Structural Analysis of Botulinum Neurotoxin Type G Receptor Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, John; Karalewitz, Andrew; Benefield, Desire A.
2010-10-19
Botulinum neurotoxin (BoNT) binds peripheral neurons at the neuromuscular junction through a dual-receptor mechanism that includes interactions with ganglioside and protein receptors. The receptor identities vary depending on BoNT serotype (A-G). BoNT/B and BoNT/G bind the luminal domains of synaptotagmin I and II, homologous synaptic vesicle proteins. We observe conditions under which BoNT/B binds both Syt isoforms, but BoNT/G binds only SytI. Both serotypes bind ganglioside G{sub T1b}. The BoNT/G receptor-binding domain crystal structure provides a context for examining these binding interactions and a platform for understanding the physiological relevance of different Syt receptor isoforms in vivo.
Measles virus fusion machinery activated by sialic acid binding globular domain.
Talekar, Aparna; Moscona, Anne; Porotto, Matteo
2013-12-01
Paramyxoviruses, including the human pathogen measles virus (MV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral envelope with the target cell membrane. This fusion is driven by the concerted action of two viral envelope glycoproteins: the receptor binding protein and the fusion protein (F). The MV receptor binding protein (hemagglutinin [H]) attaches to proteinaceous receptors on host cells, while the receptor binding protein of NDV (hemagglutinin-neuraminidase [HN]) interacts with sialic acid-containing receptors. The receptor-bound HN/H triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. The mechanism of fusion activation has been proposed to be different for sialic acid-binding viruses and proteinaceous receptor-binding viruses. We report that a chimeric protein containing the NDV HN receptor binding region and the MV H stalk domain can activate MV F to fuse, suggesting that the signal to the stalk of a protein-binding receptor binding molecule can be transmitted from a sialic acid binding domain. By engineering the NDV HN globular domain to interact with a proteinaceous receptor, the fusion activation signal was preserved. Our findings are consistent with a unified mechanism of fusion activation, at least for the Paramyxovirinae subfamily, in which the receptor binding domains of the receptor binding proteins are interchangeable and the stalk determines the specificity of F activation.
Retinoid Pathway and Cancer Therapeutics
Bushue, Nathan; Wan, Yu-Jui Yvonne
2010-01-01
The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid × receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with the emphasis on the application of retinoids in cancer treatment and prevention. PMID:20654663
Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors
NASA Astrophysics Data System (ADS)
Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír
2017-01-01
Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.
Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew
2015-11-01
Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.
Gastrin Receptor-Avid Peptide Conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann
2005-07-26
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, C. A.
2001-01-01
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Sieckman, Gary; Smith, Charles J.; Gali, Hariprasad
2006-06-13
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a-moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Gastrin receptor-avid peptide conjugates
Hoffman, Timothy J.; Volkert, Wynn A.; Li, Ning; Sieckman, Gary; Higginbotham, Chrys-Ann
2006-12-12
A compound for use as a therapeutic or diagnostic radiopharmaceutical includes a group capable of complexing a medically useful metal attached to a moiety which is capable of binding to a gastrin releasing peptide receptor. A method for treating a subject having a neoplastic disease includes administering to the subject an effective amount of a radiopharmaceutical having a metal chelated with a chelating group attached to a moiety capable of binding to a gastrin releasing peptide receptor expressed on tumor cells with subsequent internalization inside of the cell. A method of forming a therapeutic or diagnostic compound includes reacting a metal synthon with a chelating group covalently linked with a moiety capable of binding a gastrin releasing peptide receptor.
Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles
2010-07-19
Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves uponmore » receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.« less
The Roles of Hemagglutinin Phe-95 in Receptor Binding and Pathogenicity of Influenza B Virus
Ni, Fengyun; Mbawuike, Innocent Nnadi; Kondrashkina, Elena; Wang, Qinghua
2014-01-01
Diverged ~4,000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1~H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H3 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus. PMID:24503069
Prokop, Susanne; Perry, Nicole A; Vishnivetskiy, Sergey A; Toth, Andras D; Inoue, Asuka; Milligan, Graeme; Iverson, Tina M; Hunyady, Laszlo; Gurevich, Vsevolod V
2017-08-01
Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M 2 muscarinic receptor, so that agonist activation of the M 2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M 2 , whereas its interactions with other receptors, including the β 2 -adrenergic receptor and the D 1 and D 2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β 2 -adrenergic and D 2 dopamine receptors, while reducing its interaction with the D 1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes. Copyright © 2017. Published by Elsevier Inc.
Heterogeneity of D2 dopamine receptors in different brain regions.
Leonard, M N; Macey, C A; Strange, P G
1987-01-01
The binding of [3H]spiperone has been examined in membranes derived from different regions of bovine brain. In caudate nucleus, nucleus accumbens, olfactory tubercle and putamen binding is to D2 dopamine and 5HT2 serotonin receptors, whereas in cingulate cortex only serotonin 5HT2 receptor binding can be detected. D2 dopamine receptors were examined in detail in caudate nucleus, olfactory tubercle and putamen using [3H]spiperone binding in the presence of 0.3 microM-mianserin (to block 5HT2 serotonin receptors). No evidence for heterogeneity among D2 dopamine receptors either between brain regions or within a brain region was found from the displacements of [3H]spiperone binding by a range of antagonists, including dibenzazepines and substituted benzamides. Regulation of agonist binding by guanine nucleotides did, however, differ between regions. In caudate nucleus a population of agonist binding sites appeared resistant to guanine nucleotide regulation, whereas this was not the case in olfactory tubercle and putamen. PMID:2963621
NASA Technical Reports Server (NTRS)
Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.
1999-01-01
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
Design and structure of stapled peptides binding to estrogen receptors.
Phillips, Chris; Roberts, Lee R; Schade, Markus; Bazin, Richard; Bent, Andrew; Davies, Nichola L; Moore, Rob; Pannifer, Andrew D; Pickford, Andrew R; Prior, Stephen H; Read, Christopher M; Scott, Andrew; Brown, David G; Xu, Bin; Irving, Stephen L
2011-06-29
Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.
Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W
2016-06-01
Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.
Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors.
Hedlund, P B; Carson, M J; Sutcliffe, J G; Thomas, E A
1999-12-01
Oleamide belongs to a family of amidated lipids with diverse biological activities, including sleep induction and signaling modulation of several 5-hydroxytryptamine (5-HT) receptor subtypes, including 5-HT1A, 5-HT2A/2C, and 5-HT7. The 5-HT7 receptor, predominantly localized in the hypothalamus, hippocampus, and frontal cortex, stimulates cyclic AMP formation and is thought to be involved in the regulation of sleep-wake cycles. Recently, it was proposed that oleamide acts at an allosteric site on the 5-HT7 receptor to regulate cyclic AMP formation. We have further investigated the interaction between oleamide and 5-HT7 receptors by performing radioligand binding assays with HeLa cells transfected with the 5-HT7 receptor. Methiothepin, clozapine, and 5-HT all displaced specific [3H]5-HT (100 nM) binding, with pK(D) values of 7.55, 7.85, and 8.39, respectively. Oleamide also displaced [3H]5-HT binding, but the maximum inhibition was only 40% of the binding. Taking allosteric (see below) cooperativity into account, a K(D) of 2.69 nM was calculated for oleamide. In saturation binding experiments, oleamide caused a 3-fold decrease in the affinity of [3H]5-HT for the 5-HT7 receptor, without affecting the number of binding sites. A Schild analysis showed that the induced shift in affinity of [3H]5-HT reached a plateau, unlike that of a competitive inhibitor, illustrating the allosteric nature of the interaction between oleamide and the 5-HT7 receptor. Oleic acid, the product of oleamide hydrolysis, had a similar effect on [3H]5-HT binding, whereas structural analogs of oleamide, trans-9,10-octadecenamide, cis-8,9-octadecenamide, and erucamide, did not alter [3H]5-HT binding significantly. The findings support the hypothesis that oleamide acts via an allosteric site on the 5-HT7 receptor regulating receptor affinity.
Berntsson, Ronnie Per-Arne; Peng, Lisheng; Svensson, Linda Marie; Dong, Min; Stenmark, Pål
2013-09-03
Botulinum neurotoxins (BoNTs) can cause paralysis at exceptionally low concentrations and include seven serotypes (BoNT/A-G). The chimeric BoNT/DC toxin has a receptor binding domain similar to the same region in BoNT/C. However, BoNT/DC does not share protein receptor with BoNT/C. Instead, it shares synaptotagmin (Syt) I and II as receptors with BoNT/B, despite their low sequence similarity. Here, we present the crystal structures of the binding domain of BoNT/DC in complex with the recognition domains of its protein receptors, Syt-I and Syt-II. The structures reveal that BoNT/DC possesses a Syt binding site, distinct from the established Syt-II binding site in BoNT/B. Structure-based mutagenesis further shows that hydrophobic interactions play a key role in Syt binding. The structures suggest that the BoNT/DC ganglioside binding sites are independent of the protein receptor binding site. Our results reveal the remarkable versatility in the receptor recognition of the BoNTs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chemokine receptor binding and signal transduction in native cells of the central nervous system.
Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K
2003-04-01
Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.
Reassessment of the Unique Mode of Binding between Angiotensin II Type 1 Receptor and Their Blockers
Matsuo, Yoshino; Saku, Keijiro; Karnik, Sadashiva S.
2013-01-01
While the molecular structures of angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr113, Tyr184, Lys199, His256 and Gln257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys199 and carboxyl or tetrazole groups, and between His256 or Gln257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys199, His256 and Gln257 of AT1 receptor. Lys199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr113. On the other hand, the n-butyl group of irbesartan may bind to Tyr113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding. PMID:24260317
Boonyaratanakornkit, Viroj; Melvin, Vida; Prendergast, Paul; Altmann, Magda; Ronfani, Lorenza; Bianchi, Marco E.; Taraseviciene, Laima; Nordeen, Steven K.; Allegretto, Elizabeth A.; Edwards, Dean P.
1998-01-01
We previously reported that the chromatin high-mobility group protein 1 (HMG-1) enhances the sequence-specific DNA binding activity of progesterone receptor (PR) in vitro, thus providing the first evidence that HMG-1 may have a coregulatory role in steroid receptor-mediated gene transcription. Here we show that HMG-1 and the highly related HMG-2 stimulate DNA binding by other steroid receptors, including estrogen, androgen, and glucocorticoid receptors, but have no effect on DNA binding by several nonsteroid nuclear receptors, including retinoid acid receptor (RAR), retinoic X receptor (RXR), and vitamin D receptor (VDR). As highly purified recombinant full-length proteins, all steroid receptors tested exhibited weak binding affinity for their optimal palindromic hormone response elements (HREs), and the addition of purified HMG-1 or -2 substantially increased their affinity for HREs. Purified RAR, RXR, and VDR also exhibited little to no detectable binding to their cognate direct repeat HREs but, in contrast to results with steroid receptors, the addition of HMG-1 or HMG-2 had no stimulatory effect. Instead, the addition of purified RXR enhanced RAR and VDR DNA binding through a heterodimerization mechanism and HMG-1 or HMG-2 had no further effect on DNA binding by RXR-RAR or RXR-VDR heterodimers. HMG-1 and HMG-2 (HMG-1/-2) themselves do not bind to progesterone response elements, but in the presence of PR they were detected as part of an HMG-PR-DNA ternary complex. HMG-1/-2 can also interact transiently in vitro with PR in the absence of DNA; however, no direct protein interaction was detected with VDR. These results, taken together with the fact that PR can bend its target DNA and that HMG-1/-2 are non-sequence-specific DNA binding proteins that recognize DNA structure, suggest that HMG-1/-2 are recruited to the PR-DNA complex by the combined effect of transient protein interaction and DNA bending. In transient-transfection assays, coexpression of HMG-1 or HMG-2 increased PR-mediated transcription in mammalian cells by as much as 7- to 10-fold without altering the basal promoter activity of target reporter genes. This increase in PR-mediated gene activation by coexpression of HMG-1/-2 was observed in different cell types and with different target promoters, suggesting a generality to the functional interaction between HMG-1/-2 and PR in vivo. Cotransfection of HMG-1 also increased reporter gene activation mediated by other steroid receptors, including glucocorticoid and androgen receptors, but it had a minimal influence on VDR-dependent transcription in vivo. These results support the conclusion that HMG-1/-2 are coregulatory proteins that increase the DNA binding and transcriptional activity of the steroid hormone class of receptors but that do not functionally interact with certain nonsteroid classes of nuclear receptors. PMID:9671457
Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R
1992-01-01
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851
PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL II
The training set used to derive a common reactivity pattern (COREPA) model for estrogen receptor (ER) binding affinity in Model I (see Abstract I in this series) was extended to include 47 rat estrogen receptor (rER) relative binding affinity (RBA) measurements in addition to the...
Macdonald-Obermann, Jennifer L.; Pike, Linda J.
2009-01-01
We have previously shown that the binding of epidermal growth factor (EGF) to its receptor can best be described by a model that involves negative cooperativity in an aggregating system (Macdonald, J. L., and Pike, L. J. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 112–117). However, despite the fact that biochemical analyses indicate that EGF induces dimerization of its receptor, the binding data provided no evidence for positive linkage between EGF binding and dimer assembly. By analyzing the binding of EGF to a number of receptor mutants, we now report that in naive, unphosphorylated EGF receptors, ligand binding is positively linked to receptor dimerization but the linkage is abolished upon autophosphorylation of the receptor. Both phosphorylated and unphosphorylated EGF receptors exhibit negative cooperativity, indicating that mechanistically, cooperativity is distinct from the phenomenon of linkage. Nonetheless, both the positive linkage and the negative cooperativity observed in EGF binding require the presence of the intracellular juxtamembrane domain. This indicates the existence of inside-out signaling in the EGF receptor system. The intracellular juxtamembrane domain has previously been shown to be required for the activation of the EGF receptor tyrosine kinase (Thiel, K. W., and Carpenter, G. (2007) Proc. Natl. Acad. Sci. U. S. A. 104, 19238–19243). Our experiments expand the role of this domain to include the allosteric control of ligand binding by the extracellular domain. PMID:19336395
The role of receptor binding specificity in interspecies transmission of influenza viruses
Imai, Masaki; Kawaoka, Yoshihiro
2017-01-01
Influenza A virus infection begins with the binding of the hemagglutinin (HA) glycoprotein to sialic acid-containing receptors on the surface of the target cell. Avian influenza viruses, including avian H5N1, H7, and H9N2 viruses, can occasionally cross the species barrier and infect humans; however, these viruses do not spread efficiently from person to person, perhaps, in part, due to differences in the receptor-binding specificities of human and avian influenza viruses. The HAs of avian influenza viruses must adapt to receptors in humans to acquire efficient human-to-human transmissibility. In this review, we discuss the receptor binding specificity of influenza A viruses and its role in interspecies transmission. PMID:22445963
Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs
NASA Astrophysics Data System (ADS)
Dror, Ron O.; Green, Hillary F.; Valant, Celine; Borhani, David W.; Valcourt, James R.; Pan, Albert C.; Arlow, Daniel H.; Canals, Meritxell; Lane, J. Robert; Rahmani, Raphaël; Baell, Jonathan B.; Sexton, Patrick M.; Christopoulos, Arthur; Shaw, David E.
2013-11-01
The design of G-protein-coupled receptor (GPCR) allosteric modulators, an active area of modern pharmaceutical research, has proved challenging because neither the binding modes nor the molecular mechanisms of such drugs are known. Here we determine binding sites, bound conformations and specific drug-receptor interactions for several allosteric modulators of the M2 muscarinic acetylcholine receptor (M2 receptor), a prototypical family A GPCR, using atomic-level simulations in which the modulators spontaneously associate with the receptor. Despite substantial structural diversity, all modulators form cation-π interactions with clusters of aromatic residues in the receptor extracellular vestibule, approximately 15Å from the classical, `orthosteric' ligand-binding site. We validate the observed modulator binding modes through radioligand binding experiments on receptor mutants designed, on the basis of our simulations, either to increase or to decrease modulator affinity. Simulations also revealed mechanisms that contribute to positive and negative allosteric modulation of classical ligand binding, including coupled conformational changes of the two binding sites and electrostatic interactions between ligands in these sites. These observations enabled the design of chemical modifications that substantially alter a modulator's allosteric effects. Our findings thus provide a structural basis for the rational design of allosteric modulators targeting muscarinic and possibly other GPCRs.
Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.
Pikler, G M; Webster, R A; Spelsberg, T C
1976-01-01
Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147
Evaluation of a novel virtual screening strategy using receptor decoy binding sites.
Patel, Hershna; Kukol, Andreas
2016-08-23
Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.
Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation.
Peng, Wenjie; Bouwman, Kim M; McBride, Ryan; Grant, Oliver C; Woods, Robert J; Verheije, Monique H; Paulson, James C; de Vries, Robert P
2018-05-15
All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses. IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret-transmissible H5N1 that increases human-type receptor binding. K193T seems to be a common receptor specificity determinant, as it increases human-type receptor binding in multiple subtypes. The K193T mutation can now be used as a marker during surveillance of emerging viruses to assess potential pandemic risk. Copyright © 2018 American Society for Microbiology.
Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki
2015-02-15
A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.
Bremner, J D; Horti, A; Staib, L H; Zea-Ponce, Y; Soufer, R; Charney, D S; Baldwin, R
2000-01-01
Quantitation of the PET benzodiazepine receptor antagonist, [(11)C]Iomazenil, using low specific activity radioligand was recently described. The purpose of this study was to quantitate benzodiazepine receptor binding in human subjects using PET and high specific activity [(11)C]Iomazenil. Six healthy human subjects underwent PET imaging following a bolus injection of high specific activity (>100 Ci/mmol) [(11)C]iomazenil. Arterial samples were collected at multiple time points after injection for measurement of unmetabolized total and nonprotein-bound parent compound in plasma. Time activity curves of radioligand concentration in brain and plasma were analyzed using two and three compartment model. Kinetic rate constants of transfer of radioligand between plasma, nonspecifically bound brain tissue, and specifically bound brain tissue compartments were fitted to the model. Values for fitted kinetic rate constants were used in the calculation of measures of benzodiazepine receptor binding, including binding potential (the ratio of receptor density to affinity), and product of BP and the fraction of free nonprotein-bound parent compound (V(3)'). Use of the three compartment model improved the goodness of fit in comparison to the two compartment model. Values for kinetic rate constants and measures of benzodiazepine receptor binding, including BP and V(3)', were similar to results obtained with the SPECT radioligand [(123)I]iomazenil, and a prior report with low specific activity [(11)C]Iomazenil. Kinetic modeling using the three compartment model with PET and high specific activity [(11)C]Iomazenil provides a reliable measure of benzodiazepine receptor binding. Synapse 35:68-77, 2000. Published 2000 Wiley-Liss, Inc.
Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development.
Ha, Woo Tae; Jeong, Ha Yeon; Lee, Seung Yoon; Song, Hyuk
2016-09-01
The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.
Blatt, G J; Fitzgerald, C M; Guptill, J T; Booker, A B; Kemper, T L; Bauman, M L
2001-12-01
Neuropathological studies in autistic brains have shown small neuronal size and increased cell packing density in a variety of limbic system structures including the hippocampus, a change consistent with curtailment of normal development. Based on these observations in the hippocampus, a series of quantitative receptor autoradiographic studies were undertaken to determine the density and distribution of eight types of neurotransmitter receptors from four neurotransmitter systems (GABAergic, serotoninergic [5-HT], cholinergic, and glutamatergic). Data from these single concentration ligand binding studies indicate that the GABAergic receptor system (3[H]-flunitrazepam labeled benzodiazepine binding sites and 3[H]-muscimol labeled GABA(A) receptors) is significantly reduced in high binding regions, marking for the first time an abnormality in the GABA system in autism. In contrast, the density and distribution of the other six receptors studied (3[H]-80H-DPAT labeled 5-HT1A receptors, 3[H]-ketanserin labeled 5-HT2 receptors, 3[H]-pirenzepine labled M1 receptors, 3[H]-hemicholinium labeled high affinity choline uptake sites, 3[H]-MK801 labeled NMDA receptors, and 3[H]-kainate labeled kainate receptors) in the hippocampus did not demonstrate any statistically significant differences in binding.
Kratochwil, Nicole A; Gatti-McArthur, Silvia; Hoener, Marius C; Lindemann, Lothar; Christ, Andreas D; Green, Luke G; Guba, Wolfgang; Martin, Rainer E; Malherbe, Pari; Porter, Richard H P; Slack, Jay P; Winnig, Marcel; Dehmlow, Henrietta; Grether, Uwe; Hertel, Cornelia; Narquizian, Robert; Panousis, Constantinos G; Kolczewski, Sabine; Steward, Lucinda
2011-01-01
G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor. © 2011 Bentham Science Publishers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hua; Chen, Li-Mei; Carney, Paul J.
2012-02-21
Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avianmore » receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.« less
Selective Modulators of PPAR-γ Activity: Molecular Aspects Related to Obesity and Side-Effects
Zhang, Fang; Lavan, Brian E.; Gregoire, Francine M.
2007-01-01
Peroxisome proliferator-activated receptor γ (PPAR-γ) is a key regulator of lipid metabolism and energy balance implicated in the development of insulin resistance and obesity. The identification of putative natural and synthetic ligands and activators of PPAR-γ has helped to unravel the molecular basis of its function, including molecular details regarding ligand binding, conformational changes of the receptor, and cofactor binding, leading to the emergence of the concept of selective PPAR-γ modulators (SPPARγMs). SPPARγMs bind in distinct manners to the ligand-binding pocket of PPAR-γ, leading to alternative receptor conformations, differential cofactor recruitment/displacement, differential gene expression, and ultimately differential biological responses. Based on this concept, new and improved antidiabetic agents for the treatment of diabetes are in development. This review summarizes the current knowledge on the mechanism of action and biological effects of recently characterized SPPARγMs, including metaglidasen/halofenate, PA-082, and the angiotensin receptor antagonists, recently characterized as a new class of SPPARγMs. PMID:17389769
Orcutt, Kelly D; Adams, Gregory P; Wu, Anna M; Silva, Matthew D; Harwell, Catey; Hoppin, Jack; Matsumura, Manabu; Kotsuma, Masakatsu; Greenberg, Jonathan; Scott, Andrew M; Beckman, Robert A
2017-10-01
Competitive radiolabeled antibody imaging can determine the unlabeled intact antibody dose that fully blocks target binding but may be confounded by heterogeneous tumor penetration. We evaluated the hypothesis that smaller radiolabeled constructs can be used to more accurately evaluate tumor expressed receptors. The Krogh cylinder distributed model, including bivalent binding and variable intervessel distances, simulated distribution of smaller constructs in the presence of increasing doses of labeled antibody forms. Smaller constructs <25 kDa accessed binding sites more uniformly at large distances from blood vessels compared with larger constructs and intact antibody. These observations were consistent for different affinity and internalization characteristics of constructs. As predicted, a higher dose of unlabeled intact antibody was required to block binding to these distant receptor sites. Small radiolabeled constructs provide more accurate information on total receptor expression in tumors and reveal the need for higher antibody doses for target receptor blockade.
Molecular analysis of nicotinic receptor expression in autism.
Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K
2004-04-07
Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.
Human adenosine A2A receptor binds calmodulin with high affinity in a calcium-dependent manner.
Piirainen, Henni; Hellman, Maarit; Tossavainen, Helena; Permi, Perttu; Kursula, Petri; Jaakola, Veli-Pekka
2015-02-17
Understanding how ligands bind to G-protein-coupled receptors and how binding changes receptor structure to affect signaling is critical for developing a complete picture of the signal transduction process. The adenosine A2A receptor (A2AR) is a particularly interesting example, as it has an exceptionally long intracellular carboxyl terminus, which is predicted to be mainly disordered. Experimental data on the structure of the A2AR C-terminus is lacking, because published structures of A2AR do not include the C-terminus. Calmodulin has been reported to bind to the A2AR C-terminus, with a possible binding site on helix 8, next to the membrane. The biological meaning of the interaction as well as its calcium dependence, thermodynamic parameters, and organization of the proteins in the complex are unclear. Here, we characterized the structure of the A2AR C-terminus and the A2AR C-terminus-calmodulin complex using different biophysical methods, including native gel and analytical gel filtration, isothermal titration calorimetry, NMR spectroscopy, and small-angle X-ray scattering. We found that the C-terminus is disordered and flexible, and it binds with high affinity (Kd = 98 nM) to calmodulin without major conformational changes in the domain. Calmodulin binds to helix 8 of the A2AR in a calcium-dependent manner that can displace binding of A2AR to lipid vesicles. We also predicted and classified putative calmodulin-binding sites in a larger group of G-protein-coupled receptors. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
1-Methyl-beta-carboline (harmane), a potent endogenous inhibitor of benzodiazepine receptor binding.
Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U
1980-10-01
The interaction of several beta-carbolines with specific [3H]-flunitrazepam binding to benzodiazepine receptors in rat brain membranes was investigated. Out of the investigated compounds, harmane and norharmane were the most potent inhibitors of specific [3H]-flunitrazepam binding, with IC50-values in the micromolar range. All other derivatives, including harmine, harmaline, and several tetrahydroderivatives were at least ten times less potent. Harmane has been previously found in rat brain and human urine, so it is the most potent endogenous inhibitor of specific [3H]-flunitrazepam binding known so far, with a several fold higher affinity for the benzodiazepine receptor than inosine and hypoxanthine. Thus, we suggest that harmane or other related beta-carbolines could be potential candidates as endogenous ligands of the benzodiazepine receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, D.G. Jr.; Horvath, E.; Traber, J.
GTP (guanosine-5'-triphosphate) markedly reduced high-affinity /sup 3/H-oxotremorine-M binding to M/sub 2/ receptors on brain slices in autoradiographic experiments while /sup 3/H-pirenzepine binding to M/sub 1/ receptors was largely unaffected. The distribution of M/sub 1/ receptors so labelled was also not altered by GTP to include former M/sub 2/-rich regions, thus indicating that GTP could not, by itself, interconvert high agonist-affinity M/sub 2/ receptors to M/sub 1/ receptors. 18 references, 1 figure.
Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G
2001-03-02
Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.
Eierhoff, Thorsten; Hrincius, Eike R; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-09-09
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake.
NASA Astrophysics Data System (ADS)
Gray, Patrick W.; Barrett, Kathy; Chantry, David; Turner, Martin; Feldmann, Marc
1990-10-01
The cDNA for one of the receptors for human tumor necrosis factor (TNF) has been isolated. This cDNA encodes a protein of 455 amino acids that is divided into an extracellular domain of 171 residues and a cytoplasmic domain of 221 residues. The extracellular domain has been engineered for expression in mammalian cells, and this recombinant derivative binds TNFα with high affinity and inhibits its cytotoxic activity in vitro. The TNF receptor exhibits similarity with a family of cell surface proteins that includes the nerve growth factor receptor, the human B-cell surface antigen CD40, and the rat T-cell surface antigen OX40. The TNF receptor contains four cysteine-rich subdomains in the extra-cellular portion. Mammalian cells transfected with the entire TNF receptor cDNA bind radiolabeled TNFα with an affinity of 2.5 x 10-9 M. This binding can be competitively inhibited with unlabeled TNFα or lymphotoxin (TNFβ).
Eierhoff, Thorsten; Hrincius, Eike R.; Rescher, Ursula; Ludwig, Stephan; Ehrhardt, Christina
2010-01-01
Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake. PMID:20844577
NASA Astrophysics Data System (ADS)
Comitani, Federico; Cohen, Netta; Ashby, Jamie; Botten, Dominic; Lummis, Sarah C. R.; Molteni, Carla
2014-01-01
The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule.
Woll, Kellie A; Murlidaran, Sruthi; Pinch, Benika J; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P; Brannigan, Grace; Garcia, Benjamin A; Eckenhoff, Roderic G
2016-09-23
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Woll, Kellie A.; Murlidaran, Sruthi; Pinch, Benika J.; Hénin, Jérôme; Wang, Xiaoshi; Salari, Reza; Covarrubias, Manuel; Dailey, William P.; Brannigan, Grace; Garcia, Benjamin A.; Eckenhoff, Roderic G.
2016-01-01
Propofol, an intravenous anesthetic, is a positive modulator of the GABAA receptor, but the mechanistic details, including the relevant binding sites and alternative targets, remain disputed. Here we undertook an in-depth study of alkylphenol-based anesthetic binding to synaptic membranes. We designed, synthesized, and characterized a chemically active alkylphenol anesthetic (2-((prop-2-yn-1-yloxy)methyl)-5-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenol, AziPm-click (1)), for affinity-based protein profiling (ABPP) of propofol-binding proteins in their native state within mouse synaptosomes. The ABPP strategy captured ∼4% of the synaptosomal proteome, including the unbiased capture of five α or β GABAA receptor subunits. Lack of γ2 subunit capture was not due to low abundance. Consistent with this, independent molecular dynamics simulations with alchemical free energy perturbation calculations predicted selective propofol binding to interfacial sites, with higher affinities for α/β than γ-containing interfaces. The simulations indicated hydrogen bonding is a key component leading to propofol-selective binding within GABAA receptor subunit interfaces, with stable hydrogen bonds observed between propofol and α/β cavity residues but not γ cavity residues. We confirmed this by introducing a hydrogen bond-null propofol analogue as a protecting ligand for targeted-ABPP and observed a lack of GABAA receptor subunit protection. This investigation demonstrates striking interfacial GABAA receptor subunit selectivity in the native milieu, suggesting that asymmetric occupancy of heteropentameric ion channels by alkylphenol-based anesthetics is sufficient to induce modulation of activity. PMID:27462076
Allosteric modulation of ATP-gated P2X receptor channels
Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo
2013-01-01
Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805
The interaction of Clostridium perfringens enterotoxin with receptor claudins
Shrestha, Archana; Uzal, Francisco A.; McClane, Bruce A.
2016-01-01
Clostridium perfringens enterotoxin (CPE) has significant medical importance due to its involvement in several common human gastrointestinal diseases. This 35 kDa single polypeptide toxin consists of two domains: a C-terminal domain involved in receptor binding and an N-terminal domain involved in oligomerization, membrane insertion and pore formation. The action of CPE starts with its binding to receptors, which include certain members of the claudin tight junction protein family; bound CPE then forms a series of complexes, one of which is a pore that causes the calcium influx responsible for host cell death. Recent studies have revealed that CPE binding to claudin receptors involves interactions between the C-terminal CPE domain and both the 1st and 2nd extracellular loops (ECL-1 and ECL-2) of claudin receptors. Of particular importance for this binding is the docking of ECL-2 into a pocket present in the C-terminal domain of the toxin. This increased understanding of CPE interactions with claudin receptors is now fostering the development of receptor decoy therapeutics for CPE-mediated gastrointestinal disease, reagents for cancer therapy/diagnoses and enhancers of drug delivery. PMID:27090847
Morini, Gabriella; Bassoli, Angela; Temussi, Piero A
2005-08-25
The sweet taste receptor, a heterodimeric G protein coupled receptor (GPCR) protein, formed by the T1R2 and T1R3 subunits, recognizes several sweet compounds including carbohydrates, amino acids, peptides, proteins, and synthetic sweeteners. Its similarity with the metabotropic glutamate mGluR1 receptor allowed us to build homology models. All possible dimers formed by combinations of the human T1R2 and T1R3 subunits, modeled on the A (closed) or B (open) chains of the extracellular ligand binding domain of the mGluR1 template, yield four ligand binding sites for low-molecular-weight sweeteners. These sites were probed by docking a set of molecules representative of all classes of sweet compounds and calculating the free energy of ligand binding. These sites are not easily accessible to sweet proteins, but docking experiments in silico showed that sweet proteins can bind to a secondary site without entering the deep cleft. Our models account for many experimental observations on the tastes of sweeteners, including sweetness synergy, and can help to design new sweeteners.
Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding
Flanagan, Colleen A.; Manilall, Ashmeetha
2017-01-01
Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function. PMID:29123501
Talekar, Aparna; DeVito, Ilaria; Salah, Zuhair; Palmer, Samantha G.; Chattopadhyay, Anasuya; Rose, John K.; Xu, Rui; Wilson, Ian A.; Moscona, Anne
2013-01-01
Paramyxoviruses, including the emerging lethal human Nipah virus (NiV) and the avian Newcastle disease virus (NDV), enter host cells through fusion of the viral and target cell membranes. For paramyxoviruses, membrane fusion is the result of the concerted action of two viral envelope glycoproteins: a receptor binding protein and a fusion protein (F). The NiV receptor binding protein (G) attaches to ephrin B2 or B3 on host cells, whereas the corresponding hemagglutinin-neuraminidase (HN) attachment protein of NDV interacts with sialic acid moieties on target cells through two regions of its globular domain. Receptor-bound G or HN via its stalk domain triggers F to undergo the conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We show that chimeric proteins containing the NDV HN receptor binding regions and the NiV G stalk domain require a specific sequence at the connection between the head and the stalk to activate NiV F for fusion. Our findings are consistent with a general mechanism of paramyxovirus fusion activation in which the stalk domain of the receptor binding protein is responsible for F activation and a specific connecting region between the receptor binding globular head and the fusion-activating stalk domain is required for transmitting the fusion signal. PMID:23903846
When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor.
Su, Tsung-Ping; Hayashi, Teruo; Vaupel, D Bruce
2009-03-10
N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine-associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors.
When the Endogenous Hallucinogenic Trace Amine N,N-Dimethyltryptamine Meets the Sigma-1 Receptor
Su, Tsung-Ping; Hayashi, Teruo; Vaupel, D. Bruce
2011-01-01
N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine–associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors. PMID:19278957
Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference
Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F
2015-01-01
The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference. PMID:25940072
Corticotropin-releasing hormone-binding protein and stress: from invertebrates to humans.
Ketchesin, Kyle D; Stinnett, Gwen S; Seasholtz, Audrey F
2017-09-01
Corticotropin-releasing hormone (CRH) is a key regulator of the stress response. This peptide controls the hypothalamic-pituitary-adrenal (HPA) axis as well as a variety of behavioral and autonomic stress responses via the two CRH receptors, CRH-R1 and CRH-R2. The CRH system also includes an evolutionarily conserved CRH-binding protein (CRH-BP), a secreted glycoprotein that binds CRH with subnanomolar affinity to modulate CRH receptor activity. In this review, we discuss the current literature on CRH-BP and stress across multiple species, from insects to humans. We describe the regulation of CRH-BP in response to stress, as well as genetic mouse models that have been utilized to elucidate the in vivo role(s) of CRH-BP in modulating the stress response. Finally, the role of CRH-BP in the human stress response is examined, including single nucleotide polymorphisms in the human CRHBP gene that are associated with stress-related affective disorders and addiction. Lay summary The stress response is controlled by corticotropin-releasing hormone (CRH), acting via CRH receptors. However, the CRH system also includes a unique CRH-binding protein (CRH-BP) that binds CRH with an affinity greater than the CRH receptors. In this review, we discuss the role of this highly conserved CRH-BP in regulation of the CRH-mediated stress response from invertebrates to humans.
McGlade, C J; Ellis, C; Reedijk, M; Anderson, D; Mbamalu, G; Reith, A D; Panayotou, G; End, P; Bernstein, A; Kazlauskas, A
1992-01-01
The binding of cytoplasmic signaling proteins such as phospholipase C-gamma 1 and Ras GTPase-activating protein to autophosphorylated growth factor receptors is directed by their noncatalytic Src homology region 2 (SH2) domains. The p85 alpha regulatory subunit of phosphatidylinositol (PI) 3-kinase, which associates with several receptor protein-tyrosine kinases, also contains two SH2 domains. Both p85 alpha SH2 domains, when expressed individually as fusion proteins in bacteria, bound stably to the activated beta receptor for platelet-derived growth factor (PDGF). Complex formation required PDGF stimulation and was dependent on receptor tyrosine kinase activity. The bacterial p85 alpha SH2 domains recognized activated beta PDGF receptor which had been immobilized on a filter, indicating that SH2 domains contact autophosphorylated receptors directly. Several receptor tyrosine kinases within the PDGF receptor subfamily, including the colony-stimulating factor 1 receptor and the Steel factor receptor (Kit), also associate with PI 3-kinase in vivo. Bacterially expressed SH2 domains derived from the p85 alpha subunit of PI 3-kinase bound in vitro to the activated colony-stimulating factor 1 receptor and to Kit. We infer that the SH2 domains of p85 alpha bind to high-affinity sites on these receptors, whose creation is dependent on receptor autophosphorylation. The SH2 domains of p85 are therefore primarily responsible for the binding of PI 3-kinase to activated growth factor receptors. Images PMID:1372092
Gustafson, E. L.; Durkin, M. M.; Bard, J. A.; Zgombick, J.; Branchek, T. A.
1996-01-01
1. Receptor autoradiography and in situ hybridization histochemistry have been used to delineate the distribution of the 5-ht7 receptor and its mRNA in rat brain. Receptor autoradiographic studies were performed using [3H]-5-carboxamidotryptamine (5-CT) as the radioligand. The binding characteristics of the masking compounds were determined in Cos-7 cells transfected with a panel of 5-HT receptor subtype cDNAs, including the rat 5-ht7 cDNA. In situ hybridization studies were carried out with 35S-labelled oligonucleotide probes to the rat 5-ht7 mRNA. 2. Specific binding of [3H]-5-CT was observed in many areas of the rat brain. Following co-incubation with 1 microM ergotamine, this binding was completely eliminated. After addition of the masking ligands, [3H]-5-CT binding remained in layers 1-3 of cortex, septum, globus pallidus, thalamus, hypothalamus, centromedial amygdala, substantia nigra, periaquaductal gray, and superior colliculus. Addition of the antagonist, methiothepin, to the incubation regimen eliminated most of the remaining [3H]-5-CT binding in the brain, with the exception of the globus pallidus and substantia nigra. 3. The 5-ht7 mRNA was discretely localized in rat brain. The most intense hybridization signals were observed over the thalamus, the anterior hippocampal rudiment, and over the CA3 region of the hippocampus. Other regions containing hybridization signals included the septum, the hypothalamus, the centromedial amygdala and the periaquaductal gray. The regions exhibiting a modest receptor binding signal after methiothepin incubation, the globus pallidus and the substantia nigra, contained no 5-ht7 hybridization signals, suggesting a non-5-ht7 subtype in these two related structures. 4. The distribution of the 5-ht7 receptor and its mRNA is suggestive of multiple roles for this novel 5-HT receptor, within several brain systems. The limbic system (centromedial amygdala, anterior hippocampal rudiment, hypothalamus) is particularly well-represented, indicating a potential role for the 5-ht7 receptor in affective processes. Images Figure 2 Figure 3 Figure 4 PMID:8646411
Specific Roles of NMDA Receptor Subunits in Mental Disorders.
Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K
2015-01-01
N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xin; Chen, Hao; Shaffer, Paul L.
Ivermectin acts as a positive allosteric modulator of several Cys-loop receptors including the glutamate-gated chloride channels (GluCls), γ-aminobutyric acid receptors (GABA ARs), glycine receptors (GlyRs), and neuronal α7-nicotinic receptors (α7 nAChRs). The crystal structure of Caenorhabditis elegans GluCl complexed with ivermectin revealed the details of its ivermectin binding site. Although the electron microscopy structure of zebrafish GlyRα1 complexed with ivermectin demonstrated a similar binding orientation, detailed structural information on the ivermectin binding and pore opening for Cys-loop receptors in vertebrates has been elusive. Here we present the crystal structures of human GlyRα3 in complex with ivermectin at 2.85 and 3.08more » Å resolution. Our structures allow us to explore in detail the molecular recognition of ivermectin by GlyRs, GABA ARs, and α7 nAChRs. Comparisons with previous structures reveal how the ivermectin binding expands the ion channel pore. Our results hold promise in structure-based design of GlyR modulators for the treatment of neuropathic pain.« less
Bond, C; LaForge, K S; Tian, M; Melia, D; Zhang, S; Borg, L; Gong, J; Schluger, J; Strong, J A; Leal, S M; Tischfield, J A; Kreek, M J; Yu, L
1998-08-04
Opioid drugs play important roles in the clinical management of pain, as well as in the development and treatment of drug abuse. The mu opioid receptor is the primary site of action for the most commonly used opioids, including morphine, heroin, fentanyl, and methadone. By sequencing DNA from 113 former heroin addicts in methadone maintenance and 39 individuals with no history of drug or alcohol abuse or dependence, we have identified five different single-nucleotide polymorphisms (SNPs) in the coding region of the mu opioid receptor gene. The most prevalent SNP is a nucleotide substitution at position 118 (A118G), predicting an amino acid change at a putative N-glycosylation site. This SNP displays an allelic frequency of approximately 10% in our study population. Significant differences in allele distribution were observed among ethnic groups studied. The variant receptor resulting from the A118G SNP did not show altered binding affinities for most opioid peptides and alkaloids tested. However, the A118G variant receptor binds beta-endorphin, an endogenous opioid that activates the mu opioid receptor, approximately three times more tightly than the most common allelic form of the receptor. Furthermore, beta-endorphin is approximately three times more potent at the A118G variant receptor than at the most common allelic form in agonist-induced activation of G protein-coupled potassium channels. These results show that SNPs in the mu opioid receptor gene can alter binding and signal transduction in the resulting receptor and may have implications for normal physiology, therapeutics, and vulnerability to develop or protection from diverse diseases including the addictive diseases.
Prokop, Jeremy W.; Santos, Robson A. S.; Milsted, Amy
2013-01-01
The renin-angiotensin system is involved in multiple conditions ranging from cardiovascular disorders to cancer. Components of the pathway, including ACE, renin and angiotensin receptors are targets for disease treatment. This study addresses three receptors of the pathway: AT1, AT2, and MAS and how the receptors are similar and differ in activation by angiotensin peptides. Combining biochemical and amino acid variation data with multiple species sequence alignments, structural models, and docking site predictions allows for visualization of how angiotensin peptides may bind and activate the receptors; allowing identification of conserved and variant mechanisms in the receptors. MAS differs from AT1 favoring Ang-(1–7) and not Ang II binding, while AT2 recently has been suggested to preferentially bind Ang III. A new model of Ang peptide binding to AT1 and AT2 is proposed that correlates data from site directed mutagenesis and photolabled experiments that were previously considered conflicting. Ang II binds AT1 and AT2 through a conserved initial binding mode involving amino acids 111 (consensus 325) of AT1 (Asn) interacting with Tyr (4) of Ang II and 199 and 256 (consensus 512 and 621, a Lys and His respectively) interacting with Phe (8) of Ang II. In MAS these sites are not conserved, leading to differential binding and activation by Ang-(1–7). In both AT1 and AT2, the Ang II peptide may internalize through Phe (8) of Ang II propagating through the receptors’ conserved aromatic amino acids to the final photolabled positioning relative to either AT1 (amino acid 294, Asn, consensus 725) or AT2 (138, Leu, consensus 336). Understanding receptor activation provides valuable information for drug design and identification of other receptors that can potentially bind Ang peptides. PMID:23755216
Ionotropic and metabotropic receptor mediated airway sensory nerve activation.
Lee, Min-Goo; Kollarik, Marian; Chuaychoo, Benjamas; Undem, Bradley J
2004-01-01
There are several receptors capable of inducing activating generator potentials in cough-associated afferent terminals in the airways. The chemical receptors leading to generator potentials can be subclassified into ionotropic and metabotropic types. An ionotropic receptor has an agonist-binding domain, and also serves directly as an ion channel that is opened upon binding of the agonist. Examples of ionotropic receptors found in airway sensory nerve terminals include receptors for serotonin (5-HT3 receptors), ATP (P2X receptors), acetylcholine (nicotinic receptors), receptors for capsaicin and related vanilloids (TRPV1 receptors), and acid receptors (acid sensing ion channels). Afferent nerve terminals can also be depolarized via activation of metabotropic or G-protein coupled receptors (GPCRs). Among the GPCRs that can lead to activation of airway afferent fibers include bradykinin B2 and adenosine A1 receptors. The signaling events leading to GPCR-mediated membrane depolarization are more complex than that seen with ionotropic receptors. The GPCR-mediated effects are thought to occur through classical second messenger systems such as activation of phospholipase C. This may lead to membrane depolarization through interaction with specific ionotropic receptors (such as TRPV1) and/or various types of calcium activated channels.
BiFC Assay to Detect Calmodulin Binding to Plant Receptor Kinases.
Fischer, Cornelia; Sauter, Margret; Dietrich, Petra
2017-01-01
Plant receptor-like kinases (RLKs) are regulated at various levels including posttranscriptional modification and interaction with regulatory proteins. Calmodulin (CaM) is a calcium-sensing protein that was shown to bind to some RLKs such as the PHYTOSULFOKINE RECEPTOR1 (PSKR1). The CaM-binding site is embedded in subdomain VIa of the kinase domain. It is possible that many more of RLKs interact with CaM than previously described. To unequivocally confirm CaM binding, several methods exist. Bimolecular fluorescence complementation (BiFC) and pull-down assays have been successfully used to study CaM binding to PSKR1 and are described in this chapter (BiFC) and in Chapter 15 (pull down). The two methods are complementary. BiFC is useful to show localization and interaction of soluble as well as of membrane-bound proteins in planta.
Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.
Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter
2017-10-01
The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Hallucinogen N,N-Dimethyltryptamine (DMT) Is an Endogenous Sigma-1 Receptor Regulator
Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R.; Cozzi, Nicholas V.; Jackson, Meyer B.; Ruoho, Arnold E.
2010-01-01
The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor. PMID:19213917
The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator.
Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R; Cozzi, Nicholas V; Jackson, Meyer B; Ruoho, Arnold E
2009-02-13
The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.
Characterization of 12 GnRH peptide agonists - a kinetic perspective.
Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak-Reppel, Katrin; Fernández-Montalván, Amaury E; IJzerman, Adriaan P; Heitman, Laura H
2016-01-01
Drug-target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin-releasing hormone (GnRH) receptor for the treatment of hormone-dependent diseases. Surprisingly, the kinetic receptor-binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor-binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. A novel radioligand-binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [(125) I]-triptorelin. In addition to radioligand-binding studies, a homogeneous time-resolved FRET Tag-lite™ method was developed as an alternative assay for the same purpose. Two novel competition association assays were successfully developed and applied to determine the kinetic receptor-binding characteristics of 12 high-affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. © 2015 The British Pharmacological Society.
Sóvágó, Judit; Farde, Lars; Halldin, Christer; Langer, Oliver; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs
2004-10-01
The dopamine-D3 receptor is of special interest due to its postulated role in the pathophysiology and treatment of schizophrenia and Parkinson's Disease. Increasing evidences support the assumption that the D3 receptors are occupied to a high degree by dopamine at physiological conditions. Research on the functional role of the D3 receptors in brain has however been hampered by the lack of D3 selective ligands. In the present Positron Emission Tomography (PET) study the binding of the novel, putative dopamine-D3 receptor ligand, [11C]RGH-1756 was characterized in the cynomolgus monkey brain. [11C]RGH-1756 was rather homogenously distributed in brain and the regional binding potential (BP) values ranged between 0.17 and 0.48. Pretreatment with unlabelled RGH-1756 decreased radioligand binding to the level of the cerebellum in most brain areas. The regional BP values were lower after intravenous injection of a higher mass of RGH-1756, indicating saturable binding of [11C]RGH-1756. The D2/D3 antagonist raclopride partly inhibited the binding of [11C]RGH-1756 in several brain areas, including the striatum, mesencephalon and neocortex, whereas the 5HT(1A) antagonist WAY-100635 had no evident effect on [11C]RGH-1756 binding. Despite the promising binding characteristics of RGH-1756 in vitro the present PET-study indicates that [11C]RGH-1756 provides a low signal for specific binding to the D3 receptor in vivo. One explanation is that the favorable binding characteristics of RGH-1756 in vitro are not manifested in vivo. Alternatively, the results may support the hypothesis that the dopamine-D3 receptors are indeed occupied to a high extent by dopamine in vivo and thus not available for radioligand binding.
