (past 30 days) tobacco product use among 927 respondents who ever used tobacco. Combustible tobacco products included cigarettes, cigars (little filtered, cigarillos, premium) and hookah; non-combustible tobacco products included chew, dip, dissolvables, e-cigarettes, snuff and snus. We then fitted an ordinal logistic regression model to assess demographic and behavioural associations with higher levels of current tobacco product use (single, dual and multiple product use). Results Among 448 current tobacco users, 54% were single product users, 25% dual users and 21% multiple users. The largest single use category was cigarettes (49%), followed by hookah (23%), little filtered cigars (17%) and e-cigarettes (5%). Most dual and multiple product users smoked cigarettes, along with little filtered cigars, hookah and e-cigarettes. Forty-six per cent of current single, 84% of dual and 85% of multiple tobacco product users consumed a tobacco product outside FDA regulatory authority. In multivariable analysis, the adjusted risk of multiple tobacco use was higher for males, first use of a non-combustible tobacco product, high sensation seeking respondents and declined for each additional year of age that tobacco initiation was delayed. Conclusions Nearly half of current adolescent and young adult tobacco users in this study engaged in dual and multiple tobacco product use; the majority of them used products that fall outside current FDA regulatory authority. This study supports FDA deeming of these products and their incorporation into the national media campaign to address youth tobacco use. PMID:25361744
Raggi, Alberto; Giovannetti, Ambra Mara; Schiavolin, Silvia; Brambilla, Laura; Brenna, Greta; Confalonieri, Paolo Agostino; Cortese, Francesca; Frangiamore, Rita; Leonardi, Matilde; Mantegazza, Renato Emilio; Moscatelli, Marco; Ponzio, Michela; Torri Clerici, Valentina; Zaratin, Paola; De Torres, Laura
2018-04-16
This cross-sectional study aims to identify the predictors of work-related difficulties in a sample of employed persons with multiple sclerosis as addressed with the Multiple Sclerosis Questionnaire for Job Difficulties. Hierarchical linear regression analysis was conducted to identify predictors of work difficulties: predictors included demographic variables (age, formal education), disease duration and severity, perceived disability and psychological variables (cognitive dysfunction, depression and anxiety). The targets were the questionnaire's overall score and its six subscales. A total of 177 participants (108 females, aged 21-63) were recruited. Age, perceived disability and depression were direct and significant predictors of the questionnaire total score, and the final model explained 43.7% of its variation. The models built on the questionnaire's subscales show that perceived disability and depression were direct and significant predictors of most of its subscales. Our results show that, among patients with multiple sclerosis, those who were older, with higher perceived disability and higher depression symptoms have more and more severe work-related difficulties. The Multiple Sclerosis Questionnaire for Job Difficulties can be fruitfully exploited to plan tailored actions to limit the likelihood of near-future job loss in persons of working age with multiple sclerosis. Implications for rehabilitation Difficulties with work are common among people with multiple sclerosis and are usually addressed in terms of unemployment or job loss. The Multiple Sclerosis Questionnaire for Job Difficulties is a disease-specific questionnaire developed to address the amount and severity of work-related difficulties. We found that work-related difficulties were associated to older age, higher perceived disability and depressive symptoms. Mental health issues and perceived disability should be consistently included in future research targeting work-related difficulties.
Regression in autistic spectrum disorders.
Stefanatos, Gerry A
2008-12-01
A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.
Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Interpret with caution: multicollinearity in multiple regression of cognitive data.
Morrison, Catriona M
2003-08-01
Shibihara and Kondo in 2002 reported a reanalysis of the 1997 Kanji picture-naming data of Yamazaki, Ellis, Morrison, and Lambon-Ralph in which independent variables were highly correlated. Their addition of the variable visual familiarity altered the previously reported pattern of results, indicating that visual familiarity, but not age of acquisition, was important in predicting Kanji naming speed. The present paper argues that caution should be taken when drawing conclusions from multiple regression analyses in which the independent variables are so highly correlated, as such multicollinearity can lead to unreliable output.
STATLIB: NSWC Library of Statistical Programs and Subroutines
1989-08-01
Uncorrelated Weighted Polynomial Regression 41 .WEPORC Correlated Weighted Polynomial Regression 45 MROP Multiple Regression Using Orthogonal Polynomials ...could not and should not be con- NSWC TR 89-97 verted to the new general purpose computer (the current CDC 995). Some were designed tu compute...personal computers. They are referred to as SPSSPC+, BMDPC, and SASPC and in general are less comprehensive than their mainframe counterparts. The basic
NASA Astrophysics Data System (ADS)
Shrivastava, Prashant Kumar; Pandey, Arun Kumar
2018-06-01
Inconel-718 has found high demand in different industries due to their superior mechanical properties. The traditional cutting methods are facing difficulties for cutting these alloys due to their low thermal potential, lower elasticity and high chemical compatibility at inflated temperature. The challenges of machining and/or finishing of unusual shapes and/or sizes in these materials have also faced by traditional machining. Laser beam cutting may be applied for the miniaturization and ultra-precision cutting and/or finishing by appropriate control of different process parameter. This paper present multi-objective optimization the kerf deviation, kerf width and kerf taper in the laser cutting of Incone-718 sheet. The second order regression models have been developed for different quality characteristics by using the experimental data obtained through experimentation. The regression models have been used as objective function for multi-objective optimization based on the hybrid approach of multiple regression analysis and genetic algorithm. The comparison of optimization results to experimental results shows an improvement of 88%, 10.63% and 42.15% in kerf deviation, kerf width and kerf taper, respectively. Finally, the effects of different process parameters on quality characteristics have also been discussed.
Seaman, Shaun R; Hughes, Rachael A
2018-06-01
Estimating the parameters of a regression model of interest is complicated by missing data on the variables in that model. Multiple imputation is commonly used to handle these missing data. Joint model multiple imputation and full-conditional specification multiple imputation are known to yield imputed data with the same asymptotic distribution when the conditional models of full-conditional specification are compatible with that joint model. We show that this asymptotic equivalence of imputation distributions does not imply that joint model multiple imputation and full-conditional specification multiple imputation will also yield asymptotically equally efficient inference about the parameters of the model of interest, nor that they will be equally robust to misspecification of the joint model. When the conditional models used by full-conditional specification multiple imputation are linear, logistic and multinomial regressions, these are compatible with a restricted general location joint model. We show that multiple imputation using the restricted general location joint model can be substantially more asymptotically efficient than full-conditional specification multiple imputation, but this typically requires very strong associations between variables. When associations are weaker, the efficiency gain is small. Moreover, full-conditional specification multiple imputation is shown to be potentially much more robust than joint model multiple imputation using the restricted general location model to mispecification of that model when there is substantial missingness in the outcome variable.
