Jones, Mirkka M; Tuomisto, Hanna; Borcard, Daniel; Legendre, Pierre; Clark, David B; Olivas, Paulo C
2008-03-01
The degree to which variation in plant community composition (beta-diversity) is predictable from environmental variation, relative to other spatial processes, is of considerable current interest. We addressed this question in Costa Rican rain forest pteridophytes (1,045 plots, 127 species). We also tested the effect of data quality on the results, which has largely been overlooked in earlier studies. To do so, we compared two alternative spatial models [polynomial vs. principal coordinates of neighbour matrices (PCNM)] and ten alternative environmental models (all available environmental variables vs. four subsets, and including their polynomials vs. not). Of the environmental data types, soil chemistry contributed most to explaining pteridophyte community variation, followed in decreasing order of contribution by topography, soil type and forest structure. Environmentally explained variation increased moderately when polynomials of the environmental variables were included. Spatially explained variation increased substantially when the multi-scale PCNM spatial model was used instead of the traditional, broad-scale polynomial spatial model. The best model combination (PCNM spatial model and full environmental model including polynomials) explained 32% of pteridophyte community variation, after correcting for the number of sampling sites and explanatory variables. Overall evidence for environmental control of beta-diversity was strong, and the main floristic gradients detected were correlated with environmental variation at all scales encompassed by the study (c. 100-2,000 m). Depending on model choice, however, total explained variation differed more than fourfold, and the apparent relative importance of space and environment could be reversed. Therefore, we advocate a broader recognition of the impacts that data quality has on analysis results. A general understanding of the relative contributions of spatial and environmental processes to species distributions and beta-diversity requires that methodological artefacts are separated from real ecological differences.
The spatial patterns of directional phenotypic selection.
Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M
2013-11-01
Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.
Warren, Victoria E; Marques, Tiago A; Harris, Danielle; Thomas, Len; Tyack, Peter L; Aguilar de Soto, Natacha; Hickmott, Leigh S; Johnson, Mark P
2017-03-01
Passive acoustic monitoring has become an increasingly prevalent tool for estimating density of marine mammals, such as beaked whales, which vocalize often but are difficult to survey visually. Counts of acoustic cues (e.g., vocalizations), when corrected for detection probability, can be translated into animal density estimates by applying an individual cue production rate multiplier. It is essential to understand variation in these rates to avoid biased estimates. The most direct way to measure cue production rate is with animal-mounted acoustic recorders. This study utilized data from sound recording tags deployed on Blainville's (Mesoplodon densirostris, 19 deployments) and Cuvier's (Ziphius cavirostris, 16 deployments) beaked whales, in two locations per species, to explore spatial and temporal variation in click production rates. No spatial or temporal variation was detected within the average click production rate of Blainville's beaked whales when calculated over dive cycles (including silent periods between dives); however, spatial variation was detected when averaged only over vocal periods. Cuvier's beaked whales exhibited significant spatial and temporal variation in click production rates within vocal periods and when silent periods were included. This evidence of variation emphasizes the need to utilize appropriate cue production rates when estimating density from passive acoustic data.
Wodschow, Kirstine; Hansen, Birgitte; Schullehner, Jörg; Ersbøll, Annette Kjær
2018-06-08
Concentrations and spatial variations of the four cations Na, K, Mg and Ca are known to some extent for groundwater and to a lesser extent for drinking water. Using Denmark as case, the purpose of this study was to analyze the spatial and temporal variations in the major cations in drinking water. The results will contribute to a better exposure estimation in future studies of the association between cations and diseases. Spatial and temporal variations and the association with aquifer types, were analyzed with spatial scan statistics, linear regression and a multilevel mixed-effects linear regression model. About 65,000 water samples of each cation (1980⁻2017) were included in the study. Results of mean concentrations were 31.4 mg/L, 3.5 mg/L, 12.1 mg/L and 84.5 mg/L for 1980⁻2017 for Na, K, Mg and Ca, respectively. An expected west-east trend in concentrations were confirmed, mainly explained by variations in aquifer types. The trend in concentration was stable for about 31⁻45% of the public water supply areas. It is therefore recommended that the exposure estimate in future health related studies not only be based on a single mean value, but that temporal and spatial variations should also be included.
Hurricane Directional Wave Spectrum Spatial Variation at Landfall
NASA Technical Reports Server (NTRS)
Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Hurricane Directional Wave Spectrum Spatial Variation at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.
1999-01-01
On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Temporal and spatial variations in fly ash quality
Hower, J.C.; Trimble, A.S.; Eble, C.F.
2001-01-01
Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.
The effects of oil spills on marine fish: Implications of spatial variation in natural mortality.
Langangen, Ø; Olsen, E; Stige, L C; Ohlberger, J; Yaragina, N A; Vikebø, F B; Bogstad, B; Stenseth, N C; Hjermann, D Ø
2017-06-15
The effects of oil spills on marine biological systems are of great concern, especially in regions with high biological production of harvested resources such as in the Northeastern Atlantic. The scientific studies of the impact of oil spills on fish stocks tend to ignore that spatial patterns of natural mortality may influence the magnitude of the impact over time. Here, we first illustrate how spatial variation in natural mortality may affect the population impact by considering a thought experiment. Second, we consider an empirically based example of Northeast Arctic cod to extend the concept to a realistic setting. Finally, we present a scenario-based investigation of how the degree of spatial variation in natural mortality affects the impact over a gradient of oil spill sizes. Including the effects of spatial variations in natural mortality tends to widen the impact distribution, hence increasing the probability of both high and low impact events. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kuehnl, Andreas; Salvermoser, Michael; Erk, Alexander; Trenner, Matthias; Schmid, Volker; Eckstein, Hans-Henning
2018-06-01
This study aimed to analyze the spatial distribution and regional variation of the hospital incidence and in hospital mortality of abdominal aortic aneurysms (AAA) in Germany. German DRG statistics (2011-2014) were analysed. Patients with ruptured AAA (rAAA, I71.3, treated or not) and patients with non-ruptured AAA (nrAAA, I71.4, treated by open or endovascular aneurysm repair) were included. Age, sex, and risk standardisation was done using standard statistical procedures. Regional variation was quantified using systematic component of variation. To analyse spatial auto-correlation and spatial pattern, global Moran's I and Getis-Ord Gi* were calculated. A total of 50,702 cases were included. Raw hospital incidence of AAA was 15.7 per 100,000 inhabitants (nrAAA 13.1; all rAAA 2.7; treated rAAA 1.6). The standardised hospital incidence of AAA ranged from 6.3 to 30.3 per 100,000. Systematic component of variation proportion was 96% in nrAAA and 55% in treated rAAA. Incidence rates of all AAA were significantly clustered with above average values in the northwestern parts of Germany and below average values in the south and eastern regions. Standardised mortality of nrAAA ranged from 1.7% to 4.3%, with that of treated rAAA ranging from 28% to 52%. Regional variation and spatial distribution of standardised mortality was not different from random. There was significant regional variation and clustering of the hospital incidence of AAA in Germany, with higher rates in the northwest and lower rates in the southeast. There was no significant variation in standardised (age/sex/risk) mortality between counties. Copyright © 2018. Published by Elsevier B.V.
Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An
2018-05-01
In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.
NASA Astrophysics Data System (ADS)
Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.
2010-09-01
To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.
Multiscale spatial and temporal estimation of the b-value
NASA Astrophysics Data System (ADS)
García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.
2017-12-01
The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.
Environment-dependent variation in selection on life history across small spatial scales.
Lange, Rolanda; Monro, Keyne; J Marshall, Dustin
2016-10-01
Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Szoke, Andrei; Pignon, Baptiste; Baudin, Grégoire; Tortelli, Andrea; Richard, Jean-Romain; Leboyer, Marion; Schürhoff, Franck
2016-07-01
We sought to determine whether significant variation in the incidence of clinically relevant psychoses existed at an ecological level in an urban French setting, and to examine possible factors associated with this variation. We aimed to advance the literature by testing this hypothesis in a novel population setting and by comparing a variety of spatial models. We sought to identify all first episode cases of non-affective and affective psychotic disorders presenting in a defined urban catchment area over a 4 years period, over more than half a million person-years at-risk. Because data from geographic close neighbourhoods usually show spatial autocorrelation, we used for our analyses Bayesian modelling. We included small area neighbourhood measures of deprivation, migrants' density and social fragmentation as putative explanatory variables in the models. Incidence of broad psychotic disorders shows spatial patterning with the best fit for models that included both strong autocorrelation between neighbouring areas and weak autocorrelation between areas further apart. Affective psychotic disorders showed similar spatial patterning and were associated with the proportion of migrants/foreigners in the area (inverse correlation). In contrast, non-affective psychoses did not show spatial patterning. At ecological level, the variation in the number of cases and the factors that influence this variation are different for non-affective and affective psychotic disorders. Important differences in results-compared with previous studies in different settings-point to the importance of the context and the necessity of further studies to understand these differences.
Climatic change by cloudiness linked to the spatial variability of sea surface temperatures
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
An active role in modifying the earth's climate is suggested for low cloudiness over the circumarctic oceans. Such cloudiness, linked to the spatial differences in ocean surface temperatures, was studied. The temporal variations from year to year of ocean temperature patterns can be pronounced and therefore, the low cloudiness over this region should also show strong temporal variations, affecting the albedo of the earth and therefore the climate. Photographs are included.
Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.
Cox, Christian L; Davis Rabosky, Alison R
2013-08-01
Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.
Mapping the Risk of Soil-Transmitted Helminthic Infections in the Philippines
Leonardo, Lydia; Gray, Darren J.; Carabin, Hélène; Halton, Kate; McManus, Donald P.; Williams, Gail M.; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen T.; Clements, Archie C. A.
2015-01-01
Background In order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection. Methodology/Principal Findings Data on STH infection from 35,573 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was stratified geographically in two major regions: 1) Luzon and the Visayas and 2) Mindanao. Bayesian geostatistical models of STH prevalence were developed, including age and sex of individuals and environmental variables (rainfall, land surface temperature and distance to inland water bodies) as predictors, and diagnostic uncertainty was incorporated. The role of environmental variables was different between regions of the Philippines. This analysis revealed that while A. lumbricoides and T. trichiura infections were widespread and highly endemic, hookworm infections were more circumscribed to smaller foci in the Visayas and Mindanao. Conclusions/Significance This analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon. PMID:26368819
Spatial variation in attributable risks.
Congdon, Peter
2015-01-01
The attributable risk (AR) measures the contribution of a particular risk factor to a disease, and allows estimation of disease rates specific to that risk. While previous studies consider variability in ARs over demographic categories, this paper considers the extent of spatial variability in ARs estimated from multilevel data with confounders both at individual and geographic levels. A case study considers the AR for diabetes in relation to elevated BMI, and area rates for diabetes attributable to excess weight. Contextual adjustment includes known area variables, and unobserved spatially clustered influences, while spatial heterogeneity (effect modification) is considered in terms of varying effects of elevated BMI by neighbourhood deprivation category. The application is to patient register data in London, with clear evidence of spatial variation in ARs, and in small area diabetes rates attributable to excess weight. Copyright © 2015 Elsevier Ltd. All rights reserved.
Van der Laan, Carina; Verweij, Pita A; Quiñones, Marcela J; Faaij, André Pc
2014-12-01
Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case study region; the third largest carbon emitting Indonesian provinces. Strong positive relationships were found between aboveground biomass and the tested variables; altitude, slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to nearest fire and land allocation zoning. Our study showed that in this landscape, aboveground biomass could not be explained by one single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors, by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in burned areas, and in non-forest zones and production forests.
Spatial Variability of CCN Sized Aerosol Particles
NASA Astrophysics Data System (ADS)
Asmi, A.; Väänänen, R.
2014-12-01
The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.
Matthew R. Sloat; Gordon H. Reeves
2014-01-01
We manipulated food inputs among patches within experimental streams to determine how variation in foraging behavior influenced demographic and phenotypic responses of juvenile steelhead trout (Oncorhynchus mykiss) to the spatial predictability of food resources. Demographic responses included compensatory adjustments in fish abundance, mean fish...
NASA Technical Reports Server (NTRS)
Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal
2017-01-01
Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.
Hauck, Mara; Huijbregts, Mark A J; Hollander, Anne; Hendriks, A Jan; van de Meent, Dik
2010-08-15
We evaluated various modeling options for estimating concentrations of PCB-153 in the environment and in biota across Europe, using a nested multimedia fate model coupled with a bioaccumulation model. The most detailed model set up estimates concentrations in air, soil, fresh water sediment and fresh water biota with spatially explicit environmental characteristics and spatially explicit emissions to air and water in the period 1930-2005. Model performance was evaluated with the root mean square error (RMSE(log)), based on the difference between estimated and measured concentrations. The RMSE(log) was 5.4 for air, 5.6-6.3 for sediment and biota, and 5.5 for soil in the most detailed model scenario. Generally, model estimations tended to underestimate observed values for all compartments, except air. The decline in observed concentrations was also slightly underestimated by the model for the period where measurements were available (1989-2002). Applying a generic model setup with averaged emissions and averaged environmental characteristics, the RMSE(log) increased to 21 for air and 49 for sediment. For soil the RMSE(log) decreased to 3.5. We found that including spatial variation in emissions was most relevant for all compartments, except soil, while including spatial variation in environmental characteristics was less influential. For improving predictions of concentrations in sediment and aquatic biota, including emissions to water was found to be relevant as well. Copyright 2009 Elsevier B.V. All rights reserved.
Study on temporal variation and spatial distribution for rural poverty in China based on GIS
NASA Astrophysics Data System (ADS)
Feng, Xianfeng; Xu, Xiuli; Wang, Yingjie; Cui, Jing; Mo, Hongyuan; Liu, Ling; Yan, Hong; Zhang, Yan; Han, Jiafu
2009-07-01
Poverty is one of the most serious challenges all over the world, is an obstacle to hinder economics and agriculture in poverty area. Research on poverty alleviation in China is very useful and important. In this paper, we will explore the comprehensive poverty characteristics in China, analyze the current poverty status, spatial distribution and temporal variations about rural poverty in China, and to category the different poverty types and their spatial distribution. First, we achieved the gathering and processing the relevant data. These data contain investigation data, research reports, statistical yearbook, censuses, social-economic data, physical and anthrop geographical data, etc. After deeply analysis of these data, we will get the distribution of poverty areas by spatial-temporal data model according to different poverty given standard in different stages in China to see the poverty variation and the regional difference in County-level. Then, the current poverty status, spatial pattern about poverty area in villages-level will be lucubrated; the relationship among poverty, environment (including physical and anthrop geographical factors) and economic development, etc. will be expanded. We hope our research will enhance the people knowledge of poverty in China and contribute to the poverty alleviation in China.
Spatial variations of the Sr I 4607 Å scattering polarization peak
NASA Astrophysics Data System (ADS)
Bianda, M.; Berdyugina, S.; Gisler, D.; Ramelli, R.; Belluzzi, L.; Carlin, E. S.; Stenflo, J. O.; Berkefeld, T.
2018-06-01
Context. The scattering polarization signal observed in the photospheric Sr I 4607 Å line is expected to vary at granular spatial scales. This variation can be due to changes in the magnetic field intensity and orientation (Hanle effect), but also to spatial and temporal variations in the plasma properties. Measuring the spatial variation of such polarization signal would allow us to study the properties of the magnetic fields at subgranular scales, but observations are challenging since both high spatial resolution and high spectropolarimetric sensitivity are required. Aims: We aim to provide observational evidence of the polarization peak spatial variations, and to analyze the correlation they might have with granulation. Methods: Observations conjugating high spatial resolution and high spectropolarimetric precision were performed with the Zurich IMaging POLarimeter, ZIMPOL, at the GREGOR solar telescope, taking advantage of the adaptive optics system and the newly installed image derotator. Results: Spatial variations of the scattering polarization in the Sr I 4607 Å line are clearly observed. The spatial scale of these variations is comparable with the granular size. Small correlations between the polarization signal amplitude and the continuum intensity indicate that the polarization is higher at the center of granules than in the intergranular lanes.
The methane distribution on Titan: high resolution spectroscopy in the near-IR with Keck NIRSPEC/AO
NASA Astrophysics Data System (ADS)
Adamkovics, Mate; Mitchell, Jonathan L.
2014-11-01
The distribution of methane on Titan is a diagnostic of regional scale meteorology and large scale atmospheric circulation. The observed formation of clouds and the transport of heat through the atmosphere both depend on spatial and temporal variations in methane humidity. We have performed observations to measure the the distribution on methane Titan using high spectral resolution near-IR (H-band) observations made with NIRSPEC, with adaptive optics, at Keck Observatory in July 2014. This work builds on previous attempts at this measurement with improvement in the observing protocol and data reduction, together with increased integration times. Radiative transfer models using line-by-line calculation of methane opacities from the HITRAN2012 database are used to retrieve methane abundances. We will describe analysis of the reduced observations, which show latitudinal spatial variation in the region the spectrum that is thought to be sensitive to methane abundance. Quantifying the methane abundance variation requires models that include the spatial variation in surface albedo and meridional haze gradient; we will describe (currently preliminary) analysis of the the methane distribution and uncertainties in the retrieval.
Algorithm for Identifying Erroneous Rain-Gauge Readings
NASA Technical Reports Server (NTRS)
Rickman, Doug
2005-01-01
An algorithm analyzes rain-gauge data to identify statistical outliers that could be deemed to be erroneous readings. Heretofore, analyses of this type have been performed in burdensome manual procedures that have involved subjective judgements. Sometimes, the analyses have included computational assistance for detecting values falling outside of arbitrary limits. The analyses have been performed without statistically valid knowledge of the spatial and temporal variations of precipitation within rain events. In contrast, the present algorithm makes it possible to automate such an analysis, makes the analysis objective, takes account of the spatial distribution of rain gauges in conjunction with the statistical nature of spatial variations in rainfall readings, and minimizes the use of arbitrary criteria. The algorithm implements an iterative process that involves nonparametric statistics.
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
Brito, Samuel V; Ferreira, Felipe S; Ribeiro, Samuel C; Anjos, Luciano A; Almeida, Waltécio O; Mesquita, Daniel O; Vasconcellos, Alexandre
2014-03-01
Parasites are natural regulators of their host populations. Despite this, little is known about variations in parasite composition (spatially or temporally) in environments subjected to water-related periodic stress such as the arid and semiarid regions. The objective of this study was to evaluate the spatial-temporal variation in endoparasite species' abundance and richness in populations of Neotropical Cnemidophorus ocellifer, Tropidurus hispidus, and Tropidurus semitaeniatus lizards in the semiarid northeast of Brazil. The location influenced the abundance of parasites in all analyzed lizard species, while season (dry and rainy) only influenced the total abundance for T. hispidus. In all seasons, males significantly showed more endoparasites than females in all lizard species, although for T. hispidus, this difference was only found in the dry season. Seasonal variations affect the abundance patterns of parasites. Likely, variables include environmental variations such as humidity and temperature, which influence the development of endoparasite eggs when outside of the host. Further, the activity of the intermediate hosts and the parasites of heteroxenous life cycles could be affected by an environmental condition. The variation in the abundance of parasites between the sampling areas could be a reflection of variations in climate and physiochemical conditions. Also, it could be due to differences in the quality of the environment in which each host population lives.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wang, Y.; Ju, H.
2017-12-01
The interprovincial terrestrial physical geographical entities are the key areas of regional integrated management. Based on toponomy dictionaries and different thematic maps, the attributes and the spatial extent of the interprovincial terrestrial physical geographical names (ITPGN, including terrain ITPGN and water ITPGN) were extracted. The coefficient of variation and Moran's I were combined together to measure the spatial variation and spatial association of ITPGN. The influencing factors of the distribution of ITPGN and the implications for the regional management were further discussed. The results showed that 11325 ITPGN were extracted, including 7082 terrain ITPGN and 4243 water ITPGN. Hunan Province had the largest number of ITPGN in China, and Shanghai had the smallest number. The spatial variance of the terrain ITPGN was larger than that of the water ITPGN, and the ITPGN showed a significant agglomeration phenomenon in the southern part of China. Further analysis showed that the number of ITPGN was positively related with the relative elevation and the population where the relative elevation was lower than 2000m and the population was less than 50 million. But the number of ITPGN showed a negative relationship with the two factors when their values became larger, indicating a large number of unnamed entities existed in complex terrain areas and a decreasing number of terrestrial physical geographical entities in densely populated area. Based on these analysis, we suggest the government take the ITPGN as management units to realize a balance development between different parts of the entities and strengthen the geographical names census and the nomination of unnamed interprovincial physical geographical entities. This study also demonstrated that the methods of literature survey, coefficient of variation and Moran's I can be combined to enhance the understanding of the spatial pattern of ITPGN.
NASA Astrophysics Data System (ADS)
Barette, Florian; Poppe, Sam; Smets, Benoît; Benbakkar, Mhammed; Kervyn, Matthieu
2017-10-01
We present an integrated, spatially-explicit database of existing geochemical major-element analyses available from (post-) colonial scientific reports, PhD Theses and international publications for the Virunga Volcanic Province, located in the western branch of the East African Rift System. This volcanic province is characterised by alkaline volcanism, including silica-undersaturated, alkaline and potassic lavas. The database contains a total of 908 geochemical analyses of eruptive rocks for the entire volcanic province with a localisation for most samples. A preliminary analysis of the overall consistency of the database, using statistical techniques on sets of geochemical analyses with contrasted analytical methods or dates, demonstrates that the database is consistent. We applied a principal component analysis and cluster analysis on whole-rock major element compositions included in the database to study the spatial variation of the chemical composition of eruptive products in the Virunga Volcanic Province. These statistical analyses identify spatially distributed clusters of eruptive products. The known geochemical contrasts are highlighted by the spatial analysis, such as the unique geochemical signature of Nyiragongo lavas compared to other Virunga lavas, the geochemical heterogeneity of the Bulengo area, and the trachyte flows of Karisimbi volcano. Most importantly, we identified separate clusters of eruptive products which originate from primitive magmatic sources. These lavas of primitive composition are preferentially located along NE-SW inherited rift structures, often at distance from the central Virunga volcanoes. Our results illustrate the relevance of a spatial analysis on integrated geochemical data for a volcanic province, as a complement to classical petrological investigations. This approach indeed helps to characterise geochemical variations within a complex of magmatic systems and to identify specific petrologic and geochemical investigations that should be tackled within a study area.
Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.
2011-01-01
Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.
Large-scale phenomena, chapter 3, part D
NASA Technical Reports Server (NTRS)
1975-01-01
Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.
Modeling Emergent Macrophyte Distributions: Including Sub-dominant Species
Mixed stands of emergent vegetation are often present following drawdowns but models of wetland plant distributions fail to include subdominant species when predicting distributions. Three variations of a spatial plant distribution cellular automaton model were developed to explo...
A Note on Spatial Averaging and Shear Stresses Within Urban Canopies
NASA Astrophysics Data System (ADS)
Xie, Zheng-Tong; Fuka, Vladimir
2018-04-01
One-dimensional urban models embedded in mesoscale numerical models may place several grid points within the urban canopy. This requires an accurate parametrization for shear stresses (i.e. vertical momentum fluxes) including the dispersive stress and momentum sinks at these points. We used a case study with a packing density of 33% and checked rigorously the vertical variation of spatially-averaged total shear stress, which can be used in a one-dimensional column urban model. We found that the intrinsic spatial average, in which the volume or area of the solid parts are not included in the average process, yield greater time-spatial average of total stress within the canopy and a more evident abrupt change at the top of the buildings than the comprehensive spatial average, in which the volume or area of the solid parts are included in the average.
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
Fouad, Anthony; Pfefer, T. Joshua; Chen, Chao-Wei; Gong, Wei; Agrawal, Anant; Tomlins, Peter H.; Woolliams, Peter D.; Drezek, Rebekah A.; Chen, Yu
2014-01-01
Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity. PMID:25071949
Spatial and temporal characterizations of water quality in Kuwait Bay.
Al-Mutairi, N; Abahussain, A; El-Battay, A
2014-06-15
The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay's coast as well as from Shatt Al-Arab River. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predicting temporal variation in zooplankton beta diversity is challenging
Castelo Branco, Christina W.; Kozlowsky-Suzuki, Betina; Sousa-Filho, Izidro F.; Souza, Leonardo Coimbra e; Bini, Luis Mauricio
2017-01-01
Beta diversity, the spatial variation in species composition, has been related to different explanatory variables, including environmental heterogeneity, productivity and connectivity. Using a long-term time series of zooplankton data collected over 62 months in a tropical reservoir (Ribeirão das Lajes Reservoir, Rio de Janeiro State, Brazil), we tested whether beta diversity (as measured across six sites distributed along the main axis of the reservoir) was correlated with environmental heterogeneity (spatial environmental variation in a given month), chlorophyll-a concentration (a surrogate for productivity) and water level. We did not found evidence for the role of these predictors, suggesting the need to reevaluate predictions or at least to search for better surrogates of the processes that hypothetically control beta diversity variation. However, beta diversity declined over time, which is consistent with the process of biotic homogenization, a worldwide cause of concern. PMID:29095892
Predicting temporal variation in zooplankton beta diversity is challenging.
Lopes, Vanessa Guimarães; Castelo Branco, Christina W; Kozlowsky-Suzuki, Betina; Sousa-Filho, Izidro F; Souza, Leonardo Coimbra E; Bini, Luis Mauricio
2017-01-01
Beta diversity, the spatial variation in species composition, has been related to different explanatory variables, including environmental heterogeneity, productivity and connectivity. Using a long-term time series of zooplankton data collected over 62 months in a tropical reservoir (Ribeirão das Lajes Reservoir, Rio de Janeiro State, Brazil), we tested whether beta diversity (as measured across six sites distributed along the main axis of the reservoir) was correlated with environmental heterogeneity (spatial environmental variation in a given month), chlorophyll-a concentration (a surrogate for productivity) and water level. We did not found evidence for the role of these predictors, suggesting the need to reevaluate predictions or at least to search for better surrogates of the processes that hypothetically control beta diversity variation. However, beta diversity declined over time, which is consistent with the process of biotic homogenization, a worldwide cause of concern.
Landscape controls on total and methyl Hg in the Upper Hudson River basin, New York, USA
Burns, Douglas A.; Riva-Murray, K.; Bradley, P.M.; Aiken, G.R.; Brigham, M.E.
2012-01-01
Approaches are needed to better predict spatial variation in riverine Hg concentrations across heterogeneous landscapes that include mountains, wetlands, and open waters. We applied multivariate linear regression to determine the landscape factors and chemical variables that best account for the spatial variation of total Hg (THg) and methyl Hg (MeHg) concentrations in 27 sub-basins across the 493 km2 upper Hudson River basin in the Adirondack Mountains of New York. THg concentrations varied by sixfold, and those of MeHg by 40-fold in synoptic samples collected at low-to-moderate flow, during spring and summer of 2006 and 2008. Bivariate linear regression relations of THg and MeHg concentrations with either percent wetland area or DOC concentrations were significant but could account for only about 1/3 of the variation in these Hg forms in summer. In contrast, multivariate linear regression relations that included metrics of (1) hydrogeomorphology, (2) riparian/wetland area, and (3) open water, explained about 66% to >90% of spatial variation in each Hg form in spring and summer samples. These metrics reflect the influence of basin morphometry and riparian soils on Hg source and transport, and the role of open water as a Hg sink. Multivariate models based solely on these landscape metrics generally accounted for as much or more of the variation in Hg concentrations than models based on chemical and physical metrics, and show great promise for identifying waters with expected high Hg concentrations in the Adirondack region and similar glaciated riverine ecosystems.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Early Results from the Lunar Atmosphere and Dust Environment Explorer (LADEE)
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Hine, B.; Delory, G. T.; Mahaffy, Paul; Benna, Mehdi; Horanyi, Mihaly; Colaprete, Anthony; Noble, Sarah
2014-01-01
On 6 September, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. After 30 days of phasing, LADEE arrived at the Moon on 6 October, 2013. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any. After a successful commissioning phase, the three science instruments have made systematic observations of the lunar dust and exospheric environment. These include initial observations of argon, neon and helium exospheres, and their diurnal variations; the lunar micrometeoroid impact ejecta cloud and its variations; spatial and temporal variations of the sodium exosphere; and the search for sunlight extinction caused by dust. LADEE also made observations of the effects of the Chang'e 3 landing on 14 December 2013.
DiLeo, Michelle F; Siu, Jenna C; Rhodes, Matthew K; López-Villalobos, Adriana; Redwine, Angela; Ksiazek, Kelly; Dyer, Rodney J
2014-08-01
Pollen-mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site-specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape-level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at-site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at-site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at-site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at-site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between-site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape-level measures of contemporary gene flow. © 2014 John Wiley & Sons Ltd.
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Matthew P. Miller; Elizabeth W. Boyer; Diane M. McKnight; Michael G. Brown; Rachel S. Gabor; Carolyn Hunsaker; Lidiia Iavorivska; Shreeram Inamdar; Dale W. Johnson; Louis A. Kaplan; Henry Lin; William H. McDowell; Julia N. Perdrial
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in...
Hierarchical spatial models of abundance and occurrence from imperfect survey data
Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans
2007-01-01
Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.
Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget
NASA Technical Reports Server (NTRS)
Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)
2001-01-01
The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.
Limits on the Time Evolution of Space Dimensions from Newton's Constant
NASA Astrophysics Data System (ADS)
Nasseri, Forough
Limits are imposed upon the possible rate of change of extra spatial dimensions in a decrumpling model Universe with time variable spatial dimensions (TVSD) by considering the time variation of (1+3)-dimensional Newton's constant. Previous studies on the time variation of (1+3)-dimensional Newton's constant in TVSD theory had not include the effects of the volume of the extra dimensions and the effects of the surface area of the unit sphere in D-space dimensions. Our main result is that the absolute value of the present rate of change of spatial dimensions to be less than about 10-14 yr-1. Our results would appear to provide a prima facie case for ruling the TVSD model out. We show that based on observational bounds on the present variation of Newton's constant, one would have to conclude that the spatial dimension of the Universe when the Universe was "at the Planck scale" to be less than or equal to 3.09. If the dimension of space when the Universe was "at the Planck scale" is constrained to be fractional and very close to 3, then the whole edifice of TVSD model loses credibility.
Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments
NASA Astrophysics Data System (ADS)
Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann
2018-07-01
Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.
NASA Astrophysics Data System (ADS)
Schirmer, Michael; Harder, Phillip; Pomeroy, John
2016-04-01
The spatial and temporal dynamics of mountain snowmelt are controlled by the spatial distribution of snow accumulation and redistribution and the pattern of melt energy applied to this snowcover. In order to better quantify the spatial variations of accumulation and ablation, Structure-from-Motion techniques were applied to sequential aerial photographs of an alpine ridge in the Canadian Rocky Mountains taken from an Unmanned Aerial Vehicle (UAV). Seven spatial maps of snow depth and changes to depth during late melt (May-July) were generated at very high resolutions covering an area of 800 x 600 m. The accuracy was assessed with over 100 GPS measurements and RMSE were found to be less than 10 cm. Low resolution manual measurements of density permitted calculation of snow water equivalent (SWE) and change in SWE (ablation rate). The results indicate a highly variable initial SWE distribution, which was five times more variable than the spatial variation in ablation rate. Spatial variation in ablation rate was still substantial, with a factor of two difference between north and south aspects and small scale variations due to local dust deposition. However, the impact of spatial variations in ablation rate on the snowcover depletion curve could not be discerned. The reason for this is that only a weak spatial correlation developed between SWE and ablation rate. These findings suggest that despite substantial variations in ablation rate, snowcover depletion curve calculations should emphasize the spatial variation of initial SWE rather than the variation in ablation rate. While there is scientific evidence from other field studies that support this, there are also studies that suggest that spatial variations in ablation rate can influence snowcover depletion curves in complex terrain, particularly in early melt. The development of UAV photogrammetry has provided an opportunity for further detailed measurement of ablation rates, SWE and snowcover depletion over complex terrain and UAV field studies are recommended to clarify the relative importance of SWE and melt variability on snowcover depletion in various environmental conditions.
Zhu, Xian-Jin; Zhang, Han-Qi; Zhao, Tian-Hong; Li, Jian-Dong; Yin, Hong
2017-10-12
Spatial and temporal variations are important points of focus in ecological research. Analysing their differences improves our understanding on the variations of ecological phenomena. Using data from the Liaoning Statistical Yearbook, we investigated the spatial and temporal variations of cropland carbon transfer (CCT), an important ecological phenomenon in quantifying the regional carbon budget, in particular, the influencing factors and difference. The results showed that, from 1992 to 2014, the average CCT in Liaoning province was 18.56 TgC yr -1 and decreased from northwest to southeast. CCT spatial variation was primarily affected by the ratio of planting area to regional area (RPR) via its effect on the magnitude of carbon transfer (MCT), which depended mainly on fertilizer usage per area (FUA). From 1992 to 2014, CCT exhibited a significantly increasing trend with a rate of 0.48 TgC yr -1 . The inter-annual variation of CCT was dominated by carbon transfer per planting area (CTP) through its effect on MCT, which significantly correlated with FUA but showed no significant correlation with climatic factors. Therefore, the factors affecting the spatial variation of CCT differed from those that affected its inter-annual variation, indicating that the spatial and temporal variations of ecological phenomena were affected by divergent factors.
Spatial Variations of Chemical Abundances in Titan's Atmosphere as Revealed by ALMA
NASA Astrophysics Data System (ADS)
Thelen, Alexander E.; Nixon, Conor; Chanover, Nancy J.; Molter, Edward; Serigano, Joseph; Cordiner, Martin; Charnley, Steven B.; Teanby, Nicholas A.; Irwin, Patrick
2016-10-01
Complex organic molecules in Titan's atmosphere - formed through the dissociation of N2 and CH4 - exhibit latitudinal variations in abundance as observed by Cassini. Chemical species including hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - may show spatial abundance variations as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) with beam sizes of ~0.3'' allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk. We present abundance profiles obtained from public ALMA data taken in 2014, as Titan transitioned into northern summer. Abundance profiles in Titan's lower/middle atmosphere were retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code. These retrievals were performed using spatial temperature profiles obtained by modeling strong CO lines from datasets taken in similar times with comparable resolution. We compare the abundance variations of chemical species to measurements made using Cassini data. Comparisons of chemical species with strong abundance enhancements over the poles will inform our knowledge of chemical lifetimes in Titan's atmosphere, and allow us to observe the important changes in production and circulation of numerous organic molecules which are attributed to Titan's seasons.
Yude Pan; John Hom; Jennifer Jenkins; Richard Birdsey
2004-01-01
To assess what difference it might make to include spatially defined estimates of foliar nitrogen in the regional application of a forest ecosystem model (PnET-II), we composed model predictions of wood production from extensive ground-based forest inventory analysis data across the Mid-Atlantic region. Spatial variation in foliar N concentration was assigned based on...
Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1985-01-01
Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
Arnan, Xavier; Cerdá, Xim; Retana, Javier
2015-01-01
We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.
SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliopoulos, AS; Sun, X; Floros, D
Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less
Spatially resolved variations in reflectivity across iron oxide thin films
NASA Astrophysics Data System (ADS)
Kelley, Chris S.; Thompson, Sarah M.; Gilks, Daniel; Sizeland, James; Lari, Leonardo; Lazarov, Vlado K.; Matsuzaki, Kosuke; LeFrançois, Stéphane; Cinque, Gianfelice; Dumas, Paul
2017-11-01
The spin polarising properties of the iron oxide magnetite (Fe3O4) make it attractive for use in spintronic devices, but its sensitivity to compositional and structural variations make it challenging to prepare reliably. Infrared microspectroscopy and modelling are used to determine the spatial variation in the chemical composition of three thin films of iron oxide; one prepared by pulsed laser deposition (PLD), one by molecular beam epitaxy (MBE) deposition of iron whilst simultaneously flowing oxygen into the chamber and one by flowing oxygen only once deposition is complete. The technique is easily able to distinguish between films which contain metallic iron and different iron oxide phases as well as spatial variations in composition across the films. The film grown by post-oxidising iron is spatially uniform but not fully oxidised, the film grown by simultaneously oxidising iron showed spatial variation in oxide composition while the film grown by PLD was spatially uniform magnetite.
Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M
2012-01-01
The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.
Climate and Edaphic Controls on Humid Tropical Forest Tree Height
NASA Astrophysics Data System (ADS)
Yang, Y.; Saatchi, S. S.; Xu, L.
2014-12-01
Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.
The underlying processes of a soil mite metacommunity on a small scale.
Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.
The underlying processes of a soil mite metacommunity on a small scale
Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin
2017-01-01
Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906
Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei
2015-01-01
Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary.
Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei
2015-01-01
Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60 % and 58 % of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45 - 47 % of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75 %. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary. PMID:25928452
Dorazio, R.M.; Jelks, H.L.; Jordan, F.
2005-01-01
A statistical modeling framework is described for estimating the abundances of spatially distinct subpopulations of animals surveyed using removal sampling. To illustrate this framework, hierarchical models are developed using the Poisson and negative-binomial distributions to model variation in abundance among subpopulations and using the beta distribution to model variation in capture probabilities. These models are fitted to the removal counts observed in a survey of a federally endangered fish species. The resulting estimates of abundance have similar or better precision than those computed using the conventional approach of analyzing the removal counts of each subpopulation separately. Extension of the hierarchical models to include spatial covariates of abundance is straightforward and may be used to identify important features of an animal's habitat or to predict the abundance of animals at unsampled locations.
Ågren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-01-01
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations. PMID:24145439
Agren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan
2013-11-05
Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0-100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
Representation of vegetation by continental data sets derived from NOAA-AVHRR data
NASA Technical Reports Server (NTRS)
Justice, C. O.; Townshend, J. R. G.; Kalb, V. L.
1991-01-01
Images of the normalized difference vegetation index (NDVI) are examined with specific attention given to the effect of spatial scales on the understanding of surface phenomena. A scale variance analysis is conducted on NDVI annual and seasonal images of Africa taken from 1987 NOAA-AVHRR data at spatial scales ranging from 8-512 km. The scales at which spatial variation takes place are determined and the relative magnitude of the variations are considered. Substantial differences are demonstrated, notably an increase in spatial variation with coarsening spatial resolution. Different responses in scale variance as a function of spatial resolution are noted in an analysis of maximum value composites for February and September; the difference is most marked in areas with very seasonal vegetation. The spatial variation at different scales is attributed to different factors, and methods involving the averaging of areas of transition and surface heterogeneity can oversimplify surface conditions. The spatial characteristics and the temporal variability of areas should be considered to accurately apply satellite data to global models.
Valuing water resources in Switzerland using a hedonic price model
NASA Astrophysics Data System (ADS)
van Dijk, Diana; Siber, Rosi; Brouwer, Roy; Logar, Ivana; Sanadgol, Dorsa
2016-05-01
In this paper, linear and spatial hedonic price models are applied to the housing market in Switzerland, covering all 26 cantons in the country over the period 2005-2010. Besides structural house, neighborhood and socioeconomic characteristics, we include a wide variety of new environmental characteristics related to water to examine their role in explaining variation in sales prices. These include water abundance, different types of water bodies, the recreational function of water, and water disamenity. Significant spatial autocorrelation is found in the estimated models, as well as nonlinear effects for distances to the nearest lake and large river. Significant effects are furthermore found for water abundance and the distance to large rivers, but not to small rivers. Although in both linear and spatial models water related variables explain less than 1% of the price variation, the distance to the nearest bathing site has a larger marginal contribution than many neighborhood-related distance variables. The housing market shows to differentiate between different water related resources in terms of relative contribution to house prices, which could help the housing development industry make more geographically targeted planning activities.
Leibold, Mathew A; Loeuille, Nicolas
2015-12-01
Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models.
NASA Astrophysics Data System (ADS)
Alken, P.; Olsen, N.; Finlay, C. C.; Chulliat, A.
2017-12-01
In order to investigate the spatial structure and development of rapid (sub-decadal) changes in the geomagnetic core field, including its secular variation and acceleration, global magnetic measurements from space play a crucial role. With the end of the CHAMP mission in September 2010, there has been a gap in high-quality satellite magnetic field measurements until the Swarm mission was launched in November 2013. Geomagnetic main field models during this period have relied on the global ground observatory network which, due to its sparse spatial configuration, has difficulty in resolving secular variation and acceleration at higher spherical harmonic degrees. In this presentation we will show new results in building main field models during this "gap period", based on vector magnetic measurements from four Defense Meteorological Satellite Program (DMSP) satellites. While the fluxgate instruments onboard DMSP were not designed for high-quality core field modeling, we find that the DMSP dataset can provide valuable information on secular variation and acceleration during the gap period.
Temporal and spatial distribution of Microcystis biomass and genotype in bloom areas of Lake Taihu.
Guan, Dong-Xing; Wang, Xingyu; Xu, Huacheng; Chen, Li; Li, Pengfu; Ma, Lena Q
2018-06-26
Cyanobacterial blooms as a global environmental issue are of public health concern. In this study, we investigated the spatial (10 sites) and temporal (June, August and October) variations in: 1) their biomass based on chlorophyll-a (chl-a) concentration, 2) their toxic genotype based on gene copy ratio of mcyJ to cpcBA, and 3) their cpcBA genotype composition of Microcystis during cyanobacterial bloom in Lake Taihu. While spatial-temporal variations were found in chl-a and mcyJ/cpcBA ratio, only spatial variation was observed in cpcBA genotype composition. Samples from northwestern part had a higher chl-a, but mcyJ/cpcBA ratio didn't vary among the sites. High chl-a was observed in August, while mcyJ/cpcBA ratio and genotypic richness increased with time. The spatial variations in chl-a and mcyJ/cpcBA ratio and temporal variation in cpcBA genotype were correlated negatively with dissolved N and positively with dissolved P. Spatial distribution of Microcystis biomass was positively correlated with nitrite and P excluding October, but no correlation was found for spatial distribution of mcyJ/cpcBA ratio and cpcBA genotype. Spatial distribution of toxic and cpcBA genotypes may result from horizontal transport of Microcystis colonies, while spatial variation in Microcystis biomass was probably controlled by both nutrient-mediated growth and horizontal transport of Microcystis. The temporal variation in Microcystis biomass, toxic genotype and cpcBA genotype composition were related to nutrient levels, but cause-and-effect relationships require further study. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ji, Lei; Peters, Albert J.
2004-01-01
The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.
Surfzone alongshore advective accelerations: observations and modeling
NASA Astrophysics Data System (ADS)
Hansen, J.; Raubenheimer, B.; Elgar, S.
2014-12-01
The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.
Molina, David; Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M
2017-01-01
Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images.
Classifying and mapping wetlands and peat resources using digital cartography
Cameron, Cornelia C.; Emery, David A.
1992-01-01
Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.
Meng, Yuting; Ding, Shiming; Gong, Mengdan; Chen, Musong; Wang, Yan; Fan, Xianfang; Shi, Lei; Zhang, Chaosheng
2018-03-01
Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences...
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Spatial variation and density-dependent dispersal in competitive coexistence.
Amarasekare, Priyanga
2004-01-01
It is well known that dispersal from localities favourable to a species' growth and reproduction (sources) can prevent competitive exclusion in unfavourable localities (sinks). What is perhaps less well known is that too much emigration can undermine the viability of sources and cause regional competitive exclusion. Here, I investigate two biological mechanisms that reduce the cost of dispersal to source communities. The first involves increasing the spatial variation in the strength of competition such that sources can withstand high rates of emigration; the second involves reducing emigration from sources via density-dependent dispersal. I compare how different forms of spatial variation and modes of dispersal influence source viability, and hence source-sink coexistence, under dominance and pre-emptive competition. A key finding is that, while spatial variation substantially reduces dispersal costs under both types of competition, density-dependent dispersal does so only under dominance competition. For instance, when spatial variation in the strength of competition is high, coexistence is possible (regardless of the type of competition) even when sources experience high emigration rates; when spatial variation is low, coexistence is restricted even under low emigration rates. Under dominance competition, density-dependent dispersal has a strong effect on coexistence. For instance, when the emigration rate increases with density at an accelerating rate (Type III density-dependent dispersal), coexistence is possible even when spatial variation is quite low; when the emigration rate increases with density at a decelerating rate (Type II density-dependent dispersal), coexistence is restricted even when spatial variation is quite high. Under pre-emptive competition, density-dependent dispersal has only a marginal effect on coexistence. Thus, the diversity-reducing effects of high dispersal rates persist under pre-emptive competition even when dispersal is density dependent, but can be significantly mitigated under dominance competition if density-dependent dispersal is Type III rather than Type II. These results lead to testable predictions about source-sink coexistence under different regimes of competition, spatial variation and dispersal. They identify situations in which density-independent dispersal provides a reasonable approximation to species' dispersal patterns, and those under which consideration of density-dependent dispersal is crucial to predicting long-term coexistence. PMID:15306322
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales
Madritch, Michael D.; Kingdon, Clayton C.; Singh, Aditya; Mock, Karen E.; Lindroth, Richard L.; Townsend, Philip A.
2014-01-01
Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales. PMID:24733949
Terán-Hernández, Mónica; Ramis-Prieto, Rebeca; Calderón-Hernández, Jaqueline; Garrocho-Rangel, Carlos Félix; Campos-Alanís, Juan; Ávalos-Lozano, José Antonio; Aguilar-Robledo, Miguel
2016-09-29
Worldwide, Cervical Cancer (CC) is the fourth most common type of cancer and cause of death in women. It is a significant public health problem, especially in low and middle-income/Gross Domestic Product (GDP) countries. In the past decade, several studies of CC have been published, that identify the main modifiable and non-modifiable CC risk factors for Mexican women. However, there are no studies that attempt to explain the residual spatial variation in CC incidence In Mexico, i.e. spatial variation that cannot be ascribed to known, spatially varying risk factors. This paper uses a spatial statistical methodology that takes into account spatial variation in socio-economic factors and accessibility to health services, whilst allowing for residual, unexplained spatial variation in risk. To describe residual spatial variations in CC risk, we used generalised linear mixed models (GLMM) with both spatially structured and unstructured random effects, using a Bayesian approach to inference. The highest risk is concentrated in the southeast, where the Matlapa and Aquismón municipalities register excessive risk, with posterior probabilities greater than 0.8. The lack of coverage of Cervical Cancer-Screening Programme (CCSP) (RR 1.17, 95 % CI 1.12-1.22), Marginalisation Index (RR 1.05, 95 % CI 1.03-1.08), and lack of accessibility to health services (RR 1.01, 95 % CI 1.00-1.03) were significant covariates. There are substantial differences between municipalities, with high-risk areas mainly in low-resource areas lacking accessibility to health services for CC. Our results clearly indicate the presence of spatial patterns, and the relevance of the spatial analysis for public health intervention. Ignoring the spatial variability means to continue a public policy that does not tackle deficiencies in its national CCSP and to keep disadvantaging and disempowering Mexican women in regard to their health care.