Molecular mechanism of ATP binding and ion channel activation in P2X receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Motoyuki; Gouaux, Eric
P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure ofmore » the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J
2010-01-01
When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less
Functional importance of EAK1 tyrosine phosphorylation in vivo
USDA-ARS?s Scientific Manuscript database
The plant receptor kinase BRASSINOSTEROID ASSOCIATED KINASE 1 (BAK1) is known as a partner of several ligand-binding leucine-rich repeat receptor kinases, including BRASSINOSTEROID INSENSITIVE 1 (BRI1) and the flagellin receptor FLS2. Autophosphorylation of receptor kinases is recognized to be an i...
Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.
Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige
2016-02-01
Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR.
Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman-James, Kristen
2004-12-01
This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical andmore » structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.« less
Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J
1998-08-21
Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.
Saleh, Noureldin; Ibrahim, Passainte; Saladino, Giorgio; Gervasio, Francesco Luigi; Clark, Timothy
2017-05-22
A generally applicable metadynamics scheme for predicting the free energy profile of ligand binding to G-protein-coupled receptors (GPCRs) is described. A common and effective collective variable (CV) has been defined using the ideally placed and highly conserved Trp6.48 as a reference point for ligand-GPCR distance measurement and the common orientation of GPCRs in the cell membrane. Using this single CV together with well-tempered multiple-walker metadynamics with a funnel-like boundary allows an efficient exploration of the entire ligand binding path from the extracellular medium to the orthosteric binding site, including vestibule and intermediate sites. The protocol can be used with X-ray structures or high-quality homology models (based on a high-quality template and after thorough refinement) for the receptor and is universally applicable to agonists, antagonists, and partial and reverse agonists. The root-mean-square error (RMSE) in predicted binding free energies for 12 diverse ligands in five receptors (a total of 23 data points) is surprisingly small (less than 1 kcal mol -1 ). The RMSEs for simulations that use receptor X-ray structures and homology models are very similar.
Protein Receptor(s) of Botulinum Neurotoxin
2005-01-01
RESPONSIBLE PERSON OF ABSTRACT OF PAGES a. REPORT b . ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area U U U UU 361 code) Standard Form 298 (Rev...4 B o dy...demonstrated to bind BoNT/A, / B , and /E (5-7). It is well known that only the N-terminal domain of synaptotagmin is actually available for binding with any
Synthetic heparin-binding growth factor analogs
Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.
2007-01-23
The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.
Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens.
Rickli, Anna; Moning, Olivier D; Hoener, Marius C; Liechti, Matthias E
2016-08-01
The present study investigated interactions between the novel psychoactive tryptamines DiPT, 4-OH-DiPT, 4-OH-MET, 5-MeO-AMT, and 5-MeO-MiPT at monoamine receptors and transporters compared with the classic hallucinogens lysergic acid diethylamide (LSD), psilocin, N,N-dimethyltryptamine (DMT), and mescaline. We investigated binding affinities at human monoamine receptors and determined functional serotonin (5-hydroxytryptamine [5-HT]) 5-HT2A and 5-HT2B receptor activation. Binding at and the inhibition of human monoamine uptake transporters and transporter-mediated monoamine release were also determined. All of the novel tryptamines interacted with 5-HT2A receptors and were partial or full 5-HT2A agonists. Binding affinity to the 5-HT2A receptor was lower for all of the tryptamines, including psilocin and DMT, compared with LSD and correlated with the reported psychoactive doses in humans. Several tryptamines, including psilocin, DMT, DiPT, 4-OH-DiPT, and 4-OH-MET, interacted with the serotonin transporter and partially the norepinephrine transporter, similar to 3,4-methylenedioxymethamphetamine but in contrast to LSD and mescaline. LSD but not the tryptamines interacted with adrenergic and dopaminergic receptors. In conclusion, the receptor interaction profiles of the tryptamines predict hallucinogenic effects that are similar to classic serotonergic hallucinogens but also MDMA-like psychoactive properties. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Solution structure of a GAAA tetraloop receptor RNA.
Butcher, S E; Dieckmann, T; Feigon, J
1997-01-01
The GAAA tetraloop receptor is an 11-nucleotide RNA sequence that participates in the tertiary folding of a variety of large catalytic RNAs by providing a specific binding site for GAAA tetraloops. Here we report the solution structure of the isolated tetraloop receptor as solved by multidimensional, heteronuclear magnetic resonance spectroscopy. The internal loop of the tetraloop receptor has three adenosines stacked in a cross-strand or zipper-like fashion. This arrangement produces a high degree of base stacking within the asymmetric internal loop without extrahelical bases or kinking the helix. Additional interactions within the internal loop include a U. U mismatch pair and a G.U wobble pair. A comparison with the crystal structure of the receptor RNA bound to its tetraloop shows that a conformational change has to occur upon tetraloop binding, which is in good agreement with previous biochemical data. A model for an alternative binding site within the receptor is proposed based on the NMR structure, phylogenetic data and previous crystallographic structures of tetraloop interactions. PMID:9405377
Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar
2013-01-01
The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103
β1,4-galactosyltransferase 1 is a novel receptor for IgA in human mesangial cells.
Molyneux, Karen; Wimbury, David; Pawluczyk, Izabella; Muto, Masahiro; Bhachu, Jasraj; Mertens, Peter R; Feehally, John; Barratt, Jonathan
2017-12-01
IgA nephropathy is characterized by mesangial deposition of IgA, mesangial cell proliferation, and extracellular matrix production. Mesangial cells bind IgA, but the identity of all potential receptors involved remains incomplete. The transferrin receptor (CD71) acts as a mesangial cell IgA receptor and its expression is upregulated in many forms of glomerulonephritis, including IgA nephropathy. CD71 is not expressed in healthy glomeruli and blocking CD71 does not completely abrogate mesangial cell IgA binding. Previously we showed that mesangial cells express a receptor that binds the Fc portion of IgA and now report that this receptor is an isoform of β-1,4-galactosyltransferase. A human mesangial cell cDNA library was screened for IgA binding proteins and β-1,4-galactosyltransferase identified. Cell surface expression of the long isoform of β-1,4-galactosyltransferase was shown by flow cytometry and confocal microscopy and confirmed by immunoblotting. Glomerular β-1,4-galactosyltransferase expression was increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β-1,4-galactosyltransferase-specific antibodies, suggesting IgA binds to the catalytic domain of β-1,4-galactosyltransferase. Thus, β-1,4-galactosyltransferase is a constitutively expressed mesangial cell IgA receptor with an important role in both mesangial IgA clearance and the initial response to IgA deposition. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Niladri; Department of Natural Resource Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, H9X 3V9; Stamler, Christopher J.
2005-05-15
Mercury (Hg) is a ubiquitous pollutant that can disrupt neurochemical signaling pathways in mammals. It is well documented that inorganic Hg (HgCl{sub 2}) and methyl Hg (MeHg) can inhibit the binding of radioligands to the muscarinic acetylcholine (mACh) receptor in rat brains. However, little is known concerning this relationship in specific anatomical regions of the brain or in other species, including humans. The purpose of this study was to explore the inhibitory effects of HgCl{sub 2} and MeHg on [{sup 3}H]-quinuclidinyl benzilate ([{sup 3}H]-QNB) binding to the mACh receptor in the cerebellum and cerebral cortex regions from human, rat, mouse,more » mink, and river otter brain tissues. Saturation binding curves were obtained from each sample to calculate receptor density (B {sub max}) and ligand affinity (K {sub d}). Subsequently, samples were exposed to HgCl{sub 2} or MeHg to derive IC50 values and inhibition constants (K {sub i}). Results demonstrate that HgCl{sub 2} is a more potent inhibitor of mACh receptor binding than MeHg, and the receptors in the cerebellum are more sensitive to Hg-mediated mACh receptor inhibition than those in the cerebral cortex. Species sensitivities, irrespective of Hg type and brain region, can be ranked from most to least sensitive: river otter > rat > mink > mouse > humans. In summary, our data demonstrate that Hg can inhibit the binding [{sup 3}H]-QNB to the mACh receptor in a range of mammalian species. This comparative study provides data on interspecies differences and a framework for interpreting results from human, murine, and wildlife studies.« less
Balaguer, Patrick; Delfosse, Vanessa; Grimaldi, Marina; Bourguet, William
Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs. Copyright © 2017. Published by Elsevier Masson SAS.
Muñoz, Maria de Lourdes; Limón-Camacho, Gustavo; Tovar, Rosalinda; Diaz-Badillo, Alvaro; Mendoza-Hernández, Guillermo; Black, William C.
2013-01-01
The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67 kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin. PMID:24324976
Analysis of Ethylene Receptors: Ethylene-Binding Assays.
Binder, Brad M; Schaller, G Eric
2017-01-01
Plant ethylene receptors bind ethylene with high affinity. Most of the characterization of ethylene binding to the receptors has been carried out using a radioligand-binding assay on functional receptors expressed in yeast. In this chapter, we describe methods for expressing ethylene receptors in yeast and conducting ethylene-binding assays on intact yeast and yeast membranes. The ethylene-binding assays can be modified to analyze ethylene binding to intact plants and other organisms as well as membranes isolated from any biological source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, S.; Costa, T.; Herz, A.
1988-07-25
The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex.more » The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.« less
ESTROGEN INDUCED VITELLOGENIN MRNA AND PROTEIN IN SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS)
Many environmentally persistent xenobiotic chemicals appear to disrupt normal endocrine function by acting as ligands for endogenous steroid receptors, including the estrogen receptor. Xenobiotics that bind to the estrogen receptor may elicit several effects, one of which is acti...
Evidence of paired M2 muscarinic receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, L.T.; Ballesteros, L.A.; Bichajian, L.H.
Binding assays involving various antagonists, including N-(3H) methylscopolamine, (3H)quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat brainstem (medulla, pons, and colliculi). However, competition curves between N-(3H)methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization withmore » digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of (3H)-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with (3H)quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.« less
Slack, RJ; Hall, DA
2012-01-01
BACKGROUND AND PURPOSE The operational model provides a key conceptual framework for the analysis of pharmacological data. However, this model does not include constitutive receptor activity, a frequent phenomenon in modern pharmacology, particularly in recombinant systems. Here, we developed extensions of the operational model which include constitutive activity and applied them to effects of agonists at the chemokine receptor CCR4. EXPERIMENTAL APPROACH The effects of agonists of CCR4 on [35S]GTPγS binding to recombinant cell membranes and on the filamentous (F-) actin content of human CD4+ CCR4+ T cells were determined. The basal [35S]GTPγS binding was changed by varying the GDP concentration whilst the basal F-actin contents of the higher expressing T cell populations were elevated, suggesting constitutive activity of CCR4. Both sets of data were analysed using the mathematical models. RESULTS The affinity of CCL17 (also known as TARC) derived from analysis of the T cell data (pKa= 9.61 ± 0.17) was consistent with radioligand binding experiments (9.50 ± 0.11) while that from the [35S]GTPγS binding experiments was lower (8.27 ± 0.09). Its intrinsic efficacy differed between the two systems (110 in T cells vs. 11). CONCLUSIONS AND IMPLICATIONS The presence of constitutive receptor activity allows the absolute intrinsic efficacy of agonists to be determined without a contribution from the signal transduction system. Intrinsic efficacy estimated in this way is consistent with Furchgott's definition of this property. CCL17 may have a higher intrinsic efficacy at CCR4 in human T cells than that expressed recombinantly in CHO cells. PMID:22335621
ERIC Educational Resources Information Center
Hernandez-Cortes, Patricia
2012-01-01
Vitellogenin (Vtg) is a lipid transfer protein that carries yolk to the ovary. The vitellogenin receptor (VtgR) mediates the uptake of Vtg into the oocyte of oviparous animals; its structure includes eight ligand-binding repeats (LBR). The binding site of VtgR and Vtg and the location of the interaction within the molecules are at these LBR.…
[Targeting of membrane receptor tyrosine kinases: is there resistance in the HER?].
Monnier, Lucile; Milano, Gérard; Penault-Llorca, Frédérique; Merlin, Jean-Louis
2004-09-01
Human Epidermal growth factor Receptors (HER) play an important role in cellular proliferation, and differentiation. Their overexpression in tumor tissues is often associated with a poor prognosis. Consequently, HER receptors are interesting therapeutic targets for cancer treatment. Two strategies are proposed. First, monoclonal antibodies can be used to inhibit the binding of one ligand to its receptor. The second approach is based upon the designing of tyrosine kinase inhibitors capable to bind into the phosphorylation site of the receptor. Consequently, both approaches block the signal transduction downstream. Resistance to anti receptor tyrosine kinase therapy can lead to enhanced morbidity associated with high therapeutic cost. Different mechanisms can be implicated. Non specific mechanisms include alterations of the signal transduction pathways (PI3K/AKT), recruitment of alternative receptor tyrosine kinase pathways (IGFR, VEGFR) and proteasome degradation inhibition. Other mechanisms are specific to HER and rely on inhibition of the binding of monoclonal antibodies (sialomucin-MUC4), heterodimerisation of HER, truncated soluble receptors intervention and mutated variants, as demonstrated very recently with EGF receptors, or genetic polymorphism. This paper reviews these different resistance mechanisms that have been identified in preclinical and clinical situations.
Redfern, Andrew D.; Colley, Shane M.; Beveridge, Dianne J.; Ikeda, Naoya; Epis, Michael R.; Li, Xia; Foulds, Charles E.; Stuart, Lisa M.; Barker, Andrew; Russell, Victoria J.; Ramsay, Kerry; Kobelke, Simon J.; Li, Xiaotao; Hatchell, Esme C.; Payne, Christine; Giles, Keith M.; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B.; O’Malley, Bert W.; Leedman, Peter J.
2013-01-01
The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing. PMID:23550157
Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J
2013-04-16
The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.
Bisphenol A (BPA) binding on full-length architectures of estrogen receptor.
Liu, Yaquan; Qu, Kaili; Hai, Ying; Zhao, Chunyan
2018-08-01
Previous research has shown that the major toxicity mechanism for many environment chemicals is binding with estrogen receptor (ER) and blocking endogenous estrogen access, including bisphenol A (BPA). However, the molecular level understanding the global consequence of BPA binding on the full-length architectures of ER is largely unknown, which is a necessary stage to evaluate estrogen-like toxicity of BPA. In the present work, the consequence of BPA on full-length architectures of ER was firstly modeled based on molecular dynamics, focusing on the cross communication between multi-domains including ligand binding domain (LBD) and DNA binding domain (DBD). The study proved consequence of BPA upon full-length ER structure was dependent on long-range communications between multiple protein domains. The allosteric effects occurring in LBD units could alter dimerization formation through a crucial change in residue-residue connections, which resulted in relaxation of DBD. It indicated BPA could present consequence on the full-size receptor, not only on the separate domains, but also on the cross communication among LBD, DBD, and DNA molecules. It might provide detailed insight into the knowledge about the structural characteristics of ER and its role in gene regulation, which eventually helped us evaluate the estrogen-like toxicity upon BPA binding with full-length ER. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, W.F.; O'Gorman, S.; Roe, A.W.
1990-03-01
The autoradiographic analysis of neurotransmitter receptor distribution is a powerful technique that provides extensive information on the localization of neurotransmitter systems. Computer methodologies are described for the analysis of autoradiographic material which include quench correction, 3-dimensional display, and quantification based on anatomical boundaries determined from the tissue sections. These methodologies are applied to the problem of the distribution of glycine receptors measured by 3H-strychnine binding in the mouse CNS. The most distinctive feature of this distribution is its marked caudorostral gradient. The highest densities of binding sites within this gradient were seen in somatic motor and sensory areas; high densitiesmore » of binding were seen in branchial efferent and special sensory areas. Moderate levels were seen in nuclei related to visceral function. Densities within the reticular formation paralleled the overall gradient with high to moderate levels of binding. The colliculi had low and the diencephalon had very low levels of binding. No binding was seen in the cerebellum or the telencephalon with the exception of the amygdala, which had very low levels of specific binding. This distribution of glycine receptors correlates well with the known functional distribution of glycine synaptic function. These data are illustrated in 3 dimensions and discussed in terms of the significance of the analysis techniques on this type of data as well as the functional significance of the distribution of glycine receptors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javitt, D.C.; Zukin, S.R.
1989-01-01
N-Methyl-D-aspartate (N-Me-D-Asp) and phencyclidine receptors interactively mediate central nervous system processes including psychotomimetic effects of drugs as well as neurodegenerative, cognitive, and developmental events. To elucidate the mechanism of this interaction, effects of N-Me-D-Asp agonists and antagonists and of glycine-like agents upon binding of the radiolabeled phencyclidine receptor ligand ({sup 3}H)MK-801 were determined in rat brain. Scatchard analysis revealed two discrete components of ({sup 3}H)MK-801 binding after 4 hr of incubation. Incubation in the presence of L-glutamate led to an increase in apparent densities but not in affinities of both components of ({sup 3}H)MK-801 binding as well as conversion ofmore » sites from apparent low to high affinity. Incubation in the presence of combined D-serine and L-glutamate led to an increase in the apparent density of high-affinity ({sup 3}H)MK-801 binding compared with incubation in the presence of either L-glutamate or D-serine alone. These data support a model in which phencyclidine receptor ligands bind differentially to closed as well as open conformations of the N-Me-D-Asp receptor complex and in which glycine-like agents permit or facilitate agonist-induced conversion of N-Me-D-Asp receptors from closed to open conformations.« less
Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.
Banerjee, S; Poddar, M K
2016-04-05
Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity
Eisenstein, Sarah A.; Gredysa, Danuta M.; Antenor–Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M.; Black, Kevin J.; Perlmutter, Joel S.; Moerlein, Stephen M.; Hershey, Tamara
2015-01-01
Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans. PMID:26192187
Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.
Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara
2015-01-01
Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.
De Angelis, Rolando W; Yang, Qin; Miura, Michael T; Bain, David L
2013-01-01
Steroid receptors comprise a homologous family of ligand-activated transcription factors. The members include androgen receptor (AR), estrogen receptor (ER), glucocorticoid receptor (GR), mineralocorticoid receptor (MR) and progesterone receptor (PR). Phylogenetic studies demonstrate that AR, GR, MR and PR are most closely related, falling into subgroup 3C. ER is more distantly related, falling into subgroup 3A. To determine the quantitative basis by which receptors generate their unique transcriptional responses, we are systematically dissecting the promoter-binding energetics of all receptors under a single “standard state” condition. Here we examine the self-assembly and promoter-binding energetics of full-length AR and a mutant associated with prostate cancer, T877A. We first demonstrate that both proteins exist only as monomers, showing no evidence of dimerization. Although this result contradicts the traditional understanding that steroid receptors dimerize in the absence of DNA, it is fully consistent with our previous work demonstrating that GR and two PR isoforms either do not dimerize or dimerize only weakly. Moreover, both AR proteins exhibit substantial cooperativity between binding sites, again as seen for GR and PR. In sharp contrast, the more distantly related ER-α dimerizes so strongly that energetics can only be measured indirectly, yet cooperativity is negligible. Thus homologous receptors partition their promoter-binding energetics quite differently. Moreover, since receptors most closely related by phylogeny partition their energetics similarly, such partitioning appears to be evolutionarily conserved. We speculate that such differences in energetics, coupled with different promoter architectures, serve as the basis for generating receptor-specific promoter occupancy and thus function. PMID:23917122
Keller, H; Givel, F; Perroud, M; Wahli, W
1995-07-01
Peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) are nuclear hormone receptors that are activated by fatty acids and 9-cis-retinoic acid, respectively. PPARs and RXRs form heterodimers that activate transcription by binding to PPAR response elements (PPREs) in the promoter of target genes. The PPREs described thus far consist of a direct tandem repeat of the AGGTCA core element with one intervening nucleotide. We show here that the vitellogenin A2 estrogen response element (ERE) can also function as a PPRE and is bound by a PPAR/RXR heterodimer. Although this heterodimer can bind to several other ERE-related palindromic response elements containing AGGTCA half-sites, only the ERE is able to confer transactivation of test reporter plasmids, when the ERE is placed either close to or at a distance from the transcription initiation site. Examination of natural ERE-containing promoters, including the pS2, very-low-density apolipoprotein II and vitellogenin A2 genes, revealed considerable differences in the binding of PPAR/RXR heterodimers to these EREs. In their natural promoter context, these EREs did not allow transcriptional activation by PPARs/RXRs. Analysis of this lack of stimulation of the vitellogenin A2 promoter demonstrated that PPARs/RXRs bind to the ERE but cannot transactivate due to a nonpermissive promoter structure. As a consequence, PPARs/RXRs inhibit transactivation by the estrogen receptor through competition for ERE binding. This is the first example of signaling cross-talk between PPAR/RXR and estrogen receptor.
Kratochwil, Nicole A; Malherbe, Pari; Lindemann, Lothar; Ebeling, Martin; Hoener, Marius C; Mühlemann, Andreas; Porter, Richard H P; Stahl, Martin; Gerber, Paul R
2005-01-01
G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Here, a comprehensive and automated method allowing fast analysis and comparison of these putative binding pockets across the entire GPCR family is presented. The method relies on a robust alignment algorithm based on conservation indices, focusing on pharmacophore-like relationships between amino acids. Analysis of conservation patterns across the GPCR family and alignment to the rhodopsin X-ray structure allows the extraction of the amino acids lining the TM binding pocket in a so-called ligand binding pocket vector (LPV). In a second step, LPVs are translated to simple 3D receptor pharmacophore models, where each amino acid is represented by a single spherical pharmacophore feature and all atomic detail is omitted. Applications of the method include the assessment of selectivity issues, support of mutagenesis studies, and the derivation of rules for focused screening to identify chemical starting points in early drug discovery projects. Because of the coarseness of this 3D receptor pharmacophore model, however, meaningful scoring and ranking procedures of large sets of molecules are not justified. The LPV analysis of the trace amine-associated receptor family and its experimental validation is discussed as an example. The value of the 3D receptor model is demonstrated for a class C GPCR family, the metabotropic glutamate receptors.
Receptor-mediated cell mechanosensing
Chen, Yunfeng; Ju, Lining; Rushdi, Muaz; Ge, Chenghao; Zhu, Cheng
2017-01-01
Mechanosensing describes the ability of a cell to sense mechanical cues of its microenvironment, including not only all components of force, stress, and strain but also substrate rigidity, topology, and adhesiveness. This ability is crucial for the cell to respond to the surrounding mechanical cues and adapt to the changing environment. Examples of responses and adaptation include (de)activation, proliferation/apoptosis, and (de)differentiation. Receptor-mediated cell mechanosensing is a multistep process that is initiated by binding of cell surface receptors to their ligands on the extracellular matrix or the surface of adjacent cells. Mechanical cues are presented by the ligand and received by the receptor at the binding interface; but their transmission over space and time and their conversion into biochemical signals may involve other domains and additional molecules. In this review, a four-step model is described for the receptor-mediated cell mechanosensing process. Platelet glycoprotein Ib, T-cell receptor, and integrins are used as examples to illustrate the key concepts and players in this process. PMID:28954860
Burcher, E; Warner, F J
1998-06-01
In this study, we have used radioligand binding and functional techniques to investigate tachykinin receptors in the small intestine of the cane toad Bufo marinus. The radioligand [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P (selective at mammalian NK-1 receptors) showed no specific binding. Specific binding of [125I]Bolton-Hunter substance P ([125I]BHSP) was saturable, of high affinity (Kd 0.3 nM) and was inhibited by SP (IC50 0.64 nM) > ranakinin approximately neurokinin A (NKA) > or = SP(5-11) > or = neuropeptide gamma > or = scyliorhinin II > scyliorhinin I > or = [Sar9]-SP > or = neurokinin B approximately physalaemin approximately carassin > SP(7-11) approximately eledoisin > or = SP(4-11) approximately SP(6-11). Binding was also inhibited by Gpp[NH]p > or = GTPgammaS > App[NH]p, indicating a G-protein coupled receptor. The order of potency of tachykinins and analogues in contracting the isolated lower small intestine was carassin (EC50 1.4 nM) > eledoisin approximately SP > or = physalaemin > or = ranakinin > SP(6-11) > scyliorhinin II > or = neuropeptide gamma > neurokinin B approximately NKA approximately scyliorhinin I > or = SP(4-11) > or = SP(5-11) > [Sar9]SP > SP(7-11). In both studies, the selective mammalian NK-1, NK-2 and NK-3 receptor agonists [Sar9,Met(O2)11]SP, [Lys5,Me-Leu9,Nle10]NKA(4-10) and senktide were weak or ineffective. There was a strong positive correlation between the pD2 and pIC50 values for mammalian tachykinins and analogues (r = 0.907), but not for the non-mammalian tachykinins, which were all full agonists but variable binding competitors. [Sar9,Met(O2)11]-SP(pD2 5.7) was approximately 25-fold less potent as an agonist than [Sar9]SP, which was itself 25-fold weaker than SP. Responses to SP were significantly reduced (n = 8, P<0.001) by the antagonist [D-Arg1,D-Trp7,9,Leu11]-SP (spantide; 1 microM). Highly selective NK-1 receptor antagonists including CP 99994 and GR 82334 (both 1 microM) were ineffective in both functional and binding studies. Tetrodotoxin (1 microM) did not inhibit contractile responses to SP, NKA and senktide. In summary, this study has shown the presence of one or more tachykinin receptor in the toad intestine. The binding site recognised by [125I]BHSP prefers SP and ranakinin. This toad "NK-1-like receptor" differs from the mammalian NK-1 receptor in having a low affinity for all mammalian NK-1 selective ligands, including antagonists. For some non-mammalian peptides, their high potency as contractile agonists relative to their poor binding affinity suggests the existence of other tachykinin receptors in the toad small intestine.
Dolciami, Daniela; Gargaro, Marco; Cerra, Bruno; Scalisi, Giulia; Bagnoli, Luana; Servillo, Giuseppe; Fazia, Maria Agnese Della; Puccetti, Paolo; Quintana, Francisco J; Fallarino, Francesca; Macchiarulo, Antonio
2018-02-06
Discovered as a modulator of the toxic response to environmental pollutants, aryl hydrocarbon receptor (AhR) has recently gained attention for its involvement in various physiological and pathological pathways. AhR is a ligand-dependent transcription factor activated by a large array of chemical compounds, which include metabolites of l-tryptophan (l-Trp) catabolism as endogenous ligands of the receptor. Among these, 2-(1'H-indole-3'-carbonyl)thiazole-4-carboxylic acid methyl ester (ITE) has attracted interest in the scientific community, being endowed with nontoxic, immunomodulatory, and anticancer AhR-mediated functions. So far, no information about the binding mode and interactions of ITE with AhR is available. In this study, we used docking and molecular dynamics to propose a putative binding mode of ITE into the ligand binding pocket of AhR. Mutagenesis studies were then instrumental in validating the proposed binding mode, identifying His 285 and Tyr 316 as important key residues for ligand-dependent receptor activation. Finally, a set of ITE analogues was synthesized and tested to further probe molecular interactions of ITE to AhR and characterize the relevance of specific functional groups in the chemical structure for receptor activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Role of the Phosphatidylserine Receptor TIM-1 in Enveloped-Virus Entry
Moller-Tank, Sven; Kondratowicz, Andrew S.; Davey, Robert A.; Rennert, Paul D.
2013-01-01
The cell surface receptor T cell immunoglobulin mucin domain 1 (TIM-1) dramatically enhances filovirus infection of epithelial cells. Here, we showed that key phosphatidylserine (PtdSer) binding residues of the TIM-1 IgV domain are critical for Ebola virus (EBOV) entry through direct interaction with PtdSer on the viral envelope. PtdSer liposomes but not phosphatidylcholine liposomes competed with TIM-1 for EBOV pseudovirion binding and transduction. Further, annexin V (AnxV) substituted for the TIM-1 IgV domain, supporting a PtdSer-dependent mechanism. Our findings suggest that TIM-1-dependent uptake of EBOV occurs by apoptotic mimicry. Additionally, TIM-1 enhanced infection of a wide range of enveloped viruses, including alphaviruses and a baculovirus. As further evidence of the critical role of enveloped-virion-associated PtdSer in TIM-1-mediated uptake, TIM-1 enhanced internalization of pseudovirions and virus-like proteins (VLPs) lacking a glycoprotein, providing evidence that TIM-1 and PtdSer-binding receptors can mediate virus uptake independent of a glycoprotein. These results provide evidence for a broad role of TIM-1 as a PtdSer-binding receptor that mediates enveloped-virus uptake. Utilization of PtdSer-binding receptors may explain the wide tropism of many of these viruses and provide new avenues for controlling their virulence. PMID:23698310
Vishnivetskiy, Sergey A; Gimenez, Luis E; Francis, Derek J; Hanson, Susan M; Hubbell, Wayne L; Klug, Candice S; Gurevich, Vsevolod V
2011-07-08
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.
Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.
2011-01-01
Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193
Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.
Murase, Akio; Nakao, Kazunari; Takada, Junji
2008-01-01
In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.
The Evolving Field of Human Papillomavirus Receptor Research: a Review of Binding and Entry
Raff, Adam B.; Woodham, Andrew W.; Raff, Laura M.; Skeate, Joseph G.; Yan, Lisa; Da Silva, Diane M.; Schelhaas, Mario
2013-01-01
Human papillomaviruses (HPVs) infect epithelia and can lead to the development of lesions, some of which have malignant potential. HPV type 16 (HPV16) is the most oncogenic genotype and causes various types of cancer, including cervical, anal, and head and neck cancers. However, despite significant research, our understanding of the mechanism by which HPV16 binds to and enters host cells remains fragmented. Over several decades, many HPV receptors and entry pathways have been described. This review puts those studies into context and offers a model of HPV16 binding and entry as a framework for future research. Our model suggests that HPV16 binds to heparin sulfate proteoglycans (HSPGs) on either the epithelial cell surface or basement membrane through interactions with the L1 major capsid protein. Growth factor receptors may also become activated through HSPG/growth factor/HPV16 complexes that initiate signaling cascades during early virion-host cell interactions. After binding to HSPGs, the virion undergoes conformational changes, leading to isomerization by cyclophilin B and proprotein convertase-mediated L2 minor capsid protein cleavage that increases L2 N terminus exposure. Along with binding to HSPGs, HPV16 binds to α6 integrins, which initiate further intracellular signaling events. Following these primary binding events, HPV16 binds to a newly identified L2-specific receptor, the annexin A2 heterotetramer. Subsequently, clathrin-, caveolin-, lipid raft-, flotillin-, cholesterol-, and dynamin-independent endocytosis of HPV16 occurs. PMID:23536685
Significance of the imidazoline receptors in toxicology.
Lowry, J A; Brown, J T
2014-06-01
The alpha-2 adrenergic (AA-2) receptor agonists and imidazolines are common exposures in the American Association of Poison Control Centers (AAPCC) National Poison Data System (NPDS). Although the interaction between the AA-2 receptor and imidazoline receptors has been extensively studied, it largely remains unknown to health-care professionals. This review describes these interactions and mechanisms by which agonists affect physiologic responses binding to these receptors. Papers published in English from 1960 to 2013 were retrieved from PubMed. A total of 323 original articles were identified and 173 were included. Background. The toxicity associated with clonidine (e.g., bradycardia, miosis, and hypotension) is largely assumed to be secondary to the functional overlap of the AA-2 receptors and the mu receptors. However, the effects at the AA-2 receptor could not fully account for these symptoms. Subsequently, clonidine was found to produce its pharmacologic effect in the central nervous system (CNS) by interaction not only with the AA-2 receptor but also on selective imidazoline receptors. IMIDAZOLINE RECEPTORS: Since their discovery, three distinct classes of imidazoline receptors, also known as imidazoline binding sites or imidazoline/guanidinium receptive sites, have been characterized. Imidazoline-1 (I-1) receptors are involved in the hypotensive activity of clonidine and related compounds supporting the idea that the I-1 receptors are upstream from the AA-2 receptor and work in tandem for its effect on blood pressure. Additionally, stimulation of N-type Calcium-2 channels, G-protein inwardly rectifying potassium channel, adenosine receptors, phosphatidyl-choline-specific phospholipase C, and nicotinic receptors have been implicated to be involved. Previous studies have shown that I-1 receptors may also be involved in other physiologic responses beyond cardiac function. Imidazoline-2 (I-2) receptors interact with monoamine oxidase A and monoamine oxidase B leading to research that has focused on the effect of I-2 receptors and depression and the suggestion of a possible antidepressant action of the imidazolines. I-2 receptor ligands may have substantial antinociceptive activity and work synergistically with opioids in acute pain. Imidazoline-3 (I-3) receptors are located on the pancreatic β-cells and modulate glucose homeostasis. IMIDAZOLINE LIGANDS: Four endogenous compounds have been found to bind and include clonidine-displacing substance, agmatine, harmane, and imidazole acetic acid. Significant interest in developing new agents with higher selectivity and affinity for I-1 receptors has resulted. Toxicology. Alpha-2 adrenoceptor and imidazoline receptor agonists such as clonidine and tetrahydrozoline are common ingestions reported to poison control centers. The most common toxic effects of clonidine are similar to those of the over-the-counter imidazolines and include CNS depression, bradycardia, hypotension, respiratory depression, miosis, hypothermia, and hypertension (early and transient). Based on their structure and subsequent studies, imidazoline receptors seem to be the primary binding site for these chemicals. Case reports typically illustrate rapid onset of action with serious side effects following ingestion of relatively small amounts. These agents have been reportedly used in drug-assisted sexual assaults. Much of the toxicity associated with drugs such as clonidine, guanfacine, and tetrahydrozoline are due to their binding to imidazoline receptors. Knowledge of the imidazoline receptors may lead to new therapeutic agents and inform management of patients with imidazoline overdose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Y.; Kawai, R.; McManaway, M.
(3H)Cyclofoxy (CF: 17-cyclopropylmethyl-3,14-dihydroxy-4,5-alpha-epoxy-6-beta-fluoromorp hinan) is an opioid antagonist with affinity to both mu and kappa subtypes that was synthesized for quantitative evaluation of opioid receptor binding in vivo. Two sets of experiments in rats were analyzed. The first involved determining the metabolite-corrected blood concentration and tissue distribution of CF in brain 1 to 60 min after i.v. bolus injection. The second involved measuring brain washout for 15 to 120 s following intracarotid artery injection of CF. A physiologically based model and a classical compartmental pharmacokinetic model were compared. The models included different assumptions for transport across the blood-brain barrier (BBB);more » estimates of nonspecific tissue binding and specific binding to a single opiate receptor site were found to be essentially the same with both models. The nonspecific binding equilibrium constant varied modestly in different brain structures (Keq = 3-9), whereas the binding potential (BP) varied over a much broader range (BP = 0.6-32). In vivo estimates of the opioid receptor dissociation constant were similar for different brain structures (KD = 2.1-5.2 nM), whereas the apparent receptor density (Bmax) varied between 1 (cerebellum) and 78 (thalamus) pmol/g of brain. The receptor dissociation rate constants in cerebrum (k4 = 0.08-0.16 min-1; koff = 0.16-0.23 min-1) and brain vascular permeability (PS = 1.3-3.4 ml/min/g) are sufficiently high to achieve equilibrium conditions within a reasonable period of time. Graphical analysis of the data is inappropriate due to the high tissue-loss rate constant for CF in brain. From these findings, CF should be a very useful opioid receptor ligand for the estimation of the receptor binding parameters in human subjects using (18F)CF and positron emission tomography.« less
Anatomical location of LPA1 activation and LPA phospholipid precursors in rodent and human brain.
González de San Román, Estibaliz; Manuel, Iván; Giralt, María Teresa; Chun, Jerold; Estivill-Torrús, Guillermo; Rodríguez de Fonseca, Fernando; Santín, Luis Javier; Ferrer, Isidro; Rodríguez-Puertas, Rafael
2015-08-01
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors: LPA1 -LPA6 . LPA evokes several responses in the CNS, including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation, and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1 -null mice (a variant of LPA1 -null) lack [(35) S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides and phosphatidylcholines. Both phosphatides and phosphatidylcholines species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCR), LPA1 to LPA6 . LPA evokes several responses in the central nervous system (CNS), including cortical development and folding, growth of the axonal cone and its retraction process. We used functional [(35) S]GTPγS autoradiography to verify the anatomical distribution of LPA1 -binding sites in adult rodent and human brain. The distribution of LPA1 receptors in rat, mouse and human brains show the highest activity in white matter myelinated areas. The basal and LPA-evoked activities are abolished in MaLPA1 -null mice. The phospholipid precursors of LPA are localized by MALDI-IMS. The anatomical distribution of LPA precursors in rodent and human brain suggests a relationship with functional LPA1 receptors. © 2015 International Society for Neurochemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Largent, B.L.; Gundlach, A.L.; Snyder, S.H.
1984-08-01
3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) has been proposed as a selective dopamine autoreceptor agonist in the central nervous system. This report describes the pharmacology and localization of specific high-affinity binding sites for (+)-(/sup 3/H)3-PPP in brain. The drug specificity of (+)-(/sup 3/H)3-PPP binding is identical to that of sigma receptors, which may mediate psychotomimetic effects of some opiates. Haloperidol and the opioid derivatives, pentazocine, cyclazocine, and SKF 10,047 are potent inhibitors of (+)-(/sup 3/H)3-PPP binding. Stereoselectivity is exhibited for the (+) isomers of cyclazocine and SKF 10.047 at the sigma site, opposite to the stereoselectivity seen at ..mu.., sigma, and k opiate receptors.more » (+)-(/sup 3/H)3-PPP does not label dopamine receptors, as potent dopamine agonists and antagonists are weak inhibitors of binding and the localization of specific (+)-(/sup 3/H)3-PPP binding sites does not parallel that of dopamine neurons. Discrete localizations of (+)-(/sup 3/H)3-PPP binding sites in many brain areas including limbic, midbrain, brainstem, and cerebellar regions may explain psychotomimetic actions of opiates and behavior effects of 3-PPP. 41 references, 2 figures, 1 table.« less
Wines, Bruce D; Ramsland, Paul A; Trist, Halina M; Gardam, Sandra; Brink, Robert; Fraser, John D; Hogarth, P Mark
2011-09-23
Host survival depends on an effective immune system and pathogen survival on the effectiveness of immune evasion mechanisms. Staphylococcus aureus utilizes a number of molecules to modulate host immunity, including the SSL family of which SSL7 binds IgA and inhibits Fcα receptor I (FcαRI)-mediated function. Other Gram-positive bacterial pathogens produce IgA binding proteins, which, similar to SSL7, also bind the Fc at the CH2/CH3 interface (the junction between constant domains 2 and 3 of the heavy chain). The opposing activities of the host FcαRI-IgA receptor ligand pair and the pathogen decoy proteins select for host and pathogen variants, which exert stronger protection or evasion, respectively. Curiously, mouse but not rat IgA contains a putative N-linked glycosylation site in the center of this host receptor and pathogen-binding site. Here, we demonstrate that this site is glycosylated and that the effect of amino acid changes and glycosylation of the CH2/CH3 interface inhibits interaction with the pathogen IgA binding protein SSL7, while maintaining binding of pIgR, essential to the biosynthesis and transport of SIgA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.
1984-10-01
The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less
Bruna-Larenas, Tamara; Gómez-Jeria, Juan S
2012-01-01
We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.
Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem
Freeman, Sara M.; Smith, Aaron L.; Goodman, Mark M.; Bales, Karen L.
2017-01-01
Intranasal oxytocin affects a suite of human social behaviors, including trust, eye contact, and emotion recognition. However, it is unclear where oxytocin receptors (OXTR) and the structurally related vasopressin 1a receptors (AVPR1a) are expressed in the human brain. We have previously described a reliable, pharmacologically informed receptor autoradiography protocol for visualizing these receptors in postmortem primate brain tissue. We used this technique in human brainstem tissue to identify the neural targets of oxytocin and vasopressin. To determine binding selectivity of the OXTR radioligand and AVPR1a radioligand, sections were incubated in four conditions: radioligand alone, radioligand with the selective AVPR1a competitor SR49059, and radioligand with a low or high concentration of the selective OXTR competitor ALS-II-69. We found selective OXTR binding in the spinal trigeminal nucleus, a conserved region of OXTR expression in all primate species investigated to date. We found selective AVPR1a binding in the nucleus prepositus, an area implicated in eye gaze stabilization. The tissue's postmortem interval was not correlated with either the specific or nonspecific binding of either radioligand, indicating that it will not likely be a factor in similar postmortem studies. This study provides critical data for future studies of OXTR and AVPR1a in human brain tissue. PMID:26911439
Yuan, Yuan; Cao, Duanfang; Zhang, Yanfang; Ma, Jun; Qi, Jianxun; Wang, Qihui; Lu, Guangwen; Wu, Ying; Yan, Jinghua; Shi, Yi; Zhang, Xinzheng; Gao, George F
2017-04-10
The envelope spike (S) proteins of MERS-CoV and SARS-CoV determine the virus host tropism and entry into host cells, and constitute a promising target for the development of prophylactics and therapeutics. Here, we present high-resolution structures of the trimeric MERS-CoV and SARS-CoV S proteins in its pre-fusion conformation by single particle cryo-electron microscopy. The overall structures resemble that from other coronaviruses including HKU1, MHV and NL63 reported recently, with the exception of the receptor binding domain (RBD). We captured two states of the RBD with receptor binding region either buried (lying state) or exposed (standing state), demonstrating an inherently flexible RBD readily recognized by the receptor. Further sequence conservation analysis of six human-infecting coronaviruses revealed that the fusion peptide, HR1 region and the central helix are potential targets for eliciting broadly neutralizing antibodies.
Negative Cooperativity in the EGF Receptor
Pike, Linda J.
2012-01-01
Scatchard analyses of the binding of EGF to its receptor yield concave up Scatchard plots, indicative of some type of heterogenity in ligand binding affinity. This was typically interpreted as being due to the presence of two independent binding site–one of high affinity representing ≤10% of the receptor population and one of low affinity making up the bulk of the receptors. However, the concept of two independent binding sites is difficult to reconcile with the X-ray structures of the dimerized EGF receptor that show symmetric binding of the two ligands. A new approach to the analysis of 125I-EGF binding data combined with the structure of the singly-occupied Drosophila EGF receptor have now shown that this heterogeneity is due to the presence of negative cooperativity in the EGF receptor. Concerns that negative cooperativity precludes ligand-induced dimerization of the EGF receptor confuse the concepts of linkage cooperativity. Linkage refers to the effect of ligand on the assembly of dimers while cooperativity refers to the effect of ligand binding to one subunit on ligand binding to the other subunit within a preassembled dimer. Binding of EGF to its receptor is positively linked with dimer assembly but shows negative cooperativity within the dimer. PMID:22260659
Metformin is a novel suppressor for transforming growth factor (TGF)-β1
NASA Astrophysics Data System (ADS)
Xiao, Han; Zhang, Jianshu; Xu, Zhonghe; Feng, Yenan; Zhang, Mingliang; Liu, Jianli; Chen, Ruifei; Shen, Jing; Wu, Jimin; Lu, Zhizhen; Fang, Xiaohong; Li, Jingyuan; Zhang, Youyi
2016-06-01
Metformin is a widely used first-line antidiabetic drug that has been shown to protect against a variety of specific diseases in addition to diabetes, including cardiovascular disorders, polycystic ovary syndrome, and cancer. However, the precise mechanisms underlying the diverse therapeutic effects of metformin remain elusive. Here, we report that transforming growth factor-β1 (TGF-β1), which is involved in the pathogenesis of numerous diseases, is a novel target of metformin. Using a surface plasmon resonance-based assay, we identified the direct binding of metformin to TGF-β1 and found that metformin inhibits [125I]-TGF-β1 binding to its receptor. Furthermore, based on molecular docking and molecular dynamics simulations, metformin was predicted to interact with TGF-β1 at its receptor-binding domain. Single-molecule force spectroscopy revealed that metformin reduces the binding probability but not the binding force of TGF-β1 to its type II receptor. Consequently, metformin suppresses type II TGF-β1 receptor dimerization upon exposure to TGF-β1, which is essential for downstream signal transduction. Thus, our results indicate that metformin is a novel TGF-β suppressor with therapeutic potential for numerous diseases in which TGF-β1 hyperfunction is indicated.
Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses
Hendricks, Gabriel L.; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C.; Viswanathan, Karthik; Albers, Leila; Comolli, James C.; Shriver, Zachary; Knipe, David M.; Kurt-Jones, Evelyn A.; Fygenson, Deborah K.; Trevejo, Jose M.
2016-01-01
Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as ‘molecular sinks’ and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. PMID:25637710
Lehnert, Teresa; Figge, Marc Thilo
2017-01-01
Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor-ligand binding in the context of antibody-antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors-such as their dimensionality of motion, morphology, and binding valency-on the receptor-ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors.
Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors
Saven, Jeffery G.; Matsunami, Hiroaki; Eckenhoff, Roderic G.
2015-01-01
Ketamine elicits various neuropharmacological effects, including sedation, analgesia, general anesthesia, and antidepressant activity. Through an in vitro screen, we identified four mouse olfactory receptors (ORs) that responded to ketamine. In addition to their presence in the olfactory epithelium, these G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptors (GPCRs) are distributed throughout the central nervous system. To better understand the molecular basis of the interactions between ketamine and ORs, we used sequence comparison and molecular modeling to design mutations that (i) increased, reduced, or abolished ketamine responsiveness in responding receptors, and (ii) rendered non-responding receptors responsive to ketamine. We showed that olfactory sensory neurons (OSNs) that expressed distinct ORs responded to ketamine in vivo, suggesting that ORs may serve as functional targets for ketamine. The ability to both abolish and introduce responsiveness to ketamine in GPCRs enabled us to identify and confirm distinct interaction loci in the binding site, which suggested a signature ketamine-binding pocket that may guide exploration of additional receptors for this general anesthetic drug. PMID:25829447
Customizing G Protein-coupled receptor models for structure-based virtual screening.
de Graaf, Chris; Rognan, Didier
2009-01-01
This review will focus on the construction, refinement, and validation of G Protein-coupled receptor models for the purpose of structure-based virtual screening. Practical tips and tricks derived from concrete modeling and virtual screening exercises to overcome the problems and pitfalls associated with the different steps of the receptor modeling workflow will be presented. These examples will not only include rhodopsin-like (class A), but also secretine-like (class B), and glutamate-like (class C) receptors. In addition, the review will present a careful comparative analysis of current crystal structures and their implication on homology modeling. The following themes will be discussed: i) the use of experimental anchors in guiding the modeling procedure; ii) amino acid sequence alignments; iii) ligand binding mode accommodation and binding cavity expansion; iv) proline-induced kinks in transmembrane helices; v) binding mode prediction and virtual screening by receptor-ligand interaction fingerprint scoring; vi) extracellular loop modeling; vii) virtual filtering schemes. Finally, an overview of several successful structure-based screening shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands.