Factors Influencing Amount of Weekly Exercise Time in Colorectal Cancer Survivors.
Chou, Yun-Jen; Lai, Yeur-Hur; Lin, Been-Ren; Liang, Jin-Tung; Shun, Shiow-Ching
Performing regular exercise of at least 150 minutes weekly has benefits for colorectal cancer survivors. However, barriers inhibit these survivors from performing regular exercise. The aim of this study was to explore exercise behaviors and significant factors influencing weekly exercise time of more than 150 minutes in colorectal cancer survivors. A cross-sectional study design was used to recruit participants in Taiwan. Guided by the ecological model of health behavior, exercise barriers were assessed including intrapersonal, interpersonal, and environment-related barriers. A multiple logistic regression was used to explore the factors associated with the amount of weekly exercise. Among 321 survivors, 57.0% of them had weekly exercise times of more than 150 minutes. The results identified multiple levels of significant factors related to weekly exercise times including intrapersonal factors (occupational status, functional status, pain, interest in exercise, and beliefs about the importance of exercise) and exercise barriers related to environmental factors (lack of time and bad weather). No interpersonal factors were found to be significant. Colorectal cancer survivors experienced low levels of physical and psychological distress. Multiple levels of significant factors related to exercise time including intrapersonal factors as well as exercise barriers related to environmental factors should be considered. Healthcare providers should discuss with their patients how to perform exercise programs; the discussion should address multiple levels of the ecological model such as any pain problems, functional status, employment status, and time limitations, as well as community environment.
Evaluation of regression-based 3-D shoulder rhythms.
Xu, Xu; Dickerson, Clark R; Lin, Jia-Hua; McGorry, Raymond W
2016-08-01
The movements of the humerus, the clavicle, and the scapula are not completely independent. The coupled pattern of movement of these bones is called the shoulder rhythm. To date, multiple studies have focused on providing regression-based 3-D shoulder rhythms, in which the orientations of the clavicle and the scapula are estimated by the orientation of the humerus. In this study, six existing regression-based shoulder rhythms were evaluated by an independent dataset in terms of their predictability. The datasets include the measured orientations of the humerus, the clavicle, and the scapula of 14 participants over 118 different upper arm postures. The predicted orientations of the clavicle and the scapula were derived from applying those regression-based shoulder rhythms to the humerus orientation. The results indicated that none of those regression-based shoulder rhythms provides consistently more accurate results than the others. For all the joint angles and all the shoulder rhythms, the RMSE are all greater than 5°. Among those shoulder rhythms, the scapula lateral/medial rotation has the strongest correlation between the predicted and the measured angles, while the other thoracoclavicular and thoracoscapular bone orientation angles only showed a weak to moderate correlation. Since the regression-based shoulder rhythm has been adopted for shoulder biomechanical models to estimate shoulder muscle activities and structure loads, there needs to be further investigation on how the predicted error from the shoulder rhythm affects the output of the biomechanical model. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mohd Yusof, Mohd Yusmiaidil Putera; Cauwels, Rita; Deschepper, Ellen; Martens, Luc
2015-08-01
The third molar development (TMD) has been widely utilized as one of the radiographic method for dental age estimation. By using the same radiograph of the same individual, third molar eruption (TME) information can be incorporated to the TMD regression model. This study aims to evaluate the performance of dental age estimation in individual method models and the combined model (TMD and TME) based on the classic regressions of multiple linear and principal component analysis. A sample of 705 digital panoramic radiographs of Malay sub-adults aged between 14.1 and 23.8 years was collected. The techniques described by Gleiser and Hunt (modified by Kohler) and Olze were employed to stage the TMD and TME, respectively. The data was divided to develop three respective models based on the two regressions of multiple linear and principal component analysis. The trained models were then validated on the test sample and the accuracy of age prediction was compared between each model. The coefficient of determination (R²) and root mean square error (RMSE) were calculated. In both genders, adjusted R² yielded an increment in the linear regressions of combined model as compared to the individual models. The overall decrease in RMSE was detected in combined model as compared to TMD (0.03-0.06) and TME (0.2-0.8). In principal component regression, low value of adjusted R(2) and high RMSE except in male were exhibited in combined model. Dental age estimation is better predicted using combined model in multiple linear regression models. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
On the method of Ermakov and Zolotukhin for multiple integration
NASA Technical Reports Server (NTRS)
Cranley, R.; Patterson, T. N. L.
1971-01-01
By introducing the idea of pseudo-implementation, a practical assessment of the method for multiple integration is made. The performance of the method is found to be unimpressive in comparison with a recent regression method.
Criteria for the use of regression analysis for remote sensing of sediment and pollutants
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Kuo, C. Y.; Lecroy, S. R.
1982-01-01
An examination of limitations, requirements, and precision of the linear multiple-regression technique for quantification of marine environmental parameters is conducted. Both environmental and optical physics conditions have been defined for which an exact solution to the signal response equations is of the same form as the multiple regression equation. Various statistical parameters are examined to define a criteria for selection of an unbiased fit when upwelled radiance values contain error and are correlated with each other. Field experimental data are examined to define data smoothing requirements in order to satisfy the criteria of Daniel and Wood (1971). Recommendations are made concerning improved selection of ground-truth locations to maximize variance and to minimize physical errors associated with the remote sensing experiment.
Introduction to the use of regression models in epidemiology.
Bender, Ralf
2009-01-01
Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.
Health related quality of life and influencing factors among welders.
Qin, Jingxiang; Liu, Wuzhong; Zhu, Jun; Weng, Wei; Xu, Jiaming; Ai, Zisheng
2014-01-01
Occupational exposure to welding fumes is a serious occupational health problem all over the world. Welders are exposed to many occupational hazards; these hazards might cause some occupational diseases. The aim of the study was to assess the health related quality of life (HRQL) of electric welders in Shanghai China and explore influencing factors to HRQL of welders. 301 male welders (without pneumoconiosis) and 305 non-dust male workers in Shanghai were enrolled in this study. Short Form-36 (SF-36) health survey questionnaires were applied in this cross-sectional study. Socio-demographic, working and health factors were also collected. Multiple stepwise regress analysis was used to identify significant factors related to the eight dimension scores. Six dimensions including role-physical (RP), bodily pain (BP), general health (GH), validity (VT), social function (SF), and mental health (MH) were significantly worse in welders compared to non-dust workers. Multiple stepwise regress analysis results show that native place, monthly income, quantity of children, drinking, sleep time, welding type, use of personal protective equipment (PPE), great events in life, and some symptoms including dizziness, discomfort of cervical vertebra, low back pain, cough and insomnia may be influencing factors for HRQL of welders. Among these factors, only sleep time and the use of PPE were salutary. Some dimensions of HRQL of these welders have been affected. Enterprises which employ welders should take measures to protect the health of these people and improve their HRQL.
