Sample records for including traumatic brain

  1. Traumatic brain injury and delayed sequelae: a review--traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia.

    PubMed

    Kiraly, Michael; Kiraly, Stephen J

    2007-11-12

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  2. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  3. Prevalence of traumatic brain injury in incarcerated groups compared to the general population: a meta-analysis.

    PubMed

    Farrer, Thomas J; Hedges, Dawson W

    2011-03-30

    Traumatic brain injury can cause numerous behavioral abnormalities including aggression, violence, impulsivity, and apathy, factors that can be associated with criminal behavior and incarceration. To better characterize the association between traumatic brain injury and incarceration, we pooled reported frequencies of lifetime traumatic brain injury of any severity among incarcerated samples and compared the pooled frequency to estimates of the lifetime prevalence of traumatic brain injury in the general population. We found a significantly higher prevalence of traumatic brain injury in the incarcerated groups compared to the general population. As such, there appears to be an association between traumatic brain injury and incarceration. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Playground Safety

    MedlinePlus

    ... 000 of these children are treated for a traumatic brain injury (TBI), including concussion. 2 Overall, more research is ... the Playground: Concussion Safety Tips for Parents CDC's Traumatic Brain Injury Learn more about traumatic brain injury and concussion. ...

  5. The association between adverse childhood experiences and adult traumatic brain injury/concussion: a scoping review.

    PubMed

    Ma, Zechen; Bayley, Mark T; Perrier, Laure; Dhir, Priya; Dépatie, Lana; Comper, Paul; Ruttan, Lesley; Lay, Christine; Munce, Sarah E P

    2018-01-12

    Adverse childhood experiences are significant risk factors for physical and mental illnesses in adulthood. Traumatic brain injury/concussion is a challenging condition where pre-injury factors may affect recovery. The association between childhood adversity and traumatic brain injury/concussion has not been previously reviewed. The research question addressed is: What is known from the existing literature about the association between adverse childhood experiences and traumatic brain injury/concussion in adults? All original studies of any type published in English since 2007 on adverse childhood experiences and traumatic brain injury/concussion outcomes were included. The literature search was conducted in multiple electronic databases. Arksey and O'Malley and Levac et al.'s scoping review frameworks were used. Two reviewers independently completed screening and data abstraction. The review yielded six observational studies. Included studies were limited to incarcerated or homeless samples, and individuals at high-risk of or with mental illnesses. Across studies, methods for childhood adversity and traumatic brain injury/concussion assessment were heterogeneous. A positive association between adverse childhood experiences and traumatic brain injury occurrence was identified. The review highlights the importance of screening and treatment of adverse childhood experiences. Future research should extend to the general population and implications on injury recovery. Implications for rehabilitation Exposure to adverse childhood experiences is associated with increased risk of traumatic brain injury. Specific types of adverse childhood experiences associated with risk of traumatic brain injury include childhood physical abuse, psychological abuse, household member incarceration, and household member drug abuse. Clinicians and researchers should inquire about adverse childhood experiences in all people with traumatic brain injury as pre-injury health conditions can affect recovery.

  6. The neuropathology of traumatic brain injury.

    PubMed

    Mckee, Ann C; Daneshvar, Daniel H

    2015-01-01

    Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at autopsy; however, promising efforts to develop imaging, spinal fluid, and peripheral blood biomarkers are underway to diagnose and monitor the course of disease in living subjects. © 2015 Elsevier B.V. All rights reserved.

  7. 75 FR 60431 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ..., Department of Defense. DPR 41 DoD System Name: Combined Mild Traumatic Brain Injury Registry. System Location... concussive or mild traumatic brain injury and/or related incidents in deployed settings, to include blast... Type Memoranda 09-033, Policy Guidance for Management of Concussion/Mild Traumatic Brain Injury in the...

  8. Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury.

    PubMed

    Carroll, Linda J; Cassidy, J David; Holm, Lena; Kraus, Jess; Coronado, Victor G

    2004-02-01

    The WHO Collaborating Centre for Neurotrauma Task Force on Mild Traumatic Brain Injury performed a comprehensive search and critical review of the literature published between 1980 and 2002 to assemble the best evidence on the epidemiology, diagnosis, prognosis and treatment of mild traumatic brain injury. Of 743 relevant studies, 313 were accepted on scientific merit and comprise our best-evidence synthesis. The current literature on mild traumatic brain injury is of variable quality and we report the most common methodological flaws. We make recommendations for avoiding the shortcomings evident in much of the current literature and identify topic areas in urgent need of further research. This includes the need for large, well-designed studies to support evidence-based guidelines for emergency room triage of children with mild traumatic brain injury and to explore more fully the issue of prognosis after mild traumatic brain injury in the elderly population. We also advocate use of standard criteria for defining mild traumatic brain injury and propose a definition.

  9. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  10. Vision rehabilitation interventions following mild traumatic brain injury: a scoping review.

    PubMed

    Simpson-Jones, Mary E; Hunt, Anne W

    2018-04-10

    To broadly examine the literature to identify vision interventions following mild traumatic brain injury. Objectives are to identify: (1) evidence-informed interventions for individuals with visual dysfunction after mild traumatic brain injury; (2) professions providing these interventions; (3) gaps in the literature and areas for further research. A scoping review was conducted of four electronic databases of peer-reviewed literature from the databases earliest records to June 2017. Articles were included if the study population was mild traumatic brain injury/concussion and a vision rehabilitation intervention was tested. Two independent reviewers screened articles for inclusion, extracted data, and identified themes. The initial search identified 3111 records. Following exclusions, 22 articles were included in the final review. Nine studies evaluated optical devices, such as corrective spectacles, contact lenses, prisms, or binasal occlusion. Two studies assessed vision therapy. Ten studies examined vision therapy using optical devices. One study investigated hyperbaric oxygen therapy. Optometrists performed these interventions in most of the studies. Future research should address quality appraisal of this literature, interventions that include older adult and pediatric populations, and interdisciplinary interventions. There are promising interventions for vision deficits following mild traumatic brain injury. However, there are multiple gaps in the literature that should be addressed by future research. Implications for Rehabilitation Mild traumatic brain injury may result in visual deficits that can contribute to poor concentration, headaches, fatigue, problems reading, difficulties engaging in meaningful daily activities, and overall reduced quality of life. Promising interventions for vision rehabilitation following mild traumatic brain injury include the use of optical devices (e.g., prism glasses), vision or oculomotor therapy (e.g., targeted exercises to train eye movements), and a combination of optical devices and vision therapy. Rehabilitation Professionals (e.g., optometrists, occupational therapists, physiotherapists) have an important role in screening for vision impairments, recommending referrals appropriately to vision specialists, and/or assessing and treating functional vision deficits in individuals with mild traumatic brain injury.

  11. The spectrum of disease in chronic traumatic encephalopathy.

    PubMed

    McKee, Ann C; Stern, Robert A; Nowinski, Christopher J; Stein, Thor D; Alvarez, Victor E; Daneshvar, Daniel H; Lee, Hyo-Soon; Wojtowicz, Sydney M; Hall, Garth; Baugh, Christine M; Riley, David O; Kubilus, Caroline A; Cormier, Kerry A; Jacobs, Matthew A; Martin, Brett R; Abraham, Carmela R; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L; Budson, Andrew E; Goldstein, Lee E; Kowall, Neil W; Cantu, Robert C

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I-IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I-III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer's disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein.

  12. The spectrum of disease in chronic traumatic encephalopathy

    PubMed Central

    McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging in age from 17 to 98 years (mean 59.5 years), including 64 athletes, 21 military veterans (86% of whom were also athletes) and one individual who engaged in self-injurious head banging behaviour. Eighteen age- and gender-matched individuals without a history of repetitive mild traumatic brain injury served as control subjects. In chronic traumatic encephalopathy, the spectrum of hyperphosphorylated tau pathology ranged in severity from focal perivascular epicentres of neurofibrillary tangles in the frontal neocortex to severe tauopathy affecting widespread brain regions, including the medial temporal lobe, thereby allowing a progressive staging of pathology from stages I–IV. Multifocal axonal varicosities and axonal loss were found in deep cortex and subcortical white matter at all stages of chronic traumatic encephalopathy. TAR DNA-binding protein 43 immunoreactive inclusions and neurites were also found in 85% of cases, ranging from focal pathology in stages I–III to widespread inclusions and neurites in stage IV. Symptoms in stage I chronic traumatic encephalopathy included headache and loss of attention and concentration. Additional symptoms in stage II included depression, explosivity and short-term memory loss. In stage III, executive dysfunction and cognitive impairment were found, and in stage IV, dementia, word-finding difficulty and aggression were characteristic. Data on athletic exposure were available for 34 American football players; the stage of chronic traumatic encephalopathy correlated with increased duration of football play, survival after football and age at death. Chronic traumatic encephalopathy was the sole diagnosis in 43 cases (63%); eight were also diagnosed with motor neuron disease (12%), seven with Alzheimer’s disease (11%), 11 with Lewy body disease (16%) and four with frontotemporal lobar degeneration (6%). There is an ordered and predictable progression of hyperphosphorylated tau abnormalities through the nervous system in chronic traumatic encephalopathy that occurs in conjunction with widespread axonal disruption and loss. The frequent association of chronic traumatic encephalopathy with other neurodegenerative disorders suggests that repetitive brain trauma and hyperphosphorylated tau protein deposition promote the accumulation of other abnormally aggregated proteins including TAR DNA-binding protein 43, amyloid beta protein and alpha-synuclein. PMID:23208308

  13. Characterizing on-road driving performance in individuals with traumatic brain injury who pass or fail an on-road driving assessment.

    PubMed

    Stolwyk, Renerus J; Charlton, Judith L; Ross, Pamela E; Bédard, Michel; Marshall, Shawn; Gagnon, Sylvain; Gooden, James R; Ponsford, Jennie L

    2018-01-15

    To characterise on-road driving performance in individuals with traumatic brain injury who fail on-road driving assessment, compared with both those who pass assessment and healthy controls, and the injury and cognitive factors associated with driving performance. Cross-sectional. Forty eight participants with traumatic brain injury (Age M = 40.50 SD = 14.62, 77% male, post-traumatic amnesia days M = 28.74 SD =27.68) and 48 healthy matched controls completed a standardised on-road driving assessment in addition to cognitive measures. Individuals with traumatic brain injury who passed on-road driving assessment performed no differently from controls while individuals with traumatic brain injury who failed the assessment demonstrated significantly worse driving performance relative to controls across a range of driving manoeuvres and error types including observation of on-road environment, speed control, gap selection, lane position, following distance and basic car control. Longer time post-injury and reduced visual perception were both significantly correlated with reduced driving skills. This exploratory study indicated that drivers with traumatic brain injury who failed on-road assessment demonstrated a heterogeneous pattern of impaired driving manoeuvres, characterised by skill deficits across both operational (e.g., basic car control and lane position) and tactical domains (e.g., following distance, gap selection, and observation) of driving. These preliminary findings can be used for implementation of future driving assessments and rehabilitation programs. Implications for rehabilitation Clinicians should be aware that the majority of individuals with traumatic brain injury were deemed fit to resume driving following formal on-road assessment, despite having moderate to very severe traumatic brain injuries. Drivers with traumatic brain injury who failed an on-road assessment demonstrated a heterogeneous pattern of impaired skills including errors with observation, speed regulation, gap selection, and vehicle control and accordingly had difficulty executing a diverse range of common driving manoeuvres. Comprehensive, formal on-road assessments, incorporating a range of skills, and manoeuvres, are needed to evaluate readiness to return to driving following traumatic brain injury. Individually tailored driver rehabilitation programs need to address these heterogeneous skill deficits to best support individuals to make a successful return to driving post-traumatic brain injury.

  14. Cobalt-55 positron emission tomography in traumatic brain injury: a pilot study.

    PubMed Central

    Jansen, H M; van der Naalt, J; van Zomeren, A H; Paans, A M; Veenma-van der Duin, L; Hew, J M; Pruim, J; Minderhoud, J M; Korf, J

    1996-01-01

    Traumatic brain injury is usually assessed with the Glasgow coma scale (GCS), CT, or MRI. After such injury, the injured brain tissue is characterised by calcium mediated neuronal damage and inflammation. Positron emission tomography with the isotope cobalt-55 (Co-PET) as a calcium tracer enables imaging of affected tissue in traumatic brain injury. The aim was to determine whether additional information can be gained by Co-PET in the diagnosis of moderate traumatic brain injury and to assess any prognostic value of Co-PET. Five patients with recent moderately severe traumatic brain injury were studied. CT was performed on the day of admission, EEG within one week, and MRI and Co-PET within four weeks of injury. Clinical assessment included neurological examination, GCS, neuropsychological testing, and Glasgow outcome scale (GOS) after one year. Co-PET showed focal uptake that extended beyond the morphological abnormalities shown by MRI and CT, in brain regions that were actually diagnosed with EEG. Thus Co-PET is potentially useful for diagnostic localisation of both structural and functional abnormalities in moderate traumatic brain injury. Images PMID:8708661

  15. Coagulopathy and transfusion requirements in war related penetrating traumatic brain injury. A single centre study in a French role 3 medical treatment facility in Afghanistan.

    PubMed

    Bordes, J; Joubert, C; Esnault, P; Montcriol, A; Nguyen, C; Meaudre, E; Dulou, R; Dagain, A

    2017-05-01

    Traumatic brain injury associated coagulopathy is frequent, either in isolated traumatic brain injury in civilian practice and in combat traumatic brain injury. In war zone, it is a matter of concern because head and neck are the second most frequent site of wartime casualty burden. Data focusing on transfusion requirements in patients with war related TBI coagulopathy are limited. A descriptive analysis was conducted of 77 penetrating traumatic brain injuries referred to a French role 3 medical treatment facility in Kabul, Afghanistan, deployed on the Kabul International Airport (KaIA), over a 30 months period. On 77 patients, 23 died during the prehospital phase and were not included in the study. Severe traumatic brain injury represented 50% of patients. Explosions were the most common injury mechanism. Extracranial injuries were present in 72% of patients. Traumatic brain injury coagulopathy was diagnosed in 67% of patients at role 3 admission. Red blood cell units (RBCu) were transfused in 39 (72%) patients, French lyophilized plasma (FLYP) in 41 (76%), and fresh whole blood (FWB) in 17 (31%). The results of this study support previous observations of coagulopathy as a frequent complication of traumatic brain injury. The majority of patients with war related penetrating traumatic brain injury presented with extracranial lesions. Most of them required a high level of transfusion capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Multimodal Characterization of the Late Effects of Traumatic Brain Injury: A Methodological Overview of the Late Effects of Traumatic Brain Injury Project.

    PubMed

    Edlow, Brian L; Keene, C Dirk; Perl, Daniel P; Iacono, Diego; Folkerth, Rebecca D; Stewart, William; Mac Donald, Christine L; Augustinack, Jean; Diaz-Arrastia, Ramon; Estrada, Camilo; Flannery, Elissa; Gordon, Wayne A; Grabowski, Thomas J; Hansen, Kelly; Hoffman, Jeanne; Kroenke, Christopher; Larson, Eric B; Lee, Patricia; Mareyam, Azma; McNab, Jennifer A; McPhee, Jeanne; Moreau, Allison L; Renz, Anne; Richmire, KatieRose; Stevens, Allison; Tang, Cheuk Y; Tirrell, Lee S; Trittschuh, Emily H; van der Kouwe, Andre; Varjabedian, Ani; Wald, Lawrence L; Wu, Ona; Yendiki, Anastasia; Young, Liza; Zöllei, Lilla; Fischl, Bruce; Crane, Paul K; Dams-O'Connor, Kristen

    2018-05-03

    Epidemiological studies suggest that a single moderate-to-severe traumatic brain injury (TBI) is associated with an increased risk of neurodegenerative disease, including Alzheimer's disease (AD) and Parkinson's disease (PD). Histopathological studies describe complex neurodegenerative pathologies in individuals exposed to single moderate-to-severe TBI or repetitive mild TBI, including chronic traumatic encephalopathy (CTE). However, the clinicopathological links between TBI and post-traumatic neurodegenerative diseases such as AD, PD, and CTE remain poorly understood. Here, we describe the methodology of the Late Effects of TBI (LETBI) study, whose goals are to characterize chronic post-traumatic neuropathology and to identify in vivo biomarkers of post-traumatic neurodegeneration. LETBI participants undergo extensive clinical evaluation using National Institutes of Health TBI Common Data Elements, proteomic and genomic analysis, structural and functional magnetic resonance imaging (MRI), and prospective consent for brain donation. Selected brain specimens undergo ultra-high resolution ex vivo MRI and histopathological evaluation including whole-mount analysis. Co-registration of ex vivo and in vivo MRI data enables identification of ex vivo lesions that were present during life. In vivo signatures of postmortem pathology are then correlated with cognitive and behavioral data to characterize the clinical phenotype(s) associated with pathological brain lesions. We illustrate the study methods and demonstrate proof of concept for this approach by reporting results from the first LETBI participant, who despite the presence of multiple in vivo and ex vivo pathoanatomic lesions had normal cognition and was functionally independent until her mid-80s. The LETBI project represents a multidisciplinary effort to characterize post-traumatic neuropathology and identify in vivo signatures of postmortem pathology in a prospective study.

  17. Anti-epileptic drugs in pediatric traumatic brain injury.

    PubMed

    Tanaka, Tomoko; Litofsky, N Scott

    2016-10-01

    Pediatric post-traumatic epilepsy incidence varies depending on reporting mechanism and injury severity; anti-epileptic drug (AEDs) use also varies with lack of quality evidence-based data. Adverse AED effects are not negligible; some may negatively affect functional outcome. This review focuses on clarifying available data. This review discusses seizures associated with traumatic brain injury in children, including seizure incidence, relationship to severity of injury, potential detrimental effects of seizures, potential benefits of AED, adverse effects of AED, new developments in preventing epileptogenesis, and suggested recommendations for patient management. English language papers were identified from PubMed using search terms including but not excluding the following: adverse drug effects, anti-epileptic drugs, children, electroencephalogram, epilepsy, epileptogenesis, head injury, levetiracetam, pediatrics, phenytoin, post-traumatic epilepsy, prevention, prophylaxis, seizures, and traumatic brain injury. Expert commentary: Identification of high-risk patients for post-traumatic seizures is a key goal. Levetiracetam may prevent epileptogenesis, as may other developments.