Medicinal chemistry of P2X receptors: allosteric modulators.
Müller, Christa E
2015-01-01
P2X receptors are trimeric ligand-gated ion channels whose potential as novel drug targets for a number of diseases has been recognized. They are mainly involved in inflammatory processes, including neuroinflammation, and pain sensation. The orthosteric binding site is lined by basic amino acid residues that bind the negatively charged agonist ATP. Therefore it is not easy to develop orthosteric ligands that possess drug-like properties for such a highly polar binding site. However, ligand-gated ion channels offer multiple additional binding sites for allosteric ligands, positive or negative allosteric modulators enhancing or blocking receptor function. So far, the P2X3 (and P2X2/3), as well as the P2X7 receptor subtype have been the main focus of drug development efforts. A number of potent and selective allosteric antagonists have been developed to block these receptors. We start to see the development of novel allosteric ligands also for the other P2X receptor subtypes, P2X1, P2X2 and especially P2X4. The times when only poor, non-selective, non-drug-like tools for studying P2X receptor function were available have been overcome. The first clinical studies with allosteric P2X3 and P2X7 antagonists suggest that P2X therapeutics may soon become a reality.
Nematode cholinergic pharmacology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segerberg, M.A.
1989-01-01
Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissuralmore » motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.« less
Bernstein, Robert Root; Dillon, Patrick F
2014-01-01
Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers. PMID:25174918
Ahmed, Ahmed H.; Ptak, Christopher P.; Oswald, Robert E.
2011-01-01
Glutamate receptors are important potential drug targets for cognitive enhancement and the treatment of schizophrenia in part because they are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system. One approach to the application of therapeutic agents to the AMPA subtype of glutamate receptors is the use of allosteric modulators, which promote dimerization by binding to a dimer interface thereby reducing desensitization and deactivation. AMPA receptors exist in two alternatively spliced variants (flip and flop) that differ in desensitization and receptor activation profiles. Most of the structural information on modulators of the AMPA receptor target the flip subtype. We report here the crystal structure of the flop-selective allosteric modulator, PEPA, bound to the binding domains of the GluA2 and GluA3 flop isoforms of AMPA receptors. Specific hydrogen bonding patterns can explain the preference for the flop isoform. This includes a bidentate hydrogen bonding pattern between PEPA and N754 of the flop isoforms of GluA2 and GluA3 (the corresponding position in the flip isoform is S754). Comparison with other allosteric modulators provides a framework for the development of new allosteric modulators with preferences for either the flip or flop isoforms. In addition to interactions with N/S754, specific interactions of the sulfonamide with conserved residues in the binding site are characteristics of a number of allosteric modulators. These, in combination, with variable interactions with five subsites on the binding surface lead to different stoichiometries, orientations within the binding pockets, and functional outcomes. PMID:20199107
Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yi; Qin, Ling; Zacarías, Natalia V. Ortiz
CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2–chemokine axis. To aid drug discovery efforts5, heremore » we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein–protein interactions, receptor–chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.« less
Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering
Yu, Chao; Sonnen, Andreas F.-P.; George, Roger; Dessailly, Benoit H.; Stagg, Loren J.; Evans, Edward J.; Orengo, Christine A.; Stuart, David I.; Ladbury, John E.; Ikemizu, Shinji; Gilbert, Robert J. C.; Davis, Simon J.
2011-01-01
The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced “triggering” of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s). PMID:21156796
Tan, Nguan-Soon; Shaw, Natacha S.; Vinckenbosch, Nicolas; Liu, Peng; Yasmin, Rubina; Desvergne, Béatrice; Wahli, Walter; Noy, Noa
2002-01-01
Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARγ and PPARβ, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARγ and PPARβ and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARβ-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions. PMID:12077340
Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P
2007-05-01
The P2X(7) receptor exhibits complex pharmacological properties. In this study, binding of a [(3)H]-labelled P2X(7) receptor antagonist to human P2X(7) receptors has been examined to further understand ligand interactions with this receptor. The P2X(7) receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.1(3,7)]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X(7) receptors. Binding of [(3)H]-compound-17 was higher in membranes prepared from cells expressing P2X(7) receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X(7) receptors. Binding was reversible, saturable and modulated by P2X(7) receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. These data demonstrate that human P2X(7) receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X(7) receptor complex enhances subsequent binding to other P2X(7) subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X(7) receptor.
Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P
2007-01-01
Background and Purpose: The P2X7 receptor exhibits complex pharmacological properties. In this study, binding of a [3H]-labelled P2X7 receptor antagonist to human P2X7 receptors has been examined to further understand ligand interactions with this receptor. Experimental Approach: The P2X7 receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X7 receptors. Key Results: Binding of [3H]-compound-17 was higher in membranes prepared from cells expressing P2X7 receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X7 receptors. Binding was reversible, saturable and modulated by P2X7 receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. Conclusions: These data demonstrate that human P2X7 receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X7 receptor complex enhances subsequent binding to other P2X7 subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X7 receptor. PMID:17339830
The biochemistry and immunology of non-canonical forms of HLA-B27.
Shaw, Jacqueline; Hatano, Hiroko; Kollnberger, Simon
2014-01-01
HLA-B27 (B27) is strongly associated with the spondyloarthritides. B27 is expressed at the cell surface of antigen presenting cells (APC) both as canonical β2m-associated and non-canonical β2m-free heavy chain (FHC) forms which include B27 dimers (termed B272). B27 FHC forms arise in an endosomal compartment from recycling β2m-associated B27. Formation of cell surface FHC dimers is critically dependent on an unpaired reactive cysteine 67 in the α1 helix of the class I heavy chain. HLA-B27 also form redox-inducible β2m-associated dimers on exosomes and apoptosing cells. By contrast with cell surface expressed cysteine 67-dependent heavy chain dimers these dimers are dependent on a cytoplasmic cysteine 325 for their formation. HLA-B27 binds to immunoregulatory receptors including members of the Killer cell Immunoglobulin-like (KIR) and Leukocyte Immunoglobulin-like receptor family. B27 FHC bind to different but overlapping sets of these immunoreceptors compared to classical β2m-associated HLA-B27. B27 FHC bind more strongly to KIR3DL2 and LILRB2 immune receptor than other β2m-associated HLA-class I ligands. Genetic studies have implicated genes which control production of the important proinflammatory cytokine IL-17 in the pathogenesis of spondyloarthritis. Cell surface HLA-B27 FHC binding to these immune receptors or acting through other mechanisms could impact on the pathogenesis of spondyloarthritis by promoting immune cell production of IL-17. Here we review the literature on these non-canonical forms of HLA-B27 and the immune receptors they bind to and discuss the possible relevance of these interactions to the pathogenesis of spondyloarthropathy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate.
Eldefrawi, M E; Schweizer, G; Bakry, N M; Valdes, J J
1988-01-01
The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-alpha-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh- or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.
Galoian, Karina; Abrahamyan, Silva; Chailyan, Gor; Qureshi, Amir; Patel, Parthik; Metser, Gil; Moran, Alexandra; Sahakyan, Inesa; Tumasyan, Narine; Lee, Albert; Davtyan, Tigran; Chailyan, Samvel; Galoyan, Armen
2018-01-01
Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function.
Galoian, Karina; Abrahamyan, Silva; Chailyan, Gor; Qureshi, Amir; Patel, Parthik; Metser, Gil; Moran, Alexandra; Sahakyan, Inesa; Tumasyan, Narine; Lee, Albert; Davtyan, Tigran; Chailyan, Samvel; Galoyan, Armen
2018-01-01
Metastatic chondrosarcoma is a bone malignancy not responsive to conventional therapies; new approaches and therapies are urgently needed. We have previously reported that mTORC1 inhibitor, antitumorigenic cytostatic proline rich polypeptide 1 (PRP-1), galarmin caused a significant upregulation of tumor suppressors including TET1/2 and SOCS3 (known to be involved in inflammatory processes), downregulation of oncoproteins and embryonic stem cell marker miR-302C and its targets Nanog, c-Myc and Bmi-1 in human chondrosarcoma. To understand better the mechanism of PRP-1 action it was very important to identify the receptor it binds to. Nuclear pathway receptor and GPCR assays indicated that PRP-1 receptors are not G protein coupled, neither do they belong to family of nuclear or orphan receptors. In the present study, we have demonstrated that PRP-1 binding interacting partners belong to innate immunity pattern recognition toll like receptors TLR1/2 and TLR6 and gel forming secreted mucin MUC5B. MUC5B was identified as PRP-1 receptor in human chondrosarcoma JJ012 cell line using Ligand-receptor capture technology. Toll like receptors TLR1/2 and TLR6 were identified as binding interaction partners with PRP-1 by western blot analysis in human chondrosarcoma JJ012 cell line lysates. Immunocytochemistry experiments confirmed the finding and indicated the localization of PRP-1 receptors in the tumor nucleus predominantly. TLR1/2, TLR6 and MUC5B were downregulated in human chondrosarcoma and upregulated in dose-response manner upon PRP-1 treatment. Experimental data indicated that in this cellular context the mentioned receptors had tumor suppressive function. PMID:29138803
Activation of Paramyxovirus Membrane Fusion and Virus Entry
Jardetzky, Theodore S.; Lamb, Robert A.
2014-01-01
The paramyxoviruses represent a diverse virus family responsible for a wide range of human and animal diseases. In contrast to other viruses, such as HIV and influenza virus, which use a single glycoprotein to mediate host receptor binding and virus entry, the paramyxoviruses require two distinct proteins. One of these is an attachment glycoprotein that binds receptor, while the second is a fusion glycoprotein, which undergoes conformational changes that drive virus-cell membrane fusion and virus entry. The details of how receptor binding by one protein activates the second to undergo conformational changes have been poorly understood until recently. Over the past couple of years, structural and functional data have accumulated on representative members of this family, including parainfluenza virus 5, Newcastle disease virus, measles virus, Nipah virus and others, which suggest a mechanistic convergence of activation models. Here we review the data indicating that paramyxovirus attachment glycoproteins shield activating residues within their N-terminal stalk domains, which are then exposed upon receptor binding, leading to the activation of the fusion protein by a ‘provocateur’ mechanism. PMID:24530984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.
Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhancedmore » avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.« less
Hansen, Scott B; Sulzenbacher, Gerlind; Huxford, Tom; Marchot, Pascale; Bourne, Yves; Taylor, Palmer
2006-01-01
Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).
NASA Astrophysics Data System (ADS)
McCoy, Michael J.; Habermann, Timothy J.; Hanke, Craig J.; Adar, Fran; Campbell, William B.; Nithipatikom, Kasem
1999-04-01
We developed a confocal Raman microspectroscopic technique to study ligand-receptor bindings in single cells using Raman-labeled ligands and surface-enhanced Raman scattering (SERS). The adrenal zona glomerulosa (ZG) cells were used as a model in this study. ZG cells have a high density of angiotensin II (AII) receptors on the cellular membrane. There are two identified subtypes of AII receptors,namely AT1 and AT2 receptors. AII is a peptidic hormone, which upon binding to its receptors, stimulates the release of aldosterone from ZG cells. The cellular localization of these receptors subtypes was detected in single ZG cells by using immunocomplexation of receptors with specific antibodies and confocal Raman microspectroscopy. In the binding study, we used biotin-labeled AII to bind to its receptors in ZG cells. Then, avidin and Raman-labeled AII. The binding was measure directly on the single ZG cells. The results showed that the binding was displaced with unlabeled AII and specific AII antagonists. This is a rapid and sensitive technique for detection of cellular ligand bindings as well as antagonists screening in drug discovery.
Krumins, S A; Kim, D C; Igwe, O J; Larson, A A
1993-01-01
Substance P (SP) appears to mediate many processes of the central nervous system, including pain. This report deals with modulation of opioid binding in the mouse brain by SP and SP fragments, as well as by salts and guanine nucleotides. Binding studies of the selective mu opioid receptor agonist [D-Ala2, MePhe4,Gly(ol)5]enkephalin (DAMGO) to mouse brain membrane preparations demonstrated that guanine nucleotide modulation of DAMGO binding affinity was modified by SP. However, SP had little or no influence on inhibition of DAMGO binding induced by salts, such as MgCl2, CaCl2, or NaCl. By replacing GTP with GppNHp, SP (0.1 nM) produced multiple affinity forms of the DAMGO receptor, while at a higher concentration (10 nM), SP lost its influence on DAMGO binding. Furthermore, 0.1 nM SP changed DAMGO binding parameters in a medium containing NaCl, CaCl2, and GppNHp such that the high- and low-affinity conformations of the receptor converted to a single site following the addition of SP to the incubation medium. While the C-terminal SP fragment SP(5-11) was without effect, the N-terminal SP fragments SP(1-9) and SP(1-7) appeared to imitate SP in modifying GppNHp-modulated DAMGO binding. These results suggest that SP functions as a modulator of opioid binding at the mu receptor and it appears that the N-terminus of SP plays a role in the modulatory process.
i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4*
Dolezal, Olan; Cao, Benjamin; See, Heng B.; Pfleger, Kevin D. G.; Gorry, Paul R.; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G. C.; Chang, Denison H. C.; Murray-Rust, Thomas; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L.; Nuttall, Stewart D.; Foley, Michael
2016-01-01
CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an “i-body,” the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor. PMID:27036939
Boronic acids for fluorescence imaging of carbohydrates.
Sun, Xiaolong; Zhai, Wenlei; Fossey, John S; James, Tony D
2016-02-28
"Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.
Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase
Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E
2012-01-01
Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804
Millard, Christopher J; Ludeman, Justin P; Canals, Meritxell; Bridgford, Jessica L; Hinds, Mark G; Clayton, Daniel J; Christopoulos, Arthur; Payne, Richard J; Stone, Martin J
2014-11-04
Trafficking of leukocytes in immune surveillance and inflammatory responses is activated by chemokines engaging their receptors. Sulfation of tyrosine residues in peptides derived from the eosinophil chemokine receptor CCR3 dramatically enhances binding to cognate chemokines. We report the structural basis of this recognition and affinity enhancement. We describe the structure of a CC chemokine (CCL11/eotaxin-1) bound to a fragment of a chemokine receptor: residues 8–23 of CCR3, including two sulfotyrosine residues. We also show that intact CCR3 is sulfated and sulfation enhances receptor activity. The CCR3 sulfotyrosine residues form hydrophobic, salt bridge and cation-p interactions with residues that are highly conserved in CC chemokines. However, the orientation of the chemokine relative to the receptor N terminus differs substantially from those observed for two CXC chemokines, suggesting that initial binding of the receptor sulfotyrosine residues guides subsequent steps in receptor activation, thereby influencing the receptor conformational changes and signaling.
1991-01-01
Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand. PMID:1848864
Changes in the hemagglutinin of H5N1 viruses during human infection – Influence on receptor binding☆
Crusat, Martin; Liu, Junfeng; Palma, Angelina S.; Childs, Robert A.; Liu, Yan; Wharton, Stephen A.; Lin, Yi Pu; Coombs, Peter J.; Martin, Stephen R.; Matrosovich, Mikhail; Chen, Zi; Stevens, David J.; Hien, Vo Minh; Thanh, Tran Tan; Nhu, Le Nguyen Truc; Nguyet, Lam Anh; Ha, Do Quang; van Doorn, H.Rogier; Hien, Tran Tinh; Conradt, Harald S.; Kiso, Makoto; Gamblin, Steve J.; Chai, Wengang; Skehel, John J.; Hay, Alan J.; Farrar, Jeremy; de Jong, Menno D.; Feizi, Ten
2013-01-01
As avian influenza A(H5N1) viruses continue to circulate in Asia and Africa, global concerns of an imminent pandemic persist. Recent experimental studies suggest that efficient transmission between humans of current H5N1 viruses only requires a few genetic changes. An essential step is alteration of the virus hemagglutinin from preferential binding to avian receptors for the recognition of human receptors present in the upper airway. We have identified receptor-binding changes which emerged during H5N1 infection of humans, due to single amino acid substitutions, Ala134Val and Ile151Phe, in the hemagglutinin. Detailed biological, receptor-binding, and structural analyses revealed reduced binding of the mutated viruses to avian-like receptors, but without commensurate increased binding to the human-like receptors investigated, possibly reflecting a receptor-binding phenotype intermediate in adaptation to more human-like characteristics. These observations emphasize that evolution in nature of avian H5N1 viruses to efficient binding of human receptors is a complex multistep process. PMID:24050651
Jenkins, Jeremy L; Dean, Donald H
2001-01-01
Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800
Carbone, V; Kim, H; Huang, J X; Baker, M A; Ong, C; Cooper, M A; Li, J; Rockman, S; Velkov, T
2013-01-01
Selectivity of α2,6-linked human-like receptors by B hemagglutinin (HA) is yet to be fully understood. This study integrates binding data with structure-recognition models to examine the impact of regional-specific sequence variations within the receptor-binding pocket on selectivity and structure activity relationships (SAR). The receptor-binding selectivity of influenza B HAs corresponding to either B/Victoria/2/1987 or the B/Yamagata/16/88 lineages was examined using surface plasmon resonance, solid-phase ELISA and gel-capture assays. Our SAR data showed that the presence of asialyl sugar units is the main determinant of receptor preference of α2,6 versus α2,3 receptor binding. Changes to the type of sialyl-glycan linkage present on receptors exhibit only a minor effect upon binding affinity. Homology-based structural models revealed that structural properties within the HA pocket, such as a glyco-conjugate at Asn194 on the 190-helix, sterically interfere with binding to avian receptor analogs by blocking the exit path of the asialyl sugars. Similarly, naturally occurring substitutions in the C-terminal region of the 190-helix and near the N-terminal end of the 140-loop narrows the horizontal borders of the binding pocket, which restricts access of the avian receptor analog LSTa. This study helps bridge the gap between ligand structure and receptor recognition for influenza B HA; and provides a consensus SAR model for the binding of human and avian receptor analogs to influenza B HA.
Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513.
Pym, Luanda J; Cook, Susan M; Rosahl, Thomas; McKernan, Ruth M; Atack, John R
2005-11-01
Classical benzodiazepines (BZs), such as diazepam, bind to GABAA receptors containing alpha1, alpha2, alpha3 or alpha5 subunits that are therefore described as diazepam-sensitive (DS) receptors. However, the corresponding binding site of GABAA receptors containing either an alpha4 or alpha6 subunit do not bind the classical BZs and are therefore diazepam-insensitive (DIS) receptors; a difference attributable to a single amino acid (histidine in alpha1, alpha2, alpha3 and alpha5 subunits and arginine in alpha4 and alpha6). Unlike classical BZs, the imidazobenzodiazepines Ro 15-4513 and bretazenil bind to both DS and DIS populations of GABAA receptors. In the present study, an in vivo assay was developed using lorazepam to fully occupy DS receptors such that [3H]Ro 15-4513 was then only able to bind to DIS receptors. When dosed i.v., [3H]Ro 15-4513 rapidly entered and was cleared from the brain, with approximately 70% of brain radioactivity being membrane-bound. Essentially all membrane binding to DS+DIS receptors could be displaced by unlabelled Ro 15-4513 or bretazenil, with respective ID50 values of 0.35 and 1.2 mg kg(-1). A dose of 30 mg kg(-1) lorazepam was used to block all DS receptors in a [3H]Ro 15-1788 in vivo binding assay. When predosed in a [3H]Ro 15-4513 binding assay, lorazepam blocked [3H]Ro 15-4513 binding to DS receptors, with the remaining binding to DIS receptors accounting for 5 and 23% of the total (DS plus DIS) receptors in the forebrain and cerebellum, respectively. The in vivo binding of [3H]Ro 15-4513 to DIS receptors in the presence of lorazepam was confirmed using alpha1H101R knock-in mice, in which alpha1-containing GABAA receptors are rendered diazepam insensitive by mutation of the histidine that confers diazepam sensitivity to arginine. In these mice, and in the presence of lorazepam, there was an increase of in vivo [3H]Ro 15-4513 binding in the forebrain and cerebellum from 4 and 15% to 36 and 59% of the total (i.e. DS plus DIS) [3H]Ro 15-4513 binding observed in the absence of lorazepam.
Lieberman, Ori J; Orr, Mona W; Wang, Yan; Lee, Vincent T
2014-01-17
The rise of bacterial resistance to traditional antibiotics has motivated recent efforts to identify new drug candidates that target virulence factors or their regulatory pathways. One such antivirulence target is the cyclic-di-GMP (cdiGMP) signaling pathway, which regulates biofilm formation, motility, and pathogenesis. Pseudomonas aeruginosa is an important opportunistic pathogen that utilizes cdiGMP-regulated polysaccharides, including alginate and pellicle polysaccharide (PEL), to mediate virulence and antibiotic resistance. CdiGMP activates PEL and alginate biosynthesis by binding to specific receptors including PelD and Alg44. Mutations that abrogate cdiGMP binding to these receptors prevent polysaccharide production. Identification of small molecules that can inhibit cdiGMP binding to the allosteric sites on these proteins could mimic binding defective mutants and potentially reduce biofilm formation or alginate secretion. Here, we report the development of a rapid and quantitative high-throughput screen for inhibitors of protein-cdiGMP interactions based on the differential radial capillary action of ligand assay (DRaCALA). Using this approach, we identified ebselen as an inhibitor of cdiGMP binding to receptors containing an RxxD domain including PelD and diguanylate cyclases (DGC). Ebselen reduces diguanylate cyclase activity by covalently modifying cysteine residues. Ebselen oxide, the selenone analogue of ebselen, also inhibits cdiGMP binding through the same covalent mechanism. Ebselen and ebselen oxide inhibit cdiGMP regulation of biofilm formation and flagella-mediated motility in P. aeruginosa through inhibition of diguanylate cyclases. The identification of ebselen provides a proof-of-principle that a DRaCALA high-throughput screening approach can be used to identify bioactive agents that reverse regulation of cdiGMP signaling by targeting cdiGMP-binding domains.
Surveying GPCR solubilisation conditions using surface plasmon resonance.
Navratilova, Iva Hopkins; Aristotelous, Tonia; Bird, Louise E; Hopkins, Andrew L
2018-06-15
Biophysical screening techniques, such as surface plasmon resonance, enable detailed kinetic analysis of ligands binding to solubilised G-protein coupled receptors. The activity of a receptor solubilised out of the membrane is crucially dependent on the environment in which it is suspended. Finding the right conditions is challenging due to the number of variables to investigate in order to determine the optimum solubilisation buffer for any given receptor. In this study we used surface plasmon resonance technology to screen a variety of solubilisation conditions including buffers and detergents for two model receptors: CXCR4 and CCR5. We tested 950 different combinations of solubilisation conditions for both receptors. The activity of both receptors was monitored by using conformation dependent monoclonal antibodies and the binding of small molecule ligands. Despite both receptors belonging to the chemokine receptor family they show some differences in their preference for solubilisation conditions that provide the highest level of binding for both the conformation dependent antibodies and small molecules. The study described here is focused not only on finding the best solubilisation conditions for each receptor, but also on factors that determine the sensitivity of the assay for each receptor. We also suggest how these data about different buffers and detergents can be used as a guide for selecting solubilisation conditions for other membrane proteins. Copyright © 2018 Elsevier Inc. All rights reserved.
Smolinsky, Amanda N; Doughman, Jennifer M; Kratzke, Liên-Thành C; Lassiter, Christopher S
2010-03-01
Steroid hormones regulate gene expression in organisms by binding to receptor proteins. These hormones include the androgens, which signal through androgen receptors (ARs). Endocrine disrupters (EDCs) are chemicals in the environment that adversely affect organisms by binding to nuclear receptors, including ARs. Vinclozolin, a fungicide used on fruit and vegetable crops, is a known anti-androgen, a type of EDC that blocks signals from testosterone and its derivatives. In order to better understand the effects of EDCs, further research on androgen receptors and other hormone signaling pathways is necessary. In this study, we demonstrate the evolutionary conservation between the genomic structure of the human and zebrafish ar genes and find that ar mRNA expression increases in zebrafish embryos exposed to vinclozolin, which may be evolutionarily conserved as well. At 48 and 72 h post-fertilization, vinclozolin-treated embryos express ar mRNA 8-fold higher than the control level. These findings suggest that zebrafish embryos attempt to compensate for the presence of an anti-androgen by increasing the number of androgen receptors available.
Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A
2009-01-01
Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.
Verma, Anita; Ngundi, Miriam M; Price, Gregory A; Takeda, Kazuyo; Yu, James; Burns, Drusilla L
2018-02-27
Toxin neutralizing antibodies represent the major mode of protective immunity against a number of toxin-mediated bacterial diseases, including anthrax; however, the cellular mechanisms that lead to optimal neutralizing antibody responses remain ill defined. Here we show that the cellular binding pathway of anthrax protective antigen (PA), the binding component of anthrax toxin, determines the toxin neutralizing antibody response to this antigen. PA, which binds cellular receptors and efficiently enters antigen-presenting cells by receptor-mediated endocytosis, was found to elicit robust anti-PA IgG and toxin neutralizing antibody responses. In contrast, a receptor binding-deficient mutant of PA, which does not bind receptors and only inefficiently enters antigen-presenting cells by macropinocytosis, elicited very poor antibody responses. A chimeric protein consisting of the receptor binding-deficient PA mutant tethered to the binding subunit of cholera toxin, which efficiently enters cells using the cholera toxin receptor rather than the PA receptor, elicited an anti-PA IgG antibody response similar to that elicited by wild-type PA; however, the chimeric protein elicited a poor toxin neutralizing antibody response. Taken together, our results demonstrate that the antigen capture pathway can dictate the magnitudes of the total IgG and toxin neutralizing antibody responses to PA as well as the ratio of the two responses. IMPORTANCE Neutralizing antibodies provide protection against a number of toxin-mediated bacterial diseases by inhibiting toxin action. Therefore, many bacterial vaccines are designed to induce a toxin neutralizing antibody response. We have used protective antigen (PA), the binding component of anthrax toxin, as a model antigen to investigate immune mechanisms important for the induction of robust toxin neutralizing antibody responses. We found that the pathway used by antigen-presenting cells to capture PA dictates the robustness of the neutralizing antibody response to this antigen. These results provide new insights into immune mechanisms that play an important role in the induction of toxin neutralizing antibody responses and may be useful in the design of new vaccines against toxin-mediated bacterial diseases.
Rapid molecular evolution across amniotes of the IIS/TOR network
McGaugh, Suzanne E.; Bronikowski, Anne M.; Kuo, Chih-Horng; Reding, Dawn M.; Addis, Elizabeth A.; Flagel, Lex E.; Janzen, Fredric J.
2015-01-01
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861
Rapid molecular evolution across amniotes of the IIS/TOR network.
McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S
2015-06-02
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
Jasuja, Ravi; Ulloor, Jagadish; Yengo, Christopher M.; Choong, Karen; Istomin, Andrei Y.; Livesay, Dennis R.; Jacobs, Donald J.; Swerdloff, Ronald S.; Mikšovská, Jaroslava; Larsen, Randy W.; Bhasin, Shalender
2009-01-01
Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4′-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 ± 1.3 kcal/mol from 3.5 ± 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k ∼30 sec−1) with greater solvent accessibility was followed by rearrangement (k ∼0.01 sec−1), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule-like intermediate state. PMID:19443608
Thekkumkara, Thomas; Snyder, Russell; Karamyan, Vardan T
2016-01-01
The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.
Slack, R J; Hall, D A
2012-07-01
BACKGROUND AND PURPOSE The operational model provides a key conceptual framework for the analysis of pharmacological data. However, this model does not include constitutive receptor activity, a frequent phenomenon in modern pharmacology, particularly in recombinant systems. Here, we developed extensions of the operational model which include constitutive activity and applied them to effects of agonists at the chemokine receptor CCR4. EXPERIMENTAL APPROACH The effects of agonists of CCR4 on [(35) S]GTPγS binding to recombinant cell membranes and on the filamentous (F-) actin content of human CD4(+) CCR4(+) T cells were determined. The basal [(35) S]GTPγS binding was changed by varying the GDP concentration whilst the basal F-actin contents of the higher expressing T cell populations were elevated, suggesting constitutive activity of CCR4. Both sets of data were analysed using the mathematical models. RESULTS The affinity of CCL17 (also known as TARC) derived from analysis of the T cell data (pK(a) = 9.61 ± 0.17) was consistent with radioligand binding experiments (9.50 ± 0.11) while that from the [(35) S]GTPγS binding experiments was lower (8.27 ± 0.09). Its intrinsic efficacy differed between the two systems (110 in T cells vs. 11). CONCLUSIONS AND IMPLICATIONS The presence of constitutive receptor activity allows the absolute intrinsic efficacy of agonists to be determined without a contribution from the signal transduction system. Intrinsic efficacy estimated in this way is consistent with Furchgott's definition of this property. CCL17 may have a higher intrinsic efficacy at CCR4 in human T cells than that expressed recombinantly in CHO cells. © 2012 GSK Services Unlimited. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Shewell, Lucy K.; Harvey, Richard M.; Higgins, Melanie A.; Day, Christopher J.; Hartley-Tassell, Lauren E.; Chen, Austen Y.; Gillen, Christine M.; James, David B. A.; Alonzo, Francis; Torres, Victor J.; Walker, Mark J.; Paton, Adrienne W.; Paton, James C.; Jennings, Michael P.
2014-01-01
The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a Kd of 1.88 × 10−5 M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism. PMID:25422425
Shewell, Lucy K; Harvey, Richard M; Higgins, Melanie A; Day, Christopher J; Hartley-Tassell, Lauren E; Chen, Austen Y; Gillen, Christine M; James, David B A; Alonzo, Francis; Torres, Victor J; Walker, Mark J; Paton, Adrienne W; Paton, James C; Jennings, Michael P
2014-12-09
The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magno, Aaron L.; Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009; Ingley, Evan
Highlights: {yields} A yeast two-hybrid screen revealed testin bound to the calcium-sensing receptor. {yields} The second zinc finger of LIM domain 1 of testin is critical for interaction. {yields} Testin bound to a region of the receptor tail important for cell signalling. {yields} Testin and receptor interaction was confirmed in mammalian (HEK293) cells. {yields} Overexpression of testin enhanced receptor-mediated Rho signalling in HEK293 cells. -- Abstract: The calcium-sensing receptor (CaR) plays an integral role in calcium homeostasis and the regulation of other cellular functions including cell proliferation and cytoskeletal organisation. The multifunctional nature of the CaR is manifested through ligand-dependentmore » stimulation of different signalling pathways that are also regulated by partner binding proteins. Following a yeast two-hybrid library screen using the intracellular tail of the CaR as bait, we identified several novel binding partners including the focal adhesion protein, testin. Testin has not previously been shown to interact with cell surface receptors. The sites of interaction between the CaR and testin were mapped to the membrane proximal region of the receptor tail and the second zinc-finger of LIM domain 1 of testin, the integrity of which was found to be critical for the CaR-testin interaction. The CaR-testin association was confirmed in HEK293 cells by coimmunoprecipitation and confocal microscopy studies. Ectopic expression of testin in HEK293 cells stably expressing the CaR enhanced CaR-stimulated Rho activity but had no effect on CaR-stimulated ERK signalling. These results suggest an interplay between the CaR and testin in the regulation of CaR-mediated Rho signalling with possible effects on the cytoskeleton.« less
Ohara, Nobumasa; Kaneko, Masanori; Kitazawa, Masaru; Uemura, Yasuyuki; Minagawa, Shinichi; Miyakoshi, Masashi; Kaneko, Kenzo; Kamoi, Kyuzi
2017-02-06
Graves' disease is an autoimmune thyroid disorder characterized by hyperthyroidism, and patients exhibit thyroid-stimulating hormone receptor antibody. The major methods of measuring circulating thyroid-stimulating hormone receptor antibody include the thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Although the diagnostic accuracy of these assays has been improved, a minority of patients with Graves' disease test negative even on second-generation and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulins. We report a rare case of a thyroid-stimulating hormone-binding inhibitory immunoglobulin-positive patient with Graves' disease who showed rapid lowering of thyroid-stimulating hormone-binding inhibitory immunoglobulin levels following administration of the anti-thyroid drug thiamazole, but still experienced Graves' hyperthyroidism. A 45-year-old Japanese man presented with severe hyperthyroidism (serum free triiodothyronine >25.0 pg/mL; reference range 1.7 to 3.7 pg/mL) and tested weakly positive for thyroid-stimulating hormone-binding inhibitory immunoglobulins on second-generation tests (2.1 IU/L; reference range <1.0 IU/L). Within 9 months of treatment with oral thiamazole (30 mg/day), his thyroid-stimulating hormone-binding inhibitory immunoglobulin titers had normalized, but he experienced sustained hyperthyroidism for more than 8 years, requiring 15 mg/day of thiamazole to correct. During that period, he tested negative on all first-generation, second-generation, and third-generation thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, but thyroid scintigraphy revealed diffuse and increased uptake, and thyroid ultrasound and color flow Doppler imaging showed typical findings of Graves' hyperthyroidism. The possible explanations for serial changes in the thyroid-stimulating hormone-binding inhibitory immunoglobulin results in our patient include the presence of thyroid-stimulating hormone receptor antibody, which is bioactive but less reactive on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays, or the effect of reduced levels of circulating thyroid-stimulating hormone receptor antibody upon improvement of thyroid autoimmunity with thiamazole treatment. Physicians should keep in mind that patients with Graves' disease may show thyroid-stimulating hormone-binding inhibitory immunoglobulin assay results that do not reflect the severity of Graves' disease or indicate the outcome of the disease, and that active Graves' disease may persist even after negative results on thyroid-stimulating hormone-binding inhibitory immunoglobulin assays. Timely performance of thyroid function tests in combination with sensitive imaging tests, including thyroid ultrasound and scintigraphy, are necessary to evaluate the severity of Graves' disease and treatment efficacy.
Zhang, Jie; Zhang, Tiehua; Guan, Tianzhu; Yu, Hansong; Li, Tiezhu
2017-03-01
Widespread use of bisphenol A (BPA) and other bisphenol analogues has attracted increasing attention for their potential adverse effects. As environmental endocrine-disrupting compounds (EDCs), bisphenols (BPs) may activate a variety of nuclear receptors, including glucocorticoid receptor (GR). In this work, the binding of 11 BPs to GR was investigated by fluorescence polarization (FP) assay in combination with molecular dynamics simulations. The human glucocorticoid receptor was prepared as a soluble recombinant protein. A fluorescein-labeled dexamethasone derivative (Dex-fl) was employed as tracer. Competitive displacement of Dex-fl from GR by BPs showed that the binding affinities of bisphenol analogues were largely dependent on their characteristic functional groups. In order to further understand the relationship between BPs structures and their GR-mediated activities, molecular docking was utilized to explore the binding modes at the atomic level. The results confirmed that structural variations of bisphenol analogues contributed to different interactions of BPs with GR, potentially causing distinct toxic effects. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation (R 2 = 0.8266), which might be helpful for the design of environmentally benign materials with reduced toxicities. In addition, the established FP assay based on GR exhibited the potential to offer an alternative to traditional methods for the detection of bisphenols.
The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendrick, Agnieszka; Holliday, Michael; Isern, Nancy G.
2014-01-20
Interleukin-8 (CXCL8, IL-8) is a pro-inflammatory chemokine important for the regulation of inflammatory and immune responses via its interaction with G-protein coupled receptors, including CXC receptor 1 (CXCR1). CXCL8 exists as both a monomer and as a dimer at physiological concentrations, yet the molecular basis of CXCL8 interaction with its receptor as well as the importance of CXCL8 dimer formation remain poorly characterized. Although several biological studies have indicated that both the CXCL8 monomer and dimer are active, biophysical studies have reported conflicting results regarding the binding of CXCL8 to CXCR1. To clarify this problem, we expressed and purified amore » peptide (hCXCR1pep) corresponding to the N-terminal region of human CXCR1 (hCXCR1) and utilized nuclear magnetic resonance (NMR) spectroscopy to interrogate the binding of wild-type CXCL8 and a previously reported mutant (CXCL8M) that stabilizes the monomeric form. Our data reveal that CXCL8M engages hCXCR1pep with a slightly higher affinity than CXCL8, and that CXCL8 does not dissociate upon binding hCXCR1pep. These investigations also indicate that CXCL8 exhibits inherent flexibility within its receptor-binding site on multiple timescales, which may help explain the versatility in this interleukin for engaging its target receptors.« less
Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations
Liu, Lu Tian; Xu, Yan; Tang, Pei
2010-01-01
Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662
Differences in the binding mechanism of RU486 and progesterone to the progesterone receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skafar, D.F.
1991-11-12
The binding mechanism of the antagonist RU486 to the progesterone receptor was compared with that of the agonists progesterone and R5020. Both progesterone and RU486 bound to the receptor with a Hill coefficient of 1.2, indicating the binding of each ligand is positive cooperative. However, when each ligand was used to compete with ({sup 3}H)progesterone for binding to the receptor at receptor concentrations near 8 nM, at which the receptor is likely a dimer, the competition curve for RU486 was significantly steeper than the curves for progesterone and R5020. This indicated that a difference in the binding mechanism of RU486more » and progesterone can be detected when both ligands are present. In contrast, at receptor concentrations near 1 nM, at which the receptor is likely a monomer, the competition curves for all three ligands were indistinguishable. These results indicate that RU486 and agonists have different binding mechanisms for the receptor and further suggest that this difference may be related to site-site interactions within the receptor.« less
Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.
Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik
2018-06-01
Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.
Severson, Tesa M; Kim, Yongsoo; Joosten, Stacey E P; Schuurman, Karianne; van der Groep, Petra; Moelans, Cathy B; Ter Hoeve, Natalie D; Manson, Quirine F; Martens, John W; van Deurzen, Carolien H M; Barbe, Ellis; Hedenfalk, Ingrid; Bult, Peter; Smit, Vincent T H B M; Linn, Sabine C; van Diest, Paul J; Wessels, Lodewyk; Zwart, Wilbert
2018-02-02
Male breast cancer (MBC) is rare and poorly characterized. Like the female counterpart, most MBCs are hormonally driven, but relapse after hormonal treatment is also noted. The pan-hormonal action of steroid hormonal receptors, including estrogen receptor alpha (ERα), androgen receptor (AR), progesterone receptor (PR), and glucocorticoid receptor (GR) in this understudied tumor type remains wholly unexamined. This study reveals genomic cross-talk of steroid hormone receptor action and interplay in human tumors, here in the context of MBC, in relation to the female disease and patient outcome. Here we report the characterization of human breast tumors of both genders for cistromic make-up of hormonal regulation in human tumors, revealing genome-wide chromatin binding landscapes of ERα, AR, PR, GR, FOXA1, and GATA3 and enhancer-enriched histone mark H3K4me1. We integrate these data with transcriptomics to reveal gender-selective and genomic location-specific hormone receptor actions, which associate with survival in MBC patients.
Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists
Zheng, Yi; Qin, Ling; Ortiz Zacarías, Natalia V.; de Vries, Henk; Han, Gye Won; Gustavsson, Martin; Dabros, Marta; Zhao, Chunxia; Cherney, Robert J.; Carter, Percy; Stamos, Dean; Abagyan, Ruben; Cherezov, Vadim; Stevens, Raymond C.; IJzerman, Adriaan P.; Heitman, Laura H.; Tebben, Andrew; Kufareva, Irina; Handel, Tracy M.
2016-01-01
Summary CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human Class A G protein-coupled receptors (GPCRs). CCR2 is expressed on monocytes, immature dendritic cells and T cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL21. CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases2 including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer3. These disease associations have motivated numerous preclinical studies and clinical trials4 (see ClinicalTrials.gov) in search of therapies that target the CCR2:chemokine axis. To aid drug discovery efforts5, we solved a structure of CCR2 in a ternary complex with an orthosteric (BMS-6816) and allosteric (CCR2-RA-[R]7) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in Class A GPCRs to date; this site spatially overlaps the G protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive GPCR structures solved to date. Like other protein:protein interactions, receptor:chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome drug design obstacles. PMID:27926736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.E.; Ball, G.F.; Coirini, H.
1989-09-01
Oxytocin (OT) transmission is involved in the steroid-dependent display of sexual receptivity in rats. One of the biochemical processes stimulated by the ovarian steroid 17 beta-estradiol (E2) that is relevant to reproduction is the induction of OT receptor binding in the ventromedial hypothalamic nucleus (VMN). The purpose of these experiments was to determine if E2-induced changes in OT receptor binding in the VMN occur within a time frame relevant to cyclic changes in ovarian steroid secretion. OT receptor binding was measured in the VMN of ovariectomized rats implanted for 0-96 h with E2-containing Silastic capsules. The rate of decay ofmore » OT receptor binding was measured in another group of animals 6-48 h after capsule removal. Receptors were labeled with the specific OT receptor antagonist ({sup 125}I)d(CH2)5(Tyr(Me)2,Thr4,Tyr-NH2(9))OVT, and binding was measured with quantitative autoradiographic methods. In addition, plasma E2 levels and uterine weights were assessed in animals from each treatment condition. Significant increases in E2-dependent OT receptor binding and uterine weight occurred within 24 h of steroid treatment. After E2 withdrawal, OT receptor binding and uterine weight decreased significantly within 24 h. These results are consistent with the hypothesis that steroid modulation of OT receptor binding is necessary for the induction of sexual receptivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palacios, J.M.; Chinaglia, G.; Rigo, M.
1991-02-01
Autoradiographic techniques were used to examine the distribution and levels of neurotensin receptor binding sites in the basal ganglia and related regions of the human brain. Monoiodo ({sup 125}I-Tyr3)neurotensin was used as a ligand. High amounts of neurotensin receptor binding sites were found in the substantia nigra pars compacta. Lower but significant quantities of neurotensin receptor binding sites characterized the caudate, putamen, and nucleus accumbens, while very low quantities were seen in both medial and lateral segments of the globus pallidus. In Huntington's chorea, the levels of neurotensin receptor binding sites were found to be comparable to those of controlmore » cases. Only slight but not statistically significant decreases in amounts of receptor binding sites were detected in the dorsal part of the head and in the body of caudate nucleus. No alterations in the levels of neurotensin receptor binding sites were observed in the substantia nigra pars compacta and reticulata. These results suggest that a large proportion of neurotensin receptor binding sites in the basal ganglia are located on intrinsic neurons and on extrinsic afferent fibers that do not degenerate in Huntington's disease.« less
Tie2 and Eph Receptor Tyrosine Kinase Activation and Signaling
Barton, William A.; Dalton, Annamarie C.; Seegar, Tom C.M.; Himanen, Juha P.
2014-01-01
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition. PMID:24478383
Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg
2018-01-17
Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.
Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S
1997-03-01
The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.
[18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.
Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc
2010-03-01
The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain radioactive metabolites. Remarkably, in microPET studies, [(18)F]F15599 notably displayed a pattern of brain labelling that did not correlate with in vitro observations. Thus, in cat, the highest binding was observed in dorsal raphe and cingulate cortex with little binding in other cortical regions and none in hippocampus. In vivo binding was abolished by WAY100635, indicating specific labelling of 5-HT(1A) receptors. [(18)F]F15599 is a radiofluorinated agonist presenting interesting characteristics for probing in vitro and in vivo the high-affinity states of the 5-HT(1A) receptors. Its differential labelling of 5-HT(1A) receptors in vitro and in vivo may result from its reported preferential interaction with receptors coupled to specific G-protein subtypes.
Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo
2007-06-01
To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Wei, E-mail: hongwei@tijmu.edu.cn; Chen, Linfeng; Liu, Yunde
2009-12-04
The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 didmore » not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Rui; McBride, Ryan; Paulson, James C.
2010-03-04
The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which representmore » the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.« less
Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses.
Hendricks, Gabriel L; Velazquez, Lourdes; Pham, Serena; Qaisar, Natasha; Delaney, James C; Viswanathan, Karthik; Albers, Leila; Comolli, James C; Shriver, Zachary; Knipe, David M; Kurt-Jones, Evelyn A; Fygenson, Deborah K; Trevejo, Jose M; Wang, Jennifer P; Finberg, Robert W
2015-04-01
Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Nicholas C; Xie, Jia; Zheng, Tianqing; Nycholat, Corwin M; Grande, Geramie; Paulson, James C; Lerner, Richard A; Wilson, Ian A
2017-06-14
Influenza A virus hemagglutinin (HA) initiates viral entry by engaging host receptor sialylated glycans via its receptor-binding site (RBS). The amino acid sequence of the RBS naturally varies across avian and human influenza virus subtypes and is also evolvable. However, functional sequence diversity in the RBS has not been fully explored. Here, we performed a large-scale mutational analysis of the RBS of A/WSN/33 (H1N1) and A/Hong Kong/1/1968 (H3N2) HAs. Many replication-competent mutants not yet observed in nature were identified, including some that could escape from an RBS-targeted broadly neutralizing antibody. This functional sequence diversity is made possible by pervasive epistasis in the RBS 220-loop and can be buffered by avidity in viral receptor binding. Overall, our study reveals that the HA RBS can accommodate a much greater range of sequence diversity than previously thought, which has significant implications for the complex evolutionary interrelationships between receptor specificity and immune escape. Copyright © 2017 Elsevier Inc. All rights reserved.
The opposing roles of laminin-binding integrins in cancer.
Ramovs, Veronika; Te Molder, Lisa; Sonnenberg, Arnoud
2017-01-01
Integrins play an important role in cell adhesion by linking the cytoskeleton of cells to components in the extracellular matrix. In this capacity, integrins cooperate with different cell surface receptors, including growth factor receptors and G-protein coupled receptors, to regulate intracellular signaling pathways that control cell polarization, spreading, migration, survival, and gene expression. A distinct subfamily of molecules in the integrin family of adhesion receptors is formed by receptors that mediate cell adhesion to laminins, major components of the basement membrane that lie under clusters of cells or surround them, separating them from other cells and/or adjacent connective tissue. During the past decades, many studies have provided evidence for a role of laminin-binding integrins in tumorigenesis, and both tumor-promoting and suppressive activities have been identified. In this review we discuss the dual role of the laminin-binding integrins α3β1 and α6β4 in tumor development and progression, and examine the factors and mechanisms involved in these opposing effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Williams, Dustin K.; Wang, Jingyi; Papke, Roger L.
2011-01-01
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. PMID:21575610
Williams, Dustin K; Wang, Jingyi; Papke, Roger L
2011-10-15
Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues. Copyright © 2011 Elsevier Inc. All rights reserved.
Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie,Y.; Hobbs, J.; Vigues, S.
2006-01-01
Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain amore » large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.« less
Wang, H Y; Paul, W E; Keegan, A D
1996-02-01
IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.
Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; el-Fakahany, E.E.
1985-06-01
The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less
Quantification of transcription factor-DNA binding affinity in a living cell
Belikov, Sergey; Berg, Otto G.; Wrange, Örjan
2016-01-01
The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [3H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. PMID:26657626
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, C.; Pedersen, H.B.; McNamara, J.O.