Kim, Tae Kyung; Lee, H-C; Lee, S G; Han, K-T; Park, E-C
2017-01-01
Introduction Reports of sexual harassment are becoming more frequent in Republic of Korea (ROK) Armed Forces. This study aimed to analyse the impact of sexual harassment on mental health among female military personnel of the ROK Armed Forces. Methods Data from the 2014 Military Health Survey were used. Instances of sexual harassment were recorded as ‘yes’ or ‘no’. Analysis of variance (ANOVA) was carried out to compare Kessler Psychological Distress Scale 10 (K-10) scores. Multiple logistic regression analysis was performed to identify associations between sexual harassment and K-10 scores. Results Among 228 female military personnel, 13 (5.7%) individuals experienced sexual harassment. Multiple logistic regression analysis revealed that sexual harassment had a significantly negative impact on K-10 scores (3.486, p<0.04). Higher K-10 scores among individuals experiencing sexual harassment were identified in the unmarried (including never-married) group (6.761, p<0.04), the short-term military service group (12.014, p<0.03) and the group whose length of service was <2 years (11.067, p<0.02). Conclusions Sexual harassment has a negative impact on mental health. Factors associated with worse mental health scores included service classification and length of service. The results provide helpful information with which to develop measures for minimising the negative psychological effects from sexual harassment and promoting sexual harassment prevention policy. PMID:27084842
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jahandideh, Sepideh; Jahandideh, Samad; Asadabadi, Ebrahim Barzegari
2009-11-15
Prediction of the amount of hospital waste production will be helpful in the storage, transportation and disposal of hospital waste management. Based on this fact, two predictor models including artificial neural networks (ANNs) and multiple linear regression (MLR) were applied to predict the rate of medical waste generation totally and in different types of sharp, infectious and general. In this study, a 5-fold cross-validation procedure on a database containing total of 50 hospitals of Fars province (Iran) were used to verify the performance of the models. Three performance measures including MAR, RMSE and R{sup 2} were used to evaluate performancemore » of models. The MLR as a conventional model obtained poor prediction performance measure values. However, MLR distinguished hospital capacity and bed occupancy as more significant parameters. On the other hand, ANNs as a more powerful model, which has not been introduced in predicting rate of medical waste generation, showed high performance measure values, especially 0.99 value of R{sup 2} confirming the good fit of the data. Such satisfactory results could be attributed to the non-linear nature of ANNs in problem solving which provides the opportunity for relating independent variables to dependent ones non-linearly. In conclusion, the obtained results showed that our ANN-based model approach is very promising and may play a useful role in developing a better cost-effective strategy for waste management in future.« less
Kose, E; Hirai, T; Seki, T; Hidaka, S; Hamamoto, T
2018-05-16
Anticholinergic drugs are associated with risks of falls, confusion and cognitive dysfunction. However, the effect of anticholinergic drug use on rehabilitation outcomes after a stroke is poorly documented. We therefore aimed to establish whether the anticholinergic load was associated with functional recovery among geriatric patients convalescing after stroke. Consecutive geriatric stroke patients admitted and discharged from a convalescence rehabilitation ward between 2010 and 2016 were included in this retrospective cohort study. Anticholinergic load was assessed by the Anticholinergic Risk Scale (ARS), and functional recovery was assessed by the Functional Independence Measure (FIM). The primary outcome was cognitive FIM (FIM-C) gain, but we also assessed the interaction of other putative factors identified from univariate analysis. Multivariate analyses were performed, adjusting for confounding factors. We included 418 participants (171 males, 247 females) with a median age of 78 years (interquartile range, 72-84 years). Multiple regression analysis revealed that ARS change, length of stay, and epilepsy were independently and negatively correlated with cognitive FIM gain. Multiple logistic regression analysis indicated that the "Comprehension" and "Memory" items of the cognitive FIM gain were independently and negatively associated with anticholinergic load. A causal relationship cannot be established, but increased ARS scores during hospitalization may predict limited cognitive functional improvement in geriatric patients after stroke. Alternatively, cognitive impairment may lead to increased use of anticholinergic drugs. © 2018 John Wiley & Sons Ltd.
Atteraya, Madhu Sudhan; Ebrahim, Nasser B; Gnawali, Shreejana
2018-02-01
We examined the prevalence of child maltreatment as measured by the level of physical (moderate to severe) and emotional abuse and child labor, and the associated household level determinants of child maltreatment in Nepal. We used a nationally representative data set from the fifth round of the Nepal Multiple Indicator Cluster Survey (the 2014 NMICS). The main independent variables were household level characteristics. Dependent variables included child experience of moderate to severe physical abuse, emotional abuse, and child labor (domestic work and economic activities). Bivariate analyses and logistic regressions were used to examine the associations between independent and dependent variables. The results showed that nearly half of the children (49.8%) had experienced moderate physical abuse, 21.5% experienced severe physical abuse, and 77.3% experienced emotional abuse. About 27% of the children had engaged in domestic work and 46.7% in various economic activities. At bivariate level, educational level of household's head and household wealth status had shown significant statistical association with child maltreatment (p<0.001). Results from multivariate logistic regressions showed that higher education levels and higher household wealth status protected children from moderate to severe physical abuse, emotional abuse and child labor. In general, child maltreatment is a neglected social issue in Nepal and the high rates of child maltreatment calls for mass awareness programs focusing on parents, and involving all stakeholders including governments, local, and international organizations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Respiratory Health Effects Associated with Restoration Work in Post-Hurricane Katrina New Orleans
Rando, Roy J.; Lefante, John J.; Freyder, Laurie M.; Jones, Robert N.