  18. Caring for Patients with traumatic brain injury: a survey of nurses' perceptions.

    PubMed

    Oyesanya, Tolu O; Brown, Roger L; Turkstra, Lyn S

    2017-06-01

    The purpose of this study was to determine nurses' perceptions about caring for patients with traumatic brain injury. Annually, it is estimated that over 10 million people sustain a traumatic brain injury around the world. Patients with traumatic brain injury and their families are often concerned with expectations about recovery and seek information from nurses. Nurses' perceptions of care might influence information provided to patients and families, particularly if inaccurate knowledge and perceptions are held. Thus, nurses must be knowledgeable about care of these patients. A cross-sectional survey, the Perceptions of Brain Injury Survey (PBIS), was completed electronically by 513 nurses between October and December 2014. Data were analysed with structural equation modelling, factor analysis, and pairwise comparisons. Using latent class analysis, authors were able to divide nurses into three homogeneous sub-groups based on perceived knowledge: low, moderate and high. Findings showed that nurses who care for patients with traumatic brain injury the most have the highest perceived confidence but the lowest perceived knowledge. Nurses also had significant variations in training. As there is limited literature on nurses' perceptions of caring for patients with traumatic brain injury, these findings have implications for training and educating nurses, including direction for development of nursing educational interventions. As the incidence of traumatic brain injury is growing, it is imperative that nurses be knowledgeable about care of patients with these injuries. The traumatic brain injury PBIS can be used to determine inaccurate perceptions about caring for patients with traumatic brain injury before educating and training nurses. © 2016 John Wiley & Sons Ltd.

  19. Prevalence of Cerebral Microhemorrhage following Chronic Blast-Related Mild Traumatic Brain Injury in Military Service Members Using Susceptibility-Weighted MRI.

    PubMed

    Lotan, E; Morley, C; Newman, J; Qian, M; Abu-Amara, D; Marmar, C; Lui, Y W

    2018-05-24

    Cerebral microhemorrhages are a known marker of mild traumatic brain injury. Blast-related mild traumatic brain injury relates to a propagating pressure wave, and there is evidence that the mechanism of injury in blast-related mild traumatic brain injury may be different from that in blunt head trauma. Two recent reports in mixed cohorts of blunt and blast-related traumatic brain injury in military personnel suggest that the prevalence of cerebral microhemorrhages is lower than in civilian head injury. In this study, we aimed to characterize the prevalence of cerebral microhemorrhages in military service members specifically with chronic blast-related mild traumatic brain injury. Participants were prospectively recruited and underwent 3T MR imaging. Susceptibility-weighted images were assessed by 2 neuroradiologists independently for the presence of cerebral microhemorrhages. Our cohort included 146 veterans (132 men) who experienced remote blast-related mild traumatic brain injury (mean, 9.4 years; median, 9 years after injury). Twenty-one (14.4%) reported loss of consciousness for <30 minutes. Seventy-seven subjects (52.7%) had 1 episode of blast-related mild traumatic brain injury; 41 (28.1%) had 2 episodes; and 28 (19.2%) had >2 episodes. No cerebral microhemorrhages were identified in any subject, as opposed to the frequency of SWI-detectable cerebral microhemorrhages following blunt-related mild traumatic brain injury in the civilian population, which has been reported to be as high as 28% in the acute and subacute stages. Our results may reflect differences in pathophysiology and the mechanism of injury between blast- and blunt-related mild traumatic brain injury. Additionally, the chronicity of injury may play a role in the detection of cerebral microhemorrhages. © 2018 by American Journal of Neuroradiology.

  20. Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain...who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to...repetitive concussive TBI in mice has been optimal. Ongoing efforts include development of more sensitive methods to detect tau, and combinations of

  1. Combat-related headache and traumatic brain injury.

    PubMed

    Waung, Maggie W; Abrams, Gary M

    2012-12-01

    Post-traumatic headache is a commonly described complication of traumatic brain injury. Recent studies highlight differences between headache features of combat veterans who suffered traumatic brain injury compared to civilians. Not surprisingly, there is a higher rate of associated PTSD and sleep disturbances among veterans. Factors of lower socioeconomic status, rank, and multiple head injuries appear to have a similar effect on post-traumatic headache in combat-related traumatic brain injury. Areas of discordance in the literature include the effect of prolonged loss of consciousness and the prevalence of specific headache phenotypes following head trauma. To date, there have been no randomized trials of treatment for post-traumatic headache. This may be related to the variability of headache features and uncertainty of pathophysiologic mechanisms. Given this lack of data, many practitioners follow treatment guidelines for primary headaches. Additionally, because of mounting data linking PTSD to post-traumatic headache in combat veterans, it may be crucial to choose multimodal agents and take a multidisciplinary approach to combat-related headache.

  2. Experiences of giving and receiving care in traumatic brain injury: An integrative review.

    PubMed

    Kivunja, Stephen; River, Jo; Gullick, Janice

    2018-04-01

    To synthesise the literature on the experiences of giving or receiving care for traumatic brain injury for people with traumatic brain injury, their family members and nurses in hospital and rehabilitation settings. Traumatic brain injury represents a major source of physical, social and economic burden. In the hospital setting, people with traumatic brain injury feel excluded from decision-making processes and perceive impatient care. Families describe inadequate information and support for psychological distress. Nurses find the care of people with traumatic brain injury challenging particularly when experiencing heavy workloads. To date, a contemporary synthesis of the literature on people with traumatic brain injury, family and nurse experiences of traumatic brain injury care has not been conducted. Integrative literature review. A systematic search strategy guided by the PRISMA statement was conducted in CINAHL, PubMed, Proquest, EMBASE and Google Scholar. Whittemore and Knafl's (Journal of Advanced Nursing, 52, 2005, 546) integrative review framework guided data reduction, data display, data comparison and conclusion verification. Across the three participant categories (people with traumatic brain injury/family members/nurses) and sixteen subcategories, six cross-cutting themes emerged: seeking personhood, navigating challenging behaviour, valuing skills and competence, struggling with changed family responsibilities, maintaining productive partnerships and reflecting on workplace culture. Traumatic brain injury creates changes in physical, cognitive and emotional function that challenge known ways of being in the world for people. This alters relationship dynamics within families and requires a specific skill set among nurses. Recommendations include the following: (i) formal inclusion of people with traumatic brain injury and families in care planning, (ii) routine risk screening for falls and challenging behaviour to ensure that controls are based on accurate assessment, (iii) formal orientation and training for novice nurses in the management of challenging behaviour, (iv) professional case management to guide access to services and funding and (v) personal skill development to optimise family functioning. © 2018 John Wiley & Sons Ltd.

  3. Long-term employment outcomes following traumatic brain injury and orthopaedic trauma: A ten-year prospective study.

    PubMed

    Dahm, Jane; Ponsford, Jennie

    2015-11-01

    To investigate the trajectory and predictors of employment over a period of 10 years following traumatic brain injury and traumatic orthopaedic injury. Prospective follow-up at 1, 2, 5 and 10 years post-injury. Seventy-nine individuals with traumatic brain injury and 79 with traumatic orthopaedic injury recruited from Epworth HealthCare in Melbourne, Australia during inpatient rehabilitation. Information was obtained from medical files and self-report questionnaires. Individuals with traumatic brain injury were less likely to be competitively employed during the period up to 10 years post-injury compared with individuals with traumatic orthopaedic injury, although there was evidence of increasing employment participation during that time. More severe traumatic brain injury, older age, pre-injury psychological treatment, and studying or having a blue-collar occupation at time of injury were associated with poorer employment outcomes. Individuals with traumatic brain injury had spent less time with their current employer and were less likely to have increased responsibility since the injury than those with traumatic orthopaedic injury. At least half of each group reported difficulty at work due to fatigue. Given the potential for gains in employment participation over an extended time-frame, there may be benefit in ongoing access to individualized vocational rehabilitation. Particular areas of focus would include managing fatigue and psychiatric disorders, and exploring supported occupational activity for all levels of injury severity.

  4. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  5. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  6. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  7. 38 CFR 71.20 - Eligible veterans and servicemembers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Armed Forces. (b) The individual has a serious injury, including traumatic brain injury, psychological... impairment or injury, including traumatic brain injury. (3) Psychological trauma or a mental disorder that..., naval, or air service on or after September 11, 2001. (c) Such serious injury renders the individual in...

  8. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases.

    PubMed

    Cruz-Haces, Marcela; Tang, Jonathan; Acosta, Glen; Fernandez, Joseph; Shi, Riyi

    2017-01-01

    Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.

  9. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and...11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17...To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing efforts include

  10. Pediatric Traumatic Brain Injury. Special Topic Report #3.

    ERIC Educational Resources Information Center

    Waaland, Pamela K.; Cockrell, Janice L.

    This brief report summarizes what is known about pediatric traumatic brain injury, including the following: risk factors (e.g., males especially those ages 5 to 25, youth with preexisting problems including previous head injury victims, and children receiving inadequate supervision); life after injury; physical and neurological consequences (e.g.,…

  11. [Guidelines for the diagnosis and treatment of severe traumatic brain injury. Part 2. Intensive care and neuromonitoring].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Oshorov, A V; Sychev, A A; Alexandrova, E V; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the major causes of death and disability in young and middle-aged people. The most problematic group is comprised of patients with severe TBI who are in a coma. The adequate diagnosis of primary brain injuries and timely prevention and treatment of the secondary injury mechanisms largely define the possibility of reducing mortality and severe disabling consequences. When developing these guidelines, we used our experience in the development of international and national recommendations for the diagnosis and treatment of mild traumatic brain injury, penetrating gunshot wounds to the skull and brain, severe traumatic brain injury, and severe consequences of brain injuries, including a vegetative state. In addition, we used international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe traumatic brain injury, which had been published in recent years. The proposed guidelines concern intensive care of severe TBI in adults and are particularly intended for neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in the treatment of these patients.

  12. A systematic review of peer mentoring interventions for people with traumatic brain injury.

    PubMed

    Morris, Richard Pg; Fletcher-Smith, Joanna C; Radford, Kathryn A

    2017-08-01

    This systematic review sought evidence concerning the effectiveness of peer mentoring for people with traumatic brain injury. Fourteen electronic databases were searched, including PsycINFO, MEDLINE, CINAHL, EMBASE and the Cochrane Library, from inception to September 21 2016. Ten grey literature databases, PROSPERO, two trials registers, reference lists and author citations were also searched. Studies which employed a model of one-to-one peer mentoring between traumatic brain injury survivors were included. Two reviewers independently screened all titles and abstracts before screening full texts of shortlisted studies. A third reviewer resolved disagreements. Two reviewers independently extracted data and assessed studies for quality and risk of bias. The search returned 753 records, including one identified through hand searching. 495 records remained after removal of duplicates and 459 were excluded after screening. Full texts were assessed for the remaining 36 studies and six met the inclusion criteria. All were conducted in the United States between 1996 and 2012 and employed a variety of designs including two randomised controlled trials. A total of 288 people with traumatic brain injury participated in the studies. No significant improvements in social activity level or social network size were found, but significant improvements were shown in areas including behavioural control, mood, coping and quality of life. There is limited evidence for the effectiveness of peer mentoring after traumatic brain injury. The available evidence comes from small-scale studies, of variable quality, without detailed information on the content of sessions or the 'active ingredient' of the interventions.

  13. Neurotherapy of Traumatic Brain Injury/Post-Traumatic Stress Symptoms in Vietnam Veterans.

    PubMed

    Nelson, David V; Esty, Mary Lee

    2015-10-01

    Previous report suggested the beneficial effects of an adaptation of the Flexyx Neurotherapy System (FNS) for the amelioration of mixed traumatic brain injury/post-traumatic stress symptoms in veterans of the Afghanistan and Iraq wars. As a novel variant of electroencephalograph biofeedback, FNS falls within the bioenergy domain of complementary and alternative medicine. Rather than learning voluntary control over the production/inhibition of brain wave patterns, FNS involves offsetting stimulation of brain wave activity by means of an external energy source, specifically, the conduction of electromagnetic energy stimulation via the connecting electroencephalograph cables. Essentially, these procedures subliminally induce strategic distortion of ongoing brain wave activity to presumably facilitate resetting of more adaptive patterns of activity. Reported herein are two cases of Vietnam veterans with mixed traumatic brain injury/post-traumatic stress symptoms, each treated with FNS for 25 sessions. Comparisons of pre- and post-treatment questionnaire assessments revealed notable decreases for all symptoms, suggesting improvements across the broad domains of cognition, pain, sleep, fatigue, and mood/emotion, including post-traumatic stress symptoms, as well as for overall activity levels. Findings suggest FNS treatment may be of potential benefit for the partial amelioration of symptoms, even in some individuals for whom symptoms have been present for decades. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  14. Acute pathophysiological processes after ischaemic and traumatic brain injury.

    PubMed

    Kunz, Alexander; Dirnagl, Ulrich; Mergenthaler, Philipp

    2010-12-01

    Ischaemic stroke and brain trauma are among the leading causes of mortality and long-term disability in the western world. Enormous endeavours have been made to elucidate the complex pathophysiology of ischaemic and traumatic brain injury with the intention of developing new therapeutic strategies for patients suffering from these devastating diseases. This article reviews the current knowledge on cascades that are activated after ischaemic and traumatic brain injury and that lead to progression of tissue damage. Main attention will be on pathophysiological events initiated after ischaemic stroke including excitotoxicity, oxidative/nitrosative stress, peri-infarct depolarizations, apoptosis and inflammation. Additionally, specific pathophysiological aspects after traumatic brain injury will be discussed along with their similarities and differences to ischaemic brain injury. This article provides prerequisites for understanding the therapeutic strategies for stroke and trauma patients which are addressed in other articles of this issue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    PubMed

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  16. Assessing Children with Traumatic Brain Injuries: Integrating Educational and Medical Issues.

    ERIC Educational Resources Information Center

    Shaw, Steven R.; Yingst, Christine A.

    1992-01-01

    This overview of traumatic brain injuries discusses (1) incidence and prevalence; (2) characteristics; (3) the recovery process; and (4) educational/medical assessment, including premorbid functioning, current functioning, educationally relevant medical issues, and amount and type of family support. (JDD)

  17. Developing a Family-Centered Care Model for Critical Care After Pediatric Traumatic Brain Injury.

    PubMed

    Moore, Megan; Robinson, Gabrielle; Mink, Richard; Hudson, Kimberly; Dotolo, Danae; Gooding, Tracy; Ramirez, Alma; Zatzick, Douglas; Giordano, Jessica; Crawley, Deborah; Vavilala, Monica S

    2015-10-01

    This study examined the family experience of critical care after pediatric traumatic brain injury in order to develop a model of specific factors associated with family-centered care. Qualitative methods with semi-structured interviews were used. Two level 1 trauma centers. Fifteen mothers of children who had an acute hospital stay after traumatic brain injury within the last 5 years were interviewed about their experience of critical care and discharge planning. Participants who were primarily English, Spanish, or Cantonese speaking were included. None. Content analysis was used to code the transcribed interviews and develop the family-centered care model. Three major themes emerged: 1) thorough, timely, compassionate communication, 2) capacity building for families, providers, and facilities, and 3) coordination of care transitions. Participants reported valuing detailed, frequent communication that set realistic expectations and prepared them for decision making and outcomes. Areas for capacity building included strategies to increase provider cultural humility, parent participation in care, and institutional flexibility. Coordinated care transitions, including continuity of information and maintenance of partnerships with families and care teams, were highlighted. Participants who were not primarily English speaking reported particular difficulty with communication, cultural understanding, and coordinated transitions. This study presents a family-centered traumatic brain injury care model based on family perspectives. In addition to communication and coordination strategies, the model offers methods to address cultural and structural barriers to meeting the needs of non-English-speaking families. Given the stress experienced by families of children with traumatic brain injury, careful consideration of the model themes identified here may assist in improving overall quality of care to families of hospitalized children with traumatic brain injury.

  18. Traumatic Brain Injury. An Overview Look at Effects and Strategies for Remediation.

    ERIC Educational Resources Information Center

    Brongiel, Andrea

    This paper provides an overview of traumatic brain injury (TBI), including incidence, definition, characteristics, assessment and identification, remediation, teacher responsibility, and parent involvement. It discusses the eligibility of students with TBI to receive appropriate and related services in school under the Individuals with…

  19. School-Based Traumatic Brain Injury and Concussion Management Program

    ERIC Educational Resources Information Center

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  20. Military-related traumatic brain injury and neurodegeneration

    PubMed Central

    McKee, Ann C.; Robinson, Meghan E.

    2014-01-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and pathological features that overlap with postconcussion syndrome and posttraumatic stress disorder, suggesting that the three disorders might share some biological underpinnings. PMID:24924675

  1. Military-related traumatic brain injury and neurodegeneration.

    PubMed

    McKee, Ann C; Robinson, Meghan E

    2014-06-01

    Mild traumatic brain injury (mTBI) includes concussion, subconcussion, and most exposures to explosive blast from improvised explosive devices. mTBI is the most common traumatic brain injury affecting military personnel; however, it is the most difficult to diagnose and the least well understood. It is also recognized that some mTBIs have persistent, and sometimes progressive, long-term debilitating effects. Increasing evidence suggests that a single traumatic brain injury can produce long-term gray and white matter atrophy, precipitate or accelerate age-related neurodegeneration, and increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease. In addition, repetitive mTBIs can provoke the development of a tauopathy, chronic traumatic encephalopathy. We found early changes of chronic traumatic encephalopathy in four young veterans of the Iraq and Afghanistan conflict who were exposed to explosive blast and in another young veteran who was repetitively concussed. Four of the five veterans with early-stage chronic traumatic encephalopathy were also diagnosed with posttraumatic stress disorder. Advanced chronic traumatic encephalopathy has been found in veterans who experienced repetitive neurotrauma while in service and in others who were accomplished athletes. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus; septal abnormalities; and abnormal deposits of hyperphosphorylated tau as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy has clinical and pathological features that overlap with postconcussion syndrome and posttraumatic stress disorder, suggesting that the three disorders might share some biological underpinnings. Copyright © 2014. Published by Elsevier Inc.

  2. The role of physical exercise in cognitive recovery after traumatic brain injury: A systematic review.

    PubMed

    Morris, Timothy; Gomes Osman, Joyce; Tormos Muñoz, Jose Maria; Costa Miserachs, David; Pascual Leone, Alvaro

    2016-11-22

    There is a growing body of evidence revealing exercise-induced effects on brain structure and cognitive function across the lifespan. Animal models of traumatic brain injury also suggest exercise is capable of modulating not only the pathophysiological changes following trauma but also the associated cognitive deficits. To evaluate the effect of physical exercise on cognitive impairment following traumatic brain injury in humans. A systematic search of the PubMed database was performed using the search terms "cognition" and "executive function, memory or attention", "traumatic brain injury" and "physical exercise". Adult human traumatic brain injury studies that assessed cognitive function as an outcome measure (primary or secondary) and used physical exercise as a treatment (single or combined) were assessed by two independent reviewers. Data was extracted under the guidance of the population intervention comparison outcome framework wherein, characteristics of included studies (exercise duration, intensity, combined or single intervention, control groups and cognitive measures) were collected, after which, methodological quality (Cochrane criteria) was assessed. A total of 240 citations were identified, but only 6 met our inclusion criteria (3 from search records, 3 from reference lists. Only a small number of studies have evaluated the effect of exercise on cognition following traumatic brain injury in humans, and of those, assessment of efficacy is difficult due to low methodological strength and a high risk of different types of bias. Evidence of an effect of physical exercise on cognitive recovery suggests further studies should explore this treatment option with greater methodological approaches. Recommendations to reduce risk of bias and methodological shortfalls are discussed and include stricter inclusion criteria to create homogenous groups and larger patient pools, more rigorous cognitive assessments and the study and reporting of additional and combined rehabilitation techniques.