1985-10-01
Quantitative radiohistochemistry was utilized to study alterations of gamma-aminobutyric acid (GABA) and benzodiazepine receptors in the kindling model of epilepsy. The radioligands used for GABA and benzodiazepine receptors were (TH) muscimol and (TH)flunitrazepam, respectively. GABA receptor binding was increased by 22% in fascia dentata of the hippocampal formation but not in neocortex or substantia nigra of kindled rats. Within fascia dentata, GABA receptor binding was increased to an equivalent extent in stratum granulosum and throughout stratum moleculare; no increase was found in dentate hilus or stratum lacunosummoleculare or stratum radiatum of CA1. The increased binding was present at 24 hrmore » but not at 28 days after the last kindled seizure. The direction, anatomic distribution, and time course of the increased GABA receptor binding were paralleled by increased benzodiazepine receptor binding. The anatomic distribution of the increased GABA receptor binding is consistent with a localization to somata and dendritic trees of dentate granule cells. The authors suggest that increased GABA and benzodiazepine receptor binding may contribute to enhanced inhibition of dentate granule cells demonstrated electrophysiologically in kindled animals.« less
Synthesis and evaluation of novel opioid ligands with a C-homomorphinan skeleton.
Ishikawa, Kyoko; Mochizuki, Yusuke; Hirayama, Shigeto; Nemoto, Toru; Nagai, Kenichiro; Itoh, Kennosuke; Fujii, Hideaki
2016-05-15
As the reports about C-homomorphinans with the seven-membered C-ring are much fewer than those of morphinan derivatives with a six-membered C-ring, we attempted to synthesize C-homomorphinan derivatives and to evaluate their opioid activities. C-Homomorphinan 5 showed sufficient binding affinities to the opioid receptors. C-Homomorphinan derivatives possessing the δ address moiety such as indole (NTI-type), quinoline, or benzylidene (BNTX-type) functionalities showed the strongest binding affinities for the δ receptor among the three types of opioid receptors, which indicated that the C-homomorphinan skeleton sufficiently functions as a message-part in the ligand. Although NTI-type compound 8 and quinoline compound 9 with C-homomorphinan scaffold exhibited lower affinities and selectivities for the δ receptor than the corresponding morphinan derivatives did, both the binding affinity and selectivity for the δ receptor of BNTX-type compound 12 with a seven-membered C-ring were improved compared with the corresponding compounds with a six-membered C-ring including BNTX itself. BNTX-Type compound 12 was the most selective δ receptor antagonist among the tested compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Toki, S; Tanaka, T; Uosaki, Y; Yoshida, M; Suzuki, Y; Kita, K; Mihara, A; Ando, K; Lokker, N A; Giese, N A; Matsuda, Y
1999-03-01
Nine azaphilones designated RP-1551-1, -2, -3, -4, -5, -6, -7, -M1, and -M2 were isolated from the culture broth of Penicillium sp. SPC-21609 as inhibitors of PDGF binding to its receptor. RP-1551s inhibit the binding of PDGF AA to the extracellular domain of PDGF alpha-receptor with IC50 values ranging from 0.1 to 2 microM without affecting PDGF BB binding to the extracellular domain of PDGF beta-receptor. PDGF binding was not restored after the PDGF alpha-receptor extracellular domain was washed in an attempt to remove the RP-1551-1 bound to the receptor. This result suggests that RP-1551-1 may irreversibly interact with the PDGF alpha-receptor. Since many azaphilone compounds possess high reactivity with an amino group, RP-1551-1 may prevent PDGF AA binding by reacting with amino groups on the alpha-receptor extracellular domain.
Del Valle-Mojica, Lisa M.; Cordero-Hernández, José M.; González-Medina, Giselle; Ramos-Vélez, Igmeris; Berríos-Cartagena, Nairimer; Torres-Hernández, Bianca A.; Ortíz, José G.
2011-01-01
The effects of two valerian extracts (aqueous and hydroalcoholic) were investigated through [3H]Glutamate ([3H]Glu) and [3H]Fluorowillardine ([3H]FW) receptor binding assays using rat synaptic membranes in presence of different receptor ligands. In addition, the extract stability was monitored spectrophotometrically. Both extracts demonstrated interaction with ionotropic glutamate receptors (iGluRs). However, the extracts displayed considerable differences in receptor selectivity. The hydroalcoholic extract selectively interacted with quisqualic acid (QA), group I metabotropic glutamate receptor (mGluR) ligand, while the aqueous extract did not alter the binding of QA. The stability of the extracts was examined during several weeks. Freshly prepared extract inhibited 38–60% of [3H]FW binding (AMPA). After 10 days, the aqueous extract inhibited 85% of [3H]FW binding while the hydroalcoholic extract markedly potentiated (200%) [3H]FW binding to AMPA receptors. Thus, our results showed that factors such as extraction solvent and extract stability determine the selectivity for glutamate receptor (GluR) interactions. PMID:21151614
Del Valle-Mojica, Lisa M; Cordero-Hernández, José M; González-Medina, Giselle; Ramos-Vélez, Igmeris; Berríos-Cartagena, Nairimer; Torres-Hernández, Bianca A; Ortíz, José G
2011-01-01
The effects of two valerian extracts (aqueous and hydroalcoholic) were investigated through [(3)H]Glutamate ([(3)H]Glu) and [(3)H]Fluorowillardine ([(3)H]FW) receptor binding assays using rat synaptic membranes in presence of different receptor ligands. In addition, the extract stability was monitored spectrophotometrically. Both extracts demonstrated interaction with ionotropic glutamate receptors (iGluRs). However, the extracts displayed considerable differences in receptor selectivity. The hydroalcoholic extract selectively interacted with quisqualic acid (QA), group I metabotropic glutamate receptor (mGluR) ligand, while the aqueous extract did not alter the binding of QA. The stability of the extracts was examined during several weeks. Freshly prepared extract inhibited 38-60% of [(3)H]FW binding (AMPA). After 10 days, the aqueous extract inhibited 85% of [(3)H]FW binding while the hydroalcoholic extract markedly potentiated (200%) [(3)H]FW binding to AMPA receptors. Thus, our results showed that factors such as extraction solvent and extract stability determine the selectivity for glutamate receptor (GluR) interactions.
Hong, Huixiao; Branham, William S; Ng, Hui Wen; Moland, Carrie L; Dial, Stacey L; Fang, Hong; Perkins, Roger; Sheehan, Daniel; Tong, Weida
2015-02-01
One endocrine disruption mechanism is through binding to nuclear receptors such as the androgen receptor (AR) and estrogen receptor (ER) in target cells. The concentration of a chemical in serum is important for its entry into the target cells to bind the receptors, which is regulated by the serum proteins. Human sex hormone-binding globulin (SHBG) is the major transport protein in serum that can bind androgens and estrogens and thus change a chemical's availability to enter the target cells. Sequestration of an androgen or estrogen in the serum can alter the chemical elicited AR- and ER-mediated responses. To better understand the chemical-induced endocrine activity, we developed a competitive binding assay using human pregnancy plasma and measured the binding to the human SHBG for 125 structurally diverse chemicals, most of which were known to bind AR and ER. Eighty seven chemicals were able to bind the human SHBG in the assay, whereas 38 chemicals were nonbinders. Binding data for human SHBG are compared with that for rat α-fetoprotein, ER and AR. Knowing the binding profiles between serum and nuclear receptors will improve assessment of a chemical's potential for endocrine disruption. The SHBG binding data reported here represent the largest data set of structurally diverse chemicals tested for human SHBG binding. Utilization of the SHBG binding data with AR and ER binding data could enable better evaluation of endocrine disrupting potential of chemicals through AR- and ER-mediated responses since sequestration in serum could be considered. Published by Oxford University Press on behalf of the Society of Toxicology 2014. This work is written by US Government employees and is in the public domain in the US.
Lensing, Cody J.; Freeman, Katie T.; Schnell, Sathya M.; Adank, Danielle N.; Speth, Robert C.; Haskell-Luevano, Carrie
2017-01-01
Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 (CJL-1-140) possessed a functional profile that was unique from its monovalent counterparts providing evidence of the discrete effects of bivalent ligands. Lead compound 7 (CJL-1-87) significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects. PMID:26959173
Moni, R W; Romero, F S; Daly, J W
1995-08-01
1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state complexed with guanyl nucleotide-free G-protein.
Wilkinson, Kim; Boyd, Justin D.; Glicksman, Marcie; Moore, Kathryn J.; El Khoury, Joseph
2011-01-01
A pathological hallmark of Alzheimer disease (AD) is deposition of amyloid β (Aβ) in the brain. Aβ binds to microglia via a receptor complex that includes CD36 leading to production of proinflammatory cytokines and neurotoxic reactive oxygen species and subsequent neurodegeneration. Interruption of Aβ binding to CD36 is a potential therapeutic strategy for AD. To identify pharmacologic inhibitors of Aβ binding to CD36, we developed a 384-well plate assay for binding of fluorescently labeled Aβ to Chinese hamster ovary cells stably expressing human CD36 (CHO-CD36) and screened an Food and Drug Administration-approved compound library. The assay was optimized based on the cells' tolerance to dimethyl sulfoxide, Aβ concentration, time required for Aβ binding, reproducibility, and signal-to-background ratio. Using this assay, we identified four compounds as potential inhibitors of Aβ binding to CD36. These compounds were ursolic acid, ellipticine, zoxazolamine, and homomoschatoline. Of these compounds, only ursolic acid, a naturally occurring pentacyclic triterpenoid, successfully inhibited binding of Aβ to CHO-CD36 cells in a dose-dependent manner. The ursolic acid effect reached a plateau at ∼20 μm, with a maximal inhibition of 64%. Ursolic acid also blocked binding of Aβ to microglial cells and subsequent ROS production. Our data indicate that cell-based high-content screening of small molecule libraries for their ability to block binding of Aβ to its receptors is a useful tool to identify novel inhibitors of receptors involved in AD pathogenesis. Our data also suggest that ursolic acid is a potential therapeutic agent for AD via its ability to block Aβ-CD36 interactions. PMID:21835916
Heyma, P; Harrison, L C
1984-01-01
The thyrotropin (TSH) receptor is a putative target for autoantibodies in Graves' hyperthyroidism and therefore, should be capable of being identified, isolated, and structurally characterized by immunological means. To this end, four sera from patients with hyperthyroidism, three of which inhibited the binding of 125I-TSH to Triton-solubilized human thyroid membranes, were used to isolate TSH receptors by immunoprecipitation. To account for an effect of TSH binding or receptor occupancy on the ability of Graves' immunoglobulins to precipitate TSH receptors, two approaches were taken: (a) specific 125I-TSH binding activity was measured after solubilized thyroid membranes had been incubated with Graves' sera followed by precipitation with Staphylococcus protein A ("receptor depletion"); (b) TSH binding sites were labeled with 125I-TSH and the complexes were precipitated using Graves' sera and Staphylococcus protein A ("receptor precipitation"). The three sera which inhibited 125I-TSH binding depleted 125I-TSH binding activity between 30-80%. Preformed complexes between Staphylococcus protein A and immunoglobulins in these sera were also able to deplete 125I-TSH binding activity. However, after receptor depletion, the one serum that did not inhibit 125I-TSH binding was associated with a significant increase in 125I-TSH binding. All four sera specifically precipitated 80-100% of receptors identified by prelabeling with 125I-TSH. The dilutions of sera that precipitated 50% of 125I-TSH-receptor complexes ranged from 1:150-1:20. Complexes were partially precipitated by high concentrations of control sera (1:20), but the relative potency of control sera was at least fourfold less than Graves' sera. Immunoprecipitates of 125I-labeled thyroid membranes were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography to reveal Graves'-specific bands of reduced molecular weights of 100-110,000, 80-90,000, and 70-75,000. These bands were similar to those obtained from 125I-labeled thyroid membranes purified by TSH affinity chromatography. Thus, Graves' immunoglobulins: (a) precipitate unoccupied and occupied TSH receptors, (b) in one case, neither inhibit binding nor immunodeplete the unoccupied receptor but immunoprecipitate 125I-TSH-receptor complexes, suggesting that binding of TSH may initiate an interaction between the binding site and a separate immunoreactive molecule, and (c) identify the molecular structure of Graves' autoantigens, putatively, the TSH receptor. Images PMID:6088581
Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.
NASA Astrophysics Data System (ADS)
Garmroudi, Farideh
1995-01-01
In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation substituting threonine for isoleucine at position 1621, which is located in the N-terminal half of repeat 11, and was found to abrogate IGF-II binding. Collectively, our work indicates that repeat 11 of the IGF-II/Man-6-P receptor's extracellular domain encompasses the elements both for binding and cross-linking to IGF-II.
Structure-based receptor MIMICS targeted against bacterial superantigen toxins
Gupta, Goutam [Santa Fe, NM; Hong-Geller, Elizabeth [Los Alamos, NM; Shiflett, Patrick R [Los Alamos, NM; Lehnert, Nancy M [Albuquerque, NM
2009-08-18
The invention provides therapeutic compositions useful in the treatment of bacterial superantigen mediated conditions, such as Toxic Shock Syndrome. The compositions comprise genetically engineered bifunctional polypeptides containing a specific T-cell receptor binding domain and a specific MHC class II receptor binding domain, each targeting non-overlapping epitopes on a superantigen molecule against which they are designed. The anti-superantigen "receptor mimetics" or "chimeras" are rationally designed to recreate the modality of superantigen binding directly to both the TCR and the MHC-II receptor, and are capable of acting as decoys for superantigen binding, effectively out-competing the host T-cell and MHC-II receptors, the natural host receptors.
In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...
Kling, Ralf C.; Tschammer, Nuska; Lanig, Harald; Clark, Timothy; Gmeiner, Peter
2014-01-01
Partial agonists exhibit a submaximal capacity to enhance the coupling of one receptor to an intracellular binding partner. Although a multitude of studies have reported different ligand-specific conformations for a given receptor, little is known about the mechanism by which different receptor conformations are connected to the capacity to activate the coupling to G-proteins. We have now performed molecular-dynamics simulations employing our recently described active-state homology model of the dopamine D2 receptor-Gαi protein-complex coupled to the partial agonists aripiprazole and FAUC350, in order to understand the structural determinants of partial agonism better. We have compared our findings with our model of the D2R-Gαi-complex in the presence of the full agonist dopamine. The two partial agonists are capable of inducing different conformations of important structural motifs, including the extracellular loop regions, the binding pocket and, in particular, intracellular G-protein-binding domains. As G-protein-coupling to certain intracellular epitopes of the receptor is considered the key step of allosterically triggered nucleotide-exchange, it is tempting to assume that impaired coupling between the receptor and the G-protein caused by distinct ligand-specific conformations is a major determinant of partial agonist efficacy. PMID:24932547
Karlshøj, Stefanie; Amarandi, Roxana Maria; Larsen, Olav; Daugvilaite, Viktorija; Steen, Anne; Brvar, Matjaž; Pui, Aurel; Frimurer, Thomas Michael; Ulven, Trond; Rosenkilde, Mette Marie
2016-12-23
The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn 2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn 2+ is anchored to the chemokine receptor-conserved Glu-283 VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248 VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116 III:16/3.40 , a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125 I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37 I:07/1.39 , Trp-86 II:20/2.60 , and Phe-109 III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L
2006-11-01
Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057
2005-08-15
The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increasedmore » ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.« less
Porotto, Matteo; DeVito, Ilaria; Palmer, Samantha G.; Jurgens, Eric M.; Yee, Jia L.; Yokoyama, Christine C.; Pessi, Antonello; Moscona, Anne
2011-01-01
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry. PMID:21976650
Porotto, Matteo; Devito, Ilaria; Palmer, Samantha G; Jurgens, Eric M; Yee, Jia L; Yokoyama, Christine C; Pessi, Antonello; Moscona, Anne
2011-12-01
During paramyxovirus entry into a host cell, receptor engagement by a specialized binding protein triggers conformational changes in the adjacent fusion protein (F), leading to fusion between the viral and cell membranes. According to the existing paradigm of paramyxovirus membrane fusion, the initial activation of F by the receptor binding protein sets off a spring-loaded mechanism whereby the F protein progresses independently through the subsequent steps in the fusion process, ending in membrane merger. For human parainfluenza virus type 3 (HPIV3), the receptor binding protein (hemagglutinin-neuraminidase [HN]) has three functions: receptor binding, receptor cleaving, and activating F. We report that continuous receptor engagement by HN activates F to advance through the series of structural rearrangements required for fusion. In contrast to the prevailing model, the role of HN-receptor engagement in the fusion process is required beyond an initiating step, i.e., it is still required even after the insertion of the fusion peptide into the target cell membrane, enabling F to mediate membrane merger. We also report that for Nipah virus, whose receptor binding protein has no receptor-cleaving activity, the continuous stimulation of the F protein by a receptor-engaged binding protein is key for fusion. We suggest a general model for paramyxovirus fusion activation in which receptor engagement plays an active role in F activation, and the continued engagement of the receptor binding protein is essential to F protein function until the onset of membrane merger. This model has broad implications for the mechanism of paramyxovirus fusion and for strategies to prevent viral entry.
Stevenson, S C; Rollence, M; White, B; Weaver, L; McClelland, A
1995-01-01
The adenovirus fiber protein is responsible for attachment of the virion to cell surface receptors. The identity of the cellular receptor which mediates binding is unknown, although there is evidence suggesting that two distinct adenovirus receptors interact with the group C (adenovirus type 5 [Ad5]) and the group B (Ad3) adenoviruses. In order to define the determinants of adenovirus receptor specificity, we have carried out a series of competition binding experiments using recombinant native fiber polypeptides from Ad5 and Ad3 and chimeric fiber proteins in which the head domains of Ad5 and Ad3 were exchanged. Specific binding of fiber to HeLa cell receptors was assessed with radiolabeled protein synthesized in vitro, and by competition analysis with baculovirus-expressed fiber protein. Fiber produced in vitro was found as both monomer and trimer, but only the assembled trimers had receptor binding activity. Competition data support the conclusion that Ad5 and Ad3 interact with different cellular receptors. The Ad5 receptor distribution on several cell lines was assessed with a fiber binding flow cytometric assay. HeLa cells were found to express high levels of receptor, while CHO and human diploid fibroblasts did not. A chimeric fiber containing the Ad5 fiber head domain blocked the binding of Ad5 fiber but not Ad3 fiber. Similarly, a chimeric fiber containing the Ad3 fiber head blocked the binding of labeled Ad3 fiber but not Ad5 fiber. In addition, the isolated Ad3 fiber head domain competed effectively with labeled Ad3 fiber for binding to HeLa cell receptors. These results demonstrate that the determinants of receptor binding are located in the head domain of the fiber and that the isolated head domain is capable of trimerization and binding to cellular receptors. Our results also show that it is possible to change the receptor specificity of the fiber protein by manipulation of sequences contained in the head domain. Modification or replacement of the fiber head domain with novel ligands may permit adenovirus vectors with new receptor specificities which could be useful for targeted gene delivery in vivo to be engineered. PMID:7707507
Use of polyclonal and monoclonal antibodies to study hCG-receptor interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milius, R.P.
1985-01-01
Although the glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) bind to different receptors, each contains an identical alpha subunit. Specificity is somehow endowed by theta subunits which are distinct for each hormone. Human choriogonadotropin (hCG) is a natural LH analog that contains a beta subunit nearly identical to that of LH. The roles of these subunits in the recognition and high affinity binding of hCG to receptor was examined. Polyclonal and monoclonal antibodies specific for the individual subunits of hCG were used to probe the hormone-receptor interaction. Conformation-specific and sequence-specific antibodies were examined for their abilities to bindmore » Triton X-100-solubilized /sup 125/I-hCG-receptor complex and to inhibit hormone binding to crude rat ovarian membranes containing receptor. Even though the immunoreactive sites are not located on the receptor binding surface of the beta subunit, most, but not all, of these polyclonal and monoclonal antibodies were able to inhibit /sup 125/I-hCG binding to receptor. Although the inhibition of binding may be due to steric interference due to the size of the antibody molecules, a two-step model for hCG binding to receptor is presented that also explains these results. In this model, the beta subunit initially binds with the receptor with a highly specific but low affinity interaction. This activates a site for the high affinity binding of the alpha subunit and stabilization of the complex. This is an attractive model as it may be applied to other glycoprotein hormones sharing an alpha subunit.« less
Tzafriri, A. Rami; Edelman, Elazer R.
2006-01-01
There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924
International Validation of Two Human Recombinant Estrogen Receptor (ERa) Binding Assays
An international validation study has been successfully completed for 2 competitive binding assays using human recombinant ERa. Assays evaluated included the Freyberger-Wilson (FW) assay using a full length human ER, and the Chemical Evaluation and Research Institute (CERI) assay...
PREDICTING ER BINDING AFFINITY FOR EDC RANKING AND PRIORITIZATION: MODEL I
A Common Reactivity Pattern (COREPA) model, based on consideration of multiple energetically reasonable conformations of flexible chemicals was developed using a training set of 232 rat estrogen receptor (rER) relative binding affinity (RBA) measurements. The training set include...
Werle, E; Lenz, T; Strobel, G; Weicker, H
1988-07-01
The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off
Hughes, Maria L. R.; Liu, Bonan; Halls, Michelle L.; Wagstaff, Kylie M.; Patil, Rahul; Velkov, Tony; Jans, David A.; Bunnett, Nigel W.; Scanlon, Martin J.; Porter, Christopher J. H.
2015-01-01
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. PMID:25847235
Hughes, Maria L R; Liu, Bonan; Halls, Michelle L; Wagstaff, Kylie M; Patil, Rahul; Velkov, Tony; Jans, David A; Bunnett, Nigel W; Scanlon, Martin J; Porter, Christopher J H
2015-05-29
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
The two-state dimer receptor model: a general model for receptor dimers.
Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I
2006-06-01
Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.
Waki, Michinori; Ohno, Motonori; Kuwano, Michihiko; Sakata, Toshiie
1993-01-01
Platelet factor 4 (PF‐4) blocks the binding of basic fibroblast growth factor (bFGF) to its receptor. In the present study, we constructed carboxyl‐terminal fragments, which represent the heparin‐binding region of the PF‐4 molecule, and examined whether these synthetic peptides retain the blocking effects on the receptor binding of bFGF. Synthetic peptides inhibited the receptor binding of bFGF. Furthermore, they inhibited the migration and tube formation of bovine capillary endothelial cells in culture (these phenomena are dependent on endogenous bFGF). PMID:8320164
Massa, Fabienne; Devader, Christelle; Béraud-Dufour, Sophie; Brau, Frédéric; Coppola, Thierry; Mazella, Jean
2013-05-01
The neurotensin (NT) receptor-3 (NTSR3), also called sortilin, is thought to display several functions including a role as a receptor or a co-receptor, in the sorting to plasma membrane and to lysosomes, and in the regulated secretion. The aim of this study was to investigate the function of the soluble form of NTSR3 (sNTSR3) released from several cell lines including colonic cancer cells. The human adenocarcinoma epithelial cell line HT29 has been used to monitor the release, the binding and internalization of sNTSR3 by radioreceptor assays and confocal microscopy. The modulation of the intracellular signaling pathways by the protein has been investigated by using Fura-2 fluorescence calcium imaging microscopy and Western blots analysis. We demonstrated that sNTSR3 specifically binds and internalizes into HT29 cells. This binding, independent from the transactivation of the epidermal growth factor receptor, leads to the increase of intracellular calcium concentration and to the activation of a FAK/Src-dependent activation of the PI3 kinase pathway. In conclusion, sNTSR3 released from the membrane bound NTSR3 is a functional protein able to activate intracellular pathways involved in cell survival but probably not in cell growth. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sakkal, Leon A; Rajkowski, Kyle Z; Armen, Roger S
2017-06-05
Following insights from recent crystal structures of the muscarinic acetylcholine receptor, binding modes of Positive Allosteric Modulators (PAMs) were predicted under the assumption that PAMs should bind to the extracellular surface of the active state. A series of well-characterized PAMs for adenosine (A 1 R, A 2A R, A 3 R) and muscarinic acetylcholine (M 1 R, M 5 R) receptors were modeled using both rigid and flexible receptor CHARMM-based molecular docking. Studies of adenosine receptors investigated the molecular basis of the probe-dependence of PAM activity by modeling in complex with specific agonist radioligands. Consensus binding modes map common pharmacophore features of several chemical series to specific binding interactions. These models provide a rationalization of how PAM binding slows agonist radioligand dissociation kinetics. M 1 R PAMs were predicted to bind in the analogous M 2 R PAM LY2119620 binding site. The M 5 R NAM (ML-375) was predicted to bind in the PAM (ML-380) binding site with a unique induced-fit receptor conformation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A, Ajith Kumar; Nadimpalli, Siva Kumar
2018-07-01
Mannose 6-phosphate/IGF-II receptor mediated lysosomal clearance of insulin-like growth factor-II is significantly associated with the evolution of placental mammals. The protein is also referred to as the IGF-II receptor. Earlier studies suggested relatively low binding affinity between the receptor and ligand in prototherian and metatherian mammals. In the present study, we cloned the IGF-II binding domain of the early vertebrate fugu fish and expressed it in bacteria. A 72000Da truncated receptor containing the IGF-II binding domain was obtained. Analysis of this protein (covering domains 11-13 of the CIMPR) for its affinity to fish and human IGF-II by ligand blot assays and ELISA showed that the expressed receptor can specifically bind to both fish and human IGF-II. Additionally, a peptide-specific antibody raised against the region of the IGF-II binding domain also was able to recognize the IGF-II binding regions of mammalian and non-mammalian cation independent MPR protein. These interactions were further characterized by Surface Plasma resonance support that the receptor binds to fish IGF-II, with a dissociation constant of 548nM. Preliminary analysis suggests that the binding mechanism as well as the affinity of the fish and human receptor for IGF-II may have varied according to different evolutionary pressures. Copyright © 2018. Published by Elsevier B.V.
Pharmacological activities of Vitex agnus-castus extracts in vitro.
Meier, B; Berger, D; Hoberg, E; Sticher, O; Schaffner, W
2000-10-01
The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.
Turke, Miah; Subhramanyam, Udaya K. Tiruttani; Churchill, Beth; Labahn, Joerg
2018-01-01
Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists. PMID:29342106
Alakurtti, Kati; Johansson, Jarkko J; Tuokkola, Terhi; Någren, Kjell; Rinne, Juha O
2013-11-15
The human striatum has structural and functional subdivisions, both dorsoventrally and rostrocaudally. To date, the gradients of dopamine D2/3 receptor binding in the human striatum have not been measured with positron emission tomography (PET). Seven healthy male subjects aged 24.5 ± 3.5 years were scanned with brain-dedicated high-resolution research tomography (HRRT, Siemens Medical Solutions, Knoxville, TN, USA) and [(11)C]raclopride. Coronally defined regions of interest (ROIs) of the caudate nucleus, putamen and ventral striatum (VST) were sampled plane-by-plane, 1.5mm apart, on spatially normalized binding potential (BPND) images. Regional [(11)C]raclopride BPND values were calculated using the simplified reference tissue model (SRTM) from a total of 25 coronal planes. An increasing rostrocaudal gradient of the D2/3 receptor binding was detected in the putamen, which is consistent with the known distribution of D2/3 dopamine receptors. In the caudate nucleus, there was an initial increase in the BPND values in the most anterior planes, suggesting that the highest D2/3 receptor binding occurred in the head; however, there was an overall descending gradient. A declining trend was also observed in the VST. The novelty of this study lies in the presentation, for the first time, of the D2/3 receptor binding gradients in each striatal subregion in the brains of living healthy humans. The high spatial resolution provided by HRRT enables frequent sampling of BPND along the longitudinal extent of striatum; this method is superior to the sectioning used in previous post mortem studies. Regarding the functional organization of the striatum, our findings can inform future investigations of normal neurophysiology as well as efforts to differentiate neuropsychiatric disorders affecting the brain dopamine (DA) system. Furthermore, the average distribution of D2/3 receptor binding revealed in this study could serve as a basis for a database that includes distributions of various DA markers as a function of healthy aging. Copyright © 2013 Elsevier Inc. All rights reserved.
Ito, Yoshihiko; Kashiwabara, Michishi; Yoshida, Akira; Hikiyama, Eriko; Onoue, Satomi; Yamada, Shizuo
2016-01-01
Solifenacin is an antimuscarinic agent used to treat symptoms of overactive bladder. Pharmacologically significant amounts of solifenacin were excreted in the urine of humans taking a clinical dose of this drug. The aim of this study is to measure muscarinic receptor binding in the bladder urothelium and detrusor muscles of rats following the intravesical instillation of solifenacin. Muscarinic receptors were measured by radioreceptor assay using [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS), a selective radioligand of muscarinic receptors. Solifenacin showed concentration-dependent inhibition of specific [(3)H]NMS binding in the bladder urothelium and detrusor muscle of rats, with no significant difference in Ki values or Hill coefficients between these tissues. Following the intravesical instillation of solifenacin, there was significant muscarinic receptor binding (increase in Kd for specific [(3)H]NMS binding) in the bladder urothelium and detrusor muscle of rats. Similar bladder muscarinic receptor binding was observed by the intravesical instillation of oxybutynin, but not with trospium. In conclusion, the present study has demonstrated that solifenacin binds muscarinic receptors not only in the detrusor muscle but also in the bladder urothelium with high affinity. These bladder muscarinic receptors may be significantly affected by solifenacin excreted in the urine.
Song, Xiufeng; Gurevich, Eugenia V.; Gurevich, Vsevolod V.
2008-01-01
Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin ‘frozen’ in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions. PMID:17680991
Duffy, Noah H; Lester, Henry A; Dougherty, Dennis A
2012-10-19
The serotonin type 3 receptor (5-HT(3)R) is a ligand-gated ion channel found in the central and peripheral nervous systems. The 5-HT(3)R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT(3)A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket.
Duffy, Noah H.; Lester, Henry A.; Dougherty, Dennis A.
2012-01-01
The serotonin type 3 receptor (5-HT3R) is a ligand-gated ion channel that mediates fast synaptic transmission in the central and peripheral nervous systems. The 5-HT3R is a therapeutic target, and the clinically available drugs ondansetron and granisetron inhibit receptor activity. Their inhibitory action is through competitive binding to the native ligand binding site, although the binding orientation of the drugs at the receptor has been a matter of debate. Here we heterologously express mouse 5-HT3A receptors in Xenopus oocytes and use unnatural amino acid mutagenesis to establish a cation-π interaction for both ondansetron and granisetron to tryptophan 183 in the ligand binding pocket. This cation-π interaction establishes a binding orientation for both ondansetron and granisetron within the binding pocket. PMID:22873819
Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia
Kubota, Manabu; Nagashima, Tomohisa; Takano, Harumasa; Kodaka, Fumitoshi; Fujiwara, Hironobu; Takahata, Keisuke; Moriguchi, Sho; Higuchi, Makoto; Okubo, Yoshiro; Takahashi, Hidehiko; Ito, Hiroshi
2017-01-01
Abstract Background Dopamine D2 receptors are reported to have high-affinity (D2High) and low-affinity (D2Low) states. Although an increased proportion of D2High has been demonstrated in animal models of schizophrenia, few clinical studies have investigated this alteration of D2High in schizophrenia in vivo. Methods Eleven patients with schizophrenia, including 10 antipsychotic-naive and 1 antipsychotic-free individuals, and 17 healthy controls were investigated. Psychopathology was assessed by Positive and Negative Syndrome Scale, and a 5-factor model was used. Two radioligands, [11C]raclopride and [11C]MNPA, were employed to quantify total dopamine D2 receptor and D2High, respectively, in the striatum by measuring their binding potentials. Binding potential values of [11C]raclopride and [11C]MNPA and the binding potential ratio of [11C]MNPA to [11C]raclopride in the striatal subregions were statistically compared between the 2 diagnostic groups using multivariate analysis of covariance controlling for age, gender, and smoking. Correlations between binding potential and Positive and Negative Syndrome Scale scores were also examined. Results Multivariate analysis of covariance demonstrated a significant effect of diagnosis (schizophrenia and control) on the binding potential ratio (P=.018), although the effects of diagnosis on binding potential values obtained with either [11C]raclopride or [11C]MNPA were nonsignificant. Posthoc test showed that the binding potential ratio was significantly higher in the putamen of patients (P=.017). The Positive and Negative Syndrome Scale “depressed” factor in patients was positively correlated with binding potential values of both ligands in the caudate. Conclusions The present study indicates the possibilities of: (1) a higher proportion of D2High in the putamen despite unaltered amounts of total dopamine D2 receptors; and (2) associations between depressive symptoms and amounts of caudate dopamine D2 receptors in patients with schizophrenia. PMID:29016872
Elimination of a ligand gating site generates a supersensitive olfactory receptor.
Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I
2016-06-21
Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.
Elimination of a ligand gating site generates a supersensitive olfactory receptor
Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I.
2016-01-01
Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors. PMID:27323929
Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import
Buchanan, Susan K; Lukacik, Petra; Grizot, Sylvestre; Ghirlando, Rodolfo; Ali, Maruf M U; Barnard, Travis J; Jakes, Karen S; Kienker, Paul K; Esser, Lothar
2007-01-01
Colicin Ia is a 69 kDa protein that kills susceptible Escherichia coli cells by binding to a specific receptor in the outer membrane, colicin I receptor (70 kDa), and subsequently translocating its channel forming domain across the periplasmic space, where it inserts into the inner membrane and forms a voltage-dependent ion channel. We determined crystal structures of colicin I receptor alone and in complex with the receptor binding domain of colicin Ia. The receptor undergoes large and unusual conformational changes upon colicin binding, opening at the cell surface and positioning the receptor binding domain of colicin Ia directly above it. We modelled the interaction with full-length colicin Ia to show that the channel forming domain is initially positioned 150 Å above the cell surface. Functional data using full-length colicin Ia show that colicin I receptor is necessary for cell surface binding, and suggest that the receptor participates in translocation of colicin Ia across the outer membrane. PMID:17464289
Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio
2005-01-01
This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.
Anesthetic sites and allosteric mechanisms of action on Cys-loop ligand-gated ion channels.
Forman, Stuart A; Miller, Keith W
2011-02-01
The Cys-loop ligand-gated ion channel superfamily is a major group of neurotransmitter-activated receptors in the central and peripheral nervous system. The superfamily includes inhibitory receptors stimulated by γ-aminobutyric acid (GABA) and glycine and excitatory receptors stimulated by acetylcholine and serotonin. The first part of this review presents current evidence on the location of the anesthetic binding sites on these channels and the mechanism by which binding to these sites alters their function. The second part of the review addresses the basis for this selectivity, and the third part describes the predictive power of a quantitative allosteric model showing the actions of etomidate on γ-aminobutyric acid type A receptors (GABA(A)Rs). General anesthetics at clinical concentrations inhibit the excitatory receptors and enhance the inhibitory receptors. The location of general anesthetic binding sites on these receptors is being defined by photoactivable analogues of general anesthetics. The receptor studied most extensively is the muscle-type nicotinic acetylcholine receptor (nAChR), and progress is now being made with GABA(A)Rs. There are three categories of sites that are all in the transmembrane domain: 1) within a single subunit's four-helix bundle (intrasubunit site; halothane and etomidate on the δ subunit of AChRs); 2) between five subunits in the transmembrane conduction pore (channel lumen sites; etomidate and alcohols on nAChR); and 3) between two subunits (subunit interface sites; etomidate between the α1 and β2/3 subunits of the GABA(A)R). These binding sites function allosterically. Certain conformations of a receptor bind the anesthetic with greater affinity than others. Time-resolved photolabelling of some sites occurs within milliseconds of channel opening on the nAChR but not before. In GABA(A)Rs, electrophysiological data fit an allosteric model in which etomidate binds to and stabilizes the open state, increasing both the fraction of open channels and their lifetime. As predicted by the model, the channel-stabilizing action of etomidate is so strong that higher concentrations open the channel in the absence of agonist. The formal functional paradigm presented for etomidate may apply to other potent general anesthetic drugs. Combining photolabelling with structure-function mutational studies in the context of allosteric mechanisms should lead us to a more detailed understanding of how and where these important drugs act.
Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors.
Koshimizu, Taka-Aki; Kashiwazaki, Aki; Taniguchi, Junichi
2016-05-03
Reducing Na(+) in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na(+)-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na(+) sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na(+) increased cell surface [(3)H]AVP binding and decreased receptor internalization. Substitution of Na(+) by Cs(+) or NH4(+) inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na(+) over Cs(+). Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations.
Combined sodium ion sensitivity in agonist binding and internalization of vasopressin V1b receptors
Koshimizu, Taka-aki; Kashiwazaki, Aki; Taniguchi, Junichi
2016-01-01
Reducing Na+ in the extracellular environment may lead to two beneficial effects for increasing agonist binding to cell surface G-protein coupled receptors (GPCRs): reduction of Na+-mediated binding block and reduce of receptor internalization. However, such combined effects have not been explored. We used Chinese Hamster Ovary cells expressing vasopressin V1b receptors as a model to explore Na+ sensitivity in agonist binding and receptor internalization. Under basal conditions, a large fraction of V1b receptors is located intracellularly, and a small fraction is in the plasma membrane. Decreases in external Na+ increased cell surface [3H]AVP binding and decreased receptor internalization. Substitution of Na+ by Cs+ or NH4+ inhibited agonist binding. To suppress receptor internalization, the concentration of NaCl, but not of CsCl, had to be less than 50 mM, due to the high sensitivity of the internalization machinery to Na+ over Cs+. Iso-osmotic supplementation of glucose or NH4Cl maintained internalization of the V1b receptor, even in a low-NaCl environment. Moreover, iodide ions, which acted as a counter anion, inhibited V1b agonist binding. In summary, we found external ionic conditions that could increase the presence of high-affinity state receptors at the cell surface with minimum internalization during agonist stimulations. PMID:27138239
Functional map of arrestin binding to phosphorylated opsin, with and without agonist.
Peterhans, Christian; Lally, Ciara C M; Ostermaier, Martin K; Sommer, Martha E; Standfuss, Jörg
2016-06-28
Arrestins desensitize G protein-coupled receptors (GPCRs) and act as mediators of signalling. Here we investigated the interactions of arrestin-1 with two functionally distinct forms of the dim-light photoreceptor rhodopsin. Using unbiased scanning mutagenesis we probed the individual contribution of each arrestin residue to the interaction with the phosphorylated apo-receptor (Ops-P) and the agonist-bound form (Meta II-P). Disruption of the polar core or displacement of the C-tail strengthened binding to both receptor forms. In contrast, mutations of phosphate-binding residues (phosphosensors) suggest the phosphorylated receptor C-terminus binds arrestin differently for Meta II-P and Ops-P. Likewise, mutations within the inter-domain interface, variations in the receptor-binding loops and the C-edge of arrestin reveal different binding modes. In summary, our results indicate that arrestin-1 binding to Meta II-P and Ops-P is similarly dependent on arrestin activation, although the complexes formed with these two receptor forms are structurally distinct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luthin, G.R.; Wolfe, B.B.
Membranes prepared from rat cerebral cortex were solubilized in buffer containing 1% digitonin. Material present in the supernatant after centrifugation at 147,000 X g was shown to contain binding sites for both (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) and (/sup 3/H)pirenzepine ((/sup 3/H)PZ). Recovery of binding sites was approximately 25% of the initial membrane-bound (/sup 3/H)QNB binding sites. The Kd values for (/sup 3/H)QNB and (/sup 3/H)PZ binding to solubilized receptors were 0.3 nM and 0.1 microM, respectively. As has been observed previously in membrane preparations, (/sup 3/H)PZ appeared to label fewer solubilized binding sites than did (/sup 3/H)QNB. Maximum bindingmore » values for (/sup 3/H)PZ and (/sup 3/H)QNB binding to solubilized receptors were approximately 400 and 950 fmol/mg of protein, respectively. Competition curves for PZ inhibiting the binding of (/sup 3/H)QNB, however, had Hill slopes of 1, with a Ki value of 0.24 microM. The k1 and k-1 for (/sup 3/H)PZ binding were 3.5 X 10(6) M-1 min-1 and 0.13 min-1, respectively. The muscarinic receptor antagonists atropine, scopolamine and PZ inhibited the binding of (/sup 3/H)QNB and (/sup 3/H)PZ to solubilized receptors with Hill slopes of 1, as did the muscarinic receptor agonist oxotremorine. The muscarinic receptor agonist carbachol competed for (/sup 3/H)QNB and (/sup 3/H)PZ binding with a Hill slope of less than 1 in cerebral cortex, but not in cerebellum. GTP did not alter the interactions of carbachol or oxotremorine with the solubilized receptor. Together, these data suggest that muscarinic receptor sites solubilized from rat brain retain their abilities to interact selectively with muscarinic receptor agonists and antagonists.« less
Ohno, Shinji; Sakai, Kouji; Ito, Yuri; Fukuhara, Hideo; Komase, Katsuhiro; Brindley, Melinda A.; Rota, Paul A.; Plemper, Richard K.; Maenaka, Katsumi; Takeda, Makoto
2013-01-01
Here, we provide direct evidence that the receptor-binding site of measles virus (MV) hemagglutinin protein itself forms an effective conserved neutralizing epitope (CNE). Several receptor-interacting residues constitute the CNE. Thus, viral escape from neutralization has to be associated with loss of receptor-binding activity. Since interactions with both the signaling lymphocyte activation molecule (SLAM) and nectin4 are critical for MV pathogenesis, its escape, which results from loss of receptor-binding activity, should not occur in nature. PMID:23283964
Typically, in vitro hazard assessments for the identification of endocrine-disrupting compounds (EDCs), including those outlined in the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) Tier 1 Screening protocols, utilize mammalian receptors. Evidence, however...
Multifunctional and multispectral biosensor devices and methods of use
Vo-Dinh, Tuan
2004-06-01
An integrated biosensor system for the simultaneously detection of a plurality of different types of targets includes at least one sampling platform, the sampling platform including a plurality of receptors for binding to the targets. The plurality of receptors include at least one protein receptor and at least one nucleic acid receptor. At least one excitation source of electromagnetic radiation at a first frequency is provided for irradiating the receptors, wherein electromagnetic radiation at a second frequency different from the first frequency is emitted in response to irradiating when at least one of the different types of targets are bound to the receptor probes. An integrated circuit detector system having a plurality of detection channels is also provided for detecting electromagnetic radiation at said second frequency, the detection channels each including at least one detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jinghua; Marnell, Lorraine L.; Marjon, Kristopher D.
Pentraxins are a family of ancient innate immune mediators conserved throughout evolution. The classical pentraxins include serum amyloid P component (SAP) and C-reactive protein, which are two of the acute-phase proteins synthesized in response to infection. Both recognize microbial pathogens and activate the classical complement pathway through C1q. More recently, members of the pentraxin family were found to interact with cell-surface Fc{gamma} receptors (Fc{gamma}R) and activate leukocyte-mediated phagocytosis. Here we describe the structural mechanism for pentraxin's binding to Fc{gamma}R and its functional activation of Fc{gamma}R-mediated phagocytosis and cytokine secretion. The complex structure between human SAP and Fc{gamma}RIIa reveals a diagonallymore » bound receptor on each SAP pentamer with both D1 and D2 domains of the receptor contacting the ridge helices from two SAP subunits. The 1:1 stoichiometry between SAP and Fc{gamma}RIIa infers the requirement for multivalent pathogen binding for receptor aggregation. Mutational and binding studies show that pentraxins are diverse in their binding specificity for Fc{gamma}R isoforms but conserved in their recognition structure. The shared binding site for SAP and IgG results in competition for Fc{gamma}R binding and the inhibition of immune-complex-mediated phagocytosis by soluble pentraxins. These results establish antibody-like functions for pentraxins in the Fc{gamma}R pathway, suggest an evolutionary overlap between the innate and adaptive immune systems, and have new therapeutic implications for autoimmune diseases.« less
Kinet, Sandrina; Swainson, Louise; Lavanya, Madakasira; Mongellaz, Cedric; Montel-Hagen, Amélie; Craveiro, Marco; Manel, Nicolas; Battini, Jean-Luc; Sitbon, Marc; Taylor, Naomi
2007-01-01
Background We previously identified the glucose transporter Glut-1, a member of the multimembrane-spanning facilitative nutrient transporter family, as a receptor for both HTLV-1 and HTLV-2. However, a recent report concluded that Glut-1 cannot serve as a receptor for HTLV-1 on CD4 T cells: This was based mainly on their inability to detect Glut-1 on this lymphocyte subset using the commercial antibody mAb1418. It was therefore of significant interest to thoroughly assess Glut-1 expression on CD4 and CD8 T cells, and its association with HTLV-1 and -2 envelope binding. Results As previously reported, ectopic expression of Glut-1 but not Glut-3 resulted in significantly augmented binding of tagged proteins harboring the receptor binding domains of either HTLV-1 or HTLV-2 envelope glycoproteins (H1RBD or H2RBD). Using antibodies raised against the carboxy-terminal peptide of Glut-1, we found that Glut-1 expression was significantly increased in both CD4 and CD8 cells following TCR stimulation. Corresponding increases in the binding of H1RBD as well as H2RBD, not detected on quiescent T cells, were observed following TCR engagement. Furthermore, increased Glut-1 expression was accompanied by a massive augmentation in glucose uptake in TCR-stimulated CD4 and CD8 lymphocytes. Finally, we determined that the apparent contradictory results obtained by Takenouchi et al were due to their monitoring of Glut-1 with a mAb that does not bind cells expressing endogenous Glut-1, including human erythrocytes that harbor 300,000 copies per cell. Conclusion Transfection of Glut-1 directly correlates with the capacities of HTLV-1 and HTLV-2 envelope-derived ligands to bind cells. Moreover, Glut-1 is induced by TCR engagement, resulting in massive increases in glucose uptake and binding of HTLV-1 and -2 envelopes to both CD4 and CD8 T lymphocytes. Therefore, Glut-1 is a primary binding receptor for HTLV-1 and HTLV-2 envelopes on activated CD4 as well as CD8 lymphocytes. PMID:17504522
Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J
1993-11-01
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.
Substance P receptor binding sites are expressed by glia in vivo after neuronal injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantyh, P.W.; Johnson, D.J.; Boehmer, C.G.