Geostatistical modelling of household malaria in Malawi
NASA Astrophysics Data System (ADS)
Chirombo, J.; Lowe, R.; Kazembe, L.
2012-04-01
Malaria is one of the most important diseases in the world today, common in tropical and subtropical areas with sub-Saharan Africa being the region most burdened, including Malawi. This region has the right combination of biotic and abiotic components, including socioeconomic, climatic and environmental factors that sustain transmission of the disease. Differences in these conditions across the country consequently lead to spatial variation in risk of the disease. Analysis of nationwide survey data that takes into account this spatial variation is crucial in a resource constrained country like Malawi for targeted allocation of scare resources in the fight against malaria. Previous efforts to map malaria risk in Malawi have been based on limited data collected from small surveys. The Malaria Indicator Survey conducted in 2010 is the most comprehensive malaria survey carried out in Malawi and provides point referenced data for the study. The data has been shown to be spatially correlated. We use Bayesian logistic regression models with spatial correlation to model the relationship between malaria presence in children and covariates such as socioeconomic status of households and meteorological conditions. This spatial model is then used to assess how malaria varies spatially and a malaria risk map for Malawi is produced. By taking intervention measures into account, the developed model is used to assess whether they have an effect on the spatial distribution of the disease and Bayesian kriging is used to predict areas where malaria risk is more likely to increase. It is hoped that this study can help reveal areas that require more attention from the authorities in the continuing fight against malaria, particularly in children under the age of five.
Sudakin, Daniel L.
2009-01-01
Introduction This investigation utilized spatial scan statistics, geographic information systems and multiple data sources to assess spatial clustering of statewide methamphetamine-related incidents. Temporal and spatial associations with regulatory interventions to reduce access to precursor chemicals (pseudoephedrine) were also explored. Methods Four statewide data sources were utilized including regional poison control center statistics, fatality incidents, methamphetamine laboratory seizures, and hazardous substance releases involving methamphetamine laboratories. Spatial clustering of methamphetamine incidents was assessed using SaTScan™. SaTScan™ was also utilized to assess space-time clustering of methamphetamine laboratory incidents, in relation to the enactment of regulations to reduce access to pseudoephedrine. Results Five counties with a significantly higher relative risk of methamphetamine-related incidents were identified. The county identified as the most likely cluster had a significantly elevated relative risk of methamphetamine laboratories (RR=11.5), hazardous substance releases (RR=8.3), and fatalities relating to methamphetamine (RR=1.4). A significant increase in relative risk of methamphetamine laboratory incidents was apparent in this same geographic area (RR=20.7) during the time period when regulations were enacted in 2004 and 2005, restricting access to pseudoephedrine. Subsequent to the enactment of these regulations, a significantly lower rate of incidents (RR 0.111, p=0.0001) was observed over a large geographic area of the state, including regions that previously had significantly higher rates. Conclusions Spatial and temporal scan statistics can be effectively applied to multiple data sources to assess regional variation in methamphetamine-related incidents, and explore the impact of preventive regulatory interventions. PMID:19225949
Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales
Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler
2016-01-01
The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a positive effect such that a unit increase in water color resulted in a 2 μg/L increase in CHL and other locations where it had a negative effect such that a unit increase in water color resulted in a 2 μg/L decrease in CHL. In addition, the spatial scales that captured variation in TP and water color effects were different for our study lakes. Variation in TP–CHL relationships was observed at intermediate distances (~20 km) compared to variation in water color–CHL relationships that was observed at regional distances (~200 km). These results demonstrate that there are lake-to-lake differences in the effects of TP and water color on lake CHL and that this variation is spatially structured. Quantifying spatial structure in these relationships furthers our understanding of the variability in these relationships at macroscales and would improve model prediction of chlorophyll a to better meet lake management goals.
Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales
Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler
2016-01-01
The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a positive effect such that a unit increase in water color resulted in a 2 μg/L increase in CHL and other locations where it had a negative effect such that a unit increase in water color resulted in a 2 μg/L decrease in CHL. In addition, the spatial scales that captured variation in TP and water color effects were different for our study lakes. Variation in TP–CHL relationships was observed at intermediate distances (~20 km) compared to variation in water color–CHL relationships that was observed at regional distances (~200 km). These results demonstrate that there are lake-to-lake differences in the effects of TP and water color on lake CHL and that this variation is spatially structured. Quantifying spatial structure in these relationships furthers our understanding of the variability in these relationships at macroscales and would improve model prediction of chlorophyll a to better meet lake management goals. PMID:27736962
Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques
2014-11-01
Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Martens, William
2005-04-01
Several attributes of auditory spatial imagery associated with stereophonic sound reproduction are strongly modulated by variation in interaural cross correlation (IACC) within low frequency bands. Nonetheless, a standard practice in bass management for two-channel and multichannel loudspeaker reproduction is to mix low-frequency musical content to a single channel for reproduction via a single driver (e.g., a subwoofer). This paper reviews the results of psychoacoustic studies which support the conclusion that reproduction via multiple drivers of decorrelated low-frequency signals significantly affects such important spatial attributes as auditory source width (ASW), auditory source distance (ASD), and listener envelopment (LEV). A variety of methods have been employed in these tests, including forced choice discrimination and identification, and direct ratings of both global dissimilarity and distinct attributes. Contrary to assumptions that underlie industrial standards established in 1994 by ITU-R. Recommendation BS.775-1, these findings imply that substantial stereophonic spatial information exists within audio signals at frequencies below the 80 to 120 Hz range of prescribed subwoofer cutoff frequencies, and that loudspeaker reproduction of decorrelated signals at frequencies as low as 50 Hz can have an impact upon auditory spatial imagery. [Work supported by VRQ.
Spatial and temporal variation in evapotranspiration
USDA-ARS?s Scientific Manuscript database
Spatial and temporal variation in evapotranspiration occurs at multiple scales as the result of several different spatial and temporal patterns in precipitation, soil water holding capacity, cloudiness (available energy), types of crops, and residue and tillage management practices. We have often as...
Barreto-Silva, Juan Sebastian; López, Dairon Cárdenas; Montoya, Alvaro Javier Duque
2014-03-01
The effect of environmental variation on the structure of tree communities in tropical forests is still under debate. There is evidence that in landscapes like Tierra Firme forest, where the environmental gradient decreases at a local level, the effect of soil on the distribution patterns of plant species is minimal, happens to be random or is due to biological processes. In contrast, in studies with different kinds of plants from tropical forests, a greater effect on floristic composition of varying soil and topography has been reported. To assess this, the current study was carried out in a permanent plot of ten hectares in the Amacayacu National Park, Colombian Amazonia. To run the analysis, floristic and environmental variations were obtained according to tree species abundance categories and growth forms. In order to quantify the role played by both environmental filtering and dispersal limitation, the variation of the spatial configuration was included. We used Detrended Correspondence Analysis and Canonical Correspondence Analysis, followed by a variation partitioning, to analyze the species distribution patterns. The spatial template was evaluated using the Principal Coordinates of Neighbor Matrix method. We recorded 14 074 individuals from 1 053 species and 80 families. The most abundant families were Myristicaceae, Moraceae, Meliaceae, Arecaceae and Lecythidaceae, coinciding with other studies from Northwest Amazonia. Beta diversity was relatively low within the plot. Soils were very poor, had high aluminum concentration and were predominantly clayey. The floristic differences explained along the ten hectares plot were mainly associated to biological processes, such as dispersal limitation. The largest proportion of community variation in our dataset was unexplained by either environmental or spatial data. In conclusion, these results support random processes as the major drivers of the spatial variation of tree species at a local scale on Tierra Firme forests of Amacayacu National Park, and suggest reserve's size as a key element to ensure the conservation of plant diversity at both regional and local levels.
Magalhães, Ricardo J Soares; Salamat, Maria Sonia; Leonardo, Lydia; Gray, Darren J; Carabin, Hélène; Halton, Kate; McManus, Donald P; Williams, Gail M; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen; Clements, Archie
2015-01-01
Schistosoma japonicum infection is believed to be endemic in 28 of the 80 provinces of The Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small-scale spatial variation in S. japonicum prevalence across The Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geolocated at the barangay level and included in the analysis. The analysis was then stratified geographically for the regions of Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children < 5 years. The role of the environmental variables differed between regions of The Philippines. Schistosoma japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in the prevalence of S. japonicum infection in The Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized for areas identified to be at high risk but which were under-represented in our dataset. PMID:25128879
Gao, Yongnian; Gao, Junfeng; Chen, Jiongfeng
2011-01-01
The study presented in this paper attempts to evaluate the spatial pattern of soil available phosphorus, as well as the relation between soil available phosphorus and environment factors including elevation, slope, precipitation, percentage of cultivated land, percentage of forest land, percentage of construction land and NDVI using statistical methods and GIS spatial analysis techniques. The results showed that the Spline Tension method performed the best in the prediction of soil available phosphorus in the Chaohu Lake watershed. The spatial variation of surface soil available phosphorus was high in Chaohu Lake watershed and the upstream regions around Chaohu Lake, including the west of Chaohu lake (e.g., southwest of Feixi county, east of Shucheng county and north of Lujiang county) and to the north of Chaohu Lake (e.g., south of Hefei city, south of Feidong county, southwest of Juchao district), had the highest soil available phosphorus content. The mean and standard deviation of soil available phosphorus content gradually decreased as the elevation or slope increased. The cultivated land comprised 60.11% of the watershed and of that land 65.63% belonged to the medium to very high SAP level classes, and it played a major role in SAP availability within the watershed and a potential source of phosphorus to Chaohu Lake resulting in eutrophication. Among the land use types, paddy fields have some of the highest maximum values and variation of coefficients. Subwatershed scale soil available phosphorus was significantly affected by elevation, slope, precipitation, percentage of cultivated land and percentage of forest land and was decided by not only these environmental factors but also some other factors such as artificial phosphorus fertilizer application. PMID:21909308
Soares Magalhães, Ricardo J; Salamat, Maria Sonia; Leonardo, Lydia; Gray, Darren J; Carabin, Hélène; Halton, Kate; McManus, Donald P; Williams, Gail M; Rivera, Pilarita; Saniel, Ofelia; Hernandez, Leda; Yakob, Laith; McGarvey, Stephen; Clements, Archie
2014-11-01
Schistosoma japonicum infection is believed to be endemic in 28 of the 80 provinces of The Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small-scale spatial variation in S. japonicum prevalence across The Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for the regions of Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ⩾20years had significantly higher prevalence of S. japonicum compared with females and children <5years. The role of the environmental variables differed between regions of The Philippines. Schistosoma japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in the prevalence of S. japonicum infection in The Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritised for areas identified to be at high risk but which were under-represented in our dataset. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.
2016-09-01
Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (<30 min) in an urban community. Based on traffic and particulate matter (PM) source information, we selected 4 neighborhoods to study. The sampling activities utilized real-time monitors, including battery-operated PM2.5 monitor (SidePak), condensation particle counter (CPC 3007), black carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ∼3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0.27-46.5] μg/m3, and CO concentrations were 1.22 ± 0.60 [0.22-6.29] ppm in the community. The traffic-related air pollutants, BC and PNC, but not PM2.5 or CO, varied spatially depending on proximity to local stationary/mobile sources. Seasonal differences were observed for all four TRAPs, significantly higher in colder months than in warmer months. The coefficients of variation (CVs) in concurrent measurements from two parallel routes were calculated around 0.21 ± 0.17, and variations were attributed by meteorological variation (25%), temporal variability (19%), concentration level (6%), and spatial variability (2%), respectively. Overall study findings suggest this mobile monitoring approach could effectively capture and distinguish spatial/temporal characteristics in TRAP concentrations for communities impacted by heavy motor vehicle traffic and mixed urban air pollution sources.
Greenland iceberg melt variability from high-resolution satellite observations
NASA Astrophysics Data System (ADS)
Enderlin, Ellyn M.; Carrigan, Caroline J.; Kochtitzky, William H.; Cuadros, Alexandra; Moon, Twila; Hamilton, Gordon S.
2018-02-01
Iceberg discharge from the Greenland Ice Sheet accounts for up to half of the freshwater flux to surrounding fjords and ocean basins, yet the spatial distribution of iceberg meltwater fluxes is poorly understood. One of the primary limitations for mapping iceberg meltwater fluxes, and changes over time, is the dearth of iceberg submarine melt rate estimates. Here we use a remote sensing approach to estimate submarine melt rates during 2011-2016 for 637 icebergs discharged from seven marine-terminating glaciers fringing the Greenland Ice Sheet. We find that spatial variations in iceberg melt rates generally follow expected patterns based on hydrographic observations, including a decrease in melt rate with latitude and an increase in melt rate with iceberg draft. However, we find no longitudinal variations in melt rates within individual fjords. We do not resolve coherent seasonal to interannual patterns in melt rates across all study sites, though we attribute a 4-fold melt rate increase from March to April 2011 near Jakobshavn Isbræ to fjord circulation changes induced by the seasonal onset of iceberg calving. Overall, our results suggest that remotely sensed iceberg melt rates can be used to characterize spatial and temporal variations in oceanic forcing near often inaccessible marine-terminating glaciers.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
Where have all the people gone? Enhancing global conservation using night lights and social media.
Levin, Noam; Kark, Salit; Crandall, David
2015-12-01
Conservation prioritization at large scales is complex, combining biological, environmental, and social factors. While conservation scientists now more often aim to incorporate human-related factors, a critical yet unquantified challenge remains: to identify which areas people use for recreation outside urban centers. To address this gap in applied ecology and conservation, we developed a novel approach for quantifying human presence beyond populated areas by combining social media "big data" and remote sensing tools. We used data from the Flickr photo-sharing website as a surrogate for identifying spatial variation in visitation globally, and complemented this estimate with spatially explicit information on stable night lights between 2004 and 2012, used as a proxy for identifying urban and industrial centers. Natural and seminatural areas attracting visitors were defined as areas both highly photographed and non-lit. The number of Flickr photographers within protected areas was found to be a reliable surrogate for estimating visitor numbers as confirmed by local authority censuses (r = 0.8). Half of all visitors' photos taken in protected areas originated from under 1% of all protected areas on Earth (250 of -27 000). The most photographed protected areas globally included Yosemite and Yellowstone National Parks (USA), and the Lake and Peak Districts (UK). Factors explaining the spatial variation in protected areas Flickr photo coverage included their type (e.g., UNESCO World Heritage sites have higher visitation) and accessibility to roads and trails. Using this approach, we identified photography hotspots, which draw many visitors and are also unlit (i.e., are located outside urban centers), but currently remain largely unprotected, such as Brazil's Pantanal and Bolivia's Salar de Uyuni. The integrated big data approach developed here demonstrates the benefits of combining remote sensing sources and novel geo-tagged and crowd-sourced information from social media in future efforts to identify spatial conservation gaps and pressures in real time, and their spatial and temporal variation globally.
Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming
2016-12-19
Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.
NASA Astrophysics Data System (ADS)
Dadvand, Payam; Rushton, Stephen; Diggle, Peter J.; Goffe, Louis; Rankin, Judith; Pless-Mulloli, Tanja
2011-01-01
Whilst exposure to air pollution is linked to a wide range of adverse health outcomes, assessing levels of this exposure has remained a challenge. This study reports a modeling approach for the estimation of weekly levels of ambient black smoke (BS) at residential postcodes across Northeast England (2055 km 2) over a 12 year period (1985-1996). A two-stage modeling strategy was developed using monitoring data on BS together with a range of covariates including data on traffic, population density, industrial activity, land cover (remote sensing), and meteorology. The first stage separates the temporal trend in BS for the region as a whole from within-region spatial variation and the second stage is a linear model which predicts BS levels at all locations in the region using spatially referenced covariate data as predictors and the regional predicted temporal trend as an offset. Traffic and land cover predictors were included in the final model, which predicted 70% of the spatio-temporal variation in BS across the study region over the study period. This modeling approach appears to provide a robust way of estimating exposure to BS at an inter-urban scale.
NASA Astrophysics Data System (ADS)
Kodama, Taketoshi; Wagawa, Taku; Iguchi, Naoki; Takada, Yoshitake; Takahashi, Takashi; Fukudome, Ken-Ichi; Morimoto, Haruyuki; Goto, Tsuneo
2018-06-01
This study evaluates spatial variations in zooplankton community structure and potential controlling factors along the Japanese coast under the influence of the coastal branch of the Tsushima Warm Current (CBTWC). Variations in the density of morphologically identified zooplankton in the surface layer in May were investigated for a 15-year period. The density of zooplankton (individuals per cubic meter) varied between sampling stations, but there was no consistent west-east trend. Instead, there were different zooplankton community structures in the west and east, with that in Toyama Bay particularly distinct: Corycaeus affinis and Calanus sinicus were dominant in the west and Oithona atlantica was dominant in Toyama Bay. Distance-based redundancy analysis (db-RDA) was used to characterize the variation in zooplankton community structure, and four axes (RD1-4) provided significant explanation. RD2-4 only explained < 4.8 % of variation in the zooplankton community and did not show significant spatial difference; however, RD1, which explained 89.9 % of variation, did vary spatially. Positive and negative species scores on RD1 represent warm- and cold-water species, respectively, and their variation was mainly explained by water column mean temperature, and it is considered to vary spatially with the CBTWC. The CBTWC intrusion to the cold Toyama Bay is weak and occasional due to the submarine canyon structure of the bay. Therefore, the varying bathymetric characteristics along the Japanese coast of the Japan Sea generate the spatial variation in zooplankton community structure, and dominance of warm-water species can be considered an indicator of the CBTWC.
NASA Astrophysics Data System (ADS)
Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang
2018-04-01
The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning circulation (AMOC) and northward ocean heat transport caused by the accumulated effect of NAO forcing, reasonably well captures the observed multidecadal fluctuations in the AMO. Further analysis using the fully coupled model simulations provides direct modeling evidence that the observed spatial coherence of decadal SST variations across North Atlantic basin can be reproduced only by including the AMOC-related ocean dynamics, and the AMOC acts as a common forcing signal that results in a spatially coherent variation of North Atlantic SST.
Investigating the effect of previous treatments on wheat biomass over multiple spatial frequencies
NASA Astrophysics Data System (ADS)
Milne, A. E.; Castellanos, M. T.; Cartagena, M. C.; Tarquis, A. M.; Lark, R. M.
2010-09-01
In this study we use the maximum overlap discrete packet transform (MODWPT) to investigate residual effects on wheat biomass of fertigation treatments applied to a previous crop. The wheat crop covered nine subplots from a previous experiment on melon response to fertigation. Each subplot had previously received a different level of applied nitrogen. Many factors affect wheat biomass, causing it to vary at different spatial frequencies. We hypothesize that these will include residual effects from fertilizer application (at relatively low spatial frequencies) and the local influence of individual plants from the previous melon crop (at high frequency). To test this hypothesis we use the MODWPT to identify the dominant spatial frequencies of wheat biomass variation, and analyse the relationship to both the previous fertilizer application and the location of individual melon plants in the previous crop. The MODWPT is particularly appropriate for this because it allows us first to identify the key spatial frequencies in the wheat biomass objectively and to analyse them, and their relationship to hypothesized driving factors without any assumptions of uniformity (stationarity) of wheat-biomass variation. The results showed that the applied nitrogen dominated the wheat biomass response, and that there was a noticeable component of wheat-biomass variation at the spatial frequency that corresponds to the melon cropping. We expected wheat biomass to be negatively correlated with the position of melons in the previous crop, due to uptake of the applied nitrogen. The MODWPT, which allows us to detect changes in correlation between variables at different frequencies, showed that such a relationship was found across part of the experiment but not uniformly.
Spatial and temporal variations of water quality in Cao-E River of eastern China.
Chen, Ding-jiang; Lu, Jun; Yuan, Shao-feng; Jin, Shu-quan; Shen, Ye-na
2006-01-01
Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed I, II, IV and V (0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed III. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed I and II) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed III, IV and V) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.
Poster 12: Nitrile and Hydrocarbon Spatial Abundance Variations in Titan's Atmosphere
NASA Astrophysics Data System (ADS)
Thelen, Alexander E.; Nixon, Conor A.; Molter, Edward; Serigano, Joseph; Cordiner, Martin A.; Charnley, Steven B.; Teanby, Nick; Chanover, Nancy
2016-06-01
Many minor constituents of Titan's atmosphere exhibit latitudinal variations in abundance as a result of atmospheric circulation, photochemical production and subsequent destruction throughout Titan's seasonal cycle [1,2]. Species with observed spatial abundance variations include hydrocarbons - such as CH3CCH - and nitriles - HCN, HC3N, CH3CN, and C2H5CN - as found by Cassini [3,4]. Recent calibration images of Titan taken by the Atacama Large Millimeter/Submillimeter Array (ALMA) allow for measurements of rotational transition lines of these species in spatially resolved regions of Titan's disk [5]. Abundance profiles in Titan's lower/middle atmosphere are retrieved by modeling high resolution ALMA spectra using the Non-linear Optimal Estimator for MultivariatE Spectral analySIS (NEMESIS) radiative transfer code [6]. We present continuous abundance profiles for various species in Titan's atmosphere obtained from ALMA data in 2014. These species show polar abundance enhancements which can be compared to studies using Cassini data [7]. Measurements in the mesosphere will constrain molecular photochemical and dynamical models, while temporal variations inform our knowledge of chemical lifetimes for the large inventory of organic species produced in Titan's atmosphere. The synthesis of the ALMA and Cassini datasets thus allow us to observe the important changes in production and circulation of numerous trace components of Titan's atmosphere, which are attributed to Titan's seasons.
Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M
2014-01-01
The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.
Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M.
2017-01-01
Purpose Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Materials and methods Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. Results No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Conclusion Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images. PMID:28586353
Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network
Margaret A. Zimmer; Scott W. Bailey; Kevin J. McGuire; Thomas D. Bullen
2013-01-01
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha...
Feedback enhanced plasma spray tool
Gevelber, Michael Alan; Wroblewski, Donald Edward; Fincke, James Russell; Swank, William David; Haggard, Delon C.; Bewley, Randy Lee
2005-11-22
An improved automatic feedback control scheme enhances plasma spraying of powdered material through reduction of process variability and providing better ability to engineer coating structure. The present inventors discovered that controlling centroid position of the spatial distribution along with other output parameters, such as particle temperature, particle velocity, and molten mass flux rate, vastly increases control over the sprayed coating structure, including vertical and horizontal cracks, voids, and porosity. It also allows improved control over graded layers or compositionally varying layers of material, reduces variations, including variation in coating thickness, and allows increasing deposition rate. Various measurement and system control schemes are provided.
Sarah M. Rockwell; John D. Alexander; Jaime L. Stephens; Robert I. Frey; C. John Ralph
2017-01-01
Many North American landbird populations have declined in recent decades, including those that occupy Western forest habitats. Long-term monitoring of abundance and vital rates allows us to detect species and habitats of...
Recent variations in seasonality of temperature and precipitation in Canada, 1976-95
NASA Astrophysics Data System (ADS)
Whitfield, Paul H.; Bodtker, Karin; Cannon, Alex J.
2002-11-01
A previously reported analysis of rehabilitated monthly temperature and precipitation time series for several hundred stations across Canada showed generally spatially coherent patterns of variation between two decades (1976-85 and 1986-95). The present work expands that analysis to finer time scales and a greater number of stations. We demonstrate how the finer temporal resolution, at 5 day or 11 day intervals, increases the separation between clusters of recent variations in seasonal patterns of temperature and precipitation. We also expand the analysis by increasing the number of stations from only rehabilitated monthly data sets to rehabilitated daily sets, then to approximately 1500 daily observation stations. This increases the spatial density of data and allows a finer spatial resolution of patterns between the two decades. We also examine the success of clustering partial records, i.e. sites where the data record is incomplete. The intent of this study was to be consistent with previous work and explore how greater temporal and spatial detail in the climate data affects the resolution of patterns of recent climate variations. The variations we report for temperature and precipitation are taking place at different temporal and spatial scales. Further, the spatial patterns are much broader than local climate regions and ecozones, indicating that the differences observed may be the result of variations in atmospheric circulation.
Kihal-Talantikite, Wahida; Deguen, Séverine; Padilla, Cindy; Siebert, Muriel; Couchoud, Cécile; Vigneau, Cécile; Bayat, Sahar
2015-02-01
Several studies have investigated the implication of biological and environmental factors on geographic variations of end-stage renal disease (ESRD) incidence at large area scales, but none of them assessed the implication of neighbourhood characteristics (healthcare supply, socio-economic level and urbanization degree) on spatial repartition of ESRD. We evaluated the spatial implications of adjustment for neighbourhood characteristics on the spatial distribution of ESRD incidence at the smallest geographic unit in France. All adult patients living in Bretagne and beginning renal replacement therapy during the 2004-09 period were included. Their residential address was geocoded at the census block level. Each census block was characterized by socio-economic deprivation index, healthcare supply and rural/urban typology. Using a spatial scan statistic, we examined whether there were significant clusters of high risk of ESRD incidence. The ESRD incidence was non-randomly spatially distributed, with a cluster of high risk in the western Bretagne region (relative risk, RR = 1.28, P-value = 0.0003). Adjustment for sex, age and neighbourhood characteristics induced cluster shifts. After these adjustments, a significant cluster (P = 0.013) persisted. Our spatial analysis of ESRD incidence at a fine scale, across a mixed rural/urban area, indicated that, beyond age and sex, neighbourhood characteristics explained a great part of spatial distribution of ESRD incidence. However, to better understand spatial variation of ESRD incidence, it would be necessary to research and adjust for other determinants of ESRD.
Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre
2015-01-01
Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER
The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...
NASA Technical Reports Server (NTRS)
Roth, Don J.; Hepp, Aloysius F.; Deguire, Mark R.; Dolhert, Leonard E.
1991-01-01
The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu30(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.; Hepp, Aloysius F.
1991-01-01
The spatial (within-sample) uniformity of superconducting behavior and microstructure in YBa2Cu3O(7-x) specimens over the pore fraction range of 0.10 to 0.25 was examined. The viability of using a room-temperature, nondestructive characterization method (ultrasonic velocity imaging) to predict spatial variability was determined. Spatial variations in superconductor properties were observed for specimens containing 0.10 pore fraction. An ultrasonic velocity image constructed from measurements at 1 mm increments across one such specimen revealed microstructural variation between edge and center locations that correlated with variations in alternating-current shielding and loss behavior. Optical quantitative image analysis on sample cross-sections revealed pore fraction to be the varying microstructural feature.
The relationship between observational scale and explained variance in benthic communities
Flood, Roger D.; Frisk, Michael G.; Garza, Corey D.; Lopez, Glenn R.; Maher, Nicole P.
2018-01-01
This study addresses the impact of spatial scale on explaining variance in benthic communities. In particular, the analysis estimated the fraction of community variation that occurred at a spatial scale smaller than the sampling interval (i.e., the geographic distance between samples). This estimate is important because it sets a limit on the amount of community variation that can be explained based on the spatial configuration of a study area and sampling design. Six benthic data sets were examined that consisted of faunal abundances, common environmental variables (water depth, grain size, and surficial percent cover), and sonar backscatter treated as a habitat proxy (categorical acoustic provinces). Redundancy analysis was coupled with spatial variograms generated by multiscale ordination to quantify the explained and residual variance at different spatial scales and within and between acoustic provinces. The amount of community variation below the sampling interval of the surveys (< 100 m) was estimated to be 36–59% of the total. Once adjusted for this small-scale variation, > 71% of the remaining variance was explained by the environmental and province variables. Furthermore, these variables effectively explained the spatial structure present in the infaunal community. Overall, no scale problems remained to compromise inferences, and unexplained infaunal community variation had no apparent spatial structure within the observational scale of the surveys (> 100 m), although small-scale gradients (< 100 m) below the observational scale may be present. PMID:29324746
Luo, Ji; Chen, Youchao; Wu, Yanhong; Shi, Peili; She, Jia; Zhou, Peng
2012-01-01
Soil respiration (SR) is an important process in the global carbon cycle. It is difficult to estimate SR emission accurately because of its temporal and spatial variability. Primary forest succession on Glacier forehead provides the ideal environment for examining the temporal-spatial variation and controlling factors of SR. However, relevant studies on SR are relatively scarce, and variations, as well as controlling factors, remain uncertain in this kind of region. In this study, we used a static chamber system to measure SR in six sites which represent different stages of forest succession on forehead of a temperate glacier in Gongga Mountain, China. Our results showed that there was substantial temporal (coefficient of variation (CV) ranged from 39.3% to 73.9%) and spatial (CV ranged from 12.3% to 88.6%) variation in SR. Soil temperature (ST) at 5 cm depth was the major controlling factor of temporal variation in all six sites. Spatial variation in SR was mainly caused by differences in plant biomass and Total N among the six sites. Moreover, soil moisture (SM), microbial biomass carbon (MBC), soil organic carbon (SOC), pH and bulk density could influence SR by directly or indirectly affecting plant biomass and Total N. Q10 values (ranged from 2.1 to 4.7) increased along the forest succession, and the mean value (3.3) was larger than that of temperate ecosystems, which indicated a general tendency towards higher-Q10 in colder ecosystems than in warmer ecosystems. Our findings provided valuable information for understanding temporal-spatial variation and controlling factors of SR. PMID:22879950
Thermospheric O/N2 in the Sunlit Disk From More Than Five Years of GUVI/TIMED Observations
NASA Astrophysics Data System (ADS)
Craven, J. D.; Christensen, A. B.; Paxton, L. J.
2007-12-01
GUVI indirect observations of the thermospheric column density ratio, O/N2, in the sunlit hemisphere have been made on a nearly continuous basis from day 50 of 2002 to the present as part of the TIMED spacecraft mission. The basic large-scale spatial structure includes variations with local time (greater values in the morning), Universal Time (modulation at high latitudes due to the offset magnetic dipole), and season (greater values in the local winter hemisphere). These differences are seen to fade in the approach to solar minimum. Superposed on this reasonably well-behaved background structure are the complex, transient perturbations driven by auroral substorms and geomagnetic storms. The spatial and temporal variations are summarized in part by time-lapse movies
NASA Astrophysics Data System (ADS)
Civerolo, Kevin; Hogrefe, Christian; Zalewsky, Eric; Hao, Winston; Sistla, Gopal; Lynn, Barry; Rosenzweig, Cynthia; Kinney, Patrick L.
2010-10-01
This paper compares spatial and seasonal variations and temporal trends in modeled and measured concentrations of sulfur and nitrogen compounds in wet and dry deposition over an 18-year period (1988-2005) over a portion of the northeastern United States. Substantial emissions reduction programs occurred over this time period, including Title IV of the Clean Air Act Amendments of 1990 which primarily resulted in large decreases in sulfur dioxide (SO 2) emissions by 1995, and nitrogen oxide (NO x) trading programs which resulted in large decreases in warm season NO x emissions by 2004. Additionally, NO x emissions from mobile sources declined more gradually over this period. The results presented here illustrate the use of both operational and dynamic model evaluation and suggest that the modeling system largely captures the seasonal and long-term changes in sulfur compounds. The modeling system generally captures the long-term trends in nitrogen compounds, but does not reproduce the average seasonal variation or spatial patterns in nitrate.
Grundel, R.; Pavlovic, N.B.
2007-01-01
Determination of which aspects of habitat quality and habitat spatial arrangement best account for variation in a species’ distribution can guide management for organisms such as the Karner blue butterfly (Lycaeides melissa samuelis), a federally endangered subspecies inhabiting savannas of Midwest and Eastern United States. We examined the extent to which three sets of predictors, (1) larval host plant (Lupinus perennis, wild lupine) availability, (2) characteristics of the matrix surrounding host plant patches, and (3) factors affecting a patch’s thermal environment, accounted for variation in lupine patch use by Karner blues at Indiana Dunes National Lakeshore, Indiana and Fort McCoy, Wisconsin, USA. Each predictor set accounted for 7–13% of variation in patch occupancy by Karner blues at both sites and in larval feeding activity among patches at Indiana Dunes. Patch area, an indicator of host plant availability, was an exception, accounting for 30% of variation in patch occupancy at Indiana Dunes. Spatially structured patterns of patch use across the landscape accounted for 9–16% of variation in patch use and explained more variation in larval feeding activity than did spatial autocorrelation between neighboring patches. Because of this broader spatial trend across sites, a given management action may be more effective in promoting patch use in some portions of the landscape than in others. Spatial trend, resource availability, matrix quality, and microclimate, in general, accounted for similar amounts of variation in patch use and each should be incorporated into habitat management planning for the Karner blue butterfly.
Effects of Diffusion in Magnetically Inhomogeneous Media on Rotating Frame Spin-Lattice Relaxation
Spear, John T.; Gore, John C.
2014-01-01
In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues. PMID:25462950
Setton, Eleanor M; Keller, C Peter; Cloutier-Fisher, Denise; Hystad, Perry W
2008-01-01
Background Chronic exposure to traffic-related air pollution is associated with a variety of health impacts in adults and recent studies show that exposure varies spatially, with some residents in a community more exposed than others. A spatial exposure simulation model (SESM) which incorporates six microenvironments (home indoor, work indoor, other indoor, outdoor, in-vehicle to work and in-vehicle other) is described and used to explore spatial variability in estimates of exposure to traffic-related nitrogen dioxide (not including indoor sources) for working people. The study models spatial variability in estimated exposure aggregated at the census tracts level for 382 census tracts in the Greater Vancouver Regional District of British Columbia, Canada. Summary statistics relating to the distributions of the estimated exposures are compared visually through mapping. Observed variations are explored through analyses of model inputs. Results Two sources of spatial variability in exposure to traffic-related nitrogen dioxide were identified. Median estimates of total exposure ranged from 8 μg/m3 to 35 μg/m3 of annual average hourly NO2 for workers in different census tracts in the study area. Exposure estimates are highest where ambient pollution levels are highest. This reflects the regional gradient of pollution in the study area and the relatively high percentage of time spent at home locations. However, for workers within the same census tract, variations were observed in the partial exposure estimates associated with time spent outside the residential census tract. Simulation modeling shows that some workers may have exposures 1.3 times higher than other workers residing in the same census tract because of time spent away from the residential census tract, and that time spent in work census tracts contributes most to the differences in exposure. Exposure estimates associated with the activity of commuting by vehicle to work were negligible, based on the relatively short amount of time spent in this microenvironment compared to other locations. We recognize that this may not be the case for pollutants other than NO2. These results represent the first time spatially disaggregated variations in exposure to traffic-related air pollution within a community have been estimated and reported. Conclusion The results suggest that while time spent in the home indoor microenvironment contributes most to between-census tract variation in estimates of annual average exposures to traffic-related NO2, time spent in the work indoor microenvironment contributes most to within-census tract variation, and time spent in transit by vehicle makes a negligible contribution. The SESM has potential as a policy evaluation tool, given input data that reflect changes in pollution levels or work flow patterns due to traffic demand management and land use development policy. PMID:18638398
Mayfield, Helen J; Lowry, John H; Watson, Conall H; Kama, Mike; Nilles, Eric J; Lau, Colleen L
2018-05-01
Leptospirosis is a globally important zoonotic disease, with complex exposure pathways that depend on interactions between human beings, animals, and the environment. Major drivers of outbreaks include flooding, urbanisation, poverty, and agricultural intensification. The intensity of these drivers and their relative importance vary between geographical areas; however, non-spatial regression methods are incapable of capturing the spatial variations. This study aimed to explore the use of geographically weighted logistic regression (GWLR) to provide insights into the ecoepidemiology of human leptospirosis in Fiji. We obtained field data from a cross-sectional community survey done in 2013 in the three main islands of Fiji. A blood sample obtained from each participant (aged 1-90 years) was tested for anti-Leptospira antibodies and household locations were recorded using GPS receivers. We used GWLR to quantify the spatial variation in the relative importance of five environmental and sociodemographic covariates (cattle density, distance to river, poverty rate, residential setting [urban or rural], and maximum rainfall in the wettest month) on leptospirosis transmission in Fiji. We developed two models, one using GWLR and one with standard logistic regression; for each model, the dependent variable was the presence or absence of anti-Leptospira antibodies. GWLR results were compared with results obtained with standard logistic regression, and used to produce a predictive risk map and maps showing the spatial variation in odds ratios (OR) for each covariate. The dataset contained location information for 2046 participants from 1922 households representing 81 communities. The Aikaike information criterion value of the GWLR model was 1935·2 compared with 1254·2 for the standard logistic regression model, indicating that the GWLR model was more efficient. Both models produced similar OR for the covariates, but GWLR also detected spatial variation in the effect of each covariate. Maximum rainfall had the least variation across space (median OR 1·30, IQR 1·27-1·35), and distance to river varied the most (1·45, 1·35-2·05). The predictive risk map indicated that the highest risk was in the interior of Viti Levu, and the agricultural region and southern end of Vanua Levu. GWLR provided a valuable method for modelling spatial heterogeneity of covariates for leptospirosis infection and their relative importance over space. Results of GWLR could be used to inform more place-specific interventions, particularly for diseases with strong environmental or sociodemographic drivers of transmission. WHO, Australian National Health & Medical Research Council, University of Queensland, UK Medical Research Council, Chadwick Trust. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wang, Xiaorui; Zhe Zhang, Yun
2018-07-01
By employing the different topological charges of a Laguerre–Gaussian beam as a qubit, we experimentally demonstrate a controlled-NOT (CNOT) gate with light beams carrying orbital angular momentum via a photonic band gap structure in a hot atomic ensemble. Through a degenerate four-wave mixing process, the spatial distribution of the CNOT gate including splitting and spatial shift can be affected by the Kerr nonlinear effect in multilevel atomic systems. Moreover, the intensity variations of the CNOT gate can be controlled by the relative phase modulation. This research can be useful for applications in quantum information processing.
NASA Technical Reports Server (NTRS)
Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.
1997-01-01
Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.
NASA Astrophysics Data System (ADS)
Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.
2015-12-01
Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.
NASA Astrophysics Data System (ADS)
Nichols, Patricia
The energy band gap of a semiconductor material critically influences the operating wavelength of an optoelectronic device. Realization of any desired band gap, or even spatially graded band gaps, is important for applications such as lasers, light-emitting diodes (LEDs), solar cells, and detectors. Compared to thin films, nanowires offer greater flexibility for achieving a variety of alloy compositions. Furthermore, the nanowire geometry permits simultaneous incorporation of a wide range of compositions on a single substrate. Such controllable alloy composition variation can be realized either within an individual nanowire or between distinct nanowires across a substrate. This dissertation explores the control of spatial composition variation in ternary alloy nanowires. Nanowires were grown by the vapor-liquid-solid (VLS) mechanism using chemical vapor deposition (CVD). The gas-phase supersaturation was considered in order to optimize the deposition morphology. Composition and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). Optical properties were investigated through photoluminescence (PL) measurements. The chalcogenides selected as alloy endpoints were lead sulfide (PbS), cadmium sulfide (CdS), and cadmium selenide (CdSe). Three growth modes of PbS were identified, which included contributions from spontaneously generated catalyst. The resulting wires were found capable of lasing with wavelengths over 4000 nm, representing the longest known wavelength from a sub-wavelength wire. For CdxPb1-xS nanowires, it was established that the cooling process significantly affects the alloy composition and structure. Quenching was critical to retain metastable alloys with x up to 0.14, representing a new composition in nanowire form. Alternatively, gradual cooling caused phase segregation, which created heterostructures with light emission in both the visible and mid-infrared regimes. The CdSSe alloy system was fully explored for spatial composition variation. CdSxSe1-x nanowires were grown with composition variation across the substrate. Subsequent contact printing preserved the designed composition gradient and led to the demonstration of a variable wavelength photodetector device. CdSSe axial heterostructure nanowires were also achieved. The growth process involved many variables, including a deliberate and controllable change in substrate temperature. As a result, both red and green light emission was detected from single nanowires.
Spatial and seasonal variations of polycyclic aromatic hydrocarbons in Haihe Plain, China.
Wang, Rong; Cao, Hongying; Li, Wei; Wang, Wei; Wang, Wentao; Zhang, Liwen; Liu, Jiumeng; Ouyang, Huiling; Tao, Shu
2011-05-01
A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas-particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.
2013-12-01
Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.
NASA Technical Reports Server (NTRS)
Fontecchio, Adam K. (Inventor); Rai, Kashma (Inventor)
2017-01-01
Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically-switchable beam steering capability is disclosed. XXXX Described herein is a new holographic polymer dispersed liquid crystal (HPDLC) medium with broadband reflective properties, and a new technique for fabrication of broadband 10 HPDLC mediums. The new technique involves dynamic variation of the holography setup during HPDLC formation, enabling the broadening of the HPDLC medium's wavelength response. Dynamic variation of the holography setup may include the rotation and/or translation of one or more 15 motorized stages, allowing for time and spatial, or angular, multiplexing through variation of the incident angles of one or more laser beams on a pre-polymer mixture during manufacture. An HPDLC medium manufactured using these techniques exhibits improved optical response by reflecting 20 a broadband spectrum of wavelengths. A new broadband holographic polymer dispersed liquid crystal thin film polymeric mirror stack with electrically switchable beam steering capability is disclosed.
de Rooij, Myrna M T; Heederik, Dick J J; Borlée, Floor; Hoek, Gerard; Wouters, Inge M
2017-02-01
Several studies have reported associations between farming and respiratory health in neighboring residents. Health effects are possibly linked to fine dust and endotoxin emissions from livestock farms. Little is known about levels of these air pollutants in ambient air in livestock dense areas. We aimed to explore temporal and spatial variation of PM10 and endotoxin concentrations, and the association with livestock-related spatial and meteorological temporal determinants. From March till September 2011, one week average PM10 samples were collected using Harvard Impactors at eight sites (residential gardens) representing a variety of nearby livestock-related characteristics. A background site was included in the study area, situated at least 500m away from the nearest farm. PM10 mass was determined by gravimetric analysis and endotoxin level by means of Limulus-Amebocyte-Lysate assay. Data were analyzed using mixed models. The range between sites of geometric mean concentrations was for PM10 19.8-22.3µg/m 3 and for endotoxin 0.46-0.66EU/m 3 . PM10 concentrations and spatial variation were very similar for all sites, while endotoxin concentrations displayed a more variable pattern over time with larger differences between sites. Nonetheless, the temporal pattern at the background location was highly comparable to the sites mean temporal pattern both for PM10 and endotoxin (Pearson correlation: 0.92, 0.62). Spatial variation was larger for endotoxin than for PM10 (within/between site variance ratio: 0.63, 2.03). Spatial livestock-related characteristics of the surroundings were more strongly related to endotoxin concentrations, while temporal determinants were more strongly related to PM10 concentrations. The effect of local livestock-related sources on PM10 concentration was limited in this study carried out in a livestock dense area. The effect on endotoxin concentrations was more profound. To gain more insight in the effect of livestock-related sources on ambient levels of PM10 and endotoxin, measurements should be based on a broader set of locations. Copyright © 2016. Published by Elsevier Inc.
43 CFR 3130.0-5 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... exploring, testing, surveying or otherwise investigating the potential of a lease for oil and gas or the... heterogeneity means spatial differences in the oil and gas reservoir properties. This can include, but is not... used to allocate production. (i) Variation in reservoir producibility means differences in the rates...
43 CFR 3130.0-5 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... exploring, testing, surveying or otherwise investigating the potential of a lease for oil and gas or the... heterogeneity means spatial differences in the oil and gas reservoir properties. This can include, but is not... used to allocate production. (i) Variation in reservoir producibility means differences in the rates...
43 CFR 3130.0-5 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... exploring, testing, surveying or otherwise investigating the potential of a lease for oil and gas or the... heterogeneity means spatial differences in the oil and gas reservoir properties. This can include, but is not... used to allocate production. (i) Variation in reservoir producibility means differences in the rates...
NASA Astrophysics Data System (ADS)
Fayad, Ibrahim; Baghdadi, Nicolas; Guitet, Stéphane; Bailly, Jean-Stéphane; Hérault, Bruno; Gond, Valéry; El Hajj, Mahmoud; Tong Minh, Dinh Ho
2016-10-01
Mapping forest aboveground biomass (AGB) has become an important task, particularly for the reporting of carbon stocks and changes. AGB can be mapped using synthetic aperture radar data (SAR) or passive optical data. However, these data are insensitive to high AGB levels (>150 Mg/ha, and >300 Mg/ha for P-band), which are commonly found in tropical forests. Studies have mapped the rough variations in AGB by combining optical and environmental data at regional and global scales. Nevertheless, these maps cannot represent local variations in AGB in tropical forests. In this paper, we hypothesize that the problem of misrepresenting local variations in AGB and AGB estimation with good precision occurs because of both methodological limits (signal saturation or dilution bias) and a lack of adequate calibration data in this range of AGB values. We test this hypothesis by developing a calibrated regression model to predict variations in high AGB values (mean >300 Mg/ha) in French Guiana by a methodological approach for spatial extrapolation with data from the optical geoscience laser altimeter system (GLAS), forest inventories, radar, optics, and environmental variables for spatial inter- and extrapolation. Given their higher point count, GLAS data allow a wider coverage of AGB values. We find that the metrics from GLAS footprints are correlated with field AGB estimations (R2 = 0.54, RMSE = 48.3 Mg/ha) with no bias for high values. First, predictive models, including remote-sensing, environmental variables and spatial correlation functions, allow us to obtain ;wall-to-wall; AGB maps over French Guiana with an RMSE for the in situ AGB estimates of ∼50 Mg/ha and R2 = 0.66 at a 1-km grid size. We conclude that a calibrated regression model based on GLAS with dependent environmental data can produce good AGB predictions even for high AGB values if the calibration data fit the AGB range. We also demonstrate that small temporal and spatial mismatches between field data and GLAS footprints are not a problem for regional and global calibrated regression models because field data aim to predict large and deep tendencies in AGB variations from environmental gradients and do not aim to represent high but stochastic and temporally limited variations from forest dynamics. Thus, we advocate including a greater variety of data, even if less precise and shifted, to better represent high AGB values in global models and to improve the fitting of these models for high values.