2012-01-01
Background. This study examines prevalence of respiratory conditions in New Orleans-area restoration workers after Hurricane Katrina. Methods. Between 2007 and 2010, spirometry and respiratory health and occupational questionnaire were administered to 791 New Orleans-area adults who mostly worked in the building construction and maintenance trades or custodial services. The associations between restoration work hours and lung function and prevalence of respiratory symptoms were examined by multiple linear regression, χ 2, or multiple logistic regression. Results. 74% of participants performed post-Katrina restoration work (median time: 620 hours). Symptoms reported include episodes of transient fever/cough (29%), sinus symptoms (48%), pneumonia (3.7%), and new onset asthma (4.5%). Prevalence rate ratios for post-Katrina sinus symptoms (PRR = 1.3; CI: 1.1, 1.7) and fever and cough (PRR = 1.7; CI: 1.3, 2.4) were significantly elevated overall for those who did restoration work and prevalence increased with restoration work hours. Prevalence rate ratios with restoration work were also elevated for new onset asthma (PRR = 2.2; CI: 0.8, 6.2) and pneumonia (PRR = 1.3; CI: 0.5, 3.2) but were not statistically significant. Overall, lung function was slightly depressed but was not significantly different between those with and without restoration work exposure. Conclusions. Post-Katrina restoration work is associated with moderate adverse effects on respiratory health, including sinusitis and toxic pneumonitis. PMID:23365586
May, Philip A; Tabachnick, Barbara G; Gossage, J Phillip; Kalberg, Wendy O; Marais, Anna-Susan; Robinson, Luther K; Manning, Melanie; Buckley, David; Hoyme, H Eugene
2011-12-01
Previous research in South Africa revealed very high rates of fetal alcohol syndrome (FAS), of 46-89 per 1000 among young children. Maternal and child data from studies in this community summarize the multiple predictors of FAS and partial fetal alcohol syndrome (PFAS). Sequential regression was employed to examine influences on child physical characteristics and dysmorphology from four categories of maternal traits: physical, demographic, childbearing, and drinking. Then, a structural equation model (SEM) was constructed to predict influences on child physical characteristics. Individual sequential regressions revealed that maternal drinking measures were the most powerful predictors of a child's physical anomalies (R² = .30, p < .001), followed by maternal demographics (R² = .24, p < .001), maternal physical characteristics (R²=.15, p < .001), and childbearing variables (R² = .06, p < .001). The SEM utilized both individual variables and the four composite categories of maternal traits to predict a set of child physical characteristics, including a total dysmorphology score. As predicted, drinking behavior is a relatively strong predictor of child physical characteristics (β = 0.61, p < .001), even when all other maternal risk variables are included; higher levels of drinking predict child physical anomalies. Overall, the SEM model explains 62% of the variance in child physical anomalies. As expected, drinking variables explain the most variance. But this highly controlled estimation of multiple effects also reveals a significant contribution played by maternal demographics and, to a lesser degree, maternal physical and childbearing variables. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Sensky, T; Leger, C; Gilmour, S
1996-01-01
Failure by people on chronic haemodialysis to adhere adequately to dietary and fluid restrictions can have serious medical consequences. Numerous psychosocial factors possibly associated with adherence have been investigated in previous research. However, most previous studies have examined one or a few variables in isolation, and have tended to focus on sociodemographic variables not easily amenable to intervention. Much previous work has tended to ignore potential differences in adherence between male and female dialysands. Sociodemographic and psychosocial factors associated with adherence to dietary and fluid restrictions were investigated in 45 people on haemodialysis attending one renal unit, excluding those with a residual urine volume > 500 ml/day. Multiple regression analyses were used to estimate the contribution to adherence of a range of variables, including gender, age, duration of dialysis, affective disturbance, past psychiatric history, health locus of control, social adjustment and social supports. Adherence to diet (measured by predialysis serum potassium) and to fluid restriction (interdialysis weight gain) were not linked, and had different psychosocial correlates. Regression models of four different aspects of adherence revealed very distinct psychosocial correlates, with contributions to adherence from complex interactions between psychosocial and cognitive variables, notably gender, age, social adjustment, health locus of control, and depression. The findings cast doubt on the results of many previous studies which have used simple models of adherence. Adherence is likely to be influenced in a complex manner by multiple factors including age, gender, locus of control, social adjustment, and past psychiatric history.
Sarcopenia is associated with an increased risk of advanced colorectal neoplasia.
Park, Youn Su; Kim, Ji Won; Kim, Byeong Gwan; Lee, Kook Lae; Lee, Jae Kyung; Kim, Joo Sung; Koh, Seong-Joon
2017-04-01
Although sarcopenia is associated with an increased risk for mortality after the curative resection of colorectal cancer, its influence on the development of advanced colonic neoplasia remains unclear. This study included 1270 subjects aged 40 years or older evaluated with first-time screening colonoscopy at Seoul National University Boramae Health Care Center from January 2010 to February 2015. Skeletal muscle mass was measured with a body composition analyzer (direct segmental multifrequency bioelectrical impedance analysis method). Multiple logistic regression analysis was performed to determine whether sarcopenia is associated with advanced colorectal neoplasia. Of 1270 subjects, 139 (10.9%) were categorized into the sarcopenia group and 1131 (89.1%) into the non-sarcopenia group. In the non-sarcopenia group, 55 subjects (4.9%) had advanced colorectal neoplasia. However, in the sarcopenia group, 19 subjects (13.7%) had advanced colorectal neoplasia, including 1 subject with invasive colorectal cancer (0.7%). In addition, subjects with sarcopenia had a higher prevalence of advanced adenoma (P < 0.001) than those without sarcopenia. According to the multiple logistic regression analysis adjusted for variable confounders, age (odds ratio 1.062, 95% confidence interval 1.032-1.093; P < 0.001), male sex (odds ratio 1.749, 95% confidence interval 1.008-3.036; P = 0.047), and sarcopenia (odds ratio 2.347, 95% confidence interval 1.311-4.202; P = 0.004) were associated with an advanced colorectal neoplasia. Sarcopenia is associated with an increased risk of advanced colorectal neoplasia.
Yang, Yingbao; Li, Xiaolong; Pan, Xin; Zhang, Yong; Cao, Chen
2017-01-01
Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in urban areas with several mixed surface types. In this study, LST was downscaled by a multiple linear regression model between LST and multiple scale factors in mixed areas with three or four surface types. The correlation coefficients (CCs) between LST and the scale factors were used to assess the importance of the scale factors within a moving window. CC thresholds determined which factors participated in the fitting of the regression equation. The proposed downscaling approach, which involves an adaptive selection of the scale factors, was evaluated using the LST derived from four Landsat 8 thermal imageries of Nanjing City in different seasons. Results of the visual and quantitative analyses show that the proposed approach achieves relatively satisfactory downscaling results on 11 August, with coefficient of determination and root-mean-square error of 0.87 and 1.13 °C, respectively. Relative to other approaches, our approach shows the similar accuracy and the availability in all seasons. The best (worst) availability occurred in the region of vegetation (water). Thus, the approach is an efficient and reliable LST downscaling method. Future tasks include reliable LST downscaling in challenging regions and the application of our model in middle and low spatial resolutions. PMID:28368301
Hyperspectral Remote Sensing of Terrestrial Ecosystem Productivity from ISS
NASA Astrophysics Data System (ADS)
Huemmrich, K. F.; Campbell, P. K. E.; Gao, B. C.; Flanagan, L. B.; Goulden, M.