1989-07-01
In vitro studies have demonstrated that glia can express functional receptors for a variety of neurotransmitters. To determine whether similar neurotransmitter receptors are also expressed by glia in vivo, the authors examined the glial scar in the transected optic nerve of the albino rabbit by quantitative receptor autoradiography. Receptor binding sites for radiolabeled calcitonin gene-related peptide, cholecystokinin, galanin, glutamate, somatostatin, substance P, and vasoactive intestinal peptide were examined. Specific receptor binding sites for each of these neurotransmitters were identified in the rabbit forebrain but were not detected in the normal optic nerve or tract. In the transected optic nerve andmore » tract, only receptor binding sites for substance P were expressed at detectable levels. The density of substance P receptor binding sites observed in this glial scar is among the highest observed in the rabbit forebrain. Ligand displacement and saturation experiments indicate that the substance P receptor binding site expressed by the glial scar has pharmacological characteristics similar to those of substance P receptors in the rabbit striatum, rat brain, and rat and canine gut. The present study demonstrates that glial cells in vivo express high concentrations of substance P receptor binding sites after transection of retinal ganglion cell axons. Because substance P has been shown to regulate inflammatory and immune responses in peripheral tissues, substance P may also, by analogy, be involved in regulating the glial response to injury in the central nervous system.« less
Lan, Hongxiang; Teeter, Martha M; Gurevich, Vsevolod V; Neve, Kim A
2009-01-01
Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2. Mutagenesis of the fusion proteins identified a residue at the C terminus of IC2, Lys149, that was important for the preferential binding of arrestin 3 to D(2)-IC2; arrestin binding to D(2)-IC2-K149C was greatly decreased compared with wild-type D(2)-IC2, whereas binding to the reciprocal mutant D(3)-IC2-C147K was enhanced compared with wild-type D(3)-IC2. Mutating this lysine in the full-length D(2) receptor to cysteine decreased the ability of the D(2) receptor to mediate agonist-induced arrestin 3 translocation to the membrane and decreased agonist-induced receptor internalization in human embryonic kidney 293 cells. The reciprocal mutation in the D(3) receptor increased receptor-mediated translocation of arrestin 3 without affecting agonist-induced receptor internalization. G protein-coupled receptor crystal structures suggest that Lys149, at the junction of IC2 and the fourth membrane-spanning helix, has intramolecular interactions that contribute to maintaining an inactive receptor state. It is suggested that the preferential agonist-induced binding of arrestin3 to the D(2) receptor over the D(3) receptor is due in part to Lys149, which could be exposed as a result of receptor activation.
Benzodiazepine and kainate receptor binding sites in the RCS rat retina.
Stasi, Kalliopi; Naskar, Rita; Thanos, Solon; Kouvelas, Elias D; Mitsacos, Ada
2003-02-01
The effect of age and photoreceptor degeneration on the kainate subtype of glutamate receptors and on the benzodiazepine-sensitive gamma-aminobutyric acid-A receptors (GABA(A)) in normal and RCS (Royal College of Surgeons) rats were investigated. [(3)H]Kainate and [(3)H]flunitrazepam were used as radioligands for kainate and GABA(A)/benzodiazepine()receptors, respectively, using the quantitative receptor autoradiography technique. In both normal and RCS rat retina we observed that [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were several times higher in inner plexiform layer (IPL) than in outer plexiform layer (OPL) at all four ages studied (P17, P35, P60 and P180). Age-related changes in receptor binding were observed in normal rat retina: [(3)Eta]flunitrazepam binding showed a significant decrease of 25% between P17 and P60 in IPL,and [(3)Eta]kainate binding showed significant decreases between P17 and P35 in both synaptic layers (71% in IPL and 63% in OPL). Degeneration-related changes in benzodiazepine and kainate receptor binding were observed in RCS rat retina. In IPL, [(3)Eta]flunitrazepam and [(3)Eta]kainate binding levels were higher than in normal retina at P35 (by 24% and 86%, respectively). In OPL, [(3)Eta]flunitrazepam binding was higher in RCS than in normal retina on P35 (74%) and also on P60 (62%). The results indicate that postnatal changes occur in kainate and benzodiazepine receptor binding sites in OPL and IPL of the rat retina up to 6 months of age. The data also suggest that the receptor binding changes observed in the RCS retina could be a consequence of the primary photoreceptor degeneration.
Mechanistic Insights into the Allosteric Modulation of Opioid Receptors by Sodium Ions
2015-01-01
The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation. PMID:25073009
Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions.
Shang, Yi; LeRouzic, Valerie; Schneider, Sebastian; Bisignano, Paola; Pasternak, Gavril W; Filizola, Marta
2014-08-12
The idea of sodium ions altering G-protein-coupled receptor (GPCR) ligand binding and signaling was first suggested for opioid receptors (ORs) in the 1970s and subsequently extended to other GPCRs. Recently published ultra-high-resolution crystal structures of GPCRs, including that of the δ-OR subtype, have started to shed light on the mechanism underlying sodium control in GPCR signaling by revealing details of the sodium binding site. Whether sodium accesses different receptor subtypes from the extra- or intracellular sides, following similar or different pathways, is still an open question. Earlier experiments in brain homogenates suggested a differential sodium regulation of ligand binding to the three major OR subtypes, in spite of their high degree of sequence similarity. Intrigued by this possibility, we explored the dynamic nature of sodium binding to δ-OR, μ-OR, and κ-OR by means of microsecond-scale, all-atom molecular dynamics (MD) simulations. Rapid sodium permeation was observed exclusively from the extracellular milieu, and following similar binding pathways in all three ligand-free OR systems, notwithstanding extra densities of sodium observed near nonconserved residues of κ-OR and δ-OR, but not in μ-OR. We speculate that these differences may be responsible for the differential increase in antagonist binding affinity of μ-OR by sodium resulting from specific ligand binding experiments in transfected cells. On the other hand, sodium reduced the level of binding of subtype-specific agonists to all OR subtypes. Additional biased and unbiased MD simulations were conducted using the δ-OR ultra-high-resolution crystal structure as a model system to provide a mechanistic explanation for this experimental observation.
CCL2 binding is CCR2 independent in primary adult human astrocytes.
Fouillet, A; Mawson, J; Suliman, O; Sharrack, B; Romero, I A; Woodroofe, M N
2012-02-09
Chemokines are low relative molecular mass proteins, which have chemoattractant actions on many cell types. The chemokine, CCL2, has been shown to play a major role in the recruitment of monocytes in central nervous system (CNS) lesions in multiple sclerosis (MS). Since resident astrocytes constitute a major source of chemokine synthesis including CCL2, we were interested to assess the regulation of CCL2 by astrocytes. We showed that CCL2 bound to the cell surface of astrocytes and binding was not modulated by inflammatory conditions. However, CCR2 protein was not detected nor was activation of the classical CCR2 downstream signaling pathways. Recent studies have shown that non-signaling decoy chemokine receptors bind and modulate the expression of chemokines at site of inflammation. Here, we show that the D6 chemokine decoy receptor is constitutively expressed by primary human adult astrocytes at both mRNA and protein level. In addition, CCL3, which binds to D6, but not CCL19, which does not bind to D6, displaced CCL2 binding to astrocytes; indicating that CCL2 may bind to this cell type via the D6 receptor. Our results suggest that CCL2 binding to primary adult human astrocytes is CCR2-independent and is likely to be mediated via the D6 decoy chemokine receptor. Therefore we propose that astrocytes are implicated in both the establishment of chemokine gradients for the migration of leukocytes into and within the CNS and in the regulation of CCL2 levels at inflammatory sites in the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.
Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.
Miao, Yinglong; McCammon, J Andrew
2018-03-20
Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.
Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K
1993-04-01
The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.
Lohning, Anna E; Marx, Wolfgang; Isenring, Liz
2016-11-01
Gingerols and shogaols are the primary non-volatile actives within ginger (Zingiber officinale). These compounds have demonstrated in vitro to exert 5-HT 3 receptor antagonism which could benefit chemotherapy-induced nausea and vomiting (CINV). The site and mechanism of action by which these compounds interact with the 5-HT 3 receptor is not fully understood although research indicates they may bind to a currently unidentified allosteric binding site. Using in silico techniques, such as molecular docking and GRID analysis, we have characterized the recently available murine 5-HT 3 receptor by identifying sites of strong interaction with particular functional groups at both the orthogonal (serotonin) site and a proposed allosteric binding site situated at the interface between the transmembrane region and the extracellular domain. These were assessed concurrently with the top-scoring poses of the docked ligands and included key active gingerols, shogaols and dehydroshogaols as well as competitive antagonists (e.g. setron class of pharmacologically active drugs), serotonin and its structural analogues, curcumin and capsaicin, non-competitive antagonists and decoys. Unexpectedly, we found that the ginger compounds and their structural analogs generally outscored other ligands at both sites. Our results correlated well with previous site-directed mutagenesis studies in identifying key binding site residues. We have identified new residues important for binding the ginger compounds. Overall, the results suggest that the ginger compounds and their structural analogues possess a high binding affinity to both sites. Notwithstanding the limitations of such theoretical analyses, these results suggest that the ginger compounds could act both competitively or non-competitively as has been shown for palonosetron and other modulators of CYS loop receptors. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundlach, A.L.; Largent, B.L.; Snyder, S.H.
1986-06-01
(+)3H-3-PPP ((+)3H-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine) binds with high affinity to brain membranes with a pharmacological profile consistent with that of sigma receptors. The distribution of (+)3H-3-PPP binding sites in brain and spinal cord of both guinea pig and rat has been determined by in vitro autoradiography with binding densities quantitated by computer-assisted densitometry. (+)3H-3-PPP binding to slide-mounted brain sections is saturable and displays high affinity and a pharmacological specificity very similar to sites labeled in homogenates. (+)3H-3-PPP binding sites are heterogeneously distributed. Highest concentrations of binding sites occur in spinal cord, particularly the ventral horn and dorsal root ganglia; the pons-medulla, associated withmore » the cranial nerve and pontine nuclei and throughout the brain stem reticular formation; the cerebellum, over the Purkinje cell layer; the midbrain, particularly the central gray and red nucleus; and hippocampus, over the pyramidal cell layer. Lowest levels are seen in the basal ganglia and parts of the thalamus, while all other areas, including hypothalamus and cerebral cortex, exhibit moderate grain densities. Quinolinic acid-induced lesions of the hippocampus indicate that (+)3H-3-PPP labels hippocampal pyramidal cells and granule cells in the dentate gyrus. Intrastriatal injection of ibotenic acid dramatically reduces (+)3H-3-PPP binding in this area, while injection of 6-hydroxydopamine produces a relatively slight decrease. The distribution of (+)3H-3-PPP binding sites does not correlate with the receptor distribution of any recognized neurotransmitter or neuropeptide, including dopamine. However, there is a notable similarity between the distribution of (+)3H-3-PPP sites and high-affinity binding sites for psychotomimetic opioids, such as the benzomorphan (+)SKF 10,047.« less
Delfosse, Vanessa; Dendele, Béatrice; Huet, Tiphaine; Grimaldi, Marina; Boulahtouf, Abdelhay; Gerbal-Chaloin, Sabine; Beucher, Bertrand; Roecklin, Dominique; Muller, Christina; Rahmani, Roger; Cavaillès, Vincent; Daujat-Chavanieu, Martine; Vivat, Valérie; Pascussi, Jean-Marc; Balaguer, Patrick; Bourguet, William
2015-09-03
Humans are chronically exposed to multiple exogenous substances, including environmental pollutants, drugs and dietary components. Many of these compounds are suspected to impact human health, and their combination in complex mixtures could exacerbate their harmful effects. Here we demonstrate that a pharmaceutical oestrogen and a persistent organochlorine pesticide, both exhibiting low efficacy when studied separately, cooperatively bind to the pregnane X receptor, leading to synergistic activation. Biophysical analysis shows that each ligand enhances the binding affinity of the other, so the binary mixture induces a substantial biological response at doses at which each chemical individually is inactive. High-resolution crystal structures reveal the structural basis for the observed cooperativity. Our results suggest that the formation of 'supramolecular ligands' within the ligand-binding pocket of nuclear receptors contributes to the synergistic toxic effect of chemical mixtures, which may have broad implications for the fields of endocrine disruption, toxicology and chemical risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, K.A.; Ehrenkaufer, R.L.; Beaucage, S.
1985-02-01
A novel approach to in vivo receptor binding experiments is presented which allows direct quantitation of binding site densities. The method is based on an equilibrium model of tracer uptake and is designed to produce a static distribution proportional to receptor density and to minimize possible confounding influences of regional blood flow, blood-brain barrier permeability, and nonspecific binding. This technique was applied to the measurement of regional muscarinic cholinergic receptor densities in rat brain using (/sup 3/H)scopolamine. Specific in vivo binding of scopolamine demonstrated saturability, a pharmacologic profile, and regional densities which are consistent with interaction of the tracer withmore » the muscarinic receptor. Estimates of receptor density obtained with the in vivo method and in vitro measurements in homogenates were highly correlated. Furthermore, reduction in striatal muscarinic receptors following ibotenic acid lesions resulted in a significant decrease in tracer uptake in vivo, indicating that the correlation between scopolamine distribution and receptor density may be used to demonstrate pathologic conditions. We propose that the general method presented here is directly applicable to investigation of high affinity binding sites for a variety of radioligands.« less
Molecular recognition of organic ammonium ions in solution using synthetic receptors
Späth, Andreas
2010-01-01
Summary Ammonium ions are ubiquitous in chemistry and molecular biology. Considerable efforts have been undertaken to develop synthetic receptors for their selective molecular recognition. The type of host compounds for organic ammonium ion binding span a wide range from crown ethers to calixarenes to metal complexes. Typical intermolecular interactions are hydrogen bonds, electrostatic and cation–π interactions, hydrophobic interactions or reversible covalent bond formation. In this review we discuss the different classes of synthetic receptors for organic ammonium ion recognition and illustrate the scope and limitations of each class with selected examples from the recent literature. The molecular recognition of ammonium ions in amino acids is included and the enantioselective binding of chiral ammonium ions by synthetic receptors is also covered. In our conclusion we compare the strengths and weaknesses of the different types of ammonium ion receptors which may help to select the best approach for specific applications. PMID:20502608
Perry, E K; Smith, C J; Court, J A; Perry, R H
1990-01-01
Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.
Binding of /sup 125/I alpha-bungarotoxin to the thymus of mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohshima, F.; Kondo, K.; Tsubaki, T.
1978-01-01
Alpha-bungarotoxin is known to bind with nicotinic acetylcholine receptors of skeletal muscle. Binding of iodine 125-labeled alpha bungarotoxin to the murine thymus, muscle, and liver was estimated. The toxin was bound to the muscle. The thymus was also capable of binding a considerable amount of the toxin, and the binding was obviously blocked by tubocurarine chloride. Binding to the liver, an organ containing no nicotinic acetylcholine receptor, was very slight. These results may indicate the presence of nicotinic acetylcholine receptors in the thymus, which could have implications in the pathogenesis of myasthenia gravis. Degenerating myoid cells and their receptors maymore » represent autoantigens that induce an immunological cross-reaction with the receptors of skeletal muscles, giving rise to myasthenia gravis.« less
Ueda, M
1981-01-01
The effects of calcium and magnesium ions on the corticosterone binding to rat brain cytosol receptor protein(s) were investigated. The increasing amounts of CaCl2 or MgCl2 up to 5.0 mM were added, the specific [3H] corticosterone binding increased 1.3-fold and 1.5 respectively. The addition of MnCl2 and KCl did not affect this binding. The binding of corticosterone with rat brain cytosol receptor(s) were decreased by increasing amounts of EDTA and complete inhibition was observed at concentration equal to and greater than 2.5 mM. Inhibition of this binding by EDTA was less than by EGTA. Either theophylline or dibutyryl cyclic AMP had no effect on this binding.
Murase, Akio; Taniguchi, Yasuhito; Tonai-Kachi, Hiroko; Nakao, Kazunari; Takada, Junji
2008-01-16
Activation of the prostaglandin E(2) (PGE(2)) EP(4) receptor, a G-protein-coupled receptor (GPCR), results in increases in intracellular cyclic AMP (cAMP) levels via stimulation of adenylate cyclase. Here we describe the in vitro pharmacological characterization of a novel EP(4) receptor antagonist, CJ-042794 (4-{(1S)-1-[({5-chloro-2-[(4-fluorophenyl)oxy]phenyl}carbonyl)amino]ethyl}benzoic acid). CJ-042794 inhibited [(3)H]-PGE(2) binding to the human EP(4) receptor with a mean pK(i) of 8.5, a binding affinity that was at least 200-fold more selective for the human EP(4) receptor than other human EP receptor subtypes (EP(1), EP(2), and EP(3)). CJ-042794 did not exhibit any remarkable binding to 65 additional proteins, including GPCRs, enzymes, and ion channels, suggesting that CJ-042794 is highly selective for the EP(4) receptor. CJ-042794 competitively inhibited PGE(2)-evoked elevations of intracellular cAMP levels in HEK293 cells overexpressing human EP(4) receptor with a mean pA(2) value of 8.6. PGE(2) inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNFalpha) in human whole blood (HWB); CJ-042794 reversed the inhibitory effects of PGE(2) on LPS-induced TNFalpha production in a concentration-dependent manner. These results suggest that CJ-042794, a novel, potent, and selective EP(4) receptor antagonist, has excellent pharmacological properties that make it a useful tool for exploring the physiological role of EP(4) receptors.
Key structural features of nonsteroidal ligands for binding and activation of the androgen receptor.
Yin, Donghua; He, Yali; Perera, Minoli A; Hong, Seoung Soo; Marhefka, Craig; Stourman, Nina; Kirkovsky, Leonid; Miller, Duane D; Dalton, James T
2003-01-01
The purposes of the present studies were to examine the androgen receptor (AR) binding ability and in vitro functional activity of multiple series of nonsteroidal compounds derived from known antiandrogen pharmacophores and to investigate the structure-activity relationships (SARs) of these nonsteroidal compounds. The AR binding properties of sixty-five nonsteroidal compounds were assessed by a radioligand competitive binding assay with the use of cytosolic AR prepared from rat prostates. The AR agonist and antagonist activities of high-affinity ligands were determined by the ability of the ligand to regulate AR-mediated transcriptional activation in cultured CV-1 cells, using a cotransfection assay. Nonsteroidal compounds with diverse structural features demonstrated a wide range of binding affinity for the AR. Ten compounds, mainly from the bicalutamide-related series, showed a binding affinity superior to the structural pharmacophore from which they were derived. Several SARs regarding nonsteroidal AR binding were revealed from the binding data, including stereoisomeric conformation, steric effect, and electronic effect. The functional activity of high-affinity ligands ranged from antagonist to full agonist for the AR. Several structural features were found to be determinative of agonist and antagonist activities. The nonsteroidal AR agonists identified from the present studies provided a pool of candidates for further development of selective androgen receptor modulators (SARMs) for androgen therapy. Also, these studies uncovered or confirmed numerous important SARs governing AR binding and functional properties by nonsteroidal molecules, which would be valuable in the future structural optimization of SARMs.
Baltus, Ruth E; Carmon, Kendra S; Luck, Linda A
2007-03-27
Results from an investigation of the frequency response resulting from ligand binding for a genetically engineered hormone-binding domain of the alpha-estrogen receptor immobilized to a piezoelectric quartz crystal are reported. Two different approaches were used to attach a genetically altered receptor to the gold electrode on the quartz surface: (1) the mutant receptor containing a single solvent-exposed cysteine was directly attached to the crystal via a sulfur to gold covalent bond, forming a self-assembled protein monolayer, and (2) the N-terminal histidine-tagged end was utilized to attach the receptor via a 3,3-dithiobis[N-(5-amino-5-carboxypentyl)propionamide-N',N'-diacetic acid] linker complexed with nickel. Previous studies have shown that these engineered constructs bind 17beta-estradiol and are fully functional. Exposure of the receptor directly attached to the piezoelectric crystal to the known ligand 17beta-estradiol resulted in a measurable frequency response, consistent with a change in conformation of the receptor with ligand binding. However, no response was observed when the receptor immobilized via the linker was exposed to the same ligand. The presence of the linker between the quartz surface and the protein receptor does not allow the crystal to sense the conformational change in the receptor that occurs with ligand binding. These results illustrate that the immobilization strategy used to bind the receptor to the sensor platform is key to eliciting an appropriate response from this biosensor. This study has important implications for the development of QCM-based sensors using protein receptors.
Synthetic heparin-binding factor analogs
Pena, Louis A [Poquott, NY; Zamora, Paul O [Gaithersburg, MD; Lin, Xinhua [Plainview, NY; Glass, John D [Shoreham, NY
2010-04-20
The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.
Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.
2014-01-01
LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389
Modular Synthesis of Biologically Active Phosphatidic Acid Probes Using Click Chemistry
Smith, Matthew D.; Sudhahar, Christopher G.; Gong, Denghuang; Stahelin, Robert V.
2018-01-01
Phosphatidic acid (PA) is an important signaling lipid that plays roles in a range of biological processes including both physiological and pathophysiological events. PA is one of a number of signaling lipids that can act as site-specific ligands for protein receptors in binding events that enforce membrane-association and generally regulate both receptor function and subcellular localization. However, elucidation of the full scope of PA activities has proven problematic, primarily due to the lack of a consensus sequence among PA-binding receptors. Thus, experimental approaches, such as those employing lipid probes, are necessary for characterizing interactions at the molecular level. Herein, we describe an efficient modular approach to the synthesis of a range of PA probes that employs a late stage introduction of reporter groups. This strategy was exploited in the synthesis of PA probes bearing fluorescent and photoaffinity tags as well as a bifunctional probe containing both a photoaffinity moiety and an azide as a secondary handle for purification purposes. To discern the ability of these PA analogues to mimic the natural lipid in protein binding properties, each compound was incorporated into vesicles for binding studies using a known PA receptor, the C2 domain of PKCα. In these studies, each compound exhibited binding properties that were comparable to those of synthetic PA, indicating their viability as probes for effectively studying the activities of PA in cellular processes. PMID:19668861
A Unitary Anesthetic Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.
2009-10-21
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
A Unitary Anesthetic Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
L Vedula; G Brannigan; N Economou
2011-12-31
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
A Unitary Anesthetic-Binding Site at High Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedula, L.; Brannigan, G; Economou, N
2009-01-01
Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritinmore » also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less
Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; McPhaul, M J
1994-01-01
We have investigated the basis of androgen resistance in seven unrelated individuals with complete testicular feminization or Reifenstein syndrome caused by single amino acid substitutions in the hormone-binding domain of the androgen receptor. Monolayer-binding assays of cultured genital skin fibroblasts demonstrated absent ligand binding, qualitative abnormalities of androgen binding, or a decreased amount of qualitatively normal receptor. The consequences of these mutations were examined by introducing the mutations by site-directed mutagenesis into the androgen receptor cDNA sequence and expressing the mutant cDNAs in mammalian cells. The effects of the amino acid substitutions on the binding of different androgens and on the capacity of the ligand-bound receptors to activate a reporter gene were investigated. Substantial differences were found in the responses of the mutant androgen receptors to incubation with testosterone, 5 alpha-dihydrotestosterone, and mibolerone. In several instances, increased doses of hormone or increased frequency of hormone addition to the incubation medium resulted in normal or near normal activation of a reporter gene by cells expressing the mutant androgen receptors. These studies suggest that the stability of the hormone receptor complex is a major determinant of receptor function in vivo. Images PMID:7929841
Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M
1998-01-01
The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514
Armen, Roger S; Chen, Jianhan; Brooks, Charles L
2009-10-13
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.
Armen, Roger S.; Chen, Jianhan; Brooks, Charles L.
2009-01-01
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and “noise” that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds. PMID:20160879
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang,W.; Lin, Y.; Santelli, E.
Severe acute respiratory syndrome (SARS) is a newly emerged infectious disease that caused pandemic spread in 2003. The etiological agent of SARS is a novel coronavirus (SARS-CoV). The coronaviral surface spike protein S is a type I transmembrane glycoprotein that mediates initial host binding via the cell surface receptor angiotensin-converting enzyme 2 (ACE2), as well as the subsequent membrane fusion events required for cell entry. Here we report the crystal structure of the S1 receptor binding domain (RBD) in complex with a neutralizing antibody, 80R, at 2.3 {angstrom} resolution, as well as the structure of the uncomplexed S1 RBD atmore » 2.2 {angstrom} resolution. We show that the 80R-binding epitope on the S1 RBD overlaps very closely with the ACE2-binding site, providing a rationale for the strong binding and broad neutralizing ability of the antibody. We provide a structural basis for the differential effects of certain mutations in the spike protein on 80R versus ACE2 binding, including escape mutants, which should facilitate the design of immunotherapeutics to treat a future SARS outbreak. We further show that the RBD of S1 forms dimers via an extensive interface that is disrupted in receptor- and antibody-bound crystal structures, and we propose a role for the dimer in virus stability and infectivity.« less
Sun, Xiangjie; Cao, Weiping; Pappas, Claudia; Liu, Feng; Katz, Jacqueline M.; Tumpey, Terrence M.
2018-01-01
The biological basis for the poor immunogenicity of unadjuvanted avian influenza A virus vaccines in mammals is not well understood. Here, we mutated the hemagglutinin (HA) of two H1N1 virus vaccines to determine whether virus receptor binding specificity contributes to the low immunogenicity of avian influenza virus vaccines. Mutations were introduced into the HA of an avian influenza virus, A/Duck/New York/15024–21/96 (Dk/96) which switched the binding preference from α2,3- to α2,6-linked sialic acid (SA). A switch in receptor specificity of the human A/South Carolina/1/18 (SC/18) virus generated a mutant virus with α2,3 SA (avian) binding preference. Inactivated vaccines were generated and administered to mice and ferrets intramuscularly. We found that the vaccines with human receptor binding preference induced slightly higher antibody titers and cell-mediated immune responses compared to their isogenic viruses with avian receptor binding specificity. Upon challenge with DK/96 or SC18 virus, differences in lung virus titers between the vaccine groups with different receptor-binding specificities were minimal. Overall, our data suggest that receptor binding specificity contributes only marginally to the immunogenicity of avian influenza vaccines and that other factors may also be involved. PMID:25078114
Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors
2016-01-01
Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators. PMID:26841170
Probing receptor-ligand interactions by sedimentation equilibrium
NASA Astrophysics Data System (ADS)
Philo, John S.
1997-05-01
While sedimentation equilibrium is most commonly used to characterize the molecular weight and state of association of single proteins, this technique is also a very powerful tool for probing the interactions between two or more different proteins, and can characterize both the binding stoichiometry and the equilibrium constants. To resolve the complex binding interactions that can occur in such systems, it is crucial to globally fit data from many experiments to a common binding model, including samples made with different mixing ratios and a wide range of total concentration. It is often also essential to constrain the parameters during fitting so that the fits correctly reproduce the molar ratio of proteins used in making each sample. We have applied this methodology to probe mechanisms of receptor activation for a number of hematopoietic receptors and their cognate ligands, using receptor extracellular domains expressed as soluble proteins. Such data can potentially help in the design of improved or new protein therapeutics, as well as in efforts to create small- molecular mimetics of protein hormones through structure- based drug design. Sedimentation equilibrium has shown that stem cell factor, erythropoietin, and granulocyte-colony stimulating factor can each dimerize their respective receptors in solution, but the mechanism of ligand-induced receptor dimerization for these three systems are strikingly different.
Progress on research of chicken IgY antibody-FcRY receptor combination and transfer.
Tian, Zehua; Zhang, Xiaoying
2012-10-01
The transfer of maternal immunoglobulins (Igs) plays a significant role in fetal initial humoral immunity, of which process has changed and diversified during the evolution of vertebrates. IgY is a key molecular in antibody evolution which links ancient Igs and mammalian Igs such as IgG and IgE. IgY's transfer to the embryo is a two-step receptor-mediated process, including the transfer from the maternal bloodstream to the yolk sac, and from the yolk sac to the embryo. IgY's neonatal Fc receptor (FcRY) mainly functions in the second process. This article reviews IgY's status in antibody evolution and IgY's structure and application. Furthermore, this review compares the binding and transferring mechanism between mammalian IgG, and IgG's neonatal Fc receptor and chicken IgY-FcRY. Details of IgY-FcRY combination, such as combining conditions required, IgY-FcRY binding stoichiometry and exact binding sites on both FcRY and IgY are discussed. Likewise, the endocytosis, the main mechanism of IgY-FcRY transfer and recycling mechanism are analyzed. Related knowledge might be important for better understanding antibody and receptor evolution, antibody-receptor interaction and antibody function. Furthermore, such kind of knowledge might be useful for antibody drug research and development.
Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun
2016-04-01
Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, K.A.; Hichwa, R.D.; Ehrenkaufer, R.L.
1985-10-01
A tracer kinetic method is developed for the in vivo estimation of high-affinity radioligand binding to central nervous system receptors. Ligand is considered to exist in three brain pools corresponding to free, nonspecifically bound, and specifically bound tracer. These environments, in addition to that of intravascular tracer, are interrelated by a compartmental model of in vivo ligand distribution. A mathematical description of the model is derived, which allows determination of regional blood-brain barrier permeability, nonspecific binding, the rate of receptor-ligand association, and the rate of dissociation of bound ligand, from the time courses of arterial blood and tissue tracer concentrations.more » The term ''free receptor density'' is introduced to describe the receptor population measured by this method. The technique is applied to the in vivo determination of regional muscarinic acetylcholine receptors in the rat, with the use of (TH)scopolamine. Kinetic estimates of free muscarinic receptor density are in general agreement with binding capacities obtained from previous in vivo and in vitro equilibrium binding studies. In the striatum, however, kinetic estimates of free receptor density are less than those in the neocortex--a reversal of the rank ordering of these regions derived from equilibrium determinations. A simplified model is presented that is applicable to tracers that do not readily dissociate from specific binding sites during the experimental period.« less
Westergard, Thomas; Salari, Reza; Martin, Joseph V.; Brannigan, Grace
2015-01-01
Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3’-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone. PMID:26421724
Westergard, Thomas; Salari, Reza; Martin, Joseph V; Brannigan, Grace
2015-01-01
Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3'-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.
Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P
1998-11-06
The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.
David, Marion; Lécorché, Pascaline; Masse, Maxime; Faucon, Aude; Abouzid, Karima; Gaudin, Nicolas; Varini, Karine; Gassiot, Fanny; Ferracci, Géraldine; Jacquot, Guillaume; Vlieghe, Patrick
2018-01-01
Insufficient membrane penetration of drugs, in particular biotherapeutics and/or low target specificity remain a major drawback in their efficacy. We propose here the rational characterization and optimization of peptides to be developed as vectors that target cells expressing specific receptors involved in endocytosis or transcytosis. Among receptors involved in receptor-mediated transport is the LDL receptor. Screening complex phage-displayed peptide libraries on the human LDLR (hLDLR) stably expressed in cell lines led to the characterization of a family of cyclic and linear peptides that specifically bind the hLDLR. The VH411 lead cyclic peptide allowed endocytosis of payloads such as the S-Tag peptide or antibodies into cells expressing the hLDLR. Size reduction and chemical optimization of this lead peptide-vector led to improved receptor affinity. The optimized peptide-vectors were successfully conjugated to cargos of different nature and size including small organic molecules, siRNAs, peptides or a protein moiety such as an Fc fragment. We show that in all cases, the peptide-vectors retain their binding affinity to the hLDLR and potential for endocytosis. Following i.v. administration in wild type or ldlr-/- mice, an Fc fragment chemically conjugated or fused in C-terminal to peptide-vectors showed significant biodistribution in LDLR-enriched organs. We have thus developed highly versatile peptide-vectors endowed with good affinity for the LDLR as a target receptor. These peptide-vectors have the potential to be further developed for efficient transport of therapeutic or imaging agents into cells -including pathological cells—or organs that express the LDLR. PMID:29485998
Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C
2001-07-01
The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.
Cooper, J A; Kashishian, A
1993-01-01
We have used a transient expression system and mutant platelet-derived growth factor (PDGF) receptors to study the binding specificities of the Src homology 2 (SH2) regions of the Ras GTPase-activator protein (GAP) and the p85 alpha subunit of phosphatidylinositol 3-kinase (PI3 kinase). A number of fusion proteins, each tagged with an epitope allowing recognition by a monoclonal antibody, were expressed at levels comparable to those of endogenous GAP. Fusion proteins containing the central SH2-SH3-SH2 region of GAP or the C-terminal region of p85 alpha, which includes two SH2 domains, bound to PDGF receptors in response to PDGF stimulation. Both fusion proteins showed the same requirements for tyrosine phosphorylation sites in the PDGF receptor as the full-length proteins from which they were derived, i.e., binding of the GAP fusion protein was reduced by mutation of Tyr-771, and binding of the p85 fusion protein was reduced by mutation of Tyr-740, Tyr-751, or both residues. Fusion proteins containing single SH2 domains from either GAP or p85 alpha did not bind detectably to PDGF receptors in this system, suggesting that two SH2 domains in a single polypeptide cooperate to raise the affinity of binding. The sequence specificities of individual SH2 domains were deduced from the binding properties of fusion proteins containing one SH2 domain from GAP and another from p85. The results suggest that the C-terminal GAP SH2 domain specifies binding to Tyr-771, the C-terminal p85 alpha SH2 domain binds to either Tyr-740 or Tyr-751, and each protein's N-terminal SH2 domain binds to unidentified phosphorylation sites.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8382774
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, J.; Menon, K.N.J.
1986-05-29
The level of hCG/LH receptor has been shown to undergo marked changes during the life span of rat corpus luteum. To evaluate whether these fluctuations are due to changes in the receptor subunit structure or receptor protein content, the /sup 125/I-hCG binding activity and the receptor subunit structure were determined during different time periods of pseudopregnancy. The maximum /sup 125/I-hCG binding activity was observed on day 7, after which it decreased by 20 and 45% on day 11 and day 14, respectively. The Scatchard analysis of /sup 125/I-hCG binding data showed that the decrease in binding activity was caused bymore » a change in the number of binding sites rather than a change in the binding affinity. The LH/hCG receptor in ovarian membranes obtained on days 7, 11 and 14 were characterized by the method of affinity cross-linking. All four subunits of the LH/hCG receptor were detected in the ovarian membranes at all stages while the intensity decreased parallel to a decrease in hCG binding from day 7 to day 14.« less
Brambilla, R; Schnapp, A; Casagranda, F; Labrador, J P; Bergemann, A D; Flanagan, J G; Pasquale, E B; Klein, R
1995-01-01
The Eph-related family of receptor tyrosine kinases consists of at least 13 members, several of which display distinctive expression patterns in the developing and adult nervous system. Recently, a small family of ligands, structurally related to the B61 protein, was identified. Binding of these ligands to Eph-related receptors did not, however, elicit measurable biological signals in cultured cells. In order to study functional interactions between B61-related ligands and Eph-related receptors, we constructed chimeric receptors, containing an Eph-related ectodomain and the cytoplasmic domain of the TrkB neurotrophin receptor. Expression and activation of such chimeric receptors in NIH 3T3 cells induced transformation in focus formation assays. Membrane-bound LERK2 ligand is shown to signal through three different Eph-related receptors, namely Cek5, Cek10 and Elk. LERK2, however, fails to interact functionally with the Cek9 receptor. Quantitative analysis including binding assays indicates that Cek10 is the preferred LERK2 receptor. Preliminary mutagenesis of the LERK2 protein suggests a negative regulatory role for its cytoplasmic domain in LERK2 signaling. Images PMID:7621826
Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry.
Karalewitz, Andrew P-A; Fu, Zhuji; Baldwin, Michael R; Kim, Jung-Ja P; Barbieri, Joseph T
2012-11-23
How botulinum neurotoxin serotype C (BoNT/C) enters neurons is unclear. BoNT/C utilizes dual gangliosides as host cell receptors. BoNT/C accesses gangliosides on the plasma membrane. Plasma membrane accessibility of the dual ganglioside receptors suggests synaptic vesicle exocytosis may not be necessary to expose BoNT/C receptors. Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A-G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.
Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, R.T.; Mahan, D.R.; Smith, R.B.
1990-10-01
The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptormore » sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.« less
[Studying specific effects of nootropic drugs on glutamate receptors in the rat brain].
Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I
2011-01-01
The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family.
Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto
2014-01-01
The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. PMID:24534492
Sex Differences in Serotonin 1 Receptor Binding in Rat Brain
NASA Astrophysics Data System (ADS)
Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.
1983-10-01
Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.
Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression
Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.
2013-01-01
Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290
Jones, Brian W; Hinkle, Patricia M
2008-07-01
Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.
Recent Advances in Macrocyclic Fluorescent Probes for Ion Sensing.
Wong, Joseph K-H; Todd, Matthew H; Rutledge, Peter J
2017-01-25
Small-molecule fluorescent probes play a myriad of important roles in chemical sensing. Many such systems incorporating a receptor component designed to recognise and bind a specific analyte, and a reporter or transducer component which signals the binding event with a change in fluorescence output have been developed. Fluorescent probes use a variety of mechanisms to transmit the binding event to the reporter unit, including photoinduced electron transfer (PET), charge transfer (CT), Förster resonance energy transfer (FRET), excimer formation, and aggregation induced emission (AIE) or aggregation caused quenching (ACQ). These systems respond to a wide array of potential analytes including protons, metal cations, anions, carbohydrates, and other biomolecules. This review surveys important new fluorescence-based probes for these and other analytes that have been reported over the past five years, focusing on the most widely exploited macrocyclic recognition components, those based on cyclam, calixarenes, cyclodextrins and crown ethers; other macrocyclic and non-macrocyclic receptors are also discussed.
Harada, Taketsugu; Fushimi, Kazumi; Kato, Aya; Ito, Yoshihiko; Nishijima, Saori; Sugaya, Kimio; Yamada, Shizuo
2010-01-01
The present study was undertaken to examine whether distigmine, a therapeutic agent used to treat detrusor underactivity, binds directly to muscarinic and nicotinic receptors. We used radioreceptor binding assays and compared the effects of distigmine with those of neostigmine and donepedil. The inhibitory effect of distigmine on the blood acetylcholinesterase (AChE) activity was significantly weaker than that of neostigmine. Distigmine, neostigmine, and donepezil competed for specific binding sites of [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS ) and [(3)H]oxotremorine-M in the bladder, submaxillary gland and cerebral cortex of rats in a concentration-dependent manner, indicating significant binding activity of muscarinic receptors. Distigmine displayed significantly higher affinity for binding sites of [(3)H]oxotremorine-M compared with those of [(3)H]NMS as revealed by large ratios of its K(i) value for [(3)H]NMS to that for [(3)H]oxotremorine-M, suggesting that it has preferential affinity for agonist sites of muscarinic receptors. Distigmine seemed to bind to the agonist sites of muscarinic receptors in a competitive manner. Repeated oral administration of distigmine caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]NMS in the bladder and submaxillary gland but not cerebral cortex. Distigmine also bound to nicotinic receptors in the rat cerebral cortex. In conclusion, distigmine shows direct binding to muscarinic receptors in the rat bladder, and repeated oral administration of distigmine causes downregulation of muscarinic receptors in the rat bladder. The observed direct interaction of distigmine with the bladder muscarinic receptors may partly contribute to the therapeutic and/or side effects seen in the treatment of detrusor underactivity.
Interaction of Trypanosoma evansi with the plasminogen-plasmin system.
Acosta, Héctor; Rondón-Mercado, Rocío; Avilán, Luisana; Concepción, Juan Luis
2016-08-15
Trypanosoma evansi is a widely-distributed haemoflagellated parasite of veterinary importance that infects a variety of mammals including horses, mules, camels, buffalos, cattle and deer. It is the causal agent of a trypanosomiasis known as Surra which produces epidemics of great economic importance in Africa, Asia and South America. The main pathology includes an enlarged spleen with hypertrophy of lymphoid follicles, congested lungs, neuronal degeneration and meningoencephalitis, where migration of the parasites from the blood to the tissues is essential. Most cells, including pathogenic cells, use diverse strategies for tissue invasion, such as the expression of surface receptors to bind plasminogen or plasmin. In this work, we show that T. evansi is able to bind plasminogen and plasmin on its surface. The analysis of this binding revealed a high affinity dissociation constant (Kd of 0.080±0.009μM) and 1×10(5) plasminogen binding sites per cell. Also a second population of receptors with a Kd of 0.255±0.070μM and 3.2×10(4) plasminogen binding sites per cell was determined. Several proteins with molecular masses between ∼18 and ∼70kDa are responsible for this binding. This parasite-plasminogen interaction may be important in the establishment of the infection in the vertebrate host, where the physiological concentration of available plasminogen is around 2μM. Copyright © 2016 Elsevier B.V. All rights reserved.
Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.
Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G
2017-11-01
γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockmeier, C.A.; Kellar, K.J.
Serotonin-2 (5-HT-2) receptors in brain were measured using (/sup 3/H)ketanserin. The authors examined the effects of amitriptyline, an anti-depressant drug, of electroconvulsive shock (ECS) and of drug-induced alterations in presynaptic 5-HT function on (/sup 3/H)ketanserin binding to 5-HT-2 receptors in rat brain. The importance of intact 5-HT axons to the up-regulation of 5-HT-2 receptors by ECS was also investigated, and an attempt was made to relate the ECS-induced increase in this receptor to changes in 5-HT presynaptic mechanisms. Twelve days of ECS increased the number of 5-HT-2 receptors in frontal cortex. Neither the IC/sub 50/ nor the Hill coefficient ofmore » 5-HT in competing for (/sup 3/H)ketanserin binding sites was altered by ECS. Repeated injections of amitriptyline reduced the number of 5-HT-2 receptors in frontal cortex. Reserpine, administered daily for 12 days, caused a significant increase in 5-HT-2 receptors, but neither daily injections of p-chlorophenylalanine (PCPA) nor lesions of 5-HT axons with 5,7-dihydroxytryptamine (5,7-DHT) affected 5-HT-2 receptors. However, regulation of 5-HT-2 receptors by ECS was dependent on intact 5-HT axons since ECS could not increase the number of 5-HT-2 receptors in rats previously lesioned with 5,7-DHT. Repeated ECS, however, does not appear to affect either the high-affinity uptake of (/sup 3/H)5-HT or (/sup 3/H)imipramine binding, two presynaptic markers of 5-HT neuronal function. 5-HT-2 receptors appear to be under complex control. ECS or drug treatments such as reserpine or amitriptyline, which affect several monoamine neurotransmission systems including 5-HT, can alter 5-HT-2 receptors. 28 references, 1 figure, 7 tables.« less
Structure of dual receptor binding to botulinum neurotoxin B.
Berntsson, Ronnie P-A; Peng, Lisheng; Dong, Min; Stenmark, Pål
2013-01-01
Botulinum neurotoxins are highly toxic, and bind two receptors to achieve their high affinity and specificity for neurons. Here we present the first structure of a botulinum neurotoxin bound to both its receptors. We determine the 2.3-Å structure of a ternary complex of botulinum neurotoxin type B bound to both its protein receptor synaptotagmin II and its ganglioside receptor GD1a. We show that there is no direct contact between the two receptors, and that the binding affinity towards synaptotagmin II is not influenced by the presence of GD1a. The interactions of botulinum neurotoxin type B with the sialic acid 5 moiety of GD1a are important for the ganglioside selectivity. The structure demonstrates that the protein receptor and the ganglioside receptor occupy nearby but separate binding sites, thus providing two independent anchoring points.
Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgold, J.
1986-05-01
Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less
Binding of phycoerythrin and its conjugates to murine low affinity receptors for immunoglobulin G.
Takizawa, F; Kinet, J P; Adamczewski, M
1993-06-18
Conjugates of R-phycoerythrin are widely used for immunohistochemistry, especially for two-color flow cytometry. Their use is however limited by their apparent tendency to bind non-specifically. Using cells transfected with cDNAs for the murine low affinity receptors for immunoglobulin G (Fc gamma RII and -III) and cells naturally expressing these receptors, we demonstrate that R-phycoerythrin and its conjugates bind specifically and inhibitably to Fc gamma RII and -III. Immunofluorescence stainings of cells bearing these receptors, such as macrophages, monocytes, neutrophils, mast cells, subsets of T cells, and natural killer cells, may therefore not reflect the binding of antibody to antigen, but rather the binding of R-phycoerythrin to the receptors.
2012-01-01
Background Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. Results The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. Conclusions These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior. PMID:23268962
Nagura, Hitoshi; Ishikawa, Yasuyuki; Kobayashi, Katsunori; Takao, Keizo; Tanaka, Tomo; Nishikawa, Kouki; Tamura, Hideki; Shiosaka, Sadao; Suzuki, Hidenori; Miyakawa, Tsuyoshi; Fujiyoshi, Yoshinori; Doi, Tomoko
2012-12-26
Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. The KI mice showed decreased accumulation of mutant PSD-95, PSD-93 and AMPA receptor subunits in the PSD fraction of the hippocampus. In the hippocampal CA1 region of young KI mice, basal synaptic efficacy was reduced and long-term potentiation (LTP) was enhanced with intact long-term depression. In adult KI mice, there was no significant change in the magnitude of LTP in CA1, but robustly enhanced LTP was induced at the medial perforant path-dentate gyrus synapses, suggesting that PSD-95 has an age- and subregion-dependent role. In a battery of behavioral tests, KI mice showed markedly abnormal anxiety-like behavior, impaired spatial reference and working memory, and impaired remote memory and pattern separation in fear conditioning test. These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.
USDA-ARS?s Scientific Manuscript database
Bioassay-guided fractionation of the fungus Eurotium repens resulted in the isolation of two benzyl derivatives, repenol A (1) and repenol B (2). Seven known secondary metabolites were also isolated including five benzaldehyde compounds, flavoglaucin (3), tetrahydroauroglaucin (4), dihydroauroglauci...
Identification of key residues involved in adrenomedullin binding to the AM1 receptor
Watkins, HA; Au, M; Bobby, R; Archbold, JK; Abdul-Manan, N; Moore, JM; Middleditch, MJ; Williams, GM; Brimble, MA; Dingley, AJ; Hay, DL
2013-01-01
Background and Purpose Adrenomedullin (AM) is a peptide hormone whose receptors are members of the class B GPCR family. They comprise a heteromer between the GPCR, the calcitonin receptor-like receptor and one of the receptor activity-modifying proteins 1–3. AM plays a significant role in angiogenesis and its antagonist fragment AM22–52 can inhibit blood vessel and tumour growth. The mechanism by which AM interacts with its receptors is unknown. Experimental Approach We determined the AM22–52 binding epitope for the AM1 receptor extracellular domain using biophysical techniques, heteronuclear magnetic resonance spectroscopy and alanine scanning. Key Results Chemical shift perturbation experiments located the main binding epitope for AM22–52 at the AM1 receptor to the C-terminal 8 amino acids. Isothermal titration calorimetry of AM22–52 alanine-substituted peptides indicated that Y52, G51 and I47 are essential for AM1 receptor binding and that K46 and P49 and R44 have a smaller role to play. Characterization of these peptides at the full-length AM receptors was assessed in Cos7 cells by cAMP assay. This confirmed the essential role of Y52, G51 and I47 in binding to the AM1 receptor, with their substitution resulting in ≥100-fold reduction in antagonist potency compared with AM22–52. R44A, K46A, S48A and P49A AM22–52 decreased antagonist potency by approximately 10-fold. Conclusions and Implications This study localizes the main binding epitope of AM22–52 to its C-terminal amino acids and distinguishes essential residues involved in this binding. This will inform the development of improved AM receptor antagonists. PMID:23351143
Tedasen, Aman; Choomwattana, Saowapak; Graidist, Potchanapond; Tipmanee, Varomyalin
2017-06-01
Bursehernin (5'-desmethoxyyatein) is a natural lignan, which has anti-tumor activity in vitro. In this study, the binding-inhibitory effects of bursehernin were screening on selected 80 proteins associated with cancer pathway. The computational analysis suggested inhibitory effect due to bursehernin towards proteins related to cancer proliferation, including FMS kinase receptor, heat shock protein 90-α (Hsp90-α), adenylate cyclase 10 (ADCY10), mitogen-activated protein kinase kinase (MEK1), and α-tubulin. Moreover, bursehernin could interfere with cell cycle progression via binding to cyclin B proteins. Among all screened proteins, the compound showed an interesting binding affinity to the FMS kinase receptor. The binding mode studies by molecular dynamic technique showed that aromatic ring of bursehernin compound was responsible for compound-protein interaction through pi-pi stacking with Tyr105 and Phe178 of the FMS kinase receptor. This study suggests that bursehernin has potential for development as an anti-tumor agent with an anti-proliferation, and cell cycle arrest inducing, although further studies are needed. Copyright © 2017 Elsevier Inc. All rights reserved.