Urman, Robert; Gauderman, James; Fruin, Scott; Lurmann, Fred; Liu, Feifei; Hosseini, Reza; Franklin, Meredith; Avol, Edward; Penfold, Bryan; Gilliland, Frank; Brunekreef, Bert; McConnell, Rob
2014-01-01
Emerging evidence indicates that near-roadway pollution (NRP) in ambient air has adverse health effects. However, specific components of the NRP mixture responsible for these effects have not been established. A major limitation for health studies is the lack of exposure models that estimate NRP components observed in epidemiological studies over fine spatial scale of tens to hundreds of meters. In this study, exposure models were developed for fine-scale variation in biologically relevant elemental carbon (EC). Measurements of particulate matter (PM) and EC less than 2.5 μm in aerodynamic diameter (EC2.5) and of PM and EC of nanoscale size less than 0.2 μm were made at up to 29 locations in each of eight Southern California Children's Health Study communities. Regression-based prediction models were developed using a guided forward selection process to identify traffic variables and other pollutant sources, community physical characteristics and land use as predictors of PM and EC variation in each community. A combined eight-community model including only CALINE4 near-roadway dispersion-estimated vehicular emissions accounting for distance, distance-weighted traffic volume, and meteorology, explained 51% of the EC0.2 variability. Community-specific models identified additional predictors in some communities; however, in most communities the correlation between predicted concentrations from the eight-community model and observed concentrations stratified by community were similar to those for the community-specific models. EC2.5 could be predicted as well as EC0.2. EC2.5 estimated from CALINE4 and population density explained 53% of the within-community variation. Exposure prediction was further improved after accounting for between-community heterogeneity of CALINE4 effects associated with average distance to Pacific Ocean shoreline (to 61% for EC0.2) and for regional NOx pollution (to 57% for EC2.5). PM fine spatial scale variation was poorly predicted in both size fractions. In conclusion, models of exposure that include traffic measures such as CALINE4 can provide useful estimates for EC0.2 and EC2.5 on a spatial scale appropriate for health studies of NRP in selected Southern California communities. PMID:25313293
Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A
2015-01-01
Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042
Moore, Kara A.; Stanton, Maureen L.
2014-01-01
Adaptation to novel conditions beyond current range boundaries requires the presence of suitable sites within dispersal range, but may be impeded when emigrants encounter poor habitat and sharply different selection pressures. We investigated fine-scale spatial heterogeneity in ecological dynamics and selection at a local population boundary of the annual plant Gilia tricolor. In two years, we planted G. tricolor seeds in core habitat, margin habitat at the edge of the local range, and exterior habitat in order to measure spatial and temporal variation in habitat quality, opportunity for selection, and selection on phenotypic traits. We found a striking decline in average habitat quality with distance from the population core, yet some migrant seeds were successful in suitable, unoccupied microsites at and beyond the range boundary. Total and direct selection on four out of five measured phenotypic traits varied across habitat zones, as well as between years. Moreover, the margin habitat often exerted unique selection pressures that were not intermediate between core and exterior habitats. This study reveals that a combination of ecological and evolutionary forces, including propagule limitation, variation in habitat quality and spatial heterogeneity in phenotypic selection may reduce opportunities for adaptive range expansion, even across a very local population boundary. PMID:24717472
Fitzpatrick, Matthew C; Keller, Stephen R
2015-01-01
Local adaptation is a central feature of most species occupying spatially heterogeneous environments, and may factor critically in responses to environmental change. However, most efforts to model the response of species to climate change ignore intraspecific variation due to local adaptation. Here, we present a new perspective on spatial modelling of organism-environment relationships that combines genomic data and community-level modelling to develop scenarios regarding the geographic distribution of genomic variation in response to environmental change. Rather than modelling species within communities, we use these techniques to model large numbers of loci across genomes. Using balsam poplar (Populus balsamifera) as a case study, we demonstrate how our framework can accommodate nonlinear responses of loci to environmental gradients. We identify a threshold response to temperature in the circadian clock gene GIGANTEA-5 (GI5), suggesting that this gene has experienced strong local adaptation to temperature. We also demonstrate how these methods can map ecological adaptation from genomic data, including the identification of predicted differences in the genetic composition of populations under current and future climates. Community-level modelling of genomic variation represents an important advance in landscape genomics and spatial modelling of biodiversity that moves beyond species-level assessments of climate change vulnerability. © 2014 John Wiley & Sons Ltd/CNRS.
Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.
de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca
2018-05-01
Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.
The contribution of spatial ability to mathematics achievement in middle childhood.
Gilligan, Katie A; Flouri, Eirini; Farran, Emily K
2017-11-01
Strong spatial skills are associated with success in science, technology, engineering, and mathematics (STEM) domains. Although there is convincing evidence that spatial skills are a reliable predictor of mathematical achievement in preschool children and in university students, there is a lack of research exploring associations between spatial and mathematics achievement during the primary school years. To address this question, this study explored associations between mathematics and spatial skills in children aged 5 and 7years. The study sample included 12,099 children who participated in both Wave 3 (mean age=5; 02 [years; months]) and Wave 4 (mean age=7; 03) of the Millennium Cohort Study. Measures included a standardised assessment of mathematics and the Pattern Construction subscale of the British Ability Scales II to assess intrinsic-dynamic spatial skills. Spatial skills at 5 and 7years of age explained a significant 8.8% of the variation in mathematics achievement at 7years, above that explained by other predictors of mathematics, including gender, socioeconomic status, ethnicity, and language skills. This percentage increased to 22.6% without adjustment for language skills. This study expands previous findings by using a large-scale longitudinal sample of primary school children, a population that has been largely omitted from previous research exploring associations between spatial ability and mathematics achievement. The finding that early and concurrent spatial skills contribute to mathematics achievement at 7years of age highlights the potential of spatial skills as a novel target in the design of mathematics interventions for children in this age range. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Intraurban Variation of Fine Particle Elemental Concentrations in New York City.
Ito, Kazuhiko; Johnson, Sarah; Kheirbek, Iyad; Clougherty, Jane; Pezeshki, Grant; Ross, Zev; Eisl, Holger; Matte, Thomas D
2016-07-19
Few past studies have collected and analyzed within-city variation of fine particulate matter (PM2.5) elements. We developed land-use regression (LUR) models to characterize spatial variation of 15 PM2.5 elements collected at 150 street-level locations in New York City during December 2008-November 2009: aluminum, bromine, calcium, copper, iron, potassium, manganese, sodium, nickel, lead, sulfur, silicon, titanium, vanadium, and zinc. Summer- and winter-only data available at 99 locations in the subsequent 3 years, up to November 2012, were analyzed to examine variation of LUR results across years. Spatial variation of each element was modeled in LUR including six major emission indicators: boilers burning residual oil; traffic density; industrial structures; construction/demolition (these four indicators in buffers of 50 to 1000 m), commercial cooking based on a dispersion model; and ship traffic based on inverse distance to navigation path weighted by associated port berth volume. All the elements except sodium were associated with at least one source, with R(2) ranging from 0.2 to 0.8. Strong source-element associations, persistent across years, were found for residual oil burning (nickel, zinc), near-road traffic (copper, iron, and titanium), and ship traffic (vanadium). These emission source indicators were also significant and consistent predictors of PM2.5 concentrations across years.
Spatial Variation of Surface Wave Q and Body Wave t* in North America
NASA Astrophysics Data System (ADS)
Hwang, Y.; Ritsema, J.
2007-12-01
We estimate the spatial variation of the seismic parameter t* using teleseismic (30°--90°) P wave recordings of about 300 deep (> 200 km) earthquakes at broadband stations in North America. We determine the P wave spectral ratio Rij for about 600,000 station pairs i-j with high signal-to-noise ratio P wave signals. The linear fit to lnRij between f= 0.1--1.0 Hz is measured to estimate differential Δt* assuming that lnRij is proportional to π fΔt* (e.g., Aki and Richards, 1980). The measurements are inverted for t* at each station by least-squares inversion. Preliminary inversions indicate that the variation of t* correlate with the tectonic terrains of North America. Predominantly low values of t* are obtained for stations in the Canadian Shield and high t* values in the North American Cordillera. This variation is similar to Q variations inferred from global surface wave amplitude data (e.g., Dalton and Ekström, 2006), suggesting that intrinsic attenuation is the common cause. We will discuss the robustness of our t* estimates (including the effects of scattering on P wave ratios) and make a detailed comparison with surface wave Q maps.
Scribner, Kim T.; Garner, G.W.; Amstrup, Steven C.; Cronin, M.A.; Dizon, Andrew E.; Chivers, Susan J.; Perrin, William F.
1997-01-01
A summary of existing population genetics literature is presented for polar bears (Ursus maritimus) and interpreted in the context of the species' life-history characteristics and regional heterogeneity in environmental regimes and movement patterns. Several nongenetic data sets including morphology, contaminant levels, geographic variation in reproductive characteristics, and the location and distribution of open-water foraging habitat suggest some degree of spatial structuring. Eleven populations are recognized by the IUCN Polar Bear Specialist Group. Few genetics studies exist for polar bears. Interpretation and generalizations of regional variation in intra- and interpopulation levels of genetic variability are confounded by the paucity of data from many regions and by the fact that no single informative genetic marker has been employed in multiple regions. Early allozyme studies revealed comparatively low levels of genetic variability and no compelling evidence of spatial structuring. Studies employing mitochondrial DNA (mtDNA) also found low levels of genetic variation, a lack of phylogenetic structure, and no significant evidence for spatial variation in haplotype frequency. In contrast, microsatellite variable number of tandem repeat (VNTR) loci have revealed significant heterogeneity in allele frequency among populations in the Canadian Arctic. These regions are characterized by archipelgic patterns of sea-ice movements. Further studies using highly polymorphic loci are needed in regions characterized by greater polar bear dependency on pelagic sea-ice movements and in regions for which no data currently exist (i.e., Laptev and Novaya Zemlya/Franz Josef).
Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954
Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.
Lobon-Cervia, J.; Gonzalez, G.; Budy, P.
2011-01-01
1.The objective was to identify the factors driving spatial and temporal variation in annual production (PA) and turnover (production/biomass) ratio (P/BA) of resident brown trout Salmo trutta in tributaries of the Rio Esva (Cantabrian Mountains, Asturias, north-western Spain). We examined annual production (total production of all age-classes over a year) (PA) and turnover (P/BA) ratios, in relation to year-class production (production over the entire life time of a year-class) (PT) and turnover (P/BT) ratio, over 14years at a total of 12 sites along the length of four contrasting tributaries. In addition, we explored whether the importance of recruitment and site depth for spatial and temporal variations in year-class production (PT), elucidated in previous studies, extends to annual production. 2.Large spatial (among sites) and temporal (among years) variation in annual production (range 1.9-40.3gm-2 per year) and P/BA ratio (range 0.76-2.4per year) typified these populations, values reported here including all the variation reported globally for salmonids streams inhabited by one or several species. 3.Despite substantial differences among streams and sites in all production attributes, when all data were pooled, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios were tightly linked. Annual (PA) and year-class production (PT) were similar but not identical, i.e. PT=0.94 PA, whereas the P/BT ratios were 4+P/BA ratios. 4.Recruitment (Rc) and mean annual density (NA) were major density-dependent drivers of production and their relationships were described by simple mathematical models. While year-class production (PT) was determined (R2=70.1%) by recruitment (Rc), annual production (PA) was determined (R2=60.3%) by mean annual density (NA). In turn, variation in recruitment explained R2=55.2% of variation in year-class P/BT ratios, the latter attaining an asymptote at P/BT=6 at progressively higher levels of recruitment. Similarly, variations in mean annual density (NA) explained R2=52.1% of variation in annual P/BA, the latter reaching an asymptote at P/BA=2.1. This explained why P/BT is equal to P/BA plus the number of year-classes at high but not at low densities. 5.Site depth was a major determinant of spatial (among sites) variation in production attributes. All these attributes described two-phase trajectories with site depth, reaching a maximum at sites of intermediate depth and declining at shallower and deeper sites. As a consequence, at sites where recruitment and mean annual density reached minimum or maximum values, annual (PA) and year-class production (PT) and annual (P/BA) and year-class P/BT ratios also reached minimum and maximum values. ?? 2011 Blackwell Publishing Ltd.
Global Ultraviolet Imager (GUVI) investigation
NASA Technical Reports Server (NTRS)
Christensen, Andrew B.
1995-01-01
This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.
The History of Electromagnetic Induction Techniques in Soil Survey
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Doolittle, Jim
2014-05-01
Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.
Temporal and spatial variations of the Chesapeake Bay plume
NASA Technical Reports Server (NTRS)
Ruzecki, E. P.
1981-01-01
Historical records and data obtained during the Superflux experiments are used to describe the temporal and spatial variations of the effluent waters of Chesapeake Bay. The alongshore extent of the plume resulting from variations of freshwater discharge into the Bay and the effects of wind are illustrated. Variations of the cross sectional configuration of the plume over portions of a tidal cycle and results of a rapid underway water sampling system are discussed.
Li, Feng-Rui; Wang, Tao; Zhang, Ai-Sheng; Zhao, Li-Ya; Kang, Ling-Fen; Chen, Wen
2005-07-01
Artemisia halodendron is a native sub-shrub that occurs mainly in moving and semi-fixed sandy lands in Inner Mongolia, China. Information on the spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron inhabiting moving sandy lands is very limited. The aim of this study was to examine wind-dispersed seed deposition patterns and post-dispersal recruitment of A. halodendron seedlings. * The spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron were examined by investigating the numbers of deposited seeds, emerged and surviving seedlings using sampling points at a range of distances from the parent plant in eight compass directions for two consecutive growing seasons. * Wind-dispersed seed deposition showed considerable variation between directions and years. Wind transported A. halodendron seeds only a few meters away from the parent plant in all eight directions. Seedling emergence and establishment also showed between-direction and between-year variability, but the spatial pattern of seedling distribution differed from that of seed deposition. Only a very small fraction (<1 %) of the deposited seeds emerged in the field and survived for long enough to be included in our seedling censuses at the end of the growing season. * The spatial variation in wind speed and frequency strongly affects the pattern of seed deposition, although the variation in seed deposition does not determine the spatial pattern of seedling recruitment. Seeds of A. halodendron are not dispersed very well by wind. The low probability of recruitment success for A. halodendron seedlings suggests that this species does not rely on seedling recruitment for its persistence and maintenance of population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ling; Harley, Robert A.; Brown, Nancy J.
Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less
Contact line motion over substrates with spatially non-uniform properties
NASA Astrophysics Data System (ADS)
Ajaev, Vladimir; Gatapova, Elizaveta; Kabov, Oleg
2017-11-01
We develop mathematical models of moving contact lines over flat solid surfaces with spatial variation of temperature and wetting properties under the conditions when evaporation is significant. The gas phase is assumed to be pure vapor and a lubrication-type framework is employed for describing viscous flow in the liquid. Marangoni stresses at the liquid surface arise as a result of temperature variation in the vapor phase, non-equilibrium effects during evaporation at the interface, and Kelvin effect. The relative importance of these three factors is determined. Variation of wetting properties is modeled through a two-component disjoining pressure, with the main focus on spatially periodic patterns leading to time-periodic variation of the contact line speed.
Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu
2014-01-01
Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771
Vertical variations of coral reef drag forces
NASA Astrophysics Data System (ADS)
Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri; LWI Collaboration; Technion Collaboration
2017-11-01
Corals rely on water flow for the supply of nutrients, particles and energy. Therefore, modeling of processes that take place inside the reef, such as respiration and photosynthesis, relies on models that describe the flow and concentration fields. Due to the high spatial heterogeneity of branched coral reefs, depth average models are usually applied. Such an average approach is insufficient when the flow spatial variation inside the reef is of interest. We report on measurements of vertical variations of drag force that are needed for developing 3D flow models. Coral skeletons were densely arranged along a laboratory flume. Two corals were CT-scanned and replaced with horizontally sliced 3D printed replicates. Drag profiles were measured by connecting the slices to costume drag sensors and velocity profiles were measured using a LDV. The measured drag of whole colonies was in excellent agreement with previous studies; however, these studies never showed how drag varies inside the reef. In addition, these distributions of drag force showed an excellent agreement with momentum balance calculations. Based on the results, we propose a new drag model that includes the dispersive stresses, and consequently displays reduced vertical variations of the drag coefficient.
USDA-ARS?s Scientific Manuscript database
Transboundary zoonotic diseases, several of which are vector borne, can maintain a dynamic focus and have pathogens circulating in geographic regions encircling multiple geopolitical boundaries. Global change is intensifying transboundary problems, including the spatial variation of the risk and inc...
Quantifying uncertainty in forest nutrient budgets
Ruth D. Yanai; Carrie R. Levine; Mark B. Green; John L. Campbell
2012-01-01
Nutrient budgets for forested ecosystems have rarely included error analysis, in spite of the importance of uncertainty to interpretation and extrapolation of the results. Uncertainty derives from natural spatial and temporal variation and also from knowledge uncertainty in measurement and models. For example, when estimating forest biomass, researchers commonly report...
Modeling spatial variation in avian survival and residency probabilities
Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth
2010-01-01
The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.
ERIC Educational Resources Information Center
Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi
2004-01-01
Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…
Moreno-Pino, Mario; De la Iglesia, Rodrigo; Valdivia, Nelson; Henríquez-Castilo, Carlos; Galán, Alexander; Díez, Beatriz; Trefault, Nicole
2016-07-01
Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Bayat, Bardia; Zahraie, Banafsheh; Taghavi, Farahnaz; Nasseri, Mohsen
2013-08-01
Identification of spatial and spatiotemporal precipitation variations plays an important role in different hydrological applications such as missing data estimation. In this paper, the results of Bayesian maximum entropy (BME) and ordinary kriging (OK) are compared for modeling spatial and spatiotemporal variations of annual precipitation with and without incorporating elevation variations. The study area of this research is Namak Lake watershed located in the central part of Iran with an area of approximately 90,000 km2. The BME and OK methods have been used to model the spatial and spatiotemporal variations of precipitation in this watershed, and their performances have been evaluated using cross-validation statistics. The results of the case study have shown the superiority of BME over OK in both spatial and spatiotemporal modes. The results have shown that BME estimates are less biased and more accurate than OK. The improvements in the BME estimates are mostly related to incorporating hard and soft data in the estimation process, which resulted in more detailed and reliable results. Estimation error variance for BME results is less than OK estimations in the study area in both spatial and spatiotemporal modes.
Isostatic gravity map with simplified geology of the Los Angeles 30 x 60 minute quadrangle
Wooley, R.J.; Yerkes, R.F.; Langenheim, V.E.; Chuang, F.C.
2003-01-01
This isostatic residual gravity map is part of the Southern California Areal Mapping Project (SCAMP) and is intended to promote further understanding of the geology in the Los Angeles 30 x 60 minute quadrangle, California, by serving as a basis for geophysical interpretations and by supporting both geological mapping and topical (especially earthquake) studies. Local spatial variations in the Earth's gravity field (after various corrections for elevation, terrain, and deep crustal structure explained below) reflect the lateral variation in density in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithologic boundaries. The map shows contours of isostatic gravity overlain on a simplified geology including faults and rock types. The map is draped over shaded-relief topography to show landforms.
NASA Astrophysics Data System (ADS)
Follum, Michael L.; Niemann, Jeffrey D.; Parno, Julie T.; Downer, Charles W.
2018-05-01
Frozen ground can be important to flood production and is often heterogeneous within a watershed due to spatial variations in the available energy, insulation by snowpack and ground cover, and the thermal and moisture properties of the soil. The widely used continuous frozen ground index (CFGI) model is a degree-day approach and identifies frozen ground using a simple frost index, which varies mainly with elevation through an elevation-temperature relationship. Similarly, snow depth and its insulating effect are also estimated based on elevation. The objective of this paper is to develop a model for frozen ground that (1) captures the spatial variations of frozen ground within a watershed, (2) allows the frozen ground model to be incorporated into a variety of watershed models, and (3) allows application in data sparse environments. To do this, we modify the existing CFGI method within the gridded surface subsurface hydrologic analysis watershed model. Among the modifications, the snowpack and frost indices are simulated by replacing air temperature (a surrogate for the available energy) with a radiation-derived temperature that aims to better represent spatial variations in available energy. Ground cover is also included as an additional insulator of the soil. Furthermore, the modified Berggren equation, which accounts for soil thermal conductivity and soil moisture, is used to convert the frost index into frost depth. The modified CFGI model is tested by application at six test sites within the Sleepers River experimental watershed in Vermont. Compared to the CFGI model, the modified CFGI model more accurately captures the variations in frozen ground between the sites, inter-annual variations in frozen ground depths at a given site, and the occurrence of frozen ground.
Li, Tao; Hao, Xinmei; Kang, Shaozhong
2016-01-01
There is a growing interest in precision viticulture with the development of global positioning system and geographical information system technologies. Limited information is available on spatial variation of bud behavior and its possible association with soil properties. The objective of this study was to investigate spatial variability of bud burst percentage and its association with soil properties based on 2-year experiments at a vineyard of arid northwest China. Geostatistical approach was used to describe the spatial variation in bud burst percentage within the vineyard. Partial least square regressions (PLSRs) of bud burst percentage with soil properties were used to evaluate the contribution of soil properties to overall spatial variability in bud burst percentage for the high, medium and low bud burst percentage groups. Within the vineyard, the coefficient of variation (CV) of bud burst percentage was 20% and 15% for 2012 and 2013 respectively. Bud burst percentage within the vineyard showed moderate spatial variability, and the overall spatial pattern of bud burst percentage was similar between the two years. Soil properties alone explained 31% and 37% of the total spatial variation respectively for the low group of 2012 and 2013, and 16% and 24% for the high group of 2012 and 2013 respectively. For the low group, the fraction of variations explained by soil properties was found similar between the two years, while there was substantial difference for the high group. The findings are expected to lay a good foundation for developing remedy measures in the areas with low bud burst percentage, thus in turn improving the overall grape yield and quality. PMID:27798692
Spreading speeds for plant populations in landscapes with low environmental variation.
Gilbert, Mark A; Gaffney, Eamonn A; Bullock, James M; White, Steven M
2014-12-21
Characterising the spread of biological populations is crucial in responding to both biological invasions and the shifting of habitat under climate change. Spreading speeds can be studied through mathematical models such as the discrete-time integro-difference equation (IDE) framework. The usual approach in implementing IDE models has been to ignore spatial variation in the demographic and dispersal parameters and to assume that these are spatially homogeneous. On the other hand, real landscapes are rarely spatially uniform with environmental variation being very important in determining biological spread. This raises the question of under what circumstances spatial structure need not be modelled explicitly. Recent work has shown that spatial variation can be ignored for the specific case where the scale of landscape variation is much smaller than the spreading population׳s dispersal scale. We consider more general types of landscape, where the spatial scales of environmental variation are arbitrarily large, but the maximum change in environmental parameters is relatively small. We find that the difference between the wave-speeds of populations spreading in a spatially structured periodic landscape and its homogenisation is, in general, proportional to ϵ(2), where ϵ governs the degree of environmental variation. For stochastically generated landscapes we numerically demonstrate that the error decays faster than ϵ. In both cases, this means that for sufficiently small ϵ, the homogeneous approximation is better than might be expected. Hence, in many situations, the precise details of the landscape can be ignored in favour of spatially homogeneous parameters. This means that field ecologists can use the homogeneous IDE as a relatively simple modelling tool--in terms of both measuring parameter values and doing the modelling itself. However, as ϵ increases, this homogeneous approximation loses its accuracy. The change in wave-speed due to the extrinsic (landscape) variation can be positive or negative, which is in contrast to the reduction in wave-speed caused by intrinsic stochasticity. To deal with the loss of accuracy as ϵ increases, we formulate a second-order approximation to the wave-speed for periodic landscapes and compare both approximations against the results of numerical simulation and show that they are both accurate for the range of landscapes considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Huang, Ni; Wang, Li; Hu, Yongsen; Tian, Haifeng; Niu, Zheng
2016-01-01
Spatial variation of soil respiration (Rs) in cropland ecosystems must be assessed to evaluate the global terrestrial carbon budget. This study aims to explore the spatial characteristics and controlling factors of Rs in a cropland under winter wheat and summer maize rotation in the North China Plain. We collected Rs data from 23 sample plots in the cropland. At the late jointing stage, the daily mean Rs of summer maize (4.74 μmol CO2 m-2 s-1) was significantly higher than that of winter wheat (3.77μmol CO2 m-2 s-1). However, the spatial variation of Rs in summer maize (coefficient of variation, CV = 12.2%) was lower than that in winter wheat (CV = 18.5%). A similar trend in CV was also observed for environmental factors but not for biotic factors, such as leaf area index, aboveground biomass, and canopy chlorophyll content. Pearson's correlation analyses based on the sampling data revealed that the spatial variation of Rs was poorly explained by the spatial variations of biotic factors, environmental factors, or soil properties alone for winter wheat and summer maize. The similarly non-significant relationship was observed between Rs and the enhanced vegetation index (EVI), which was used as surrogate for plant photosynthesis. EVI was better correlated with field-measured leaf area index than the normalized difference vegetation index and red edge chlorophyll index. All the data from the 23 sample plots were categorized into three clusters based on the cluster analysis of soil carbon/nitrogen and soil organic carbon content. An apparent improvement was observed in the relationship between Rs and EVI in each cluster for both winter wheat and summer maize. The spatial variation of Rs in the cropland under winter wheat and summer maize rotation could be attributed to the differences in spatial variations of soil properties and biotic factors. The results indicate that applying cluster analysis to minimize differences in soil properties among different clusters can improve the role of remote sensing data as a proxy of plant photosynthesis in semi-empirical Rs models and benefit the acquisition of Rs in cropland ecosystems at large scales.
Meese, Tim S; Holmes, David J
2010-10-01
Most contemporary models of spatial vision include a cross-oriented route to suppression (masking from a broadly tuned inhibitory pool), which is most potent at low spatial and high temporal frequencies (T. S. Meese & D. J. Holmes, 2007). The influence of this pathway can elevate orientation-masking functions without exciting the target mechanism, and because early psychophysical estimates of filter bandwidth did not accommodate this, it is likely that they have been overestimated for this corner of stimulus space. Here we show that a transient 40% contrast mask causes substantial binocular threshold elevation for a transient vertical target, and this declines from a mask orientation of 0° to about 40° (indicating tuning), and then more gently to 90°, where it remains at a factor of ∼4. We also confirm that cross-orientation masking is diminished or abolished at high spatial frequencies and for sustained temporal modulation. We fitted a simple model of pedestal masking and cross-orientation suppression (XOS) to our data and those of G. C. Phillips and H. R. Wilson (1984) and found the dependency of orientation bandwidth on spatial frequency to be much less than previously supposed. An extension of our linear spatial pooling model of contrast gain control and dilution masking (T. S. Meese & R. J. Summers, 2007) is also shown to be consistent with our results using filter bandwidths of ±20°. Both models include tightly and broadly tuned components of divisive suppression. More generally, because XOS and/or dilution masking can affect the shape of orientation-masking curves, we caution that variations in bandwidth estimates might reflect variations in processes that have nothing to do with filter bandwidth.
Sources, sinks, and spatial ecology of cotton mice in longleaf pine stands undergoing restoration
Sharp, N.W.; Mitchell, M.S.; Grand, J.B.
2009-01-01
The Fire and Fire Surrogate studya replicated, manipulative experimentsought the most economically and ecologically efficient way to restore the nation's fire-maintained ecosystems. As part of this study, we conducted a 3-year markrecapture study, comprising 105,000 trap-nights, to assess demographic responses of cotton mice (Peromyscus gossypinus) to Fire and Fire Surrogate treatments at the Gulf Coastal Plain site, where longleaf pine was the ecosystem to be restored. We compared competing models to evaluate restoration effects on variation in apparent survival and recruitment over time, space, and treatment, and incorporated measures of available source habitat for cotton mice with reverse-time modeling to infer immigration from outside the study area. The top-ranked survival model contained only variation over time, but the closely ranked 2nd and 3rd models included variation over space and treatment, respectively. The top 4 recruitment models all included effects for availability of source habitat and treatments. Burning appeared to degrade habitat quality for cotton mice, showing demographic characteristics of a sink, but treatments combining fire with thinning of trees or application of herbicide to the understory appeared to improve habitat quality, possibly creating sources. Bottomland hardwoods outside the study also acted as sources by providing immigrants to experimental units. Models suggested that population dynamics operated over multiple spatial scales. Treatments applied to 15-ha stands probably only caused local variation in vital rates within the larger population. ?? 2009 American Society of Mammalogists.
NASA Astrophysics Data System (ADS)
Mikola, Juha; Virtanen, Tarmo; Linkosalmi, Maiju; Vähä, Emmi; Nyman, Johanna; Postanogova, Olga; Räsänen, Aleksi; Kotze, D. Johan; Laurila, Tuomas; Juutinen, Sari; Kondratyev, Vladimir; Aurela, Mika
2018-05-01
Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs) and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI) and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM) in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm-3 in bare soil and lichen tundra and 89 g dm-3 in other LCTs. Total moss biomass varied from 0 to 820 g m-2, total vascular shoot mass from 7 to 112 g m-2 and vascular leaf area index (LAI) from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14-34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer depth, but only explained 6-15 % of variation. NDVI captured variation in vascular LAI better than in moss biomass, but while this difference was significant with late season NDVI, it was minimal with early season NDVI. For this reason, soil attributes associated with moss mass were better captured by early season NDVI. Topographic attributes were related to LAI and many soil attributes, but not to moss biomass and could not increase the amount of spatial variation explained in plant and soil attributes above that achieved by NDVI. The LCT map we produced had low to moderate uncertainty in predictions for plant and soil properties except for moss biomass and bare soil and lichen tundra LCTs. Our results illustrate a typical tundra ecosystem with great fine-scale spatial variation in both plant and soil attributes. Mosses dominate plant biomass and control many soil attributes, including OM % and temperature, but variation in moss biomass is difficult to capture by remote sensing reflectance, topography or a LCT map. Despite the general accuracy of landscape level predictions in our LCT approach, this indicates challenges in the spatial extrapolation of some of those vegetation and soil attributes that are relevant for the regional ecosystem and global climate models.
Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C
2014-11-07
Air pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential air exchange rate (AER), which is the rate of exchange of indoor air with outdoor air, is an important determinant for house-to-house (spatial) and temporal variations of air pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to air leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and home-specific AER models, and to include the spatial and temporal variations of AER for over 200 individual homes across multiple years into an exposure assessment in support of improving risk estimates.
Chung, Mi Yoon; Nason, John D; Chung, Myong Gi
2007-07-01
Spatial genetic structure within plant populations is influenced by variation in demographic processes through space and time, including a population's successional status. To determine how demographic structure and fine-scale genetic structure (FSGS) change with stages in a population's successional history, we studied Hemerocallis thunbergii (Liliaceae), a nocturnal flowering and hawkmoth-pollinated herbaceous perennial with rapid population turnover dynamics. We examined nine populations assigned to three successive stages of population succession: expansion, maturation, and senescence. We developed stage-specific expectations for within-population demographic and genetic structure, and then for each population quantified the spatial aggregation of individuals and genotypes using spatial autocorrelation methods (nonaccumulative O-ring and kinship statistics, respectively), and at the landscape level measured inbreeding and genetic structure using Wright's F-statistics. Analyses using the O-ring statistic revealed significant aggregation of individuals at short spatial scales in expanding and senescing populations, in particular, which may reflect restricted seed dispersal around maternal individuals combined with relatively low local population densities at these stages. Significant FSGS was found for three of four expanding, no mature, and only one senescing population, a pattern generally consistent with expectations of successional processes. Although allozyme genetic diversity was high within populations (mean %P = 78.9 and H(E) = 0.281), landscape-level differentiation among sites was also high (F(ST) = 0.166) and all populations exhibited a significant deficit of heterozygotes relative to Hardy-Weinberg expectations (range F = 0.201-0.424, mean F(IS) = 0.321). Within populations, F was not correlated with the degree of FSGS, thus suggesting inbreeding due primarily to selfing as opposed to mating among close relatives in spatially structured populations. Our results demonstrate considerable variation in the spatial distribution of individuals and patterns and magnitude of FSGS in H. thunbergii populations across the landscape. This variation is generally consistent with succession-stage-specific differences in ecological processes operating within these populations.
Variation in mineral content of red maple sap across an atmospheric deposition gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, L.H.
1997-11-01
Xylem sap was collected from red maple (Acer rubrum L.) trees during the spring of 1988 and 1989 at seven forest sites along an atmospheric deposition gradient in north central Pennsylvania and analyzed for pH and twelve mineral constituents. The objectives of the study were to examine the sources and patterns of variation in red maple sap chemistry across an atmospheric deposition gradient and to assess the feasibility of using sap analysis as an indicator of nutrient bioavailability. For most sap constituents, there was considerable spatial and temporal variation in concentration. Sources of variation included within and between site variation,more » date, and year of collection. The nature and extent of variation varied for different constituents. Site differences were similar in 1988 and 1989 for most sap constituents and for some constituents corresponded with differences in soil levels.« less
Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon
NASA Astrophysics Data System (ADS)
Como, S.; Magni, P.; Van Der Velde, G.; Blok, F. S.; Van De Steeg, M. F. M.
2012-12-01
The analysis of the contribution of a food source to a consumer's diet or the trophic position of a consumer is highly sensitive to the variability of the isotopic values used as input data. However, little is known in coastal lagoons about the spatial variations in the isotopic values of primary consumers considered 'end members' in the isotope mixing models for quantifying the diet of secondary consumers or as a baseline for estimating the trophic position of consumers higher up in the food web. We studied the spatial variations in the δ13C and δ15N values of primary consumers and sedimentary organic matter (SOM) within a selected area of the Cabras lagoon (Sardinia, Italy). Our aim was to assess how much of the spatial variation in isotopic values of primary consumers was due to the spatial variability between sites and how much was due to differences in short distances from the shore. Samples were collected at four stations (50-100 m apart) selected randomly at two sites (1.5-2 km apart) chosen randomly at two distances from the shore (i.e. in proximity of the shore -Nearshore - and about 200 m away from the shore -Offshore). The sampling was repeated in March, May and August 2006 using new sites at the two chosen distances from the shore on each date. The isotopic values of size-fractionated seston and macrophytes were also analyzed as a complementary characterization of the study area. While δ15N did not show any spatial variations, the δ13C values of deposit feeders, Alitta (=Neanthes) succinea, Lekanesphaera hookeri, Hydrobia acuta and Gammarus aequicauda, were more depleted Offshore than Nearshore. For these species, there were significant effects of distance or distance × dates in the mean δ13C values, irrespective of the intrinsic variation between sites. SOM showed similar spatial variations in δ13C values, with Nearshore-Offshore differences up to 6‰. This indicates that the spatial isotopic changes are transferred from the food sources to the deposit feeders studied. In contrast, δ13C and δ15N values of suspension feeders, Ficopomatus enigmaticus and Amphibalanus amphitrite, did not show major variations, either between sites, or between Nearshore and Offshore. These different patterns between deposit feeders and suspension feeders are probably due to a weaker trophic link of the latter with SOM. We suggest that the Nearshore-Offshore gradient might be an important source of isotopic variation that needs to be considered in future web studies in coastal lagoons.
Object-based vegetation classification with high resolution remote sensing imagery
NASA Astrophysics Data System (ADS)
Yu, Qian
Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions such as (1) whether the sample characteristics affect the classification accuracy and how significant if it does; (2) how much variance of classification uncertainty can be explained by above factors. This research is carried out on a hilly peninsular area in Mediterranean climate, Point Reyes National Seashore (PRNS) in Northern California. The area mainly consists of a heterogeneous, semi-natural broadleaf and conifer woodland, shrub land, and annual grassland. A detailed list of vegetation alliances is used in this study. Research results from the first phase indicates that vegetation spatial variation as reflected by the average local variance (ALV) keeps a high level of magnitude between 1 m and 4 m resolution. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Almasganj, Mohammad; Adabi, Saba; Fatemizadeh, Emad; Xu, Qiuyun; Sadeghi, Hamid; Daveluy, Steven; Nasiriavanaki, Mohammadreza
2017-03-01
Optical Coherence Tomography (OCT) has a great potential to elicit clinically useful information from tissues due to its high axial and transversal resolution. In practice, an OCT setup cannot reach to its theoretical resolution due to imperfections of its components, which make its images blurry. The blurriness is different alongside regions of image; thus, they cannot be modeled by a unique point spread function (PSF). In this paper, we investigate the use of solid phantoms to estimate the PSF of each sub-region of imaging system. We then utilize Lucy-Richardson, Hybr and total variation (TV) based iterative deconvolution methods for mitigating occurred spatially variant blurriness. It is shown that the TV based method will suppress the so-called speckle noise in OCT images better than the two other approaches. The performance of proposed algorithm is tested on various samples, including several skin tissues besides the test image blurred with synthetic PSF-map, demonstrating qualitatively and quantitatively the advantage of TV based deconvolution method using spatially-variant PSF for enhancing image quality.
Non-invasive imaging of the crystalline structure within a human tooth.
Egan, Christopher K; Jacques, Simon D M; Di Michiel, Marco; Cai, Biao; Zandbergen, Mathijs W; Lee, Peter D; Beale, Andrew M; Cernik, Robert J
2013-09-01
The internal crystalline structure of a human molar tooth has been non-destructively imaged in cross-section using X-ray diffraction computed tomography. Diffraction signals from high-energy X-rays which have large attenuation lengths for hard biomaterials have been collected in a transmission geometry. Coupling this with a computed tomography data acquisition and mathematically reconstructing their spatial origins, diffraction patterns from every voxel within the tooth can be obtained. Using this method we have observed the spatial variations of some key material parameters including nanocrystallite size, organic content, lattice parameters, crystallographic preferred orientation and degree of orientation. We have also made a link between the spatial variations of the unit cell lattice parameters and the chemical make-up of the tooth. In addition, we have determined how the onset of tooth decay occurs through clear amorphization of the hydroxyapatite crystal, and we have been able to map the extent of decay within the tooth. The described method has strong prospects for non-destructive probing of mineralized biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-05-20
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-01-01
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121
Valdivia, Nelson; Díaz, María J.; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván
2014-01-01
Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica. PMID:24956114
Dalecky, Ambroise; Renucci, Marielle; Tirard, Alain; Debout, Gabriel; Roux, Maurice; Kjellberg, Finn; Provost, Erick
2007-09-01
In social insects, biochemicals found at the surface of the cuticle are involved in the recognition process and in protection against desiccation and pathogens. However, the relative contribution of evolutionary forces in shaping diversity of these biochemicals remains largely unresolved in ants. We determined the composition of epicuticular biochemicals for workers sampled in 12 populations of the ant Petalomyrmex phylax from Cameroon. Genetic variation at 12 microsatellite markers was used to infer population history and to provide null expectations under the neutrality hypothesis. Genetic data suggest a recent southward range expansion of this ant species. Furthermore, there is a decline southward in the numbers of queens present in mature colonies. Here, we contrast the pattern of biochemical variation against genetic, social and spatial parameters. We thus provide the first estimates of the relative contribution of neutral and selective processes on variation of ant cuticular profile. Populations in migration-drift disequilibrium showed reduction of within-population variation for genetic markers as well as for cuticular profiles. In these populations, the cuticular profile became biased towards a limited number of high molecular weight molecules. Within- and among-population biochemical variation was explained by both genetic and social variation and by the spatial distribution of populations. We therefore propose that during range expansion of P. phylax, the composition of epicuticular compounds has been affected by a combination of neutral processes - genetic drift and spatially limited dispersal - and spatially varying selection, social organization and environmental effects.
TPX: Contractor preliminary design review. Volume 3, Design and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-30
Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; ...
2017-09-28
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
NASA Astrophysics Data System (ADS)
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; Crump, Alex R.; Chen, Xingyuan; Hess, Nancy
2017-09-01
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but only in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Combining such an approach with broader knowledge of thresholding behavior - here related to active layer depth - would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.
Tello, J. Sebastián; Myers, Jonathan A.; Macía, Manuel J.; Fuentes, Alfredo F.; Cayola, Leslie; Arellano, Gabriel; Loza, M. Isabel; Torrez, Vania; Cornejo, Maritza; Miranda, Tatiana B.; Jørgensen, Peter M.
2015-01-01
Despite long-standing interest in elevational-diversity gradients, little is known about the processes that cause changes in the compositional variation of communities (β-diversity) across elevations. Recent studies have suggested that β-diversity gradients are driven by variation in species pools, rather than by variation in the strength of local community assembly mechanisms such as dispersal limitation, environmental filtering, or local biotic interactions. However, tests of this hypothesis have been limited to very small spatial scales that limit inferences about how the relative importance of assembly mechanisms may change across spatial scales. Here, we test the hypothesis that scale-dependent community assembly mechanisms shape biogeographic β-diversity gradients using one of the most well-characterized elevational gradients of tropical plant diversity. Using an extensive dataset on woody plant distributions along a 4,000-m elevational gradient in the Bolivian Andes, we compared observed patterns of β-diversity to null-model expectations. β-deviations (standardized differences from null values) were used to measure the relative effects of local community assembly mechanisms after removing sampling effects caused by variation in species pools. To test for scale-dependency, we compared elevational gradients at two contrasting spatial scales that differed in the size of local assemblages and regions by at least an order of magnitude. Elevational gradients in β-diversity persisted after accounting for regional variation in species pools. Moreover, the elevational gradient in β-deviations changed with spatial scale. At small scales, local assembly mechanisms were detectable, but variation in species pools accounted for most of the elevational gradient in β-diversity. At large spatial scales, in contrast, local assembly mechanisms were a dominant force driving changes in β-diversity. In contrast to the hypothesis that variation in species pools alone drives β-diversity gradients, we show that local community assembly mechanisms contribute strongly to systematic changes in β-diversity across elevations. We conclude that scale-dependent variation in community assembly mechanisms underlies these iconic gradients in global biodiversity. PMID:25803846
Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre
2015-01-01
Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID:26402522
Zhang, Lei; Qin, Yanwen; Han, Chaonan; Cao, Wei; Ma, Yingqun; Shi, Yao; Liu, Zhichao; Yang, Chenchen
2016-08-01
The transport and storage of phosphorus in estuary is a complex biogeochemical process as the result of the convergence of fresh and saline water. The objective of the current study is to investigate the spatial-temporal variations of phosphorus fractions in surface water and suspended particles of Daliao River Estuary, China. Samples were collected in August (wet season) and November (dry season), 2013. The results showed that total particulate phosphorus (TPP) in water accounted for more than 50 % of the total phosphorus (TP). Meanwhile, in suspended particles, more than 62 % of particulate phosphorus was in the form of bioavailable phosphorus, including exchangeable phosphorus (Exc-P), extractable organic phosphorus (Exo-P), and iron-bound phosphorus (Fe-P), which meant that the potential impacts of bioavailable phosphorus in suspended particles on estuarine water environment cannot be ignored. There were significantly seasonal variations of phosphorus fractions in the Daliao River Estuary. The concentrations of phosphorus fractions in water in wet season were much lower than that in dry season because of the dilution effect of larger rainfall in wet season. In addition, spatial distribution characteristics of phosphorus fractions were also obvious. Due to terrigenous phosphorus input from the upstream of tidal reach and seawater dilution effect in coastal estuary, total dissolved phosphorus (TDP) concentrations in water gradually decreased from tidal reach to coastal estuary. However, the concentrations of TPP and TP in water and Exo-P in suspended particles presented spatial fluctuation, and these were greatly attributed to sediment re-suspension in coastal estuary.
Batterman, Stuart
2015-01-01
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671
Contrasting patterns of fine-scale herb layer species composition in temperate forests
NASA Astrophysics Data System (ADS)
Chudomelová, Markéta; Zelený, David; Li, Ching-Feng
2017-04-01
Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
Flow in Atherosclerotic Blood Vessels
NASA Astrophysics Data System (ADS)
Berger, Stanley A.; Stroud, Jenn S.
2000-11-01
Atherosclerotic lesions occur in arteries where there are major changes in flow structure, e.g. bifurcations and junctions. The reduction of vessel lumen alters the flow, including the mechanical forces on the walls. We have examined the flow in carotid artery bifurcations with realistic plaque contours. The unsteady, incompressible, Navier-Stokes equations are solved in finite-volume form. Steady and pulsatile flows have been analyzed for laminar and turbulent flows, using for the latter a low-Reynolds number k- ɛ model and a k-ω model. Non-Newtonian viscosity is also considered using a power-law model. In general the very irregular contours of the vessels lead to recirculating regions, strong spatial variations of wall shear stresses, and in some cases, vortex shedding. Even steady inlet flow exhibits fluctuating, unsteady behavior. Neither turbulence models captures all the physics of the flow. The flow, in fact, appears to be transitional and not fully turbulent. For unsteady flow, there are also strong temporal variations of normal and shear stresses, which together with the strong spatial variations, has important implications for the onset and progression of atherosclerotic disease.
Predicting redwood productivity using biophysical data, spatial statistics and site quality indices
John-Pascal Berrill; Kevin L. O’Hara; Shawn Headley
2017-01-01
Coast redwood (Sequoia sempervirens (D. Don) Endl.) height growth and basal area growth are sensitive to variations in site quality. Site factors known to be correlated with redwood stand growth and yield include topographic variables such as position on slope, exposure, and the composite variable: topographic relative moisture index. Species...
Sower, GJ; Anderson, K.A.
2014-01-01
Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination. Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a pre-cap average of 440 ± 422 ng/L to 8 ± 3 ng/L post-capping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/ pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values. PMID:19174872
Sower, Gregory James; Anderson, Kim A
2008-12-15
Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination. Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a precap average of 440 +/- 422 ng/L to 8 +/- 3 ng/L postcapping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values.