2017-12-01
Data from the Hyperspectral Imager for Coastal Ocean (HICO), mounted on the International Space Station (ISS), were used to develop and test algorithms for remotely retrieving ecosystem productivity. The ISS orbit introduces both limitations and opportunities for observing ecosystem dynamics. Twenty six HICO images were used from four study sites representing different vegetation types: grasslands, shrubland, and forest. Gross ecosystem production (GEP) data from eddy covariance were matched with HICO-derived spectra. Multiple algorithms were successful relating spectral reflectance with GEP, including: Spectral Vegetation Indices (SVI), SVI in a light use efficiency model framework, spectral shape characteristics through spectral derivatives and absorption feature analysis, and statistical models leading to Multiband Hyperspectral Indices (MHI) from stepwise regressions and Partial Least Squares Regression (PLSR). Algorithms were able to achieve r2 better than 0.7 for both GEP at the overpass time and daily GEP. These algorithms were successful using a diverse set of observations combining data from multiple years, multiple times during growing season, different times of day, with different view angles, and different vegetation types. The demonstrated robustness of the algorithms presented in this study over these conditions provides some confidence in mapping spatial patterns of GEP, describing variability within fields as well as the regional patterns based only on spectral reflectance information. The ISS orbit provides periods with multiple observations collected at different times of the day within a period of a few days. Diurnal GEP patterns were estimated comparing the half-hourly average GEP from the flux tower against HICO estimates of GEP (r2=0.87) if morning, midday, and afternoon observations were available for average fluxes in the time period.
Post-processing method for wind speed ensemble forecast using wind speed and direction
NASA Astrophysics Data System (ADS)
Sofie Eide, Siri; Bjørnar Bremnes, John; Steinsland, Ingelin
2017-04-01
Statistical methods are widely applied to enhance the quality of both deterministic and ensemble NWP forecasts. In many situations, like wind speed forecasting, most of the predictive information is contained in one variable in the NWP models. However, in statistical calibration of deterministic forecasts it is often seen that including more variables can further improve forecast skill. For ensembles this is rarely taken advantage of, mainly due to that it is generally not straightforward how to include multiple variables. In this study, it is demonstrated how multiple variables can be included in Bayesian model averaging (BMA) by using a flexible regression method for estimating the conditional means. The method is applied to wind speed forecasting at 204 Norwegian stations based on wind speed and direction forecasts from the ECMWF ensemble system. At about 85 % of the sites the ensemble forecasts were improved in terms of CRPS by adding wind direction as predictor compared to only using wind speed. On average the improvements were about 5 %, but mainly for moderate to strong wind situations. For weak wind speeds adding wind direction had more or less neutral impact.
Svenson, Gary R; Ostergren, Per-Olof; Merlo, Juan; Råstam, Lennart
2002-12-01
The aim of this study was to gain an understanding of consistent condom use. We took the perspective that condom use involves the ability to handle situational risks influenced at multiple levels, including the individual, dyadic, and social. The hypothesis was that action control, as measured by self-regulation, implementation intentions, and self-efficacy, was the primary determinant. The study was conducted at part of a community-based intervention at a major university (36,000 students). Data was collected using a validated questionnaire mailed to a random sample of students (n = 493, response rate = 71.5%). Statistical analysis included logistic regression models that successively included background, individual, dyadic, and social variables. In the final model, consistent condom use was higher among students with strong implementation intentions, high self-regulation and positive peer norms. The results contribute new knowledge on action control in predicting sexual risk behaviors and lends support to the conceptualization and analysis of HIV/sexually transmitted infection prevention at multiple levels of influence.
Behavioral and psychosocial factors associated with suicidal ideation among adolescents.
Lee, GyuYoung; Ham, Ok Kyung
2018-04-10
Suicidal ideation poses a serious threat to the well-being of adolescents and is the strongest risk factor for suicide. Indeed, Korea ranks first among Organisation for Economic Cooperation and Development countries regarding the age-standardized suicide rates. In the present study, we examined multiple levels of factors associated with the suicidal ideation of adolescents in Korea by applying the Ecological Models of Health Behavior. A cross-sectional study was conducted with a convenience sample of 860 adolescents. The instruments included the Beck Depression Inventory and the Adolescent Mental Health and Problem Behavior Questionnaire. The data were analyzed using hierarchical multiple regression. Sixteen percent of participants reported suicidal ideation. Intrapersonal (sleep disturbance, Internet game addiction, destructive behavior, and depressive symptoms) and interpersonal factors (family conflicts and peer victimization) were associated with suicidal ideation. Because multiple factors were associated with suicidal ideation among adolescents, both intrapersonal (sleep disturbance, Internet game addiction, and depression) and interpersonal factors (family conflicts and peer problems) should be considered in the development of suicide-prevention programs. These programs could include campaigns changing the norms (permissive attitudes toward school violence) and the development of strict and rigorous school non-violence policies. © 2018 John Wiley & Sons Australia, Ltd.
Crawford, John R; Garthwaite, Paul H; Denham, Annie K; Chelune, Gordon J
2012-12-01
Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because (a) not all psychologists are aware that regression equations can be built not only from raw data but also using only basic summary data for a sample, and (b) the computations involved are tedious and prone to error. In an attempt to overcome these barriers, Crawford and Garthwaite (2007) provided methods to build and apply simple linear regression models using summary statistics as data. In the present study, we extend this work to set out the steps required to build multiple regression models from sample summary statistics and the further steps required to compute the associated statistics for drawing inferences concerning an individual case. We also develop, describe, and make available a computer program that implements these methods. Although there are caveats associated with the use of the methods, these need to be balanced against pragmatic considerations and against the alternative of either entirely ignoring a pertinent data set or using it informally to provide a clinical "guesstimate." Upgraded versions of earlier programs for regression in the single case are also provided; these add the point and interval estimates of effect size developed in the present article.
Multiple linear regression models are often used to predict levels of fecal indicator bacteria (FIB) in recreational swimming waters based on independent variables (IVs) such as meteorologic, hydrodynamic, and water-quality measures. The IVs used for these analyses are traditiona...