Further evaluation of the tropane analogs of haloperidol.
Sampson, Dinithia; Bricker, Barbara; Zhu, Xue Y; Peprah, Kwakye; Lamango, Nazarius S; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y
2014-09-01
Previous work from our labs has indicated that a tropane analog of haloperidol with potent D2 binding but designed to avoid the formation of MPP(+)-like metabolites, such as 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl)pyridin-1-ium (BCPP(+)) still produced catalepsy, suggesting a strong role for the D2 receptor in the production of catalepsy in rats, and hence EPS in humans. This study tested the hypothesis that further modifications of the tropane analog to produce compounds with less potent binding to the D2 receptor than haloperidol, would produce less catalepsy. These tests have now revealed that while haloperidol produced maximum catalepsy, these compounds produced moderate to low levels of catalepsy. Compound 9, with the least binding affinity to the D2R, produced the least catalepsy and highest Minimum Adverse Effective Dose (MAED) of the analogs tested regardless of their affinities at other receptors including the 5-HT1AR. These observations support the hypothesis that moderation of the D2 binding of the tropane analogs could reduce catalepsy potential in rats and consequently EPS in man. Published by Elsevier Ltd.
Structure-activity relationships for serotonin transporter and dopamine receptor selectivity.
Agatonovic-Kustrin, Snezana; Davies, Paul; Turner, Joseph V
2009-05-01
Antipsychotic medications have a diverse pharmacology with affinity for serotonergic, dopaminergic, adrenergic, histaminergic and cholinergic receptors. Their clinical use now also includes the treatment of mood disorders, thought to be mediated by serotonergic receptor activity. The aim of our study was to characterise the molecular properties of antipsychotic agents, and to develop a model that would indicate molecular specificity for the dopamine (D(2)) receptor and the serotonin (5-HT) transporter. Back-propagation artificial neural networks (ANNs) were trained on a dataset of 47 ligands categorically assigned antidepressant or antipsychotic utility. The structure of each compound was encoded with 63 calculated molecular descriptors. ANN parameters including hidden neurons and input descriptors were optimised based on sensitivity analyses, with optimum models containing between four and 14 descriptors. Predicted binding preferences were in excellent agreement with clinical antipsychotic or antidepressant utility. Validated models were further tested by use of an external prediction set of five drugs with unknown mechanism of action. The SAR models developed revealed the importance of simple molecular characteristics for differential binding to the D(2) receptor and the 5-HT transporter. These included molecular size and shape, solubility parameters, hydrogen donating potential, electrostatic parameters, stereochemistry and presence of nitrogen. The developed models and techniques employed are expected to be useful in the rational design of future therapeutic agents.
Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanfeng; Buchko, Garry W.; Qin, Lin
2010-10-28
Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65 Å resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences aremore » located at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10 Å relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.« less
Structural Analysis of the Receptor Binding Domain of Botulinum Neurotoxin Serotype D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Zhang; G Buchko; L Qin
2011-12-31
Botulinum neurotoxins (BoNTs) are the most toxic proteins known. The mechanism for entry into neuronal cells for serotypes A, B, E, F, and G involves a well understood dual receptor (protein and ganglioside) process, however, the mechanism of entry for serotypes C and D remains unclear. To provide structural insights into how BoNT/D enters neuronal cells, the crystal structure of the receptor binding domain (S863-E1276) for this serotype (BoNT/D-HCR) was determined at 1.65{angstrom} resolution. While BoNT/D-HCR adopts an overall fold similar to that observed in other known BoNT HCRs, several major structural differences are present. These structural differences are locatedmore » at, or near, putative receptor binding sites and may be responsible for BoNT/D host preferences. Two loops, S1195-I1204 and K1236-N1244, located on both sides of the putative protein receptor binding pocket, are displaced >10{angstrom} relative to the corresponding residues in the crystal structures of BoNT/B and G. Obvious clashes were observed in the putative protein receptor binding site when the BoNT/B protein receptor synaptotagmin II was modeled into the BoNT/D-HCR structure. Although a ganglioside binding site has never been unambiguously identified in BoNT/D-HCR, a shallow cavity in an analogous location to the other BoNT serotypes HCR domains is observed in BoNT/D-HCR that has features compatible with membrane binding. A portion of a loop near the putative receptor binding site, K1236-N1244, is hydrophobic and solvent-exposed and may directly bind membrane lipids. Liposome-binding experiments with BoNT/D-HCR demonstrate that this membrane lipid may be phosphatidylethanolamine.« less
SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor
Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ
2009-01-01
Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399
Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2
De Henau, Olivier; Degroot, Gaetan-Nagim; Imbault, Virginie; Robert, Virginie; De Poorter, Cédric; Mcheik, Saria; Galés, Céline; Parmentier, Marc; Springael, Jean-Yves
2016-01-01
Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties. PMID:27716822
Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2.
De Henau, Olivier; Degroot, Gaetan-Nagim; Imbault, Virginie; Robert, Virginie; De Poorter, Cédric; Mcheik, Saria; Galés, Céline; Parmentier, Marc; Springael, Jean-Yves
2016-01-01
Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties.
Diminished hepatic growth hormone receptor binding in sex-linked dwarf broiler and leghorn chickens.
Leung, F C; Styles, W J; Rosenblum, C I; Lilburn, M S; Marsh, J A
1987-02-01
Hepatic growth hormone (GH) receptor binding was compared in normal and sex-linked dwarfs (SLD) from both Hubbard and Cornell strain chickens. At 6, 8, and 20 weeks of age, hepatic GH receptor binding in the Hubbard SLD chickens was significantly lower than that of normal fast-growing birds. At 20 weeks of age, only 2 of 22 SLD chickens in the Hubbard broiler strain showed positive binding at a high enough level to allow for Scatchard analysis. The affinity constants and binding capacities of these two SLD chickens were numerically (but not significantly) lower than those of the normal fast-growing birds. We further examined hepatic GH receptor binding in two closely related White Leghorn strains of chickens that have been maintained as closed breeding populations for many years. We observed no detectable hepatic GH binding in the Cornell SLD chickens (N = 20), as compared to the normal-growing control strain (K strain). In both SLD strains, pretreatment with 4 M MgCl2 did not enhance GH binding, suggesting that there was no endogenous GH binding to the receptor. Based on these data, we suggest that the lack, or greatly reduced number, of GH receptors may be a major contributing factor to the dwarfism observed in these strains.
Solubilization of phencyclidine receptors from rat cerebral cortex in an active ligand binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
McVittie, L.D.; Sibley, D.R.
1989-01-01
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either (/sup 3/H)-N-(1-(2-thienyl)cyclohexyl)piperidine ((/sup 3/H)TCP) or (/sup 3/H)MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4/degrees/C. In the presence of detergent, (/sup 3/H)TCP binding exhibitsmore » a K/sub d/ of 250 nM, a B/sub max/ of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor (/sup 3/H)TCP binding: K/sub d/ = 48 nM, M/sub max/ = 1.13 pmol/mg protein.« less
Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.
Roskoski, Robert
2005-11-11
Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of interaction with several enzymes and adaptor proteins.
Synthesis and binding affinity of neuropeptide Y at opiate receptors.
Kiddle, James J; McCreery, Heather J; Soles, Sonia
2003-03-24
Neuropeptide Y and several metabolic fragments were synthesized and evaluated for binding affinity at non-selective opiate receptors. Neuropeptide Y and several C-terminal fragments were shown to bind to non-selective opiate receptors with an affinity similar to that of Leu-enkephalin.
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P.; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-01-01
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10–100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven. PMID:26193329
Fei, Yiyan; Sun, Yung-Shin; Li, Yanhong; Yu, Hai; Lau, Kam; Landry, James P; Luo, Zeng; Baumgarth, Nicole; Chen, Xi; Zhu, Xiangdong
2015-07-16
A key step leading to influenza viral infection is the highly specific binding of a viral spike protein, hemagglutinin (HA), with an extracellular glycan receptor of a host cell. Detailed and timely characterization of virus-receptor binding profiles may be used to evaluate and track the pandemic potential of an influenza virus strain. We demonstrate a label-free glycan microarray assay platform for acquiring influenza virus binding profiles against a wide variety of glycan receptors. By immobilizing biotinylated receptors on a streptavidin-functionalized solid surface, we measured binding curves of five influenza A virus strains with 24 glycans of diverse structures and used the apparent equilibrium dissociation constants (avidity constants, 10-100 pM) as characterizing parameters of viral receptor profiles. Furthermore by measuring binding kinetic constants of solution-phase glycans to immobilized viruses, we confirmed that the glycan-HA affinity constant is in the range of 10 mM and the reaction is enthalpy-driven.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, J.; Malchiodi, E; Cho, S
2009-01-01
Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less
Lasala, Matías; Corradi, Jeremías; Bruzzone, Ariana; Esandi, María Del Carmen; Bouzat, Cecilia
2018-05-21
The cholinergic α7 nicotinic receptor gene, CHRNA7, encodes a subunit that forms the homopentameric α7 receptor, involved in learning and memory. In humans, exons 5-10 in CHRNA7 are duplicated and fused to the FAM7A genetic element, giving rise to the hybrid gene CHRFAM7A. Its product, dupα7, is a truncated subunit lacking part of the N-terminal extracellular ligand-binding domain and is associated with neurological disorders, including schizophrenia, and immunomodulation.We combined dupα7 expression on mammalian cells with patch clamp recordings to understand its functional role. Transfected cells expressed dupα7 protein, but they exhibited neither surface binding of the α7 antagonist α-bungarotoxin nor responses to acetylcholine (ACh) or to an allosteric agonist that binds to the conserved transmembrane region. To determine if dupα7 assembles with α7, we generated receptors comprising α7 and dupα7 subunits, one of which was tagged with conductance substitutions that report subunit stoichiometry and monitored ACh-elicited channel openings elicited by ACh in the presence of a positive allosteric α7 modulator. We found that α7 and dupα7 subunits co-assemble into functional heteromeric receptors, that at least two α7 subunits are required for channel opening, and that dupα7's presence in the pentameric arrangement does not affect the duration of the potentiated events compare with that of α7. Using an α7 subunit mutant, we found that activation of (α7)2(dupα7)3 receptors occurs through ACh binding at the α7/α7 interfacial binding site. Our study contributes to the understanding of the modulation of α7 function by the human specific, duplicated subunit, associated with human disorders. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
He, Yongning; Bjorkman, Pamela J.
2011-01-01
Fc receptors transport maternal antibodies across epithelial cell barriers to passively immunize newborns. FcRY, the functional counterpart of mammalian FcRn (a major histocompatibility complex homolog), transfers IgY across the avian yolk sac, and represents a new class of Fc receptor related to the mammalian mannose receptor family. FcRY and FcRn bind immunoglobulins at pH ≤6.5, but not pH ≥7, allowing receptor–ligand association inside intracellular vesicles and release at the pH of blood. We obtained structures of monomeric and dimeric FcRY and an FcRY–IgY complex and explored FcRY's pH-dependent binding mechanism using electron cryomicroscopy (cryoEM) and small-angle X-ray scattering. The cryoEM structure of FcRY at pH 6 revealed a compact double-ring “head,” in which the N-terminal cysteine-rich and fibronectin II domains were folded back to contact C-type lectin-like domains 1–6, and a “tail” comprising C-type lectin-like domains 7–8. Conformational changes at pH 8 created a more elongated structure that cannot bind IgY. CryoEM reconstruction of FcRY dimers at pH 6 and small-angle X-ray scattering analysis at both pH values confirmed both structures. The cryoEM structure of the FcRY–IgY revealed symmetric binding of two FcRY heads to the dimeric FcY, each head contacting the CH4 domain of one FcY chain. FcRY shares structural properties with mannose receptor family members, including a head and tail domain organization, multimerization that may regulate ligand binding, and pH-dependent conformational changes. Our results facilitate understanding of immune recognition by the structurally related mannose receptor family and comparison of diverse methods of Ig transport across evolution. PMID:21746914
Lanzenberger, R; Baldinger, P; Hahn, A; Ungersboeck, J; Mitterhauser, M; Winkler, D; Micskei, Z; Stein, P; Karanikas, G; Wadsak, W; Kasper, S; Frey, R
2013-01-01
Electroconvulsive therapy (ECT) is a potent therapy in severe treatment-refractory depression. Although commonly applied in psychiatric clinical routine since decades, the exact neurobiological mechanism regarding its efficacy remains unclear. Results from preclinical and clinical studies emphasize a crucial involvement of the serotonin-1A receptor (5-HT1A) in the mode of action of antidepressant treatment. This includes associations between treatment response and changes in 5-HT1A function and density by antidepressants. Further, alterations of the 5-HT1A receptor are consistently reported in depression. To elucidate the effect of ECT on 5-HT1A receptor binding, 12 subjects with severe treatment-resistant major depression underwent three positron emission tomography (PET) measurements using the highly selective radioligand [carbonyl-11C]WAY100635, twice before (test–retest variability) and once after 10.08±2.35 ECT sessions. Ten patients (∼83%) were responders to ECT. The voxel-wise comparison of the 5-HT1A receptor binding (BPND) before and after ECT revealed a widespread reduction in cortical and subcortical regions (P<0.05 corrected), except for the occipital cortex and the cerebellum. Strongest reductions were found in regions consistently reported to be altered in major depression and involved in emotion regulation, such as the subgenual part of the anterior cingulate cortex (−27.5%), the orbitofrontal cortex (−30.1%), the amygdala (−31.8%), the hippocampus (−30.6%) and the insula (−28.9%). No significant change was found in the raphe nuclei. There was no significant difference in receptor binding in any region comparing the first two PET scans conducted before ECT. This PET study proposes a global involvement of the postsynaptic 5-HT1A receptor binding in the effect of ECT. PMID:22751491
Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses
Grünewald, Nora; Salvatico, Charlotte; Kress, Vanessa
2018-01-01
Abstract The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells. PMID:29464196
Allosteric nature of P2X receptor activation probed by photoaffinity labelling
Bhargava, Y; Rettinger, J; Mourot, A
2012-01-01
BACKGROUND AND PURPOSE In P2X receptors, agonist binding at the interface between neighbouring subunits is efficiently transduced to ion channel gating. However, the relationship between binding and gating is difficult to study because agonists continuously bind and unbind. Here, we covalently incorporated agonists in the binding pocket of P2X receptors and examined how binding site occupancy affects the ability of the channel to gate. EXPERIMENTAL APPROACH We used a strategy for tethering agonists to their ATP-binding pocket, while simultaneously probing ion channel gating using electrophysiology. The agonist 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP), a photoaffinity analogue of ATP, enabled us to trap rat homomeric P2X2 receptor and a P2X2/1 receptor chimera in different agonist-bound states. UV light was used to control the degree of covalent occupancy of the receptors. KEY RESULTS Irradiation of the P2X2/1 receptor chimera – BzATP complex resulted in a persistent current that lasted even after extensive washout, consistent with photochemical tethering of the agonist BzATP and trapping of the receptors in an open state. Partial labelling with BzATP primed subsequent agonist binding and modulated gating efficiency for both full and partial agonists. CONCLUSIONS AND IMPLICATIONS Our photolabelling strategy provides new molecular insights into the activation mechanism of the P2X receptor. We show here that priming with full agonist molecules leads to an increase in gating efficiency after subsequent agonist binding. PMID:22725669
A Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans.
Yi, Min; Li, Hekai; Wu, Zhiye; Yan, Jianyun; Liu, Qicai; Ou, Caiwen; Chen, Minsheng
2018-01-01
Human neuropeptide Y (hNPY) is one of the most widely expressed neurotransmitters in the human central and peripheral nervous systems. It consists of 36 highly conserved amino acid residues, and was first isolated from the porcine hypothalamus in 1982. While it is the most recently discovered member of the pancreatic polypeptide family (which includes neuropeptide Y, gut-derived hormone peptide YY, and pancreatic polypeptide), NPY is the most abundant peptide found in the mammalian brain. In order to exert particular functions, NPY needs to bind to the NPY receptor to activate specific signaling pathways. NPY receptors belong to the class A or rhodopsin-like G-protein coupled receptor (GPCR) family and signal via cell-surface receptors. By binding to GPCRs, NPY plays a crucial role in various biological processes, including cortical excitability, stress response, food intake, circadian rhythms, and cardiovascular function. Abnormal regulation of NPY is involved in the development of a wide range of diseases, including obesity, hypertension, atherosclerosis, epilepsy, metabolic disorders, and many cancers. Thus far, five receptors have been cloned from mammals (Y1, Y2, Y4, Y5, and y6), but only four of these (hY1, hY2, hY4, and hY5) are functional in humans. In this review, we summarize the structural characteristics of human NPY receptors and their role in metabolic diseases. © 2018 The Author(s). Published by S. Karger AG, Basel.
Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.
1998-01-01
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lianying; College of Life Science, Dezhou University, Dezhou 253023; Ren, Xiao-Min
2014-09-15
Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group.more » For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.« less
The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong
2015-11-30
Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibitsmore » constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.« less
Gui, Long; Jurgens, Eric M.; Ebner, Jamie L.
2015-01-01
ABSTRACT In order to deliver their genetic material to host cells during infection, enveloped viruses use specialized proteins on their surfaces that bind cellular receptors and induce fusion of the viral and host membranes. In paramyxoviruses, a diverse family of single-stranded RNA (ssRNA) viruses, including several important respiratory pathogens, such as parainfluenza viruses, the attachment and fusion machinery is composed of two separate proteins: a receptor binding protein (hemagglutinin-neuraminidase [HN]) and a fusion (F) protein that interact to effect membrane fusion. Here we used negative-stain and cryo-electron tomography to image the 3-dimensional ultrastructure of human parainfluenza virus 3 (HPIV3) virions in the absence of receptor engagement. We observed that HN exists in at least two organizations. The first were arrays of tetrameric HN that lacked closely associated F proteins: in these purely HN arrays, HN adopted a “heads-down” configuration. In addition, we observed regions of complex surface density that contained HN in an apparently extended “heads-up” form, colocalized with prefusion F trimers. This colocalization with prefusion F prior to receptor engagement supports a model for fusion in which HN in its heads-up state and F may interact prior to receptor engagement without activating F, and that interaction with HN in this configuration is not sufficient to activate F. Only upon receptor engagement by HN’s globular head does HN transmit its activating signal to F. PMID:25691596
MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4
Huijbers, Maartje G.; Zhang, Wei; Klooster, Rinse; Niks, Erik H.; Friese, Matthew B.; Straasheijm, Kirsten R.; Thijssen, Peter E.; Vrolijk, Hans; Plomp, Jaap J.; Vogels, Pauline; Losen, Mario; Van der Maarel, Silvère M.; Burden, Steven J.; Verschuuren, Jan J.
2013-01-01
Myasthenia gravis (MG) is a severely debilitating autoimmune disease that is due to a decrease in the efficiency of synaptic transmission at neuromuscular synapses. MG is caused by antibodies against postsynaptic proteins, including (i) acetylcholine receptors, the neurotransmitter receptor, (ii) muscle-specific kinase (MuSK), a receptor tyrosine kinase essential for the formation and maintenance of neuromuscular synapses, and (iii) low-density lipoprotein receptor-related protein 4 (Lrp4), which responds to neural Agrin by binding and stimulating MuSK. Passive transfer studies in mice have shown that IgG4 antibodies from MuSK MG patients cause disease without requiring complement or other immune components, suggesting that these MuSK antibodies cause disease by directly interfering with MuSK function. Here we show that pathogenic IgG4 antibodies to MuSK bind to a structural epitope in the first Ig-like domain of MuSK, prevent binding between MuSK and Lrp4, and inhibit Agrin-stimulated MuSK phosphorylation. In contrast, these IgG4 antibodies have no direct effect on MuSK dimerization or MuSK internalization. These results provide insight into the unique pathogenesis of MuSK MG and provide clues toward development of specific treatment options. PMID:24297891
Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α
Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.
2016-01-01
Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781
Soloff, Paul H; Chiappetta, Laurel; Mason, Neale Scott; Becker, Carl; Price, Julie C
2014-06-30
Impulsivity and aggressiveness are personality traits associated with a vulnerability to suicidal behavior. Behavioral expression of these traits differs by gender and has been related to central serotonergic function. We assessed the relationships between serotonin-2A receptor function, gender, and personality traits in borderline personality disorder (BPD), a disorder characterized by impulsive-aggression and recurrent suicidal behavior. Participants, who included 33 BPD patients and 27 healthy controls (HC), were assessed for Axis I and II disorders with the Structured Clinical Interview for DSM-IV and the International Personality Disorders Examination, and with the Diagnostic Interview for Borderline Patients-Revised for BPD. Depressed mood, impulsivity, aggression, and temperament were assessed with standardized measures. Positron emission tomography with [(18)F]altanserin as ligand and arterial blood sampling was used to determine the binding potentials (BPND) of serotonin-2A receptors in 11 regions of interest. Data were analyzed using Logan graphical analysis, controlling for age and non-specific binding. Among BPD subjects, aggression, Cluster B co-morbidity, antisocial PD, and childhood abuse were each related to altanserin binding. BPND values predicted impulsivity and aggression in BPD females (but not BPD males), and in HC males (but not HC females.) Altanserin binding was greater in BPD females than males in every contrast, but it did not discriminate suicide attempters from non-attempters. Region-specific differences in serotonin-2A receptor binding related to diagnosis and gender predicted clinical expression of aggression and impulsivity. Vulnerability to suicidal behavior in BPD may be related to serotonin-2A binding through expression of personality risk factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kudlow, J E; Leung, Y
1984-06-15
Epidermal growth factor (EGF), after binding to its receptor, activates a tyrosine-specific protein kinase which phosphorylates several substrates, including the EGF receptor itself. The effects of a photoaffinity analogue of ATP, 3'-O-(3-[N-(4-azido-2-nitrophenyl)amino]propionyl)adenosine 5'-triphosphate (arylazido-beta-alanyl-ATP) on the EGF-dependent protein kinase in A431 human tumour cell plasma membrane vesicles was investigated. This analogue was capable of inactivating the EGF-receptor kinase in a photodependent manner. Partial inactivation occurred at an analogue concentration of 1 microM and complete inactivation occurred at 10 microM when a 2 min light exposure was used. Arylazido-beta-alanine at 100 microM and ATP at 100 microM were incapable of inactivating the enzyme with 2 min of light exposure. The photodependent inactivation of the enzyme by the analogue could be partially blocked by 20 mM-ATP and more effectively blocked by either 20 mM-adenosine 5'-[beta gamma-imido]triphosphate or 20 mM-guanosine 5'-[beta gamma-imido]triphosphate, indicating nucleotide-binding site specificity. Arylazido-beta-alanyl-[alpha-32P]ATP was capable of labelling membrane proteins in a photodependent manner. Numerous proteins were labelled, the most prominent of which ran with an apparent Mr of 53000 on polyacrylamide-gel electrophoresis. A band of minor intensity was seen of Mr corresponding to the EGF receptor (170000). Immunoprecipitation of affinity-labelled and solubilized membranes with an anti-(EGF receptor) monoclonal antibody demonstrated that the Mr 170000 receptor protein was photoaffinity labelled by the analogue. The Mr 53000 peptide was not specifically bound by the anti-receptor antibody. The affinity labelling of the receptor was not enhanced by EGF, suggesting that EGF stimulation of the kinase activity does not result from changes in the affinity of the kinase for ATP. These studies demonstrate that arylazido-beta-alanyl-ATP interacts with the ATP-binding site of the EGF-receptor kinase with apparent high affinity and that this analogue is an effective photoaffinity label for the kinase. Furthermore, these studies demonstrate that the EGF receptor, identified by using monoclonal antibodies, contains an ATP-binding site, providing further confirmation that the EGF receptor and EGF-dependent protein kinase are domains of the Mr 170000 protein.
5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.
Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard
2010-07-01
Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Influence of freeze-thawing on hyaluronic acid binding of human spermatozoa.
Nijs, Martine; Creemers, Eva; Cox, Annemie; Janssen, Mia; Vanheusden, Elke; Castro-Sanchez, Yovanna; Thijs, Herbert; Ombelet, Willem
2009-08-01
Mature human spermatozoa have at least three specific hyaluronic acid (HA) binding proteins present on their sperm membrane. These receptors play a role in the acrosome reaction, hyaluronidase activity, hyaluronan-mediated motility and sperm-zona and sperm-oolemmal binding. Cryopreservation of spermatozoa can cause ultrastructural and even molecular damage. The aim of this study was to investigate if HA binding receptors of human spermatozoa remain functional after freeze-thawing. Forty patients were enrolled in the study. Semen samples were analysed before and after cryopreservation. Parameters analysed included concentration, motility, morphology and hyaluronan binding. Samples were frozen in CBS straws using a glycerol-glucose-based cryoprotectant. HA binding was studied using the sperm-hyaluronan binding assay. Freeze-thawing resulted in a significant decline in motility: the percentage of motile spermatozoa reduced from 50.6 to 30.3% (P < 0.001). HA binding properties of frozen-thawed spermatozoa remained unchanged after the freeze-thawing process: 68.5 +/- 17.1% spermatozoa of the neat sample were bound to HA, as were 71.3 +/- 20.4 of the frozen-thawed sample. This study indicates that freeze-thawing did not alter the functional hyaluronan binding sites of mature motile spermatozoa, and therefore will not alter their fertilizing potential.
Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J
2009-01-01
Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.
Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism
Hughes, Travis S.; Chalmers, Michael J.; Novick, Scott; Kuruvilla, Dana S.; Chang, Mi Ra; Kamenecka, Theodore M.; Rance, Mark; Johnson, Bruce A.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.
2011-01-01
SUMMARY Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution NMR studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators. PMID:22244763
Domazet, Ivana; Holleran, Brian J.; Martin, Stéphane S.; Lavigne, Pierre; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan
2009-01-01
The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the angiotensin II type-1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. In order to identify those residues in the second transmembrane domain (TMD2) that contribute to the formation of the binding pocket of the AT1 receptor, we used the substituted cysteine accessibility method. All of the residues within the Leu-70 to Trp-94 region were mutated one at a time to a cysteine, and, after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of D74C-AT1, L81C-AT1, A85C-AT1, T88C-AT1, and A89C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD2 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant D74C-N111G-AT1 became insensitive to MTSEA, whereas mutant L81C-N111G-AT1 lost some sensitivity and mutant V86C-N111G-AT1 became sensitive to MTSEA. Our results suggest that constitutive activation of the AT1 receptor causes TMD2 to pivot, bringing the top of TMD2 closer to the binding pocket and pushing the bottom of TMD2 away from the binding pocket. PMID:19276075
Domazet, Ivana; Holleran, Brian J; Martin, Stéphane S; Lavigne, Pierre; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan
2009-05-01
The octapeptide hormone angiotensin II (AngII) exerts a wide variety of cardiovascular effects through the activation of the angiotensin II type-1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein-coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. In order to identify those residues in the second transmembrane domain (TMD2) that contribute to the formation of the binding pocket of the AT(1) receptor, we used the substituted cysteine accessibility method. All of the residues within the Leu-70 to Trp-94 region were mutated one at a time to a cysteine, and, after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of D74C-AT(1), L81C-AT(1), A85C-AT(1), T88C-AT(1), and A89C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD2 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant D74C-N111G-AT(1) became insensitive to MTSEA, whereas mutant L81C-N111G-AT(1) lost some sensitivity and mutant V86C-N111G-AT(1) became sensitive to MTSEA. Our results suggest that constitutive activation of the AT(1) receptor causes TMD2 to pivot, bringing the top of TMD2 closer to the binding pocket and pushing the bottom of TMD2 away from the binding pocket.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drayer, B.; Jaszczak, R.; Coleman, E.
1982-06-01
An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatummore » and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.« less
Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.
Yu, Alvin; Lau, Albert Y
2017-11-22
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.
Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakas, E.; Simorowski, N; Furukawa, H
2009-01-01
N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-freemore » and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.« less
Tahara, A; Tsukada, J; Ishii, N; Tomura, Y; Wada, K; Kusayama, T; Yatsu, T; Uchida, W; Tanaka, A
1999-10-22
Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.
Ruoho, Arnold E.; Chu, Uyen B.; Ramachandran, Subramaniam; Fontanilla, Dominique; Mavlyutov, Timur; Hajipour, Abdol R.
2015-01-01
The sigma-1 receptor is a 26 kDa endoplasmic reticulum resident membrane protein that has been shown to have chaperone activity in addition to its promiscuous binding to pharmacological agents. Ligand binding domain(s) of the sigma-1 receptor have been identified using the E. coli expressed and purified receptor protein and novel radioiodinated azido photoaffinity probes followed by pro-teolytic and chemical cleavage strategies. The outcome of these experiments indicates that the sigma-1 receptor ligand binding regions are formed primarily by juxtaposition of its second and third hydrophobic domains, regions where the protein shares considerable homology with the fungal enzyme, sterol isomerase that is essential for the biosynthesis of ergosterol. Data indicate that these hydrophobic steroid binding domain like (SBDL) regions on the sigma-1 receptor are likely to interact selectively with N-alkyl amines such as the endogenous sphingolipids and with synthetic N-alkylamines and N-aralkylamines derivatives. A proposed model for the sigma-1 receptor is presented. PMID:22288412
Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J
2002-09-01
gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.
Digested wheat gluten inhibits binding between leptin and its receptor.
Jönsson, Tommy; Memon, Ashfaque A; Sundquist, Kristina; Sundquist, Jan; Olsson, Stefan; Nalla, Amarnadh; Bauer, Mikael; Linse, Sara
2015-01-20
Leptin resistance is considered a primary risk factor for obesity. It has been hypothesized that dietary cereal grain protein could cause leptin resistance by preventing leptin from binding to its receptor. Non-degraded dietary wheat protein has been found in human serum at a mean level of 41 ng/mL. Here, we report our findings from testing whether enzymatically digested gluten from wheat prevents leptin from binding to the leptin receptor in vitro. Gluten from wheat was digested with pepsin and trypsin under physiological conditions. Pepsin and trypsin activity was removed from the gluten digest with a 10 kDa spin-filter or by heat treatment at 100°C for 30 min. Binding to the leptin receptor of leptin mixed with gluten digest at a series of concentrations was measured using surface plasmon resonance technology. Binding of the gluten digest to the leptin receptor was not detected. Spin-filtered gluten digest inhibited binding of leptin to the leptin receptor, with 50% inhibition at a gluten digest concentration of ~10 ng/mL. Heat-treated gluten digest did not inhibit leptin binding. Digested wheat gluten inhibits binding of leptin to the leptin receptor, with half-maximal inhibition at 10 ng/mL. The inhibition is significant at clinically relevant concentrations and could therefore serve as a novel pathway to investigate to understand the molecular basis of leptin resistance, obesity and associated disorders.
Ligand recognition by RAR and RXR receptors: binding and selectivity.
Sussman, Fredy; de Lera, Angel R
2005-10-06
Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branchek, T.; Adham, N.; Macchi, M.
1990-11-01
The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding themore » serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.« less
Modulation of the cytosolic androgen receptor in striated muscle by sex steroids
NASA Technical Reports Server (NTRS)
Rance, N. E.; Max, S. E.
1982-01-01
The influence of orchiectomy (GDX) and steroid administration on the level of the cytosolic androgen receptor in the rat levator ani muscle and in rat skeletal muscles (tibialis anterior and extensor digitorum longus) was studied. Androgen receptor binding to muscle cytosol was measured using H-3 methyltrienolone (R1881) as ligand, 100 fold molar excess unlabeled R1881 to assess nonspecific binding, and 500 fold molar excess of triamcinolone acetonide to prevent binding to glucocorticoid and progestin receptors. Results demonstrate that modification of the levels of sex steroids can alter the content of androgen receptors of rat striated muscle. Data suggest that: (1) cytosolic androgen receptor levels increase after orchiectomy in both levator ani muscle and skeletal muscle; (2) the acute increase in receptor levels is blocked by an inhibitor of protein synthesis; and (3) administration of estradiol-17 beta to castrated animals increases receptor binding in levator ani muscle but not in skeletal muscle.
Proteasome subunit Rpn13 is a novel ubiquitin receptor
Husnjak, Koraljka; Elsasser, Suzanne; Zhang, Naixia; Chen, Xiang; Randles, Leah; Shi, Yuan; Hofmann, Kay; Walters, Kylie; Finley, Daniel; Dikic, Ivan
2010-01-01
Proteasomal receptors that recognize ubiquitin chains attached to substrates are key mediators of selective protein degradation in eukaryotes. Here we report the identification of a new ubiquitin receptor, Rpn13/ARM1, a known component of the proteasome. Rpn13 binds ubiquitin via a conserved N-terminal region termed the Pru domain (Pleckstrin-like receptor for ubiquitin), which binds K48-linked diubiquitin with an affinity of ∼90 nM. Like proteasomal ubiquitin receptor Rpn10/S5a, Rpn13 also binds ubiquitin-like domains of the UBL/UBA family of ubiquitin receptors. A synthetic phenotype results in yeast when specific mutations of the ubiquitin binding sites of Rpn10 and Rpn13 are combined, indicating functional linkage between these ubiquitin receptors. Since Rpn13 is also the proteasomal receptor for Uch37, a deubiquitinating enzyme, our findings suggest a coupling of chain recognition and disassembly at the proteasome. PMID:18497817
Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.
Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J
2005-05-27
We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.
2004-01-01
Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164–44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a second binding site for Gas6–receptor interaction. PMID:15579134
Daughaday, W H; Trivedi, B
1987-07-01
It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Nonspecific binding was determined when 125I-hGH was incubated with serum in the presence of an excess of GH. Results are expressed as percent of specifically bound 125I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. We suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.
Daughaday, W H; Trivedi, B
1987-01-01
It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, we have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Nonspecific binding was determined when 125I-hGH was incubated with serum in the presence of an excess of GH. Results are expressed as percent of specifically bound 125I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. We suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor. PMID:3474620
Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke
2007-07-01
Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100< pmol/mouse) than when administered i.t. (ED(50): 1.34-4.51 pmol/mouse). These results suggest the involvement of nociceptin-like agonistic effects of the Ac-RYYRIK pharmacophore in the peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.
Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.
1988-09-01
To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less
Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong
Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less
Solubilization and purification of melatonin receptors from lizard brain.
Rivkees, S A; Conron, R W; Reppert, S M
1990-09-01
Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.
Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus
Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong; ...
2015-03-11
Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less
Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter
2003-10-06
Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.
NASA Astrophysics Data System (ADS)
Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan
2018-01-01
Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.
IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taketazu, F.; Chiba, S.; Shibuya, K.
1991-02-01
The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less
Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G
1991-01-01
Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547
Parravicini, Chiara; Ranghino, Graziella; Abbracchio, Maria P; Fantucci, Piercarlo
2008-06-04
GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor) were then modeled on the receptor. Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255). The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist/antagonist binding mode are similar, but not identical. An accessory external binding site could guide small ligands to the deeper principal binding site in a multi-step mechanism of activation. The nucleotide binding pocket appears to be unable to allocate the leukotrienic type ligands in the same effective way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenmark, Pål; Dong, Min; Dupuy, Jérôme
2011-11-02
Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantlymore » reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.« less
Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R; Stevens, Raymond C
2010-04-16
Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-A X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent. Copyright (c) 2010. Published by Elsevier Ltd.
Dual chain synthetic heparin-binding growth factor analogs
Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY
2012-04-24
The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.
Dual chain synthetic heparin-binding growth factor analogs
Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY
2009-10-06
The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.
O'Hara, Samantha D; Garcea, Robert L
2016-11-01
Virus binding to the cell surface triggers an array of host responses, including activation of specific signaling pathways that facilitate steps in virus entry. Using mouse polyomavirus (MuPyV), we identified host signaling pathways activated upon virus binding to mouse embryonic fibroblasts (MEFs). Pathways activated by MuPyV included the phosphatidylinositol 3-kinase (PI3K), FAK/SRC, and mitogen-activated protein kinase (MAPK) pathways. Gangliosides and α4-integrin are required receptors for MuPyV infection. MuPyV binding to both gangliosides and the α4-integrin receptors was required for activation of the PI3K pathway; however, either receptor interaction alone was sufficient for activation of the MAPK pathway. Using small-molecule inhibitors, we confirmed that the PI3K and FAK/SRC pathways were required for MuPyV infection, while the MAPK pathway was dispensable. Mechanistically, the PI3K pathway was required for MuPyV endocytosis, while the FAK/SRC pathway enabled trafficking of MuPyV along microtubules. Thus, MuPyV interactions with specific cell surface receptors facilitate activation of signaling pathways required for virus entry and trafficking. Understanding how different viruses manipulate cell signaling pathways through interactions with host receptors could lead to the identification of new therapeutic targets for viral infection. Virus binding to cell surface receptors initiates outside-in signaling that leads to virus endocytosis and subsequent virus trafficking. How different viruses manipulate cell signaling through interactions with host receptors remains unclear, and elucidation of the specific receptors and signaling pathways required for virus infection may lead to new therapeutic targets. In this study, we determined that gangliosides and α4-integrin mediate mouse polyomavirus (MuPyV) activation of host signaling pathways. Of these pathways, the PI3K and FAK/SRC pathways were required for MuPyV infection. Both the PI3K and FAK/SRC pathways have been implicated in human diseases, such as heart disease and cancer, and inhibitors directed against these pathways are currently being investigated as therapies. It is possible that these pathways play a role in human PyV infections and could be targeted to inhibit PyV infection in immunosuppressed patients. Copyright © 2016 O’Hara and Garcea.
Receptor Subtype Alterations: Bases of Neuronal Plasticity and Learning
1990-12-18
oxotremorine -M binding in rabbit anterior thalamus and cingulate cortex increased during the course of discriminative avoidance conditioning (DAC). Since there...anterior thalamus between training-induced neuronal plasticities and changes in oxotremorine -M binding. 3) The concentrations of noradrenaline, serotonin...binding protocols included the following: M 1, 3H-pirenzepine; M 2, 3H- oxotremorine -M in the p resence of unlabeled pirenzepine; GABAA, 3H-muscimol; M, and
Uhrig, Stefanie; Hirth, Natalie; Broccoli, Laura; von Wilmsdorff, Martina; Bauer, Manfred; Sommer, Clemens; Zink, Mathias; Steiner, Johann; Frodl, Thomas; Malchow, Berend; Falkai, Peter; Spanagel, Rainer; Hansson, Anita C; Schmitt, Andrea
2016-11-01
Schizophrenia is a severe neuropsychiatric disorder with impairments in social cognition. Several brain regions have been implicated in social cognition, including the nucleus caudatus, prefrontal and temporal cortex, and cerebellum. Oxytocin is a critical modulator of social cognition and the formation and maintenance of social relationships and was shown to improve symptoms and social cognition in schizophrenia patients. However, it is unknown whether the oxytocin receptor is altered in the brain. Therefore, we used qRT-PCR and Ornithine Vasotocin Analog ([ 125 I]OVTA)-based receptor autoradiography to investigate oxytocin receptor expression at both the mRNA and protein level in the left prefrontal and middle temporal cortex, left nucleus caudatus, and right posterior superior vermis in 10 schizophrenia patients and 6 healthy controls. Furthermore, to investigate confounding effects of long-term antipsychotic medication we treated rats with clozapine or haloperidol for 12weeks and assessed expression of the oxytocin receptor in cortical and subcortical brain regions. In schizophrenia patients, we found a downregulation of oxytocin receptor mRNA in the temporal cortex and a decrease in receptor binding in the vermis. In the other regions, the results showed trends in the same direction, without reaching statistical significance. We found no differences between antipsychotic-treated rats and controls. Downregulated expression and binding of the oxytocin receptor in brain regions involved in social cognition may lead to a dysfunction of oxytocin signaling. Our results support a dysfunction of the oxytocin receptor in schizophrenia, which may contribute to deficits of social cognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine.
White, R; Sjöberg, M; Kalkhoven, E; Parker, M G
1997-01-01
The oestrogen receptor is a member of the nuclear receptor family of transcription factors which, on binding the steroid hormone 17beta-oestradiol, interacts with co-activator proteins and stimulates gene expression. Replacement of a single tyrosine in the hormone-binding domain generated activated forms of the receptor which stimulated transcription in the absence of hormone. This increased activation is related to a decrease in hydrophobicity and a reduction in size of the side chain of the amino acid with which the tyrosine is replaced. Ligand-independent, in common with ligand-dependent transcriptional activation, requires an amphipathic alpha-helix at the C-terminus of the ligand-binding domain which is essential for the interaction of the receptor with a number of potential co-activator proteins. In contrast to the wild-type protein, constitutively active receptors were able to bind both the receptor-interacting protein RIP-140 and the steroid receptor co-activator SRC-1 in a ligand-independent manner, although in the case of SRC-1 this was only evident when the receptors were prebound to DNA. We propose, therefore, that this tyrosine is required to maintain the receptor in a transcriptionally inactive state in the absence of hormone. Modification of this residue may generate a conformational change in the ligand-binding domain of the receptor to form an interacting surface which allows the recruitment of co-activators independent of hormone binding. This suggests that this tyrosine may be a target for a different signalling pathway which forms an alternative mechanism of activating oestrogen receptor-mediated transcription. PMID:9135157
Witt, M R; Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nielsen, M
1996-11-01
It has been shown previously that unsaturated free fatty acids (FFAs) strongly enhance the binding of agonist benzodiazepine receptor ligands and GABAA receptor ligands in the CNS in vitro. To investigate the selectivity of this effect, recombinant human GABAA/benzodiazepine receptor complexes formed by different subunit compositions (alpha x beta y gamma 2, x = 1, 2, 3, and 5; y = 1, 2, and 3) were expressed using the baculovirus-transfected Sf9 insect cell system. At 10(-4) M, unsaturated FFAs, particularly arachidonic (20:4) and docosahexaenoic (22:6) acids, strongly stimulated (> 200% of control values) the binding of [3H]flunitrazepam ([3H]FNM) to the alpha 3 beta 2 gamma 2 receptor combination in whole cell preparations. No effect or small increases in levels of unsaturated FFAs on [3H]FNM binding to alpha 1 beta x gamma 2 and alpha 2 beta x gamma 2 receptor combinations were observed, and weak effects (130% of control values) were detected using the alpha 5 beta 2 gamma 2 receptor combination. The saturated FFAs, stearic and palmitic acids, were without effect on [3H]FNM binding to any combination of receptor complexes. The hydroxylated unsaturated FFAs, ricinoleic and ricinelaidic acids, were shown to decrease the binding of [3H]FNM only if an alpha 1 beta 2 gamma 2 receptor combination was used. Given the heterogeneity of the GABAA/ benzodiazepine receptor subunit distribution in the CNS, the effects of FFAs on the benzodiazepine receptor can be assumed to vary at both cellular and regional levels.
Cardona, C; Bleehen, N M; Reeve, J G
1992-01-01
The ligand-binding properties of the gastrin-releasing peptide (GRP) receptor and the cellular processing of GRP have been studied in the small-cell lung cancer (SCLC) cell line COR-L42. Scatchard analysis of GRP receptor expression indicated a single class of high-affinity receptors (Kd 1.5 nM) and approx. 6700 receptors/cell. GRP bound to its receptor with a Ki of 2.4 nM. The bombesin-related peptides neuromedin B (NMB) and phyllolitorin also bound to GRP receptors with Ki values of 22.7 and 59.1 nM respectively. Binding of 125I-GRP to COR-L42 cells increased rapidly at 37 degrees, achieved a maximum at 10 min and declined rapidly thereafter. At 4 degrees C, maximum binding was achieved at 30 min and the subsequent decline in cell-associated radioactivity was slower than that seen at 37 degrees C. Acid/salt extraction, to separate surface-bound ligand from internalized GRP, indicated that after receptor binding 125I-GRP was rapidly internalized. To determine the pathway of 125I-GRP degradation, binding studies were carried out with the lysosomotropic agent chloroquine (5 mM), and with phosphoramidon (10 microM), an inhibitor of the membrane-bound enzyme (EC 3.4.24.11). Both agents markedly inhibited the degradation of GRP, indicating that this process involves a lysosomal pathway and a phosphoramidon-sensitive pathway, possibly involving the EC 3.4.24.11 enzyme. GRP receptor down-regulation was observed following a 10 min exposure to 100 nM-GRP. With longer pretreatment times the number of binding sites recovered to 80% of control values. Treatment with 5 mM-chloroquine plus GRP or cycloheximide (10 micrograms/ml) plus GRP demonstrated that the majority of GRP receptors are recycled. NMB and phyllolitorin pretreatment did not influence the subsequent binding of 125I-GRP, suggesting that these peptides do not down-regulate GRP receptors. PMID:1310003
Platelet dysfunction associated with the novel Trp29Cys thromboxane A₂ receptor variant.
Mumford, A D; Nisar, S; Darnige, L; Jones, M L; Bachelot-Loza, C; Gandrille, S; Zinzindohoue, F; Fischer, A-M; Mundell, S J; Gaussem, P
2013-03-01
Genetic variations that affect the structure of the thromboxane A2 receptor (TP receptor) provide insights into the function of this key platelet and vascular receptor, but are very rare in unselected populations. To determine the functional consequences of the TP receptor Trp29Cys (W29C) substitution. We performed a detailed phenotypic analysis of an index case (P1) with reduced platelet aggregation and secretion responses to TP receptor pathway activators, and a heterozygous TP receptor W29C substitution. An analysis of the variant W29C TP receptor expressed in heterologous cells was performed. Total TP receptor expression in platelets from P1 was similar to that of controls, but there was reduced maximum binding and reduced affinity of binding to the TP receptor antagonist [(3) H]SQ29548. HEK293 cells transfected with W29C TP receptor cDNA showed similar total TP receptor expression to wild-type (WT) controls. However, the TP receptor agonist U46619 was less potent at inducing rises in cytosolic free Ca(2+) in HEK293 cells expressing the W29C TP receptor than in WT controls, indicating reduced receptor function. Immunofluorescence microscopy and cell surface ELISA showed intracellular retention and reduced cell surface expression of the W29C TP receptor in HEK293 cells. Consistent with the platelet phenotype, both maximum binding and the affinity of binding of [(3) H]SQ29548 to the W29C TP receptor were reduced compared to WT controls. These findings extend the phenotypic description of the very rare disorder TP receptor deficiency, and show that the W29C substitution reduces TP receptor function by reducing surface receptor expression and by disrupting ligand binding. © 2012 International Society on Thrombosis and Haemostasis.
NASA Astrophysics Data System (ADS)
Cohen-Armon, Malca; Kloog, Yoel; Henis, Yoav I.; Sokolovsky, Mordechai
1985-05-01
The effects of Na+-channel activator batrachotoxin (BTX) on the binding properties of muscarinic receptors in homogenates of rat brain and heart were studied. BTX enhanced the affinity for the binding of the agonists carbamoylcholine and acetylcholine to the muscarinic receptors in brainstem and ventricle, but not in the cerebral cortex. Analysis of the data according to a two-site model for agonist binding indicated that the effect of BTX was to increase the affinity of the agonists to the high-affinity site. Guanyl nucleotides, known to induce interconversion of high-affinity agonist binding sites to the low-affinity state, canceled the effect of BTX on carbamoylcholine and acetylcholine binding. BTX had no effect on the binding of the agonist oxotremorine or on the binding of the antagonist [3H]-N-methyl-4-piperidyl benzilate. The local anesthetics dibucaine and tetracaine antagonized the effect of BTX on the binding of muscarinic agonists at concentrations known to inhibit the activation of Na+ channels by BTX. On the basis of these findings, we propose that in specific tissues the muscarinic receptors may interact with the BTX binding site (Na+ channels).