Murphy, Stephen J; Audino, Livia D; Whitacre, James; Eck, Jenalle L; Wenzel, John W; Queenborough, Simon A; Comita, Liza S
2015-03-01
Patterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.e., topography, soils, and distance to stream), spatial descriptors (i.e., spatial eigenvectors derived from Cartesian coordinates), and land-use history variables (i.e., land-use type and intensity, forest age, and distance to road), explained about half of the variation in both species richness and community composition. Spatial descriptors explained the most variation, followed by measured environmental variables and then by land- use history. Individual species revealed variable responses to each of these sets of predictor variables. Several species were associated with stream habitats, and others were strictly delimited across opposing north- and south-facing slopes. Several species were also associated with areas that experienced recent (i.e., <100 years) human land-use impacts. These results indicate that deterministic factors, including environmental and land-use history variables, are important drivers of community response. The large amount of "unexplained" variation seen here (about 50%) is commonly observed in other such studies attempting to explain distribution and abundance patterns of plant communities. Determining whether such large fractions of unaccounted for variation are caused by a lack of sufficient data, or are an indication of stochastic features of forest communities globally, will remain an important challenge for ecologists in the future.
Demographic controls of aboveground forest biomass across North America.
Vanderwel, Mark C; Zeng, Hongcheng; Caspersen, John P; Kunstler, Georges; Lichstein, Jeremy W
2016-04-01
Ecologists have limited understanding of how geographic variation in forest biomass arises from differences in growth and mortality at continental to global scales. Using forest inventories from across North America, we partitioned continental-scale variation in biomass growth and mortality rates of 49 tree species groups into (1) species-independent spatial effects and (2) inherent differences in demographic performance among species. Spatial factors that were separable from species composition explained 83% and 51% of the respective variation in growth and mortality. Moderate additional variation in mortality (26%) was attributable to differences in species composition. Age-dependent biomass models showed that variation in forest biomass can be explained primarily by spatial gradients in growth that were unrelated to species composition. Species-dependent patterns of mortality explained additional variation in biomass, with forests supporting less biomass when dominated by species that are highly susceptible to competition (e.g. Populus spp.) or to biotic disturbances (e.g. Abies balsamea). © 2016 John Wiley & Sons Ltd/CNRS.
Identifying Preserved Storm Events on Beaches from Trenches and Cores
NASA Astrophysics Data System (ADS)
Wadman, H. M.; Gallagher, E. L.; McNinch, J.; Reniers, A.; Koktas, M.
2014-12-01
Recent research suggests that even small scale variations in grain size in the shallow stratigraphy of sandy beaches can significantly influence large-scale morphology change. However, few quantitative studies of variations in shallow stratigraphic layers, as differentiated by variations in mean grain size, have been conducted, in no small part due to the difficulty of collecting undisturbed sediment cores in the energetic lower beach and swash zone. Due to this lack of quantitative stratigraphic grain size data, most coastal morphology models assume that uniform grain sizes dominate sandy beaches, allowing for little to no temporal or spatial variations in grain size heterogeneity. In a first-order attempt to quantify small-scale, temporal and spatial variations in beach stratigraphy, thirty-five vibracores were collected at the USACE Field Research Facility (FRF), Duck, NC, in March-April of 2014 using the FRF's Coastal Research and Amphibious Buggy (CRAB). Vibracores were collected at set locations along a cross-shore profile from the toe of the dune to a water depth of ~1m in the surf zone. Vibracores were repeatedly collected from the same locations throughout a tidal cycle, as well as pre- and post a nor'easter event. In addition, two ~1.5m deep trenches were dug in the cross-shore and along-shore directions (each ~14m in length) after coring was completed to allow better interpretation of the stratigraphic sequences observed in the vibracores. The elevations of coherent stratigraphic layers, as revealed in vibracore-based fence diagrams and trench data, are used to relate specific observed stratigraphic sequences to individual storm events observed at the FRF. These data provide a first-order, quantitative examination of the small-scale temporal and spatial variability of shallow grain size along an open, sandy coastline. The data will be used to refine morphological model predictions to include variations in grain size and associated shallow stratigraphy.
Larson, James H; Richardson, William B; Knights, Brent C; Bartsch, Lynn A; Bartsch, Michelle R; Nelson, John C; Veldboom, Jason A; Vallazza, Jon M
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Aragón, Pedro; Fitze, Patrick S.
2014-01-01
Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity. PMID:25090025
Gallego, Sergi; Márquez, Andrés; Méndez, David; Ortuño, Manuel; Neipp, Cristian; Fernández, Elena; Pascual, Inmaculada; Beléndez, Augusto
2008-05-10
One of the problems associated with photopolymers as optical recording media is the thickness variation during the recording process. Different values of shrinkages or swelling are reported in the literature for photopolymers. Furthermore, these variations depend on the spatial frequencies of the gratings stored in the materials. Thickness variations can be measured using different methods: studying the deviation from the Bragg's angle for nonslanted gratings, using MicroXAM S/N 8038 interferometer, or by the thermomechanical analysis experiments. In a previous paper, we began the characterization of the properties of a polyvinyl alcohol/acrylamide based photopolymer at the lowest end of recorded spatial frequencies. In this work, we continue analyzing the thickness variations of these materials using a reflection interferometer. With this technique we are able to obtain the variations of the layers refractive index and, therefore, a direct estimation of the polymer refractive index.
NASA Astrophysics Data System (ADS)
Guozhuang, Shen; Jingjuan, Liao; Huadong, Guo; Yingkui, Li
2014-03-01
Qinghai-Tibetan Plateau is the largest lake area in China, with a total area of existing lakes of 36,900km2, accounting for 52% of the total lake area of China. Lakes on the Tibetan Plateau play critical roles in the water cycle and ecological and environment systems of the Plateau. The global trend of warming up is increasing obviously, which has led to major changes in the climate conditions in China, even in the world. Whereas, when they analyse the relationship they just use the weather station's recording data, without any spatial analysis of the climate data. Here, we will do some researches on the relationship between the 10 selected lakes' area variation and the corresponding climate change in their drainage basin and discuss how the lakes changes in recent 40 years using the climate data processed using the spatial kriging. Thus, the drainage area can be taken into account and a real relationship can be pointed out. In order to study the relationship, Landsat MSS data, Landsat TM, Landsat ETM images, the topographic map have been collected to extract the variation of lake area. The 131 weather stations climate data, including precipitation, temperature, sun shine duration, evaporation are chosen to study the relationship. After extraction of the area of the lakes, a multivariate statistical analysis method was used to test the relationship between the area of the lakes and the global climate change, including the change of the temperature, the precipitation, and other factors. The variation of lakes in Qinghai-Tibetan Plateau is related to the mean temperature, the precipitation and saturation vapour pressure. But the frozen soil may affect the lake area variation to some extent.
Zhaohua Dai; Carl Trettin; Changsheng Li; Harbin Li; Ge Sun; Devendra Amatya
2011-01-01
Emissions of methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) from a forested watershed (160 ha) in South Carolina, USA, were estimated with a spatially explicit watershed-scale modeling framework that utilizes the spatial variations in physical and biogeochemical characteristics across watersheds. The target watershed (WS80) consisting of wetland (23%) and...
Ye, Chen; Li, Siyue; Yang, Yuyi; Shu, Xiao; Zhang, Jiaquan; Zhang, Quanfa
2015-01-01
The ~350 km2 water level fluctuation zone (WLFZ) in the Three Gorges Reservoir (TGR) of China, situated at the intersection of terrestrial and aquatic ecosystems, experiences a great hydrological change with prolonged winter inundation. Soil samples were collected in 12 sites pre- (September 2008) and post submergence (June 2009) in the WLFZ and analyzed for soil nutrients. Self-organizing map (SOM) and statistical analysis including multi-way ANOVA, paired-T test, and stepwise least squares multiple regression were employed to determine the spatio-temporal variations of soil nutrients in relation to submergence, and their correlations with soil physical characteristics. Results showed significant spatial variability in nutrients along ~600 km long shoreline of the TGR before and after submergence. There were higher contents of organic matter, total nitrogen (TN), and nitrate (NO3-) in the lower reach and total phosphorus (TP) in the upper reach that were primarily due to the spatial variations in soil particle size composition and anthropogenic activities. Submergence enhanced soil available potassium (K), while significantly decreased soil N, possibly due to the alterations of soil particle size composition and increase in soil pH. In addition, SOM analysis determined important roles of soil pH value, bulk density, soil particle size (i.e., silt and sand) and nutrients (TP, TK, and AK) on the spatial and temporal variations in soil quality. Our results suggest that urban sewage and agricultural runoffs are primary pollutants that affect soil nutrients in the WLFZ of TGR. PMID:25789612
Lin, Yan; Wimberly, Michael C
2017-04-01
The purpose of this study was to examine the geographic variations of late-stage diagnosis in colorectal cancer (CRC) and breast cancer as well as to investigate the effects of 3 neighborhood-level factors-socioeconomic deprivation, urban/rural residence, and spatial accessibility to health care-on the late-stage risks. This study used population-based South Dakota cancer registry data from 2001 to 2012. A total of 4,878 CRC cases and 6,418 breast cancer cases were included in the analyses. Two-level logistic regression models were used to analyze the risk of late-stage CRC and breast cancer. For CRC, there was a small geographic variation across census tracts in late-stage diagnosis, and residing in isolated small rural areas was significantly associated with late-stage risk. However, this association became nonsignificant after adjusting for census-tract level socioeconomic deprivation. Socioeconomic deprivation was an independent predictor of CRC late-stage risk, and it explained the elevated risk among American Indians. No relationship was found between spatial accessibility and CRC late-stage risk. For breast cancer, no geographic variation in the late-stage diagnosis was observed across census tracts, and none of the 3 neighborhood-level factors was significantly associated with late-stage risk. Results suggested that socioeconomic deprivation, rather than spatial accessibility, contributed to CRC late-stage risks in South Dakota as a rural state. CRC intervention programs could be developed to target isolated small rural areas, socioeconomically disadvantaged areas, as well as American Indians residing in these areas. © 2016 National Rural Health Association.
Yergeau, Etienne; Bezemer, T Martijn; Hedlund, Katarina; Mortimer, Simon R; Kowalchuk, George A; Van Der Putten, Wim H
2010-08-01
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
Dynamic interpretation of geoid anomalies
NASA Technical Reports Server (NTRS)
Hager, Bradford H.
1988-01-01
The NASA Geodynamics program has as two of its missions precise determination of spatial variations in earth's geopotential (or geoid) and highly accurate monitoring of polar motion, including changes in the length of day (LOD). For the past several years, data sets provided by NASA, along with data and models from other areas of geophysic were used to place fundamental contraints on the large scale dynamics of earth and her sister planet Venus. The main approach was using fluid mechanical models of mantle flow to predict the long-wavelength variations in the geoid.
Mordecai, Erin A.; Jaramillo, Alejandra G.; Ashford, Jacob E.; Hechinger, Ryan F.; Lafferty, Kevin D.
2016-01-01
Competition – colonization tradeoffs occur in many systems, and theory predicts that they can strongly promote species coexistence. However, there is little empirical evidence that observed competition – colonization tradeoffs are strong enough to maintain diversity in natural systems. This is due in part to a mismatch between theoretical assumptions and biological reality in some systems. We tested whether a competition – colonization tradeoff explains how a diverse trematode guild coexists in California horn snail populations, a system that meets the requisite criteria for the tradeoff to promote coexistence. A field experiment showed that subordinate trematode species tended to have higher colonization rates than dominant species. This tradeoff promoted coexistence in parameterized models but did not fully explain trematode diversity and abundance, suggesting a role of additional diversity maintenance mechanisms. Spatial heterogeneity is an alternative way to promote coexistence if it isolates competing species. We used scale transition theory to expand the competition – colonization tradeoff model to include spatial variation. The parameterized model showed that spatial variation in trematode prevalence did not isolate most species sufficiently to explain the overall high diversity, but could benefit some rare species. Together, the results suggest that several mechanisms combine to maintain diversity, even when a competition – colonization tradeoff occurs.
NASA Astrophysics Data System (ADS)
Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.
2014-12-01
Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results demonstrate that information about the seasonality and intermittency of rainfall has the potential to improve our understanding of malaria epidemiology and improve our ability to forecast malaria outbreaks.
Alexander, Peter; Rabin, Sam; Anthoni, Peter; Henry, Roslyn; Pugh, Thomas A M; Rounsevell, Mark D A; Arneth, Almut
2018-02-27
Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO 2 ) levels' changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ-GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO 2 concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.
2013-12-01
Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the most sensitive to toxic air contaminants in the Sierra Nevada-Southern Cascades region.
NASA Astrophysics Data System (ADS)
Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.
2018-04-01
Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling studies as the steeper gradients of uplift predicted from the more realistic 3D model may promote stability in marine-grounded regions of West Antarctica. Including lateral variations in lithospheric thickness, at least to the level of considering West and East Antarctica separately, is important for capturing short wavelength deformation and it has the potential to provide a better fit to GPS observations as well as an improved GIA correction for GRACE data.
Toward a visuospatial developmental account of sequence-space synesthesia
Price, Mark C.; Pearson, David G.
2013-01-01
Sequence-space synesthetes experience some sequences (e.g., numbers, calendar units) as arranged in spatial forms, i.e., spatial patterns in their mind's eye or even outside their body. Various explanations have been offered for this phenomenon. Here we argue that these spatial forms are continuous with varieties of non-synesthetic visuospatial imagery and share their central characteristics. This includes their dynamic and elaborative nature, their involuntary feel, and consistency over time. Drawing from literatures on mental imagery and working memory, we suggest how the initial acquisition and subsequent elaboration of spatial forms could be accounted for in terms of the known developmental trajectory of visuospatial representations. This extends from the formation of image-based representations of verbal material in childhood to the later maturation of dynamic control of imagery. Individual differences in the development of visuospatial style also account for variation in the character of spatial forms, e.g., in terms of distinctions such as visual versus spatial imagery, or ego-centric versus object-based transformations. PMID:24187538
NASA Astrophysics Data System (ADS)
Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.
2013-12-01
This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.
NASA Astrophysics Data System (ADS)
Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.
2007-10-01
To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.
NASA Astrophysics Data System (ADS)
Lillis, Ashlee; Mooney, T. Aran
2018-06-01
The rich acoustic environment of coral reefs, including the sounds of a variety of fish and invertebrates, is a reflection of the structural complexity and biological diversity of these habitats. Emerging interest in applying passive acoustic monitoring and soundscape analysis to measure coral reef habitat characteristics and track ecological patterns is hindered by a poor understanding of the most common and abundant sound producers on reefs—the snapping shrimp. Here, we sought to address several basic biophysical drivers of reef sound by investigating acoustic activity patterns of snapping shrimp populations on two adjacent coral reefs using a detailed snap detection analysis routine to a high-resolution 2.5-month acoustic dataset from the US Virgin Islands. The reefs exhibited strong diel and lunar periodicity in snap rates and clear spatial differences in snapping levels. Snap rates peaked at dawn and dusk and were higher overall during daytime versus nighttime, a seldom-reported pattern in earlier descriptions of diel snapping shrimp acoustic activity. Small differences between the sites in snap rate rhythms were detected and illustrate how analyses of specific soundscape elements might reveal subtle between-reef variation. Snap rates were highly correlated with environmental variables, including water temperature and light, and were found to be sensitive to changes in oceanographic forcing. This study further establishes snapping shrimp as key players in the coral reef chorus and provides evidence that their acoustic output reflects a combination of environmental conditions, celestial influences, and spatial habitat variation. Effective application of passive acoustic monitoring in coral reef habitats using snap rates or snapping-influenced acoustic metrics will require a mechanistic understanding of the underlying spatial and temporal variation in snapping shrimp sound production across multiple scales.
Kirkbride, James B; Jones, Peter B; Ullrich, Simone; Coid, Jeremy W
2014-01-01
Although urban birth, upbringing, and living are associated with increased risk of nonaffective psychotic disorders, few studies have used appropriate multilevel techniques accounting for spatial dependency in risk to investigate social, economic, or physical determinants of psychosis incidence. We adopted Bayesian hierarchical modeling to investigate the sociospatial distribution of psychosis risk in East London for DSM-IV nonaffective and affective psychotic disorders, ascertained over a 2-year period in the East London first-episode psychosis study. We included individual and environmental data on 427 subjects experiencing first-episode psychosis to estimate the incidence of disorder across 56 neighborhoods, having standardized for age, sex, ethnicity, and socioeconomic status. A Bayesian model that included spatially structured neighborhood-level random effects identified substantial unexplained variation in nonaffective psychosis risk after controlling for individual-level factors. This variation was independently associated with greater levels of neighborhood income inequality (SD increase in inequality: Bayesian relative risks [RR]: 1.25; 95% CI: 1.04-1.49), absolute deprivation (RR: 1.28; 95% CI: 1.08-1.51) and population density (RR: 1.18; 95% CI: 1.00-1.41). Neighborhood ethnic composition effects were associated with incidence of nonaffective psychosis for people of black Caribbean and black African origin. No variation in the spatial distribution of the affective psychoses was identified, consistent with the possibility of differing etiological origins of affective and nonaffective psychoses. Our data suggest that both absolute and relative measures of neighborhood social composition are associated with the incidence of nonaffective psychosis. We suggest these associations are consistent with a role for social stressors in psychosis risk, particularly when people live in more unequal communities.
Stand-level variation in evapotranspiration in non-water-limited eucalypt forests
NASA Astrophysics Data System (ADS)
Benyon, Richard G.; Nolan, Rachael H.; Hawthorn, Sandra N. D.; Lane, Patrick N. J.
2017-08-01
To better understand water and energy cycles in forests over years to decades, measurements of spatial and long-term temporal variability in evapotranspiration (Ea) are needed. In mountainous terrain, plot-level measurements are important to achieving this. Forest inventory data including tree density and size measurements, often collected repeatedly over decades, sample the variability occurring within the geographic and topographic range of specific forest types. Using simple allometric relationships, tree stocking and size data can be used to estimate variables including sapwood area index (SAI), which may be strongly correlated with annual Ea. This study analysed plot-level variability in SAI and its relationship with overstorey and understorey transpiration, interception and evaporation over a 670 m elevation gradient, in non-water-limited, even-aged stands of Eucalyptus regnans F. Muell. to determine how well spatial variation in annual Ea from forests can be mapped using SAI. Over the 3 year study, mean sap velocity in five E. regnans stands was uncorrelated with overstorey sapwood area index (SAI) or elevation: annual transpiration was predicted well by SAI (R2 0.98). Overstorey and total annual interception were positively correlated with SAI (R2 0.90 and 0.75). Ea from the understorey was strongly correlated with vapour pressure deficit (VPD) and net radiation (Rn) measured just above the understorey, but relationships between understorey Ea and VPD and Rn differed between understorey types and understorey annual Ea was not correlated with SAI. Annual total Ea was also strongly correlated with SAI: the relationship being similar to two previous studies in the same region, despite differences in stand age and species. Thus, spatial variation in annual Ea can be reliably mapped using measurements of SAI.
Basbag, Mehmet; Aydin, Ali; Sakiroglu, Muhammet
2017-02-01
Drought is a major stress factor for agricultural production including alfalfa production. One way to counterbalance the yield losses is the introgression of drought tolerant germplasm into breeding programs. As an effort to exploit such germplasm, 16 individual plants were selected from the Southeastern Turkey from their natural habitat and clonally propagated in field trials with an ultimate goal to use the germplasm as parents for releasing a synthetic cultivar. Forage yield and forage quality traits were evaluated and molecular genetic diversity among genotypes were determined using inter simple sequence repeat markers. Genotypes showed a variation from growth habit to yield and quality traits indicating sufficient phenotypic variation for diverse breeding efforts (for grazing or harvesting) and long term selection schemes. A large amount of genetic variation was observed even with a limited number of marker and genotypes. However, no pattern of spatial genetic structure was observed for the scale of the study when genetic variation is linked to the geographic origin. We conclude that ex situ natural variation provides a wealth of germplasm that could be incorporated into breeding programs aiming to improve drought tolerance. We also suggest an extensive collection of seeds/plant tissue from unique plants with desirable traits rather than putting more efforts to create a spatial germplasm sampling efforts in narrow regions.
NASA Astrophysics Data System (ADS)
Cholemari, Murali R.; Arakeri, Jaywant H.
2005-08-01
We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.
NASA Technical Reports Server (NTRS)
Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.
2017-01-01
We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.
NASA Astrophysics Data System (ADS)
Dobek, Mateusz; Demczuk, Piotr; Nowosad, Marek
2013-06-01
Due to the diversified land relief and presence of numerous gorge dissections intensively used by man largely for recreational purposes, Lublin is a valuable study area in terms of bioclimatology. The results of modelling of the variation of the bioclimatic conditions of Lublin provide information useful e.g. in the economy and spatial planning. The determined features of the city's bioclimate can be a significant element in the selection of locations for new residential and recreational investments. Knowledge on the spatial variation of biometeorological situations positively and negatively influencing the human organism can also find application in activities concerning the improvement of life quality and health protection, as well as in tourism and recreation. The objective of the paper is to present the spatial variation of biometeorological conditions in Lublin based on the example of specified weather scenarios.
Sedinger, James S.; Chelgren, Nathan; Lindberg, Mark S.; Obritchkewitch, Tim; Kirk, Morgan T.; Martin, Philip D.; Anderson, Betty A.; Ward, David H.
2002-01-01
We used capture-recapture methods to estimate adult survival rates for adult female Black Brant (Branta bernicla nigricans; hereafter “brant”) from three colonies in Alaska, two on the Yukon-Kuskokwim Delta, and one on Alaska's Arctic coast. Costs of migration and reproductive effort varied among those colonies, enabling us to examine variation in survival in relation to variation in these other variables. We used the Barker model in program MARK to estimate true annual survival for brant from the three colonies. Models allowing for spatial variation in survival were among the most parsimonious models but were indistinguishable from a model with no spatial variation. Point estimates of annual survival were slightly higher for brant from the Arctic (0.90 ± 0.036) than for brant from either Tutakoke River (0.85 ± 0.004) or Kokechik Bay (0.86 ± 0.011). Thus, our survival estimates do not support a hypothesis that the cost of longer migrations or harvest experienced by brant from the Arctic reduced their annual survival relative to brant from the Yukon-Kuskokwim Delta. Spatial variation in survival provides weak support for life-history theory because brant from the region with lower reproductive investment had slightly higher survival.
Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel
2014-01-01
Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.
NASA Astrophysics Data System (ADS)
Divíšek, Jan; Zelený, David; Culek, Martin; Št'astný, Karel
2014-08-01
Studies that explore species-environment relationships at a broad scale are usually limited by the availability of sufficient habitat description, which is often too coarse to differentiate natural habitat patches. Therefore, it is not well understood how the distribution of natural habitats affects broad-scale patterns in the distribution of animal species. In this study, we evaluate the role of field-mapped natural habitats, land-cover types derived from remote sensing and climate on the composition of assemblages of five distinct animal groups, namely non-volant mammals, birds, reptiles, amphibians and butterflies native to the Czech Republic. First, we used variation partitioning based on redundancy analysis to evaluate the extent to which the environmental variables and their spatial structure might underlie the observed spatial patterns in the composition of animal assemblages. Second, we partitioned variations explained by climate, natural habitats and land-cover to compare their relative importance. Finally, we tested the independent effects of each variable in order to evaluate the significance of their contributions to the environmental model. Our results showed that spatial patterns in the composition of assemblages of almost all the considered animal groups may be ascribed mostly to variations in the environment. Although the shared effects of climatic variables, natural habitats and land-cover types explained the largest proportion of variation in each animal group, the variation explained purely by natural habitats was always higher than the variation explained purely by climate or land-cover. We conclude that most spatial variation in the composition of assemblages of almost all animal groups probably arises from biological processes operating within a spatially structured environment and suggest that natural habitats are important to explain observed patterns because they often perform better than habitat descriptions based on remote sensing. This underlines the value of using appropriate habitat data, for which high-resolution and large-area field-mapping projects are necessary.
Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China
NASA Astrophysics Data System (ADS)
Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He
2012-10-01
The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.
Vaughan, Adam S; Kramer, Michael R; Cooper, Hannah L F; Rosenberg, Eli S; Sullivan, Patrick S
2017-02-01
Theory and research on HIV and among men who have sex with men (MSM) have long suggested the importance of non-residential locations in defining structural exposures. Despite this, most studies within these fields define place as a residential context, neglecting the potential influence of non-residential locations on HIV-related outcomes. The concept of activity spaces, defined as a set of locations to which an individual is routinely exposed, represents one theoretical basis for addressing this potential imbalance. Using a one-time online survey to collect demographic, behavioral, and spatial data from MSM, this paper describes activity spaces and examines correlates of this spatial variation. We used latent class analysis to identify categories of activity spaces using spatial data on home, routine, potential sexual risk, and HIV prevention locations. We then assessed individual and area-level covariates for their associations with these categories. Classes were distinguished by the degree of spatial variation in routine and prevention behaviors (which were the same within each class) and in sexual risk behaviors (i.e., sex locations and locations of meeting sex partners). Partner type (e.g. casual or main) represented a key correlate of the activity space. In this early examination of activity spaces in an online sample of MSM, patterns of spatial behavior represent further evidence of significant spatial variation in locations of routine, potential HIV sexual risk, and HIV prevention behaviors among MSM. Although prevention behaviors tend to have similar geographic variation as routine behaviors, locations where men engage in potentially high-risk behaviors may be more spatially focused for some MSM than for others. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Wenjuan; Xiang, Wenhua; Pan, Qiong; Zeng, Yelin; Ouyang, Shuai; Lei, Pifeng; Deng, Xiangwen; Fang, Xi; Peng, Changhui
2016-07-01
Leaf area index (LAI) is an important parameter related to carbon, water, and energy exchange between canopy and atmosphere and is widely applied in process models that simulate production and hydrological cycles in forest ecosystems. However, fine-scale spatial heterogeneity of LAI and its controlling factors have yet to be fully understood in Chinese subtropical forests. We used hemispherical photography to measure LAI values in three subtropical forests (Pinus massoniana-Lithocarpus glaber coniferous and evergreen broadleaved mixed forests, Choerospondias axillaris deciduous broadleaved forests, and L. glaber-Cyclobalanopsis glauca evergreen broadleaved forests) from April 2014 to January 2015. Spatial heterogeneity of LAI and its controlling factors were analysed using geostatistical methods and the generalised additive models (GAMs) respectively. Our results showed that LAI values differed greatly in the three forests and their seasonal variations were consistent with plant phenology. LAI values exhibited strong spatial autocorrelation for the three forests measured in January and for the L. glaber-C. glauca forest in April, July, and October. Obvious patch distribution pattern of LAI values occurred in three forests during the non-growing period and this pattern gradually dwindled in the growing season. Stem number, crown coverage, proportion of evergreen conifer species on basal area basis, proportion of deciduous species on basal area basis, and forest types affected the spatial variations in LAI values in January, while stem number and proportion of deciduous species on basal area basis affected the spatial variations in LAI values in July. Floristic composition, spatial heterogeneity, and seasonal variations should be considered for sampling strategy in indirect LAI measurement and application of LAI to simulate functional processes in subtropical forests.
Landsat analysis of tropical forest succession employing a terrain model
NASA Technical Reports Server (NTRS)
Barringer, T. H.; Robinson, V. B.; Coiner, J. C.; Bruce, R. C.
1980-01-01
Landsat multispectral scanner (MSS) data have yielded a dual classification of rain forest and shadow in an analysis of a semi-deciduous forest on Mindonoro Island, Philippines. Both a spatial terrain model, using a fifth side polynomial trend surface analysis for quantitatively estimating the general spatial variation in the data set, and a spectral terrain model, based on the MSS data, have been set up. A discriminant analysis, using both sets of data, has suggested that shadowing effects may be due primarily to local variations in the spectral regions and can therefore be compensated for through the decomposition of the spatial variation in both elevation and MSS data.
NPP VIIRS Geometric Performance Status
NASA Technical Reports Server (NTRS)
Lin, Guoqing; Wolfe, Robert E.; Nishihama, Masahiro
2011-01-01
Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) satellite is scheduled for launch in October, 2011. It is to provide satellite measured radiance/reflectance data for both weather and climate applications. Along with radiometric calibration, geometric characterization and calibration of Sensor Data Records (SDRs) are crucial to the VIIRS Environmental Data Record (EDR) algorithms and products which are used in numerical weather prediction (NWP). The instrument geometric performance includes: 1) sensor (detector) spatial response, parameterized by the dynamic field of view (DFOV) in the scan direction and instantaneous FOV (IFOV) in the track direction, modulation transfer function (MTF) for the 17 moderate resolution bands (M-bands), and horizontal spatial resolution (HSR) for the five imagery bands (I-bands); 2) matrices of band-to-band co-registration (BBR) from the corresponding detectors in all band pairs; and 3) pointing knowledge and stability characteristics that includes scan plane tilt, scan rate and scan start position variations, and thermally induced variations in pointing with respect to orbital position. They have been calibrated and characterized through ground testing under ambient and thermal vacuum conditions, numerical modeling and analysis. This paper summarizes the results, which are in general compliance with specifications, along with anomaly investigations, and describes paths forward for characterizing on-orbit BBR and spatial response, and for improving instrument on-orbit performance in pointing and geolocation.
Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.; ...
2017-11-22
Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.
Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less
This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...
Window Area and Development Drive Spatial Variation in Bird-Window Collisions in an Urban Landscape
Hager, Stephen B.; Cosentino, Bradley J.; McKay, Kelly J.; Monson, Cathleen; Zuurdeeg, Walt; Blevins, Brian
2013-01-01
Collisions with windows are an important human-related threat to birds in urban landscapes. However, the proximate drivers of collisions are not well understood, and no study has examined spatial variation in mortality in an urban setting. We hypothesized that the number of fatalities at buildings varies with window area and habitat features that influence avian community structure. In 2010 we documented bird-window collisions (BWCs) and characterized avian community structure at 20 buildings in an urban landscape in northwestern Illinois, USA. For each building and season, we conducted 21 daily surveys for carcasses and nine point count surveys to estimate relative abundance, richness, and diversity. Our sampling design was informed by experimentally estimated carcass persistence times and detection probabilities. We used linear and generalized linear mixed models to evaluate how habitat features influenced community structure and how mortality was affected by window area and factors that correlated with community structure. The most-supported model was consistent for all community indices and included effects of season, development, and distance to vegetated lots. BWCs were related positively to window area and negatively to development. We documented mortalities for 16/72 (22%) species (34 total carcasses) recorded at buildings, and BWCs were greater for juveniles than adults. Based on the most-supported model of BWCs, the median number of annual predicted fatalities at study buildings was 3 (range = 0–52). These results suggest that patchily distributed environmental resources and levels of window area in buildings create spatial variation in BWCs within and among urban areas. Current mortality estimates place little emphasis on spatial variation, which precludes a fundamental understanding of the issue. To focus conservation efforts, we illustrate how knowledge of the structural and environmental factors that influence bird-window collisions can be used to predict fatalities in the broader landscape. PMID:23326420
Window area and development drive spatial variation in bird-window collisions in an urban landscape.
Hager, Stephen B; Cosentino, Bradley J; McKay, Kelly J; Monson, Cathleen; Zuurdeeg, Walt; Blevins, Brian
2013-01-01
Collisions with windows are an important human-related threat to birds in urban landscapes. However, the proximate drivers of collisions are not well understood, and no study has examined spatial variation in mortality in an urban setting. We hypothesized that the number of fatalities at buildings varies with window area and habitat features that influence avian community structure. In 2010 we documented bird-window collisions (BWCs) and characterized avian community structure at 20 buildings in an urban landscape in northwestern Illinois, USA. For each building and season, we conducted 21 daily surveys for carcasses and nine point count surveys to estimate relative abundance, richness, and diversity. Our sampling design was informed by experimentally estimated carcass persistence times and detection probabilities. We used linear and generalized linear mixed models to evaluate how habitat features influenced community structure and how mortality was affected by window area and factors that correlated with community structure. The most-supported model was consistent for all community indices and included effects of season, development, and distance to vegetated lots. BWCs were related positively to window area and negatively to development. We documented mortalities for 16/72 (22%) species (34 total carcasses) recorded at buildings, and BWCs were greater for juveniles than adults. Based on the most-supported model of BWCs, the median number of annual predicted fatalities at study buildings was 3 (range = 0-52). These results suggest that patchily distributed environmental resources and levels of window area in buildings create spatial variation in BWCs within and among urban areas. Current mortality estimates place little emphasis on spatial variation, which precludes a fundamental understanding of the issue. To focus conservation efforts, we illustrate how knowledge of the structural and environmental factors that influence bird-window collisions can be used to predict fatalities in the broader landscape.
Ecological and sampling constraints on defining landscape fire severity
Key, C.H.
2006-01-01
Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal conditions of sampling strategies constrain data quality and ecological information obtained about fire severity. Though commonly overlooked, such considerations determine the objectives and hypotheses that are appropriate for each application, and are especially important when building comparative studies or long-term reference databases on fire severity.
NASA Astrophysics Data System (ADS)
Manikandan, M.; Tamilmani, D.
2015-09-01
The present study aims to investigate the spatial and temporal variation of meteorological drought in the Parambikulam-Aliyar basin, Tamil Nadu using the Standardized Precipitation Index (SPI) as an indicator of drought severity. The basin was divided into 97 grid-cells of 5 × 5 km with each grid correspondence to approximately 1.03 % of total area. Monthly rainfall data for the period of 40 years (1972-2011) from 28 rain gauge stations in the basin was spatially interpolated and gridded monthly rainfall was created. Regional representative of SPI values calculated from mean areal rainfall were used to analyse the temporal variation of drought at multiple time scales. Spatial variation of drought was analysed based on highest drought severity derived from the monthly gridded SPI values. Frequency analyse was applied to assess the recurrence pattern of drought severity. The temporal analysis of SPI indicated that moderate, severe and extreme droughts are common in the basin and spatial analysis of drought severity identified the areas most frequently affected by drought. The results of this study can be used for developing drought preparedness plan and formulating mitigation strategies for sustainable water resource management within the basin.
Mark C. Gabriel; Randy Kolka; Trent Wickman; Ed Nater; Laurel. Woodruff
2009-01-01
The primary objective of this research is to investigate relationships between mercury in upland soil, lake water and fish tissue and explore the cause for the observed spatial variation of THg in age one yellow perch (Perca flavescens) for ten lakes within the Superior National Forest. Spatial relationships between yellow perch THg tissue...
NASA Astrophysics Data System (ADS)
Longuevergne, Laurent; Scanlon, Bridget R.; Wilson, Clark R.
2010-11-01
The Gravity Recovery and Climate Experiment (GRACE) satellites provide observations of water storage variation at regional scales. However, when focusing on a region of interest, limited spatial resolution and noise contamination can cause estimation bias and spatial leakage, problems that are exacerbated as the region of interest approaches the GRACE resolution limit of a few hundred km. Reliable estimates of water storage variations in small basins require compromises between competing needs for noise suppression and spatial resolution. The objective of this study was to quantitatively investigate processing methods and their impacts on bias, leakage, GRACE noise reduction, and estimated total error, allowing solution of the trade-offs. Among the methods tested is a recently developed concentration algorithm called spatiospectral localization, which optimizes the basin shape description, taking into account limited spatial resolution. This method is particularly suited to retrieval of basin-scale water storage variations and is effective for small basins. To increase confidence in derived methods, water storage variations were calculated for both CSR (Center for Space Research) and GRGS (Groupe de Recherche de Géodésie Spatiale) GRACE products, which employ different processing strategies. The processing techniques were tested on the intensively monitored High Plains Aquifer (450,000 km2 area), where application of the appropriate optimal processing method allowed retrieval of water storage variations over a portion of the aquifer as small as ˜200,000 km2.
NASA Astrophysics Data System (ADS)
Collmar, M.; Cook, B. G.; Cowart, R.; Freund, D.; Gavin, J.
2015-10-01
A pool of 240 subjects was exposed to a library of waveforms consisting of example signatures of low boom aircraft. The signature library included intentional variations in both loudness and spectral content, and were auralized using the Gulfstream SASS-II sonic boom simulator. Post-processing was used to quantify the impacts of test design decisions on the "quality" of the resultant database. Specific lessons learned from this study include insight regarding potential for bias error due to variations in loudness or peak over-pressure, sources of uncertainty and their relative importance on objective measurements and robustness of individual metrics to wide variations in spectral content. Results provide clear guidance for design of future large scale community surveys, where one must optimize the complex tradeoffs between the size of the surveyed population, spatial footprint of those participants, and the fidelity/density of objective measurements.
Spatial variation in the climatic predictors of species compositional turnover and endemism.
Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G
2014-08-01
Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola
2018-03-01
There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.
A Land System representation for global assessments and land-use modeling.
van Asselen, Sanneke; Verburg, Peter H
2012-10-01
Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Li, Pengyao; Xiao, He; Li, Xiang; Hu, Wenhao; Gu, Shoubai; Yu, Zhenrong
2018-01-01
Coping with various ecological risks caused by extreme weather events of global climate change has become an important issue in regional planning, and storm water management for sustainable development. In this paper, taking Shanghai, China as a case study, four potential ecological risks were identified including flood disaster, sea-source disaster, urban heat island effect, and land subsidence. Based on spatial database, the spatial variation of these four ecological risks was evaluated, and the planning area was divided into seven responding regions with different green infrastructure strategy. The methodology developed in this study combining ecological risk evaluation with spatial regionalization planning could contribute to coping with global climate change.
NASA Astrophysics Data System (ADS)
Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha
2014-08-01
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.
Separating spatial search and efficiency rates as components of predation risk
DeCesare, Nicholas J.
2012-01-01
Predation risk is an important driver of ecosystems, and local spatial variation in risk can have population-level consequences by affecting multiple components of the predation process. I use resource selection and proportional hazard time-to-event modelling to assess the spatial drivers of two key components of risk—the search rate (i.e. aggregative response) and predation efficiency rate (i.e. functional response)—imposed by wolves (Canis lupus) in a multi-prey system. In my study area, both components of risk increased according to topographic variation, but anthropogenic features affected only the search rate. Predicted models of the cumulative hazard, or risk of a kill, underlying wolf search paths validated well with broad-scale variation in kill rates, suggesting that spatial hazard models provide a means of scaling up from local heterogeneity in predation risk to population-level dynamics in predator–prey systems. Additionally, I estimated an integrated model of relative spatial predation risk as the product of the search and efficiency rates, combining the distinct contributions of spatial heterogeneity to each component of risk. PMID:22977145
Intraspecific variability in functional traits matters: case study of Scots pine.
Laforest-Lapointe, Isabelle; Martínez-Vilalta, Jordi; Retana, Javier
2014-08-01
Although intraspecific trait variability is an important component of species ecological plasticity and niche breadth, its implications for community and functional ecology have not been thoroughly explored. We characterized the intraspecific functional trait variability of Scots pine (Pinus sylvestris) in Catalonia (NE Spain) in order to (1) compare it to the interspecific trait variability of trees in the same region, (2) explore the relationships among functional traits and the relationships between them and stand and climatic variables, and (3) study the role of functional trait variability as a determinant of radial growth. We considered five traits: wood density (WD), maximum tree height (H max), leaf nitrogen content (Nmass), specific leaf area (SLA), and leaf biomass-to-sapwood area ratio (B L:A S). A unique dataset was obtained from the Ecological and Forest Inventory of Catalonia (IEFC), including data from 406 plots. Intraspecific trait variation was substantial for all traits, with coefficients of variation ranging between 8% for WD and 24% for B L:A S. In some cases, correlations among functional traits differed from those reported across species (e.g., H max and WD were positively related, whereas SLA and Nmass were uncorrelated). Overall, our model accounted for 47% of the spatial variability in Scots pine radial growth. Our study emphasizes the hierarchy of factors that determine intraspecific variations in functional traits in Scots pine and their strong association with spatial variability in radial growth. We claim that intraspecific trait variation is an important determinant of responses of plants to changes in climate and other environmental factors, and should be included in predictive models of vegetation dynamics.
Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh
2011-06-01
This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.
Importance of fish behaviour in modelling conservation problems: food limitation as an example
Steven Railsback; Bret Harvey
2011-01-01
Simulation experiments using the inSTREAM individual-based brown trout Salmo trutta population model explored the role of individual adaptive behaviour in food limitation, as an example of how behaviour can affect managersâ understanding of conservation problems. The model includes many natural complexities in habitat (spatial and temporal variation in characteristics...
NASA Astrophysics Data System (ADS)
Marston, B. K.; Bishop, M. P.; Shroder, J. F.
2009-12-01
Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.
A physically based analytical spatial air temperature and humidity model
NASA Astrophysics Data System (ADS)
Yang, Yang; Endreny, Theodore A.; Nowak, David J.
2013-09-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.
NASA Astrophysics Data System (ADS)
Kwon, O.; Kim, W.; Kim, J.
2017-12-01
Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)
Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit
NASA Astrophysics Data System (ADS)
Boynton, R.; Balikhin, M. A.; Walker, S. N.
2017-12-01
The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.
NASA Astrophysics Data System (ADS)
Ye, Ran; Cai, Yanhong; Wei, Yongjie; Li, Xiaoming
2017-04-01
The spatial pattern of phytoplankton community can indicate potential environmental variation in different water bodies. In this context, spatial pattern of phytoplankton community and its response to environmental and spatial factors were studied in the coastal waters of northern Zhejiang, East China Sea using multivariate statistical techniques. Results showed that 94 species belonging to 40 genera, 5 phyla were recorded (the remaining 9 were identified to genus level) with diatoms being the most dominant followed by dinoflagellates. Hierarchical clustering analysis (HCA), nonmetric multidimentional scaling (NMDS), and analysis of similarity (ANOSIM) all demomstrated that the whole study area could be divided into 3 subareas with significant differences. Indicator species analysis (ISA) further confirmed that the indicator species of each subarea correlated significantly with specific environmental factors. Distance-based linear model (Distlm) and Mantel test revealed that silicate (SiO32-), phosphate (PO43-), pH, and dissolved oxygen (DO) were the most important environmental factors influencing phytoplankton community. Variation portioning (VP) finally concluded that the shared fractions of environmental and spatial factors were higher than either the pure environmental effects or the pure spatial effects, suggesting phytoplankton biogeography were mainly affected by both the environmental variability and dispersal limitation. Additionally, other factors (eg., trace metals, biological grazing, climate change, and time-scale variation) may also be the sources of the unexplained variation which need further study.
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.
Odabasi, Mustafa; Tolunay, Doganay; Kara, Melik; Ozgunerge Falay, Ezgi; Tuna, Gizem; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Elbir, Tolga
2016-04-15
Several trace and macro elements (n=48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations. Copyright © 2016 Elsevier B.V. All rights reserved.
Household energy management strategies in Bulgaria's transitioning energy sector
NASA Astrophysics Data System (ADS)
Carper, Mark Daniel Lynn
Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and socioeconomic development. Thus far, the state has taken a very limited role in improving residential energy efficiency despite the increased energy expenditure burdens that most households face. Yet lacking are affordable technologies, educational campaigns, and individual financing mechanisms or incentives. As shown, where there is an informed, active, and financially capable population, improved household efficiency is more likely to be the winning strategy for both the goals of the individual as well as of the state.
Hu, Rui Bin; Fang, Xi; Xiang, Wen Hua; Jiang, Fang; Lei, Pi Feng; Zhao, Li Juan; Zhu, Wen Juan; Deng, Xiang Wen
2016-03-01
In order to investigate spatial variations in soil phosphorus (P) concentration and the influencing factors, one permanent plot of 1 hm 2 was established and stand structure was surveyed in Choerospondias axillaries deciduous broadleaved forest in Dashanchong Forest Park in Changsha County, Hunan Province, China. Soil samples were collected with equidistant grid point sampling method and soil P concentration and its spatial variation were analyzed by using geo-statistics and geographical information system (GIS) techniques. The results showed that the variations of total P and available P concentrations in humus layer and in the soil profile at depth of 0-10, 10-20 and 20-30 cm were moderate and the available P showed higher variability in a specific soil layer compared with total P. Concentrations of total P and available P in soil decreased, while the variations increased with the increase in soil depth. The total P and available P showed high spatial autocorrelation, primarily resulted from the structural factors. The spatial heterogeneity of available P was stronger than that of total P, and the spatial autocorrelation ranges of total P and available P varied from 92.80 to 168.90 m and from 79.43 to 106.20 m in different soil layers, respectively. At the same soil depth, fractal dimensions of total P were higher than that of available P, with more complex spatial pattern, while available P showed stronger spatial correlation with stronger spatial structure. In humus layer and soil depths of 0-10, 10-20 and 20-30 cm, the spatial variation pattern of total P and available P concentrations showed an apparent belt-shaped and spot massive gradient change. The high value appeared at low elevation and valley position, and the low value appeared in the high elevation and ridge area. The total P and available P concentrations showed significantly negative correlation with elevation and litter, but the relationship with convexity, species, numbers and soil pH was not significant. The total P and available P exhibited significant positive correlations with soil organic carbon (SOC), total nitrogen concentration, indicating the leaching characteristics of soil P. Its spatial variability was affected by many interactive factors.