Campos-Filho, N; Franco, E L
1989-02-01
A frequent procedure in matched case-control studies is to report results from the multivariate unmatched analyses if they do not differ substantially from the ones obtained after conditioning on the matching variables. Although conceptually simple, this rule requires that an extensive series of logistic regression models be evaluated by both the conditional and unconditional maximum likelihood methods. Most computer programs for logistic regression employ only one maximum likelihood method, which requires that the analyses be performed in separate steps. This paper describes a Pascal microcomputer (IBM PC) program that performs multiple logistic regression by both maximum likelihood estimation methods, which obviates the need for switching between programs to obtain relative risk estimates from both matched and unmatched analyses. The program calculates most standard statistics and allows factoring of categorical or continuous variables by two distinct methods of contrast. A built-in, descriptive statistics option allows the user to inspect the distribution of cases and controls across categories of any given variable.
Carvalho, Carlos; Gomes, Danielo G.; Agoulmine, Nazim; de Souza, José Neuman
2011-01-01
This paper proposes a method based on multivariate spatial and temporal correlation to improve prediction accuracy in data reduction for Wireless Sensor Networks (WSN). Prediction of data not sent to the sink node is a technique used to save energy in WSNs by reducing the amount of data traffic. However, it may not be very accurate. Simulations were made involving simple linear regression and multiple linear regression functions to assess the performance of the proposed method. The results show a higher correlation between gathered inputs when compared to time, which is an independent variable widely used for prediction and forecasting. Prediction accuracy is lower when simple linear regression is used, whereas multiple linear regression is the most accurate one. In addition to that, our proposal outperforms some current solutions by about 50% in humidity prediction and 21% in light prediction. To the best of our knowledge, we believe that we are probably the first to address prediction based on multivariate correlation for WSN data reduction. PMID:22346626
The effects of texting on driving performance in a driving simulator: the influence of driver age.
Rumschlag, Gordon; Palumbo, Theresa; Martin, Amber; Head, Doreen; George, Rajiv; Commissaris, Randall L
2015-01-01
Distracted driving is a significant contributor to motor vehicle accidents and fatalities, and texting is a particularly significant form of driver distraction that continues to be on the rise. The present study examined the influence of driver age (18-59 years old) and other factors on the disruptive effects of texting on simulated driving behavior. While 'driving' the simulator, subjects were engaged in a series of brief text conversations with a member of the research team. The primary dependent variable was the occurrence of Lane Excursions (defined as any time the center of the vehicle moved outside the directed driving lane, e.g., into the lane for oncoming traffic or onto the shoulder of the road), measured as (1) the percent of subjects that exhibited Lane Excursions, (2) the number of Lane Excursions occurring and (3) the percent of the texting time in Lane Excursions. Multiple Regression analyses were used to assess the influence of several factors on driving performance while texting, including text task duration, texting skill level (subject-reported), texting history (#texts/week), driver gender and driver age. Lane Excursions were not observed in the absence of texting, but 66% of subjects overall exhibited Lane Excursions while texting. Multiple Regression analysis for all subjects (N=50) revealed that text task duration was significantly correlated with the number of Lane Excursions, and texting skill level and driver age were significantly correlated with the percent of subjects exhibiting Lane Excursions. Driver gender was not significantly correlated with Lane Excursions during texting. Multiple Regression analysis of only highly skilled texters (N=27) revealed that driver age was significantly correlated with the number of Lane Excursions, the percent of subjects exhibiting Lane Excursions and the percent of texting time in Lane Excursions. In contrast, Multiple Regression analysis of those drivers who self-identified as not highly skilled texters (N=23) revealed that text task duration was significantly correlated with the number of Lane Excursions. The present studies confirm past reports that texting impairs driving simulator performance. Moreover, the present study demonstrates that for highly skilled texters, the effects of texting on driving are actually worse for older drivers. Given the increasing frequency of texting while driving within virtually all age groups, these data suggest that 'no texting while driving' education and public service messages need to be continued, and they should be expanded to target older drivers as well. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bishop, Malachy; Rumrill, Phillip D; Roessler, Richard T
2015-01-01
This article presents a replication of Rumrill, Roessler, and Fitzgerald's 2004 analysis of a three-factor model of the impact of multiple sclerosis (MS) on quality of life (QOL). The three factors in the original model included illness-related, employment-related, and psychosocial adjustment factors. To test hypothesized relationships between QOL and illness-related, employment-related, and psychosocial variables using data from a survey of the employment concerns of Americans with MS (N = 1,839). An ex post facto, multiple correlational design was employed incorporating correlational and multiple regression analyses. QOL was positively related to educational level, employment status, job satisfaction, and job-match, and negatively related to number of symptoms, severity of symptoms, and perceived stress level. The three-factor model explained approximately 37 percent of the variance in QOL scores. The results of this replication confirm the continuing value of the three-factor model for predicting the QOL of adults with MS, and demonstrate the importance of medical, mental health, and vocational rehabilitation interventions and services in promoting QOL.
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
2001-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
Ultrasensitive surveillance of sensors and processes
Wegerich, Stephan W.; Jarman, Kristin K.; Gross, Kenneth C.
1999-01-01
A method and apparatus for monitoring a source of data for determining an operating state of a working system. The method includes determining a sensor (or source of data) arrangement associated with monitoring the source of data for a system, activating a method for performing a sequential probability ratio test if the data source includes a single data (sensor) source, activating a second method for performing a regression sequential possibility ratio testing procedure if the arrangement includes a pair of sensors (data sources) with signals which are linearly or non-linearly related; activating a third method for performing a bounded angle ratio test procedure if the sensor arrangement includes multiple sensors and utilizing at least one of the first, second and third methods to accumulate sensor signals and determining the operating state of the system.
Allan, Bruce D; Hassan, Hala; Ieong, Alvin
2015-05-01
To describe and evaluate a new multiple regression-derived nomogram for myopic wavefront laser in situ keratomileusis (LASIK). Moorfields Eye Hospital, London, United Kingdom. Prospective comparative case series. Multiple regression modeling was used to derive a simplified formula for adjusting attempted spherical correction in myopic LASIK. An adaptation of Thibos' power vector method was then applied to derive adjustments to attempted cylindrical correction in eyes with 1.0 diopter (D) or more of preoperative cylinder. These elements were combined in a new nomogram (nomogram II). The 3-month refractive results for myopic wavefront LASIK (spherical equivalent ≤11.0 D; cylinder ≤4.5 D) were compared between 299 consecutive eyes treated using the earlier nomogram (nomogram I) in 2009 and 2010 and 414 eyes treated using nomogram II in 2011 and 2012. There was no significant difference in treatment accuracy (variance in the postoperative manifest refraction spherical equivalent error) between nomogram I and nomogram II (P = .73, Bartlett test). Fewer patients treated with nomogram II had more than 0.5 D of residual postoperative astigmatism (P = .0001, Fisher exact test). There was no significant coupling between adjustments to the attempted cylinder and the achieved sphere (P = .18, t test). Discarding marginal influences from a multiple regression-derived nomogram for myopic wavefront LASIK had no clinically significant effect on treatment accuracy. Thibos' power vector method can be used to guide adjustments to the treatment cylinder alongside nomograms designed to optimize postoperative spherical equivalent results in myopic LASIK. mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Risk factors for autistic regression: results of an ambispective cohort study.