Strauss, Mike; Filman, David J; Belnap, David M; Cheng, Naiqian; Noel, Roane T; Hogle, James M
2015-04-01
Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called "pocket factor"), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are reminiscent of the nectin family, by involving the burying of otherwise-exposed hydrophobic groups. Importantly, poliovirus expansion is regulated by the binding of a lipid molecule within the viral capsid. We show that receptor binding either causes this molecule to be expelled or requires it, but that its loss is not sufficient to trigger irreversible expansion. Based on our model, we propose testable hypotheses to explain how the viral shell becomes destabilized, leading to RNA uncoating. These findings give us a better understanding of how poliovirus has evolved to exploit a natural process of its host to penetrate the membrane barrier. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Strauss, Mike; Filman, David J.; Belnap, David M.; Cheng, Naiqian; Noel, Roane T.
2015-01-01
ABSTRACT Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called “pocket factor”), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. IMPORTANCE The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are reminiscent of the nectin family, by involving the burying of otherwise-exposed hydrophobic groups. Importantly, poliovirus expansion is regulated by the binding of a lipid molecule within the viral capsid. We show that receptor binding either causes this molecule to be expelled or requires it, but that its loss is not sufficient to trigger irreversible expansion. Based on our model, we propose testable hypotheses to explain how the viral shell becomes destabilized, leading to RNA uncoating. These findings give us a better understanding of how poliovirus has evolved to exploit a natural process of its host to penetrate the membrane barrier. PMID:25631086
Zhang, S P; Codd, E E
1998-01-01
Bradykinin (BK) receptors are involved in pain and inflammation. Two BK receptor subtypes, B1 and B2, have been defined based on their pharmacological properties. Both B1 and B2 receptors are G-protein coupled membrane receptors. B1 receptors are present in smooth muscle tissue, whereas B2 receptors are found in both smooth muscle tissue and neurons. [Des-Arg10,Leu9]kallidin (DALKD) is a selective B1 receptor antagonist, and NPC17731 is a selective B2 receptor antagonist. To develop binding assays for the two known BK receptor subtypes, [3H]DALKD and [3H]NPC17731 were used as selective ligands for B1 and B2 receptors respectively. Both ligands bound to the CCD-16 human lung fibroblast membranes reaching equilibrium at 25 degrees C within 30 min. Binding was stable for at least 60 min. The Kd of [3H]DALKD was 0.33 nM and Bmax was 52 fmol/mg membrane protein. The Kd of [3H]NPC17731 was 0.39 nM and Bmax was 700 fmol/mg membrane protein. Competition for [3H]DALKD binding with BK receptor agonists was in the order: [des-Arg10]KD (DAKD) > KD > [des-Arg9]BK (DABK) > BK, and competition for [3H]DALKD binding with BK receptor antagonists was in the order: DALKD > [des-Arg10]Hoe 140 (DAHoe 140) > [des-Arg9,Leu8]BK (DALBK) > NPC17731 > Hoe 140 > DNMFBK, suggesting that [3H]DALKD bound selectively to B1 receptors. By contrast, competition for [3H]NPC17731 binding by BK agonists was in the order: BK > KD > DAKD > DABK, and competition for [3H]NPC17731 binding by BK antagonists was in the order: NPC17731 = Hoe 140 > DNMFBK > DAHoe 140 > DALBK > DALKD, indicating that [3H]NPC17731 labeled B2 receptors selectively. These results demonstrate that [3H]DALKD and [3H]NPC17731 can be used with CCD-16 human lung fibroblast membranes to provide a pair of binding assays for the simultaneous evaluation of B1 and B2 BK receptor subtypes.
Structure of Gremlin-2 in Complex with GDF5 Gives Insight into DAN-Family-Mediated BMP Antagonism.
Nolan, Kristof; Kattamuri, Chandramohan; Rankin, Scott A; Read, Randy J; Zorn, Aaron M; Thompson, Thomas B
2016-08-23
The DAN family, including Gremlin-1 and Gremlin-2 (Grem1 and Grem2), represents a large family of secreted BMP (bone morphogenetic protein) antagonists. However, how DAN proteins specifically inhibit BMP signaling has remained elusive. Here, we report the structure of Grem2 bound to GDF5 at 2.9-Å resolution. The structure reveals two Grem2 dimers binding perpendicularly to each GDF5 monomer, resembling an H-like structure. Comparison to the unbound Grem2 structure reveals a dynamic N terminus that undergoes significant transition upon complex formation, leading to simultaneous interaction with the type I and type II receptor motifs on GDF5. Binding studies show that DAN-family members can interact with BMP-type I receptor complexes, whereas Noggin outcompetes the type I receptor for ligand binding. Interestingly, Grem2-GDF5 forms a stable aggregate-like structure in vitro that is not clearly observed for other antagonists, including Noggin and Follistatin. These findings exemplify the structural and functional diversity across the various BMP antagonist families. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Beltzer, J P; Spiess, M
1991-01-01
The asialoglycoprotein (ASGP) receptor was used to probe total clathrin-coated vesicle proteins and purified adaptor proteins (APs) which had been fractionated by gel electrophoresis and transferred to nitrocellulose. The receptor was found to interact with proteins of approximately 100 kDa. The cytoplasmic domain of the ASGP receptor subunit H1 fused to dihydrofolate reductase competed for receptor binding to the 100 kDa polypeptide in the plasma membrane-type AP complexes (AP-2). A fusion protein containing the cytoplasmic domain of the endocytic mutant haemagglutinin HA-Y543 also competed, but a protein with the wild-type haemagglutinin sequence did not. This indicates that the observed interaction is specific for the cytoplasmic domain of the receptor and involves the tyrosine signal for endocytosis. When fractionated by gel electrophoresis in the presence of urea, the ASGP receptor binding polypeptide displayed a characteristic shift in electrophoretic mobility identifying it as the beta adaptin. Partial proteolysis of the AP-2 preparation followed by the receptor binding assay revealed that the aminoterminal domain of the beta adaptin contains the binding site for receptors. Images PMID:1935897
Molecular Recognition of Corticotropin releasing Factor by Its G protein-coupled Receptor CRFR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pioszak, Augen A.; Parker, Naomi R.; Suino-Powell, Kelly
2009-01-15
The bimolecular interaction between corticotropin-releasing factor (CRF), a neuropeptide, and its type 1 receptor (CRFR1), a class B G-protein-coupled receptor (GPCR), is crucial for activation of the hypothalamic-pituitary-adrenal axis in response to stress, and has been a target of intense drug design for the treatment of anxiety, depression, and related disorders. As a class B GPCR, CRFR1 contains an N-terminal extracellular domain (ECD) that provides the primary ligand binding determinants. Here we present three crystal structures of the human CRFR1 ECD, one in a ligand-free form and two in distinct CRF-bound states. The CRFR1 ECD adopts the alpha-beta-betaalpha fold observedmore » for other class B GPCR ECDs, but the N-terminal alpha-helix is significantly shorter and does not contact CRF. CRF adopts a continuous alpha-helix that docks in a hydrophobic surface of the ECD that is distinct from the peptide-binding site of other class B GPCRs, thereby providing a basis for the specificity of ligand recognition between CRFR1 and other class B GPCRs. The binding of CRF is accompanied by clamp-like conformational changes of two loops of the receptor that anchor the CRF C terminus, including the C-terminal amide group. These structural studies provide a molecular framework for understanding peptide binding and specificity by the CRF receptors as well as a template for designing potent and selective CRFR1 antagonists for therapeutic applications.« less
Action of tremorgenic mycotoxins on GABA/sub A/ receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gant, D.B.; Cole, R.J.; Valdes, J.J.
1987-11-09
The effects of four tremorgenic and one nontremorgenic mycotoxins were studied on ..gamma..-aminobutyric acid (GABA/sub A/) receptor binding and function in rat brain and on binding of a voltage-operated Cl/sup -/ channel in Torpedo electric organ. None of the mycotoxins had significant effect on (/sup 3/H)muscimol or (/sup 3/H)flunitrazepam binding to the GAMA/sup A/ receptor. However, only the four tremorgenic mycotoxins inhibited GABA-induced /sup 36/Cl/sup -/ influx and (/sup 35/S)t-butylbicyclophosphorothionate ((/sup 35/S)TBPS) binding in rate brain membranes, while the nontremorgenic verruculotoxin had no effect. Inhibition of (/sup 35/S)TBPS binding by paspalinine was non-competitive. This suggests that tremorgenic mycotoxins inhibit GABA/submore » A/ receptor function by binding close to the receptor's Cl/sup -/ channel. On the voltage-operated Cl/sup -/ channel, only high concentrations of verruculogen and verruculotoxin caused significant inhibition of the channel's binding of (/sup 35/S)TBPS. The data suggest that the tremorgenic action of these mycotoxins may be due in part to their inhibition of GABA/sub A/ receptor function. 21 references, 4 figures, 2 tables.« less
Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.
Munck Petersen, C; Nielsen, M S; Jacobsen, C; Tauris, J; Jacobsen, L; Gliemann, J; Moestrup, S K; Madsen, P
1999-02-01
We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.
Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.
Munck Petersen, C; Nielsen, M S; Jacobsen, C; Tauris, J; Jacobsen, L; Gliemann, J; Moestrup, S K; Madsen, P
1999-01-01
We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation. PMID:9927419
CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist.
Chen, Jianyong; Collins, Gregory T; Levant, Beth; Woods, James; Deschamps, Jeffrey R; Wang, Shaomeng
2011-08-11
We have identified several ligands with high binding affinities to the dopamine D3 receptor and excellent selectivity over the D2 and D1 receptors. CJ-1639 (17) binds to the D3 receptor with a K(i) value of 0.50 nM and displays a selectivity of >5,000 times over D2 and D1 receptors in binding assays using dopamine receptors expressed in the native rat brain tissues. CJ-1639 binds to human D3 receptor with a K(i) value of 3.61 nM and displays over >1000-fold selectivity over human D1 and D2 receptors. CJ-1639 is active at 0.01 mg/kg at the dopamine D3 receptor in the rat and only starts to show a modest D2 activity at doses as high as 10 mg/kg. CJ-1639 is the most potent and selective D3 full agonist reported to date.
In vitro screening assays designed to identify hormone minics or antagonists, including the EDSTAC Tier 1 Screening (TIS) Battery, typically use only mammalian estrogen (ER) and androgen receptors (AR). However, there is uncertainty concerning species differences in binding affin...
Thyroid-stimulating hormone (TSH) regulates thyroid hormone (TH) production via binding to its receptor (TSHR). The roles of TSHR in human pathologies including hyper/hypothyroidism, Grave’s disease, and thyroid cancer are known, but it is currently unknown whether TSHR is an imp...
Dynamic Regulation of FoxA1 by Steroid Receptors | Center for Cancer Research
The estrogen receptor (ER) is a key regulator in breast cancer initiation and progression. A widely discussed model proposes that forkhead box protein A1 (FoxA1) acts as a pioneer factor in cancer by binding and penetrating closed chromatin to allow access by transcription factors (TFs), including ER.
Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S
2010-03-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, H.; Qiu, Y; Philo, J
2010-01-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less
Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S
2010-01-01
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666
Kawasaki, Kazuyoshi; Ogawa, Seturou
2003-01-01
NMDA receptor contributes to cause neuronal death in anoxic condition. It is not known how a part of NMDA receptors, NMDA-binding site and/or glycine-binding site, influence neuronal damage in rats' hippocampus in vitro. Rats' hippocampus, labeled with norepinephrine (3H-NE), was incubated in artificial cerebrospinal fluid (aCSF) and we measured 3H-NE in superfusion solution and remaining tissue. Glucose was eliminated from aCSF and 95% N2 + 5% CO2 produced the anoxic state. The amount of 3H-NE release increased in anoxia with NMDA (NMDA-binding site agonist), while there was no influence on NMDA receptor in non-anoxic state even after D-serine (glycine-binding site agonist) has been administered. The 3H-NE was released more when D-serine (100 mu mM) and NMDA (100 mu mM) were administered together than when only D-serine (10 mu mM, 100 mu mM, 1000 mu mM) in anoxia or NMDA (10 mu mM, 100 mu mM, 1000 mu mM) in anoxia was administered. Glycine-binding site agonist alone does not act significantly but ion channels in NMDA receptor open more and become more effective when both glycine-binding site agonist and NMDA-binding site agonist exist, suggesting that there are interactions between NMDA-binding site and glycine-binding site in NMDA-receptor during anoxia.
Sasmal, Dibyendu Kumar; Yadav, Rajeev; Lu, H Peter
2016-07-20
N-methyl-d-aspartate (NMDA) receptor ion channel is activated by the binding of two pairs of glycine and glutamate along with the application of action potential. Binding and unbinding of ligands changes its conformation that plays a critical role in the open-close activities of NMDA receptor. Conformation states and their dynamics due to ligand binding are extremely difficult to characterize either by conventional ensemble experiments or single-channel electrophysiology method. Here we report the development of a new correlated technical approach, single-molecule patch-clamp FRET anisotropy imaging and demonstrate by probing the dynamics of NMDA receptor ion channel and kinetics of glycine binding with its ligand binding domain. Experimentally determined kinetics of ligand binding with receptor is further verified by computational modeling. Single-channel patch-clamp and four-channel fluorescence measurement are recorded simultaneously to get correlation among electrical on and off states, optically determined conformational open and closed states by FRET, and binding-unbinding states of the glycine ligand by anisotropy measurement at the ligand binding domain of GluN1 subunit. This method has the ability to detect the intermediate states in addition to electrical on and off states. Based on our experimental results, we have proposed that NMDA receptor gating goes through at least one electrically intermediate off state, a desensitized state, when ligands remain bound at the ligand binding domain with the conformation similar to the fully open state.
Lehnert, Teresa; Figge, Marc Thilo
2017-01-01
Mathematical modeling and computer simulations have become an integral part of modern biological research. The strength of theoretical approaches is in the simplification of complex biological systems. We here consider the general problem of receptor–ligand binding in the context of antibody–antigen binding. On the one hand, we establish a quantitative mapping between macroscopic binding rates of a deterministic differential equation model and their microscopic equivalents as obtained from simulating the spatiotemporal binding kinetics by stochastic agent-based models. On the other hand, we investigate the impact of various properties of B cell-derived receptors—such as their dimensionality of motion, morphology, and binding valency—on the receptor–ligand binding kinetics. To this end, we implemented an algorithm that simulates antigen binding by B cell-derived receptors with a Y-shaped morphology that can move in different dimensionalities, i.e., either as membrane-anchored receptors or as soluble receptors. The mapping of the macroscopic and microscopic binding rates allowed us to quantitatively compare different agent-based model variants for the different types of B cell-derived receptors. Our results indicate that the dimensionality of motion governs the binding kinetics and that this predominant impact is quantitatively compensated by the bivalency of these receptors. PMID:29250071
Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W
2017-08-01
We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.
Induced conformational change in human IL‐4 upon binding of a signal‐neutralizing DARPin
Teplyakov, Alexey; Malia, Thomas J.; Keough, Edward; Luo, Jinquan; Sweet, Raymond; Jacobs, Steven A.; Yi, Fang; Hippensteel, Randi; O'Neil, Karyn T.
2015-01-01
ABSTRACT The crystal structure of DARPin 44C12V5 that neutralizes IL‐4 signaling has been determined alone and bound to human IL‐4. A significant conformational change occurs in the IL‐4 upon DARPin binding. The DARPin binds to the face of IL‐4 formed by the A and C α‐helices. The structure of the DARPin remains virtually unchanged. The conformational changes in IL‐4 include a reorientation of the C‐helix Trp91 side chain and repositioning of CD‐loop residue Leu96. Both side chains move by >9 Å, becoming buried in the central hydrophobic region of the IL‐4:DARPin interface. This hydrophobic region is surrounded by a ring of hydrophilic interactions comprised of hydrogen bonds and salt bridges and represents a classical “hotspot.” The structures also reveal how the DARPin neutralizes IL‐4 signaling. Comparing the IL‐4:DARPin complex structure with the structures of IL‐4 bound to its receptors (Hage et al., Cell 1999; 97, 271‐281; La Porte et al., Cell 2008, 132, 259‐272), it is found that the DARPin binds to the same IL‐4 face that interacts with the junction of the D1 and D2 domains of the IL‐4Rα receptors. Signaling is blocked since IL‐4 cannot bind to this receptor, which it must do first before initiating a productive receptor complex with either the IL‐13α1 or the γ c receptor. Proteins 2015; 83:1191–1197. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:25900776
Grace, Christy Rani R; Perrin, Marilyn H; Cantle, Jeffrey P; Vale, Wylie W; Rivier, Jean E; Riek, Roland
2007-12-26
Members of the corticoliberin family include the corticotropin releasing factors (CRFs), sauvagine, the urotensins, and urocortin 1 (Ucn1), which bind to both the CRF receptors CRF-R1 and CRF-R2, and the urocortins 2 (Ucn2) and 3 (Ucn3), which are selective agonists of CRF-R2. Structure activity relationship studies led to several potent and long-acting analogues with selective binding to either one of the receptors. NMR structures of six ligands of this family (the antagonists astressin B and astressin2-B, the agonists stressin1, and the natural ligands human Ucn1, Ucn2, and Ucn3) were determined in DMSO. These six peptides show differences in binding affinities, receptor-selectivity, and NMR structure. Overall, their backbones are alpha-helical, with a small kink or a turn around residues 25-27, resulting in a helix-loop-helix motif. The C-terminal helices are of amphipathic nature, whereas the N-terminal helices vary in their amphipathicity. The C-terminal helices thereby assume a conformation very similar to that of astressin bound to the ECD1 of CRF-R2 recently reported by our group.1 On the basis of an analysis of the observed 3D structures and relative potencies of [Ala]-substituted analogues, it is proposed that both helices could play a crucial role in receptor binding and selectivity. In conclusion, the C-terminal helices may interact along their hydrophobic faces with the ECD1, whereas the entire N-terminal helical surface may be involved in receptor activation. On the basis of the common and divergent features observed in the 3D structures of these ligands, multiple binding models are proposed that may explain their plurality of actions.
Teh, Huey Fang; Peh, Wendy Y X; Su, Xiaodi; Thomsen, Jane S
2007-02-27
Specific protein-DNA interactions play a central role in transcription and other biological processes. A comprehensive characterization of protein-DNA interactions should include information about binding affinity, kinetics, sequence specificity, and binding stoichiometry. In this study, we have used surface plasmon resonance spectroscopy (SPR) to study the interactions between human estrogen receptors (ER, alpha and beta subtypes) and estrogen response elements (ERE), with four assay schemes. First, we determined the sequence-dependent receptors' binding capacity by monitoring the binding of ER to various ERE sequences immobilized on a sensor surface (assay format denoted as the direct assay). Second, we screened the relative affinity of ER for various ERE sequences using a competition assay, in which the receptors bind to an ERE-immobilized surface in the presence of competitor ERE sequences. Third, we monitored the assembly of ER-ERE complexes on a SPR surface and thereafter the removal and/or dissociation of the ER (assay scheme denoted as the dissociation assay) to determine the binding stoichiometry. Last, a sandwich assay (ER binding to ERE followed by anti-ER recognition of a specific ER subtype) was performed in an effort to understand how ERalpha and ERbeta may associate and compete when binding to the DNA. With these assay schemes, we reaffirmed that (1) ERalpha is more sensitive than ERbeta to base pair change(s) in the consensus ERE, (2) ERalpha and ERbeta form a heterodimer when they bind to the consensus ERE, and (3) the binding stoichiometry of both ERalpha- and ERbeta-ERE complexes is dependent on salt concentration. With this study, we demonstrate the versatility of the SPR analysis. With the involvement of various assay arrangements, the SPR analysis can be further extended to more than kinetics and affinity study.
Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart
1999-01-01
Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456
Alternative splicing within the ligand binding domain of the human constitutive androstane receptor.
Savkur, Rajesh S; Wu, Yifei; Bramlett, Kelli S; Wang, Minmin; Yao, Sufang; Perkins, Douglas; Totten, Michelle; Searfoss, George; Ryan, Timothy P; Su, Eric W; Burris, Thomas P
2003-01-01
The human constitutive androstane receptor (hCAR; NR1I3) is a member of the nuclear receptor superfamily. The activity of hCAR is regulated by a variety of xenobiotics including clotrimazole and acetaminophen metabolites. hCAR, in turn, regulates a number of genes responsible for xenobiotic metabolism and transport including several cytochrome P450s (CYP 2B5, 2C9, and 3A4) and the multidrug resistance-associated protein 2 (MRP2, ABCC2). Thus, hCAR is believed to be a mediator of drug-drug interactions. We identified two novel hCAR splice variants: hCAR2 encodes a receptor in which alternative splice acceptor sites are utilized resulting in a 4 amino acid insert between exons 6 and 7, and a 5 amino acid insert between 7 and 8, and hCAR3 encodes a receptor with exon 7 completely deleted resulting in a 39 amino acid deletion. Both hCAR2 and hCAR3 mRNAs are expressed in a pattern similar to the initially described MB67 (hCAR1) with some key distinctions. Although the levels of expression vary depending on the tissue examined, hCAR2 and hCAR3 contribute 6-8% of total hCAR mRNA in liver. Analysis of the activity of these variants indicates that both hCAR2 and hCAR3 lose the ability to heterodimerize with RXR and lack transactivation activity in cotransfection experiments where either full-length receptor or GAL4 DNA-binding domain/CAR ligand binding domain chimeras were utilized. Although the role of hCAR2 and hCAR3 is currently unclear, these additional splice variants may provide for increased diversity in terms of responsiveness to xenobiotics.
Structural organization of G-protein-coupled receptors
NASA Astrophysics Data System (ADS)
Lomize, Andrei L.; Pogozheva, Irina D.; Mosberg, Henry I.
1999-07-01
Atomic-resolution structures of the transmembrane 7-α-helical domains of 26 G-protein-coupled receptors (GPCRs) (including opsins, cationic amine, melatonin, purine, chemokine, opioid, and glycoprotein hormone receptors and two related proteins, retinochrome and Duffy erythrocyte antigen) were calculated by distance geometry using interhelical hydrogen bonds formed by various proteins from the family and collectively applied as distance constraints, as described previously [Pogozheva et al., Biophys. J., 70 (1997) 1963]. The main structural features of the calculated GPCR models are described and illustrated by examples. Some of the features reflect physical interactions that are responsible for the structural stability of the transmembrane α-bundle: the formation of extensive networks of interhelical H-bonds and sulfur-aromatic clusters that are spatially organized as 'polarity gradients' the close packing of side-chains throughout the transmembrane domain; and the formation of interhelical disulfide bonds in some receptors and a plausible Zn2+ binding center in retinochrome. Other features of the models are related to biological function and evolution of GPCRs: the formation of a common 'minicore' of 43 evolutionarily conserved residues; a multitude of correlated replacements throughout the transmembrane domain; an Na+-binding site in some receptors, and excellent complementarity of receptor binding pockets to many structurally dissimilar, conformationally constrained ligands, such as retinal, cyclic opioid peptides, and cationic amine ligands. The calculated models are in good agreement with numerous experimental data.
Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides
Bond, Cherie E.; Zimmermann, Martina; Greenfield, Susan A.
2009-01-01
Background The alpha-7 nicotinic acetylcholine receptor (α7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the α7-nAChR, or peptide modulation of receptor expression. Methodology/Principal Findings This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the α7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of α7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. Conclusions/Significance The results reported here demonstrate a hitherto unknown relationship between the α7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration. PMID:19287501
Tian, Qingyun; Zhao, Shuai; Liu, Chuanju
2014-01-01
The discovery that TNF receptors (TNFR) serve as the binding receptors for progranulin (PGRN) reveals the significant role of PGRN in inflammatory and autoimmune diseases, including inflammatory arthritis. Herein we describe a simple, antibody-free analytical assay, i.e., a biotin-based solid-phase binding assay, to examine the direct interaction of PGRN/TNFR and the PGRN inhibition of TNF/TNFR interactions. Briefly, a 96-well high-binding microplate is first coated with the first protein (protein A), and after blocking, the coated microplate is incubated with the biotin-labeled second protein (protein B) in the absence or presence of the third protein (protein C). Finally the streptavidin conjugated with a detecting enzyme is added, followed by a signal measurement. Also discussed in this chapter are the advantages of the strategy, key elements to obtain reliable results, and discrepancies among various PGRN proteins in view of the binding activity with TNFR.
Identification of the cellular receptor for anthrax toxin
NASA Astrophysics Data System (ADS)
Bradley, Kenneth A.; Mogridge, Jeremy; Mourez, Michael; Collier, R. John; Young, John A. T.
2001-11-01
The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a variety of mechanisms including inhibiting phagocytosis; lethal factor (LF) is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase and causes lysis of macrophages. Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol. Here we describe the cloning of the human PA receptor using a genetic complementation approach. The receptor, termed ATR (anthrax toxin receptor), is a type I membrane protein with an extracellular von Willebrand factor A domain that binds directly to PA. In addition, a soluble version of this domain can protect cells from the action of the toxin.
Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayyagari, R.R.; Khan-Dawood, F.S.
Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less
Characterization of 12 GnRH peptide agonists – a kinetic perspective
Nederpelt, Indira; Georgi, Victoria; Schiele, Felix; Nowak‐Reppel, Katrin; Fernández‐Montalván, Amaury E.; IJzerman, Adriaan P.
2015-01-01
Background and Purpose Drug‐target residence time is an important, yet often overlooked, parameter in drug discovery. Multiple studies have proposed an increased residence time to be beneficial for improved drug efficacy and/or longer duration of action. Currently, there are many drugs on the market targeting the gonadotropin‐releasing hormone (GnRH) receptor for the treatment of hormone‐dependent diseases. Surprisingly, the kinetic receptor‐binding parameters of these analogues have not yet been reported. Therefore, this project focused on determining the receptor‐binding kinetics of 12 GnRH peptide agonists, including many marketed drugs. Experimental Approach A novel radioligand‐binding competition association assay was developed and optimized for the human GnRH receptor with the use of a radiolabelled peptide agonist, [125I]‐triptorelin. In addition to radioligand‐binding studies, a homogeneous time‐resolved FRET Tag‐lite™ method was developed as an alternative assay for the same purpose. Key Results Two novel competition association assays were successfully developed and applied to determine the kinetic receptor‐binding characteristics of 12 high‐affinity GnRH peptide agonists. Results obtained from both methods were highly correlated. Interestingly, the binding kinetics of the peptide agonists were more divergent than their affinities with residence times ranging from 5.6 min (goserelin) to 125 min (deslorelin). Conclusions and Implications Our research provides new insights by incorporating kinetic, next to equilibrium, binding parameters in current research and development that can potentially improve future drug discovery targeting the GnRH receptor. PMID:26398856
Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response.
Paramo, Teresa; Tomasio, Susana M; Irvine, Kate L; Bryant, Clare E; Bond, Peter J
2015-12-09
Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the "membrane-like" nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics.
Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response
Paramo, Teresa; Tomasio, Susana M.; Irvine, Kate L.; Bryant, Clare E.; Bond, Peter J.
2015-01-01
Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the “membrane-like” nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics. PMID:26647780
Delfosse, Vanessa; Dendele, Béatrice; Huet, Tiphaine; Grimaldi, Marina; Boulahtouf, Abdelhay; Gerbal-Chaloin, Sabine; Beucher, Bertrand; Roecklin, Dominique; Muller, Christina; Rahmani, Roger; Cavaillès, Vincent; Daujat-Chavanieu, Martine; Vivat, Valérie; Pascussi, Jean-Marc; Balaguer, Patrick; Bourguet, William
2015-01-01
Humans are chronically exposed to multiple exogenous substances, including environmental pollutants, drugs and dietary components. Many of these compounds are suspected to impact human health, and their combination in complex mixtures could exacerbate their harmful effects. Here we demonstrate that a pharmaceutical oestrogen and a persistent organochlorine pesticide, both exhibiting low efficacy when studied separately, cooperatively bind to the pregnane X receptor, leading to synergistic activation. Biophysical analysis shows that each ligand enhances the binding affinity of the other, so the binary mixture induces a substantial biological response at doses at which each chemical individually is inactive. High-resolution crystal structures reveal the structural basis for the observed cooperativity. Our results suggest that the formation of ‘supramolecular ligands' within the ligand-binding pocket of nuclear receptors contributes to the synergistic toxic effect of chemical mixtures, which may have broad implications for the fields of endocrine disruption, toxicology and chemical risk assessment. PMID:26333997
Jia, Nan; Semba, Umeko; Nishiura, Hiroshi; Kuniyasu, Akihiko; Nsiama, Tienabe K; Nishino, Norikazu; Yamamoto, Tetsuro
2010-06-01
Skp derived from Escherichia coli attracts leukocytes as a pure chemotactic ligand of the C5a receptor. We identified the submolecular region of Skp that binds and activates the C5a receptor to be -Gln103-Asp104-Arg105- using synthetic peptide fragments and site-directed mutants of Skp. As the C5a amino acid residue equivalent to Gln103 of Skp is Leu72, we prepared a Gln103Leu-Skp mutant as a recombinant protein. With this mutation, Skp gained secretagogue functions including induction of the respiratory burst and granule release reactions and leukotriene generation, in addition to the chemoattraction displayed by C5a. However, when we substituted Leu72 with Gln in C5a, the L72Q-C5a mutant largely lost its secretagogue function. These functional conversions were reproduced using synthetic peptides mimicking the receptor-binding/-activating regions of the recombinant proteins. Receptor-binding assays using the mimicking peptides demonstrated only a small difference between the Leu72-C5a and Gln72-C5a peptides. Consistently, L72Q-C5a apparently antagonized C5a secretagogue function. These results indicate that the difference between a chemotactic response and a combined chemotactic/secretory response can be attributed not to the nature of the receptor but to guidance by the ligand, at least in the case of C5a receptor-mediated leukocyte responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, T.R.; Lubahn, D.B.; Wilson, E.M.
1988-11-01
The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the mostmore » probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome.« less
The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1.
Rozakis-Adcock, M; Fernley, R; Wade, J; Pawson, T; Bowtell, D
1993-05-06
Many tyrosine kinases, including the receptors for hormones such as epidermal growth factor (EGF), nerve growth factor and insulin, transmit intracellular signals through Ras proteins. Ligand binding to such receptors stimulates Ras guanine-nucleotide-exchange activity and increases the level of GTP-bound Ras, suggesting that these tyrosine kinases may activate a guanine-nucleotide releasing protein (GNRP). In Caenorhabditis elegans and Drosophila, genetic studies have shown that Ras activation by tyrosine kinases requires the protein Sem-5/drk, which contains a single Src-homology (SH) 2 domain and two flanking SH3 domains. Sem-5 is homologous to the mammalian protein Grb2, which binds the autophosphorylated EGF receptor and other phosphotyrosine-containing proteins such as Shc through its SH2 domain. Here we show that in rodent fibroblasts, the SH3 domains of Grb2 are bound to the proline-rich carboxy-terminal tail of mSos1, a protein homologous to Drosophila Sos. Sos is required for Ras signalling and contains a central domain related to known Ras-GNRPs. EGF stimulation induces binding of the Grb2-mSos1 complex to the autophosphorylated EGF receptor, and mSos1 phosphorylation. Grb2 therefore appears to link tyrosine kinases to a Ras-GNRP in mammalian cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrencik, Jill E.; Orans, Jillian; Moore, Linda B.
The human nuclear xenobiotic receptor, pregnane X receptor (PXR), detects a variety of structurally distinct endogenous and xenobiotic compounds and controls expression of genes central to drug and cholesterol metabolism. The macrolide antibiotic rifampicin, a front-line treatment for tuberculosis, is an established PXR agonist and, at 823 Da, is one of the largest known ligands for the receptor. We present the 2.8 {angstrom} crystal structure of the ligand-binding domain of human PXR in complex with rifampicin. We also use structural and mutagenesis data to examine the origins of the directed promiscuity exhibited by the PXRs across species. Three structurally flexiblemore » loops adjacent to the ligand-binding pocket of PXR are disordered in this crystal structure, including the 200-210 region that is part of a sequence insert novel to the promiscuous PXRs relative to other members of the nuclear receptor superfamily. The 4-methyl-1-piperazinyl ring of rifampicin, which would lie adjacent to the disordered protein regions, is also disordered and not observed in the structure. Taken together, our results indicate that one wall of the PXR ligand-binding cavity can remain flexible even when the receptor is in complex with an activating ligand. These observations highlight the key role that structural flexibility plays in PXR's promiscuous response to xenobiotics.« less
Churn, S B; DeLorenzo, R J
1998-10-26
gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Because of the important role that GABA plays in the CNS, alteration of GABAA receptor function would significantly affect neuronal excitability. Protein phosphorylation is a major mechanism for regulating receptor function in the brain and has been implicated in modulating GABAA receptor function. Therefore, this study was initiated to determine the role of calmodulin-dependent kinase II (CaM kinase II) membrane phosphorylation on GABAA receptor binding. Synaptosomal membrane fractions were tested for CaM kinase II activity towards endogenous substrates. In addition, muscimol binding was evaluated under equilibrium conditions in synaptosomal membrane fractions subjected to either basal (Mg2+ alone) or maximal CaM kinase II-dependent phosphorylation. Activation of endogenous CaM kinase II-dependent phosphorylation resulted in a significant enhancement of the apparent Bmax for muscimol binding without significantly altering the apparent binding affinity. The enhanced muscimol binding could be increased further by the addition of exogenous CaM kinase II to synaptosomal membrane fractions. Co-incubation with inhibitors of kinase activity during the phosphorylation reactions blocked the CaM kinase II-dependent increase in muscimol binding. The data support the hypothesis that activation of CaM kinase II-dependent phosphorylation caused an increased GABAA receptor binding and may play an important role in modulating the function of this inhibitory receptor/chloride ion channel complex. Copyright 1998 Elsevier Science B.V.
Uchiyama, Jumpei; Takemura-Uchiyama, Iyo; Kato, Shin-ichiro; Sato, Miho; Ujihara, Takako; Matsui, Hidehito; Hanaki, Hideaki; Daibata, Masanori; Matsuzaki, Shigenobu
2014-01-01
Staphylococcus aureus is a clinically important bacterium that is commensal in both humans and animals. Bacteriophage (phage) attachment to the host bacterial surface is an important process during phage infection, which involves interactions between phage receptor-binding proteins and host receptor molecules. However, little information is available on the receptor-binding protein of S. aureus phages. S. aureus virulent phages S24-1 and S13′ (family Podoviridae, genus AHJD-like viruses) were isolated from sewage. In the present study, we investigated the receptor-binding protein of AHJD-like viruses using phage S24-1. First, based on a comparative genomic analysis of phages S24-1 and S13′, open reading frame 16 (ORF16) of phage S24-1 was speculated to be the receptor-binding protein, which possibly determines the host range. Second, we demonstrated that this was the receptor-binding protein of phage S24-1. Third, our study suggested that wall teichoic acids in the cell walls of S. aureus are the main receptor molecules for ORF16 and phage S24-1. Finally, the C-terminal region of ORF16 may be essential for binding to S. aureus. These results strongly suggest that ORF16 of phage S24-1 and its homologs may be the receptor-binding proteins of AHJD-like viruses. PMID:24591378
Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung
2012-01-01
Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519
Characterization of the Binding of a Potent Synthetic Androgen, Methyltrienolone, to Human Tissues
Menon, Mani; Tananis, Catherine E.; Hicks, L. Louise; Hawkins, Edward F.; McLoughlin, Martin G.; Walsh, Patrick C.
1978-01-01
The potent synthetic androgen methytrienolone (R 1881), which does not bind to serum proteins, was utilized to characterize binding to receptors in human androgen responsive tissues. Cytosol extracts prepared from hypertrophic prostates (BPH) were utilized as the source of receptor for the initial studies. High affinity binding was detected in the cytosol of 29 of 30 samples of BPH (average number of binding sites, 45.8±4.7 fmol/mg of protein; dissociation constant, 0.9±0.2 nM). This binding had the characteristics of a receptor: heat lability, precipitability by 0-33% ammonium sulfate and by protamine sulfate, and 8S sedimentation coefficient. High affinity binding was also detected in cytosol prepared from seminal vesicle, epididymis, and genital skin but not in non-genital skin or muscle. However, similar binding was demonstrated in the cytosol of human uterus. The steroid specificities of binding to the cytosol of male tissues of accessory reproduction and of uterus were similar in that progestational agents were more effective competitors than natural androgens. Binding specificities in cytosol prepared from genital skin were distinctly different and were similar to those of ventral prostate from the castrated rat in that dihydrotestosterone was much more potent than progestins in competition. Thus binding of R 1881 to the cytosol of prostate, epididymis, and seminal vesicle has some characteristics of binding to a progesterone receptor. When the nuclear extract from BPH was analyzed, high affinity binding was demonstrated that conformed to the specificities of binding to an androgen receptor. Here dihydrotestosterone was a more potent competitor than progestational agents. Similar patterns of binding were detected in the crude nuclear extracts from seminal vesicle, epididymis, and genital skin but not in uterus, muscle, or non-genital skin. We conclude that the androgen receptor is not demonstrable in the cytosol of prostate, epididymis, or seminal vesicle of non-castrated men but can be measured in the cytosol of genital skin and the nuclear extracts of androgen responsive tissues. Because steroid hormones exert their major influence within the nucleus of target tissues, the measurement of nuclear receptor may provide valuable insight into the regulation of growth of target tissues. PMID:73547
Role of the thrombin receptor in restenosis and atherosclerosis.
Baykal, D; Schmedtje, J F; Runge, M S
1995-02-23
Thrombus generation is central to thrombosis at vascular lesion sites, including post-PCTA acute reocclusion and chronic restenosis. Thrombin stimulates platelet activation, monocyte and neutrophil chemotaxis, and endothelial production of prothrombotic factors. The varied physiologic effects of thrombin are due to the widespread presence of thrombin receptors in many cell types. The receptor is uniquely activated: thrombin binds to the receptor at the thrombin anion-binding exosite, the receptor ligand ("tethered ligand") apparently being a sequence of 6 amino acids (SFLLRN). Thus, peptides corresponding to the sequence of the tethered ligand can stimulate almost all functions of native thrombin itself. Several intracellular signaling pathways have been identified as important in the restenosis process: the G protein-related pathway, cyclic adenosine monophosphate (cAMP) mediator pathway, and tyrosine kinase activation pathway. In situ hybridization has demonstrated an increase in thrombin receptor mRNA throughout the period of neointimal and vascular lesion development. The mechanism of this increase is unknown, but may be mediated by multiple inflammatory modulators. Several strategies have been tested in animal models for inhibiting thrombin: (1) Hirudin not only prevents thrombin from cleaving fibrinogen, but also prevents thrombin receptor activation. (2) Thrombin receptor antagonist peptides block platelet aggregation effects of thrombin. (3) Mono- and polyclonal antibodies inhibit thrombin receptor activation. (4) Antisense oligonucleotides block thrombin receptor expression.
Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range.
Baba, Satoko; Enomoto, Takeshi; Horisawa, Tomoko; Hashimoto, Takashi; Ono, Michiko
2015-03-01
Antagonism of the dopamine D3 receptor has been hypothesized to be beneficial for schizophrenia cognitive deficits, negative symptoms and extrapyramidal symptoms. However, recent animal and human studies have shown that most antipsychotics do not occupy D3 receptors in vivo, despite their considerable binding affinity for this receptor in vitro. In the present study, we investigated the D3 receptor binding of blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptors antagonist, in vitro and in vivo. Blonanserin showed the most potent binding affinity for human D3 receptors among the tested atypical antipsychotics (risperidone, olanzapine and aripiprazole). Our GTPγS-binding assay demonstrated that blonanserin acts as a potent full antagonist for human D3 receptors. All test-drugs exhibited antipsychotic-like efficacy in methamphetamine-induced hyperactivity in rats. Treatment with blonanserin at its effective dose blocked the binding of [(3)H]-(+)-PHNO, a D2/D3 receptor radiotracer, both in the D2 receptor-rich region (striatum) and the D3 receptor-rich region (cerebellum lobes 9 and 10). On the other hand, the occupancies of other test-drugs for D3 receptors were relatively low. In conclusion, we have shown that blonanserin, but not other tested antipsychotics, extensively occupies D3 receptors in vivo in rats. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.
Donaldson, Joshua M.; Zer, Cindy; Avery, Kendra N.; ...
2013-10-07
Capitalizing on their extraordinary specificity, monoclonal antibodies (mAbs) have become one of the most reengineered classes of biological molecules. A major goal in many of these engineering efforts is to add new functionality to the parental mAb, including the addition of cytotoxins and imaging agents for medical applications. Herein, we present a unique peptide-binding site within the central cavity of the fragment antigen binding framework region of the chimeric, anti-epidermal growth factor receptor mAb cetuximab. We demonstrate through diffraction methods, biophysical studies, and sequence analysis that this peptide, a meditope, has moderate affinity for the Fab, is specific to cetuximabmore » (i.e., does not bind to human IgGs), and has no significant effect on antigen binding. We further demonstrate by diffraction studies and biophysical methods that the meditope binding site can be grafted onto the anti-human epidermal growth factor receptor 2 mAb trastuzumab, and that the antigen binding affinity of the grafted trastuzumab is indistinguishable from the parental mAb. Lastly, we demonstrate a bivalent meditope variant binds specifically and stably to antigen-bearing cells only in the presence of the meditope-enabled mAbs. Collectively, this finding and the subsequent characterization and engineering efforts indicate that this unique interface could serve as a noncovalent “linker” for any meditope-enabled mAb with applications in multiple mAb-based technologies including diagnostics, imaging, and therapeutic delivery.« less
The potential effect of receptor-mediated endocrine modulators across species is of increasing concern. In attempts to address these concerns we are developing androgen and estrogen receptor binding assays using recombinant hormone receptors from a number of species across differ...
Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi
2012-12-04
Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.
Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi
2014-01-01
Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021
Arrestin Scaffolds NHERF1 to the P2Y12 Receptor to Regulate Receptor Internalization*
Nisar, Shaista P.; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J.; Kelly, Eamonn; Mundell, Stuart J.
2012-01-01
We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y12 receptor (P2Y12R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y12R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y12R internalization. In vitro and prior to agonist stimulation P2Y12R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization. PMID:22610101
Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.
Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J
2012-07-13
We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.
Existence of three subtypes of bradykinin B2 receptors in guinea pig.
Seguin, L; Widdowson, P S; Giesen-Crouse, E
1992-12-01
We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)
McDaniel, Brittany K.; Binder, Brad M.
2012-01-01
Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the Kd for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper. PMID:22692214
Differential binding of /sup 3/H-imipramine and /sup 3/H-mianserin in rat cerebral cortex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbrille-Ross, A.; Tang, S.W.; Coscina, D.V.
1981-11-16
Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs /sup 3/H-imipramine and /sup 3/H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both /sup 3/H-imipramine and /sup 3/H-mianserin. /sup 3/H-Mianserin binding was potently displaced by serotonin S/sub 2/ antagonists and exhibited a profile similar to that of /sup 3/H-spiperone binding. In the presence of the serotonin S/sub 2/ antagonist spiperone, antihistamines (H/sub 1/) potently displaced /sup 3/H-mianserin binding. /sup 3/H-Imipramine binding was displacedmore » potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing /sup 3/H-imipramine binding was not similar to their order in displacing /sup 3/H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of /sup 3/H-imipramine but did not alter binding of /sup 3/H-mianserin. Binding of /sup 3/H-imipramine but not /sup 3/H-mianserin was sodium dependent. These results show that /sup 3/H-imipramine and /sup 3/H-mianserin bind to different receptors. /sup 3/H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. /sup 3/H-Mianserin binds to postsynaptic receptors, possibly both serotonin S/sub 2/ and histamine H/sub 1/ receptors, the binding of which is sodium independent.« less
The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.
Berry, Mark D
2011-07-01
2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.
[125I]-GR231118: a high affinity radioligand to investigate neuropeptide Y Y1 and Y4 receptors
Dumont, Yvan; Quirion, Rémi
2000-01-01
GR231118 (also known as 1229U91 and GW1229), a purported Y1 antagonist and Y4 agonist was radiolabelled using the chloramine T method. [125I]-GR231118 binding reached equilibrium within 10 min at room temperature and remained stable for at least 4 h. Saturation binding experiments showed that [125I]-GR231118 binds with very high affinity (Kd of 0.09–0.24 nM) in transfected HEK293 cells with the rat Y1 and Y4 receptor cDNA and in rat brain membrane homogenates. No specific binding sites could be detected in HEK293 cells transfected with the rat Y2 or Y5 receptor cDNA demonstrating the absence of significant affinity of GR231118 for these two receptor classes. Competition binding experiments revealed that specific [125I]-GR231118 binding in rat brain homogenates is most similar to that observed in HEK293 cells transfected with the rat Y1, but not rat Y4, receptor cDNA. Autoradiographic studies demonstrated that [125I]-GR231118 binding sites were fully inhibited by the Y1 antagonist BIBO3304 in most areas of the rat brain. Interestingly, high percentage of [125I]-GR231118/BIBO3304-insensitive binding sites were detected in few areas. These [125I]-GR231118/BIBO3304-insensitive binding sites likely represent labelling to the Y4 receptor subtype. In summary, [125I]-GR231118 is a new radiolabelled probe to investigate the Y1 and Y4 receptors; its major advantage being its high affinity. Using highly selective Y1 antagonists such as BIBO3304 or BIBP3226 it is possible to block the binding of [125I]-GR231118 to the Y1 receptor allowing for the characterization and visualization of the purported Y4 subtype. PMID:10694200
Bolin, Lisa L; Chandhasin, Chandtip; Lobelle-Rich, Patricia A; Albritton, Lorraine M; Levy, Laura S
2011-05-13
Feline leukemia virus (FeLV)-945, a member of the FeLV-A subgroup, was previously isolated from a cohort of naturally infected cats. An unusual multicentric lymphoma of non-T-cell origin was observed in natural and experimental infection with FeLV-945. Previous studies implicated the FeLV-945 surface glycoprotein (SU) as a determinant of disease outcome by an as yet unknown mechanism. The present studies demonstrate that FeLV-945 SU confers distinctive properties of binding to the cell surface receptor. Virions bearing the FeLV-945 Env protein were observed to bind the cell surface receptor with significantly increased efficiency, as was soluble FeLV-945 SU protein, as compared to the corresponding virions or soluble protein from a prototype FeLV-A isolate. SU proteins cloned from other cohort isolates exhibited increased binding efficiency comparable to or greater than FeLV-945 SU. Mutational analysis implicated a domain containing variable region B (VRB) to be the major determinant of increased receptor binding, and identified a single residue, valine 186, to be responsible for the effect. The FeLV-945 SU protein binds its cell surface receptor, feTHTR1, with significantly greater efficiency than does that of prototype FeLV-A (FeLV-A/61E) when present on the surface of virus particles or in soluble form, demonstrating a 2-fold difference in the relative dissociation constant. The results implicate a single residue, valine 186, as the major determinant of increased binding affinity. Computational modeling suggests a molecular mechanism by which residue 186 interacts with the receptor-binding domain through residue glutamine 110 to effect increased binding affinity. Through its increased receptor binding affinity, FeLV-945 SU might function in pathogenesis by increasing the rate of virus entry and spread in vivo, or by facilitating entry into a novel target cell with a low receptor density.