  3. Concussion in Motor Vehicle Accidents: The Concussion Identification Index

    ClinicalTrials.gov

    2016-08-03

    Motor Vehicle Accidents; TBI (Traumatic Brain Injury); Brain Contusion; Brain Injuries; Cortical Contusion; Concussion Mild; Cerebral Concussion; Brain Concussion; Accidents, Traffic; Traffic Accidents; Traumatic Brain Injury With Brief Loss of Consciousness; Traumatic Brain Injury With no Loss of Consciousness; Traumatic Brain Injury With Loss of Consciousness

  4. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    PubMed

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    ERIC Educational Resources Information Center

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  6. Medical Management of the Severe Traumatic Brain Injury Patient.

    PubMed

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  7. Defining traumatic brain injury in children and youth using international classification of diseases version 10 codes: a systematic review protocol.

    PubMed

    Chan, Vincy; Thurairajah, Pravheen; Colantonio, Angela

    2013-11-13

    Although healthcare administrative data are commonly used for traumatic brain injury research, there is currently no consensus or consistency on using the International Classification of Diseases version 10 codes to define traumatic brain injury among children and youth. This protocol is for a systematic review of the literature to explore the range of International Classification of Diseases version 10 codes that are used to define traumatic brain injury in this population. The databases MEDLINE, MEDLINE In-Process, Embase, PsychINFO, CINAHL, SPORTDiscus, and Cochrane Database of Systematic Reviews will be systematically searched. Grey literature will be searched using Grey Matters and Google. Reference lists of included articles will also be searched. Articles will be screened using predefined inclusion and exclusion criteria and all full-text articles that meet the predefined inclusion criteria will be included for analysis. The study selection process and reasons for exclusion at the full-text level will be presented using a PRISMA study flow diagram. Information on the data source of included studies, year and location of study, age of study population, range of incidence, and study purpose will be abstracted into a separate table and synthesized for analysis. All International Classification of Diseases version 10 codes will be listed in tables and the codes that are used to define concussion, acquired traumatic brain injury, head injury, or head trauma will be identified. The identification of the optimal International Classification of Diseases version 10 codes to define this population in administrative data is crucial, as it has implications for policy, resource allocation, planning of healthcare services, and prevention strategies. It also allows for comparisons across countries and studies. This protocol is for a review that identifies the range and most common diagnoses used to conduct surveillance for traumatic brain injury in children and youth. This is an important first step in reaching an appropriate definition using International Classification of Diseases version 10 codes and can inform future work on reaching consensus on the codes to define traumatic brain injury for this vulnerable population.

  8. [Prognosis in pediatric traumatic brain injury. A dynamic cohort study].

    PubMed

    Vázquez-Solís, María G; Villa-Manzano, Alberto I; Sánchez-Mosco, Dalia I; Vargas-Lares, José de Jesús; Plascencia-Fernández, Irma

    2013-01-01

    traumatic brain injury is a main cause of hospital admission and death in children. Our objective was to identify prognostic factors of pediatric traumatic brain injury. this was a dynamic cohort study of traumatic brain injury with 6 months follow-up. The exposition was: mild or moderate/severe traumatic brain injury, searching for prognosis (morbidity-mortality and decreased Glasgow scale). Relative risk and logistic regression was estimated for prognostic factors. we evaluated 440 patients with mild traumatic brain injury and 98 with moderate/severe traumatic brain injury. Morbidity for mild traumatic brain injury was 1 %; for moderate/severe traumatic brain injury, 5 %. There were no deaths. Prognostic factors for moderate/severe traumatic brain injury were associated injuries (RR = 133), fractures (RR = 60), street accidents (RR = 17), night time accidents (RR = 2.3) and weekend accidents (RR = 2). Decreased Glasgow scale was found in 9 %, having as prognostic factors: visible injuries (RR = 3), grown-up supervision (RR = 2.5) and time of progress (RR = 1.6). there should be a prognosis established based on kinetic energy of the injury and not only with Glasgow Scale.

  9. Substance P Mediates Reduced Pneumonia Rates After Traumatic Brain Injury

    PubMed Central

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D.; Pritts, Timothy A.; Caldwell, Charles C.; Remick, Daniel G.; Lentsch, Alex B.

    2014-01-01

    Objectives Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Design Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Setting Academic medical centers in Cincinnati, OH, and Boston, MA. Patients/Subjects Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8–10 weeks old. Interventions Administration of a substance P receptor antagonist in mice. Measurements and Main Results Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury–associated increases in bacterial clearance and survival. Conclusions The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non–head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury–induced release of substance P, which improves innate immunity to decrease pneumonia. PMID:25014065

  10. Substance P mediates reduced pneumonia rates after traumatic brain injury.

    PubMed

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D; Pritts, Timothy A; Caldwell, Charles C; Remick, Daniel G; Lentsch, Alex B

    2014-09-01

    Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Academic medical centers in Cincinnati, OH, and Boston, MA. Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. Administration of a substance P receptor antagonist in mice. Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the mechanism of this effect occurs through traumatic brain injury-induced release of substance P, which improves innate immunity to decrease pneumonia.

  11. Plasma copeptin level predicts acute traumatic coagulopathy and progressive hemorrhagic injury after traumatic brain injury.

    PubMed

    Yang, Ding-Bo; Yu, Wen-Hua; Dong, Xiao-Qiao; Du, Quan; Shen, Yong-Feng; Zhang, Zu-Yong; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Wang, Hao; Jiang, Li; Du, Yuan-Feng

    2014-08-01

    Higher plasma copeptin levels correlate with poor clinical outcomes after traumatic brain injury. Nevertheless, their links with acute traumatic coagulopathy and progressive hemorrhagic injury are unknown. Therefore, we aimed to investigate the relationship between plasma copeptin levels, acute traumatic coagulopathy and progressive hemorrhagic injury in patients with severe traumatic brain injury. We prospectively studied 100 consecutive patients presenting within 6h from head trauma. Progressive hemorrhagic injury was present when the follow-up computerized tomography scan reported any increase in size or number of the hemorrhagic lesion, including newly developed ones. Acute traumatic coagulopathy was defined as an activated partial thromboplastic time greater than 40s and/or international normalized ratio greater than 1.2 and/or a platelet count less than 120×10(9)/L. We measured plasma copeptin levels on admission using an enzyme-linked immunosorbent assay in a blinded fashion. In multivariate logistic regression analysis, plasma copeptin level emerged as an independent predictor of progressive hemorrhagic injury and acute traumatic coagulopathy. Using receiver operating characteristic curves, we calculated areas under the curve for progressive hemorrhagic injury and acute traumatic coagulopathy. The predictive performance of copeptin was similar to that of Glasgow Coma Scale score. However, copeptin did not obviously improve the predictive value of Glasgow Coma Scale score. Thus, copeptin may help in the prediction of progressive hemorrhagic injury and acute traumatic coagulopathy after traumatic brain injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Definition of Traumatic Brain Injury, Neurosurgery, Trauma Orthopedics, Neuroimaging, Psychology, and Psychiatry in Mild Traumatic Brain Injury.

    PubMed

    Pervez, Mubashir; Kitagawa, Ryan S; Chang, Tiffany R

    2018-02-01

    Traumatic brain injury (TBI) disrupts the normal function of the brain. This condition can adversely affect a person's quality of life with cognitive, behavioral, emotional, and physical symptoms that limit interpersonal, social, and occupational functioning. Although many systems exist, the simplest classification includes mild, moderate, and severe TBI depending on the nature of injury and the impact on the patient's clinical status. Patients with TBI require prompt evaluation and multidisciplinary management. Aside from the type and severity of the TBI, recovery is influenced by individual patient characteristics, social and environmental factors, and access to medical and rehabilitation services. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Traumatic stress: effects on the brain

    PubMed Central

    Bremner, J. Douglas

    2006-01-01

    Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Traumatic stress can be associated with lasting changes in these brain areas. Traumatic stress is associated with increased cortisol and norepinephrine responses to subsequent stressors. Antidepressants have effets on the hippocampus that counteract the effects of stress. Findings from animal studies have been extended to patients with post-traumatic stress disorder (PTSD) showing smaller hippocampal and anterior cingulate volumes, increased amygdala function, and decreased medial prefrontal/anterior cingulate function. In addition, patients with PTSD show increased cortisol and norepinephrine responses to stress. Treatments that are efficacious for PTSD show a promotion of neurogenesis in animal studies, as well as promotion of memory and increased hippocampal volume in PTSD. PMID:17290802

  14. Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Rehabilitation Provider in Deployed and Non-deployed Settings

    DTIC Science & Technology

    2014-01-01

    RPE and references are also included as part of the CST. DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute...Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic Brain Injury: Guidance for the Rehabilitation Provider...days Symptoms are worsening 3 DCoE Clinical Recommendation | January 2014 Progressive Return to Activity Following Acute Concussion/Mild Traumatic

  15. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2016-10-01

    onto wild-type mice markedly reduces 1) memory including contextual fear memory and spatial memory, and 2) long-term potentiation, a type of...TERMS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s disease 16. SECURITY CLASSIFICATION OF: 17...mechanism leading to TBI and AD. 2 KEYWORDS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s

  16. Misconceptions about Traumatic Brain Injury among Students Preparing to Be Special Education Professionals

    ERIC Educational Resources Information Center

    Hux, Karen; Bush, Erin; Evans, Kelli; Simanek, Gina

    2013-01-01

    The researchers performed a survey study to determine the effectiveness of collegiate programmes in dispelling common misconceptions about traumatic brain injury (TBI) while preparing undergraduate and graduate students for special education (SpEd) careers. Respondents included 136 undergraduate and 147 graduate SpEd students in their final…

  17. Cognitive activity limitations one year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury.

    PubMed

    Sommer, Jens Bak; Norup, Anne; Poulsen, Ingrid; Morgensen, Jesper

    2013-09-01

    To examine cognitive activity limitations and predictors of outcome 1 year post-trauma in patients admitted to sub-acute rehabilitation after severe traumatic brain injury. The study included 119 patients with severe traumatic brain injury admitted to centralized sub-acute rehabilitation in the Eastern part of Denmark during a 5-year period from 2005 to 2009. Level of consciousness was assessed consecutively during rehabilitation and at 1 year post-trauma. Severity of traumatic brain injury was classified according to duration of post-traumatic amnesia. The cognitive subscale of Functional Independence MeasureTM (Cog-FIM) was used to assess cognitive activity limitations. Multivariate logistic regression analyses were performed to identify predictors of an independent level of functioning. The majority of patients progressed to a post-confusional level of consciousness during the first year post-trauma. At follow-up 33-58% of patients had achieved functional independence within the cognitive domains on the Cog-FIM. Socio-economic status, duration of acute care and post-traumatic amnesia were significant predictors of outcome. Substantial recovery was documented among patients with severe traumatic brain injury during the first year post-trauma. The results of the current study suggest that absence of consciousness at discharge from acute care should not preclude patients from being referred to specialized sub-acute rehabilitation.

  18. Disconnection of network hubs and cognitive impairment after traumatic brain injury.

    PubMed

    Fagerholm, Erik D; Hellyer, Peter J; Scott, Gregory; Leech, Robert; Sharp, David J

    2015-06-01

    Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. Incidence of Traumatic Brain Injury Across the Full Disease Spectrum: A Population-Based Medical Record Review Study

    PubMed Central

    Leibson, Cynthia L.; Brown, Allen W.; Ransom, Jeanine E.; Diehl, Nancy N.; Perkins, Patricia K.; Mandrekar, Jay; Malec, James F.

    2012-01-01

    Background Extremely few objective estimates of traumatic brain injury incidence include all ages, both sexes, all injury mechanisms, and the full spectrum from very mild to fatal events. Methods We used unique Rochester Epidemiology Project medical records-linkage resources, including highly sensitive and specific diagnostic coding, to identify all Olmsted County, MN, residents with diagnoses suggestive of traumatic brain injury regardless of age, setting, insurance, or injury mechanism. Provider-linked medical records for a 16% random sample were reviewed for confirmation as definite, probable, possible (symptomatic), or no traumatic brain injury. We estimated incidence per 100,000 person-years for 1987–2000 and compared these record-review rates with rates obtained using Centers for Disease Control and Prevention (CDC) data-systems approach. For the latter, we identified all Olmsted County residents with any CDC-specified diagnosis codes recorded on hospital/emergency department administrative claims or death certificates 1987–2000. Results Of sampled individuals, 1257 met record-review criteria for incident traumatic brain injury; 56% were ages 16–64 years, 56% were male, 53% were symptomatic. Mechanism, sex, and diagnostic certainty differed by age. The incidence rate per 100,000 person-years was 558 (95% confidence interval = 528–590) versus 341 (331–350) using the CDC data system approach. The CDC approach captured only 40% of record-review cases. Seventy-four percent of missing cases presented to hospital/emergency department; none had CDC-specified codes assigned on hospital/emergency department administrative claims or death certificates; 66% were symptomatic. Conclusions Capture of symptomatic traumatic brain injuries requires a wider range of diagnosis codes, plus sampling strategies to avoid high rates of false-positive events. PMID:21968774

  20. A neurovascular perspective for long-term changes after brain trauma.

    PubMed

    Pop, V; Badaut, J

    2011-12-01

    Traumatic brain injury (TBI) affects all age groups in a population and is an injury generating scientific interest not only as an acute event, but also as a complex brain disease with several underlying neurobehavioral and neuropathological characteristics. We review early and long-term alterations after juvenile and adult TBI with a focus on changes in the neurovascular unit (NVU), including neuronal interactions with glia and blood vessels at the blood-brain barrier (BBB). Post-traumatic changes in cerebral blood-flow, BBB structures and function, as well as mechanistic pathways associated with brain aging and neurodegeneration are presented from clinical and experimental reports. Based on the literature, increased attention on BBB changes should be integrated in studies characterizing TBI outcome and may provide a meaningful therapeutic target to resolve detrimental post-traumatic dysfunction.

  1. Vascular Neural Network phenotypic transformation after traumatic injury: potential role in long-term sequelae

    PubMed Central

    Badaut, J.; Bix, G.J.

    2014-01-01

    The classical neurovascular unit (NVU), composed primarily of endothelium, astrocytes and neurons, could be expanded to include smooth muscle and perivascular nerves present in both the up and down stream feeding blood vessels (arteries and veins). The extended NVU, which can be defined as the vascular neural network (VNN), may represent a new physiological unit to consider for therapeutic development in stroke, traumatic brain injury, and other brain disorders [1]. This review is focused on traumatic brain injury and resultant post-traumatic changes in cerebral blood-flow, smooth muscle cells, matrix, BBB structures and function and the association of these changes with cognitive outcomes as described in clinical and experimental reports. We suggest that studies characterizing TBI outcomes should increase their focus on changes to the VNN as this may yield meaningful therapeutic targets to resolve post-traumatic dysfunction. PMID:24323723

  2. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.

  3. Brain-derived neurotropic factor polymorphisms, traumatic stress, mild traumatic brain injury, and combat exposure contribute to postdeployment traumatic stress.

    PubMed

    Dretsch, Michael N; Williams, Kathy; Emmerich, Tanja; Crynen, Gogce; Ait-Ghezala, Ghania; Chaytow, Helena; Mathura, Venkat; Crawford, Fiona C; Iverson, Grant L

    2016-01-01

    In addition to experiencing traumatic events while deployed in a combat environment, there are other factors that contribute to the development of posttraumatic stress disorder (PTSD) in military service members. This study explored the contribution of genetics, childhood environment, prior trauma, psychological, cognitive, and deployment factors to the development of traumatic stress following deployment. Both pre- and postdeployment data on 231 of 458 soldiers were analyzed. Postdeployment assessments occurred within 30 days from returning stateside and included a battery of psychological health, medical history, and demographic questionnaires; neurocognitive tests; and blood serum for the D2 dopamine receptor (DRD2), apolipoprotein E (APOE), and brain-derived neurotropic factor (BDNF) genes. Soldiers who screened positive for traumatic stress at postdeployment had significantly higher scores in depression (d = 1.91), anxiety (d = 1.61), poor sleep quality (d = 0.92), postconcussion symptoms (d = 2.21), alcohol use (d = 0.63), traumatic life events (d = 0.42), and combat exposure (d = 0.91). BDNF Val66 Met genotype was significantly associated with risk for sustaining a mild traumatic brain injury (mTBI) and screening positive for traumatic stress. Predeployment traumatic stress, greater combat exposure and sustaining an mTBI while deployed, and the BDNF Met/Met genotype accounted for 22% of the variance of postdeployment PTSD scores (R (2)  = 0.22, P < 0.001). However, predeployment traumatic stress, alone, accounted for 17% of the postdeployment PTSD scores. These findings suggest predeployment traumatic stress, genetic, and environmental factors have unique contributions to the development of combat-related traumatic stress in military service members.

  4. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  5. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  6. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  7. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  8. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Traumatic brain injury. 1308... DISABILITIES Health Services Performance Standards § 1308.16 Eligibility criteria: Traumatic brain injury. A child is classified as having traumatic brain injury whose brain injuries are caused by an external...

  9. Gait and Glasgow Coma Scale scores can predict functional recovery in patients with traumatic brain injury☆

    PubMed Central

    Bilgin, Sevil; Guclu-Gunduz, Arzu; Oruckaptan, Hakan; Kose, Nezire; Celik, Bülent

    2012-01-01

    Fifty-one patients with mild (n = 14), moderate (n = 10) and severe traumatic brain injury (n = 27) received early rehabilitation. Level of consciousness was evaluated using the Glasgow Coma Score. Functional level was determined using the Glasgow Outcome Score, whilst mobility was evaluated using the Mobility Scale for Acute Stroke. Activities of daily living were assessed using the Barthel Index. Following Bobath neurodevelopmental therapy, the level of consciousness was significantly improved in patients with moderate and severe traumatic brain injury, but was not greatly influenced in patients with mild traumatic brain injury. Mobility and functional level were significantly improved in patients with mild, moderate and severe traumatic brain injury. Gait recovery was more obvious in patients with mild traumatic brain injury than in patients with moderate and severe traumatic brain injury. Activities of daily living showed an improvement but this was insignificant except for patients with severe traumatic brain injury. Nevertheless, complete recovery was not acquired at discharge. Multiple regression analysis showed that gait and Glasgow Coma Scale scores can be considered predictors of functional outcomes following traumatic brain injury. PMID:25624828

  10. Determinants of Glasgow outcome scale in patients with severe traumatic brain injury for better quality of life

    NASA Astrophysics Data System (ADS)

    Dharmajaya, R.; Sari, D. K.; Ganie, R. A.