Scale-dependent variation in forest structures in naturally dynamic boreal forest landscapes
NASA Astrophysics Data System (ADS)
Kulha, Niko; Pasanen, Leena; De Grandpré, Louis; Kuuluvainen, Timo; Aakala, Tuomas
2017-04-01
Natural forest structures vary at multiple spatial scales. This variation reflects the occurrence of driving factors, such as disturbances and variation in soil or topography. To explore and understand the linkages of forest structural characteristics and factors driving their variation, we need to recognize how the structural characteristics vary in relation to spatial scale. This can be achieved by identifying scale-dependent features in forest structure within unmanaged forest landscapes. By identifying these features and examining their relationship with potential driving factors, we can better understand the dynamics of forest structural development. Here, we examine the spatial variation in forest structures at multiple spatial scales, utilizing data from old-growth boreal forests in two regions with contrasting disturbance regimes: northern Finland and north-eastern Québec, Canada ( 67° 45'N, 29° 36'E, 49° 39'N, 67° 55'W, respectively). The three landscapes (4 km2 each) in Finland are dominated by Pinus sylvestris and Picea abies, whereas the two landscapes in Québec are dominated by Abies balsamea and Picea mariana. Québec's forests are a subject to cyclic outbreaks of the eastern spruce budworm, causing extensive mortality especially in A. balsamea-dominated stands. In the Finnish landscapes, gap- to patch-scale disturbances due to tree senescence, fungi and wind, as well as infrequent surface fires in areas dominated by P. sylvestris, prevail. Owing to the differences in the species compositions and the disturbance regimes, we expect differing scales of variation between the landscapes. To quantify patterns of variation, we visually interpret stereopairs of recent aerial photographs. From the photographs, we collect information on forest canopy coverage, species composition and dead wood. For the interpretation, each 4 km2 plot is divided into 0.1ha square cells (4096 per plot). Interpretations are validated against field observations and compiled to raster maps. We analyze the raster maps with Bayesian scale space approach (iBSiZer), which aims in capturing credible variations at different spatial scales. As a result, we can detect structural entities (e.g. patches with higher canopy cover), which deviate credibly from their surroundings. The detected entities can further be linked to specific drivers. Our results show that the role of a particular driving factor varies in relation to spatial scale. For example, in the Finnish landscapes, topoedaphic factors exerted a stronger control on broad-scale forest structural characteristics, whereas recent disturbances (quantified as the amount of dead wood) appeared to play an important role in explaining the smaller scale variation of forest structures. Here, we showcase the methodology used in the detection of scale-dependent forest structural entities and present the results of our analysis of the spatial scales of variation in the natural boreal forest structures.
Scarpino, Samuel V.; Jansen, Patrick A.; Garzon-Lopez, Carol X.; Winkelhagen, Annemarie J. S.; Bohlman, Stephanie A.; Walsh, Peter D.
2010-01-01
Background The movement patterns of wild animals depend crucially on the spatial and temporal availability of resources in their habitat. To date, most attempts to model this relationship were forced to rely on simplified assumptions about the spatiotemporal distribution of food resources. Here we demonstrate how advances in statistics permit the combination of sparse ground sampling with remote sensing imagery to generate biological relevant, spatially and temporally explicit distributions of food resources. We illustrate our procedure by creating a detailed simulation model of fruit production patterns for Dipteryx oleifera, a keystone tree species, on Barro Colorado Island (BCI), Panama. Methodology and Principal Findings Aerial photographs providing GPS positions for large, canopy trees, the complete census of a 50-ha and 25-ha area, diameter at breast height data from haphazardly sampled trees and long-term phenology data from six trees were used to fit 1) a point process model of tree spatial distribution and 2) a generalized linear mixed-effect model of temporal variation of fruit production. The fitted parameters from these models are then used to create a stochastic simulation model which incorporates spatio-temporal variations of D. oleifera fruit availability on BCI. Conclusions and Significance We present a framework that can provide a statistical characterization of the habitat that can be included in agent-based models of animal movements. When environmental heterogeneity cannot be exhaustively mapped, this approach can be a powerful alternative. The results of our model on the spatio-temporal variation in D. oleifera fruit availability will be used to understand behavioral and movement patterns of several species on BCI. PMID:21124927
Spatial Variations of DOM Compositions in the River with Multi-functional Weir
NASA Astrophysics Data System (ADS)
Yoon, S. M.; Choi, J. H.
2017-12-01
With the global trend to construct artificial impoundments over the last decades, there was a Large River Restoration Project conducted in South Korea from 2010 to 2011. The project included enlargement of river channel capacity and construction of multi-functional weirs, which can alter the hydrological flow of the river and cause spatial variations of water quality indicators, especially DOM (Dissolved Organic Matter) compositions. In order to analyze the spatial variations of organic matter, water samples were collected longitudinally (5 points upstream from the weir), horizontally (left, center, right at each point) and vertically (1m interval at each point). The specific UV-visible absorbance (SUVA) and fluorescence excitation-emission matrices (EEMs) have been used as rapid and non-destructive analytical methods for DOM compositions. In addition, parallel factor analysis (PARAFAC) has adopted for extracting a set of representative fluorescence components from EEMs. It was assumed that autochthonous DOM would be dominant near the weir due to the stagnation of hydrological flow. However, the results showed that the values of fluorescence index (FI) were 1.29-1.47, less than 2, indicating DOM of allochthonous origin dominated in the water near the weir. PARAFAC analysis also showed the peak at 450 nm of emission and < 250 nm of excitation which represented the humic substances group with terrestrial origins. There was no significant difference in the values of Biological index (BIX), however, values of humification index (HIX) spatially increased toward the weir. From the results of the water sample analysis, the river with multi-functional weir is influenced by the allochthonous DOM instead of autochthonous DOM and seems to accumulate humic substances near the weir.
Long, Zaiyang; Tradup, Donald J; Stekel, Scott F; Gorny, Krzysztof R; Hangiandreou, Nicholas J
2018-03-01
We evaluated a commercially available software package that uses B-mode images to semi-automatically measure quantitative metrics of ultrasound image quality, such as contrast response, depth of penetration (DOP), and spatial resolution (lateral, axial, and elevational). Since measurement of elevational resolution is not a part of the software package, we achieved it by acquiring phantom images with transducers tilted at 45 degrees relative to the phantom. Each measurement was assessed in terms of measurement stability, sensitivity, repeatability, and semi-automated measurement success rate. All assessments were performed on a GE Logiq E9 ultrasound system with linear (9L or 11L), curved (C1-5), and sector (S1-5) transducers, using a CIRS model 040GSE phantom. In stability tests, the measurements of contrast, DOP, and spatial resolution remained within a ±10% variation threshold in 90%, 100%, and 69% of cases, respectively. In sensitivity tests, contrast, DOP, and spatial resolution measurements followed the expected behavior in 100%, 100%, and 72% of cases, respectively. In repeatability testing, intra- and inter-individual coefficients of variations were equal to or less than 3.2%, 1.3%, and 4.4% for contrast, DOP, and spatial resolution (lateral and axial), respectively. The coefficients of variation corresponding to the elevational resolution test were all within 9.5%. Overall, in our assessment, the evaluated package performed well for objective and quantitative assessment of the above-mentioned image qualities under well-controlled acquisition conditions. We are finding it to be useful for various clinical ultrasound applications including performance comparison between scanners from different vendors. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Murchie, Scott L.; Britt, Daniel T.; Head, James W.; Pratt, Stephen F.; Fisher, Paul C.
1991-01-01
Color ratio images created from multispectral observations of Phobos are analyzed in order to characterize the spectral properties of Phobos' surface, to assess their spatial distributions and relationships with geologic features, and to compare Phobos' surface materials with possible meteorite analogs. Data calibration and processing is briefly discussed, and the observed spectral properties of Phobos and their lateral variations are examined. Attention is then given to the color properties of different types of impact craters, the origin of lateral variations in surface color, the relation between the spatial distribution of color properties and independently identifiable geologic features, and the relevance of color variation spatial distribution to the origin of the grooves.
Goovaerts, Pierre; Jacquez, Geoffrey M
2004-01-01
Background Complete Spatial Randomness (CSR) is the null hypothesis employed by many statistical tests for spatial pattern, such as local cluster or boundary analysis. CSR is however not a relevant null hypothesis for highly complex and organized systems such as those encountered in the environmental and health sciences in which underlying spatial pattern is present. This paper presents a geostatistical approach to filter the noise caused by spatially varying population size and to generate spatially correlated neutral models that account for regional background obtained by geostatistical smoothing of observed mortality rates. These neutral models were used in conjunction with the local Moran statistics to identify spatial clusters and outliers in the geographical distribution of male and female lung cancer in Nassau, Queens, and Suffolk counties, New York, USA. Results We developed a typology of neutral models that progressively relaxes the assumptions of null hypotheses, allowing for the presence of spatial autocorrelation, non-uniform risk, and incorporation of spatially heterogeneous population sizes. Incorporation of spatial autocorrelation led to fewer significant ZIP codes than found in previous studies, confirming earlier claims that CSR can lead to over-identification of the number of significant spatial clusters or outliers. Accounting for population size through geostatistical filtering increased the size of clusters while removing most of the spatial outliers. Integration of regional background into the neutral models yielded substantially different spatial clusters and outliers, leading to the identification of ZIP codes where SMR values significantly depart from their regional background. Conclusion The approach presented in this paper enables researchers to assess geographic relationships using appropriate null hypotheses that account for the background variation extant in real-world systems. In particular, this new methodology allows one to identify geographic pattern above and beyond background variation. The implementation of this approach in spatial statistical software will facilitate the detection of spatial disparities in mortality rates, establishing the rationale for targeted cancer control interventions, including consideration of health services needs, and resource allocation for screening and diagnostic testing. It will allow researchers to systematically evaluate how sensitive their results are to assumptions implicit under alternative null hypotheses. PMID:15272930
Congdon, Peter
2017-09-07
There is much ongoing research about the effect of the urban environment as compared with individual behaviour on growing obesity levels, including food environment, settlement patterns (e.g., sprawl, walkability, commuting patterns), and activity access. This paper considers obesity variations between US counties, and delineates the main dimensions of geographic variation in obesity between counties: by urban-rural status, by region, by area poverty status, and by majority ethnic group. Available measures of activity access, food environment, and settlement patterns are then assessed in terms of how far they can account for geographic variation. A county level regression analysis uses a Bayesian methodology that controls for spatial correlation in unmeasured area risk factors. It is found that environmental measures do play a significant role in explaining geographic contrasts in obesity.
2017-01-01
There is much ongoing research about the effect of the urban environment as compared with individual behaviour on growing obesity levels, including food environment, settlement patterns (e.g., sprawl, walkability, commuting patterns), and activity access. This paper considers obesity variations between US counties, and delineates the main dimensions of geographic variation in obesity between counties: by urban-rural status, by region, by area poverty status, and by majority ethnic group. Available measures of activity access, food environment, and settlement patterns are then assessed in terms of how far they can account for geographic variation. A county level regression analysis uses a Bayesian methodology that controls for spatial correlation in unmeasured area risk factors. It is found that environmental measures do play a significant role in explaining geographic contrasts in obesity. PMID:28880209
Terrestrial origin of bacterial communities in complex boreal freshwater networks.
Ruiz-González, Clara; Niño-García, Juan Pablo; Del Giorgio, Paul A
2015-08-25
Bacteria inhabiting boreal freshwaters are part of metacommunities where local assemblages are often linked by the flow of water in the landscape, yet the resulting spatial structure and the boundaries of the network metacommunity have never been explored. Here, we reconstruct the spatial structure of the bacterial metacommunity in a complex boreal aquatic network by determining the taxonomic composition of bacterial communities along the entire terrestrial/aquatic continuum, including soil and soilwaters, headwater streams, large rivers and lakes. We show that the network metacommunity has a directional spatial structure driven by a common terrestrial origin of aquatic communities, which are numerically dominated by taxa recruited from soils. Local community assembly is driven by variations along the hydrological continuum in the balance between mass effects and species sorting of terrestrial taxa, and seems further influenced by priority effects related to the spatial sequence of entry of soil bacteria into the network. © 2015 John Wiley & Sons Ltd/CNRS.
Fire drives transcontinental variation in tree birch defense against browsing by snowshoe hares
John P. Bryant; Thomas P. Clausen; Robert K. Swihart; Simon M. Landhäusser; Michael T. Stevens; Christopher D. B. Hawkins; Suzanne Carrière; Andrei P. Kirilenko; Alasdair M. Veitch; Richard A. Popko; David T. Cleland; Joseph H. Williams; Walter J. Jakubas; Michael R. Carlson; Karin Lehmkuhl Bodony; Merben Cebrian; Thomas F. Paragi; Peter M. Picone; Jeffery E. Moore; Edmond C. Packee; Thomas Malone
2009-01-01
Fire has been the dominant disturbance in boreal America since the Pleistocene, resulting in a spatial mosaic in which the most fire occurs in the continental northwest. Spatial variation in snowshoe hare (Lepus americanus) density reflects the fire mosaic. Because fire initiates secondary forest succession, a fire mosaic creates...
Topography-mediated controls on local vegetation phenology estimated from MODIS vegetation index
Taehee Hwang; Conghe Song; James Vose; Lawrence Band
2011-01-01
Forest canopy phenology is an important constraint on annual water and carbon budgets, and responds to regional interannual climate variation. In steep terrain, there are complex spatial variations in phenology due to topographic influences on microclimate, community composition, and available soil moisture. In this study, we investigate spatial patterns of phenology...
NASA Technical Reports Server (NTRS)
Anderson, Mark; Rowe, Clinton; Kuivinen, Karl; Mote, Thomas
1996-01-01
The primary goals of this research were to identify and begin to comprehend the spatial and temporal variations in surface characteristics of the Greenland ice sheet using passive microwave observations, physically-based models of the snowpack and field observations of snowpack and firn properties.
Regionalization of precipitation characteristics in Iran's Lake Urmia basin
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn
2018-04-01
Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.
Determinants of fish assemblage structure in Northwestern Great Plains streams
Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.
2011-01-01
Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.
The spatial and metabolic basis of colony size variation.
Chacón, Jeremy M; Möbius, Wolfram; Harcombe, William R
2018-03-01
Spatial structure impacts microbial growth and interactions, with ecological and evolutionary consequences. It is therefore important to quantitatively understand how spatial proximity affects interactions in different environments. We tested how proximity influences colony size when either Escherichia coli or Salmonella enterica are grown on various carbon sources. The importance of colony location changed with species and carbon source. Spatially explicit, genome-scale metabolic modeling recapitulated observed colony size variation. Competitors that determine territory size, according to Voronoi diagrams, were the most important drivers of variation in colony size. However, the relative importance of different competitors changed through time. Further, the effect of location increased when colonies took up resources quickly relative to the diffusion of limiting resources. These analyses made it apparent that the importance of location was smaller than expected for experiments with S. enterica growing on glucose. The accumulation of toxic byproducts appeared to limit the growth of large colonies and reduced variation in colony size. Our work provides an experimentally and theoretically grounded understanding of how location interacts with metabolism and diffusion to influence microbial interactions.
Xu, Henglong; Jiang, Yong; Xu, Guangjian
2016-11-15
Body-size spectra has proved to be a useful taxon-free resolution to summarize a community structure for bioassessment. The spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers were studied based on an annual dataset. Samples were biweekly collected at five stations in a bay of the Yellow Sea, northern China during a 1-year cycle. Based on a multivariate approach, the second-stage analysis, it was shown that the annual cycles of the body-size spectra were significantly different among five sampling stations. Correlation analysis demonstrated that the spatial variations in the body-size spectra were significantly related to changes of environmental conditions, especially dissolved nitrogen, alone or in combination with salinity and dissolve oxygen. Based on results, it is suggested that the nutrients may be the environmental drivers to shape the spatial variations in annual cycles of planktonic ciliates in terms of body-size spectra in marine ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
Miller, Mark P.; Haig, Susan M.; Wagner, R.S.
2006-01-01
The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders.
Flexural subsidence and basement tectonics of the Cretaceous Western Interior basin, United States
NASA Astrophysics Data System (ADS)
Pang, Ming; Nummedal, Dag
1995-02-01
The flexural subsidence history recorded in Cenomanian to early Campanian (97 to 80 Ma) strata in the Cretaceous U.S. Western Interior basin was studied with two-dimensional flexural backstripping techniques. Results indicate that the flexural subsidence resulting from thrust loading was superimposed on epeirogenic subsidence in the foreland basin. The flexural component exhibits significant spatial and temporal variations along both the strike and dip relative to the Sevier thrust belt. The greatest cumulative subsidence occurred in southwestern Wyoming and northern Utah. Concurrent subsidence in northwestern Montana and southern Utah was insignificant. Temporal trends in subsidence also show a distinct regional pattern. From the Cenomanian to late Turonian (97 to 90 Ma), subsidence rates were high in Utah and much lower in Wyoming and Montana. In contrast, during the Coniacian and Santonian (90 to 85 Ma) subsidence accelerated rapidly in Wyoming, increased slightly in Montana, and decreased in Utah. We suggest that these spatially and temporally varying subsidence patterns reflect the interplay of several geodynamic factors, including: (1) temporal and spatial variation in emplacement of the thrust loads, (2) segmentation of the basement into adjacent blocks with different rheological properties, (3) reactivation of basement fault trends, and (4) regional dynamic topographic effects.
Large trench-parallel gravity variations predict seismogenic behavior in subduction zones.
Song, Teh-Ru Alex; Simons, Mark
2003-08-01
We demonstrate that great earthquakes occur predominantly in regions with a strongly negative trench-parallel gravity anomaly (TPGA), whereas regions with strongly positive TPGA are relatively aseismic. These observations suggest that, over time scales up to at least 1 million years, spatial variations of seismogenic behavior within a given subduction zone are stationary and linked to the geological structure of the fore-arc. The correlations we observe are consistent with a model in which spatial variations in frictional properties on the plate interface control trench-parellel variations in fore-arc topography, gravity, and seismogenic behavior.
Kounina, Anna; Margni, Manuele; Shaked, Shanna; Bulle, Cécile; Jolliet, Olivier
2014-08-01
This paper develops continent-specific factors for the USEtox model and analyses the accuracy of different model architectures, spatial scales and archetypes in evaluating toxic impacts, with a focus on freshwater pathways. Inter-continental variation is analysed by comparing chemical fate and intake fractions between sub-continental zones of two life cycle impact assessment models: (1) the nested USEtox model parameterized with sub-continental zones and (2) the spatially differentiated IMPACTWorld model with 17 interconnected sub-continental regions. Substance residence time in water varies by up to two orders of magnitude among the 17 zones assessed with IMPACTWorld and USEtox, and intake fraction varies by up to three orders of magnitude. Despite this variation, the nested USEtox model succeeds in mimicking the results of the spatially differentiated model, with the exception of very persistent volatile pollutants that can be transported to polar regions. Intra-continental variation is analysed by comparing fate and intake fractions modelled with the a-spatial (one box) IMPACT Europe continental model vs. the spatially differentiated version of the same model. Results show that the one box model might overestimate chemical fate and characterisation factors for freshwater eco-toxicity of persistent pollutants by up to three orders of magnitude for point source emissions. Subdividing Europe into three archetypes, based on freshwater residence time (how long it takes water to reach the sea), improves the prediction of fate and intake fractions for point source emissions, bringing them within a factor five compared to the spatial model. We demonstrated that a sub-continental nested model such as USEtox, with continent-specific parameterization complemented with freshwater archetypes, can thus represent inter- and intra-continental spatial variations, whilst minimizing model complexity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Diagnostic modeling of trace metal partitioning in south San Francisco Bay
Wood, T. W.; Baptista, A. M.; Kuwabara, J.S.; Flegal, A.R.
1995-01-01
The numerical results indicate that aqueous speciation will control basin-scale spatial variations in the apparent distribution coefficient, Kda, if the system is close to equilibrium. However, basin-scale spatial variations in Kda are determined by the location of the sources of metal and the suspended solids concentration of the receiving water if the system is far from equilibrium. The overall spatial variability in Kda also increases as the system moves away from equilibrium.
Plasticity of Human Spatial Cognition: Spatial Language and Cognition Covary across Cultures
ERIC Educational Resources Information Center
Haun, Daniel B. M.; Rapold, Christian J.; Janzen, Gabriele; Levinson, Stephen C.
2011-01-01
The present paper explores cross-cultural variation in spatial cognition by comparing spatial reconstruction tasks by Dutch and Namibian elementary school children. These two communities differ in the way they predominantly express spatial relations in language. Four experiments investigate cognitive strategy preferences across different levels of…
Speciation gradients and the distribution of biodiversity.
Schluter, Dolph; Pennell, Matthew W
2017-05-31
Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.
Cosmic rays, solar activity, magnetic coupling, and lightning incidence
NASA Technical Reports Server (NTRS)
Ely, J. T. A.
1984-01-01
A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.
On the atmospheric photochemistry of nitric acid
NASA Technical Reports Server (NTRS)
Austin, J.; Garcia, R. R.; Russell, J. M., III; Solomon, S.; Tuck, A. F.
1986-01-01
Measurements of the temporal and spatial variations in HNO3, particularly those from the Nimbus 7 limb IR monitor of the stratosphere (LIMS) satellite experiment, are compared to both a two-dimensional chemical/dynamical model and to chemistry/parcel trajectory analyses. Significant discrepancies are found between the observed and modeled variations in the winter season, especially in the polar night region. The study of the evolution of HNO3 suggests that an important source exists for this species in the high-latitude winter stratosphere that is not included in presently accepted photochemical schemes. Possible reactions to account for this discrepancy are explored.
Bravo, Mercedes A; Anthopolos, Rebecca; Kimbro, Rachel T; Miranda, Marie Lynn
2018-05-14
Neighborhood characteristics such as racial segregation may be associated with type 2 diabetes mellitus, but studies have not examined these relationships using spatial models appropriate for geographically patterned health outcomes. We construct a local, spatial index of racial isolation (RI) for blacks, which measures the extent to which blacks are exposed to only one another, to estimate associations of diabetes with RI and examine how RI relates to spatial patterning in diabetes. We obtained 2007-2011 electronic health records from the Duke Medicine Enterprise Data Warehouse. Patient data were linked to RI based on census block of residence. We use aspatial and spatial Bayesian models to assess spatial variation in diabetes and relationships with RI. Compared to spatial models with patient age and sex, residual geographic heterogeneity in diabetes in spatial models that also included RI was 29% and 24% lower for non-Hispanic whites and blacks, respectively. A 0.20 unit increase in RI was associated with 1.24 (95% credible interval: 1.17, 1.31) and 1.07 (1.05, 1.10) increased risk of diabetes for whites and blacks, respectively. Improved understanding of neighborhood characteristics associated with diabetes can inform development of policy interventions.
Monitoring tropical vegetation succession with LANDSAT data
NASA Technical Reports Server (NTRS)
Robinson, V. B. (Principal Investigator)
1983-01-01
The shadowing problem, which is endemic to the use of LANDSAT in tropical areas, and the ability to model changes over space and through time are problems to be addressed when monitoring tropical vegetation succession. Application of a trend surface analysis model to major land cover classes in a mountainous region of the Phillipines shows that the spatial modeling of radiance values can provide a useful approach to tropical rain forest succession monitoring. Results indicate shadowing effects may be due primarily to local variations in the spectral responses. These variations can be compensated for through the decomposition of the spatial variation in both elevation and MSS data. Using the model to estimate both elevation and spectral terrain surface as a posteriori inputs in the classification process leads to improved classification accuracy for vegetation of cover of this type. Spatial patterns depicted by the MSS data reflect the measurement of responses to spatial processes acting at several scales.
Food web dynamics in a seasonally varying wetland
DeAngelis, D.L.; Trexler, J.C.; Donalson, D.D.
2008-01-01
A spatially explicit model is developed to simulate the small fish community and its underlying food web, in the freshwater marshes of the Everglades. The community is simplified to a few small fish species feeding on periphyton and invertebrates. Other compartments are detritus, crayfish, and a piscivorous fish species. This unit food web model is applied to each of the 10,000 spatial cells on a 100 x 100 pixel landscape. Seasonal variation in water level is assumed and rules are assigned for fish movement in response to rising and falling water levels, which can cause many spatial cells to alternate between flooded and dry conditions. It is shown that temporal variations of water level on a spatially heterogeneous landscape can maintain at least three competing fish species. In addition, these environmental factors can strongly affect the temporal variation of the food web caused by top-down control from the piscivorous fish.
Muñoz, Cynthia C; Vermeiren, Peter
2018-04-01
Knowledge of spatial variation in pollutant profiles among sea turtle nesting locations is limited. This poses challenges in identifying processes shaping this variability and sets constraints to the conservation management of sea turtles and their use as biomonitoring tools for environmental pollutants. We aimed to increase understanding of the spatial variation in polycyclic aromatic hydrocarbon (PAH), organochlorine pesticide (OCP) and polychlorinated biphenyl (PCB) compounds among nesting beaches. We link the spatial variation to turtle migration patterns and the persistence of these pollutants. Specifically, using gas chromatography, we confirmed maternal transfer of a large number of compounds (n = 68 out of 69) among 104 eggs collected from 21 nests across three nesting beaches within the Yucatán Peninsula, one of the world's most important rookeries for hawksbill turtles (Eretmochelys imbricata). High variation in PAH profiles was observed among beaches, using multivariate correspondence analysis and univariate Peto-Prentice tests, reflecting local acquisition during recent migration movements. Diagnostic PAH ratios reflected petrogenic origins in Celestún, the beach closest to petroleum industries in the Gulf of Mexico. By contrast, pollution profiles of OCPs and PCBs showed high similarity among beaches, reflecting the long-term accumulation of these pollutants at regional scales. Therefore, spatial planning of protected areas and the use of turtle eggs in biomonitoring needs to account for the spatial variation in pollution profiles among nesting beaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Atmospheric circulation patterns and spatial climatic variations in Beringia
NASA Astrophysics Data System (ADS)
Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.
1998-08-01
Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.
Onozuka, Daisuke; Hagihara, Akihito
2016-02-15
Several studies have reported the burden of climate change on extreme heat-related mortality or morbidity. However, few studies have investigated the spatial and temporal variation in emergency transport during periods of extreme heat on a national scale. Daily emergency ambulance dispatch data from 2007 to 2010 were acquired from all 47 prefectures of Japan. The temporal variability in the relationship between heat and morbidity in each prefecture was estimated using Poisson regression combined with a distributed lag non-linear model and adjusted for time trends. The spatial variability in the heat-morbidity relationships between prefectures was estimated using a multivariate meta-analysis. A total of 5,289,660 emergency transports were reported during the summer months (June through September) within the study period. The overall cumulative relative risk (RR) at the 99th percentile vs. the minimum morbidity percentile was 1.292 (95% CI: 1.251-1.333) for all causes, 1.039 (95% CI: 0.989-1.091) for cardiovascular diseases, and 1.287 (95% CI: 1.210-1.368) for respiratory diseases. Temporal variation in the estimated effects indicated a non-linear relationship, and there were differences in the temporal variations between heat and all-cause and cause-specific morbidity. Spatial variation between prefectures was observed for all causes (Cochran Q test, p<0.001; I(2)=45.8%); however, there was no significant spatial heterogeneity for cardiovascular (Cochran Q test, p=0.054; I(2)=15.1%) and respiratory (Cochran Q test, p=0.681; I(2)=1.0%) diseases. Our nationwide study demonstrated differences in the spatial and temporal variations in the relative risk for all-cause and cause-specific emergency transport during periods of extreme heat in Japan between 2007 and 2010. Our results suggest that public health strategies aimed at controlling heat-related morbidity should be tailored according to region-specific weather conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
A variance-decomposition approach to investigating multiscale habitat associations
Lawler, J.J.; Edwards, T.C.
2006-01-01
The recognition of the importance of spatial scale in ecology has led many researchers to take multiscale approaches to studying habitat associations. However, few of the studies that investigate habitat associations at multiple spatial scales have considered the potential effects of cross-scale correlations in measured habitat variables. When cross-scale correlations in such studies are strong, conclusions drawn about the relative strength of habitat associations at different spatial scales may be inaccurate. Here we adapt and demonstrate an analytical technique based on variance decomposition for quantifying the influence of cross-scale correlations on multiscale habitat associations. We used the technique to quantify the variation in nest-site locations of Red-naped Sapsuckers (Sphyrapicus nuchalis) and Northern Flickers (Colaptes auratus) associated with habitat descriptors at three spatial scales. We demonstrate how the method can be used to identify components of variation that are associated only with factors at a single spatial scale as well as shared components of variation that represent cross-scale correlations. Despite the fact that no explanatory variables in our models were highly correlated (r < 0.60), we found that shared components of variation reflecting cross-scale correlations accounted for roughly half of the deviance explained by the models. These results highlight the importance of both conducting habitat analyses at multiple spatial scales and of quantifying the effects of cross-scale correlations in such analyses. Given the limits of conventional analytical techniques, we recommend alternative methods, such as the variance-decomposition technique demonstrated here, for analyzing habitat associations at multiple spatial scales. ?? The Cooper Ornithological Society 2006.
Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping.
Job, Jacob R; Myers, Kyle; Naghshineh, Koorosh; Gill, Sharon A
2016-01-01
Animals select and use habitats based on environmental features relevant to their ecology and behavior. For animals that use acoustic communication, the sound environment itself may be a critical feature, yet acoustic characteristics are not commonly measured when describing habitats and as a result, how habitats vary acoustically over space and time is poorly known. Such considerations are timely, given worldwide increases in anthropogenic noise combined with rapidly accumulating evidence that noise hampers the ability of animals to detect and interpret natural sounds. Here, we used microphone arrays to record the sound environment in three terrestrial habitats (forest, prairie, and urban) under ambient conditions and during experimental noise introductions. We mapped sound pressure levels (SPLs) over spatial scales relevant to diverse taxa to explore spatial variation in acoustic habitats and to evaluate the number of microphones needed within arrays to capture this variation under both ambient and noisy conditions. Even at small spatial scales and over relatively short time spans, SPLs varied considerably, especially in forest and urban habitats, suggesting that quantifying and mapping acoustic features could improve habitat descriptions. Subset maps based on input from 4, 8, 12 and 16 microphones differed slightly (< 2 dBA/pixel) from those based on full arrays of 24 microphones under ambient conditions across habitats. Map differences were more pronounced with noise introductions, particularly in forests; maps made from only 4-microphones differed more (> 4 dBA/pixel) from full maps than the remaining subset maps, but maps with input from eight microphones resulted in smaller differences. Thus, acoustic environments varied over small spatial scales and variation could be mapped with input from 4-8 microphones. Mapping sound in different environments will improve understanding of acoustic environments and allow us to explore the influence of spatial variation in sound on animal ecology and behavior.
Inoue, M; Shirotani, Y; Yamashita, S; Takata, H; Kofuji, H; Ambe, D; Honda, N; Yagi, Y; Nagao, S
2018-02-01
To investigate the dispersion of Fukushima Dai-ichi Nuclear Power Plant (FDNPP)-derived radiocesium in the Sea of Japan and western Pacific coastal region and determine the sources of radiocesium in these areas, we examined the temporal and spatial variations of 134 Cs and 137 Cs concentrations (activities) during 2011-2016 in seawaters around the western Japanese Archipelago, particularly in the Sea of Japan. In May 2013, the surface concentration of 134 Cs was ∼0.5 mBq/L (decay-corrected to March 11, 2011), and that of 137 Cs exceeded the pre-accident level in this study area, where the effects of radiocesium depositions just after the FDNPP accident disappeared in surface waters in October 2011. Subsequently, radiocesium concentrations gradually increased during 2013-2016 (∼0.5-1 mBq/L for 134 Cs), exhibiting approximately homogeneous distributions in each year. The temporal and spatial variations of 134 Cs and 137 Cs concentrations indicated that FDNPP-derived radiocesium around the western Japanese Archipelago, including the Sea of Japan, has been supported by the Kuroshio Current and its branch, Tsushima Warm Current, during 2013-2016. However, in the Sea of Japan, the penetration of 134 Cs was limited to depths of less than ∼200 m during three years following the re-delivery of FDNPP-derived radiocesium. Copyright © 2017 Elsevier Ltd. All rights reserved.
Palaniyandi, M
2012-12-01
There have been several attempts made to the appreciation of remote sensing and GIS for the study of vectors, biodiversity, vector presence, vector abundance and the vector-borne diseases with respect to space and time. This study was made for reviewing and appraising the potential use of remote sensing and GIS applications for spatial prediction of vector-borne diseases transmission. The nature of the presence and the abundance of vectors and vector-borne diseases, disease infection and the disease transmission are not ubiquitous and are confined with geographical, environmental and climatic factors, and are localized. The presence of vectors and vector-borne diseases is most complex in nature, however, it is confined and fueled by the geographical, climatic and environmental factors including man-made factors. The usefulness of the present day availability of the information derived from the satellite data including vegetation indices of canopy cover and its density, soil types, soil moisture, soil texture, soil depth, etc. is integrating the information in the expert GIS engine for the spatial analysis of other geoclimatic and geoenvironmental variables. The present study gives the detailed information on the classical studies of the past and present, and the future role of remote sensing and GIS for the vector-borne diseases control. The ecological modeling directly gives us the relevant information to understand the spatial variation of the vector biodiversity, vector presence, vector abundance and the vector-borne diseases in association with geoclimatic and the environmental variables. The probability map of the geographical distribution and seasonal variations of horizontal and vertical distribution of vector abundance and its association with vector -borne diseases can be obtained with low cost remote sensing and GIS tool with reliable data and speed.
Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F
2015-12-22
The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.
Linking vegetation structure, function and physiology through spectroscopic remote sensing
NASA Astrophysics Data System (ADS)
Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.
2015-12-01
Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten Jr, Charles T; Kang, S.; Brice, Deanne Jane
2007-01-01
The purpose of this research was to test the hypothesis that variability in 11 soil properties, related to soil texture and soil C and N, would increase from small (1 m) to large (1 km) spatial scales in a temperate, mixed-hardwood forest ecosystem in east Tennessee, USA. The results were somewhat surprising and indicated that a fundamental assumption in geospatial analysis, namely that variability increases with increasing spatial scale, did not apply for at least five of the 11 soil properties measured over a 0.5-km2 area. Composite mineral soil samples (15 cm deep) were collected at 1, 5, 10, 50,more » 250, and 500 m distances from a center point along transects in a north, south, east, and westerly direction. A null hypothesis of equal variance at different spatial scales was rejected (P{le}0.05) for mineral soil C concentration, silt content, and the C-to-N ratios in particulate organic matter (POM), mineral-associated organic matter (MOM), and whole surface soil. Results from different tests of spatial variation, based on coefficients of variation or a Mantel test, led to similar conclusions about measurement variability and geographic distance for eight of the 11 variables examined. Measurements of mineral soil C and N concentrations, C concentrations in MOM, extractable soil NH{sub 4}-N, and clay contents were just as variable at smaller scales (1-10 m) as they were at larger scales (50-500 m). On the other hand, measurement variation in mineral soil C-to-N ratios, MOM C-to-N ratios, and the fraction of soil C in POM clearly increased from smaller to larger spatial scales. With the exception of extractable soil NH4-N, measured soil properties in the forest ecosystem could be estimated (with 95% confidence) to within 15% of their true mean with a relatively modest number of sampling points (n{le}25). For some variables, scaling up variation from smaller to larger spatial domains within the ecosystem could be relatively easy because small-scale variation may be indicative of variation at larger scales.« less
Grillet, M E; Basáñez, M G; Vivas-Martínez, S; Villamizar, N; Frontado, H; Cortez, J; Coronel, P; Botto, C
2001-07-01
We investigated some entomological factors underlying altitudinal prevalence variation in the Venezuelan Amazonia human onchocerciasis focus. Spatial and temporal variation in relative abundance, daily biting rate, proportion of parous flies, and monthly parous biting rate were studied for the three main simuliid vectors (based on their vectorial competence: Simulium oyapockense s.l. Floch & Abonnenc approximately = S. incrustatum Lutz < S. guianense s.l. Wise). Yanomami villages were selected among sentinel communities of the ivermectin control program, representing hypo- to hyperendemicity conditions of infection. Spatial variation was explored via increasing village altitude on two river systems (A: Ocamo-Putaco and B: Orinoco-Orinoquito). Temporal variation was studied between 1995 and 1999 by sampling the biting population during dry and rainy mouths. Environmental variables included monthly rainfall and maximum river height. Simuliid species composition itself varied along the altitudinal and prevalence gradient. S. oyapockense s.l. prevailed below 150 m. Above this altitude and up to 240 m, S. incrustatum and S. guianense s.l. became more frequently and evenly collected along A but not along B, where S. incrustatum remained absent. The daily biting rate of S. oyapockense s.l. was higher during the dry season along A, whereas the converse took place along B. Daily biting rate of S. incrustatum was lowest during early rains. By contrast, the daily biting rate of S. guianense s.l. was highest during this period. There was a significant negative cross-correlation between proportion of parous of S. oyapockense s.l. and river height (2 and 3 mo lagged), whereas this variable (1 and 2 mo lagged) was positively correlated with the proportion of parous flies for S. incrustatum. Monthly parous biting rate values suggest that the months contributing most to onchocerciasis transmission in the area are likely to be the dry season and the transition periods between seasons.
NASA Astrophysics Data System (ADS)
Olson, E. J.; Dodd, J. P.; Rivera, M. A.
2016-12-01
Arid regions are extremely sensitive to variations hydroclimate. However, our understanding of past hydroclimate variations in these regions is often limited by a paucity of spatially resolved proxy data. The Atacama Desert of northern Chile is one of the driest regions on Earth, and hydroclimatic processes in the Atacama Desert may be a useful proxy for understanding the implications of expanding global aridity. In order to assess the ability of tree-ring isotope studies to record changes in hydrology and terrestrial climate in the Atacama Desert, oxygen (δ18O), carbon (δ13C) and hydrogen (δ2H) isotope values in tree rings of Prosopis tamarugo are analyzed for the modern period (1954-2014) when anthropogenic change to regional groundwater levels have been most notable. Samples of wood cellulose were collected throughout the Pampa del Tamarugal basin from 14 individuals and used to create an interpolated surface of isotope variations. The isotope data were then compared to groundwater depth from well monitoring data provided by the Dirección de General de Agua of Chile. There is a significant correlation between groundwater level and isotope values with best agreement occurring during the past two decades for δ18O (r = 0.58), δ13C (r = 0.55), and δ2H (r = 0.66) values. This spatial correlation analysis reveals that tree ring a-cellulose isotope values are a suitable proxy for reconstructing groundwater depth in the Pampa del Tamarugal Basin. A stepwise multiregression analysis between δ18O values of cellulose and several other environmental variables including groundwater level, relative humidity, and temperature suggest that groundwater depth is the dominate control of variation in the modern δ18O tree ring record. The response of tree cellulose to the hydroclimate in this region suggests that tree ring isotope variations may be used to reconstruct past hydroclimate conditions in arid regions throughout the globe.
Longitudinal variability in Jupiter's zonal winds derived from multi-wavelength HST observations
NASA Astrophysics Data System (ADS)
Johnson, Perianne E.; Morales-Juberías, Raúl; Simon, Amy; Gaulme, Patrick; Wong, Michael H.; Cosentino, Richard G.
2018-06-01
Multi-wavelength Hubble Space Telescope (HST) images of Jupiter from the Outer Planets Atmospheres Legacy (OPAL) and Wide Field Coverage for Juno (WFCJ) programs in 2015, 2016, and 2017 are used to derive wind profiles as a function of latitude and longitude. Wind profiles are typically zonally averaged to reduce measurement uncertainties. However, doing this destroys any variations of the zonal-component of winds in the longitudinal direction. Here, we present the results derived from using a "sliding-window" correlation method. This method adds longitudinal specificity, and allows for the detection of spatial variations in the zonal winds. Spatial variations are identified in two jets: 1 at 17 ° N, the location of a prominent westward jet, and the other at 7 ° S, the location of the chevrons. Temporal and spatial variations at the 24°N jet and the 5-μm hot spots are also examined.
Effect of aberration on the acoustic field in tissue harmonic imaging (THI)
NASA Astrophysics Data System (ADS)
Jing, Yuan; Cleveland, Robin
2003-10-01
A numerical simulation was used to study the impact of an aberrating layer on the generation of the fundamental and second-harmonic (SH) field in a tissue harmonic imaging scenario. The simulation used a three-dimensional time-domain code for solving the KZK equation and accounted for arbitrary spatial variations in all acoustic properties. The aberration effect was modeled by assuming that the tissue consisted of two layers where the interface has a spatial variation C that acted like an effective phase screen. Initial experiments were carried out with sinusoidal-shaped interfaces. The sinusoidal interface produced grating lobes which were at least 6 dB larger for the fundamental signal than the SH. The energy outside of the main lobe was found to increase linearly as the amplitude of the interface variation increased. The location of the grating lobes was affected by the spatial period on the interface variation. The inhomogeneous nature of tissue was modeled with an interface with a random spatial variation. With the random interface the average sidelobe level for the fundamental was -30 dB whereas the SH had an average sidelobe level of -36 dB. [Work supported by the NSF through the Center for Subsurface Sensing and Imaging Systems.
NASA Astrophysics Data System (ADS)
van Dijk, W. M.; Joshi, S. K.; Densmore, A. L.; Jackson, C. R.; Sutanudjaja, E.; Lafare, A. E. A.; Gupta, S.; Mackay, J. D.; Mason, P. J.; Sinha, R.
2017-12-01
Groundwater is a primary source of freshwater in the alluvial aquifer system of northwestern India. Unsustainable exploitation of the groundwater resources has led to a regional hotspot in groundwater depletion. Rapid groundwater-level decline shows spatial variation, as the effects of various stresses, including precipitation, potential evapotranspiration and abstraction, are likely to be influenced by the stratigraphic and geomorphic heterogeneity between sediment fan and interfan areas (see Geomorphological map in Figure A). We used a transfer function-noise (TFN) time series approach to quantify the effect of the various stress components in the period 1974-2010, based on predefined impulse response functions (IRFs) of von Asmuth et al. (2008). The objective of this study was 1) to acquire the impulse response function of various stresses, 2) assess the spatial estimation parameter (the zeroth moment, M0) of the spatial development of the groundwater head and 3) relate the spatial M0 to the observed stratigraphic and geomorphic heterogeneity. We collected information on the groundwater head pre- and post-monsoon, the district-wise monthly precipitation and potential evapotranspiration, and we modeled the monthly abstraction rate using land-use information. The TFN identified the IRF of precipitation as well as abstraction. The IRF, summarized in the parameter M0, identified a hotspot for the abstraction stress (see M0 spatial map for abstraction in Figure B) at the margins of the Sutlej and Yamuna fans. No hotspot is observed for the precipitation stress, but the M0 for precipitation increases with distance from the Himalayan front. At larger distances from the Himalayan front, observed groundwater head rises cannot be explained by the IRFs for the abstraction and precipitation stresses. This is likely because the current TFN models do not account for other stresses, such as recharge by canal leakage, which are locally important. We conclude that the spatial variation in the M0 for abstraction is controlled by stratigraphic and geomorphic heterogeneity. The fan margins and the interfan area are more affected by abstraction as these areas are underlain by fewer, and thinner, aquifer bodies them the fans themselves. Von Ashmuth et al,2008. Ground Water, 46 (1), 30-40
Global patterns and predictors of fish species richness in estuaries.
Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N
2015-09-01
1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these habitats. In summary, patterns of species richness in estuaries across large spatial extents seem to reflect from global to local processes acting on community colonization. The importance of considering spatial extent, sampling effects and of combining history and contemporary environmental characteristics when exploring biodiversity is highlighted. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons on behalf of the British Ecological Society.
Attribution of the Regional Patterns of North American Climate Trends
NASA Astrophysics Data System (ADS)
Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.
2007-12-01
North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.
NASA Astrophysics Data System (ADS)
Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.
2017-12-01
This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.
Spatial effects, sampling errors, and task specialization in the honey bee.
Johnson, B R
2010-05-01
Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.
Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi
2013-01-01
Background Malaria transmission is influenced by variations in meteorological conditions, which impact the biology of the parasite and its vector, but also socio-economic conditions, such as levels of urbanization, poverty and education, which impact human vulnerability and vector habitat. The many potential drivers of malaria, both extrinsic, such as climate, and intrinsic, such as population immunity are often difficult to disentangle. This presents a challenge for the modelling of malaria risk in space and time. Methods A statistical mixed model framework is proposed to model malaria risk at the district level in Malawi, using an age-stratified spatio-temporal dataset of malaria cases from July 2004 to June 2011. Several climatic, geographic and socio-economic factors thought to influence malaria incidence were tested in an exploratory model. In order to account for the unobserved confounding factors that influence malaria, which are not accounted for using measured covariates, a generalized linear mixed model was adopted, which included structured and unstructured spatial and temporal random effects. A hierarchical Bayesian framework using Markov chain Monte Carlo simulation was used for model fitting and prediction. Results Using a stepwise model selection procedure, several explanatory variables were identified to have significant associations with malaria including climatic, cartographic and socio-economic data. Once intervention variations, unobserved confounding factors and spatial correlation were considered in a Bayesian framework, a final model emerged with statistically significant predictor variables limited to average precipitation (quadratic relation) and average temperature during the three months previous to the month of interest. Conclusions When modelling malaria risk in Malawi it is important to account for spatial and temporal heterogeneity and correlation between districts. Once observed and unobserved confounding factors are allowed for, precipitation and temperature in the months prior to the malaria season of interest are found to significantly determine spatial and temporal variations of malaria incidence. Climate information was found to improve the estimation of malaria relative risk in 41% of the districts in Malawi, particularly at higher altitudes where transmission is irregular. This highlights the potential value of climate-driven seasonal malaria forecasts. PMID:24228784
A reanalysis dataset of the South China Sea.
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.
A reanalysis dataset of the South China Sea
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-01-01
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-04-03
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
Zulu, Leo C; Kalipeni, Ezekiel; Johannes, Eliza
2014-05-23
Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi's estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across 'sub-epidemics' while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV "hotspots" clustered among eleven southern districts/cities while a "coldspot" captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale.