Zhang, Ying; Xu, Qiong; Liu, Jing; Li, She-chang; Xu, Xiu
2012-08-01
A subgroup of children diagnosed with autism experience developmental regression featured by a loss of previously acquired abilities. The pathogeny of autistic regression is unknown, although many risk factors likely exist. To better characterize autistic regression and investigate the association between autistic regression and potential influencing factors in Chinese autistic children, we conducted an ambispective study with a cohort of 170 autistic subjects. Analyses by multiple logistic regression showed significant correlations between autistic regression and febrile seizures (OR = 3.53, 95% CI = 1.17-10.65, P = .025), as well as with a family history of neuropsychiatric disorders (OR = 3.62, 95% CI = 1.35-9.71, P = .011). This study suggests that febrile seizures and family history of neuropsychiatric disorders are correlated with autistic regression.
Mental Health Correlates of Cigarette Use in LGBT Individuals in the Southeastern United States.
Drescher, Christopher F; Lopez, Eliot J; Griffin, James A; Toomey, Thomas M; Eldridge, Elizabeth D; Stepleman, Lara M
2018-05-12
Smoking prevalence for lesbian, gay, bisexual, and transgender (LGBT) individuals is higher than for heterosexual, cisgender individuals. Elevated smoking rates have been linked to psychiatric comorbidities, substance use, poverty, low education levels, and stress. This study examined mental health (MH) correlates of cigarette use in LGBT individuals residing in a metropolitan area in the southeastern United States. Participants were 335 individuals from an LGBT health needs assessment (mean age 34.7; SD = 13.5; 63% gay/lesbian; 66% Caucasian; 81% cisgender). Demographics, current/past psychiatric diagnoses, number of poor MH days in the last 30, the Patient Health Questionnaire (PHQ) 2 depression screener, the Three-Item Loneliness Scale, and frequency of cigarette use were included. Analyses included bivariate correlations, analysis of variance (ANOVA), and regression. Multiple demographic and MH factors were associated with smoker status and frequency of smoking. A logistic regression indicated that lower education and bipolar disorder were most strongly associated with being a smoker. For smokers, a hierarchical regression model including demographic and MH variables accounted for 17.6% of the variance in frequency of cigarette use. Only education, bipolar disorder, and the number of poor MH days were significant contributors in the overall model. Conclusions/Importance: Less education, bipolar disorder, and recurrent poor MH increase LGBT vulnerability to cigarette use. Access to LGBT-competent MH providers who can address culturally specific factors in tobacco cessation is crucial to reducing this health disparities.
Kamei, Nozomu; Yamane, Kiminori; Nakanishi, Shuhei; Ishida, Kazufumi; Ohtaki, Megu; Okubo, Masamichi; Kohno, Nobuoki
2005-06-01
The effects of the prolonged elevation of nonesterified fatty acid (NEFA) levels on insulin secretion have been controversial and thought to be sex-specific. To investigate the association between a westernized lifestyle and the effects of NEFA on insulin secretion in Japanese men, we examined 67 nondiabetic Japanese-American men and 220 nondiabetic native Japanese men who underwent a 75-g oral glucose tolerance test (OGTT). Most Japanese Americans we surveyed are genetically identical to Japanese living in Japan, but their lifestyle is more westernized. Sets of multiple regression analyses were performed to evaluate the relationship between the sum of the immunoreactive insulin (IRI) levels during the OGTT ((Sigma)IRI) and clinical parameters. Japanese Americans had higher levels of fasting IRI, (Sigma)IRI, and a higher insulin resistance index (homeostasis model assessment for insulin resistance [HOMA-IR]) than native Japanese, whereas there were no significant differences in fasting NEFA and triglyceride levels. A multiple regression analysis adjusted for age, fasting triglycerides, and body mass index (BMI) demonstrated that the fasting NEFA level was an independent determinant of the (Sigma)IRI only in Japanese-American men ( P = .001), but not in native Japanese men ( P = .054). Even when HOMA-IR was included in models instead of BMI, the NEFA level was a significant variable of (Sigma)IRI only in Japanese Americans ( P < .001), and not in native Japanese ( P = .098). In addition, a multiple regression analysis adjusted for age, fasting triglycerides, and BMI demonstrated that the fasting NEFA level was the only independent determinant of (Sigma)C-peptide in Japanese-American men ( P = .041). In conclusion, NEFA seems to be associated with insulin secretion independent of obesity or HOMA-IR. A westernized lifestyle may increase the effects of serum fasting NEFA levels on total insulin secretion after a glucose load in Japanese men.
Chowdhury, Nilotpal; Sapru, Shantanu
2015-01-01
Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate - adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting results and may be used as a tool to guide new research.
Chowdhury, Nilotpal; Sapru, Shantanu
2015-01-01
Introduction Microarray analysis has revolutionized the role of genomic prognostication in breast cancer. However, most studies are single series studies, and suffer from methodological problems. We sought to use a meta-analytic approach in combining multiple publicly available datasets, while correcting for batch effects, to reach a more robust oncogenomic analysis. Aim The aim of the present study was to find gene sets associated with distant metastasis free survival (DMFS) in systemically untreated, node-negative breast cancer patients, from publicly available genomic microarray datasets. Methods Four microarray series (having 742 patients) were selected after a systematic search and combined. Cox regression for each gene was done for the combined dataset (univariate, as well as multivariate – adjusted for expression of Cell cycle related genes) and for the 4 major molecular subtypes. The centre and microarray batch effects were adjusted by including them as random effects variables. The Cox regression coefficients for each analysis were then ranked and subjected to a Gene Set Enrichment Analysis (GSEA). Results Gene sets representing protein translation were independently negatively associated with metastasis in the Luminal A and Luminal B subtypes, but positively associated with metastasis in Basal tumors. Proteinaceous extracellular matrix (ECM) gene set expression was positively associated with metastasis, after adjustment for expression of cell cycle related genes on the combined dataset. Finally, the positive association of the proliferation-related genes with metastases was confirmed. Conclusion To the best of our knowledge, the results depicting mixed prognostic significance of protein translation in breast cancer subtypes are being reported for the first time. We attribute this to our study combining multiple series and performing a more robust meta-analytic Cox regression modeling on the combined dataset, thus discovering 'hidden' associations. This methodology seems to yield new and interesting results and may be used as a tool to guide new research. PMID:26080057
NASA Astrophysics Data System (ADS)
Ahmed, Oumer S.; Franklin, Steven E.; Wulder, Michael A.; White, Joanne C.