    2018-03-01

    Primary and secondary brain injury may occur with severe traumatic brain injury. Secondary traumatic brain injury results in a more severe effect compared to primary traumatic brain injury. Therefore, prevention of secondary traumatic brain injury is necessary to obtain maximum therapeutic results and accurate determination of prognosis and better quality of life. This study aimed to determine accurate and noninvasive prognostic factors in patients with severe traumatic brain injury. It was a cohort study on 16 subjects. Intracranial pressure was monitored within the first 24 hours after traumatic brain injury. Examination of Brain-Derived Neurotrophic Factor (BDNF) and S100B protein were conducted four times. The severity of outcome was evaluated using Glasgow Outcome Scale (GOS) three months after traumatic brain injury. Intracranial pressure measurement performed 24 hours after traumatic brain injury, low S100B protein (<2μg/L) 120 hours after injury and increased BDNF (>6.16pg/ml) 48 hours after injury indicate good prognosis and were shown to be significant predictors (p<0.05) for determining the quality of GOS. The conclusion is patient with a moderate increase in intracranial pressure Intracranial pressure S100B protein, being inexpensive and non-invasive, can substitute BDNF and intracranial pressure measurements as a tool for determining prognosis 120 hours following traumatic brain injury.

  11. Impact of individual clinical outcomes on trial participants' perspectives on enrollment in emergency research without consent.

    PubMed

    Whitesides, Louisa W; Baren, Jill M; Biros, Michelle H; Fleischman, Ross J; Govindarajan, Prasanthi R; Jones, Elizabeth B; Pancioli, Arthur M; Pentz, Rebecca D; Scicluna, Victoria M; Wright, David W; Dickert, Neal W

    2017-04-01

    Evidence suggests that patients are generally accepting of their enrollment in trials for emergency care conducted under exception from informed consent. It is unknown whether individuals with more severe initial injuries or worse clinical outcomes have different perspectives. Determining whether these differences exist may help to structure post-enrollment interactions. Primary clinical data from the Progesterone for the Treatment of Traumatic Brain Injury trial were matched to interview data from the Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study. Answers to three key questions from Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study were analyzed in the context of enrolled patients' initial injury severity (initial Glasgow Coma Scale and Injury Severity Score) and principal clinical outcomes (Extended Glasgow Outcome Scale and Extended Glasgow Outcome Scale relative to initial injury severity). The three key questions from Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study addressed participants' general attitude toward inclusion in the Progesterone for the Treatment of Traumatic Brain Injury trial (general trial inclusion), their specific attitude toward being included in Progesterone for the Treatment of Traumatic Brain Injury trial under the exception from informed consent (personal exception from informed consent enrollment), and their attitude toward the use of exception from informed consent in the Progesterone for the Treatment of Traumatic Brain Injury trial in general (general exception from informed consent enrollment). Qualitative analysis of interview transcripts was performed to provide contextualization and to determine the extent to which respondents framed their attitudes in terms of clinical experience. Clinical data from Progesterone for the Treatment of Traumatic Brain Injury trial were available for all 74 patients represented in the Patients' Experiences in Emergency Research-Progesterone for the Treatment of Traumatic Brain Injury study (including 46 patients for whom the surrogate was interviewed due to the patient's cognitive status or death). No significant difference was observed regarding acceptance of general trial inclusion or acceptance of general exception from informed consent enrollment between participants with favorable neurological outcomes and those with unfavorable outcomes relative to initial injury. Agreement with personal enrollment in Progesterone for the Treatment of Traumatic Brain Injury trial under exception from informed consent, however, was significantly higher among participants with favorable outcomes compared to those with unfavorable outcomes (89% vs 59%, p = 0.003). There was also a statistically significant relationship between more severe initial injury and increased acceptance of personal exception from informed consent enrollment ( p = 0.040) or general exception from informed consent use ( p = 0.034) in Progesterone for the Treatment of Traumatic Brain Injury trial. Many individuals referenced personal experience as a basis for their attitudes, but these references were not used to support negative views. Patients and surrogates of patients with unfavorable clinical outcomes were somewhat less accepting of their own inclusion in the Progesterone for the Treatment of Traumatic Brain Injury trial under exception from informed consent than were patients or surrogates of patients with favorable clinical outcomes. These findings suggest a need to identify optimal strategies for communicating with patients and their surrogates regarding exception from informed consent enrollment when clinical outcomes are poor.

  12. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study

    PubMed Central

    Tisdall, Martin M.; Girbes, Armand R.; Martinian, Lillian; Thom, Maria; Kitchen, Neil; Smith, Martin

    2011-01-01

    Traumatic brain injury causes diffuse axonal injury and loss of cortical neurons. These features are well recognized histologically, but their in vivo monitoring remains challenging. In vivo cortical microdialysis samples the extracellular fluid adjacent to neurons and axons. Here, we describe a novel neuronal proteolytic pathway and demonstrate the exclusive neuro-axonal expression of Pavlov’s enterokinase. Enterokinase is membrane bound and cleaves the neurofilament heavy chain at positions 476 and 986. Using a 100 kDa microdialysis cut-off membrane the two proteolytic breakdown products, extracellular fluid neurofilament heavy chains NfH476−986 and NfH476−1026, can be quantified with a relative recovery of 20%. In a prospective clinical in vivo study, we included 10 patients with traumatic brain injury with a median Glasgow Coma Score of 9, providing 640 cortical extracellular fluid samples for longitudinal data analysis. Following high-velocity impact traumatic brain injury, microdialysate extracellular fluid neurofilament heavy chain levels were significantly higher (6.18 ± 2.94 ng/ml) and detectable for longer (>4 days) compared with traumatic brain injury secondary to falls (0.84 ± 1.77 ng/ml, <2 days). During the initial 16 h following traumatic brain injury, strong correlations were found between extracellular fluid neurofilament heavy chain levels and physiological parameters (systemic blood pressure, anaerobic cerebral metabolism, excessive brain tissue oxygenation, elevated brain temperature). Finally, extracellular fluid neurofilament heavy chain levels were of prognostic value, predicting mortality with an odds ratio of 7.68 (confidence interval 2.15–27.46, P = 0.001). In conclusion, this study describes the discovery of Pavlov’s enterokinase in the human brain, a novel neuronal proteolytic pathway that gives rise to specific protein biomarkers (NfH476−986 and NfH476−1026) applicable to in vivo monitoring of diffuse axonal injury and neuronal loss in traumatic brain injury. PMID:21278408

  13. Awareness of deficits and error processing after traumatic brain injury.

    PubMed

    Larson, Michael J; Perlstein, William M

    2009-10-28

    Severe traumatic brain injury is frequently associated with alterations in performance monitoring, including reduced awareness of physical and cognitive deficits. We examined the relationship between awareness of deficits and electrophysiological indices of performance monitoring, including the error-related negativity and posterror positivity (Pe) components of the scalp-recorded event-related potential, in 16 traumatic brain injury survivors who completed a Stroop color-naming task while event-related potential measurements were recorded. Awareness of deficits was measured as the discrepancy between patient and significant-other ratings on the Frontal Systems Behavior Scale. The amplitude of the Pe, but not error-related negativity, was reliably associated with decreased awareness of deficits. Results indicate that Pe amplitude may serve as an electrophysiological indicator of awareness of abilities and deficits.

  14. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  15. Medicolegal Issues in Traumatic Brain Injury.

    PubMed

    Zasler, Nathan D; Bigler, Erin

    2017-05-01

    The role of the physiatrist in provision of medicolegal expert testimony in cases involving traumatic brain injury is challenging and complex. This article provides an overview of how such work should be conducted from a practical perspective including discussion of ethical, legal, medical, and business aspects of such activities. Additionally, pointers are provided with regards to how information including preinjury, injury, and postinjury (including neuroimaging and neuropsychological data) should be considered and integrated into medicolegal opinions and testimony. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Update on the Epidemiology of Concussion/Mild Traumatic Brain Injury.

    PubMed

    Voss, Jameson D; Connolly, Joseph; Schwab, Karen A; Scher, Ann I

    2015-07-01

    Mild traumatic injuries to the brain (e.g., concussion) are common and have been recognized since antiquity, although definitions have varied historically. Nonetheless, studying the epidemiology of concussion helps clarify the overall importance, risk factors, and at-risk populations for this injury. The present review will focus on recent findings related to the epidemiology of concussion including definition controversies, incidence, and patterns in the population overall and in the military and athlete populations specifically. Finally, as this is an area of active research, we will discuss how future epidemiologic observations hold promise for gaining greater clarity about concussion and mild traumatic brain injury.

  17. The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study.

    PubMed

    Straudi, Sofia; Severini, Giacomo; Sabbagh Charabati, Amira; Pavarelli, Claudia; Gamberini, Giulia; Scotti, Anna; Basaglia, Nino

    2017-05-10

    Patients with traumatic brain injury often have balance and attentive disorders. Video game therapy (VGT) has been proposed as a new intervention to improve mobility and attention through a reward-learning approach. In this pilot randomized, controlled trial, we tested the effects of VGT, compared with a balance platform therapy (BPT), on balance, mobility and selective attention in chronic traumatic brain injury patients. We enrolled chronic traumatic brain injury patients (n = 21) that randomly received VGT or BPT for 3 sessions per week for 6 weeks. The clinical outcome measures included: i) the Community Balance & Mobility Scale (CB&M); ii) the Unified Balance Scale (UBS); iii) the Timed Up and Go test (TUG); iv) static balance and v) selective visual attention evaluation (Go/Nogo task). Both groups improved in CB&M scores, but only the VGT group increased on the UBS and TUG with a between-group significance (p < 0.05). Selective attention improved significantly in the VGT group (p < 0.01). Video game therapy is an option for the management of chronic traumatic brain injury patients to ameliorate balance and attention deficits. NCT01883830 , April 5 2013.

  18. Memory Strategies to Use With Students Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pershelli, Andi

    2007-01-01

    Following a traumatic brain injury, including a mild concussion, most students will have some degree of memory impairment. It can take 1-3 years for a child's memory to improve to its maximum capability following injury. Children cannot wait that long before returning to school. Teachers need to know how to diversify their instruction in order to…

  19. Hospital-School Collaboration to Serve the Needs of Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Canto, Angela I.; Buckley, Valerie A.

    2011-01-01

    Traumatic brain injuries are the leading cause of death and disability for children and adolescents each year in the United States. Children who survive these injuries often suffer from a range of impairments including intellectual, academic, behavioral, affective, and social problems, but they often become mired in a slow-moving process while…

  20. Trends in Traumatic Brain Injury Research in School Psychology Journals 1985-2014

    ERIC Educational Resources Information Center

    Smith, Shannon M.; Canto, Angela I.

    2015-01-01

    Every year, approximately 2.4 million people experience a traumatic brain injury (TBI), and nearly half a million children receive emergency medical attention from hospital personnel due to a TBI in the United States (Centers for Disease Control, 2010; Coronado et al., 2014). It is imperative for key stakeholders, including school psychologists,…

  1. Invisible Injuries: The Experiences of College Students with Histories of Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Childers, Carrie; Hux, Karen

    2016-01-01

    This qualitative study explored the college life phenomenon as experienced by students with mild traumatic brain injury (MTBI). Previous research about such students has focused on topics including study strategy use, access of support services, and insights from caregivers or instructors. However, little attention has been paid to the perceptions…

  2. Observed Parent Behaviors as Time-Varying Moderators of Problem Behaviors Following Traumatic Brain Injury in Young Children

    ERIC Educational Resources Information Center

    Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Taylor, H. Gerry; Stancin, Terry; Yeates, Keith Owen; Wade, Shari L.

    2016-01-01

    Parent behaviors moderate the adverse consequences of pediatric traumatic brain injury (TBI); however, it is unknown how these moderating effects change over time. This study examined the moderating effect of observed parent behaviors over time since injury on the relation between TBI and behavioral outcomes. Participants included children, ages…

  3. Whakawhiti Kōrero, a Method for the Development of a Cultural Assessment Tool, Te Waka Kuaka, in Māori Traumatic Brain Injury.

    PubMed

    Elder, Hinemoa; Kersten, Paula

    2015-01-01

    The importance of tools for the measurement of outcomes and needs in traumatic brain injury is well recognised. The development of tools for these injuries in indigenous communities has been limited despite the well-documented disparity of brain injury. The wairua theory of traumatic brain injury (TBI) in Māori proposes that a culturally defined injury occurs in tandem with the physical injury. A cultural response is therefore indicated. This research investigates a Māori method used in the development of cultural needs assessment tool designed to further examine needs associated with the culturally determined injury and in preparation for formal validation. Whakawhiti kōrero is a method used to develop better statements in the development of the assessment tool. Four wānanga (traditional fora) were held including one with whānau (extended family) with experience of traumatic brain injury. The approach was well received. A final version, Te Waka Kuaka, is now ready for validation. Whakawhiti kōrero is an indigenous method used in the development of cultural needs assessment tool in Māori traumatic brain injury. This method is likely to have wider applicability, such as Mental Health and Addictions Services, to ensure robust process of outcome measure and needs assessment development.

  4. Risk of traumatic brain injuries in children younger than 24 months with isolated scalp hematomas.

    PubMed

    Dayan, Peter S; Holmes, James F; Schutzman, Sara; Schunk, Jeffrey; Lichenstein, Richard; Foerster, Lillian A; Hoyle, John; Atabaki, Shireen; Miskin, Michelle; Wisner, David; Zuspan, SallyJo; Kuppermann, Nathan

    2014-08-01

    We aimed to determine the association between scalp hematoma characteristics and traumatic brain injuries in young children with blunt head trauma who have no other symptoms or signs suggestive of traumatic brain injuries (defined as "isolated scalp hematomas"). This was a secondary analysis of children younger than 24 months with minor blunt head trauma from a prospective cohort study in 25 Pediatric Emergency Care Applied Research Network emergency departments. Treating clinicians completed a structured data form. For children with isolated scalp hematomas, we determined the prevalence of and association between scalp hematoma characteristics and (1) clinically important traumatic brain injury (death, neurosurgery for traumatic brain injury, intubation >24 hours for traumatic brain injury, or positive computed tomography (CT) scan in association with hospitalization ≥2 nights for traumatic brain injury); and (2) traumatic brain injury on CT. Of 10,659 patients younger than 24 months were enrolled, 2,998 of 10,463 (28.7%) with complete data had isolated scalp hematomas. Clinically important traumatic brain injuries occurred in 12 patients (0.4%; 95% confidence interval [CI] 0.2% to 0.7%); none underwent neurosurgery (95% CI 0% to 0.1%). Of 570 patients (19.0%) for whom CTs were obtained, 50 (8.8%; 95% CI 6.6% to 11.4%) had traumatic brain injuries on CT. Younger age, non-frontal scalp hematoma location, increased scalp hematoma size, and severe injury mechanism were independently associated with traumatic brain injury on CT. In patients younger than 24 months with isolated scalp hematomas, a minority received CTs. Despite the occasional presence of traumatic brain injuries on CT, the prevalence of clinically important traumatic brain injuries was very low, with no patient requiring neurosurgery. Clinicians should use patient age, scalp hematoma location and size, and injury mechanism to help determine which otherwise asymptomatic children should undergo neuroimaging after minor head trauma. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  5. Employment outcome four years after a severe traumatic brain injury: results of the Paris severe traumatic brain injury study.

    PubMed

    Ruet, Alexis; Jourdan, Claire; Bayen, Eléonore; Darnoux, Emmanuelle; Sahridj, Dalila; Ghout, Idir; Azerad, Sylvie; Pradat Diehl, Pascale; Aegerter, Philippe; Charanton, James; Vallat Azouvi, Claire; Azouvi, Philippe

    2017-05-18

    To describe employment outcome four years after a severe traumatic brain injury by the assessment of individual patients' preinjury sociodemographic data, injury-related and postinjury factors. A prospective, multicenter inception cohort of 133 adult patients in the Paris area (France) who had received a severe traumatic brain injury were followed up postinjury at one and four years. Sociodemographic data, factors related to injury severity and one-year functional and cognitive outcomes were prospectively collected. The main outcome measure was employment status. Potential predictors of employment status were assessed by univariate and multivariate analysis. At the four-year follow-up, 38% of patients were in paid employment. The following factors were independent predictors of unemployment: being unemployed or studying before traumatic brain injury, traumatic brain injury severity (i.e., a lower Glasgow Coma Scale score upon admission and a longer stay in intensive care) and a lower one-year Glasgow Outcome Scale-Extended score. This study confirmed the low rate of long-term employment amongst patients after a severe traumatic brain injury. The results illustrated the multiple determinants of employment outcome and suggested that students who had received a traumatic brain injury were particularly likely to be unemployed, thus we propose that they may require specific support to help them find work. Implications for rehabilitation Traumatic brain injury is a leading cause of persistent disablity and can associate cognitive, emotional, physical and sensory impairments, which often result in quality-of-life reduction and job loss. Predictors of post-traumatic brain injury unemployment and job loss remains unclear in the particular population of severe traumatic brain injury patients. The present study highlights the post-traumatic brain injury student population require a close follow-up and vocational rehabilitation. The study suggests that return to work post-severe traumatic brain injury is frequently unstable and workers often experience difficulties that caregivers have to consider.

  6. The clinical spectrum of sport-related traumatic brain injury.

    PubMed

    Jordan, Barry D

    2013-04-01

    Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.

  7. [Traumatic brain injuries--forensic and expertise aspects].