2014-01-01
Background Although local spatiotemporal analysis can improve understanding of geographic variation of the HIV epidemic, its drivers, and the search for targeted interventions, it is limited in sub-Saharan Africa. Despite recent declines, Malawi’s estimated 10.0% HIV prevalence (2011) remained among the highest globally. Using data on pregnant women in Malawi, this study 1) examines spatiotemporal trends in HIV prevalence 1994-2010, and 2) for 2010, identifies and maps the spatial variation/clustering of factors associated with HIV prevalence at district level. Methods Inverse distance weighting was used within ArcGIS Geographic Information Systems (GIS) software to generate continuous surfaces of HIV prevalence from point data (1994, 1996, 1999, 2001, 2003, 2005, 2007, and 2010) obtained from surveillance antenatal clinics. From the surfaces prevalence estimates were extracted at district level and the results mapped nationally. Spatial dependency (autocorrelation) and clustering of HIV prevalence were also analyzed. Correlation and multiple regression analyses were used to identify factors associated with HIV prevalence for 2010 and their spatial variation/clustering mapped and compared to HIV clustering. Results Analysis revealed wide spatial variation in HIV prevalence at regional, urban/rural, district and sub-district levels. However, prevalence was spatially leveling out within and across ‘sub-epidemics’ while declining significantly after 1999. Prevalence exhibited statistically significant spatial dependence nationally following initial (1995-1999) localized, patchy low/high patterns as the epidemic spread rapidly. Locally, HIV “hotspots” clustered among eleven southern districts/cities while a “coldspot” captured configurations of six central region districts. Preliminary multiple regression of 2010 HIV prevalence produced a model with four significant explanatory factors (adjusted R2 = 0.688): mean distance to main roads, mean travel time to nearest transport, percentage that had taken an HIV test ever, and percentage attaining a senior primary education. Spatial clustering linked some factors to particular subsets of high HIV-prevalence districts. Conclusions Spatial analysis enhanced understanding of local spatiotemporal variation in HIV prevalence, possible underlying factors, and potential for differentiated spatial targeting of interventions. Findings suggest that intervention strategies should also emphasize improved access to health/HIV services, basic education, and syphilis management, particularly in rural hotspot districts, as further research is done on drivers at finer scale. PMID:24886573
USDA-ARS?s Scientific Manuscript database
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host preference and specificity. The goal of this study was to test the extent to which host-plant sp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aregory James Sower; Kim A. Anderson
2008-12-15
Urban rivers with a history of industrial use can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations and even the assessment of remediation efforts. Concentrations of 15 biologically available priority pollutant polycyclic aromatic hydrocarbons (PAHs) were measured over five years along 18.5 miles of the lower Willamette River using passive sampling devices and HPLC. The study area includes the Portland Harbor Superfund megasite with several PAH sources including remediation operations for coal tar at RM 6.3 west and an additional Superfund site, McCormick and Baxter, at RM 7 east consisting largely of creosote contamination.more » Study results show that organoclay capping at the McCormick and Baxter Superfund Site reduced PAHs from a precap average of 440 {+-} 422 ng/L to 8 {+-} 3 ng/L postcapping. Results also reveal that dredging of submerged coal tar nearly tripled nearby freely dissolved PAH concentrations. For apportioning sources, fluoranthene/pyrene and phenanthrene/anthracene diagnostic ratios from passive sampling devices were established for creosote and coal tar contamination and compared to published sediment values. 29 refs., 3 figs., 3 tabs.« less
Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.
A Brief History of the use of Electromagnetic Induction Techniques in Soil Survey
NASA Astrophysics Data System (ADS)
Brevik, Eric C.; Doolittle, James
2017-04-01
Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools and increased the amount and types of data that can be gathered with a single pass. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales. The future should witness a greater use of multiple-frequency and multiple-coil EMI sensors and integration with other sensors to assess the spatial variability of soil properties. Data analysis will be improved with advanced processing and presentation systems and more sophisticated geostatistical modeling algorithms will be developed and used to interpolate EMI data, improve the resolution of subsurface features, and assess soil properties.
NASA Astrophysics Data System (ADS)
Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Adelman, Jonathan D.; Kruger, Eric L.
2008-02-01
Assumed representative center-of-stand measurements are typical inputs to models that scale forest transpiration to stand and regional extents. These inputs do not consider gradients in transpiration at stand boundaries or along moisture gradients and therefore potentially bias the large-scale estimates. We measured half-hourly sap flux (JS) for 173 trees in a spatially explicit cyclic sampling design across a topographically controlled gradient between a forested wetland and upland forest in northern Wisconsin. Our analyses focused on three dominant species in the site: quaking aspen (Populus tremuloides Michx), speckled alder (Alnus incana (DuRoi) Spreng), and white cedar (Thuja occidentalis L.). Sapwood area (AS) was used to scale JS to whole tree transpiration (EC). Because spatial patterns imply underlying processes, geostatistical analyses were employed to quantify patterns of spatial autocorrelation across the site. A simple Jarvis type model parameterized using a Monte Carlo sampling approach was used to simulate EC (EC-SIM). EC-SIM was compared with observed EC(EC-OBS) and found to reproduce both the temporal trends and spatial variance of canopy transpiration. EC-SIM was then used to examine spatial autocorrelation as a function of environmental drivers. We found no spatial autocorrelation in JS across the gradient from forested wetland to forested upland. EC was spatially autocorrelated and this was attributed to spatial variation in AS which suggests species spatial patterns are important for understanding spatial estimates of transpiration. However, the range of autocorrelation in EC-SIM decreased linearly with increasing vapor pressure deficit, implying that consideration of spatial variation in the sensitivity of canopy stomatal conductance to D is also key to accurately scaling up transpiration in space.
Muko, Soyoka; Shimatani, Ichiro K; Nozawa, Yoko
2014-07-01
Spatial distributions of individuals are conventionally analysed by representing objects as dimensionless points, in which spatial statistics are based on centre-to-centre distances. However, if organisms expand without overlapping and show size variations, such as is the case for encrusting corals, interobject spacing is crucial for spatial associations where interactions occur. We introduced new pairwise statistics using minimum distances between objects and demonstrated their utility when examining encrusting coral community data. We also calculated the conventional point process statistics and the grid-based statistics to clarify the advantages and limitations of each spatial statistical method. For simplicity, coral colonies were approximated by disks in these demonstrations. Focusing on short-distance effects, the use of minimum distances revealed that almost all coral genera were aggregated at a scale of 1-25 cm. However, when fragmented colonies (ramets) were treated as a genet, a genet-level analysis indicated weak or no aggregation, suggesting that most corals were randomly distributed and that fragmentation was the primary cause of colony aggregations. In contrast, point process statistics showed larger aggregation scales, presumably because centre-to-centre distances included both intercolony spacing and colony sizes (radius). The grid-based statistics were able to quantify the patch (aggregation) scale of colonies, but the scale was strongly affected by the colony size. Our approach quantitatively showed repulsive effects between an aggressive genus and a competitively weak genus, while the grid-based statistics (covariance function) also showed repulsion although the spatial scale indicated from the statistics was not directly interpretable in terms of ecological meaning. The use of minimum distances together with previously proposed spatial statistics helped us to extend our understanding of the spatial patterns of nonoverlapping objects that vary in size and the associated specific scales. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Tunno, Brett J; Dalton, Rebecca; Michanowicz, Drew R; Shmool, Jessie L C; Kinnee, Ellen; Tripathy, Sheila; Cambal, Leah; Clougherty, Jane E
2016-01-01
Health effects of fine particulate matter (PM2.5) vary by chemical composition, and composition can help to identify key PM2.5 sources across urban areas. Further, this intra-urban spatial variation in concentrations and composition may vary with meteorological conditions (e.g., mixing height). Accordingly, we hypothesized that spatial sampling during atmospheric inversions would help to better identify localized source effects, and reveal more distinct spatial patterns in key constituents. We designed a 2-year monitoring campaign to capture fine-scale intra-urban variability in PM2.5 composition across Pittsburgh, PA, and compared both spatial patterns and source effects during “frequent inversion” hours vs 24-h weeklong averages. Using spatially distributed programmable monitors, and a geographic information systems (GIS)-based design, we collected PM2.5 samples across 37 sampling locations per year to capture variation in local pollution sources (e.g., proximity to industry, traffic density) and terrain (e.g., elevation). We used inductively coupled plasma mass spectrometry (ICP-MS) to determine elemental composition, and unconstrained factor analysis to identify source suites by sampling scheme and season. We examined spatial patterning in source factors using land use regression (LUR), wherein GIS-based source indicators served to corroborate factor interpretations. Under both summer sampling regimes, and for winter inversion-focused sampling, we identified six source factors, characterized by tracers associated with brake and tire wear, steel-making, soil and road dust, coal, diesel exhaust, and vehicular emissions. For winter 24-h samples, four factors suggested traffic/fuel oil, traffic emissions, coal/industry, and steel-making sources. In LURs, as hypothesized, GIS-based source terms better explained spatial variability in inversion-focused samples, including a greater contribution from roadway, steel, and coal-related sources. Factor analysis produced source-related constituent suites under both sampling designs, though factors were more distinct under inversion-focused sampling. PMID:26507005
Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José
2017-02-01
The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora . We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.
NASA Astrophysics Data System (ADS)
Gillespie, Jonathan; Masey, Nicola; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.
2017-02-01
Determination of intra-urban spatial variations in air pollutant concentrations for exposure assessment requires substantial time and monitoring equipment. The objective of this study was to establish if short-duration measurements of air pollutants can be used to estimate longer-term pollutant concentrations. We compared 5-min measurements of black carbon (BC) and particle number (PN) concentrations made once per week on 5 occasions, with 4 consecutive 1-week average nitrogen dioxide (NO2) concentrations at 18 locations at a range of distances from busy roads in Glasgow, UK. 5-min BC and PN measurements (averaged over the two 5-min periods at the start and end of a week) explained 40-80%, and 7-64% respectively, of spatial variation in the intervening 1-week NO2 concentrations for individual weeks. Adjustment for variations in background concentrations increased the percentage of explained variation in the bivariate relationship between the full set of NO2 and BC measurements over the 4-week period from 28% to 50% prior to averaging of repeat measurements. The averages of five 5-min BC and PN measurements made over 5 weeks explained 75% and 33% respectively of the variation in average 1-week NO2 concentrations over the same period. The relatively high explained variation observed between BC and NO2 measured on different time scales suggests that, with appropriate steps to correct or average out temporal variations, repeated short-term measurements can be used to provide useful information on longer-term spatial patterns for these traffic-related pollutants.
Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.
Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao
2016-02-01
Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.
Wang, Lizhu; Brenden, Travis; Cao, Yong; Seelbach, Paul
2012-11-01
Identifying appropriate spatial scales is critically important for assessing health, attributing data, and guiding management actions for rivers. We describe a process for identifying a three-level hierarchy of spatial scales for Michigan rivers. Additionally, we conduct a variance decomposition of fish occurrence, abundance, and assemblage metric data to evaluate how much observed variability can be explained by the three spatial scales as a gage of their utility for water resources and fisheries management. The process involved the development of geographic information system programs, statistical models, modification by experienced biologists, and simplification to meet the needs of policy makers. Altogether, 28,889 reaches, 6,198 multiple-reach segments, and 11 segment classes were identified from Michigan river networks. The segment scale explained the greatest amount of variation in fish abundance and occurrence, followed by segment class, and reach. Segment scale also explained the greatest amount of variation in 13 of the 19 analyzed fish assemblage metrics, with segment class explaining the greatest amount of variation in the other six fish metrics. Segments appear to be a useful spatial scale/unit for measuring and synthesizing information for managing rivers and streams. Additionally, segment classes provide a useful typology for summarizing the numerous segments into a few categories. Reaches are the foundation for the identification of segments and segment classes and thus are integral elements of the overall spatial scale hierarchy despite reaches not explaining significant variation in fish assemblage data.
Julia I. Burton; Lisa M. Ganio; Klaus J. Puettmann
2014-01-01
Forest understory vegetation is influenced by broad-scale variation in climate, intermediate scale variation in topography, disturbance and neighborhood interactions. However, little is known about how these multi-scale controls interact to influence observed spatial patterns. We examined relationships between the aggregated cover of understory plant species (%...
2007-09-30
secondary gap outflow that appeared in COAMPS simulations ( Cherrett 2006). Figure 3d shows similar SST spatial variations as in Fig. 3c with slight... Cherrett , R. C. 2006: Observed and Simulated temporal and spatial variations of the gap outflow region, M.S. Thesis, Meteorology Department, Naval
Solar irradiance (W/m2) and downwelling diffuse attenuation coefficients (Kd; m-1) were determined in several locations in Prince William Sound, Alaska, USA, between April 2003 and December 2005 to assess temporal and spatial variation in solar radiation and the risks of photoenh...
Spatial variation in carrier dynamics along a single CdSSe nanowire
NASA Astrophysics Data System (ADS)
Blake, Jolie C.; Eldridge, Peter S.; Gundlach, Lars
2014-10-01
Ultrafast charge carrier dynamics along individual CdSxSe1-x nanowires has been measured. The use of an improved ultrafast Kerr-gated microscope allows for spatially resolved luminescence measurements along a single nanowire. Amplified spontaneous emission (ASE) was observed at high excitation fluences. Position dependent variations of ultrafast ASE dynamics were observed. SEM and colorimetric measurements showed that the difference in dynamics can be attributed to variations in non-radiative recombination rates along the wire. The dominant Shockley-Read recombination rate can be extracted from ASE dynamics and can be directly related to charge carrier mobility and defect density. Employing ASE as a probe for defect densities provides a new sub-micron spatially resolved, contactless method for measurements of charge carrier mobility.
Spatial modulation of above-the-gap cathodoluminescence in InP nanowires
NASA Astrophysics Data System (ADS)
Tizei, L. H. G.; Zagonel, L. F.; Tencé, M.; Stéphan, O.; Kociak, M.; Chiaramonte, T.; Ugarte, D.; Cotta, M. A.
2013-12-01
We report the observation of light emission on wurtzite InP nanowires excited by fast electrons. The experiments were performed in a scanning transmission electron microscope using an in-house-built cathodoluminescence detector. Besides the exciton emission, at 850 nm, emission above the band gap from 400 to 800 nm was observed. In particular, this broad emission presented systematic periodic modulations indicating variations in the local excitation probability. The physical origin of the detected emission is not clear. Measurements of the spatial variation of the above-the-gap emission points to the formation of leaky cavity modes of a plasmonic nature along the nanowire length, indicating the wave nature of the excitation. We propose a phenomenological model, which fits closely the observed spatial variations.
Spatial variation in the climatic predictors of species compositional turnover and endemism
Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C; Chapple, David G
2014-01-01
Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species–environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile–climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r2 = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r2 = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses. PMID:25473479
NASA Astrophysics Data System (ADS)
Boning, Duane S.; Chung, James E.
1998-11-01
Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of "dummy fill" or "metal fill" to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal.
Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica
Taylor, Philip; Asner, Gregory; Dahlin, Kyla; Anderson, Christopher; Knapp, David; Martin, Roberta; Mascaro, Joseph; Chazdon, Robin; Cole, Rebecca; Wanek, Wolfgang; Hofhansl, Florian; Malavassi, Edgar; Vilchez-Alvarado, Braulio; Townsend, Alan
2015-01-01
Tropical forests store large amounts of carbon in tree biomass, although the environmental controls on forest carbon stocks remain poorly resolved. Emerging airborne remote sensing techniques offer a powerful approach to understand how aboveground carbon density (ACD) varies across tropical landscapes. In this study, we evaluate the accuracy of the Carnegie Airborne Observatory (CAO) Light Detection and Ranging (LiDAR) system to detect top-of-canopy tree height (TCH) and ACD across the Osa Peninsula, Costa Rica. LiDAR and field-estimated TCH and ACD were highly correlated across a wide range of forest ages and types. Top-of-canopy height (TCH) reached 67 m, and ACD surpassed 225 Mg C ha-1, indicating both that airborne CAO LiDAR-based estimates of ACD are accurate in tall, high-biomass forests and that the Osa Peninsula harbors some of the most carbon-rich forests in the Neotropics. We also examined the relative influence of lithologic, topoedaphic and climatic factors on regional patterns in ACD, which are known to influence ACD by regulating forest productivity and turnover. Analyses revealed a spatially nested set of factors controlling ACD patterns, with geologic variation explaining up to 16% of the mapped ACD variation at the regional scale, while local variation in topographic slope explained an additional 18%. Lithologic and topoedaphic factors also explained more ACD variation at 30-m than at 100-m spatial resolution, suggesting that environmental filtering depends on the spatial scale of terrain variation. Our result indicate that patterns in ACD are partially controlled by spatial variation in geologic history and geomorphic processes underpinning topographic diversity across landscapes. ACD also exhibited spatial autocorrelation, which may reflect biological processes that influence ACD, such as the assembly of species or phenotypes across the landscape, but additional research is needed to resolve how abiotic and biotic factors contribute to ACD variation across high biomass, high diversity tropical landscapes. PMID:26061884
Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A
2014-01-01
Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hyperion Studies Of Crop Stress In Mexico
NASA Technical Reports Server (NTRS)
Lobell, David B.; Asner, Gregory P.
2004-01-01
Satellite-based measurements of crop stress could provide much needed information for cropland management, especially in developing countries where other precision agriculture technologies are too expensive (Pierce and Nowak 1999; Robert 2002). For example, detection of areas that are nitrogen deficient or water stressed could guide fertilizer and water management decisions for all farmers within the swath of the satellite. Several approaches have been proposed to quantify canopy nutrient or water content based on spectral reflectance, most of which involve combinations of reflectance in the form of vegetation indices. While these indices are designed to maximize sensitivity to leaf chemistry, variations in other aspects of plant canopies may significantly impact remotely sensed reflectance. These confounding factors include variations in canopy structural properties (e.g., leaf area index, leaf angle distribution) as well as the extent of canopy cover, which determines the amount of exposed bare soil within a single pixel. In order to assess the utility of spectral indices for monitoring crop stress, it is therefore not only necessary to establish relationships at the leaf level, but also to test the relative importance of variations in other canopy attributes at the spatial scale of the remote sensing measurement. In this context, the relative importance of a given attribute will depend on (1) the sensitivity of the reflectance index to variation in the attribute and (2) the degree to which the attribute varies spatially and temporally.
Jacobson, R.B.
2013-01-01
The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration strategies requires that the role of physical habitat is correctly diagnosed and that restoration activities address true habitat limitations, including the role of dynamic habitats.
Combes, Jean-Baptiste; Delattre, Eric; Elliott, Bob; Skåtun, Diane
2015-09-01
Spatial wage theory suggests that employers in different regions may offer different pay rates to reflect local amenities and cost of living. Higher wages may be required to compensate for a less pleasant environment or a higher cost of living. If wages in a competing sector within an area are less flexible and therefore less competitive this may lead to an inability to employ staff. This paper considers the market for nursing staff in France where there is general regulation of wages and public hospitals compete for staff with the private hospital and non-hospital sectors. We consider two types of nursing staff, registered and assistant nurses and first establish the degree of spatial variation in the competitiveness of pay of nurses in public hospitals. We then consider whether these spatial variations are associated with variation in the employment of nursing staff. We find that despite regulation of pay in the public and private sector, there are substantial local variations in the competitiveness of nurses' pay. We find evidence that the spatial variations in the competitiveness of pay are associated with relative numbers of assistant nurses but not registered nurses. While we find the influence of the competitiveness of pay is small, it suggests that nonpay conditions may be an important factor in adjusting the labour market as might be expected in such a regulated market.
NASA Astrophysics Data System (ADS)
Jia, Chun-Xiao; Liu, Run-Ran; Rong, Zhihai
2017-03-01
Either in societies or economic cycles, the benefits of a group can be affected by various unpredictable factors. We study effects of additive spatiotemporal random variations on the evolution of cooperation by introducing them to the enhancement level of the spatial public goods game. Players are located on the sites of a two-dimensional lattice and gain their payoffs from games with their neighbors by choosing cooperation or defection. We observe that a moderate intensity of variations can best favor cooperation at low enhancement levels, which resembles classical coherence resonance. Whereas for high enhancement levels, we find that the random variations cannot increase the cooperation level, but hamper cooperation instead. This discrepancy is attributed to the different roles the additive variations played in the early and late stages of evolution. In the early stage of evolution, the additive variations increase the survival probability of the players with lower average payoffs. However, in the late stage of evolution, the additive variations can promote defectors to destroy the cooperative clusters that have been formed. Our results indicate that additive spatiotemporal noise may not be as universally beneficial for cooperation as the spatial prisoner's dilemma game.
Oliveira, Eliana Faria; Martinez, Pablo Ariel; São-Pedro, Vinícius Avelar; Gehara, Marcelo; Burbrink, Frank Thomas; Mesquita, Daniel Oliveira; Garda, Adrian Antonio; Colli, Guarino Rinaldi; Costa, Gabriel Correa
2018-03-01
Spatial patterns of genetic variation can help understand how environmental factors either permit or restrict gene flow and create opportunities for regional adaptations. Organisms from harsh environments such as the Brazilian semiarid Caatinga biome may reveal how severe climate conditions may affect patterns of genetic variation. Herein we combine information from mitochondrial DNA with physical and environmental features to study the association between different aspects of the Caatinga landscape and spatial genetic variation in the whiptail lizard Ameivula ocellifera. We investigated which of the climatic, environmental, geographical and/or historical components best predict: (1) the spatial distribution of genetic diversity, and (2) the genetic differentiation among populations. We found that genetic variation in A. ocellifera has been influenced mainly by temperature variability, which modulates connectivity among populations. Past climate conditions were important for shaping current genetic diversity, suggesting a time lag in genetic responses. Population structure in A. ocellifera was best explained by both isolation by distance and isolation by resistance (main rivers). Our findings indicate that both physical and climatic features are important for explaining the observed patterns of genetic variation across the xeric Caatinga biome.
Spatiotemporal variation in reproductive parameters of yellow-bellied marmots.
Ozgul, Arpat; Oli, Madan K; Olson, Lucretia E; Blumstein, Daniel T; Armitage, Kenneth B
2007-11-01
Spatiotemporal variation in reproductive rates is a common phenomenon in many wildlife populations, but the population dynamic consequences of spatial and temporal variability in different components of reproduction remain poorly understood. We used 43 years (1962-2004) of data from 17 locations and a capture-mark-recapture (CMR) modeling framework to investigate the spatiotemporal variation in reproductive parameters of yellow-bellied marmots (Marmota flaviventris), and its influence on the realized population growth rate. Specifically, we estimated and modeled breeding probabilities of two-year-old females (earliest age of first reproduction), >2-year-old females that have not reproduced before (subadults), and >2-year-old females that have reproduced before (adults), as well as the litter sizes of two-year old and >2-year-old females. Most reproductive parameters exhibited spatial and/or temporal variation. However, reproductive parameters differed with respect to their relative influence on the realized population growth rate (lambda). Litter size had a stronger influence than did breeding probabilities on both spatial and temporal variations in lambda. Our analysis indicated that lambda was proportionately more sensitive to survival than recruitment. However, the annual fluctuation in litter size, abetted by the breeding probabilities, accounted for most of the temporal variation in lambda.
Chapurlat, Elodie; Ågren, Jon; Sletvold, Nina
2015-12-01
Spatial variation in plant-pollinator interactions may cause variation in pollinator-mediated selection on floral traits, but to establish this link conclusively experimental studies are needed. We quantified pollinator-mediated selection on flowering phenology and morphology in four populations of the fragrant orchid Gymnadenia conopsea, and compared selection mediated by diurnal and nocturnal pollinators in two of the populations. Variation in pollinator-mediated selection explained most of the among-population variation in the strength of directional and correlational selection. Pollinators mediated correlational selection on pairs of display traits, and on one display trait and spur length, a trait affecting pollination efficiency. Only nocturnal pollinators selected for longer spurs, and mediated stronger selection on the number of flowers compared with diurnal pollinators in one population. The two types of pollinators caused correlational selection on different pairs of traits and selected for different combinations of spur length and number of flowers. The results demonstrate that spatial variation in interactions with pollinators may result in differences in directional and correlational selection on floral traits in a plant with a semi-generalized pollination system, and suggest that differences in the relative importance of diurnal and nocturnal pollinators can cause variation in selection. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Natalie A.; Sebestyen, Stephen D.
We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less
Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland
Griffiths, Natalie A.; Sebestyen, Stephen D.
2016-10-14
We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less
Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
Kim, Yeongmi; Harders, Matthias; Gassert, Roger
2015-01-01
Delivering distance information of nearby obstacles from sensors embedded in a white cane-in addition to the intrinsic mechanical feedback from the cane-can aid the visually impaired in ambulating independently. Haptics is a common modality for conveying such information to cane users, typically in the form of vibrotactile signals. In this context, we investigated the effect of tactile rendering methods, tactile feedback configurations and directions of tactile flow on the identification of obstacle distance. Three tactile rendering methods with temporal variation only, spatio-temporal variation and spatial/temporal/intensity variation were investigated for two vibration feedback configurations. Results showed a significant interaction between tactile rendering method and feedback configuration. Spatio-temporal variation generally resulted in high correct identification rates for both feedback configurations. In the case of the four-finger vibration, tactile rendering with spatial/temporal/intensity variation also resulted in high distance identification rate. Further, participants expressed their preference for the four-finger vibration over the single-finger vibration in a survey. Both preferred rendering methods with spatio-temporal variation and spatial/temporal/intensity variation for the four-finger vibration could convey obstacle distance information with low workload. Overall, the presented findings provide valuable insights and guidance for the design of haptic displays for electronic travel aids for the visually impaired.
NASA Astrophysics Data System (ADS)
Soczka Mandac, Rok; Žagar, Dušan; Faganeli, Jadran
2013-04-01
In this study influence of fresh water discharge on the spatial and temporal variability of thermohaline (TH) conditions is explored for the Bay of Koper (Bay). The Bay is subject to different driving agents: wind stress (bora, sirocco), tidal and seiches effect, buoyancy fluxes, general circulation of the Adriatic Sea and discharge of the Rizana and Badaševica rivers. These rivers have torrential characteristics that are hard to forecast in relation to meteorological events (precipitation). Therefore, during episodic events the spatial and temporal variability of TH properties in the Bay is difficult to determine [1]. Measurements of temperature, salinity and turbidity were conducted monthly on 35 sampling points in the period: June 2011 - December 2012. The data were processed and spatial interpolated with an objective analysis method. Furthermore, empirical orthogonal function analysis (EOF) [2] was applied to investigate spatial and temporal TH variations. Strong horizontal and vertical stratification was observed in the beginning of June 2011 due to high fresh water discharge of the Rizana (31 m3/s) and Badaševica (2 m3/s) rivers. The horizontal gradient (ΔT = 6°C) was noticed near the mouth of the Rizana river. Similar pattern was identified for salinity field on the boundary of the front where the gradient was ΔS = 20 PSU. Vertical temperature gradient was ΔT = 4°C while salinity gradient was ΔS = 18 PSU in the subsurface layer at depth of 3 m. Spatial analysis of the first principal component (86% of the total variance) shows uniform temperature distribution in the surface layer (1m) during the studied period. Furthermore, temporal variability of temperature shows seasonal variation with a minimum in February and maximum in August. This confirms that episodic events have a negligible effect on spatial and temporal variation of temperature in the subsurface layer. Further analysis will include application of EOF on the salinity, density and total suspended matter. Additionally, we will investigate the cross correlations between the above mentioned parameters with singular value decomposition method. Reference: 1. Faganeli, J., Planinc, R., Pezdic, J., Smodis, B., Stegnar, P., and Ogorelec, B. 1991. Marine geology of Gulf of Trieste (northern Adriatic): Geochemical aspects. Marine Geology, 99: 93-108. 2. Glover, M., Jenkins, J., and Doney, S. C. 2011. Modeling methods for marine science. Cambridge University Press, 571 p.
2017-03-20
comparison with the more intensive demographic study . We found support for spatial variation in productivity at both location and station scales. At location...the larger intensive demographic monitoring study , we also fit a productivity model that included a covariate calculated for the 12 stations included...Reference herein to any specific commercial product , process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
Land use, spatial scale, and stream systems: Lessons from an agricultural region
Vondracek, B.; Blann, K.L.; Cox, C.B.; Nerbonne, J.F.; Mumford, K.G.; Nerbonne, B.A.; Sovell, L.A.; Zimmerman, J.K.H.
2005-01-01
We synthesized nine studies that examined the influence of land use at different spatial scales in structuring biotic assemblages and stream channel characteristics in southeastern Minnesota streams. Recent studies have disagreed about the relative importance of catchment versus local characteristics in explaining variation in fish assemblages. Our synthesis indicates that both riparian- and catchment-scale land use explained significant variation in water quality, channel morphology, and fish distribution and density. Fish and macroinvertebrate assemblages can be positively affected by increasing the extent of perennial riparian and upland vegetation. Our synthesis is robust; more than 425 stream reaches were examined in an area that includes a portion of three ecoregions. Fishes ranged from coldwater to warmwater adapted. We suggest that efforts to rehabilitate stream system form and function over the long term should focus on increasing perennial vegetation in both riparian areas and uplands and on managing vegetation in large, contiguous blocks. ?? 2005 Springer Science+Business Media, Inc.
Koenderink, Jan; van Doorn, Andrea; Pinna, Baingio
2016-01-01
We investigated the familiar phenomenon of the uncanny feeling that represented people in frontal pose invariably appear to “face you” from wherever you stand. We deploy two different methods. The stimuli include the conventional one—a flat portrait rocking back and forth about a vertical axis—augmented with two novel variations. In one alternative, the portrait frame rotates whereas the actual portrait stays motionless and fronto-parallel; in the other, we replace the (flat!) portrait with a volumetric object. These variations yield exactly the same optical stimulation in frontal view, but become grossly different in very oblique views. We also let participants sample their momentary awareness through “gauge object” settings in static displays. From our results, we conclude that the psychogenesis of visual awareness maintains a number—at least two, but most likely more—of distinct spatial frameworks simultaneously involving “cue–scission.” Cues may be effective in one of these spatial frameworks but ineffective or functionally different in other ones. PMID:27895885
Power quality analysis based on spatial correlation
NASA Astrophysics Data System (ADS)
Li, Jiangtao; Zhao, Gang; Liu, Haibo; Li, Fenghou; Liu, Xiaoli
2018-03-01
With the industrialization and urbanization, the status of electricity in the production and life is getting higher and higher. So the prediction of power quality is the more potential significance. Traditional power quality analysis methods include: power quality data compression, disturbance event pattern classification, disturbance parameter calculation. Under certain conditions, these methods can predict power quality. This paper analyses the temporal variation of power quality of one provincial power grid in China from time angle. The distribution of power quality was analyzed based on spatial autocorrelation. This paper tries to prove that the research idea of geography is effective for mining the potential information of power quality.
NASA Astrophysics Data System (ADS)
Zhu, Xudong; Zhuang, Qianlai; Qin, Zhangcai; Glagolev, Mikhail; Song, Lulu
2013-04-01
Methane (CH4) emissions from wetland ecosystems in nothern high latitudes provide a potentially positive feedback to global climate warming. Large uncertainties still remain in estimating wetland CH4 emisions at regional scales. Here we develop a statistical model of CH4 emissions using an artificial neural network (ANN) approach and field observations of CH4 fluxes. Six explanatory variables (air temperature, precipitation, water table depth, soil organic carbon, soil total porosity, and soil pH) are included in the development of ANN models, which are then extrapolated to the northern high latitudes to estimate monthly CH4 emissions from 1990 to 2009. We estimate that the annual wetland CH4 source from the northern high latitudes (north of 45°N) is 48.7 Tg CH4 yr-1 (1 Tg = 1012 g) with an uncertainty range of 44.0 53.7 Tg CH4 yr-1. The estimated wetland CH4 emissions show a large spatial variability over the northern high latitudes, due to variations in hydrology, climate, and soil conditions. Significant interannual and seasonal variations of wetland CH4 emissions exist in the past 2 decades, and the emissions in this period are most sensitive to variations in water table position. To improve future assessment of wetland CH4 dynamics in this region, research priorities should be directed to better characterizing hydrological processes of wetlands, including temporal dynamics of water table position and spatial dynamics of wetland areas.
Felder, M A; Petrell, R J; Duff, S J
2001-08-01
A novel design for a solid waste audit was developed and applied to the University of British Columbia, Canada, in 1998. This audit was designed to determine the characteristics of the residual solid waste generated by the campus and provide directions for waste reduction. The methodology was constructed to address complications in solid waste sampling, including spatial and temporal variation in waste, extrapolation from the study area, and study validation. Accounting for spatial effects decreased the variation in calculating total waste loads. Additionally, collecting information on user flow provided a means to decrease daily variation in solid waste and allow extrapolation over time and space. The total annual waste estimated from the experimental design was compared to documented values and was found to differ by -18%. The majority of this discrepancy was likely attributable to the unauthorised disposal of construction and demolition waste. Several options were proposed to address waste minimisation goals. These included: enhancing the current recycling program, source reduction of plastic materials, and/or diverting organic material to composting (maximum diversion: approximately 320, approximately 270, and approximately 1510 t yr(-1), respectively). The greatest diversion by weight would be accomplished through the diversion of organic material, as it was estimated to comprise 70% of the projected waste stream. The audit methodology designed is most appropriate for facilities/regions that have a separate collection system for seasonal wastes and have a means for tracking user flow.
Using a spatially explicit analysis model to evaluate spatial variation of corn yield
USDA-ARS?s Scientific Manuscript database
Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...
NASA Astrophysics Data System (ADS)
Bailey, S. W.
2016-12-01
Nine catchments are gaged at Hubbard Brook Experimental Forest, Woodstock, NH, USA, with weirs installed on adjacent first-order streams. These catchments have been used as unit ecosystems for analysis of chemical budgets, including evaluation of long term trends and response to disturbance. This study examines uncertainty in the representativeness of these budgets to other nearby catchments, or as representatives of the broader northern hardwood ecosystem, depending on choice of location of the stream gaging station. Within forested northern hardwood catchments across the Hubbard Brook region, there is relatively little spatial variation in amount or chemistry of precipitation inputs or in amount of streamwater outputs. For example, runoff per unit catchment area varies by less than 10% at gaging stations on first to sixth order streams. In contrast, concentrations of major solutes vary by an order of magnitude or more across stream sampling sites, with a similar range in concentrations seen within individual first order catchments as seen across the third order Hubbard Brook valley or across the White Mountain region. These spatial variations in stream chemistry are temporally persistent across a range of flow conditions. Thus first order catchment budgets vary greatly depending on very local variations in stream chemistry driven by choice of the site to develop a stream gage. For example, carbon output in dissolved organic matter varies by a factor of five depending on where the catchment output is defined at Watershed 3. I hypothesize that catchment outputs from first order streams are driven by spatially variable chemistry of shallow groundwater, reflecting local variations in the distribution of soils and vegetation. In contrast, spatial variability in stream chemistry decreases with stream order, hypothesized to reflect deeper groundwater inputs on larger streams, which are more regionally uniform. Thus, choice of a gaging site and definition of an ecosystem as a unit of analysis at a larger scale, such as the Hubbard Brook valley, would have less impact on calculated budgets than at the headwater scale. Monitoring of a larger catchment is more likely to be representative of other similar sized catchments. However, particular research questions may be better studied at the smaller headwater scale.
NASA Astrophysics Data System (ADS)
Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M. B.; Mast, M. Alisa
2018-03-01
Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N-NO3- at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from -3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N-NO3- is significantly lower ranging from -7.6‰ to -1.3‰ while winter δ15N-NO3- ranges from -2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N-NO3- is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3- and δ15N-NO3- are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3- concentrations and δ15N-NO3- in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N-NH4+ ranged from -10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N-NH4+(-9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N-NH4+ observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and seasonal variation in N isotope data that reflect differences in sources of anthropogenic N deposition to high-elevation ecosystems and have important implications for environmental policy across the Rocky Mountain region.
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
NASA Technical Reports Server (NTRS)
Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.
2011-01-01
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
Spatial and temporal temperature distribution optimization for a geostationary antenna
NASA Technical Reports Server (NTRS)
Tsuyuki, G.; Miyake, R.
1992-01-01
The Geostationary Microwave Precipitation Radiometer antenna is considered and a thermal design analysis is performed to determine a design that would minimize on-orbit antenna temporal and spatial temperature gradients. The final design is based on an optically opaque radome which covered the antenna. The average orbital antenna temperature is found to be 9 C with maximum temporal and spatial variations of 34 C and 1 C, respectively. An independent thermal distortion analysis showed that this temporal variation would give an antenna figure error of 14 microns.
Decoherence and Collisional Frequency Shifts of Trapped Bosons and Fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibble, Kurt; LNE-SYRTE, Observatoire de Paris, 75014 Paris
2009-09-11
We perform exact calculations of collisional frequency shifts for several fermions or bosons using a singlet and triplet basis for pairs of particles. The 'factor of 2 controversy' for bosons becomes clear - the factor is always 2. Decoherence is described by singlet states and they are unaffected by spatially uniform clock fields. Spatial variations are critical, especially for fermions which were previously thought to be immune to collision shifts. The spatial variations lead to decoherence and a novel frequency shift that is not proportional to the partial density of internal states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.
Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associatedmore » with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.« less
Kyle J. Haynes; Andrew M. Liebhold; Ottar N. Bjørnstad; Andrew J. Allstadt; Randall S. Morin
2018-01-01
Evaluating the causes of spatial synchrony in population dynamics in nature is notoriously difficult due to a lack of data and appropriate statistical methods. Here, we use a recently developed method, a multivariate extension of the local indicators of spatial autocorrelation statistic, to map geographic variation in the synchrony of gypsy moth outbreaks. Regression...
S. B. Cox; M. R. Willig; F. N. Scatena
2002-01-01
We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs...
Hytteborn, Julia K.; Temnerud, Johan; Alexander, Richard B.; Boyer, Elizabeth W.; Futter, Martyn N.; Fröberg, Mats; Dahné, Joel; Bishop, Kevin H.
2015-01-01
Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type).Catchment area (0.18–47,000 km2) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l− 1 (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l− 1 year− 1 (1.6% year− 1).Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality.Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly.
NASA Astrophysics Data System (ADS)
Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo
2018-03-01
Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.
Spatial variability effects on precision and power of forage yield estimation
USDA-ARS?s Scientific Manuscript database
Spatial analyses of yield trials are important, as they adjust cultivar means for spatial variation and improve the statistical precision of yield estimation. While the relative efficiency of spatial analysis has been frequently reported in several yield trials, its application on long-term forage y...
Pravosudov, V V; Lavenex, P; Clayton, N S
2002-05-01
Earlier reports suggested that seasonal variation in food-caching behavior (caching intensity and cache retrieval accuracy) might correlate with morphological changes in the hippocampal formation, a brain structure thought to play a role in remembering cache locations. We demonstrated that changes in cache retrieval accuracy can also be triggered by experimental variation in food supply: captive mountain chickadees (Poecile gambeli) maintained on limited and unpredictable food supply were more accurate at recovering their caches and performed better on spatial memory tests than birds maintained on ad libitum food. In this study, we investigated whether these two treatment groups also differed in the volume and neuron number of the hippocampal formation. If variation in memory for food caches correlates with hippocampal size, then our birds with enhanced cache recovery and spatial memory performance should have larger hippocampal volumes and total neuron numbers. Contrary to this prediction we found no significant differences in volume or total neuron number of the hippocampal formation between the two treatment groups. Our results therefore indicate that changes in food-caching behavior and spatial memory performance, as mediated by experimental variations in food supply, are not necessarily accompanied by morphological changes in volume or neuron number of the hippocampal formation in fully developed, experienced food-caching birds. Copyright 2002 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2016-03-01
Spatial variations in soil properties affect key hydrological processes, yet their role in soil mechanical response to hydro-mechanical loading is rarely considered. This study aims to fill this gap by systematically quantifying effects of spatial variations in soil type and initial water content on rapid rainfall-induced shallow landslide predictions at the hillslope- and catchment-scales. We employed a physically-based landslide triggering model that considers mechanical interactions among soil columns governed by strength thresholds. At the hillslope scale, we found that the emergence of weak regions induced by spatial variations of soil type and initial water content resulted in early triggering of landslides with smaller volumes of released mass relative to a homogeneous slope. At the catchment scale, initial water content was linked to a topographic wetness index, whereas soil type varied deterministically with soil depth considering spatially correlated stochastic components. Results indicate that a strong spatial organization of initial water content delays landslide triggering, whereas spatially linked soil type with soil depth promoted landslide initiation. Increasing the standard deviation and correlation length of the stochastic component of soil type increases landslide volume and hastens onset of landslides. The study illustrates that for similar external boundary conditions and mean soil properties, landslide characteristics vary significantly with soil variability, hence it must be considered for improved landslide model predictions.
Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon
NASA Astrophysics Data System (ADS)
Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.
2001-05-01
Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.
Soil analysis based on sa,ples withdrawn from different volumes: correlation versus calibration
Lucian Weilopolski; Kurt Johnsen; Yuen Zhang
2010-01-01
Soil, particularly in forests, is replete with spatial variation with respect to soil C. Th e present standard chemical method for soil analysis by dry combustion (DC) is destructive, and comprehensive sampling is labor intensive and time consuming. Th ese, among other factors, are contributing to the development of new methods for soil analysis. Th ese include a near...
Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS
NASA Technical Reports Server (NTRS)
Syed, Tajdarul H.; Famiglietti, James S.; Rodell, Matthew; Chen, Jianli; Wilson, Clark R.
2008-01-01
Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS). Additionally, we use GLDAS simulations to infer how TWSC is partitioned into snow, canopy water and soil water components, and to understand how variations in the hydrologic fluxes act to enhance or dissipate the stores. Results quantify the range of GRACE-derived storage changes during the studied period and place them in the context of seasonal variations in global climate and hydrologic extremes including drought and flood, by impacting land memory processes. The role of the largest continental river basins as major locations for freshwater redistribution is highlighted. GRACE-based storage changes are in good agreement with those obtained from GLDAS simulations. Analysis of GLDAS-simulated TWSC illustrates several key characteristics of spatial and temporal land water storage variations. Global averages of TWSC were partitioned nearly equally between soil moisture and snow water equivalent, while zonal averages of TWSC revealed the importance of soil moisture storage at low latitudes and snow storage at high latitudes. Evapotranspiration plays a key role in dissipating globally averaged terrestrial water storage. Latitudinal averages showed how precipitation dominates TWSC variations in the tropics, evapotranspiration is most effective in the midlatitudes, and snowmelt runoff is a key dissipating flux at high latitudes. Results have implications for monitoring water storage response to climate variability and change, and for constraining land model hydrology simulations.
Adaptations to Climate in Candidate Genes for Common Metabolic Disorders
Hancock, Angela M; Witonsky, David B; Gordon, Adam S; Eshel, Gidon; Pritchard, Jonathan K; Coop, Graham; Di Rienzo, Anna
2008-01-01
Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders. PMID:18282109
NASA Astrophysics Data System (ADS)
Wang, Hao; Wei, Ming; Li, Guoping; Zhou, Shenghui; Zeng, Qingfeng
2013-08-01
The rainfall process of Chengdu region in autumn has obvious regional features. Especially, the night-time rain rate of this region in this season is very high in China. Studying the spatial distribution and temporal variation of regional atmospheric precipitable water vapor (PWV) is important for our understanding of water vapor related processes, such as rainfall, evaporation, convective activity, among others in this area. Since GPS detection technology has the unique characteristics, such as all-weather, high accuracy, high spatial and temporal resolution as well as low cost, tracking and monitoring techniques on water vapor has achieved rapid developments in recent years. With GPS-PWV data at 30-min interval gathered from six GPS observational stations in Chengdu region in two autumns (September 2007-December 2007 and September 2008-December 2008), it is revealed that negative correlations exist between seasonally averaged value of GPS-PWV as well as its variation amplitude and local terrain altitude. The variation of PWV in the upper atmosphere of this region results from the water vapor variation from surface to 850 hPa. With the help of Fast Fourier Transform (FFT), it is found that the autumn PWV in Chengdu region has a multi-scale feature, which includes a seasonal cycle, 22.5 days period (quasi-tri-weekly oscillation). The variation of the GPS-PWV is related to periodical change in the transmitting of the water vapor caused by zonal and meridional wind strengths’ change and to the East Asian monsoon system. According to seasonal variation characteristics, we concluded that the middle October is the critical turning point in PWV content. On a shorter time scale, the relationship between autumn PWV and ground meteorological elements was obtained using the composite analysis approach.
Larson, James H.; Richardson, William B.; Evans, Mary Anne; Schaeffer, Jeff; Wynne, Timothy; Bartsch, Michelle; Bartsch, Lynn; Nelson, J. C.; Vallazza, Jon M.
2016-01-01
Lake Erie is a large lake straddling the border of the U.S. and Canada that has become increasingly eutrophic in recent years. Eutrophication is particularly focused in the shallow western basin. The western basin of Lake Erie is hydrodynamically similar to a large estuary, with riverine inputs from the Detroit and Maumee Rivers mixing together and creating gradients in chemical and physical conditions. This study was driven by two questions: How does secondary production and food quality for consumers vary across this large mixing zone? and Are there correlations between cyanobacterial abundance and secondary production or food quality for consumers? Measuring spatial and temporal variation in secondary production and food quality is difficult for a variety of logistical reasons, so here a common consumer approach was used. In a common consumer approach, individuals of a single species are raised under similar conditions until placed in the field across environmental gradients of interest. After some period of exposure, the response of that common consumer is measured to provide an index of spatial variation in conditions. Here, a freshwater mussel (Lampsilis siliquoidea) was deployed at 32 locations that spanned habitat types and a gradient in cyanobacterial abundance in the western basin of Lake Erie to measure spatial variation in growth (an index of secondary production) and fatty acid (FA) content (an index of food quality). We found secondary production was highest within the Maumee rivermouth and lowest in the open waters of the lake. Mussel tissues in the Maumee rivermouth also included more eicosapentaenoic and docosapentaenoic fatty acids (EPA and DPA, respectively), but fewer bacterial FAs, suggesting more algae at the base of the food web in the Maumee rivermouth compared to open lake sites. The satellite-derived estimate of cyanobacterial abundance was not correlated to secondary production, but was positively related to EPA and DPA content in the mussels, suggesting more of these important FAs in locations with more cyanobacteria. These results suggest that growth of secondary consumers and the availability of important fatty acids in the western basin are centered on the Maumee rivermouth.
NASA Astrophysics Data System (ADS)
Fan, L. F.; Lien, K. L.; Hsieh, I. C.; Lin, S.