2015-03-01
Many forest management activities, including the development of forest inventories, require spatially detailed forest canopy cover and height data. Among the various remote sensing technologies, LiDAR (Light Detection and Ranging) offers the most accurate and consistent means for obtaining reliable canopy structure measurements. A potential solution to reduce the cost of LiDAR data, is to integrate transects (samples) of LiDAR data with frequently acquired and spatially comprehensive optical remotely sensed data. Although multiple regression is commonly used for such modeling, often it does not fully capture the complex relationships between forest structure variables. This study investigates the potential of Random Forest (RF), a machine learning technique, to estimate LiDAR measured canopy structure using a time series of Landsat imagery. The study is implemented over a 2600 ha area of industrially managed coastal temperate forests on Vancouver Island, British Columbia, Canada. We implemented a trajectory-based approach to time series analysis that generates time since disturbance (TSD) and disturbance intensity information for each pixel and we used this information to stratify the forest land base into two strata: mature forests and young forests. Canopy cover and height for three forest classes (i.e. mature, young and mature and young (combined)) were modeled separately using multiple regression and Random Forest (RF) techniques. For all forest classes, the RF models provided improved estimates relative to the multiple regression models. The lowest validation error was obtained for the mature forest strata in a RF model (R2 = 0.88, RMSE = 2.39 m and bias = -0.16 for canopy height; R2 = 0.72, RMSE = 0.068% and bias = -0.0049 for canopy cover). This study demonstrates the value of using disturbance and successional history to inform estimates of canopy structure and obtain improved estimates of forest canopy cover and height using the RF algorithm.
Navarrete-Muñoz, Eva María; Valera-Gran, Desirée; Garcia-de-la-Hera, Manuela; Gonzalez-Palacios, Sandra; Riaño, Isolina; Murcia, Mario; Lertxundi, Aitana; Guxens, Mònica; Tardón, Adonina; Amiano, Pilar; Vrijheid, Martine; Rebagliato, Marisa; Vioque, Jesus
2017-11-27
We investigated the association between maternal use of folic acid (FA) during pregnancy and child anthropometric measures at birth. We included 2302 mother-child pairs from a population-based birth cohort in Spain (INMA Project). FA dosages at first and third trimester of pregnancy were assessed using a specific battery questionnaire and were categorized in non-user, < 1000, 1000-4999, and ≥ 5000 µg/day. Anthropometric measures at birth (weight in grams, length and head circumference in centimetres) were obtained from medical records. Small for gestational age according to weight (SGA-w), length (SGA-l) and head circumference (SGA-hc) were defined using the 10th percentile based on Spanish standardized growth reference charts. Multiple linear and logistic regression analyses were used to explore the association between FA dosages in different stages of pregnancy and child anthropometric measures at birth. In the multiple linear regression analysis, we found a tendency for a negative association between the use of high dosages of FA (≥ 5000 µg/day) in the periconceptional period of pregnancy and weight at birth compared to mothers who were non-users of FA (β = - 73.83; 95% CI - 151.71, 4.06). In the multiple logistic regression, a greater risk of SGA-w was also evident among children whose mothers took FA dosages of 1000-4999 (OR = 2.21; 95% CI 1.17, 4.19) and of ≥ 5000 µg/day (OR = 2.32; 95% CI 1.06, 5.08) compared to mothers non-users of FA in the periconceptional period of pregnancy. Our findings suggest that a high dosage of FA (≥ 1000 µg/day) may be associated with an increased risk of SGA-w at birth.
Predictive ability of a comprehensive incremental test in mountain bike marathon
Schneeweiss, Patrick; Martus, Peter; Niess, Andreas M; Krauss, Inga
2018-01-01
Objectives Traditional performance tests in mountain bike marathon (XCM) primarily quantify aerobic metabolism and may not describe the relevant capacities in XCM. We aimed to validate a comprehensive test protocol quantifying its intermittent demands. Methods Forty-nine athletes (38.8±9.1 years; 38 male; 11 female) performed a laboratory performance test, including an incremental test, to determine individual anaerobic threshold (IAT), peak power output (PPO) and three maximal efforts (10 s all-out sprint, 1 min maximal effort and 5 min maximal effort). Within 2 weeks, the athletes participated in one of three XCM races (n=15, n=9 and n=25). Correlations between test variables and race times were calculated separately. In addition, multiple regression models of the predictive value of laboratory outcomes were calculated for race 3 and across all races (z-transformed data). Results All variables were correlated with race times 1, 2 and 3: 10 s all-out sprint (r=−0.72; r=−0.59; r=−0.61), 1 min maximal effort (r=−0.85; r=−0.84; r=−0.82), 5 min maximal effort (r=−0.57; r=−0.85; r=−0.76), PPO (r=−0.77; r=−0.73; r=−0.76) and IAT (r=−0.71; r=−0.67; r=−0.68). The best-fitting multiple regression models for race 3 (r2=0.868) and across all races (r2=0.757) comprised 1 min maximal effort, IAT and body weight. Conclusion Aerobic and intermittent variables correlated least strongly with race times. Their use in a multiple regression model confirmed additional explanatory power to predict XCM performance. These findings underline the usefulness of the comprehensive incremental test to predict performance in that sport more precisely. PMID:29387445
Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf
2015-01-01
The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200–400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. PMID:25005037
ERIC Educational Resources Information Center
Kobrin, Jennifer L.; Sinharay, Sandip; Haberman, Shelby J.; Chajewski, Michael
2011-01-01
This study examined the adequacy of a multiple linear regression model for predicting first-year college grade point average (FYGPA) using SAT[R] scores and high school grade point average (HSGPA). A variety of techniques, both graphical and statistical, were used to examine if it is possible to improve on the linear regression model. The results…
Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.
ERIC Educational Resources Information Center
Algina, James; Olejnik, Stephen
2000-01-01
Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)