    PubMed

    Vuleković, Petar; Simić, Milan; Misić-Pavkov, Gordana; Cigić, Tomislav; Kojadinović, Zeljko; Dilvesi, Dula

    2008-01-01

    Traumatic brain injuries have major socio-economic importance due to their frequency, high mortality and serious consequences. According to their nature the consequences of these injuries may be classified as neurological, psychiatric and esthetic. Various lesions of brain structures cause neurological consequences such as disturbance of motor functions, sensibility, coordination or involuntary movements, speech disturbances and other deviations, as well as epilepsy. Psychiatric consequences include cognitive deficit, emotional disturbances and behavior disturbances. CRIMINAL-LEGAL ASPECT OF TRAUMATIC BRAIN INJURIES AND LITIGATION: Criminal-legal aspect of traumatic brain injuries expertise understands the qualification of these injuries as mild, serious and qualified serious body injuries as well as the expertise about the mechanisms of their occurrence. Litigation expertise includes the estimation of pain, fear, diminished, i.e. lost vital activity and disability, esthetic marring, and psychological suffer based on the diminished general vital activity and esthetic marring. Evaluation of consequences of traumatic brain injuries should be performed only when it can be positively confirmed that they are permanent, i.e. at least one year after the injury. Expertise of these injuries is interdisciplinary. Among clinical doctors the most competent medical expert is the one who is in charge for diagnostics and injury treatment, with the recommendation to avoid, if possible, the doctor who conducted treatment. For the estimation of general vital activity, the neurological consequences, pain and esthetic marring expertise, the most competent doctors are neurosurgeon and neurologist. Psychological psychiatric consequences and fear expertise have to be performed by the psychiatrist. Specialists of forensic medicine contribute with knowledge of criminal low and legal expertise.

  8. Early plasma transfusion is associated with improved survival after isolated traumatic brain injury in patients with multifocal intracranial hemorrhage.

    PubMed

    Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B

    2017-02-01

    Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial hemorrhage. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury

    PubMed Central

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Objectives: Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player’s life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users’ messages often reflects the prevailing culture related to a particular event or health issue. Methods: We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter® tweets related to traumatic brain injuries in sports collected during June and July 2013. Results: We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. Conclusion: While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies. PMID:28890783

  10. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    PubMed

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter ® tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  11. 77 FR 13578 - Disability and Rehabilitation Research Project; Traumatic Brain Injury Model Systems Centers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... DEPARTMENT OF EDUCATION Disability and Rehabilitation Research Project; Traumatic Brain Injury... Rehabilitation Research Project--Traumatic Brain Injury Model Systems Centers. CFDA Number: 84.133A-5. SUMMARY... for Disability and Rehabilitation Research Projects (DRRPs) to serve as Traumatic Brain Injury Model...

  12. Neuroimaging in Posttraumatic Stress Disorder and Other Stress-related Disorders

    PubMed Central

    Bremner, J. Douglas

    2009-01-01

    Synopsis Traumatic stress has a broad range of effects on the brain. Brain areas implicated in the stress response include the amygdala, hippocampus, and prefrontal cortex. Studies in patients with posttraumatic stress disorder (PTSD) and other psychiatric disorders related to stress have replicated findings in animal studies by finding alterations in these brain areas. Brain regions implicated in PTSD also play an important role in memory function, highlighting the important interplay between memory and the traumatic stress response. Abnormalities in these brain areas are hypothesized to underlie symptoms of PTSD and other stress-related psychiatric disorders. PMID:17983968

  13. Characterisation of interface astroglial scarring in the human brain after blast exposure: a post-mortem case series.

    PubMed

    Shively, Sharon Baughman; Horkayne-Szakaly, Iren; Jones, Robert V; Kelly, James P; Armstrong, Regina C; Perl, Daniel P

    2016-08-01

    No evidence-based guidelines are available for the definitive diagnosis or directed treatment of most blast-associated traumatic brain injuries, partly because the underlying pathology is unknown. Moreover, few neuropathological studies have addressed whether blast exposure produces unique lesions in the human brain, and if those lesions are comparable with impact-induced traumatic brain injury. We aimed to test the hypothesis that blast exposure produces unique patterns of damage, differing from that associated with impact-induced, non-blast traumatic brain injuries. In this post-mortem case series, we investigated several features of traumatic brain injuries, using clinical histopathology techniques and markers, in brain specimens from male military service members with chronic blast exposures and from those who had died shortly after severe blast exposures. We then compared these results with those from brain specimens from male civilian (ie, non-military) cases with no history of blast exposure, including cases with and without chronic impact traumatic brain injuries and cases with chronic exposure to opiates, and analysed the limited associated clinical histories of all cases. Brain specimens had been archived in tissue banks in the USA. We analysed brain specimens from five cases with chronic blast exposure, three cases with acute blast exposure, five cases with chronic impact traumatic brain injury, five cases with exposure to opiates, and three control cases with no known neurological disorders. All five cases with chronic blast exposure showed prominent astroglial scarring that involved the subpial glial plate, penetrating cortical blood vessels, grey-white matter junctions, and structures lining the ventricles; all cases of acute blast exposure showed early astroglial scarring in the same brain regions. All cases of chronic blast exposure had an antemortem diagnosis of post traumatic stress disorder. The civilian cases, with or without history of impact traumatic brain injury or a history of opiate use, did not have any astroglial scarring in the brain regions analysed. The blast exposure cases showed a distinct and previously undescribed pattern of interface astroglial scarring at boundaries between brain parenchyma and fluids, and at junctions between grey and white matter. This distinctive pattern of scarring may indicate specific areas of damage from blast exposure consistent with the general principles of blast biophysics, and further, could account for aspects of the neuropsychiatric clinical sequelae reported. The generalisability of these findings needs to be explored in future studies, as the number of cases, clinical data, and tissue availability were limited. Defense Health Program of the United States Department of Defense. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. An evaluation of antisocial behaviour in children after traumatic brain injury: the prospect of improving the quality of life in rehabilitation.

    PubMed

    Tomaszewski, Wiesław; Buliński, Leszek; Mirski, Andrzej; Rasmus, Anna; Kowalczyk, Jakub; Bazan, Maria; Pąchalska, Maria

    2014-01-01

    The aim of the article is to present the consequences of traumatic brain injury in children, associated with general cognition and behavioural disorders, mainly of the antisocial type. A total of 20 school-age children took part in the study, including six girls and 14 boys. The average age of the children was 13.35 years (standard deviation SD = 1.95). The research instruments included an analysis of documentation, a structured clinical interview, MMSE and Frontal Behavioral Inventory (FBInv) with additional set of five supplementary questions directed for detection of antisocial behavior. The research was conducted from the beginning of January 2009 until the end of May 2009. As hypothesized, the functioning of the children with traumatic brain injury is severely disrupted, because of the presence of cognitive impairment, however, dementia is not manifested. In a significant number of the children with traumatic brain injury we found not only the frontal syndrome, but also the occurrence of antisocial behaviour. The most commonly reported behavioural problems were: disorganization commonly referred to as laziness, hypersensitivity, and anxiety. The most common types of anti-social behaviour were: impulsivity, physical and verbal aggression, and also an outburst of anger. The children with traumatic brain injury suffer from a cognitive disorders and behavioural problems, especially impulsivity, physical and verbal aggression, increased anxiety, and disorganization. The occurrence of frontal syndrome is related to the development of antisocial behaviour.

  15. Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury Research Informatics Systems

    DTIC Science & Technology

    2016-10-01

    Traumatic Brain Injury Research Informatics Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0564 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...AWARD NUMBER: W81XWH-14-1-0564 TITLE: Integrating Traumatic Brain Injury Model Systems Data into the Federal Interagency Traumatic Brain Injury...Research Informatics Systems PRINCIPAL INVESTIGATOR: Cynthia Harrison-Felix, PhD CONTRACTING ORGANIZATION: Craig Hospital Englewood, CO 80113

  16. 78 FR 63452 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...). SUPPLEMENTARY INFORMATION: Title; Associated Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress...-service U.S. military personnel, with a special focus on the effects of traumatic brain injury (TBI) and...) to carry out the research study ``TRAUMATIC BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG...

  17. Clinical trials in mild traumatic brain injury.

    PubMed

    Hoffer, Michael E; Szczupak, Mikhaylo; Balaban, Carey

    2016-10-15

    Traumatic brain injury is an increasingly prevalent injury seen in both civilian and military populations. Regardless of the mechanisms of injury, the most common sub-type of injury continues to be mild traumatic brain injury. Within the last decade, there has been tremendous growth in the literature regarding this disease entity. To describe the obstacles necessary to overcome in performing a rigorous and sound clinical research study investigating mild traumatic brain injury. This examination begins by a consideration of changing standards for good faith open and total reporting of any and all conflicts of interest or commitment. This issue is particularly critical in mTBI research. We next examine obstacles that include but are not limited to diagnostic criteria, inclusion/exclusion criteria, source of injury, previous history of injury, presence of comorbid conditions and proper informed consent of participants. Frequently, multi-center studies are necessary for adequate subject accrual with the added challenges of site coordination, data core management and site specific study conduct. We propose a total reversal to the traditional translational research approach where clinical studies drive new concepts for future basic science studies. There have been few mild traumatic brain injury clinical trials in the literature with treatments/interventions that have been able to overcome many of these described obstacles. We look forward to the results of current and ongoing clinical mild traumatic brain injury studies providing the tools necessary for the next generation of basic science projects. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Spectrum of Disease in Chronic Traumatic Encephalopathy

    ERIC Educational Resources Information Center

    McKee, Ann C.; Stein, Thor D.; Nowinski, Christopher J.; Stern, Robert A.; Daneshvar, Daniel H.; Alvarez, Victor E.; Lee, Hyo-Soon; Hall, Garth; Wojtowicz, Sydney M.; Baugh, Christine M.; Riley, David O.; Kubilus, Caroline A.; Cormier, Kerry A.; Jacobs, Matthew A.; Martin, Brett R.; Abraham, Carmela R.; Ikezu, Tsuneya; Reichard, Robert Ross; Wolozin, Benjamin L.; Budson, Andrew E.; Goldstein, Lee E.; Kowall, Neil W.; Cantu, Robert C.

    2013-01-01

    Chronic traumatic encephalopathy is a progressive tauopathy that occurs as a consequence of repetitive mild traumatic brain injury. We analysed post-mortem brains obtained from a cohort of 85 subjects with histories of repetitive mild traumatic brain injury and found evidence of chronic traumatic encephalopathy in 68 subjects: all males, ranging…

  19. 75 FR 81242 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Form; and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of... personnel, with a special focus on the effects of traumatic brain injury (TBI) and Post-traumatic Stress... BRAIN INJURY, POST-TRAUMATIC STRESS DISORDER, AND LONG-TERM QUALITY OF LIFE OUTCOMES IN INJURED TRI...

  20. A Grounded Theory Study of the Process of Accessing Information on the World Wide Web by People with Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Blodgett, Cynthia S.

    2008-01-01

    The purpose of this grounded theory study was to examine the process by which people with Mild Traumatic Brain Injury (MTBI) access information on the web. Recent estimates include amateur sports and recreation injuries, non-hospital clinics and treatment facilities, private and public emergency department visits and admissions, providing…

  1. Impact of Posttraumatic Stress Disorder and Injury Severity on Recovery in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne

    2012-01-01

    The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…

  2. Using Basic Reading Skills Instruction and Formative Assessments to Teach an Adult with Traumatic Brain Injury to Read: A Case Study

    ERIC Educational Resources Information Center

    Goddard, Yvonne; Rinderknecht, Laura

    2009-01-01

    Literacy expectations for persons with cognitive impairments, including impairments caused by traumatic brain injury (TBI), have remained quite low. Some researchers have suggested that educators move from a focus on teaching functional skills to teaching basic reading skills in a manner similar to instruction for nondisabled learners. The purpose…

  3. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System

    PubMed Central

    Plog, Benjamin A.; Dashnaw, Matthew L.; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid

    2015-01-01

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  4. Traumatic Brain Injury: Unmet Support Needs of Caregivers and Families in Florida

    PubMed Central

    Dillahunt-Aspillaga, Christina; Jorgensen-Smith, Tammy; Ehlke, Sarah; Sosinski, Melanie; Monroe, Douglas; Thor, Jennifer

    2013-01-01

    Sustaining a Traumatic Brain Injury results in familial strain due to the significant impact the injury has upon the role and function of individuals and their families at home and in the community. Using the Stress Process Model of Caregiving, a caregiver needs assessment survey was developed and conducted to better understand the needs of individuals with a Traumatic Brain Injury and their caregivers. Survey results indicate that caregivers experience many challenges including unmet needs in areas of relational supports such as maintaining relationships, long-term emotional and financial support for themselves and the survivor, and the need for a patient or caregiver advocate. Implications for future practice are presented. PMID:24358236

  5. Predictors of Major Depression and Posttraumatic Stress Disorder Following Traumatic Brain Injury: A Systematic Review and Meta-Analysis.

    PubMed

    Cnossen, Maryse C; Scholten, Annemieke C; Lingsma, Hester F; Synnot, Anneliese; Haagsma, Juanita; Steyerberg, Prof Ewout W; Polinder, Suzanne

    2017-01-01

    Although major depressive disorder (MDD) and posttraumatic stress disorder (PTSD) are prevalent after traumatic brain injury (TBI), little is known about which patients are at risk for developing them. The authors systematically reviewed the literature on predictors and multivariable models for MDD and PTSD after TBI. The authors included 26 observational studies. MDD was associated with female gender, preinjury depression, postinjury unemployment, and lower brain volume, whereas PTSD was related to shorter posttraumatic amnesia, memory of the traumatic event, and early posttraumatic symptoms. Risk of bias ratings for most studies were acceptable, although studies that developed a multivariable model suffered from methodological shortcomings.

  6. Found in translation: understanding the biology and behavior of experimental traumatic brain injury

    PubMed Central

    Bondi, Corina O.; Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Osier, Nicole D.; Carlson, Shaun W.; Dixon, C. Edward; Giza, Christopher C.; Kline, Anthony E.

    2014-01-01

    BONDI, C.O., B.D. Semple, L.J. Noble-Haeusslein, N.D. Osier, S.W. Carlson, C.E. Dixon, C.C. Giza and A.E. Kline. Found in translation: understanding the biology and behavior of experimental traumatic brain injury. NEUROSCI BIOBEHAV REV. The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled “Traumatic brain injury: laboratory and clinical perspectives,” presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. PMID:25496906

  7. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One-Year Extension Funds...). ACTION: Notice of Non-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State... initially authorized by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently...

  8. Traumatic Brain Injury: Effects on the Endocrine System

    MedlinePlus

    Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...

  9. Resting functional imaging tools (MRS, SPECT, PET and PCT).

    PubMed

    Van Der Naalt, J

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.

  10. Concordance of common data elements for assessment of subjective cognitive complaints after mild-traumatic brain injury: a TRACK-TBI Pilot Study.

    PubMed

    Ngwenya, Laura B; Gardner, Raquel C; Yue, John K; Burke, John F; Ferguson, Adam R; Huang, Michael C; Winkler, Ethan A; Pirracchio, Romain; Satris, Gabriela G; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Okonkwo, David O; Manley, Geoffrey T

    2018-06-04

    To determine characteristics and concordance of subjective cognitive complaints (SCCs) 6 months following mild-traumatic brain injury (mTBI) as assessed by two different TBI common data elements (CDEs). The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot Study was a prospective observational study that utilized the NIH TBI CDEs, Version 1.0. We examined variables associated with SCC, performance on objective cognitive tests (Wechsler Adult Intelligence Scale, California Verbal Learning Test, and Trail Making Tests A and B), and agreement on self-report of SCCs as assessed by the acute concussion evaluation (ACE) versus the Rivermead Post Concussion Symptoms Questionnaire (RPQ). In total, 68% of 227 participants endorsed SCCs at 6 months. Factors associated with SCC included less education, psychiatric history, and being assaulted. Compared to participants without SCC, those with SCC defined by RPQ performed significantly worse on all cognitive tests. There was moderate agreement between the two measures of SCCs (kappa = 0.567 to 0.680). We show that the symptom questionnaires ACE and RPQ show good, but not excellent, agreement for SCCs in an mTBI study population. Our results support the retention of RPQ as a basic CDE for mTBI research. BSI-18: Brief Symptom Inventory; 18CDEs: common data elements; CT: computed tomography; CVLT: California Verbal Learning Test; ED: emergency department; GCS: Glasgow coma scale; LOC: loss of consciousnessm; TBI: mild-traumatic brain injury; PTA: post-traumatic amnesia; SCC: subjective cognitive complaints; TBI: traumatic brain injury; TRACK-TBI: Transforming Research and Clinical Knowledge in Traumatic Brain Injury; TMT: Trail Making Test; WAIS-PSI: Wechsler Adult Intelligence Scale, Fourth Edition, Processing Speed Index.

  11. Lateral automobile impacts and the risk of traumatic brain injury.

    PubMed

    Bazarian, Jeffrey J; Fisher, Susan Gross; Flesher, William; Lillis, Robert; Knox, Kerry L; Pearson, Thomas A

    2004-08-01

    We determine the relative risk and severity of traumatic brain injury among occupants of lateral impacts compared with occupants of nonlateral impacts. This was a secondary analysis of the National Highway Traffic Safety Administration's National Automotive Sampling System, Crashworthiness Data Systems for 2000. Analysis was restricted to occupants of vehicles in which at least 1 person experienced an injury with Abbreviated Injury Scale score greater than 2. Traumatic brain injury was defined as an injury to the head or skull with an Abbreviated Injury Scale score greater than 2. Outcomes were analyzed using the chi2 test and multivariate logistic regression, with adjustment of variance to account for weighted probability sampling. Of the 1,115 occupants available for analysis, impact direction was lateral for 230 (18.42%) occupants and nonlateral for 885 (81.58%) occupants. One hundred eighty-seven (16.07%) occupants experienced a traumatic brain injury, 14.63% after lateral and 16.39% after nonlateral impact. The unadjusted relative risk of traumatic brain injury after lateral impact was 0.89 (95% confidence interval [CI] 0.51 to 1.56). After adjusting for several important crash-related variables, the relative risk of traumatic brain injury was 2.60 (95% CI 1.1 to 6.0). Traumatic brain injuries were more severe after lateral impact according to Abbreviated Injury Scale and Glasgow Coma Scale scores. The proportion of fatal or critical crash-related traumatic brain injuries attributable to lateral impact was 23.5%. Lateral impact is an important independent risk factor for the development of traumatic brain injury after a serious motor vehicle crash. Traumatic brain injuries incurred after lateral impact are more severe than those resulting from nonlateral impact. Vehicle modifications that increase head protection could reduce crash-related severe traumatic brain injuries by up to 61% and prevent up to 2,230 fatal or critical traumatic brain injuries each year in the United States.

  12. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  13. Acupuncture for central pain affecting the ribcage following traumatic brain injury and rib fractures--a case report.