2017-12-01
Methane seep in deep sea environment could lead to build up of chemosynthesis communities, and a number of geological and biological anomalies as compare to the surrounding area. In order to examine the linkage between seep anomalies and those at the vicinity background area, and to detail mapping those spatial variations, we used a deep towed camera system (TowCam) to survey seafloor on the Tainan Ridge, Northeastern South China Sea (SCS). The underwater sea floor pictures could provide better spatial variations to demonstrate impact of methane seep on the sea floor. Water column variations of salinity, temperature, dissolved oxygen were applied to delineate fine scale variations at the study area. In addition, sediment cores were collected for chemical analyses to confirm the existence of local spatial variations. Our results show large spatial variations existed as a result of differences in methane flux. In fact, methane is the driving force for the observed biogeochemical variations in the water column, on the sea floor, and in the sediment. Of the area we have surveyed, there are approximately 7% of total towcam survey data showing abnormal water properties. Corresponding to the water column anomalies, underwater sea floor pictures taken from those places showed that chemosynthetic clams and muscles could be identified, together with authigenic carbonate buildups, and bacterial mats. Moreover, sediment cores with chemical anomalies also matched those in the water column and on the sea floor. These anomalies, however, represent only a small portion of the area surveyed and could not be identified with typical (random) coring method. Methane seep, therefore, require tedious and multiple types of surveys to better understand the scale and magnitude of seep and biogeochemical anomalies those were driven by gas migrations.
Aghamohammadi, Amirhossein; Ang, Mei Choo; A Sundararajan, Elankovan; Weng, Ng Kok; Mogharrebi, Marzieh; Banihashem, Seyed Yashar
2018-01-01
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.
2018-01-01
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods. PMID:29438421
Norton, Andrew S.; Diefenbach, Duane R.; Wallingford, Bret D.; Rosenberry, Christopher S.
2012-01-01
The performance of 2 popular methods that use age-at-harvest data to estimate abundance of white-tailed deer is contingent on assumptions about variation in estimates of subadult (1.5 yr old) and adult (≥2.5 yr old) male harvest rates. Auxiliary data (e.g., estimates of survival or harvest rates from radiocollared animals) can be used to relax some assumptions, but unless these population parameters exhibit limited temporal or spatial variation, these auxiliary data may not improve accuracy. Unfortunately maintaining sufficient sample sizes of radiocollared deer for parameter estimation in every wildlife management unit (WMU) is not feasible for most state agencies. We monitored the fates of 397 subadult and 225 adult male white-tailed deer across 4 WMUs from 2002 to 2008 using radio telemetry. We investigated spatial and temporal variation in harvest rates and investigated covariates related to the patterns observed. We found that most variation in harvest rates was explained spatially and that adult harvest rates (0.36–0.69) were more variable among study areas than subadult harvest rates (0.26–0.42). We found that hunter effort during the archery and firearms season best explained variation in harvest rates of adult males among WMUs, whereas hunter effort during only the firearms season best explained harvest rates for subadult males. From a population estimation perspective, it is advantageous that most variation was spatial and explained by a readily obtained covariate (hunter effort). However, harvest rates may vary if hunting regulations or hunter behavior change, requiring additional field studies to obtain accurate estimates of harvest rates.
Genome-scale modelling of microbial metabolism with temporal and spatial resolution.
Henson, Michael A
2015-12-01
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.
New Results from an Old Friend: The Crab Nebula and its Pulsar
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2011-01-01
The Crab nebula and its associated pulsar have been the target of thousands of observations at all wavelengths over the years. Nevertheless, the system continues to provide new surprises and observational insights into its physical mechanisms. We shall discuss a number of new results we have obtained through Chandra observations. Results include highly detailed pulse-phase spectroscopy which poses challenges to our understanding of pulsar emission mechanisms, a new and precise look at the pulsar geometry, the results of a search for the site of the recently-discovered gamma-ray flares, and a study of the spatial and temporal variation(s) of the southern jet.
Davey, Nicholas G; Fitzpatrick, Cole T E; Etzkorn, Jacob M; Martinsen, Morten; Crampton, Robert S; Onstad, Gretchen D; Larson, Timothy V; Yost, Michael G; Krogh, Erik T; Gilroy, Michael; Himes, Kathy H; Saganić, Erik T; Simpson, Christopher D; Gill, Christopher G
2014-09-19
The objective of this study was to use membrane introduction mass spectrometry (MIMS), implemented on a mobile platform, in order to provide real-time, fine-scale, temporally and spatially resolved measurements of several hazardous air pollutants. This work is important because there is now substantial evidence that fine-scale spatial and temporal variations of air pollutant concentrations are important determinants of exposure to air pollution and adverse health outcomes. The study took place in Tacoma, WA during periods of impaired air quality in the winter and summer of 2008 and 2009. Levels of fine particles were higher in winter compared to summer, and were spatially uniform across the study area. Concentrations of vapor phase pollutants measured by membrane introduction mass spectrometry (MIMS), notably benzene and toluene, had relatively uniform spatial distributions at night, but exhibited substantial spatial variation during the day-daytime levels were up to 3-fold higher at traffic-impacted locations compared to a reference site. Although no direct side-by-side comparison was made between the MIMS system and traditional fixed site monitors, the MIMS system typically reported higher concentrations of specific VOCs, particularly benzene, ethylbenzene and naphthalene, compared to annual average concentrations obtained from SUMA canisters and gas chromatographic analysis at the fixed sites.
Anomalous variations of lithosphere magnetic field before several earthquakes
NASA Astrophysics Data System (ADS)
Ni, Z.; Chen, B.
2015-12-01
Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.
Spatial and space-time clustering of tuberculosis in Gurage Zone, Southern Ethiopia.
Tadesse, Sebsibe; Enqueselassie, Fikre; Hagos, Seifu
2018-01-01
Spatial targeting is advocated as an effective method that contributes for achieving tuberculosis control in high-burden countries. However, there is a paucity of studies clarifying the spatial nature of the disease in these countries. This study aims to identify the location, size and risk of purely spatial and space-time clusters for high occurrence of tuberculosis in Gurage Zone, Southern Ethiopia during 2007 to 2016. A total of 15,805 patient data that were retrieved from unit TB registers were included in the final analyses. The spatial and space-time cluster analyses were performed using the global Moran's I, Getis-Ord [Formula: see text] and Kulldorff's scan statistics. Eleven purely spatial and three space-time clusters were detected (P <0.001).The clusters were concentrated in border areas of the Gurage Zone. There were considerable spatial variations in the risk of tuberculosis by year during the study period. This study showed that tuberculosis clusters were mainly concentrated at border areas of the Gurage Zone during the study period, suggesting that there has been sustained transmission of the disease within these locations. The findings may help intensify the implementation of tuberculosis control activities in these locations. Further study is warranted to explore the roles of various ecological factors on the observed spatial distribution of tuberculosis.
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2012-03-01
Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.
NASA Astrophysics Data System (ADS)
Wang, Shuping; Shibahara, Nanae; Kuramashi, Daishi; Okawa, Shinpei; Kakuta, Naoto; Okada, Eiji; Maki, Atsushi; Yamada, Yukio
2010-07-01
In order to investigate the effects of anatomical variation in human heads on the optical mapping of brain activity, we perform simulations of optical mapping by solving the photon diffusion equation for layered-models simulating human heads using the finite element method (FEM). Particularly, the effects of the spatial variations in the thicknesses of the skull and cerebrospinal fluid (CSF) layers on mapping images are investigated. Mapping images of single active regions in the gray matter layer are affected by the spatial variations in the skull and CSF layer thicknesses, although the effects are smaller than those of the positions of the active region relative to the data points. The increase in the skull thickness decreases the sensitivity of the images to active regions, while the increase in the CSF layer thickness increases the sensitivity in general. The images of multiple active regions are also influenced by their positions relative to the data points and by their depths from the skin surface.
A comparison of small-area hospitalisation rates, estimated morbidity and hospital access.
Shulman, H; Birkin, M; Clarke, G P
2015-11-01
Published data on hospitalisation rates tend to reveal marked spatial variations within a city or region. Such variations may simply reflect corresponding variations in need at the small-area level. However, they might also be a consequence of poorer accessibility to medical facilities for certain communities within the region. To help answer this question it is important to compare these variable hospitalisation rates with small-area estimates of need. This paper first maps hospitalisation rates at the small-area level across the region of Yorkshire in the UK to show the spatial variations present. Then the Health Survey of England is used to explore the characteristics of persons with heart disease, using chi-square and logistic regression analysis. Using the most significant variables from this analysis the authors build a spatial microsimulation model of morbidity for heart disease for the Yorkshire region. We then compare these estimates of need with the patterns of hospitalisation rates seen across the region. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mohseni, Neda; Hosseinzadeh, Seyed Reza; Sepehr, Adel; Golzarian, Mahmood Reza; Shabani, Farzin
2017-08-01
Debris flow fans are non-equilibrium landforms resulting from the spatial variations of debris flows deposited on them. This geomorphic disturbance involving the asymmetric redistribution of water and sediment may create spatially heterogeneous patterns of soil-vegetation along landforms. In this research, founded on field-based observations, we characterized the spatial patterns of some soil (e.g., particle size distribution including fine and coarse covers, and infiltration capacity) and vegetation (e.g., plant distance, vegetation density, patch size, and average number of patches) properties within different debris flow fan positions (Upper, Middle, and Lower fan) located at the base of the Binaloud Mountain hillslope in northeastern Iran. Thereafter, using a mathematical model of dry land vegetation dynamics, we calculated response trends of the different positions to the same environmental harshness gradient. Field measurements of soil-vegetation properties and infiltration rates showed that the asymmetric redistribution of debris flow depositions can cause statistically significant differences (P < 0.05) in the spatial patterns of soil and eco-hydrological characteristics along different landform positions. The results showed that mean plant distance, mean vegetation density, and the average number of patches decreased as the coarse covers increased toward the Lower fan plots. Conversely, an increase in infiltration rate was observed. The simulation results on the aerial images taken from different positions, illustrated that positions with a heterogeneous distribution of vegetation patterns were not desertified to the same degree of aridity. Thus, the Middle and Lower positions could survive under harsher aridity conditions, due to the emergence of more varied spatial vegetation patterns than at the Upper fan position. The findings, based on a combined field and modeling approach, highlighted that debris flow as a geomorphic process with the asymmetric distribution of depositions on the gentle slope of an alluvial fan, can incur multiple resilience thresholds with different degrees of self-organization under stressful conditions over the spatial heterogeneities of soil-dependent vegetation structures.
Global Mapping of Provisioning Ecosystem Services
NASA Astrophysics Data System (ADS)
Bingham, Lisa; Straatsma, Menno; Karssenberg, Derek
2016-04-01
Attributing monetary value to ecosystem services for decision-making has become more relevant as a basis for decision-making. There are a number of problematic aspects of the calculations, including consistency of economy represented (e.g., purchasing price, production price) and determining which ecosystem subservices to include in a valuation. While several authors have proposed methods for calculating ecosystem services and calculations are presented for global and regional studies, the calculations are mostly broken down into biomes and regions without showing spatially explicit results. The key to decision-making for governments is to be able to make spatial-based decisions because a large spatial variation may exist within a biome or region. Our objective was to compute the spatial distribution of global ecosystem services based on 89 subservices. Initially, only the provisioning ecosystem service category is presented. The provisioning ecosystem service category was calculated using 6 ecosystem services (food, water, raw materials, genetic resources, medical resources, and ornaments) divided into 41 subservices. Global data sets were obtained from a variety of governmental and research agencies for the year 2005 because this is the most data complete and recent year available. All data originated either in tabular or grid formats and were disaggregated to 10 km cell length grids. A lookup table with production values by subservice by country were disaggregated over the economic zone (either marine, land, or combination) based on the spatial existence of the subservice (e.g. forest cover, crop land, non-arable land). Values express the production price in international dollars per hectare. The ecosystem services and the ecosystem service category(ies) maps may be used to show spatial variation of a service within and between countries as well as to specifically show the values within specific regions (e.g. countries, continents), biomes (e.g. coastal, forest), or hazardous regions (e.g. landslides, flood plains, war zones). A preliminary example of the provisioning ecosystem service category illustrates the valuation of deltaic regions and a second example illustrates the valuation of the subservice category of food production prices in flood zones. Future work of this research will spatially represent the calculations of the remaining three ecosystem service categories (regulating, habitat, cultural) and investigate the propagation of uncertainty of the input data to ecosystem service maps.
Anthony F. Lagalante; Nyssa Lewis; Michael E. Montgomery; Kathleen S. Shields
2006-01-01
The terpenoid content of eastern hemlock (Tsuga canadensis) foliage was measured over an annual cycle of development from bud opening, shoot elongation, shoot maturation, to bud-break at the start of the next growing season. The objective was to determine if variation in terpenoid composition is linked with spatial and temporal feeding preferences of...
Skoracka, Anna; Lewandowski, Mariusz; Rector, Brian G; Szydło, Wiktoria; Kuczyński, Lechosław
2017-01-01
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host associations and specificity. The goal of this study was to test the extent to which host-plant species and landscape spatial variation influence WCM presence and population density across the entire area of Poland (>311,000 km2). Three important findings arose from the results of the study. (1) The majority of WCM lineages analyzed exhibited variation in patterns of prevalence and/or population density on both spatial and host-associated scales. (2) Areas of occurrence and local abundance were delineated for specific WCM lineages and it was determined that the most pestiferous lineages are much less widespread than was expected, suggesting relatively recent introductions into Poland and the potential for further spread. (3) The 16 WCM lineages under study assorted within four discrete host assemblages, within which similar host preferences and host infestation patterns were detected. Of these four groups, one consists of lineages associated with cereals. In addition to improving basic ecological knowledge of a widespread arthropod herbivore, the results of this research identify high-risk areas for the presence of the most pestiferous WCM lineages in the study area (viz. the entirety of Poland). They also provide insight into the evolution of pest species of domesticated crops and facilitate testing of fundamental hypotheses about the ecological factors that shape this pest community.
Lewandowski, Mariusz; Rector, Brian G.; Szydło, Wiktoria
2017-01-01
The wheat curl mite (WCM), Aceria tosichella Keifer, is a major pest of cereals worldwide that also comprises a complex of at least 16 genetic lineages with divergent physiological traits, including host associations and specificity. The goal of this study was to test the extent to which host-plant species and landscape spatial variation influence WCM presence and population density across the entire area of Poland (>311,000 km2). Three important findings arose from the results of the study. (1) The majority of WCM lineages analyzed exhibited variation in patterns of prevalence and/or population density on both spatial and host-associated scales. (2) Areas of occurrence and local abundance were delineated for specific WCM lineages and it was determined that the most pestiferous lineages are much less widespread than was expected, suggesting relatively recent introductions into Poland and the potential for further spread. (3) The 16 WCM lineages under study assorted within four discrete host assemblages, within which similar host preferences and host infestation patterns were detected. Of these four groups, one consists of lineages associated with cereals. In addition to improving basic ecological knowledge of a widespread arthropod herbivore, the results of this research identify high-risk areas for the presence of the most pestiferous WCM lineages in the study area (viz. the entirety of Poland). They also provide insight into the evolution of pest species of domesticated crops and facilitate testing of fundamental hypotheses about the ecological factors that shape this pest community. PMID:28099506
NASA Astrophysics Data System (ADS)
Lubarsky, K.
2016-02-01
Submarine groundwater discharge (SGD) constitutes a large percentage of the freshwater inputs onto coastal coral reefs on high islands such as the Hawaiian Islands, although the impact of SGD on coral reef health is currently understudied. In Maunalua Bay, on Oahu, Hawaii, SGD is discharged onto shallow reef flats from discrete seeps, creating natural gradients of water chemistry across the reef flat. We used this system to investigate rates of growth of the lobe coral Porites lobata across a gradient of SGD influence at two study sites within the bay, and to characterize the variation in water chemistry gradient over space and time due to SGD. SGD input at these sites is tidally modulated, and the groundwater itself is brackish and extremely nutrient-rich (mean=190 μM NO3- at the Black Point study site, mean=40 μM NO3- at Wailupe Beach Park), with distinct carbonate signatures at both study sites. Coral nubbins were placed across the gradient for 6 months, and growth was measured using three metrics: surface area (photo analysis), buoyant weight, and linear extension. Various chemical parameters, including pH, salinity, total alkalinity, nutrients, and chlorphyll were sampled at the same locations across the gradient over 24 hour periods in the spring and fall in order to capture spatial and temporal variation in water chemistry due to the SGD plume. Spatial patterns and temporal variation in water chemistry were correlated with the observed spatial patterns in coral growth across the SGD gradient.
Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.
2013-01-01
Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.
NASA Astrophysics Data System (ADS)
Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping
2017-05-01
Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure and prevent soil moisture depletion (e.g. artificial soil cover and water conveyance channels) were suggested to better protect desert riparian forests under climate change and intensive human disturbance.
Interplanetary magnetic field over two solar cycles and out to 20 AU
NASA Technical Reports Server (NTRS)
Smith, J. E.
1989-01-01
Interplanetary field measurements are now available from Pioneer and Voyager at large distances and from various spacecraft in the inner solar system. These multiple observations at different locations have proven indispensable in separating temporal from spatial dependences. The data set has revealed a number of characteristic solar cycle variations including changes in field strength and the inclination of the heliospheric current sheet responsible for magnetic sectors. Spatial gradients in the field parameters out to 20 AU have been compared with the Parker Model including the spiral angle, the north-south field component and the magnitude. As a result of planetary encounters, Pioneer and the Voyagers are traveling outward at significantly different latitudes making it possible to investigate latitudinal, as well as radial, dependences. Effects associated with the pick-up of interstellar ions are being sought.
Gayawan, Ezra; Arogundade, Ekundayo D; Adebayo, Samson B
2014-03-01
Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health and socioeconomic development. This paper examines the possible relationship between Hb concentration and severity of anaemia with individual and household characteristics of children aged 6-59 months in Nigeria; and explores possible geographical variations of these outcome variables. Data on Hb concentration and severity of anaemia in children aged 6-59 months that participated in the 2010 Nigeria Malaria Indicator Survey were analysed. A semi-parametric model using a hierarchical Bayesian approach was adopted to examine the putative relationship of covariates of different types and possible spatial variation. Gaussian, binary and ordinal outcome variables were considered in modelling. Spatial analyses reveal a distinct North-South divide in Hb concentration of the children analysed and that states in Northern Nigeria possess a higher risk of anaemia. Other important risk factors include the household wealth index, sex of the child, whether or not the child had fever or malaria in the 2 weeks preceding the survey, and children under 24 months of age. There is a need for state level implementation of specific programmes that target vulnerable children as this can help in reversing the existing patterns.
Miller, M.P.; Haig, S.M.; Wagner, R.S.
2006-01-01
The Southern torrent salamander (Rhyacotriton variegatus) was recently found not warranted for listing under the US Endangered Species Act due to lack of information regarding population fragmentation and gene flow. Found in small-order streams associated with late-successional coniferous forests of the US Pacific Northwest, threats to their persistence include disturbance related to timber harvest activities. We conducted a study of genetic diversity throughout this species' range to 1) identify major phylogenetic lineages and phylogeographic barriers and 2) elucidate regional patterns of population genetic and spatial phylogeographic structure. Cytochrome b sequence variation was examined for 189 individuals from 72 localities. We identified 3 major lineages corresponding to nonoverlapping geographic regions: a northern California clade, a central Oregon clade, and a northern Oregon clade. The Yaquina River may be a phylogeographic barrier between the northern Oregon and central Oregon clades, whereas the Smith River in northern California appears to correspond to the discontinuity between the central Oregon and northern California clades. Spatial analyses of genetic variation within regions encompassing major clades indicated that the extent of genetic structure is comparable among regions. We discuss our results in the context of conservation efforts for Southern torrent salamanders. ?? The American Genetic Association. 2006. All rights reserved.
Impact of urban sprawl on water quality in eastern Massachusetts, USA.
Tu, Jun; Xia, Zong-Guo; Clarke, Keith C; Frei, Allan
2007-08-01
A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.
Short and long periodic atmospheric variations between 25 and 200 km
NASA Technical Reports Server (NTRS)
Justus, C. G.; Woodrum, A.
1973-01-01
Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily difference method and results on the distribution statistics, magnitude, and spatial structure of gravity wave and planetary wave atmospheric variations are presented. Time structure of the gravity wave variations were determined by the analysis of residuals from harmonic analysis of time series data. Planetary wave contributions in the 25-85 km range were discovered and found to have significant height and latitudinal variation. Long period planetary waves, and seasonal variations were also computed by harmonic analysis. Revised height variations of the gravity wave contributions in the 25 to 85 km height range were computed. An engineering method and design values for gravity wave magnitudes and wave lengths are given to be used for such tasks as evaluating the effects on the dynamical heating, stability and control of spacecraft such as the space shuttle vehicle in launch or reentry trajectories.
Klompmaker, Jochem O; Montagne, Denise R; Meliefste, Kees; Hoek, Gerard; Brunekreef, Bert
2015-03-01
Recently, short-term monitoring campaigns have been carried out to investigate the spatial variation of air pollutants within cities. Typically, such campaigns are based on short-term measurements at relatively large numbers of locations. It is largely unknown how well these studies capture the spatial variation of long term average concentrations. The aim of this study was to evaluate the within-site temporal and between-site spatial variation of the concentration of ultrafine particles (UFPs) and black carbon (BC) in a short-term monitoring campaign. In Amsterdam and Rotterdam (the Netherlands) measurements of number counts of particles larger than 10nm as a surrogate for UFP and BC were performed at 80 sites per city. Each site was measured in three different seasons of 2013 (winter, spring, summer). Sites were selected from busy urban streets, urban background, regional background and near highways, waterways and green areas, to obtain sufficient spatial contrast. Continuous measurements were performed for 30 min per site between 9 and 16 h to avoid traffic spikes of the rush hour. Concentrations were simultaneously measured at a reference site to correct for temporal variation. We calculated within- and between-site variance components reflecting temporal and spatial variations. Variance ratios were compared with previous campaigns with longer sampling durations per sample (24h to 14 days). The within-site variance was 2.17 and 2.44 times higher than the between-site variance for UFP and BC, respectively. In two previous studies based upon longer sampling duration much smaller variance ratios were found (0.31 and 0.09 for UFP and BC). Correction for temporal variation from a reference site was less effective for the short-term monitoring campaign compared to the campaigns with longer duration. Concentrations of BC and UFP were on average 1.6 and 1.5 times higher at urban street compared to urban background sites. No significant differences between the other site types and urban background were found. The high within to between-site concentration variances may result in the loss of precision and low explained variance when average concentrations from short-term campaigns are used to develop land use regression models. Copyright © 2014 Elsevier B.V. All rights reserved.
SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign
NASA Astrophysics Data System (ADS)
Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.
2010-12-01
We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.
Latent spatial models and sampling design for landscape genetics
Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz
2016-01-01
We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...
A physically based analytical spatial air temperature and humidity model
Yang Yang; Theodore A. Endreny; David J. Nowak
2013-01-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...
The spatial distribution of cropland carbon transfer in Jilin province during 2014
NASA Astrophysics Data System (ADS)
Cai, Xintong; Meng, Jian; Li, Qiuhui; Gao, Shuang; Zhu, Xianjin
2018-01-01
Cropland carbon transfer (CCT, gC yr-1) is an important component in the carbon budget of terrestrial ecosystems. Analyzing the value of CCT and its spatial variation would provide a data basis for assessing the regional carbon balance. Based on the data from Jilin statistical yearbook 2015, we investigated the spatial variation of CCT in Jilin province during 2014. Results suggest that the CCT of Jilin province was 30.83 TgC, which exhibited a decreasing trend from the centre to the border but the west side was higher than the east. The magnitude of carbon transfer per area (MCT), which showed a similar spatial distribution with CCT, was the dominating component of CCT spatial distribution. The spatial distribution of MCT was jointly affected by that of the ratio of planting area to regional area (RPR) and carbon transfer per planting area (CTP), where RPR and CTP contributed 65.55% and 34.5% of MCT spatial distribution, respectively. Therefore, CCT in Jilin province spatially varied, which made it highly needed to consider the difference in CCT among regions when we assessing the regional carbon budget.
Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier
2015-01-01
Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853
Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi
2017-01-01
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
Luan, Hui; Law, Jane; Lysy, Martin
2018-02-01
Neighborhood restaurant environment (NRE) plays a vital role in shaping residents' eating behaviors. While NRE 'healthfulness' is a multi-facet concept, most studies evaluate it based only on restaurant type, thus largely ignoring variations of in-restaurant features. In the few studies that do account for such features, healthfulness scores are simply averaged over accessible restaurants, thereby concealing any uncertainty that attributed to neighborhoods' size or spatial correlation. To address these limitations, this paper presents a Bayesian Spatial Factor Analysis for assessing NRE healthfulness in the city of Kitchener, Canada. Several in-restaurant characteristics are included. By treating NRE healthfulness as a spatially correlated latent variable, the adopted modeling approach can: (i) identify specific indicators most relevant to NRE healthfulness, (ii) provide healthfulness estimates for neighborhoods without accessible restaurants, and (iii) readily quantify uncertainties in the healthfulness index. Implications of the analysis for intervention program development and community food planning are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Qianqian; Li, Tongwen; Shen, Huanfeng; Zhang, Liangpei
2017-01-01
The interactions between PM2.5 and meteorological factors play a crucial role in air pollution analysis. However, previous studies that have researched the relationships between PM2.5 concentration and meteorological conditions have been mainly confined to a certain city or district, and the correlation over the whole of China remains unclear. Whether spatial and seasonal variations exist deserves further research. In this study, the relationships between PM2.5 concentration and meteorological factors were investigated in 68 major cities in China for a continuous period of 22 months from February 2013 to November 2014, at season, year, city, and regional scales, and the spatial and seasonal variations were analyzed. The meteorological factors were relative humidity (RH), temperature (TEM), wind speed (WS), and surface pressure (PS). We found that spatial and seasonal variations of their relationships with PM2.5 exist. Spatially, RH is positively correlated with PM2.5 concentration in north China and Urumqi, but the relationship turns to negative in other areas of China. WS is negatively correlated with PM2.5 everywhere except for Hainan Island. PS has a strong positive relationship with PM2.5 concentration in northeast China and mid-south China, and in other areas the correlation is weak. Seasonally, the positive correlation between PM2.5 concentration and RH is stronger in winter and spring. TEM has a negative relationship with PM2.5 in autumn and the opposite in winter. PS is more positively correlated with PM2.5 in autumn than in other seasons. Our study investigated the relationships between PM2.5 and meteorological factors in terms of spatial and seasonal variations, and the conclusions about the relationships between PM2.5 and meteorological factors are more comprehensive and precise than before. We suggest that the variations could be considered in PM2.5 concentration prediction and haze control to improve the prediction accuracy and policy efficiency. PMID:29206181
Spatial and temporal variations of aridity indices in Iraq
NASA Astrophysics Data System (ADS)
Şarlak, Nermin; Mahmood Agha, Omar M. A.
2017-06-01
This study investigates the spatial and temporal variations of the aridity indices to reveal the desertification vulnerability of Iraq region. Relying on temperature and precipitation data taken from 28 meteorological stations for 31 years, the study aims to determine (1) dry land types and their delineating boundaries and (2) temporal change in aridity conditions in Iraq. Lang's aridity (Im), De Martonne's aridity (Am), United Nations Environmental Program (UNEP) aridity (AIu), and Erinç aridity (IE) indices were selected in this study because of the scarcity of the observed data. The analysis of the spatial variation of aridity indices exhibited that the arid and semi-arid regions cover about 97% of the country's areas. As for temporal variations, it was observed that the aridity indices tend to decrease (statistically significant or not) for all stations. The cumulative sum charts (CUSUMs) were applied to detect the year on which the climate pattern of aridity indices had changed from one pattern to another. The abrupt change point was detected around year 1997 for the majority of the stations. Thus, the spatial and temporal aridity characteristics in Iraq were examined for the two periods 1980-1997 and 1998-2011 (before and after the change-point year) to observe the influence of abrupt change point on aridity phenomena. The spatial variation after 1997 was observed from semi-arid (dry sub humid) to arid (semi-arid) especially at the stations located in northern Iraq, while hyper-arid and arid climatic conditions were still dominant over southern and central Iraq. Besides, the negative temporal variations of the two periods 1980-1997 and 1998-2011 were obtained for almost every station. As a result, it was emphasized that Iraq region, like other Middle East regions, has become drier after 1997. The observed reduction in precipitation and increase in temperature for this region seem to make the situation worse in future.
NASA Astrophysics Data System (ADS)
Trautmann, Tina; Koirala, Sujan; Carvalhais, Nuno; Niemann, Christoph; Fink, Manfred; Jung, Martin
2017-04-01
Understanding variations in the terrestrial water storage (TWS) and its components is essential to gain insights into the dynamics of the hydrological cycle, and to assess temporal and spatial variations of water availability under global changes. We investigated spatio-temporal patterns of TWS variations and their composition in the humid regions of northern mid-to-high latitudes during 2001-2014 by using a simple hydrological model with few effective parameters. Compared to traditional modelling studies, our simple model was informed and constrained by multiple state-of-the-art earth observation products including TWS from Gravity Recovery and Climate Experiment (GRACE) satellites (Wiese 2015), Snow Water Equivalent (SWE) from GlobSnow project (Loujous et al. 2014), evapotranspiration fluxes from eddy covariance measurements (Tramontana et al. 2016), and gridded runoff estimates for Europe (Gudmundsson & Seneviratne 2016). Thorough evaluation of model demonstrates that the model reproduces the observed patterns of hydrological fluxes and states well. The validated model results are then used to assess the contributions of snow pack, soil moisture and groundwater on the integrated TWS across spatial (local grid scale, spatially integrated) and temporal (seasonal, inter-annual) scales. Interestingly, our results show that TWS variations on different scales are dominated by different components. On both, seasonal and inter-annual time scales, the spatially integrated TWS signal mainly originates from dynamics of snow pack. On the local grid scale, mean seasonal TWS variations are driven by snow dynamics as well, whereas inter-annual variations are found to originate from soil moisture availability. Thus, we show that the determinants of TWS variations are scale-dependent, while coincidently underline the potential of model-data fusion techniques to gain insights into the complex hydrological system. References: Gudmundsson, L. and S. I. Seneviratne (2016): Observation-based gridded runoff estimates for Europe (E-RUN version 1.1). -Earth System Science Data, 8, 279-295. doi: 10.5194/essd-8-279-201. Loujous, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Kangwa, M., Eskelinen, M., Metsämäki, S., Solberg, R., Salberg, A.-B., Bippus, G., Ripper, E., Nagler, T., Derksen, C., Wiesmann, A., Wunderle, S., Hüsler, F., Fontana, F., and Foppa, N., 2014: GlobSnow-2 Final Report, European Space Agency. Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D. (2016): Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. -Biogeosciences, 13, 4291-4313. doi:10.5194/bg-13-4291-2016. D.N. Wiese (2015): GRACE monthly global water mass grids. NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA. Dataset accessed [2016-01-03] at http://dx.doi.org/10.5067/TEMSC-OCL05.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Chen, M.; Cohen, S.; Saco, P. M.; Hancock, G. R.
2013-12-01
In humid areas it is generally considered that soil moisture scales spatially according to the wetness index of the landscape. This scaling arises from lateral flow downslope of ground water within the soil zone. However, in semi-arid and drier regions, this lateral flow is small and fluxes are dominated by vertical flows driven by infiltration and evapotranspiration. Thus, in the absence of runon processes, soil moisture at a location is more driven by local factors such as soil and vegetation properties at that location rather than upstream processes draining to that point. The 'apparent' spatial randomness of soil and vegetation properties generally suggests that soil moisture for semi-arid regions is spatially random. In this presentation a new analysis of neutron probe data during summer from the Tarrawarra site near Melbourne, Australia shows persistent spatial organisation of soil moisture over several years. This suggests a link between permanent features of the catchment (e.g. soil properties) and soil moisture distribution, even though the spatial pattern of soil moisture during the 4 summers monitored appears spatially random. This and other data establishes a prima facie case that soil variations drive spatial variation in soil moisture. Accordingly, we used a previously published spatial scaling relationship for soil properties derived using the mARM pedogenesis model to simulate the spatial variation of soil grading. This soil grading distribution was used in the Rosetta pedotransfer model to derive a spatial distribution of soil functional properties (e.g. saturated hydraulic conductivity, porosity). These functional properties were then input into the HYDRUS-1D soil moisture model and soil moisture simulated for 3 years at daily resolution. The HYDRUS model used had previously been calibrated to field observed soil moisture data at our SASMAS field site. The scaling behaviour of soil moisture derived from this modelling will be discussed and compared with observed data from our SASMAS field sites.
Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John
2013-07-21
Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.
Ciris, Pelin Aksit; Qiu, Maolin; Constable, R Todd
2014-09-01
The relationship between cerebral blood volume (CBV) and cerebral blood flow (CBF) underlies blood oxygenation level-dependent functional MRI signal. This study investigates the potential for improved characterization of the CBV-CBF relationship in humans, and examines sex effects as well as spatial variations in the CBV-CBF relationship. Healthy subjects were imaged noninvasively at rest and during visual stimulation, constituting the first MRI measurement of the absolute CBV-CBF relationship in humans with complete coverage of the functional areas of interest. CBV and CBF estimates were consistent with the literature, and their relationship varied both spatially and with sex. In a region of interest with stimulus-induced activation in CBV and CBF at a significance level of the P < 0.05, a power function fit resulted in CBV = 2.1 CBF(0.32) across all subjects, CBV = 0.8 CBF(0.51) in females and CBV = 4.4 CBF(0.15) in males. Exponents decreased in both sexes as ROIs were expanded to include less significantly activated regions. Consideration for potential sex-related differences, as well as regional variations under a range of physiological states, may reconcile some of the variation across literature and advance our understanding of the underlying cerebrovascular physiology. Copyright © 2013 Wiley Periodicals, Inc.
Congdon, Peter
2012-01-01
Ecological studies of suicide and self-harm have established the importance of area variables (e.g., deprivation, social fragmentation) in explaining variations in suicide risk. However, there are likely to be unobserved influences on risk, typically spatially clustered, which can be modeled as random effects. Regression impacts may be biased if no account is taken of spatially structured influences on risk. Furthermore a default assumption of linear effects of area variables may also misstate or understate their impact. This paper considers variations in suicide outcomes for small areas across England, and investigates the impact on them of area socio-economic variables, while also investigating potential nonlinearity in their impact and allowing for spatially clustered unobserved factors. The outcomes are self-harm hospitalisations and suicide mortality over 6,781 Middle Level Super Output Areas. PMID:23271304
Congdon, Peter
2012-12-27
Ecological studies of suicide and self-harm have established the importance of area variables (e.g., deprivation, social fragmentation) in explaining variations in suicide risk. However, there are likely to be unobserved influences on risk, typically spatially clustered, which can be modeled as random effects. Regression impacts may be biased if no account is taken of spatially structured influences on risk. Furthermore a default assumption of linear effects of area variables may also misstate or understate their impact. This paper considers variations in suicide outcomes for small areas across England, and investigates the impact on them of area socio-economic variables, while also investigating potential nonlinearity in their impact and allowing for spatially clustered unobserved factors. The outcomes are self-harm hospitalisations and suicide mortality over 6,781 Middle Level Super Output Areas.
Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J
2017-06-01
In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m. © 2015 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...
2016-07-25
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
Soil biota and agriculture production in conventional and organic farming
NASA Astrophysics Data System (ADS)
Schrama, Maarten; de Haan, Joj; Carvalho, Sabrina; Kroonen, Mark; Verstegen, Harry; Van der Putten, Wim
2015-04-01
Sustainable food production for a growing world population requires a healthy soil that can buffer environmental extremes and minimize its losses. There are currently two views on how to achieve this: by intensifying conventional agriculture or by developing organically based agriculture. It has been established that yields of conventional agriculture can be 20% higher than of organic agriculture. However, high yields of intensified conventional agriculture trade off with loss of soil biodiversity, leaching of nutrients, and other unwanted ecosystem dis-services. One of the key explanations for the loss of nutrients and GHG from intensive agriculture is that it results in high dynamics of nutrient losses, and policy has aimed at reducing temporal variation. However, little is known about how different agricultural practices affect spatial variation, and it is unknown how soil fauna acts this. In this study we compare the spatial and temporal variation of physical, chemical and biological parameters in a long term (13-year) field experiment with two conventional farming systems (low and medium organic matter input) and one organic farming system (high organic matter input) and we evaluate the impact on ecosystem services that these farming systems provide. Soil chemical (N availability, N mineralization, pH) and soil biological parameters (nematode abundance, bacterial and fungal biomass) show considerably higher spatial variation under conventional farming than under organic farming. Higher variation in soil chemical and biological parameters coincides with the presence of 'leaky' spots (high nitrate leaching) in conventional farming systems, which shift unpredictably over the course of one season. Although variation in soil physical factors (soil organic matter, soil aggregation, soil moisture) was similar between treatments, but averages were higher under organic farming, indicating more buffered conditions for nutrient cycling. All these changes coincide with pronounced shifts in soil fauna composition (nematodes, earthworms) and an increase in earthworm activity. Hence, more buffered conditions and shifts in soil fauna composition under organic farming may underlie the observed reduction in spatial variation of soil chemical and biological parameters, which in turn correlates positively with a long-term increase in yield. Our study highlights the need for both policymakers and farmers alike to support spatial stability-increasing farming.
A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.
He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi
2014-06-27
The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed Split Augmented Lagrangian Shrinkage (SALSA) algorithm to effectively solve the proposed variational formulations. Experimental results on simulated and real remote sensing images show the effectiveness of the proposed pansharpening method compared to the state-of-the-art.
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
Problems of the theory of superconductivity which involve spatial inhomogeneity
NASA Astrophysics Data System (ADS)
Svidzinskii, A. V.
This book is concerned with questions which are related to equilibrium phenomena in superconductors, giving particular attention to effects determined by a spatial variation of the order parameter. The microscopic theory of superconductivity is developed on the basis of a model which takes into account the direct interaction between electrons. The theory of current relations in superconductors is discussed, taking into consideration the magnetic properties of superconductors in weak fields and the Meissner effect. Aspects regarding the general theory of tunneling are also explored, including the Josephson effect. An investigation is conducted of the theory of current conditions in areas in which the superconductor is in contact with normally conducting metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dallman, Ann Renee; Neary, Vincent Sinclair
Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season.more » The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.« less
Cheadle, Lucy; Deanes, Lauren; Sadighi, Kira; Gordon Casey, Joanna; Collier-Oxandale, Ashley; Hannigan, Michael
2017-09-10
Recent advances in air pollution sensors have led to a new wave of low-cost measurement systems that can be deployed in dense networks to capture small-scale spatio-temporal variations in ozone, a pollutant known to cause negative human health impacts. This study deployed a network of seven low-cost ozone metal oxide sensor systems (UPods) in both an open space and an urban location in Boulder, Colorado during June and July of 2015, to quantify ozone variations on spatial scales ranging from 12 m between UPods to 6.7 km between open space and urban measurement sites with a measurement uncertainty of ~5 ppb. The results showed spatial variability of ozone at both deployment sites, with the largest differences between UPod measurements occurring during the afternoons. The peak median hourly difference between UPods was 6 ppb at 1:00 p.m. at the open space site, and 11 ppb at 4:00 p.m. at the urban site. Overall, the urban ozone measurements were higher than in the open space measurements. This study evaluates the effectiveness of using low-cost sensors to capture microscale spatial and temporal variation of ozone; additionally, it highlights the importance of field calibrations and measurement uncertainty quantification when deploying low-cost sensors.
Scene-based nonuniformity correction using local constant statistics.
Zhang, Chao; Zhao, Wenyi
2008-06-01
In scene-based nonuniformity correction, the statistical approach assumes all possible values of the true-scene pixel are seen at each pixel location. This global-constant-statistics assumption does not distinguish fixed pattern noise from spatial variations in the average image. This often causes the "ghosting" artifacts in the corrected images since the existing spatial variations are treated as noises. We introduce a new statistical method to reduce the ghosting artifacts. Our method proposes a local-constant statistics that assumes that the temporal signal distribution is not constant at each pixel but is locally true. This considers statistically a constant distribution in a local region around each pixel but uneven distribution in a larger scale. Under the assumption that the fixed pattern noise concentrates in a higher spatial-frequency domain than the distribution variation, we apply a wavelet method to the gain and offset image of the noise and separate out the pattern noise from the spatial variations in the temporal distribution of the scene. We compare the results to the global-constant-statistics method using a clean sequence with large artificial pattern noises. We also apply the method to a challenging CCD video sequence and a LWIR sequence to show how effective it is in reducing noise and the ghosting artifacts.
The measurement of atmospheric water vapor - Radiometer comparison and spatial variations
NASA Technical Reports Server (NTRS)
Rocken, C.; Johnson, J. M.; Ware, R. H.; Neilan, R. E.; Cerezo, M.; Jordan, J. R.; Falls, M. J..; Nelson, L. D.; Hayes, M.
1991-01-01
Two water vapor radiometer (WVR) experiments were conducted to evaluate whether such instruments are both suitable and necessary to correct for propagation effects that are induced by precipitable water vapor (PWV) on signals from GPS and VLBI. WVRs are suitable for these corrections if they provide wet path delays to better than 0.5 cm. They are needed if spatial variations of PWV result in complicated, direction-dependent propagation effects that are too complex to be parametrized in the GPS or VLBI geodetic solution. The suitability of radiometers was first addressed by comparing six airport WVRs for two weeks. While two WVRs showed an average wet path delay bias of only 0.1 cm, others were biased by 1-3 cm relative to each other and relative to radiosondes. The second experiment addressed the question whether radiometers are needed for the detection of inhomogeneities in the wet delay. Three JPL D-series radiometers were operated at three sites 50 km apart. The WVRs simultaneously sampled PWV at different azimuths and elevations in search of spatial variations of PWV. On one day of this second experiment evidence was found for spatial variations of the wet path delay as high as 20 percent of the total wet path delay.
Krm83 calibration of the 2013 LUX dark matter search
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration
2017-12-01
LUX was the first dark matter experiment to use a Krm83 calibration source. In this paper, we describe the source preparation and injection. We also present several Krm83 calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to understand the electric field within the time projection chamber.
Toward a descriptive model of solar particles in the heliosphere
NASA Technical Reports Server (NTRS)
Shea, M. A.; Smart, D. F.; Adams, James H., Jr.; Chenette, D.; Feynman, Joan; Hamilton, Douglas C.; Heckman, G. R.; Konradi, A.; Lee, Martin A.; Nachtwey, D. S.
1988-01-01
During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made.
Spread of plague among black-tailed prairie dogs is associated with colony spatial characteristics
Johnson, T.L.; Cully, J.F.; Collinge, S.K.; Ray, C.; Frey, C.M.; Sandercock, B.K.
2011-01-01
Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark-recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark-recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. ?? 2011 The Wildlife Society.
NASA Astrophysics Data System (ADS)
McBride, Richard S.; Wuenschel, Mark J.; Nitschke, Paul; Thornton, Grace; King, Jeremy R.
2013-01-01
Female winter flounder were examined using gonad histology to determine the adequacy of routine macroscopic maturity classification methods and to determine the spatial variation in size and age of maturity in U.S. waters. Sampling occurred in spring and autumn, which was adequate to collect immature, mature, spawning-active, and non-active females. Females were collected in coastal waters from Delaware Bay, USA, to the Scotian Shelf, Canada, including in Long Island Sound and on Georges Bank, which covered all U.S. stock areas. Mature fish spawned in spring, when gonads comprised up to 30% of the total body weight. Direct comparisons of maturity assignment by macroscopic versus microscopic methods demonstrated that both schemes are compatible, but the more cost-effective macroscopic method had trouble distinguishing larger immature from smaller resting females. Spatial comparisons, using gonad histology only, supported the existence of three stocks in U.S. waters, but also revealed significant variation in age at maturity within the two coastal stocks. Age-at-maturity was more variable than size-at-maturity, which is consistent with known stock-specific patterns of growth rates and a postulated life history tradeoff to delay maturity until a size threshold is reached. The within-stock variation in median age at maturity, about one year for coastal stocks, recommends further investigation of using static, stock-specific maturity ogives to calculate reference points for management.
Recent results of the Defect-Induced Mix Experiments (DIME) on NIF
NASA Astrophysics Data System (ADS)
Schmitt, M. J.; Bradley, P. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Krasheninnikova, N. S.; Kyrala, G. A.; Murphy, T. J.; Obrey, K. A.; Shah, R. C.; Tregillis, I. L.; Craxton, S. C.; McKenty, P. W.; Mancini, R. C.; Johns, H. M.; Joshi, Tirtha; Mayes, Daniel
2012-10-01
Investigations of directly driven implosions have been performed including experiments on Omega, and more recently NIF, to deduce the extent and uniformity of 4π and defect-induced mix near the shell/gas interface of plastic (CH) capsules filled with 5 atm D2 gas. Imaging diagnostics are used to measure the spatial variation of mix caused by the growth of non-uniformities in both capsule and laser drive characteristics. Thin (2μm) layers containing 1-2% (atomic) mid-Z dopants are imaged spectrally at late time in the implosion using multiple monochromatic imaging of H-like and He-like atomic line emission. Areal image backlighting of the capsules provides both r(t) and the symmetry of the implosion. Recent results will be shown including inferred 4π mix width, laser imprint induced mix, and mix from capsule variations.
Yu, Haiyang; Zhang, Minghua; Lin, Wuyin; ...
2016-10-14
The seasonal variation of clouds in the southeastern equatorial Pacific (SEP) is analysed and compared with the spatial variation of clouds in the northeastern Pacific along the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI) transect. A ‘seasonal cloud transition’ – from stratocumulus to shallow cumulus and eventually to deep convection – is found in the SEP from September to April, which is similar to the spatial cloud transition along the GPCI transect from the California coast to the equator. It is shown that this seasonal cloud transition in themore » SEP is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence, which are all similar to the spatial variation of these fields along the GPCI transect. There was a difference found such that the SEP cloud transition is associated with decreasing surface wind speed and surface latent heat flux, weaker larger-scale upward motion and convective instability, which lead to less deepening of the low clouds and less frequent deep convection than those in the GPCI transect. Finally, the seasonal cloud transition in the SEP provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double inter-tropical convergence zone (ITCZ) in most models.« less
Kohyama, Tetsuo I; Omote, Keita; Nishida, Chizuko; Takenaka, Takeshi; Saito, Keisuke; Fujimoto, Satoshi; Masuda, Ryuichi
2015-01-01
Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Haiyang; Zhang, Minghua; Lin, Wuyin
The seasonal variation of clouds in the southeastern equatorial Pacific (SEP) is analysed and compared with the spatial variation of clouds in the northeastern Pacific along the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI) transect. A ‘seasonal cloud transition’ – from stratocumulus to shallow cumulus and eventually to deep convection – is found in the SEP from September to April, which is similar to the spatial cloud transition along the GPCI transect from the California coast to the equator. It is shown that this seasonal cloud transition in themore » SEP is associated with increasing sea surface temperature (SST), decreasing lower tropospheric stability and large-scale subsidence, which are all similar to the spatial variation of these fields along the GPCI transect. There was a difference found such that the SEP cloud transition is associated with decreasing surface wind speed and surface latent heat flux, weaker larger-scale upward motion and convective instability, which lead to less deepening of the low clouds and less frequent deep convection than those in the GPCI transect. Finally, the seasonal cloud transition in the SEP provides a test for climate models to simulate the relationships between clouds and large-scale atmospheric fields in a region that features a spurious double inter-tropical convergence zone (ITCZ) in most models.« less
NASA Astrophysics Data System (ADS)
Moore, J. K.