Nabi, A H M Nurun; Biswas, Kazal Boron; Nakagawa, Tsutomu; Ichihara, Atsuhiro; Inagami, Tadashi; Suzuki, Fumiaki
2009-07-01
This study investigated a role of decoy peptide region (R10PIFLKRMPSI19P) in prorenin prosegment for prorenin binding to the (pro)renin receptor using the surface plasmon resonance technique. Three kinds of anti-receptor antibodies labeled as anti-107/121, anti-221/235 and anti-His tag antibody were prepared. The respective antigens D107SVANSIHSLFSEET121 (close to the N-terminal side of receptor), E221IGKRYGEDSEQFRD235 (N-terminal side of the transmembrane part of receptor) and 10xHis sequence (C-terminus) were designed based on the sequence of the receptor. These antibodies were immobilized on the CM5 sensor chip by amine coupling and allowed to bind to the receptor. Human prorenin, renin and the decoy bound to the receptor associated with antibodies. Their association (ka) and dissociation (kd) rate constants were measured and the dissociation constants (KD) were determined using Langmuir 1:1 kinetic binding model. The KD for interaction of prorenin and receptor associated to anti-107/121, anti-221/235 and anti-His tag antibodies were 2.9, 1.2 and 7.8 nM, respectively and for renin they were 9.3, 4.4 and 7.1 nM. The decoy bound to the respective immobilized receptor-antibody complexes at KD's of 6.2, 3.5 and 15.2 nM. Prorenin, renin and decoy had lower KD at the nanomolar ranges compared to those of L1PPTD4P in the prorenin prosegment and A248KKRLFDYVV257 in the C-domain of mature renin. The decoy reduced the binding of not only prorenin but also renin to (P)RR. These data are direct evidence that prorenin, renin and the peptides bind to (P)RR and the decoy reduces prorenin binding, supporting our hypothesis that decoy peptide region has a crucial role in prorenin binding.
Two classes of binding sites for [3H]substance P in rat cerebral cortex.
Geraghty, D P; Burcher, E
1993-01-22
The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)
Nakai, T; Ueda, M; Takeda, R
1978-01-01
The apparent maximum corticosterone binding (B max) with rat brain cytosol and the apparent dissociation constant of this steroid-receptor binding (Kd) estimated with a Scatchard plot was 2.9 X 10(-13) moles/mg cytosol protein and 4.0 X 10(-9) M, respectively. When increasing amounts of CaCl2 or MgCl2 up to 5.0 mM were added, a specific [3H] corticosterone binding increased 4-fold by CaCl2 at concentrations of 1.0-2.0 mM and 1.5-fold by MgCl2 at concentrations of 0.5-5.0 mM. The addition of MnCl2 and KCl did not affect this binding. Binding of corticosterone with rat brain cytosol receptor(s) were decreased by increasing amounts of EGTA and complete inhibition was observed at concentrations equal to and greater than 2.5 mM. Inhibition of this binding by EDTA was less than by EGTA. Either theophylline or dibutyryl cyclic AMP had no effect on this binding.
A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie
In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completelymore » switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazna, Petr; Berka, Karel; Jelinkova, Irena
To better understand the mechanism of interactions between G-protein-coupled melatonin receptors and their ligands, our previously reported homology model of human MT2 receptor with docked 2-iodomelatonin was further refined and used to select residues within TM3, TM6, and TM7 potentially important for receptor-ligand interactions. Selected residues were mutated and radioligand-binding assay was used to test the binding affinities of hMT2 receptors transiently expressed in HEK293 cells. Our data demonstrate that residues N268 and A275 in TM6 as well as residues V291 and L295 in TM7 are essential for 2-iodomelatonin binding to the hMT2 receptor, while TM3 residues M120, G121, V124,more » and I125 may participate in binding of other receptor agonists and/or antagonists. Presented data also hint at possible specific interaction between the side-chain of Y188 in second extracellular loop and N-acetyl group of 2-iodomelatonin.« less
NASA Astrophysics Data System (ADS)
Doke, Atul M.; Sadana, Ajit
2006-05-01
A fractal analysis is presented for the binding and dissociation of different heart-related compounds in solution to receptors immobilized on biosensor surfaces. The data analyzed include LCAT (lecithin cholesterol acyl transferase) concentrations in solution to egg-white apoA-I rHDL immobilized on a biosensor chip surface.1 Single- and dual- fractal models were employed to fit the data. Values of the binding and the dissociation rate coefficient(s), affinity values, and the fractal dimensions were obtained from the regression analysis provided by Corel Quattro Pro 8.0 (Corel Corporation Limited).2 The binding rate coefficients are quite sensitive to the degree of heterogeneity on the sensor chip surface. Predictive equations are developed for the binding rate coefficient as a function of the degree of heterogeneity present on the sensor chip surface and on the LCAT concentration in solution, and for the affinity as a function of the ratio of fractal dimensions present in the binding and the dissociation phases. The analysis presented provided physical insights into these analyte-receptor reactions occurring on different biosensor surfaces.
Electrostatic Similarity Analysis of Human β-Defensin Binding in the Melanocortin System
Nix, Matthew A.; Kaelin, Christopher B.; Palomino, Rafael; Miller, Jillian L.; Barsh, Gregory S.; Millhauser, Glenn L.
2015-01-01
Summary The β-defensins are a class of small cationic proteins that serve as components of numerous systems in vertebrate biology, including the immune and melanocortin systems. Human β-defensin 3 (HBD3), which is produced in the skin, has been found to bind to melanocortin receptors 1 and 4 through complementary electrostatics, a unique mechanism of ligand-receptor interaction. This finding indicates that electrostatics alone, and not specific amino acid contact points, could be sufficient for function in this ligand-receptor system, and further suggests that other small peptide ligands could interact with these receptors in a similar fashion. Here, we conducted molecular-similarity analyses and functional studies of additional members of the human β-defensin family, examining their potential as ligands of melanocortin-1 receptor, through selection based on their electrostatic similarity to HBD3. Using Poisson-Boltzmann electrostatic calculations and molecular-similarity analysis, we identified members of the human β-defensin family that are both similar and dissimilar to HBD3 in terms of electrostatic potential. Synthesis and functional testing of a subset of these β-defensins showed that peptides with an HBD3-like electrostatic character bound to melanocortin receptors with high affinity, whereas those that were anticorrelated to HBD3 showed no binding affinity. These findings expand on the central role of electrostatics in the control of this ligand-receptor system and further demonstrate the utility of employing molecular-similarity analysis. Additionally, we identified several new potential ligands of melanocortin-1 receptor, which may have implications for our understanding of the role defensins play in melanocortin physiology. PMID:26536271
Dittrich, Anne; Scheibner, David; Salaheldin, Ahmed H; Veits, Jutta; Gischke, Marcel; Mettenleiter, Thomas C; Abdelwhab, Elsayed M
2018-02-14
Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host.
Dittrich, Anne; Scheibner, David; Salaheldin, Ahmed H.; Veits, Jutta; Gischke, Marcel
2018-01-01
Wild birds are the reservoir for low-pathogenic avian influenza viruses, which are frequently transmitted to domestic birds and occasionally to mammals. In 2014, an H10N7 virus caused severe mortality in harbor seals in northeastern Europe. Although the hemagglutinin (HA) of this virus was closely related to H10 of avian H10N4 virus, it possessed unique nonsynonymous mutations, particularly in the HA1 subunit in or adjacent to the receptor binding domain and proteolytic cleavage site. Here, the impact of these mutations on virus replication was studied in vitro. Using reverse genetics, an avian H10N4 virus was cloned, and nine recombinant viruses carrying one of eight unique mutations or the complete HA from the seal virus were rescued. Receptor binding affinity, replication in avian and mammalian cell cultures, cell-to-cell spread, and HA cleavability of these recombinant viruses were studied. Results show that wild-type recombinant H10N4 virus has high affinity to avian-type sialic acid receptors and no affinity to mammalian-type receptors. The H10N7 virus exhibits dual receptor binding affinity. Interestingly, Q220L (H10 numbering) in the rim of the receptor binding pocket increased the affinity of the H10N4 virus to mammal-type receptors and completely abolished the affinity to avian-type receptors. No remarkable differences in cell-to-cell spread or HA cleavability were observed. All viruses, including the wild-type H10N7 virus, replicated at higher levels in chicken cells than in human cells. These results indicate that H10N7 acquired adaptive mutations (e.g., Q220L) to enhance replication in mammals and retained replication efficiency in the original avian host. PMID:29443887
Elhaji, Youssef A; Stoica, Ileana; Dennis, Sheldon; Purisima, Enrico O; Lumbroso, Rose; Beitel, Lenore K; Trifiro, Mark A
2006-03-15
Structural studies of the ligand-binding domain (LBD) of several steroid receptors have revealed that the dynamic properties of the C-terminal helix 12 (H12) are the major determinant of the activation mode of these receptors. H12 exhibits high mobility and different conformations in the absence of ligand. Upon ligand binding, H12 is stabilized in a precise position to seal the ligand-binding pocket and finalize the assembly of the activation function (AF-2) domain. In this study, we investigated the role of the conserved proline 892 of the androgen receptor (AR) in directing the dynamic location and orientation of the AR-H12. We used a combined approach including kinetic and biochemical assays with molecular dynamic simulations to analyze two substitutions (P892A and P892L) identified in individuals with complete androgen insensitivity syndrome. Our analyses revealed distinct mechanisms by which these substitutions impair H12 function resulting in severely defective receptors. The AR-P892A receptor exhibited reduced ligand binding and transactivational potential because of an increased flexibility in H12. The AR-P892L substitution renders the receptor inactive due to a distorted, unstructured and misplaced H12. To confirm the mutants' inability to stabilize H12 in an active position, we have developed a novel in vivo assay to evaluate the accessibility of the H12-docking site on the AR-LBD surface. An extrinsic AR-H12 peptide was able to interact with wild-type and mutant LBDs in the absence of ligand. Ligand-induced proper positioning of the intrinsic H12 of wild-type AR prevented these interactions, whereas the misplacement of the mutants' H12 did not. Proline at this position may be critical for H12 dynamics not only in the AR, but also in other nuclear receptors where this proline is conserved.
Hwang, Dae-Sik; Lee, Bo-Young; Kim, Hui-Su; Lee, Min Chul; Kyung, Do-Hyun; Om, Ae-Son; Rhee, Jae-Sung; Lee, Jae-Seong
2014-11-18
Nuclear receptors (NRs) are a large superfamily of proteins defined by a DNA-binding domain (DBD) and a ligand-binding domain (LBD). They function as transcriptional regulators to control expression of genes involved in development, homeostasis, and metabolism. The number of NRs differs from species to species, because of gene duplications and/or lineage-specific gene losses during metazoan evolution. Many NRs in arthropods interact with the ecdysteroid hormone and are involved in ecdysone-mediated signaling in arthropods. The nuclear receptor superfamily complement has been reported in several arthropods, including crustaceans, but not in copepods. We identified the entire NR repertoire of the copepod Tigriopus japonicus, which is an important marine model species for ecotoxicology and environmental genomics. Using whole genome and transcriptome sequences, we identified a total of 31 nuclear receptors in the genome of T. japonicus. Nomenclature of the nuclear receptors was determined based on the sequence similarities of the DNA-binding domain (DBD) and ligand-binding domain (LBD). The 7 subfamilies of NRs separate into five major clades (subfamilies NR1, NR2, NR3, NR4, and NR5/6). Although the repertoire of NR members in, T. japonicus was similar to that reported for other arthropods, there was an expansion of the NR1 subfamily in Tigriopus japonicus. The twelve unique nuclear receptors identified in T. japonicus are members of NR1L. This expansion may be a unique lineage-specific feature of crustaceans. Interestingly, E78 and HR83, which are present in other arthropods, were absent from the genomes of T. japonicus and two congeneric copepod species (T. japonicus and Tigriopus californicus), suggesting copepod lineage-specific gene loss. We identified all NR receptors present in the copepod, T. japonicus. Knowledge of the copepod nuclear receptor repertoire will contribute to a better understanding of copepod- and crustacean-specific NR evolution.
Wang, Jian-Ting; Wang, Shang; Liu, Song-Lin; Wang, Yan-Chun; Li, Jia-Geng; Chen, Yu
2018-04-01
Xiaochaihu decoction is a classic prescription of traditional Chinese medicine. Modern research has proved its anti-depression effect. However, its pharmacological mechanism for anti-depression effect is difficult to be unveiled because of the complexity of compound Chinese medicines. Bupleuri Radix and Scutellariae Radix is the core drug pair of Xiaochaihu decoction. In this research, Bupleuri Radix and Scutellariae Radix were analyzed by the integrative pharmacology platform to study its molecular mechanism for anti-depression. One hundred and sixteen active ingredients were predicted, 62 for Bupleuri Radix, mainly including saikosaponins, acids, alcohols, and 54 for Scutellariae Radix, mainly including flavonoids and glycosides. Its anti-depression effect was relevant to 118 core targets, including 22 known disease targets, such as serotonin receptor(HTR2C), activating transcription factor(ATF1, ATF2), δ opioid receptor(OPRD1), μ opioid receptor (OPRM1), κ opioid receptor(OPRK1), inositol monophosphatase(IMPA1), Toll-like receptor 4 (TLR4), histamine H1 receptor(HRH1), neurotrophic factor tyrosine kinase receptor1 (NTRK1), Glycogen synthetase kinase 3β(GSK3β), etc. The antidepressant effect involved positive regulation of transcription from RNA polymerase Ⅱ promoter, transcription factor binding, cytosol, transcriptional regulation of DNA template, enzyme binding, endocrine system, nervous system, neurotrophin signaling pathway, cell growth and death, signal transduction, thyroid hormone signaling pathway and other related biological processes and metabolic pathways. This study provides a scientific evidence for further study of the anti-depression mechanism of this drug pair. Copyright© by the Chinese Pharmaceutical Association.
Raveh, Barak; London, Nir; Zimmerman, Lior; Schueler-Furman, Ora
2011-04-29
Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions. © 2011 Raveh et al.
Raveh, Barak; London, Nir; Zimmerman, Lior; Schueler-Furman, Ora
2011-01-01
Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions. PMID:21572516
Ahmed, Ahmed H; Oswald, Robert E
2010-03-11
Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.
Ahmed, Ahmed H.; Oswald, Robert E.
2010-01-01
Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115
German, Nadezhda; Decker, Ann M; Gilmour, Brian P; Gay, Elaine A; Wiley, Jenny L; Thomas, Brian F; Zhang, Yanan
2014-09-25
The recent discovery of allosteric modulators of the CB1 receptor including PSNCBAM-1 (4) has generated significant interest in CB1 receptor allosteric modulation. Here in the first SAR study on 4, we have designed and synthesized a series of analogs focusing on modifications at two positions. Pharmacological evaluation in calcium mobilization and binding assays revealed the importance of alkyl substitution at the 2-aminopyridine moiety and electron deficient aromatic groups at the 4-chlorophenyl position for activity at the CB1 receptor, resulting in several analogs with comparable potency to 4. These compounds increased the specific binding of [(3)H]CP55,940, in agreement with previous reports. Importantly, 4 and two analogs dose-dependently reduced the Emax of the agonist curve in the CB1 calcium mobilization assays, confirming their negative allosteric modulator characteristics. Given the side effects associated with CB1 receptor orthosteric antagonists, negative allosteric modulators provide an alternative approach to modulate the pharmacologically important CB1 receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, W.G.
Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand,more » and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.« less
Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin,R.; Clark, S.; Weeks, A.
2005-01-01
Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimermore » interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.« less
Solubilization and purification of melatonin receptors from lizard brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.
Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less
Processing of carcinoembryonic antigen by Kupffer cells: recognition of a penta-peptide sequence.
Gangopadhyay, A; Thomas, P
1996-10-01
Carcinoembryonic antigen (CEA) binds to an 80-kDa cell surface receptor on Kupffer cells via the peptide sequence PELPK (residues 108-112) located at the hinge region between the N and Al immunoglobulin-like domains. This study is aimed at analyzing the specificity of the peptide binding, determining biodistribution of 80-kDa receptor, and processing of CEA by this receptor. We synthesized a number of bovine serum albumin (BSA) derivatives carrying PELPK and related sequences. A series of peptides (YPELPK, YPDLPK, YPDLPR, and YPELGK) were conjugated to bovine serum albumin using N-hydroxysuccinimidyl-4-azidobenzoate. When 125I peptide conjugates, CEA, and BSA were injected intravenously into rats CEA and the PELPK-albumin conjugate were cleared rapidly. The other peptide conjugates and BSA cleared at a much slower rate. Activity of 125I-labeled CEA and PELPK-albumin conjugate per gram of tissue was highest for the liver and spleen. Clearance of 125I-CEA was inhibited by the presence of higher concentrations of the PELPK-albumin conjugate. With isolated rat Kupffer cells, only CEA and the PELPK-albumin conjugate were bound and internalized in vitro and CEA binding was inhibited by higher concentrations of the PELPK-albumin conjugate. Similarly, binding of the PELPK-albumin conjugate was inhibited by the presence of unlabeled CEA. Use of a heterobifunctional cross linking agent demonstrated reaction of the PELPK-albumin with an 80-kDa protein on the Kupffer cell surface by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). This semisynthetic ligand (PELPK-albumin) allows us to examine the function of the 80-kDa receptor without interference due to other properties of CEA including its ability to bind lectins and to cause homotypic aggregation of cells. The consequences of CEA binding to the 80-kDa receptor may have implications in the development of hepatic metastasis from colorectal cancer.
Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo
NASA Astrophysics Data System (ADS)
Schwartz, Rochelle D.; Kellar, Kenneth J.
1983-04-01
Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.
Janero, David R; Korde, Anisha; Makriyannis, Alexandros
2017-01-01
Detailed characterization of the ligand-binding motifs and structure-function correlates of the principal GPCRs of the endocannabinoid-signaling system, the cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors, is essential to inform the rational design of drugs that modulate CB1R- and CB2R-dependent biosignaling for therapeutic gain. We discuss herein an experimental paradigm termed "ligand-assisted protein structure" (LAPS) that affords a means of characterizing, at the amino acid level, CB1R and CB2R structural features key to ligand engagement and receptor-dependent information transmission. For this purpose, LAPS integrates three key disciplines and methodologies: (a) medicinal chemistry: design and synthesis of high-affinity, pharmacologically active probes as reporters capable of reacting irreversibly with particular amino acids at (or in the immediate vicinity of) the ligand-binding domain of the functionally active receptor; (b) molecular and cellular biology: introduction of discrete, conservative point mutations into the target GPCR and determination of their effect on probe binding and pharmacological activity; (c) analytical chemistry: identification of the site(s) of probe-GPCR interaction through focused, bottom-up, amino acid-level proteomic identification of the probe-receptor complex using liquid chromatography tandem mass spectrometry. Subsequent in silico methods including ligand docking and computational modeling provide supplementary data on the probe-receptor interaction as defined by LAPS. Examples of LAPS as applied to human CB2R orthosteric binding site characterization for a biarylpyrazole antagonist/inverse agonist and a classical cannabinoid agonist belonging to distinct chemical classes of cannabinergic compounds are given as paradigms for further application of this methodology to other therapeutic protein targets. LAPS is well positioned to complement other experimental and in silico methods in contemporary structural biology such as X-ray crystallography. © 2017 Elsevier Inc. All rights reserved.
Poliovirus Mutants Resistant to Neutralization with Soluble Cell Receptors
NASA Astrophysics Data System (ADS)
Kaplan, Gerardo; Peters, David; Racaniello, Vincent R.
1990-12-01
Poliovirus mutants resistant to neutralization with soluble cellular receptor were isolated. Replication of soluble receptor-resistant (srr) mutants was blocked by a monoclonal antibody directed against the HeLa cell receptor for poliovirus, indicating that the mutants use this receptor to enter cells. The srr mutants showed reduced binding to HeLa cells and cell membranes. However, the reduced binding phenotype did not have a major impact on viral replication, as judged by plaque size and one-step growth curves. These results suggest that the use of soluble receptors as antiviral agents could lead to the selection of neutralization-resistant mutants that are able to bind cell surface receptors, replicate, and cause disease.
Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R
2013-09-17
Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.
The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors
Pasqualetto, Gaia; Brancale, Andrea; Young, Mark T.
2018-01-01
P2X receptors are trimeric eukaryotic ATP-gated cation channels. Extracellular ATP—their physiological ligand—is released as a neurotransmitter and in conditions of cell damage such as inflammation, and substantial evidence implicates P2X receptors in diseases including neuropathic pain, cancer, and arthritis. In 2009, the first P2X crystal structure, Danio rerio P2X4 in the apo- state, was published, and this was followed in 2012 by the ATP-bound structure. These structures transformed our understanding of the conformational changes induced by ATP binding and the mechanism of ligand specificity, and enabled homology modeling of mammalian P2X receptors for ligand docking and rational design of receptor modulators. P2X receptors are attractive drug targets, and a wide array of potent, subtype-selective modulators (mostly antagonists) have been developed. In 2016, crystal structures of human P2X3 in complex with the competitive antagonists TNP-ATP and A-317491, and Ailuropoda melanoleuca P2X7 in complex with a series of allosteric antagonists were published, giving fascinating insights into the mechanism of channel antagonism. In this article we not only summarize current understanding of small-molecule modulator binding at P2X receptors, but also use this information in combination with previously published structure-function data and molecular docking experiments, to hypothesize a role for the dorsal fin loop region in differential ATP potency, and describe novel, testable binding conformations for both the semi-selective synthetic P2X7 agonist 2′-(3′)-O-(4-benzoyl)benzoyl ATP (BzATP), and the P2X4-selective positive allosteric modulator ivermectin. We find that the distal benzoyl group of BzATP lies in close proximity to Lys-127, a residue previously implicated in BzATP binding to P2X7, potentially explaining the increased potency of BzATP at rat P2X7 receptors. We also present molecular docking of ivermectin to rat P2X4 receptors, illustrating a plausible binding conformation between the first and second transmembrane domains which not only tallies with previous mutagenesis studies, but would also likely have the effect of stabilizing the open channel structure, consistent with the mode of action of this positive allosteric modulator. From our docking simulations and analysis of sequence homology we propose a series of mutations likely to confer ivermectin sensitivity to human P2X1. PMID:29456508
Mizejewski, G J
2015-01-01
Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.
Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain.
Runge, Steffen; Thøgersen, Henning; Madsen, Kjeld; Lau, Jesper; Rudolph, Rainer
2008-04-25
The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.
Wong, Joyce J W; Young, Tracy A; Zhang, Jiayan; Liu, Shiheng; Leser, George P; Komives, Elizabeth A; Lamb, Robert A; Zhou, Z Hong; Salafsky, Joshua; Jardetzky, Theodore S
2017-10-03
Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.
Hsu, Hseng-Kuang; Shao, Pei-Lin; Tsai, Ke-Li; Shih, Huei-Chuan; Lee, Tzu-Ying; Hsu, Chin
2005-04-01
The present study was designed to identify possible signaling pathways, which may play a role in prevention of neuronal apoptosis in the sexually dimorphic nucleus of the preoptic area (SDN-POA) after physiological activation of the N-methyl-D-aspartate (NMDA) receptor. Gene response to the blockage of the NMDA receptor by an antagonist (dizocilpine hydrogen maleate; MK-801) was screened after suppression subtractive hybridization (SSH). The results showed that differential screening after SSH detected the presence of some neurotrophic genes (RNA binding motif protein 3 (RBM3), alpha-tubulin) as well as apoptosis-related genes (Bcl-2, cytochrome oxidase subunit II, cytochrome oxidase subunit III) in the SDN-POA of male rats, which were down-regulated by blocking the NMDA receptor. The RT-PCR products of the aforementioned genes in MK-801-treated males were significantly less than that in untreated males. In particular, the expression of Bcl-2 mRNA, including Bcl-2 protein, in male rats were significantly suppressed by MK-801 treatment. Moreover, the binding activity of nuclear factor kappaB (NFkappaB) was significantly higher in male rats than in females, but significantly diminished by blocking the NMDA receptor with MK-801 in male rats. No significant difference in cAMP response element-binding protein (CREB) binding activity was observed among untreated male, MK-801-treated male, untreated female and MK-801-treated female groups. These results suggest that genes regulated by NMDA receptor activation might participate in neuronal growth and/or anti-apoptosis, and support an important signaling pathway of NFkappaB activation and its target gene, Bcl-2, in preventing neuronal apoptosis in the SDN-POA of male rats during sexual development.
Chan, Y H; Cheng, C H K; Chan, K M
2007-03-01
Using goldfish as a model, the structure-function relationship of goldfish growth hormone was studied using the strategy of homologous domain swapping. Chimeric mutants were constructed by exchanging homologous regions between goldfish growth hormone (gfGH II) and goldfish prolactin (gfPRL) with their cloned complementary DNAs. Six mutants, with their domain-swapped, were generated to have different combinations of three target regions, including the helix a, helix d and the large section in between these helices (possess the helices b, c and other random coiled regions). After expression in E. coli and refolding, these mutants were characterized by using competitive receptor binding assay (RRA) and growth hormone responding promoter activation assay. The different activity profiles of mutants in Spi 2.1 gene promoter assays from that in RRA shows that, for gfGH, receptor binding dose not confer receptor signal activations. When either helices a or d of gfGH was maintained with other helices replaced by their gfPRL counterparts, both receptor binding and hence gene activation activities are reduced. In mutants with helices b and c in gfGH maintained, containing the gfGH middle section, and helices a and d swapped with gfPRL, the had reduced RRA activities but the promoter activation activities retained. In conclusion, as in the case of human GH, the gfGH molecule possesses two functional sites: one of them is composed of discontinuous epitopes located on the target regions of this study and is for receptor binding; another site is located on the middle section of the molecule that helices a and d are not involved, and it is for activation of GH receptor and intracellular signals.
Tognolini, Massimiliano; Incerti, Matteo; Mohamed, Iftiin Hassan; Giorgio, Carmine; Russo, Simonetta; Bruni, Renato; Lelli, Barbara; Bracci, Luisa; Noberini, Roberta; Pasquale, Elena B.; Barocelli, Elisabetta; Vicini, Paola; Mor, Marco
2012-01-01
The Eph–ephrin system, including the EphA2 receptor and the ephrin-A1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist able to inhibit EphA2 receptor activation and therefore potentially useful as a novel EphA2 receptor targeting agent. Here, we explore the structure-activity relationships of a focused set of lithocholic acid derivatives, based on molecular modelling investigation and displacement binding assays. Our exploration shows that while the 3-α-hydroxyl group of lithocholic acid has a negligible role in the recognition of the EphA2 receptor, its carboxylate group is critical for disrupting the binding of ephrin-A1 to the EphA2. As a result of our investigation, we identified (5β)-cholan-24-oic acid (cholanic acid) as a novel compound that competitively inhibits EphA2-ephrin-A1 interaction with higher potency than lithocholic acid. Surface plasmon resonance analysis indicates that cholanic acid binds specifically and reversibly to the ligand-binding domain of EphA2, with a steady-state dissociation constant (KD) in the low micromolar range. Furthermore, cholanic acid blocks the phosphorylation of EphA2 and cell retraction and rounding in PC3 prostate cancer cells, two effects that depend on EphA2 activation by the ephrin-A1 ligand. These findings suggest that cholanic acid can be used as a template structure to design effective EphA2 antagonists, with potential impact in the elucidation of the role played by this receptor in pathological conditions. PMID:22529030
Characterization of a neurokinin B receptor site in rat brain using a highly selective radioligand.
Laufer, R; Gilon, C; Chorev, M; Selinger, Z
1986-08-05
We have recently characterized a tachykinin receptor subtype (SP-N) whose preferred ligand is the mammalian neuropeptide, neurokinin B (Laufer, R., Wormser, U., Friedman, Z. Y., Gilon, C., Chorev, M., and Selinger, Z. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 7444-7448). To investigate this novel tachykinin receptor, we have now prepared a radiolabeled peptide, N alpha-[( 125I]desamino-3-iodotyrosyl)-[Asp5,6, N-methyl-Phe8]substance P (5-11) heptapeptide (125I-BH-NH-Senktide), which selectively interacts with the SP-N receptor subtype. The binding of 125I-BH-NH-Senktide to rat cerebral cortex membranes was studied under conditions that minimized nonspecific binding. Unlike other tachykinin receptor probes, this radioligand is not degraded during the binding experiment. Binding of 125I-BH-NH-Senktide is reversible, saturable, and of high affinity (KD = 0.9 nM). The radioligand labels a single class of binding site (122 fmol binding sites/mg of protein), as indicated by a linear Scatchard plot and a Hill coefficient close to unity (nH = 1.05). The pharmacological specificity of this binding site corresponds to that of the neuronal SP-N receptor in guinea pig ileum myenteric plexus, which was determined by a functional bioassay. Among various rat brain regions, the highest binding was observed in the cerebral cortex, olfactory bulb, hypothalamus, and hippocampus. These results suggest the existence and specific distribution of a neurokinin B receptor site of the SP-N type in rat brain. 125I-BH-NH-Senktide is the first selective and potent probe for this receptor and is thus an important tool for further studies of its distribution, regulation, and functional role.
Anatomical Location of LPA1 Activation and LPA Phospholipid Precursors in Rodent and Human Brain
González de San Román, E; Manuel, I; Giralt, MT; Chun, J; Estivill-Torrús, G; Rodriguez de Fonseca, F; Santín, LJ; Ferrer, I; Rodriguez-Puertas, R
2016-01-01
Lysophosphatidic acid (LPA) is a signaling molecule that binds to six known G protein-coupled receptors (GPCRs): LPA1–LPA6. LPA evokes several responses in the CNS including cortical development and folding, growth of the axonal cone and its retraction process. Those cell processes involve survival, migration, adhesion proliferation, differentiation and myelination. The anatomical localization of LPA1 is incompletely understood, particularly with regard to LPA binding. Therefore, we have used functional [35S]GTPγS autoradiography to verify the anatomical distribution of LPA1 binding sites in adult rodent and human brain. The greatest activity was observed in myelinated areas of the white matter such as corpus callosum, internal capsule and cerebellum. MaLPA1-null mice (a variant of LPA1-null) lack [35S]GTPγS basal binding in white matter areas, where the LPA1 receptor is expressed at high levels, suggesting a relevant role of the activity of this receptor in the most myelinated brain areas. In addition, phospholipid precursors of LPA were localized by MALDI-IMS in both rodent and human brain slices identifying numerous species of phosphatides (PA) and phosphatidylcholines (PC). Both PA and PC species represent potential LPA precursors. The anatomical distribution of these precursors in rodent and human brain may indicate a metabolic relationship between LPA and LPA1 receptors. PMID:25857358
Structural evidence for the role of polar core residue Arg175 in arrestin activation
Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu
2015-01-01
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail ‘activating’ arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’ leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E. PMID:26510463
Structural evidence for the role of polar core residue Arg175 in arrestin activation.
Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu
2015-10-29
Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail 'activating' arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the 'phosphosensor' leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361-404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.
Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species
Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter
2012-01-01
Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462
Mauzy, C; Wu, L H; Egloff, A M; Mirzadegan, T; Chung, F Z
1992-01-01
In the G protein-coupled receptor family, a highly conserved aspartic acid located within the third transmembrane domain has been shown to be involved in ligand binding. Within the endothelin (ET) peptide receptor family, this aspartic acid has been replaced by a lysine. To assess the importance of this residue in ET binding, the lysine (position 181) of rat ET type B receptor was replaced by an aspartic acid. The effects on ligand binding and phosphoinositide turnover of both the wild-type and K181D mutant receptors were examined using transient receptor expression in COS-7 cells. Using [125I]ET-1 as the radioactive peptide ligand in displacement binding studies, the wild-type receptor displayed a typical non-isopeptide-selective binding profile with similar IC50 values (0.2-0.6 nM) for all three ET peptides (ET-1, ET-2, and ET-3). The mutant receptor showed an increase in IC50 values for ET-1 (5 nM), ET-2 (27 nM), and ET-3 (127 nM). The K181D mutant receptor still elicited full inositol phosphate (IP) accumulation responses in the presence of saturating concentrations of ETs (10 nM of ET-1, 100 nM of ET-2, or 1 microM of ET-3), indicating that the mutation did not affect G protein coupling.
In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2
Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R
2018-01-01
Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V1) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys8]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg8]-vasopressin (AVP) at V1 and vasopressin-2 (V2) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V1 and V2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [3H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V1) and cyclic adenosine monophosphate (V2). Binding potency at V1 and V2 was AVP>LVP>>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V1 than for V2. Cellular activity potency was also AVP>LVP>>terlipressin. Terlipressin was a partial agonist at V1 and a full agonist at V2; LVP was a full agonist at both V1 and V2. The in vivo response to terlipressin is likely due to the partial V1 agonist activity of terlipressin and full V1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors. PMID:29302194
In vitro binding and receptor-mediated activity of terlipressin at vasopressin receptors V1 and V2.
Jamil, Khurram; Pappas, Stephen Chris; Devarakonda, Krishna R
2018-01-01
Terlipressin, a synthetic, systemic vasoconstrictor with selective activity at vasopressin-1 (V 1 ) receptors, is a pro-drug for the endogenous/natural porcine hormone [Lys 8 ]-vasopressin (LVP). We investigated binding and receptor-mediated cellular activities of terlipressin, LVP, and endogenous human hormone [Arg 8 ]-vasopressin (AVP) at V 1 and vasopressin-2 (V 2 ) receptors. Cell membrane homogenates of Chinese hamster ovary cells expressing human V 1 and V 2 receptors were used in competitive binding assays to measure receptor-binding activity. These cells were used in functional assays to measure receptor-mediated cellular activity of terlipressin, LVP, and AVP. Binding was measured by [ 3 H]AVP counts, and the activity was measured by fluorometric detection of intracellular calcium mobilization (V 1 ) and cyclic adenosine monophosphate (V 2 ). Binding potency at V 1 and V 2 was AVP>LVP>terlipressin. LVP and terlipressin had approximately sixfold higher affinity for V 1 than for V 2 . Cellular activity potency was also AVP>LVP>terlipressin. Terlipressin was a partial agonist at V 1 and a full agonist at V 2 ; LVP was a full agonist at both V 1 and V 2 . The in vivo response to terlipressin is likely due to the partial V 1 agonist activity of terlipressin and full V 1 agonist activity of its metabolite, LVP. These results provide supportive evidence for previous findings and further establish terlipressin pharmacology for vasopressin receptors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarkar, Vinod B.; Babayeva, Nigar D.; Rizzino, Angie
2010-10-08
Ets proteins are transcription factors that activate or repress the expression of genes that are involved in various biological processes, including cellular proliferation, differentiation, development, transformation and apoptosis. Like other Ets-family members, Elf3 functions as a sequence-specific DNA-binding transcriptional factor. A mouse Elf3 C-terminal fragment (amino-acid residues 269-371) containing the DNA-binding domain has been crystallized in complex with mouse type II TGF-{beta} receptor promoter (TR-II) DNA. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 42.66, b = 52, c = 99.78 {angstrom}, and diffracted to a resolution of 2.2 {angstrom}.
Enantiomeric cannabidiol derivatives: synthesis and binding to cannabinoid receptors.
Hanus, Lumír O; Tchilibon, Susanna; Ponde, Datta E; Breuer, Aviva; Fride, Ester; Mechoulam, Raphael
2005-03-21
(-)-Cannabidiol (CBD) is a major, non psychotropic constituent of cannabis. It has been shown to cause numerous physiological effects of therapeutic importance. We have reported that CBD derivatives in both enantiomeric series are of pharmaceutical interest. Here we describe the syntheses of the major CBD metabolites, (-)-7-hydroxy-CBD and (-)-CBD-7-oic acid and their dimethylheptyl (DMH) homologs, as well as of the corresponding compounds in the enantiomeric (+)-CBD series. The starting materials were the respective CBD enantiomers and their DMH homologs. The binding of these compounds to the CB(1) and CB(2) cannabinoid receptors are compared. Surprisingly, contrary to the compounds in the (-) series, which do not bind to the receptors, most of the derivatives in the (+) series bind to the CB(1) receptor in the low nanomole range. Some of these compounds also bind weakly to the CB(2) receptor.
NASA Technical Reports Server (NTRS)
Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.
1995-01-01
A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.
Is the isolated ligand binding domain a good model of the domain in the native receptor?
Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi
2003-05-16
Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.
Profile of neratinib and its potential in the treatment of breast cancer
Feldinger, Katharina; Kong, Anthony
2015-01-01
The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s). PMID:26089701
Profile of neratinib and its potential in the treatment of breast cancer.
Feldinger, Katharina; Kong, Anthony
2015-01-01
The HER (ErbB) receptor tyrosine kinase receptors are implicated in many cancers and several anti-HER treatments are now approved. In recent years, a new group of compounds that bind irreversibly to the adenosine triphosphate binding pocket of HER receptors have been developed. One of these compounds, neratinib, has passed preclinical phases and is currently undergoing various clinical trials. This manuscript reviews the preclinical as well as clinical data on neratinib. As a pan-HER inhibitor, this irreversible tyrosine kinase inhibitor binds and inhibits the tyrosine kinase activity of epidermal growth factor receptors, EGFR (or HER1), HER2 and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib has been shown to be effective against HER2-overexpressing or mutant tumors in vitro and in vivo. Neratinib is currently being investigated in various clinical trials in breast cancers and other solid tumors, including those with HER2 mutation. Earlier studies have already shown promising clinical activity for neratinib. However, more translational research is required to investigate biomarkers that could help to predict response and resistance for selection of appropriate patients for treatment with neratinib, either as monotherapy or in combination with other drug(s).
Orlowska, Karina; Molcan, Tomasz; Swigonska, Sylwia; Sadowska, Agnieszka; Jablonska, Monika; Nynca, Anna; Jastrzebski, Jan P; Ciereszko, Renata E
2016-06-01
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and natural chemicals, including toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the present study, homology models of the porcine AhR-ligand binding domain (LBD) and the porcine aryl hydrocarbon receptor nuclear translocator-ligand binding domain (ARNT-LBD) were created on the basis of structures of closely related respective proteins i.e., human Hif-2α and ARNT. Molecular docking of TCDD to the porcine AhR-LBD model revealed high binding affinity (-8.8kcal/mol) between TCDD and the receptor. Moreover, formation of the TCDD/AhR-LBD complex was confirmed experimentally with the use of electrophoretic mobility shift assay (EMSA). It was found that TCDD (10nM, 2h of incubation) not only bound to the AhR in the porcine granulosa cells but also activated the receptor. The current study provides a framework for examining the key events involved in the ligand-dependent activation of the AhR. Copyright © 2016 Elsevier Inc. All rights reserved.
Gupta, N; McAllister, R; Drance, S M; Rootman, J; Cynader, M S
1994-01-01
Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis. Images PMID:7918268
Exploring new scaffolds for angiotensin II receptor antagonism.
Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis
2016-09-15
Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai
A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GRmore » LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.« less
Down-modulation of receptors for phorbol ester tumor promoter in primary epidermal cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solanki, V.; Slaga, T.J.
1982-01-01
The specific (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDBu) binding to intact epidermal cells displayed the phenomenon of down-modulation, i.e., the specific binding of (/sup 3/H)PDBu to its receptors on primary epidermal cells reached a maximum within 1 h and steadily declined thereafter. The apparent down-modulation of radiolabel resulted from a partial loss in the total number of receptors; the affinity of receptors for the ligand was essentially unchanged. A number of agents such as chloroquine, methylamine, or arginine which are known to prevent clustering, down-modulation, and/or internalization of several hormone receptors did not affect the down-modulation of phorbol ester receptors. Furthermore,more » cycloheximide had no effect either on down-modulation or on the binding capacity of cells. The surface binding capacity of down-modulated cells following a 90-min incubation with unlabeled ligand was almost returned to normal within 1 h. The effect of the antidepressant drug chlorpromazine, which is known to interact with calmodulin, on (/sup 3/H)PDBu binding was also investigated. Our data indicate that the effect of chlorpromazine on (/sup 3/H)PDBu binding is probably unrelated to its calmodulin-binding activity.« less
Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T
1992-01-01
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663
Absence of C-type natriuretic peptide receptors in hamster glomeruli.
Luk, J K; Wong, E F; Wong, N L
1994-01-01
The distribution of atrial natriuretic peptide receptor B (ANPR-B) varies between tissues and species. The aim of this study is to determine whether ANPR-B is present in the hamster glomeruli. In vitro C-type natriuretic peptide (CNP)- and atrial natriuretic factor (ANF)-stimulated cGMP accumulation studies were performed in hamster glomeruli. Elevated cGMP accumulations were observed upon ANF addition. No cGMP response was seen with CNP. Competitive receptor-binding experiments were performed with 125I-CNP and 125I-ANF against their respective cold peptides in hamster glomeruli. Although no CNP binding was detected, positive ANF binding was found and two types of ANF receptor were demonstrated. The affinity (Kdl) and maximum binding capacity (Bmaxl) of the high-affinity ANF receptor were 0.014 +/- 0.001 nM and 60.4 +/- 10.2 fmol/mg protein, respectively. Those of the low-affinity receptor (Kd2 and Bmax2) were 45.7 +/- 6.2 nM and 28.3 +/- 6.3 pmol/mg protein, respectively. Similarly, saturation binding experiments also failed to show any CNP receptor binding in hamster glomeruli. This finding suggests that ANPR-B is not present in hamster glomeruli and CNP is not a direct physiological regulator of hamster renal function.
A Sphingosine 1-phosphate receptor 2 selective allosteric agonist
Satsu, Hideo; Schaeffer, Marie-Therese; Guerrero, Miguel; Saldana, Adrian; Eberhart, Christina; Hodder, Peter; Cayanan, Charmagne; Schürer, Stephan; Bhhatarai, Barun; Roberts, Ed; Rosen, Hugh; Brown, Steven J.
2013-01-01
Molecular probe tool compounds for the Sphingosine 1-phosphate receptor 2 (S1PR2) are important for investigating the multiple biological processes in which the S1PR2 receptor has been implicated. Amongst these are NF-κB-mediated tumor cell survival and fibroblast chemotaxis to fibronectin. Here we report our efforts to identify selective chemical probes for S1PR2 and their characterization. We employed high throughput screening to identify two compounds which activate the S1PR2 receptor. SAR optimization led to compounds with high nanomolar potency. These compounds, XAX-162 and CYM-5520, are highly selective and do not activate other S1P receptors. Binding of CYM-5520 is not competitive with the antagonist JTE-013. Mutation of receptor residues responsible for binding to the zwitterionic headgroup of sphingosine 1-phosphate (S1P) abolishes S1P activation of the receptor, but not activation by CYM-5520. Competitive binding experiments with radiolabeled S1P demonstrate that CYM-5520 is an allosteric agonist and does not displace the native ligand. Computational modeling suggests that CYM-5520 binds lower in the orthosteric binding pocket, and that co-binding with S1P is energetically well tolerated. In summary, we have identified an allosteric S1PR2 selective agonist compound. PMID:23849205
Forman, Stuart A; Miller, Keith W
2016-11-01
IV general anesthetics, including propofol, etomidate, alphaxalone, and barbiturates, produce important actions by enhancing γ-aminobutyric acid type A (GABAA) receptor activation. In this article, we review scientific studies that have located and mapped IV anesthetic sites using photoaffinity labeling and substituted cysteine modification protection. These anesthetics bind in transmembrane pockets between subunits of typical synaptic GABAA receptors, and drugs that display stereoselectivity also show remarkably selective interactions with distinct interfacial sites. These results suggest strategies for developing new drugs that selectively modulate distinct GABAA receptor subtypes.
ERIC Educational Resources Information Center
Madak Erdogan, Zeynep
2009-01-01
Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…
Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis
2017-03-16
Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.
Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.
2011-09-28
Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusivemore » protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.« less
Satoh, T; Fantl, W J; Escobedo, J A; Williams, L T; Kaziro, Y
1993-01-01
A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells. Therefore, it is likely that several different PDGF receptor-mediated signaling pathways function upstream of Ras, and the extent of the contribution of each pathway for the regulation of Ras may differ among different cell types. Images PMID:8388543
List, K; Høyer-Hansen, G; Rønne, E; Danø, K; Behrendt, N
1999-01-01
Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interference with conformational properties of the receptor critical for ligand binding. This distinction is central when employing the antibodies as tools in the elucidation of the structure-function relationship of the protein in question. We have studied the effect of monoclonal antibodies against the urokinase plasminogen activator receptor (uPAR), a protein located on the surface of various types of malignant and normal cells which is involved in the direction of proteolytic degradation reactions in the extracellular matrix. We show that surface plasmon resonance/biomolecular interaction analysis (BIA) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former antibody efficiently blocked the receptor against subsequent ligand binding but was unable to promote the dissociation of a preformed receptor-ligand complex. The latter antibody was capable of binding the preformed complex, forming a transient trimolecular assembly, and promoting the dissociation of the uPA/uPAR complex. The continuous recording of binding and dissociation, obtained in BIA, is central in characterizing these phenomena. The identification of a non-competitive inhibitory mechanism against this receptor reveals the presence of a determinant which influences the binding properties of a remote site in the molecular structure and which could be an important target for a putative synthetic antagonist.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahy, N.; Woolkalis, M.; Thermos, K.
1988-08-01
The effects of pertussis toxin treatment on the characteristics of somatostatin receptors in the anterior pituitary tumor cell line AtT-20 were examined. Pertussis toxin selectively catalyzed the ADP ribosylation of the alpha subunits of the inhibitory GTP binding proteins in AtT-20 cells. Toxin treatment abolished somatostatin inhibition of forskolin-stimulated adenylyl cyclase activity and somatostatin stimulation of GTPase activity. To examine the effects of pertussis toxin treatment on the characteristics of the somatostatin receptor, the receptor was labeled by the somatostatin analog (125I)CGP 23996. (125I)CGP 23996 binding to AtT-20 cell membranes was saturable and within a limited concentration range was tomore » a single high affinity site. Pertussis toxin treatment reduced the apparent density of the high affinity (125I)CGP 23996 binding sites in AtT-20 cell membranes. Inhibition of (125I)CGP 23996 binding by a wide concentration range of CGP 23996 revealed the presence of two binding sites. GTP predominantly reduced the level of high affinity sites in control membranes. Pertussis toxin treatment also diminished the amount of high affinity sites. GTP did not affect (125I)CGP 23996 binding in the pertussis toxin-treated membranes. The high affinity somatostatin receptors were covalently labeled with (125I) CGP 23996 and the photoactivated crosslinking agent n-hydroxysuccinimidyl-4-azidobenzoate. No high affinity somatostatin receptors, covalently bound to (125I)CGP 23996, were detected in the pertussis toxin-treated membranes. These results are most consistent with pertussis toxin uncoupling the inhibitory G proteins from the somatostatin receptor thereby converting the receptor from a mixed population of high and low affinity sites to only low affinity receptors.« less