    PubMed

    Donnellan, Clare P

    2006-09-01

    This case report describes the use of acupuncture in the management of chronic central pain in a 51 year old man following severe traumatic brain injury and multiple injuries including rib fractures. The patient reported rapid and significant improvements in pain and mood during a course of acupuncture treatment. Chronic pain following traumatic brain injury is a significant problem. Chronic pain after rib fractures is also commonly reported. Acupuncture is widely used in the management of pain but its use has been reported rarely in the traumatic brain injury literature. This case report suggests that acupuncture may be a useful option to consider in these patients. Outcome was assessed formally using a 0-10 verbal numerical rating scale for pain, and the Hospital Anxiety and Depression Scale (HADS) for psychological status before and after the course of treatment. These scales are widely used in clinical practice as well as in research involving patients with traumatic brain injury, although they have not been validated in this population. The changes in this patient's outcome scores were not consistent with the benefits he reported. Treatment of this patient highlighted the difficulties of using standardised self rating scales for patients with cognitive impairment. The report also discusses the effects of acupuncture on this patient's mood.

  14. Comparison Of Efficacy Of Phenytoin And Levetiracetam For Prevention Of Early Post Traumatic Seizures.

    PubMed

    Khan, Shahbaz Ali; Bhatti, Sajid Nazir; Khan, Aftab Alam; Khan Afridi, Ehtisham Ahmed; Muhammad, Gul; Gul, Nasim; Zadran, Khalid Khan; Alam, Sudhair; Aurangzeb, Ahsan

    2016-01-01

    The incidence of early post-traumatic seizures after civilian traumatic brain injury ranges 4-25%. The control of early post-traumatic seizure is mandatory because these acute insults may add secondary damage to the already damaged brain with poor outcome. Prophylactic use of anti-epileptic drugs have been found to be have variable efficacy against early post-traumatic seizures. The objective of this study was to compare the efficacy of Phenytion and Levetiracetam in prevention of early post-traumatic seizures in moderate to severe traumatic brain injury. This randomized controlled trial was conducted in department of Neurosurgery, Ayub Medical College, Abbottabad from March, 2012 to March 2013. The patients with moderate to severe head injury were randomly allocated in two groups. Patients in group A were given phenytoin and patients in group B were given Levetiracetam. Patients were followed for one week to detect efficacy of drug in terms of early post traumatic seizures. The 154 patients included in the study were equally divided into two groups. Out of 154 patients 115 (74.7%) were male while 29 (25.3%) were females. Age of patients ranges from 7-48 (24.15±9.56) years. Ninety one (59.1%) patients had moderate head injury while 63 (40.9%) patients had severe head injury. Phenytoin was effective in preventing early post traumatic seizures in 73 (94.8%) patients whereas Levetiracetam effectively controlled seizures in 70 (90.95%) cases (p-value of .348). There is no statistically significant difference in the efficacy of Phenytoin and Levetiracetam in prophylaxis of early posttraumatic seizures in cases of moderate to severe traumatic brain injury.

  15. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2014-11-01

    Award Number: W81XWH-11-2-0011 TITLE: Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Oct 2014 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...fluid percussion, traumatic brain injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids , microglia and 16

  16. Differences in MMPI-2 FBS and RBS scores in brain injury, probable malingering, and conversion disorder groups: a preliminary study.

    PubMed

    Peck, C P; Schroeder, R W; Heinrichs, R J; Vondran, E J; Brockman, C J; Webster, B K; Baade, L E

    2013-01-01

    This study examined differences in raw scores on the Symptom Validity Scale and Response Bias Scale (RBS) from the Minnesota Multiphasic Personality Inventory-2 in three criterion groups: (i) valid traumatic brain injured, (ii) invalid traumatic brain injured, and (iii) psychogenic non-epileptic seizure disorders. Results indicate that a >30 raw score cutoff for the Symptom Validity Scale accurately identified 50% of the invalid traumatic brain injured group, while misclassifying none of the valid traumatic brain injured group and 6% of the psychogenic non-epileptic seizure disorder group. Using a >15 RBS raw cutoff score accurately classified 50% of the invalid traumatic brain injured group and misclassified fewer than 10% of the valid traumatic brain injured and psychogenic non-epileptic seizure disorder groups. These cutoff scores used conjunctively did not misclassify any members of the psychogenic non-epileptic seizure disorder or valid traumatic brain injured groups, while accurately classifying 44% of the invalid traumatic brain injured individuals. Findings from this preliminary study suggest that the conjunctive use of the Symptom Validity Scale and the RBS from the Minnesota Multiphasic Personality Inventory-2 may be useful in differentiating probable malingering from individuals with brain injuries and conversion disorders.

  17. Looking while Listening and Speaking: Eye-to-Face Gaze in Adolescents with and without Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Turkstra, Lyn S.

    2005-01-01

    Purpose: The purpose of this study was to address the lack of quantitative data on eye-to-face gaze (also known as eye contact) in the literature on pragmatic communication. The study focused on adolescents and young adults with traumatic brain injury (TBI), as gaze often is included in social skills intervention in this population. Method: Gaze…

  18. Persistent post-traumatic headache vs. migraine: an MRI study demonstrating differences in brain structure.

    PubMed

    Schwedt, Todd J; Chong, Catherine D; Peplinski, Jacob; Ross, Katherine; Berisha, Visar

    2017-08-22

    The majority of individuals with post-traumatic headache have symptoms that are indistinguishable from migraine. The overlap in symptoms amongst these individuals raises the question as to whether post-traumatic headache has a unique pathophysiology or if head trauma triggers migraine. The objective of this study was to compare brain structure in individuals with persistent post-traumatic headache (i.e. headache lasting at least 3 months following a traumatic brain injury) attributed to mild traumatic brain injury to that of individuals with migraine. Twenty-eight individuals with persistent post-traumatic headache attributed to mild traumatic brain injury and 28 individuals with migraine underwent brain magnetic resonance imaging on a 3 T scanner. Regional volumes, cortical thickness, surface area and curvature measurements were calculated from T1-weighted sequences and compared between subject groups using ANCOVA. MRI data from 28 healthy control subjects were used to interpret the differences in brain structure between migraine and persistent post-traumatic headache. Differences in regional volumes, cortical thickness, surface area and brain curvature were identified when comparing the group of individuals with persistent post-traumatic headache to the group with migraine. Structure was different between groups for regions within the right lateral orbitofrontal lobe, left caudal middle frontal lobe, left superior frontal lobe, left precuneus and right supramarginal gyrus (p < .05). Considering these regions only, there were differences between individuals with persistent post-traumatic headache and healthy controls within the right lateral orbitofrontal lobe, right supramarginal gyrus, and left superior frontal lobe and no differences when comparing the migraine cohort to healthy controls. In conclusion, persistent post-traumatic headache and migraine are associated with differences in brain structure, perhaps suggesting differences in their underlying pathophysiology. Additional studies are needed to further delineate similarities and differences in brain structure and function that are associated with post-traumatic headache and migraine and to determine their specificity for each of the headache types.

  19. Traumatic Brain Injury and Blood-Brain Barrier Cross-Talk.

    PubMed

    Nasser, Mohammad; Bejjani, Fabienne; Raad, Mohamad; Abou-El-Hassan, Hadi; Mantash, Sarah; Nokkari, Amaly; Ramadan, Naify; Kassem, Nouhad; Mondello, Stefania; Hamade, Eva; Darwish, Hala; Zibara, Kazem; Kobeissy, Firas

    2016-01-01

    Traumatic brain injury, often referred to as the "silent epidemic," is a nondegenerative, non-congenital insult to the brain due to a blow or penetrating object that disrupts the function of the brain leading to permanent or temporary impairment of cognition, physical and psychosocial functions. Traumatic brain injury usually has poor prognosis for long-term treatment and is a major cause of mortality and morbidity worldwide; approximately 10 million deaths and/or hospitalizations annually are directly related to traumatic brain injury. Traumatic brain injury involves primary and secondary insults. Primary injury occurs during the initial insult, and results from direct or indirect force applied to the physical structures of the brain. Secondary injury is characterized by longer-term degeneration of neurons, glial cells, and vascular tissues due to activation of several proteases, glutamate and pro-inflammatory cytokine secretion. In addition, there is growing evidence that the blood-brain barrier is involved in the course of traumatic brain injury pathophysiology and has detrimental effects on the overall pathology of brain trauma, as will be discussed in this work.

  20. Post-traumatic neurodegeneration and chronic traumatic encephalopathy.

    PubMed

    Daneshvar, Daniel H; Goldstein, Lee E; Kiernan, Patrick T; Stein, Thor D; McKee, Ann C

    2015-05-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity around the world. Concussive and subconcussive forms of closed-head injury due to impact or blast neurotrauma represent the most common types of TBI in civilian and military settings. It is becoming increasingly evident that TBI can lead to persistent, long-term debilitating effects, and in some cases, progressive neurodegeneration and chronic traumatic encephalopathy (CTE). The epidemiological literature suggests that a single moderate-to-severe TBI may be associated with accelerated neurodegeneration and increased risk of Alzheimer's disease, Parkinson's disease, or motor neuron disease. However, the pathologic phenotype of these post-traumatic neurodegenerations is largely unknown and there may be pathobiological differences between post-traumatic disease and the corresponding sporadic disorder. By contrast, the pathology of CTE is increasingly well known and is characterized by a distinctive pattern of progressive brain atrophy and accumulation of hyperphosphorylated tau neurofibrillary and glial tangles, dystrophic neurites, 43 kDa TAR DNA-binding protein (TDP-43) neuronal and glial aggregates, microvasculopathy, myelinated axonopathy, neuroinflammation, and white matter degeneration. Clinically, CTE is associated with behavioral changes, executive dysfunction, memory deficits, and cognitive impairments that begin insidiously and most often progress slowly over decades. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. Critical knowledge gaps include elucidation of pathogenic mechanisms, identification of genetic risk factors, and clarification of relevant variables-including age at exposure to trauma, history of prior and subsequent head trauma, substance use, gender, stress, and comorbidities-all of which may contribute to risk profiles and the development of post-traumatic neurodegeneration and CTE. This article is part of a Special Issue entitled 'Traumatic Brain Injury'. Published by Elsevier Inc.

  1. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  2. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    PubMed

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. Copyright © 2015 the authors 0270-6474/15/350518-09$15.00/0.

  3. Found in translation: Understanding the biology and behavior of experimental traumatic brain injury.

    PubMed

    Bondi, Corina O; Semple, Bridgette D; Noble-Haeusslein, Linda J; Osier, Nicole D; Carlson, Shaun W; Dixon, C Edward; Giza, Christopher C; Kline, Anthony E

    2015-11-01

    The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled "Traumatic brain injury: laboratory and clinical perspectives," presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein, we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A comparison of participation outcome measures and the International Classification of Functioning, Disability and Health Core Sets for traumatic brain injury.

    PubMed

    Chung, Pearl; Yun, Sarah Jin; Khan, Fary

    2014-02-01

    To compare the contents of participation outcome measures in traumatic brain injury with the International Classification of Functioning, Disability and Health (ICF) Core Sets for traumatic brain injury. A systematic search with an independent review process selected relevant articles to identify outcome measures in participation in traumatic brain injury. Instruments used in two or more studies were linked to the ICF categories, which identified categories in participation for comparison with the ICF Core Sets for traumatic brain injury. Selected articles (n = 101) identified participation instruments used in two or more studies (n = 9): Community Integration Questionnaire, Craig Handicap Assessment and Reporting Technique, Mayo-Portland Adaptability Inventory-4 Participation Index, Sydney Psychosocial Reintegration Scale Version-2, Participation Assessment with Recombined Tool-Objective, Community Integration Measure, Participation Objective Participation Subjective, Community Integration Questionnaire-2, and Quality of Community Integration Questionnaire. Each instrument was linked to 4-35 unique second-level ICF categories, of which 39-100% related to participation. Instruments addressed 86-100% and 50-100% of the participation categories in the Comprehensive and Brief ICF Core Sets for traumatic brain injury, respectively. Participation measures in traumatic brain injury were compared with the ICF Core Sets for traumatic brain injury. The ICF Core Sets for traumatic brain injury could contribute to the development and selection of participation measures.

  5. Concussion

    MedlinePlus

    Concussion Overview A concussion is a traumatic brain injury that affects your brain function. Effects are usually temporary but can include headaches and problems with concentration, memory, balance and coordination. Concussions ...

  6. Prehospital Tranexamic Acid Use for Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-13-2-0090 TITLE: Prehospital Tranexamic Acid Use for Traumatic Brain...2013 - 29 Sep 2014 4. TITLE AND SUBTITLE Prehospital Tranexamic Acid Use for Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...N/A 7. Appendices-N/A Page 7 Early Tranexamic Acid Use for Traumatic Brain Injury DMRDP Funding Opportunity Number: W81XWH-12-CCCJPC

  7. Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

    PubMed Central

    Mac Donald, Christine L.; Johnson, Ann M.; Cooper, Dana; Nelson, Elliot C.; Werner, Nicole J.; Shimony, Joshua S.; Snyder, Abraham Z.; Raichle, Marcus E.; Witherow, John R.; Fang, Raymond; Flaherty, Stephen F.; Brody, David L.

    2011-01-01

    BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectible intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P = 0.002), and in the right orbitofrontal white matter (P = 0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.) PMID:21631321

  8. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    PubMed

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported < 3 symptoms and 1 ≥ 3 symptoms, all exhibiting GOSE scores of 8. Loss of brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  9. Head Trauma: First Aid

    MedlinePlus

    ... id=258&terms=cpr. Accessed Oct. 8, 2014. Traumatic brain injury. The Merck Manual Professional Edition. http://www.merckmanuals.com/professional/injuries_poisoning/traumatic_brain_injury_tbi/traumatic_brain_injury.html. Accessed Oct. 8, ...

  10. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    DTIC Science & Technology

    2013-07-01

    temporal lobe epilepsy (TLE), a frequently medically intractable and permanent epilepsy syndrome. Unlike many TLE models, which cause global brain injury...addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well-established etiology of temporal lobe epilepsy (TLE), a...is one of the most common causes of temporal lobe epilepsy (TLE). Changes in inhibitory signaling after CCI include hilar inhibitory neuron loss

  11. Methylphenidate reduces mental fatigue and improves processing speed in persons suffered a traumatic brain injury.

    PubMed

    Johansson, B; Wentzel, A-P; Andréll, P; Mannheimer, C; Rönnbäck, L

    2015-01-01

    Post-traumatic brain injury symptoms, such as mental fatigue, have considerable negative impacts on quality-of-life. In the present study the effects of methylphenidate in two different dosages were assessed with regard to mental fatigue, pain and cognitive functions in persons who had suffered a traumatic brain injury. Fifty-one subjects were included and 44 completed the study. The treatment continued for 12 weeks, including three treatment periods with no medication for 4 weeks, administration of low dose methylphenidate (up to 5 mg × 3) for 4 weeks and normal dose methylphenidate (up to 20 mg × 3) for a further 4 weeks. The patients were randomized into three groups where all groups were given all treatments. Significantly reduced mental fatigue, assessed with the Mental Fatigue Scale (MFS) and increased information processing speed (coding, WAIS-III), were detected. The SF-36 vitality and social functioning scales were also improved significantly. Pain was not reduced by methylphenidate. The positive effects of treatment were dose-dependent, with the most prominent effects being at 60 mg methylphenidate/day spread over three doses. Observed side-effects were increased blood pressure and increased heart rate. Methylphenidate was generally well-tolerated and it improved long-lasting mental fatigue and processing speed after traumatic brain injury.

  12. Post traumatic Headache and Psychological Health: Mindfulness Training for Mild TraumaticBrain Injury

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-10-1-1021 TITLE: Post-traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury...traumatic Headache and Psychological Health: Mindfulness Training for Mild Traumatic Brain Injury” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...health, and quality of life of our soldiers. This project addresses multiple FY09 TBI/PH topic areas by validating an evidence-based, mind -body approach

  13. Pathophysiological links between traumatic brain injury and post-traumatic headaches

    PubMed Central

    Ruff, Robert L.; Blake, Kayla

    2016-01-01

    This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD. PMID:27635228

  14. Utility of the Croatian translation of the community integration questionnaire-revised in a sample of adults with moderate to severe traumatic brain injury.

    PubMed

    Tršinski, Dubravko; Tadinac, Meri; Bakran, Žarko; Klepo, Ivana

    2018-02-23

    To examine the utility of the Community Integration Questionnaire-Revised, translated into Croatian, in a sample of adults with moderate to severe traumatic brain injury. The Community Integration Questionnaire-Revised was administered to a sample of 88 adults with traumatic brain injury and to a control sample matched by gender, age and education. Participants with traumatic brain injury were divided into four subgroups according to injury severity. The internal consistency of the Community Integration Questionnaire-Revised was satisfactory. The differences between the group with traumatic brain injury and the control group were statistically significant for the overall Community Integration Questionnaire-Revised score, as well as for all the subscales apart from the Home Integration subscale. The community Integration Questionnaire-Revised score varied significantly for subgroups with different severity of traumatic brain injury. The results show that the Croatian translation of the Community Integration Questionnaire-Revised is useful in assessing participation in adults with traumatic brain injury and confirm previous findings that severity of injury predicts community integration. Results of the new Electronic Social Networking scale indicate that persons who are more active on electronic social networks report better results for other domains of community integration, especially social activities. Implications for rehabilitation The Croatian translation of the Community Integration Questionnaire-Revised is a valid tool for long-term assessment of participation in various domains in persons with moderate to severe traumatic brain injury Persons with traumatic brain injury who are more active in the use of electronic social networking are also more integrated into social and productivity domains. Targeted training in the use of new technologies could enhance participation after traumatic brain injury.

  15. Mild Traumatic Brain Injury

    MedlinePlus

    ... Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity of TBI Symptoms ... across the country. National Center for Telehealth and Technology t2health.dcoe.mil The National Center for Telehealth ...

  16. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  17. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.

    PubMed

    Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul

    2013-09-01

    Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

  18. A Pilot Study of the Effects of Mindfulness-Based Stress Reduction on Post-traumatic Stress Disorder Symptoms and Brain Response to Traumatic Reminders of Combat in Operation Enduring Freedom/Operation Iraqi Freedom Combat Veterans with Post-traumatic Stress Disorder.