2016-02-01
The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.
Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent
2016-01-01
Space-for-time substitution-that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations-is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity.
Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales
Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias
2016-01-01
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625
Michael A. Battaglia; Pu Mou; Brian Palik; Robert J. Mitchell
2002-01-01
Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine...
Wang, Ran; Gamon, John A; Cavender-Bares, Jeannine; Townsend, Philip A; Zygielbaum, Arthur I
2018-03-01
Remote sensing has been used to detect plant biodiversity in a range of ecosystems based on the varying spectral properties of different species or functional groups. However, the most appropriate spatial resolution necessary to detect diversity remains unclear. At coarse resolution, differences among spectral patterns may be too weak to detect. In contrast, at fine resolution, redundant information may be introduced. To explore the effect of spatial resolution, we studied the scale dependence of spectral diversity in a prairie ecosystem experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Our study involved a scaling exercise comparing synthetic pixels resampled from high-resolution images within manipulated diversity treatments. Hyperspectral data were collected using several instruments on both ground and airborne platforms. We used the coefficient of variation (CV) of spectral reflectance in space as the indicator of spectral diversity and then compared CV at different scales ranging from 1 mm 2 to 1 m 2 to conventional biodiversity metrics, including species richness, Shannon's index, Simpson's index, phylogenetic species variation, and phylogenetic species evenness. In this study, higher species richness plots generally had higher CV. CV showed higher correlations with Shannon's index and Simpson's index than did species richness alone, indicating evenness contributed to the spectral diversity. Correlations with species richness and Simpson's index were generally higher than with phylogenetic species variation and evenness measured at comparable spatial scales, indicating weaker relationships between spectral diversity and phylogenetic diversity metrics than with species diversity metrics. High resolution imaging spectrometer data (1 mm 2 pixels) showed the highest sensitivity to diversity level. With decreasing spatial resolution, the difference in CV between diversity levels decreased and greatly reduced the optical detectability of biodiversity. The optimal pixel size for distinguishing α diversity in these prairie plots appeared to be around 1 mm to 10 cm, a spatial scale similar to the size of an individual herbaceous plant. These results indicate a strong scale-dependence of the spectral diversity-biodiversity relationships, with spectral diversity best able to detect a combination of species richness and evenness, and more weakly detecting phylogenetic diversity. These findings can be used to guide airborne studies of biodiversity and develop more effective large-scale biodiversity sampling methods. ©2018 The Authors Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Autoregressive modelling of species richness in the Brazilian Cerrado.
Vieira, C M; Blamires, D; Diniz-Filho, J A F; Bini, L M; Rangel, T F L V B
2008-05-01
Spatial autocorrelation is the lack of independence between pairs of observations at given distances within a geographical space, a phenomenon commonly found in ecological data. Taking into account spatial autocorrelation when evaluating problems in geographical ecology, including gradients in species richness, is important to describe both the spatial structure in data and to correct the bias in Type I errors of standard statistical analyses. However, to effectively solve these problems it is necessary to establish the best way to incorporate the spatial structure to be used in the models. In this paper, we applied autoregressive models based on different types of connections and distances between 181 cells covering the Cerrado region of Central Brazil to study the spatial variation in mammal and bird species richness across the biome. Spatial structure was stronger for birds than for mammals, with R(2) values ranging from 0.77 to 0.94 for mammals and from 0.77 to 0.97 for birds, for models based on different definitions of spatial structures. According to the Akaike Information Criterion (AIC), the best autoregressive model was obtained by using the rook connection. In general, these results furnish guidelines for future modelling of species richness patterns in relation to environmental predictors and other variables expressing human occupation in the biome.
Schistosomiasis Breeding Environment Situation Analysis in Dongting Lake Area
NASA Astrophysics Data System (ADS)
Li, Chuanrong; Jia, Yuanyuan; Ma, Lingling; Liu, Zhaoyan; Qian, Yonggang
2013-01-01
Monitoring environmental characteristics, such as vegetation, soil moisture et al., of Oncomelania hupensis (O. hupensis)’ spatial/temporal distribution is of vital importance to the schistosomiasis prevention and control. In this study, the relationship between environmental factors derived from remotely sensed data and the density of O. hupensis was analyzed by a multiple linear regression model. Secondly, spatial analysis of the regression residual was investigated by the semi-variogram method. Thirdly, spatial analysis of the regression residual and the multiple linear regression model were both employed to estimate the spatial variation of O. hupensis density. Finally, the approach was used to monitor and predict the spatial and temporal variations of oncomelania of Dongting Lake region, China. And the areas of potential O. hupensis habitats were predicted and the influence of Three Gorges Dam (TGB)project on the density of O. hupensis was analyzed.
Blainey, Joan B.; Webb, Robert H.; Magirl, Christopher S.
2007-01-01
The Nevada Test Site (NTS), located in the climatic transition zone between the Mojave and Great Basin Deserts, has a network of precipitation gages that is unusually dense for this region. This network measures monthly and seasonal variation in a landscape with diverse topography. Precipitation data from 125 climate stations on or near the NTS were used to spatially interpolate precipitation for each month during the period of 1960 through 2006 at high spatial resolution (30 m). The data were collected at climate stations using manual and/or automated techniques. The spatial interpolation method, applied to monthly accumulations of precipitation, is based on a distance-weighted multivariate regression between the amount of precipitation and the station location and elevation. This report summarizes the temporal and spatial characteristics of the available precipitation records for the period 1960 to 2006, examines the temporal and spatial variability of precipitation during the period of record, and discusses some extremes in seasonal precipitation on the NTS.
Padial, André A.; Ceschin, Fernanda; Declerck, Steven A. J.; De Meester, Luc; Bonecker, Cláudia C.; Lansac-Tôha, Fabio A.; Rodrigues, Liliana; Rodrigues, Luzia C.; Train, Sueli; Velho, Luiz F. M.; Bini, Luis M.
2014-01-01
Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that “all-or- nothing” interpretations on the mechanisms structuring metacommunities are rather the exception than the rule. PMID:25340577
NASA Astrophysics Data System (ADS)
Fischer, M. L.; Billesbach, D. P.; Riley, W. J.; Berry, J. A.; Torn, M. S.
2004-12-01
Accurate prediction of the regional responses of carbon and water fluxes to changing climate, land use, and management requires models that are parameterized and tested against measurements made in multiple land cover types and over seasonal and inter-annual time scales. In particular, modelers predicting fluxes for un-irrigated agriculture are posed with the additional challenge of characterizing the onset and severity of water stress. We report results from three years of an ongoing series of measurement campaigns that quantify the spatial heterogeneity of land surface-atmosphere exchanges of carbon dioxide, water, and energy. Eddy covariance flux measurements were made in pastures and dominant crop types surrounding the US-DOE Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma (36.605 N, 97.485 W). Ancillary measurements included radiation budget, meteorology, soil moisture and temperature, leaf area index, plant biomass, and plant and soil carbon and nitrogen content. Within a given year, the dominant spatial variation in fluxes of carbon, water, and energy are caused by variations of land cover due to the distinct phenology of winter-spring (winter wheat) versus summer crops (e.g., pasture, sorghum, soybeans). Within crop and yearly variations were smaller. In 2002, variations in net ecosystem carbon exchange (NEE), for three closely spaced winter wheat fields was 10-20%. Variations between years for the same crop types were also large. Net primary production (NPP) of winter wheat in the spring of 2003 versus 2002 increased by a factor of two, while NEE increased by 35%. The large increase in production and NEE are positively correlated with precipitation, integrated over the previous summer-fall periods. We discuss the implications of these results by extracting and comparing factors relevant for parameterization of land surface models and by comparing crop yield with historic variations in yield at the landscape scale.
Patterns of Cross-Continental Variation in Tree Seed Mass in the Canadian Boreal Forest
Liu, Jushan; Bai, Yuguang; Lamb, Eric G.; Simpson, Dale; Liu, Guofang; Wei, Yongsheng; Wang, Deli; McKenney, Daniel W.; Papadopol, Pia
2013-01-01
Seed mass is an adaptive trait affecting species distribution, population dynamics and community structure. In widely distributed species, variation in seed mass may reflect both genetic adaptation to local environments and adaptive phenotypic plasticity. Acknowledging the difficulty in separating these two aspects, we examined the causal relationships determining seed mass variation to better understand adaptability and/or plasticity of selected tree species to spatial/climatic variation. A total of 504, 481 and 454 seed collections of black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb) across the Canadian Boreal Forest, respectively, were selected. Correlation analyses were used to determine how seed mass vary with latitude, longitude, and altitude. Structural Equation Modeling was used to examine how geographic and climatic variables influence seed mass. Climatic factors explained a large portion of the variation in seed mass (34, 14 and 29%, for black spruce, white spruce and jack pine, respectively), indicating species-specific adaptation to long term climate conditions. Higher annual mean temperature and winter precipitation caused greater seed mass in black spruce, but annual precipitation was the controlling factor for white spruce. The combination of factors such as growing season temperature and evapotranspiration, temperature seasonality and annual precipitation together determined seed mass of jack pine. Overall, sites with higher winter temperatures were correlated with larger seeds. Thus, long-term climatic conditions, at least in part, determined spatial variation in seed mass. Black spruce and Jack pine, species with relatively more specific habitat requirements and less plasticity, had more variation in seed mass explained by climate than did the more plastic species white spruce. As traits such as seed mass are related to seedling growth and survival, they potentially influence forest species composition in a changing climate and should be included in future modeling of vegetation shifts. PMID:23593392
NASA Astrophysics Data System (ADS)
Akin, S.; Winemiller, K. O.; Gelwick, F. P.
2003-05-01
Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large spatial scales, and species-specific response to local environmental variation.
Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel
2010-06-01
Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.
NASA Astrophysics Data System (ADS)
Tukiainen, Helena; Alahuhta, Janne; Ala-Hulkko, Terhi; Field, Richard; Lampinen, Raino; Hjort, Jan
2016-04-01
Implementation of geodiversity may provide new perspectives for nature conservation. The relation between geodiversity and biodiversity has been established in recent studies but remains underexplored in environments with high human pressure. In this study, we explored the effect of geodiversity (i.e. geological, hydrological and geomorphological diversity), climate and spatial variables on biodiversity (vascular plant species richness) in environments with different human impact. The study area ranged trough the boreal vegetation zone in Finland and included altogether 1401 1-km2 grid cells from urban, rural and natural environments. The contribution of environmental variable groups for species diversity in different environments was statistically analyzed with variation partitioning method. According to the results, the contribution of geodiversity decreased and the contribution of climate and spatial variables increased as the land use became more human-induced. Hence, the connection between geodiversity and species richness was most pronounced in natural state environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Yasmin; Thomas, C David L.; Clement, John G
2013-04-09
In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within themore » femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm 3 of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p < 0.05). The density of the combined anterior and posterior regions was also significantly lower (p = 0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p = 0.004) and flattened (p = 0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.« less
Zhang, Haitao; Wu, Chenxue; Chen, Zewei; Liu, Zhao; Zhu, Yunhong
2017-01-01
Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules.
Wu, Chenxue; Liu, Zhao; Zhu, Yunhong
2017-01-01
Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules. PMID:28767687
Spatial variation in environmental noise and air pollution in New York City.
Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas
2014-06-01
Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r < 0.41). One-week Leq correlated well with NO, NO2, and EC levels (r = 0.61 to 0.68) and less so with PM2.5 levels (r = 0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0.58). The high levels of noise observed in NYC often exceed recommended guidelines for outdoor and personal exposures, suggesting unhealthy levels in many locations. Associations between noise, traffic, and combustion air pollutants suggest the possibility for confounding and/or synergism in intraurban epidemiological studies of traffic-related health effects. The different spatial pattern of intermittent noise compared to average noise level may suggest different sources.
Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin
NASA Astrophysics Data System (ADS)
Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.
2017-07-01
Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.
Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia
NASA Astrophysics Data System (ADS)
Alharbi, T.; Ahmed, M.
2015-12-01
Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.
Hoffman, Kate; Aschengrau, Ann; Webster, Thomas F; Bartell, Scott M; Vieira, Verónica M
2015-07-21
Mental health disorders impact approximately one in four US adults. While their causes are likely multifactorial, prior research has linked the risk of certain mental health disorders to prenatal and early childhood environmental exposures, motivating a spatial analysis to determine whether risk varies by birth location. We investigated the spatial associations between residence at birth and odds of depression, bipolar disorder, and post-traumatic stress disorder (PTSD) in a retrospective cohort (Cape Cod, Massachusetts, 1969-1983) using generalized additive models to simultaneously smooth location and adjust for confounders. Birth location served as a surrogate for prenatal exposure to the combination of social and environmental factors related to the development of mental illness. We predicted crude and adjusted odds ratios (aOR) for each outcome across the study area. The results were mapped to identify areas of increased risk. We observed spatial variation in the crude odds ratios of depression that was still present even after accounting for spatial confounding due to geographic differences in the distribution of known risk factors (aOR range: 0.61-3.07, P = 0.03). Similar geographic patterns were seen for the crude odds of PTSD; however, these patterns were no longer present in the adjusted analysis (aOR range: 0.49-1.36, P = 0.79), with family history of mental illness most notably influencing the geographic patterns. Analyses of the odds of bipolar disorder did not show any meaningful spatial variation (aOR range: 0.58-1.17, P = 0.82). Spatial associations exist between residence at birth and odds of PTSD and depression, but much of this variation can be explained by the geographic distributions of available risk factors. However, these risk factors did not account for all the variation observed with depression, suggesting that other social and environmental factors within our study area need further investigation.
Subfield variations in hippocampal processing-components of a spatial navigation system.
Hartley, Matthew; Taylor, Neill; Taylor, John
2005-01-01
The hippocampus is a part of the brain strongly linked to spatial exploration. Within it exist 'place cells' which fire preferentially when an animal is in certain regions of physical space. Recent research has shown that these place cells and their corresponding representations of space behave differently in the CA3 and CA1 subfields of the hippocampus. We review this research and show, by simulation, that these differences can be explained by a combination of known physiological features of the hippocampus and proposed variations in the rate of synaptic plasticity and connection strength between different information pathways. We suggest possible reasons for these differences, namely use of the CA1 cell field for current spatial exploration, and CA3 for longer term spatial memory.
CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco
2015-01-01
We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less
NASA Astrophysics Data System (ADS)
Wang, Z.; Gu, Z.; Chen, B.; Yuan, J.; Wang, C.
2016-12-01
The CHAOS-6 geomagnetic field model, presented in 2016 by the Denmark's national space institute (DTU Space), is a model of the near-Earth magnetic field. According the CHAOS-6 model, seven component data of geomagnetic filed at 30 observatories in China in 2015 and at 3 observatories in China spanning the time interval 2008.0-2016.5 were calculated. Also seven component data of geomagnetic filed from the geomagnetic data of practical observations in China was obtained. Based on the model calculated data and the practical data, we have compared and analyzed the spatial distribution and the secular variation of the geomagnetic field in China. There is obvious difference between the two type data. The CHAOS-6 model cannot describe the spatial distribution and the secular variation of the geomagnetic field in China with comparative precision because of the regional and local magnetic anomalies in China.
van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry
2012-03-12
A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.
Geography of breast cancer incidence according to age & birth cohorts.
Gregorio, David I; Ford, Chandler; Samociuk, Holly
2017-06-01
Geographic variation in breast cancer incidence across Connecticut was examined according to age and birth cohort -specific groups. We assigned each of 60,937 incident breast cancer cases diagnosed in Connecticut, 1986-2009, to one of 828 census tracts around the state. Global and local spatial statistics estimated rate variation across the state according to age and birth cohorts. We found the global distribution of incidence rates across places to be more heterogeneous for younger women and later birth cohorts. Concurrently, the spatial scan identified more locations with significantly high rates that pertained to larger proportions of at-risk women within these groups. Geographic variation by age groups was more pronounced than by birth cohorts. Geographic patterns of cancer incidence exhibit differences within and across age and birth cohorts. With the continued insights from descriptive epidemiology, our capacity to effectively limit spatial disparities in cancer will improve. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex.
Lu, Li; Leutgeb, Jill K; Tsao, Albert; Henriksen, Espen J; Leutgeb, Stefan; Barnes, Carol A; Witter, Menno P; Moser, May-Britt; Moser, Edvard I
2013-08-01
In the hippocampus, spatial and non-spatial parameters may be represented by a dual coding scheme, in which coordinates in space are expressed by the collective firing locations of place cells and the diversity of experience at these locations is encoded by orthogonal variations in firing rates. Although the spatial signal may reflect input from medial entorhinal cortex, the sources of the variations in firing rate have not been identified. We found that rate variations in rat CA3 place cells depended on inputs from the lateral entorhinal cortex (LEC). Hippocampal rate remapping, induced by changing the shape or the color configuration of the environment, was impaired by lesions in those parts of the ipsilateral LEC that provided the densest input to the hippocampal recording position. Rate remapping was not observed in LEC itself. The findings suggest that LEC inputs are important for efficient rate coding in the hippocampus.
Spatial and Temporal Variations of Water Quality and Trophic Status in Sembrong Reservoir, Johor
NASA Astrophysics Data System (ADS)
Intan Najla Syed Hashim, Syarifah; Hidayah Abu Talib, Siti; Salleh Abustan, Muhammad
2018-03-01
A study of spatial and temporal variations on water quality and trophic status was conducted to determine the temporal (average reading by month) and spatial variations of water quality in Sembrong reservoir and to evaluate the trophic status of the reservoir. Water samples were collected once a month from November 2016 to June 2017 in seventeen (17) sampling stations at Sembrong Reservoir. Results obtained on the concentration of dissolved oxygen (DO), water temperature, pH and secchi depth had no significant differences compared to Total Phosphorus (TP) and chlorophyll-a. The water level has significantly decreased the value of the water temperature, pH and TP. The water quality of Sembrong reservoir is classified in Class II which is suitable for recreational uses and required conventional treatment while TSI indicates that sembrong reservoir was in lower boundary of classical eutrophic (TSI > 50).
Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems
NASA Astrophysics Data System (ADS)
Moritz, Max A.; Moody, Tadashi J.; Krawchuk, Meg A.; Hughes, Mimi; Hall, Alex
2010-02-01
Fire plays a crucial role in many ecosystems, and a better understanding of different controls on fire activity is needed. Here we analyze spatial variation in fire danger during episodic wind events in coastal southern California, a densely populated Mediterranean-climate region. By reconstructing almost a decade of fire weather patterns through detailed simulations of Santa Ana winds, we produced the first high-resolution map of where these hot, dry winds are consistently most severe and which areas are relatively sheltered. We also analyzed over half a century of mapped fire history in chaparral ecosystems of the region, finding that our models successfully predict where the largest wildfires are most likely to occur. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses of their spatial variation will be important for effective fire management and sustainable long-term urban development on fire-prone landscapes.
Geographic Information System and Geoportal «River basins of the European Russia»
NASA Astrophysics Data System (ADS)
Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.
2018-01-01
Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.
Assessing spatial variation of corn response to irrigation using a bayesian semiparametric model
USDA-ARS?s Scientific Manuscript database
Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...
Ozgul, Arpat; Armitage, Kenneth B; Blumstein, Daniel T; Oli, Madan K
2006-04-01
Spatiotemporal variation in age-specific survival rates can profoundly influence population dynamics, but few studies of vertebrates have thoroughly investigated both spatial and temporal variability in age-specific survival rates. We used 28 years (1976-2003) of capture-mark-recapture (CMR) data from 17 locations to parameterize an age-structured Cormack-Jolly-Seber model, and investigated spatial and temporal variation in age-specific annual survival rates of yellow-bellied marmots (Marmota flaviventris). Survival rates varied both spatially and temporally, with survival of younger animals exhibiting the highest degree of variation. Juvenile survival rates varied from 0.52 +/- 0.05 to 0.78 +/- 0.10 among sites and from 0.15 +/- 0.14 to 0.89 +/- 0.06 over time. Adult survival rates varied from 0.62 +/- 0.09 to 0.80 +/- 0.03 among sites, but did not vary significantly over time. We used reverse-time CMR models to estimate the realized population growth rate (lamda), and to investigate the influence of the observed variation in age-specific survival rates on lamda. The realized growth rate of the population closely covaried with, and was significantly influenced by, spatiotemporal variation in juvenile survival rate. High variability in juvenile survival rates over space and time clearly influenced the dynamics of our study population and is also likely to be an important determinant of the spatiotemporal variation in the population dynamics of other mammals with similar life history characteristics.
DOT National Transportation Integrated Search
2009-01-01
Soils often undergo cyclic wetting/drying, but there is very limited research on unsaturated : soils subjected to variations in moisture content. More specifically, field moisture variation : over time in highway unbound bases and subgrade soils is a...
In vivo quantification of spatially-varying mechanical properties in developing tissues
Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David A.; Lucio, Adam A.; Hockenbery, Zachary M.; Campàs, Otger
2017-01-01
It is generally believed that the mechanical properties of the cellular microenvironment and their spatiotemporal variations play a central role in sculpting embryonic tissues, maintaining organ architecture and controlling cell behavior, including cell differentiation. However, no direct in vivo and in situ measurement of mechanical properties within developing 3D tissues and organs has been performed yet. Here we introduce a technique that employs biocompatible ferrofluid microdroplets as local mechanical actuators and allows quantitative spatiotemporal measurements of mechanical properties in vivo. Using this technique, we show that vertebrate body elongation entails spatially-varying tissue mechanics along the anteroposterior axis. Specifically, we find that the zebrafish tailbud is viscoelastic (elastic below a few seconds and fluid after just one minute) and displays decreasing stiffness and increasing fluidity towards its posterior elongating region. This method opens new avenues to study mechanobiology in vivo, both in embryogenesis and in disease processes, including cancer. PMID:27918540
Rosetti, Natalia; Remis, Maria I
2018-06-06
Wing dimorphism occurs widely in insects and involves discontinuous variation in a wide variety of traits involved in fight and reproduction. In the current study, we analyzed the spatial pattern of wing dimorphism and intraspecific morphometric variation in nine natural populations of the grasshopper Dichroplus vittatus (Bruner; Orthoptera: Acrididae) in Argentina. Considerable body size differences among populations, between sexes and wing morphs were detected. As a general trend, females were larger than males and macropterous individuals showed increased thorax length over brachypterous which can be explained by the morphological requirements for the development of flight muscles in the thoracic cavity favoring dispersal. Moreover, when comparing wing morphs, a higher phenotypic variability was detected in macropterous females. The frequency of macropterous individuals showed negative correlation with longitude and positive with precipitations, indicating that the macropterous morph is more frequent in the humid eastern part of the studied area. Our results provide valuable about spatial variation of fully winged morph and revealed geographic areas in which the species would experience greater dispersal capacity.
Effect of fertility on secondary sex ratio and twinning rate in Sweden, 1749-1870.
Fellman, Johan; Eriksson, Aldur W
2015-02-01
We analyzed the effect of total fertility rate (TFR) and crude birth rate (CBR) on the number of males per 100 females at birth, also called the secondary sex ratio (SR), and on the twinning rate (TWR). Earlier studies have noted regional variations in TWR and racial differences in the SR. Statistical analyses have shown that comparisons between SRs demand large data sets because random fluctuations in moderate data are marked. Consequently, reliable results presuppose national birth data. Here, we analyzed historical demographic data and their regional variations between counties in Sweden. We built spatial models for the TFR in 1860 and the CBR in 1751-1870, and as regressors we used geographical coordinates for the provincial capitals of the counties. For both variables, we obtained significant spatial variations, albeit of different patterns and power. The SR among the live-born in 1749-1869 and the TWR in 1751-1860 showed slight spatial variations. The influence of CBR and TFR on the SR and TWR was examined and statistical significant effects were found.
Uthman, Olalekan A
2008-05-30
The age of initiation of sexual intercourse is an increasingly important issue to study given that sexually active young women are at risk of multiple outcomes including early pregnancies, vesico-vaginal fistula, and sexually transmitted infections. Much research has focused on the demographic, familial, and social factors associated with sexual initiation and reasons adolescents begin having consensual intercourse. Less is known, however, about the geographical and contextual factors associated with age of initiation of sexual intercourse. Therefore, the purpose of this study was to examine the extent of regional and state disparities in age of initiation of sexual intercourse and to examine individual- and community-level predictors of early sexual debut. Multilevel logistic regression models were applied to data on 5531 ever or currently married women who had participated in 2003 Nigeria Demographic and Health Survey. Coital debut at 15 years or younger was used to define early sexual debut. Exploratory spatial data analysis methods were used to study geographic variation in age at first sexual intercourse. The median age at first sexual intercourse for all women included in the study was 15 years (range; 14 - 19). North West and North East had the highest proportion of women who had reported early sexual debut (61% - 78%). The spatial distribution of age of initiation of sexual intercourse was nonrandom and clustered with a Moran's I = 0.635 (p = .001). There was significant positive spatial relationship between median age of marriage and spatial lag of median age of sexual debut (Bivariate Moran's I = 0.646, (p = .001). After adjusting for both individual-level and contextual factors, the probability of starting sex at an earlier age was associated with respondents' current age, education attainment, ethnicity, region, and community median age of marriage. The study found that individual-level and community contextual characteristics were independently associated with early sexual debut, suggesting that interventions to reduce adolescent high-risk sexual behaviour should focus on high-risk places as well as high-risk groups of people.
Gissi, Elena; Menegon, Stefano; Sarretta, Alessandro; Appiotti, Federica; Maragno, Denis; Vianello, Andrea; Depellegrin, Daniel; Venier, Chiara; Barbanti, Andrea
2017-01-01
Maritime spatial planning (MSP) is envisaged as a tool to apply an ecosystem-based approach to the marine and coastal realms, aiming at ensuring that the collective pressure of human activities is kept within acceptable limits. Cumulative impacts (CI) assessment can support science-based MSP, in order to understand the existing and potential impacts of human uses on the marine environment. A CI assessment includes several sources of uncertainty that can hinder the correct interpretation of its results if not explicitly incorporated in the decision-making process. This study proposes a three-level methodology to perform a general uncertainty analysis integrated with the CI assessment for MSP, applied to the Adriatic and Ionian Region (AIR). We describe the nature and level of uncertainty with the help of expert judgement and elicitation to include all of the possible sources of uncertainty related to the CI model with assumptions and gaps related to the case-based MSP process in the AIR. Next, we use the results to tailor the global uncertainty analysis to spatially describe the uncertainty distribution and variations of the CI scores dependent on the CI model factors. The results show the variability of the uncertainty in the AIR, with only limited portions robustly identified as the most or the least impacted areas under multiple model factors hypothesis. The results are discussed for the level and type of reliable information and insights they provide to decision-making. The most significant uncertainty factors are identified to facilitate the adaptive MSP process and to establish research priorities to fill knowledge gaps for subsequent planning cycles. The method aims to depict the potential CI effects, as well as the extent and spatial variation of the data and scientific uncertainty; therefore, this method constitutes a suitable tool to inform the potential establishment of the precautionary principle in MSP.
Temperature induced distortions in space telescope mirrors
NASA Technical Reports Server (NTRS)
Nied, H. F.; Rudmann, A. A.
1993-01-01
In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.
NASA Astrophysics Data System (ADS)
Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.
2016-06-01
Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope, distance to sea, and traffic space density. These parameters that cause variation in intra-city temperatures were evaluated for their relationship with different grades of UHIs. Zonal statistics of UHI classes and variations in average value of parameters were interpreted. The outcomes that highlight local temperature peaks are proposed to the attention of the decision makers for mitigation of Urban Heat Island effect in the city at local and neighbourhood scale.
Qing, Feng Ting; Peng, Yu
2016-05-01
Based on the remote sensing data in 1997, 2001, 2005, 2009 and 2013, this article classified the landscape types of Shunyi, and the ecological risk index was built based on landscape disturbance index and landscape fragility. The spatial auto-correlation and geostatistical analysis by GS + and ArcGIS was used to study temporal and spatial changes of ecological risk. The results showed that eco-risk degree in the study region had positive spatial correlation which decreased with the increasing grain size. Within a certain grain range (<12 km), the spatial auto-correlation had an obvious dependence on scale. The random variation of spatial heterogeneity was less than spatial auto-correlation variation from 1997 to 2013, which meant the auto-correlation had a dominant role in spatial heterogeneity. The ecological risk of Shunyi was mainly at moderate level during the study period. The area of the district with higher and lower ecological risk increased, while that of mode-rate ecological risk decreased. The area with low ecological risk was mainly located in the airport region and forest of southeast Shunyi, while that with high ecological risk was mainly concentrated in the water landscape, such as the banks of Chaobai River.
Nanus, Leora; Campbell, Donald H.; Lehmann, Christopher M.B.; Mast, M. Alisa
2018-01-01
Variation in source areas and source types of atmospheric nitrogen (N) deposition to high-elevation ecosystems in the Rocky Mountains were evaluated using spatially and temporally distributed N isotope data from atmospheric deposition networks for 1995-2016. This unique dataset links N in wet deposition and snowpack to mobile and stationary emissions sources, and enhances understanding of the impacts of anthropogenic activities and environmental policies that mitigate effects of accelerated N cycling across the Rocky Mountain region. δ15N−NO3− at 50 U.S. Geological Survey Rocky Mountain Snowpack (Snowpack) sites ranged from −3.3‰ to +6.5‰, with a mean value of +1.4‰. At 15 National Atmospheric Deposition Program (NADP)/National Trends Network wet deposition (NADP Wetfall) sites, summer δ15N−NO3− is significantly lower ranging from −7.6‰ to −1.3‰ while winter δ15N−NO3− ranges from −2.6‰ to +5.5‰, with a mean value of +0.7‰ during the cool season. The strong seasonal difference in NADP Wetfall δ15N−NO3− is due in part to variation in the proportion of N originating from source regions at different times of the year due to seasonal changes in weather patterns. Snowpack NO3− and δ15N−NO3− are significantly related to NADP Wetfall (fall and winter) suggesting that bulk snowpack samples provide a reliable estimate at high elevations. Spatial trends show higher NO3−concentrations and δ15N−NO3− in the Southern Rocky Mountains located near larger anthropogenic N emission sources compared to the Northern Rocky Mountains. NADP Wetfall δ15N−NH4+ ranged from −10‰ to 0‰, with no observed spatial pattern. However, the lowest δ15N−NH4+(−9‰), and the highest NH4+ concentration (35 μeq/L) were observed at a Utah site dominated by local agricultural activities, whereas the higher δ15N−NH4+observed in Colorado and Wyoming are likely due to mixed sources, including fossil fuel combustion and agricultural sources. These findings show spatial and seasonal variation in N isotope data that reflect differences in sources of anthropogenic N deposition to high-elevation ecosystems and have important implications for environmental policy across the Rocky Mountain region.
Physical modeling of the formation and evolution of seismically active fault zones
Ponomarev, A.V.; Zavyalov, A.D.; Smirnov, V.B.; Lockner, D.A.
1997-01-01
Acoustic emission (AE) in rocks is studied as a model of natural seismicity. A special technique for rock loading has been used to help study the processes that control the development of AE during brittle deformation. This technique allows us to extend to hours fault growth which would normally occur very rapidly. In this way, the period of most intense interaction of acoustic events can be studied in detail. Characteristics of the acoustic regime (AR) include the Gutenberg-Richter b-value, spatial distribution of hypocenters with characteristic fractal (correlation) dimension d, Hurst exponent H, and crack concentration parameter Pc. The fractal structure of AR changes with the onset of the drop in differential stress during sample deformation. The change results from the active interaction of microcracks. This transition of the spatial distribution of AE hypocenters is accompanied by a corresponding change in the temporal correlation of events and in the distribution of event amplitudes as signified by a decrease of b-value. The characteristic structure that develops in the low-energy background AE is similar to the sequence of the strongest microfracture events. When the AR fractal structure develops, the variations of d and b are synchronous and d = 3b. This relation which occurs once the fractal structure is formed only holds for average values of d and b. Time variations of d and b are anticorrelated. The degree of temporal correlation of AR has time variations that are similar to d and b variations. The observed variations in laboratory AE experiments are compared with natural seismicity parameters. The close correspondence between laboratory-scale observations and naturally occurring seismicity suggests a possible new approach for understanding the evolution of complex seismicity patterns in nature. ?? 1997 Elsevier Science B.V. All rights reserved.
Hirota, Mitsuru; Zhang, Pengcheng; Gu, Song; Shen, Haihua; Kuriyama, Takeo; Li, Yingnian; Tang, Yanhong
2010-07-01
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem's CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 micromol CO2 m(-2) s(-1) [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20 degrees C soil temperature, Re(20), was -10.9 micromol CO2 m(-2) s(-1) (CV, 27.3). Re(20) was positively correlated with vegetation biomass. GPP(max) was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.
Temporal and Spatial Variations in the Twinning Rate in Norway.
Fellman, Johan
2016-08-01
Strong geographical variations have been noted in the twinning rate (TWR). In general, the rate is high among people of African origin, intermediate among Europeans, and low among most Asiatic populations. In Europe, there tends to be a south-north cline, with a progressive increase in the TWR from south to north and a minimum around the Basque provinces. The highest TWRs in Europe have been found among the Nordic populations. Furthermore, within larger populations, small isolated subpopulations have been identified to have extreme, mainly high, TWRs. In the study of the temporal variation of the TWR in Norway, we consider the period from 1900 to 2014. The regional variation of the TWR in Norway is analyzed for the different counties for two periods, 1916-1926 and 1960-1988. Heterogeneity between the regional TWRs in Norway during 1916-1926 was found, but the goodness of fit for the alternative spatial models was only slight. The optimal regression model for the TWR in Norway has the longitude and its square as regressors. According to this model, the spatial variation is distributed in a west-east direction. For 1960-1988, no significant regional variation was observed. One may expect that the environmental and genetic differences between the counties in Norway have disappeared and that the regional TWRs have converged towards a common low level.
Thermal biology mediates responses of amphibians and reptiles to habitat modification.
Nowakowski, A Justin; Watling, James I; Thompson, Michelle E; Brusch, George A; Catenazzi, Alessandro; Whitfield, Steven M; Kurz, David J; Suárez-Mayorga, Ángela; Aponte-Gutiérrez, Andrés; Donnelly, Maureen A; Todd, Brian D
2018-03-01
Human activities often replace native forests with warmer, modified habitats that represent novel thermal environments for biodiversity. Reducing biodiversity loss hinges upon identifying which species are most sensitive to the environmental conditions that result from habitat modification. Drawing on case studies and a meta-analysis, we examined whether observed and modelled thermal traits, including heat tolerances, variation in body temperatures, and evaporative water loss, explained variation in sensitivity of ectotherms to habitat modification. Low heat tolerances of lizards and amphibians and high evaporative water loss of amphibians were associated with increased sensitivity to habitat modification, often explaining more variation than non-thermal traits. Heat tolerances alone explained 24-66% (mean = 38%) of the variation in species responses, and these trends were largely consistent across geographic locations and spatial scales. As habitat modification alters local microclimates, the thermal biology of species will likely play a key role in the reassembly of terrestrial communities. © 2018 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.
2017-01-01
Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.
Lemieux, Jacob E; Kyes, Sue A; Otto, Thomas D; Feller, Avi I; Eastman, Richard T; Pinches, Robert A; Berriman, Matthew; Su, Xin-zhuan; Newbold, Chris I
2013-01-01
Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites. PMID:23980881
Chien, Lung-Chang; Guo, Yuming; Li, Xiao; Yu, Hwa-Lung
2018-01-01
The distributed lag non-linear (DLNM) model has been frequently used in time series environmental health research. However, its functionality for assessing spatial heterogeneity is still restricted, especially in analyzing spatiotemporal data. This study proposed a solution to take a spatial function into account in the DLNM, and compared the influence with and without considering spatial heterogeneity in a case study. This research applied the DLNM to investigate non-linear lag effect up to 7 days in a case study about the spatiotemporal impact of fine particulate matter (PM 2.5 ) on preschool children's acute respiratory infection in 41 districts of northern Taiwan during 2005 to 2007. We applied two spatiotemporal methods to impute missing air pollutant data, and included the Markov random fields to analyze district boundary data in the DLNM. When analyzing the original data without a spatial function, the overall PM 2.5 effect accumulated from all lag-specific effects had a slight variation at smaller PM 2.5 measurements, but eventually decreased to relative risk significantly <1 when PM 2.5 increased. While analyzing spatiotemporal imputed data without a spatial function, the overall PM 2.5 effect did not decrease but increased in monotone as PM 2.5 increased over 20 μg/m 3 . After adding a spatial function in the DLNM, spatiotemporal imputed data conducted similar results compared with the overall effect from the original data. Moreover, the spatial function showed a clear and uneven pattern in Taipei, revealing that preschool children living in 31 districts of Taipei were vulnerable to acute respiratory infection. Our findings suggest the necessity of including a spatial function in the DLNM to make a spatiotemporal analysis available and to conduct more reliable and explainable research. This study also revealed the analytical impact if spatial heterogeneity is ignored.
Update on "What" and "Where" in Spatial Language: A New Division of Labor for Spatial Terms.
Landau, Barbara
2017-03-01
In this article, I revisit Landau and Jackendoff's () paper, "What and where in spatial language and spatial cognition," proposing a friendly amendment and reformulation. The original paper emphasized the distinct geometries that are engaged when objects are represented as members of object kinds (named by count nouns), versus when they are represented as figure and ground in spatial expressions (i.e., play the role of arguments of spatial prepositions). We provided empirical and theoretical arguments for the link between these distinct representations in spatial language and their accompanying nonlinguistic neural representations, emphasizing the "what" and "where" systems of the visual system. In the present paper, I propose a second division of labor between two classes of spatial prepositions in English that appear to be quite distinct. One class includes prepositions such as in and on, whose core meanings engage force-dynamic, functional relationships between objects, with geometry only a marginal player. The second class includes prepositions such as above/below and right/left, whose core meanings engage geometry, with force-dynamic relationships a passing or irrelevant variable. The insight that objects' force-dynamic relationships matter to spatial terms' uses is not new; but thinking of these terms as a distinct set within spatial language has theoretical and empirical consequences that are new. I propose three such consequences, rooted in the fact that geometric knowledge is highly constrained and early-emerging in life, while force-dynamic knowledge of objects and their interactions is relatively unconstrained and needs to be learned piecemeal over a lengthy timeline. First, the two classes will engage different learning problems, with different developmental trajectories for both first and second language learners; second, the classes will naturally lead to different degrees of cross-linguistic variation; and third, they may be rooted in different neural representations. Copyright © 2016 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
West, J. B.; Ehleringer, J. R.; Cerling, T.
2006-12-01
Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across landscapes.
Predictions of avian Plasmodium expansion under climate change.
Loiseau, Claire; Harrigan, Ryan J; Bichet, Coraline; Julliard, Romain; Garnier, Stéphane; Lendvai, Adám Z; Chastel, Olivier; Sorci, Gabriele
2013-01-01
Vector-borne diseases are particularly responsive to changing environmental conditions. Diurnal temperature variation has been identified as a particularly important factor for the development of malaria parasites within vectors. Here, we conducted a survey across France, screening populations of the house sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to increase in locations where transmission already occurs. Our findings, based on remote sensing tools coupled with empirical data suggest that climatic change will significantly alter transmission of malaria parasites.
Asynchronous variational integration using continuous assumed gradient elements.
Wolff, Sebastian; Bucher, Christian
2013-03-01
Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.
Krasnov, Helena; Kloog, Itai; Friger, Michael; Katra, Itzhak
2016-01-01
Dust storms are a common phenomenon in arid and semi-arid areas, and their impacts on both physical and human environments are of great interest. Number of studies have associated atmospheric PM pollution in urban environments with origin in natural soil/dust, but less evaluated the dust spatial patterns over a city. We aimed to analyze the spatial-temporal behavior of PM concentrations over the city of Beer Sheva, in southern Israel, where dust storms are quite frequent. PM data were recorded during the peak of each dust episode simultaneously in 23 predetermined fixed points around the city. Data were analyzed for both dust days and non-dust days (background). The database was constructed using Geographic Information System and includes distributions of PM that were derived using inverse distance weighted (IDW) interpolation. The results show that the daily averages of atmospheric PM10 concentrations during the background period are within a narrow range of 31 to 48 μg m-3 with low variations. During dust days however, the temporal variations are significant and can range from an hourly PM10 concentration of 100 μg m-3 to more than 1280 μg m-3 during strong storms. IDW analysis demonstrates that during the peak time of the storm the spatial variations in PM between locations in the city can reach 400 μg m-3. An analysis of site and storm contribution to total PM concentration revealed that higher concentrations are found in parts of the city that are proximal to dust sources. The results improve the understanding of the dynamics of natural PM and the dependence on wind direction. This may have implications for environmental and health outcomes. PMID:27513479
Seco Pon, Juan Pablo; Becherucci, Maria Eugenia
2012-02-01
Urban littering is considered an important environmental and public issue globally. This problem is growing considerably within coastal communities of the southern region of South America. The goals of this study were to assess (1) the abundance and composition of urban litter; (2) the spatial and temporal variations of its abundance; and (3) the relationship between the abundance of litter and three anthropogenic variables (i.e. abundance of pedestrians, of parked vehicles, and of trash bins) in Mar del Plata, the most populated coastal city in Argentina. Eighty-eight transects, each covering 1425 m(2), were sampled along four sites from April 2008 to March 2009. Results showed 20,336 items (ca. 14 items per m(2)) of which cigarette butts (33%), papers (31%), and plastics (22%) were the most commonly littered items. Higher amounts of litter were found in an industrial area (city's harbor), while the abundance of litter appeared relatively even throughout the year. Redundancy analysis techniques indicated a high abundance of all three anthropogenic variables associated with the central business district area of the city and an area in close proximity to a major seaside resort, where cigarette butts and papers dominated. This is the first study that has examined spatial and temporal variations of urban litter in a high-density coastal city in Argentina. Our results showed that addressing the problems associated with urban litter must include intensive educational and advertising campaigns directed at pedestrians and owners of parked vehicles, but waste reduction, clean-up operations and law enforcement should be also considered. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Jauer, P. R.; Alves, L. R.; Padilha, A. L.; Padua, M. B.; Vitorello, I.; Alves, M. V.; Da Silva, L. A.
2017-12-01
Interplanetary structures such as Coronal Mass Ejections (CME), Shocks, Corotating Interaction Regions (CIR) and Magnetic Clouds (MC) interfere directly on Space Weather conditions and can cause severe and intense disturbances in the Earth's magnetic field as measured in space and on the ground. During magnetically disturbed periods characterized by world-wide, abrupt variations of the geomagnetic field, large and intense current systems can be induced and amplified within the Earth even at low latitudes. Such current systems are known as geomagnetically induced currents (GIC) and can cause damage to power transmission lines, transformers and the degradation of pipelines. As part of an effort to estimate GIC intensities throughout the low to equatorial latitudes of the Brazilian territory, we used the 3-D MHD SWMF/BATSRUS code to estimate spatial variations of the geomagnetic field during periods when the magnetosphere is under the influence of CME and MC structures. Specifically, we used the CalcDeltaB tool (Rastatter et al., Space Weather, 2014) to provide a proxy for the spatial variations of the geomagnetic field, with a 1 minute cadence, at 31 virtual magnetometer stations located in the proposed study region. The stations are spatially arranged in a two-dimensional network with each station being 5 degrees apart in latitude and longitude. In a preliminary analysis, we found that prior to the arrival of each interplanetary structure, there is no appreciable variation in the components of the geomagnetic field between the virtual stations. However, when the interplanetary structures reach the magnetosphere, each station perceives the magnetic field variation differently, so that it is not possible to use a single station to represent the magnetic field perturbation throughout the Brazilian region. We discuss the minimum number and spacing between stations to adequately detail the geomagnetic field variations in this region.
Estimating the spatial scales of landscape effects on abundance
Richard Chandler; Jeffrey Hepinstall-Cymerman
2016-01-01
Spatial variation in abundance is influenced by local- and landscape-level environmental variables, but modeling landscape effects is challenging because the spatial scales of the relationships are unknown. Current approaches involve buffering survey locations with polygons of various sizes and using model selection to identify the best scale. The buffering...
USDA-ARS?s Scientific Manuscript database
Soil water content (theta) is one of the most important drivers for many biogeochemical fluxes at different temporal and spatial scales. Hydrogeophysical non-invasive sensors that measure the soil apparent electrical conductivity (ECa) have been widely used to infer spatial and temporal patterns of...
This paper presents a fuzzy set-based method of mapping spatial accuracy of thematic map and computing several ecological indicators while taking into account spatial variation of accuracy associated with different land cover types and other factors (e.g., slope, soil type, etc.)...
Kr 83 m calibration of the 2013 LUX dark matter search
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-12-26
Here, LUX was the first dark matter experiment to use a 83mKr calibration source. In this paper, we describe the source preparation and injection. We also present several 83mKr calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to understand the electric field within the time projection chamber.
Kr 83 m calibration of the 2013 LUX dark matter search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.; Alsum, S.; Araújo, H. M.
Here, LUX was the first dark matter experiment to use a 83mKr calibration source. In this paper, we describe the source preparation and injection. We also present several 83mKr calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to understand the electric field within the time projection chamber.
Anisotropic conducting films for electromagnetic radiation applications
Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard
2015-06-16
Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.