    PubMed

    Bremner, James Douglas; Mishra, Sanskriti; Campanella, Carolina; Shah, Majid; Kasher, Nicole; Evans, Sarah; Fani, Negar; Shah, Amit Jasvant; Reiff, Collin; Davis, Lori L; Vaccarino, Viola; Carmody, James

    2017-01-01

    Brain imaging studies in patients with post-traumatic stress disorder (PTSD) have implicated a circuitry of brain regions including the medial prefrontal cortex, amygdala, hippocampus, parietal cortex, and insula. Pharmacological treatment studies have shown a reversal of medial prefrontal deficits in response to traumatic reminders. Mindfulness-based stress reduction (MBSR) is a promising non-pharmacologic approach to the treatment of anxiety and pain disorders. The purpose of this study was to assess the effects of MBSR on PTSD symptoms and brain response to traumatic reminders measured with positron-emission tomography (PET) in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) combat veterans with PTSD. We hypothesized that MBSR would show increased prefrontal response to stress and improved PTSD symptoms in veterans with PTSD. Twenty-six OEF/OIF combat veterans with PTSD who had recently returned from a combat zone were block randomized to receive eight sessions of MBSR or present-centered group therapy (PCGT). PTSD patients underwent assessment of PTSD symptoms with the Clinician-Administered PTSD Scale (CAPS), mindfulness with the Five Factor Mindfulness Questionnaire (FFMQ) and brain imaging using PET in conjunction with exposure to neutral and Iraq combat-related slides and sound before and after treatment. Nine patients in the MBSR group and 8 in the PCGT group completed all study procedures. Post-traumatic stress disorder patients treated with MBSR (but not PCGT) had an improvement in PTSD symptoms measured with the CAPS that persisted for 6 months after treatment. MBSR also resulted in an increase in mindfulness measured with the FFMQ. MBSR-treated patients had increased anterior cingulate and inferior parietal lobule and decreased insula and precuneus function in response to traumatic reminders compared to the PCGT group. This study shows that MBSR is a safe and effective treatment for PTSD. Furthermore, MBSR treatment is associated with changes in brain regions that have been implicated in PTSD and are involved in extinction of fear responses to traumatic memories as well as regulation of the stress response.

  19. Transforming Research and Clinical Knowledge in Traumatic Brain Injury

    DTIC Science & Technology

    2016-12-01

    Szuflita, N., Orman, J., and Schwab, K. (2010). Advancing integrated research in psychological health and traumatic brain injury: common data ele- ments...Szuflita N, Orman J, et al. Advancing Integrated Research in Psychological Health and Traumatic Brain Injury: Common Data Elements. Arch Phys Med Rehabil...R, Gleason T, et al. Advancing integrated research in psychological health and traumatic brain injury: common data elements. Arch Phys Med Rehabil

  20. High Intensity Focused Ultrasound: A Novel Model of Mild Traumatic Brain Injury

    DTIC Science & Technology

    2013-11-07

    RE, Melo B, Christensen B, Ngo L-A, Monette G, Bradbury C. 2008. Measuring premorbid IQ in traumatic brain injury: An examination of the validity of...High Intensity Focused Ultrasound: A Novel Model of Mild Traumatic Brain Injury by Brendan J. Finton Thesis...Mild Traumatic Brain Injury" is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. Brendan J

  1. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    DTIC Science & Technology

    2016-12-01

    best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is

  2. Training communication partners of people with severe traumatic brain injury improves everyday conversations: a multicenter single blind clinical trial.

    PubMed

    Togher, Leanne; McDonald, Skye; Tate, Robyn; Power, Emma; Rietdijk, Rachael

    2013-07-01

    To determine effectiveness of communication training for partners of people with severe traumatic brain injury. Three arm non-randomized controlled trial comparing communication partner training (JOINT) with individual treatment (TBI SOLO) and a waitlist control group with 6 month follow-up. Forty-four outpatients with severe chronic traumatic brain injuries were recruited. Ten-week conversational skills treatment program encompassing weekly group and individual sessions for both treatment groups. The JOINT condition focused on both the partner and the person with traumatic brain injury while the TBI SOLO condition focused on the individual with TBI only. Primary outcomes were blind ratings of the person with traumatic brain injury's level of participation during conversation on the Measure of Participation in Communication Adapted Kagan scales. Communication partner training improved conversational performance relative to training the person with traumatic brain injury alone and a waitlist control group on the primary outcome measures. Results were maintained at six months post-training. Training communication partners of people with chronic severe traumatic brain injury was more efficacious than training the person with traumatic brain injury alone. The Adapted Kagan scales proved to be a robust and sensitive outcome measure for a conversational skills training program.

  3. Imaging Evaluation of Acute Traumatic Brain Injury

    PubMed Central

    Mutch, Christopher A.; Talbott, Jason F.; Gean, Alisa

    2016-01-01

    SYNOPSIS Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it will also help predict patient outcomes. TBI consists of multiple pathoanatomical entities. Here we review the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each these pathoanatomic entities. We also briefly survey advanced imaging techniques, which include a number of promising areas of TBI research. PMID:27637393

  4. Race/Ethnicity and Retention in Traumatic Brain Injury Outcomes Research: A Traumatic Brain Injury Model Systems National Database Study.

    PubMed

    Sander, Angelle M; Lequerica, Anthony H; Ketchum, Jessica M; Hammond, Flora M; Gary, Kelli Williams; Pappadis, Monique R; Felix, Elizabeth R; Johnson-Greene, Douglas; Bushnik, Tamara

    2018-05-31

    To investigate the contribution of race/ethnicity to retention in traumatic brain injury (TBI) research at 1 to 2 years postinjury. Community. With dates of injury between October 1, 2002, and March 31, 2013, 5548 whites, 1347 blacks, and 790 Hispanics enrolled in the Traumatic Brain Injury Model Systems National Database. Retrospective database analysis. Retention, defined as completion of at least 1 question on the follow-up interview by the person with TBI or a proxy. Retention rates 1 to 2 years post-TBI were significantly lower for Hispanic (85.2%) than for white (91.8%) or black participants (90.5%) and depended significantly on history of problem drug or alcohol use. Other variables associated with low retention included older age, lower education, violent cause of injury, and discharge to an institution versus private residence. The findings emphasize the importance of investigating retention rates separately for blacks and Hispanics rather than combining them or grouping either with other races or ethnicities. The results also suggest the need for implementing procedures to increase retention of Hispanics in longitudinal TBI research.

  5. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  6. Head Trauma with or without Mild Brain Injury Increases the Risk of Future Traumatic Death: A Controlled Prospective 15-Year Follow-Up Study.

    PubMed

    Vaaramo, Kalle; Puljula, Jussi; Tetri, Sami; Juvela, Seppo; Hillbom, Matti

    2015-10-15

    Patients who have recovered from traumatic brain injury (TBI) show an increased risk of premature death. To investigate long-term mortality rates in a population admitted to the hospital for head injury (HI), we conducted a population-based prospective case-control, record-linkage study, All subjects who were living in Northern Ostrobothnia, and who were admitted to Oulu University Hospital in 1999 because of HI (n=737), and 2196 controls matched by age, gender, and residence randomly drawn from the population of Northern Ostrobothnia were included. Death rate and causes of death in HI subjects during 15 years of follow-up was compared with the general population controls. The crude mortality rates were 56.9, 18.6, and 23.8% for subjects having moderate-to-severe traumatic brain injury (TBI), mild TBI, and head injury without TBI, respectively. The corresponding approximate annual mortality rates were 6.7%, 1.4%, and 1.9%. All types of index HI predicted a significant risk of traumatic death in the future. Subjects who had HI without TBI had an increased risk of both death from all causes (hazard ratio 2.00; 95% confidence interval 1.57-2.55) and intentional or unintentional traumatic death (4.01, 2.20-7.30), compared with controls. The main founding was that even HI without TBI carries an increased risk of future traumatic death. The reason for this remains unknown and further studies are needed. To prevent such premature deaths, post-traumatic therapy should include an interview focusing on lifestyle factors.

  7. The neural basis of impaired self-awareness after traumatic brain injury

    PubMed Central

    Ham, Timothy E.; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H.; Leech, Robert

    2014-01-01

    Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at ‘rest’. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network. PMID:24371217

  8. The neural basis of impaired self-awareness after traumatic brain injury.

    PubMed

    Ham, Timothy E; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H; Leech, Robert; Sharp, David J

    2014-02-01

    Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at 'rest'. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network.

  9. Acute post-traumatic stress symptoms and age predict outcome in military blast concussion.

    PubMed

    Mac Donald, Christine L; Adam, Octavian R; Johnson, Ann M; Nelson, Elliot C; Werner, Nicole J; Rivet, Dennis J; Brody, David L

    2015-05-01

    High rates of adverse outcomes have been reported following blast-related concussive traumatic brain injury in US military personnel, but the extent to which such adverse outcomes can be predicted acutely after injury is unknown. We performed a prospective, observational study of US military personnel with blast-related concussive traumatic brain injury (n = 38) and controls (n = 34) enrolled between March and September 2012. Importantly all subjects returned to duty and did not require evacuation. Subjects were evaluated acutely 0-7 days after injury at two sites in Afghanistan and again 6-12 months later in the United States. Acute assessments revealed heightened post-concussive, post-traumatic stress, and depressive symptoms along with worse cognitive performance in subjects with traumatic brain injury. At 6-12 months follow-up, 63% of subjects with traumatic brain injury and 20% of controls had moderate overall disability. Subjects with traumatic brain injury showed more severe neurobehavioural, post-traumatic stress and depression symptoms along with more frequent cognitive performance deficits and more substantial headache impairment than control subjects. Logistic regression modelling using only acute measures identified that a diagnosis of traumatic brain injury, older age, and more severe post-traumatic stress symptoms provided a good prediction of later adverse global outcomes (area under the receiver-operating characteristic curve = 0.84). Thus, US military personnel with concussive blast-related traumatic brain injury in Afghanistan who returned to duty still fared quite poorly on many clinical outcome measures 6-12 months after injury. Poor global outcome seems to be largely driven by psychological health measures, age, and traumatic brain injury status. The effects of early interventions and longer term implications of these findings are unknown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Mild traumatic brain injury is associated with reduced cortical thickness in those at risk for Alzheimer's disease.

    PubMed

    Hayes, Jasmeet P; Logue, Mark W; Sadeh, Naomi; Spielberg, Jeffrey M; Verfaellie, Mieke; Hayes, Scott M; Reagan, Andrew; Salat, David H; Wolf, Erika J; McGlinchey, Regina E; Milberg, William P; Stone, Annjanette; Schichman, Steven A; Miller, Mark W

    2017-03-01

    Moderate-to-severe traumatic brain injury is one of the strongest environmental risk factors for the development of neurodegenerative diseases such as late-onset Alzheimer's disease, although it is unclear whether mild traumatic brain injury, or concussion, also confers risk. This study examined mild traumatic brain injury and genetic risk as predictors of reduced cortical thickness in brain regions previously associated with early Alzheimer's disease, and their relationship with episodic memory. Participants were 160 Iraq and Afghanistan War veterans between the ages of 19 and 58, many of whom carried mild traumatic brain injury and post-traumatic stress disorder diagnoses. Whole-genome polygenic risk scores for the development of Alzheimer's disease were calculated using summary statistics from the largest Alzheimer's disease genome-wide association study to date. Results showed that mild traumatic brain injury moderated the relationship between genetic risk for Alzheimer's disease and cortical thickness, such that individuals with mild traumatic brain injury and high genetic risk showed reduced cortical thickness in Alzheimer's disease-vulnerable regions. Among males with mild traumatic brain injury, high genetic risk for Alzheimer's disease was associated with cortical thinning as a function of time since injury. A moderated mediation analysis showed that mild traumatic brain injury and high genetic risk indirectly influenced episodic memory performance through cortical thickness, suggesting that cortical thinning in Alzheimer's disease-vulnerable brain regions is a mechanism for reduced memory performance. Finally, analyses that examined the apolipoprotein E4 allele, post-traumatic stress disorder, and genetic risk for schizophrenia and depression confirmed the specificity of the Alzheimer's disease polygenic risk finding. These results provide evidence that mild traumatic brain injury is associated with greater neurodegeneration and reduced memory performance in individuals at genetic risk for Alzheimer's disease, with the caveat that the order of causal effects cannot be inferred from cross-sectional studies. These results underscore the importance of documenting head injuries even within the mild range as they may interact with genetic risk to produce negative long-term health consequences such as neurodegenerative disease. Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the United States.

  11. 77 FR 25708 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... and OMB Number: Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Long-Term Quality of Life... effects of traumatic brain injury (TBI) and Post-traumatic Stress Disorder (PTSD). Information collected...

  12. Enhancing work outcome for three persons with traumatic brain injury.

    PubMed

    Target, P; Wehman, P; Petersen, R; Gorton, S

    1998-03-01

    A case study approach is used to illustrate how three survivors of severe traumatic brain injury were able to gain and maintain employment with the assistance of a supported employment programme. Emphasis on the different types of accommodations, including the design and implementation of compensatory strategies, is provided for each case. Finally, on overview of steps that can be taken to enhance the use of such strategies on the job is presented.

  13. Concussion and Traumatic Brain Injury

    MedlinePlus

    ... please turn JavaScript on. Feature: Concussion Concussion and Traumatic Brain Injury Past Issues / Summer 2015 Table of Contents Children ... Flutie: "Be on the Safe Side." / Concussion and Traumatic Brain Injury Summer 2015 Issue: Volume 10 Number 2 Page ...

  14. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2015-02-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for...multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently, there are no methods to identify progressive tau...after traumatic brain injury. Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in

  15. Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel

    DTIC Science & Technology

    2011-06-02

    hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging ( DTI ), an advanced form of magnetic... DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mecha- nism of injury (e.g...other injuries but no clinical diagnosis of traumatic brain injury. Results Abnormalities revealed on DTI were consistent with traumatic axonal injury in

  16. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    PubMed Central

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  17. Interhemispheric Information Transfer: A New Diagnostic Method for Mild Traumatic Brain Injury

    DTIC Science & Technology

    2011-10-01

    brain tumors, meningitis, cerebral palsy, encephalitis, brain abscesses , vascular malformations, cerebrovascular disease, Alzheimer’s disease...disease including head trauma with loss of consciousness 2) Having a contraindication to MRI such as pregnancy, breast feeding, surgical clips

  18. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.

    PubMed

    Gooijers, Jolien; Beets, Iseult A M; Albouy, Genevieve; Beeckmans, Kurt; Michiels, Karla; Sunaert, Stefan; Swinnen, Stephan P

    2016-09-01

    Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    MedlinePlus

    ... NICHD Research Information Find a Study More Information Traumatic Brain Injury (TBI) Condition Information NICHD Research Information Find a ... Care Providers Home Health A to Z List Traumatic Brain Injury (TBI) Condition Information What are common symptoms? Share ...

  20. Traumatic Brain Injury and Infectious Encephalopathy in Children From Four Resource-Limited Settings in Africa.

    PubMed

    Fink, Ericka L; von Saint Andre-von Arnim, Amelie; Kumar, Rashmi; Wilson, Patrick T; Bacha, Tigist; Aklilu, Abenezer Tirsit; Teklemariam, Tsegazeab Laeke; Hooli, Shubhada; Tuyisenge, Lisine; Otupiri, Easmon; Fabio, Anthony; Gianakas, John; Kochanek, Patrick M; Angus, Derek C; Tasker, Robert C

    2018-04-16

    To assess the frequency, interventions, and outcomes of children presenting with traumatic brain injury or infectious encephalopathy in low-resource settings. Prospective study. Four hospitals in Sub-Saharan Africa. Children age 1 day to 17 years old evaluated at the hospital with traumatic brain injury or infectious encephalopathy. None. We evaluated the frequency and outcomes of children presenting consecutively over 4 weeks to any hospital department with traumatic brain injury or infectious encephalopathy. Pediatric Cerebral Performance Category score was assessed pre morbidity and at hospital discharge. Overall, 130 children were studied (58 [45%] had traumatic brain injury) from hospitals in Ethiopia (n = 51), Kenya (n = 50), Rwanda (n = 20), and Ghana (n = 7). Forty-six percent had no prehospital care, and 64% required interhospital transport over 18 km (1-521 km). On comparing traumatic brain injury with infectious encephalopathy, there was no difference in presentation with altered mental state (80% vs 82%), but a greater proportion of traumatic brain injury cases had loss of consciousness (80% vs 53%; p = 0.004). Traumatic brain injury patients were older (median [range], 120 mo [6-204 mo] vs 13 mo [0.3-204 mo]), p value of less than 0.001, and more likely male (73% vs 51%), p value of less than 0.01. In 78% of infectious encephalopathy cases, cause was unknown. More infectious encephalopathy cases had a seizure (69% vs 12%; p < 0.001). In regard to outcome, infectious encephalopathy versus traumatic brain injury: hospital lengths of stay were longer for infectious encephalopathy (8 d [2-30 d] vs 4 d [1-36 d]; p = 0.003), discharge rate to home, or for inpatient rehabilitation, or death differed between infectious encephalopathy (85%, 1%, and 13%) and traumatic brain injury (79%, 12%, and 1%), respectively, p value equals to 0.044. There was no difference in the proportion of children surviving with normal or mild disability (73% traumatic brain injury vs 79% infectious encephalopathy; p = 0.526). The epidemiology and outcomes of pediatric traumatic brain injury and infectious encephalopathy varied by center and disease. To improve outcomes of these conditions in low-resource setting, focus should be on neurocritical care protocols for pre-hospital, hospital, and rehabilitative care.

  1. Decorticate posture

    MedlinePlus

    Abnormal posturing - decorticate posture; Traumatic brain injury - decorticate posture ... Brain problem due to drugs, poisoning, or infection Traumatic brain injury Brain problem due to liver failure Increased pressure ...

  2. Neuropathology and brain weight in traumatic-crush asphyxia.

    PubMed

    Al-Sarraj, Safa; Laxton, Ross; Swift, Ben; Kolar, Alexander J; Chapman, Rob C; Fegan-Earl, Ashley W; Cary, Nat R B

    2017-11-01

    Traumatic (crush) asphyxia is a rare condition caused by severe compression of the chest and trunk leading to often extreme so-called asphyxial signs, including cyanosis in head and neck regions, multiple petechiae, and subconjunctival haemorrhage as well as neurological manifestations. To investigate the neuropathology and brain weight in traumatic asphyxia caused by different accidents such as industrial accidents and road traffic collision. Post mortem records of 20 cases of traumatic asphyxia (TA) resulting from different causes of which four brains are available for comprehensive neuropathological examination. The expected brain weights for given body height and associated 95% confidence range were calculated according to the following formula: baseline brain weight (BBW) + body height x rate (g/cm). The 95% confidence range was calculated by adding and subtracting the standard error (SE) x 1.96 (7-8). There was a trend for higher brain weight in the TA cohort but it was not significant (1494 g vs 1404 g, p = 0.1). The upper limits of the brain weight of 95% confidence was 1680 g vs 1660 g, p = 0.9. The neuropathological examination of four available brains from the TA cohort showed severe congestion of blood vessels, perivascular haemorrhages and occasional βAPP deposits consistent with early axonal disruption. Brain examination is informative as part of investigation of TA. Developing ischaemic changes and an increase in brain weight are the most likely indicators of a prolonged period of patient's survival. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  4. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  5. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: A 10-year follow-up nationally representative Taiwan survey

    PubMed Central

    Chen, Ying-Jen; Liang, Chang-Min; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lin, Tzu-Yu; Chung, Chi-Hsiang; Lin, Fu-Huang; Tsao, Chang-Huei; Chien, Wu-Chien

    2017-01-01

    Accumulating evidences had shown that traumatic brain injury was associated with visual impairment or vision loss. However, there were a limited number of empirical studies regarding the longitudinal relationship between traumatic brain injury and incident optic neuropathy. We studied a cohort from the Taiwanese National Health Insurance data comprising 553918 participants with traumatic brain injury and optic neuropathy-free in the case group and 1107836 individuals without traumatic brain injury in the control group from 1st January 2000. After the index date until the end of 2010, Cox proportional hazards analysis was used to compare the risk of incident optic neuropathy. During the follow-up period, case group was more likely to develop incident optic neuropathy (0.24%) than the control group (0.11%). Multivariate Cox regression analysis demonstrated that the case group had a 3-fold increased risk of optic neuropathy (HR = 3.017, 95% CI = 2.767–3.289, p < 0.001). After stratification by demographic information, traumatic brain injury remained a significant factor for incident optic neuropathy. Our study provided evidence of the increased risk of incident optic neuropathy after traumatic brain injury during a 10-year follow-up period. Patients with traumatic brain injury required periodic and thorough eye examinations for incident optic neuropathy to prevent potentially irreversible vision loss. PMID:29156847

  6. Longitudinal relationship between traumatic brain injury and the risk of incident optic neuropathy: A 10-year follow-up nationally representative Taiwan survey.

    PubMed

    Chen, Ying-Jen; Liang, Chang-Min; Tai, Ming-Cheng; Chang, Yun-Hsiang; Lin, Tzu-Yu; Chung, Chi-Hsiang; Lin, Fu-Huang; Tsao, Chang-Huei; Chien, Wu-Chien

    2017-10-17

    Accumulating evidences had shown that traumatic brain injury was associated with visual impairment or vision loss. However, there were a limited number of empirical studies regarding the longitudinal relationship between traumatic brain injury and incident optic neuropathy. We studied a cohort from the Taiwanese National Health Insurance data comprising 553918 participants with traumatic brain injury and optic neuropathy-free in the case group and 1107836 individuals without traumatic brain injury in the control group from 1st January 2000. After the index date until the end of 2010, Cox proportional hazards analysis was used to compare the risk of incident optic neuropathy. During the follow-up period, case group was more likely to develop incident optic neuropathy (0.24%) than the control group (0.11%). Multivariate Cox regression analysis demonstrated that the case group had a 3-fold increased risk of optic neuropathy (HR = 3.017, 95% CI = 2.767-3.289, p < 0.001). After stratification by demographic information, traumatic brain injury remained a significant factor for incident optic neuropathy. Our study provided evidence of the increased risk of incident optic neuropathy after traumatic brain injury during a 10-year follow-up period. Patients with traumatic brain injury required periodic and thorough eye examinations for incident optic neuropathy to prevent potentially irreversible vision loss.

  7. Usability of World Health Organization Disability Assessment Schedule in chronic traumatic brain injury.

    PubMed

    Tarvonen-Schröder, Sinikka; Tenovuo, Olli; Kaljonen, Anne; Laimi, Katri

    2018-06-15

    To investigate functioning measured with the 12-item World Health Organization Disability Assessment Schedule (WHODAS 2.0) in patients with mild, moderate and severe traumatic brain injury, and to compare patients' experiences with assessments made by their significant others and by consultant neurologists. A total of 112 consecutive patients with traumatic brain injury (29 mild, 43 moderate, 40 severe) and their significant others completed a 12-item WHODAS 2.0 survey. A neurologist assessed functioning with the International Classification of Functioning, Disability and Health minimal generic set. The total patient and proxy WHODAS 2.0 sum score was rated as severe, and impairments in household tasks, learning, community life, emotional functions, concentrating, dealing with strangers, maintaining friendships, and working ability as around moderate in all 3 severity groups. In standing, walking, washing, and dressing oneself the reported impairments increased from mild in mild traumatic brain injury to moderate in severe traumatic brain injury. A neurologist rated the overall functioning, working ability, and motor activities most impaired in severe traumatic brain injury, while there were no between-group differences in energy and drive functions and emotional functions. Patients with chronic traumatic brain injury perceive a diversity of significant difficulties in activities and participation irrespective of the severity of the injury. We recommend assessing disability in traumatic brain injury with the short and understandable WHODAS 2.0 scale, when planning client-oriented services.

  8. Acute care alternate-level-of-care days due to delayed discharge for traumatic and non-traumatic brain injuries.

    PubMed

    Amy, Chen; Zagorski, Brandon; Chan, Vincy; Parsons, Daria; Vander Laan, Rika; Colantonio, Angela

    2012-05-01

    Alternate-level-of-care (ALC) days represent hospital beds that are taken up by patients who would more appropriately be cared for in other settings. ALC days have been found to be costly and may result in worse functional outcomes, reduced motor skills and longer lengths of stay in rehabilitation. This study examines the factors that are associated with acute care ALC days among patients with acquired brain injury (ABI). We used the Discharge Abstract Database to identify patients with ABI using International Classification of Disease-10 codes. From fiscal years 2007/08 to 2009/10, 17.5% of patients with traumatic and 14% of patients with non-traumatic brain injury had at least one ALC day. Significant predictors include having a psychiatric co-morbidity, increasing age and length of stay in acute care. These findings can inform planning for care of people with ABI in a publicly funded healthcare system.

  9. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    DTIC Science & Technology

    2013-11-01

    phosphatase in the etiology of tauopathy and chronic traumatic encephalopathy . National Capital Region Traumatic Brain Injury Research Symposium... encephalopathy after traumatic brain injury. USUHS Research Day held at Bethesda, MD – May 13, 2013 7 CONCLUSION As the result of substantial...and countermeasures to lessen short-term impairments as well as chronic debilitation (e.g. chronic traumatic encephalopathy ). 8 Fig 1. BOP

  10. 38 CFR 3.310 - Disabilities that are proximately due to, or aggravated by, service-connected disease or injury.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Traumatic brain injury. (1) In a veteran who has a service-connected traumatic brain injury, the following shall be held to be the proximate result of the service-connected traumatic brain injury (TBI), in the.../mental state. PTA—Post-traumatic amnesia. GCS—Glasgow Coma Scale. (For purposes of injury stratification...

  11. Development of clinical recommendations for progressive return to activity after military mild traumatic brain injury: guidance for rehabilitation providers.

    PubMed

    McCulloch, Karen L; Goldman, Sarah; Lowe, Lynn; Radomski, Mary Vining; Reynolds, John; Shapiro, Rita; West, Therese A

    2015-01-01

    Previously published mild traumatic brain injury (mTBI) management guidelines provide very general recommendations to return individuals with mTBI to activity. This lack of specific guidance creates variation in military rehabilitation. The Office of the Army Surgeon General in collaboration with the Defense and Veterans Brain Injury Center, a component center of the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury, convened an expert working group to review the existing literature and propose clinical recommendations that standardize rehabilitation activity progression following mTBI. A Progressive Activity Working Group consisted of 11 Department of Defense representatives across all service branches, 7 Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury representatives, and 8 academic/research/civilian experts with experience assessing and treating individuals with mTBI for return to activity. An expert working group meeting included the Progressive Activity Working Group and 15 additional subject matter experts. In February 2012, the Progressive Activity Working Group was established to determine the need and purpose of the rehabilitation recommendations. Following literature review, a table was created on the basis of the progression from the Zurich consensus statement on concussion in sport. Issues were identified for discussion with a meeting of the larger expert group during a July 2012 conference. Following development of rehabilitation guidance, the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury coordinated a similar process for military primary care providers. End products for rehabilitation and primary care providers include specific recommendations for return to activity after concussion. A 6-stage progression specifies activities in physical, cognitive, and balance/vestibular domains and allows for resumption of activity for those with low-level or preinjury symptom complaints. The clinical recommendations for progressive return to activity represent an important effort to standardize activity progression across functional domains and offer providers duty-specific activities to incorporate into intervention. Recommendations were released in January 2014.

  12. Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats.

    PubMed

    Zlotnik, Alexander; Sinelnikov, Igor; Gruenbaum, Benjamin F; Gruenbaum, Shaun E; Dubilet, Michael; Dubilet, Elena; Leibowitz, Akiva; Ohayon, Sharon; Regev, Adi; Boyko, Matthew; Shapira, Yoram; Teichberg, Vivian I

    2012-01-01

    Decreasing blood glutamate concentrations after traumatic brain injury accelerates brain-to-blood glutamate efflux, leading to improved neurologic outcomes. The authors hypothesize that treatment with blood glutamate scavengers should reduce neuronal cell loss, whereas administration of glutamate should worsen outcomes. The authors performed histologic studies of neuronal survival in the rat hippocampus after traumatic brain injury and treatment with blood glutamate scavengers. Traumatic brain injury was induced on anesthetized male Sprague-Dawley rats by a standardized weight drop. Intravenous treatment groups included saline (control), oxaloacetate, pyruvate, and glutamate. Neurologic outcome was assessed using a Neurological Severity Score at 1 h, and 1, 2, 7, 14, 21, 28 days. Blood glutamate was determined at baseline and 90 min. Four weeks after traumatic brain injury, a histologic analysis of surviving neurons was performed. Oxaloacetate and pyruvate treatment groups demonstrated increased neuronal survival (oxaloacetate 2,200 ± 37, pyruvate 2,108 ± 137 vs. control 1,978 ± 46, P < 0.001, mean ± SD). Glutamate treatment revealed decreased neuronal survival (1,715 ± 48, P < 0.001). Treatment groups demonstrated favorable neurologic outcomes at 24 and 48 h (Neurological Severity Score at 24 and 48 h: 5.5 (1-8.25), 5 (1.75-7.25), P = 0.02 and 3(1-6.5), 4 (1.75-4.5), P = 0.027, median ± corresponding interquartile range). Blood glutamate concentrations were decreased in the oxaloacetate and pyruvate treatment groups. Administration of oxaloacetate and pyruvate was not shown to have any adverse effects. The authors demonstrate that the blood glutamate scavengers oxaloacetate and pyruvate provide neuroprotection after traumatic brain injury, expressed both by reduced neuronal loss in the hippocampus and improved neurologic outcomes. The findings of this study may bring about new therapeutic possibilities in a variety of clinical settings.

  13. Traumatic Brain Injury Rehabilitation Comparative Effectiveness Research: Introduction to the Traumatic Brain Injury-Practice Based Evidence Archives Supplement.

    PubMed

    Horn, Susan D; Corrigan, John D; Dijkers, Marcel P

    2015-08-01

    This supplement of the Archives of Physical Medicine and Rehabilitation is devoted to the Traumatic Brain Injury-Practice Based Evidence study, the first practice-based evidence study, to our knowledge, of traumatic brain injury rehabilitation. The purpose of this preface is to place this study in the broader context of comparative effectiveness research and introduce the articles in the supplement. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2014-03-01

    military environments, affected in- dividuals (e.g. football players) often sustain additional mild injuries. mTBI symptoms are typically mild and... concussion andmild traumatic brain injury. PM R 3, S354–358; DOI:10.1016/j.pmrj.2011.07.017 (2011). 2. Hendricks, A. M. et al. Screening for mild traumatic...Mendez, M. F. et al. Mild traumatic brain injury from primary blast vs. blunt forces: post- concussion consequences and functional neuroimaging

  15. Traumatic Brain Injury in the United States: An Epidemiologic Overview

    DTIC Science & Technology

    2009-01-01

    discussed. Mt Sinai J Med 76:105–110, 2009.  2009 Mount Sinai School of Medicine Key Words: epidemiology, head injury, traumatic brain injury. A...traumatic brain injury in the civilian population of the United States. J Head Trauma Rehabil 2008; 23: 394–400. 3. Sosin DM, Sniezek JE, Thurman DJ...consciousness, a practical scale. Lancet 1974; 2: 81–84. 5. Kay T, Harrington DE, Adams R, et al. Definition of mild traumatic brain injury. J Head

  16. Art Therapy for Individuals with Traumatic Brain Injury: A Comprehensive Neurorehabilitation-Informed Approach to Treatment

    ERIC Educational Resources Information Center

    Kline, Tori

    2016-01-01

    I describe an approach to art therapy treatment for survivors of traumatic brain injury developed at a rehabilitation facility for adults that serves inpatient, outpatient, and long-term residential clients. This approach is based on a review of the literature on traumatic brain injury, comprehensive neurorehabilitation, brain plasticity, and art…

  17. Increased Sleep Need and Reduction of Tuberomammillary Histamine Neurons after Rodent Traumatic Brain Injury.

    PubMed

    Noain, Daniela; Büchele, Fabian; Schreglmann, Sebastian R; Valko, Philipp O; Gavrilov, Yuri V; Morawska, Marta M; Imbach, Lukas L; Baumann, Christian R

    2018-01-01

    Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.

  18. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury

    PubMed Central

    Hay, Jennifer; Johnson, Victoria E.; Smith, Douglas H.; Stewart, William

    2017-01-01

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of non-boxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  19. Neuropsychology of perpetrators of domestic violence: the role of traumatic brain injury and alcohol abuse and/or dependence.

    PubMed

    Romero-Martínez, Ángel; Moya-Albiol, Luis

    2013-12-01

    Neuropsychological impairments of the executive functions, memory, attention, intelligence quotient, and empathy have been found in perpetrators of domestic violence (intimate partner violence). These impairments could be partially explained by alcohol abuse, dependence, or traumatic brain injuries. This study reviews the neuropsychological deficits of perpetrators of intimate partner violence. At the same it seeks to integrate and relate these main points with their neuroanatomical correlates. We have also established the relationship between alcohol abuse, dependence, brain damage (including traumatic brain injuries) and those deficits. Scientific literature has been reviewed by means of Google Scholar, PsycINFO, PubMed, Medline and ISI Web of Knowledge. Perpetrators of domestic violence present high mental rigidity, as well as low levels of inhibition, processing speed, verbal and attention skills, and abstract reasoning. Additionally, perpetrators show working and long play memory impairments. Moreover, those deficits could be impaired by traumatic brain injuries and alcohol abuse and/or dependence. Nonetheless, these both variables are not enough to explain the deficits. Functional abnormalities on the prefrontal and occipital cortex, fusiform gyrus, posterior cingulate gyrus, hippocampus, thalamus and amygdala could be associated with these impairments. An analysis of these mechanisms may assist in the development of neuropsychological rehabilitation programmes that could help improve current therapies.

  20. Chronic traumatic encephalopathy.

    PubMed

    Omalu, Bennet

    2014-01-01

    Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative syndrome, which is caused by single, episodic, or repetitive blunt force impacts to the head and transfer of acceleration-deceleration forces to the brain. CTE presents clinically as a composite syndrome of mood disorders and behavioral and cognitive impairment, with or without sensorimotor impairment. Symptoms of CTE may begin with persistent symptoms of acute traumatic brain injury (TBI) following a documented episode of brain trauma or after a latent period that may range from days to weeks to months and years, up to 40 years following a documented episode of brain trauma or cessation of repetitive TBI. Posttraumatic encephalopathy is distinct from CTE, can be comorbid with CTE, and is a clinicopathologic syndrome induced by focal and/or diffuse, gross and/or microscopic destruction of brain tissue following brain trauma. The brain of a CTE sufferer may appear grossly unremarkable, but shows microscopic evidence of primary and secondary proteinopathies. The primary proteinopathy of CTE is tauopathy, while secondary proteinopathies may include, but are not limited to, amyloidopathy and TDP proteinopathy. Reported prevalence rates of CTE in cohorts exposed to TBI ranges from 3 to 80% across age groups. © 2014 S. Karger AG, Basel.

  1. 78 FR 12334 - Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access...-days of the date of this publication. Proposed Collection: Federal Interagency Traumatic Brain Injury...

  2. Characterizing the type and location of intracranial abnormalities in mild traumatic brain injury.

    PubMed

    Isokuortti, Harri; Iverson, Grant L; Silverberg, Noah D; Kataja, Anneli; Brander, Antti; Öhman, Juha; Luoto, Teemu M

    2018-01-12

    OBJECTIVE The incidence of intracranial abnormalities after mild traumatic brain injury (TBI) varies widely across studies. This study describes the characteristics of intracranial abnormalities (acute/preexisting) in a large representative sample of head-injured patients who underwent CT imaging in an emergency department. METHODS CT scans were systematically analyzed/coded in the TBI Common Data Elements framework. Logistic regression modeling was used to quantify risk factors for traumatic intracranial abnormalities in patients with mild TBIs. This cohort included all patients who were treated at the emergency department of the Tampere University Hospital (between 2010 and 2012) and who had undergone head CT imaging after suffering a suspected TBI (n = 3023), including 2766 with mild TBI and a reference group with moderate to severe TBI. RESULTS The most common traumatic lesions seen on CT scans obtained in patients with mild TBIs and those with moderate to severe TBIs were subdural hematomas, subarachnoid hemorrhages, and contusions. Every sixth patient (16.1%) with mild TBI had an intracranial lesion compared with 5 of 6 patients (85.6%) in the group with moderate to severe TBI. The distribution of different types of acute traumatic lesions was similar among mild and moderate/severe TBI groups. Preexisting brain lesions were a more common CT finding among patients with mild TBIs than those with moderate to severe TBIs. Having a past traumatic lesion was associated with increased risk for an acute traumatic lesion but neurodegenerative and ischemic lesions were not. A lower Glasgow Coma Scale score, male sex, older age, falls, and chronic alcohol abuse were associated with higher risk of acute intracranial lesion in patients with mild TBI. CONCLUSIONS These findings underscore the heterogeneity of neuropathology associated with the mild TBI classification. Preexisting brain lesions are common in patients with mild TBI, and the incidence of preexisting lesions increases with age. Acute traumatic lesions are fairly common in patients with mild TBI; every sixth patient had a positive CT scan. Older adults (especially men) who fall represent a susceptible group for acute CT-positive TBI.

  3. Does gender matter? Differences in social-emotional behavior among infants and toddlers before and after mild traumatic brain injury: a preliminary study.

    PubMed

    Kaldoja, Mari-Liis; Kolk, Anneli

    2015-06-01

    Traumatic brain injury is a common cause of acquired disability in childhood. While much is known about cognitive sequelae of brain trauma, gender-specific social-emotional problems in children with mild traumatic brain injury is far less understood. The aims of the study were to investigate gender differences in social-emotional behavior before and after mild traumatic brain injury. Thirty-five 3- to 65-month-old children with mild traumatic brain injury and 70 controls were assessed with Ages and Stages Questionnaires: Social-Emotional. Nine months later, 27 of 35 patients and 54 of 70 controls were reassessed. We found that before injury, boys had more self-regulation and autonomy difficulties and girls had problems with adaptive functioning. Nine months after injury, boys continued to struggle with self-regulation and autonomy and new difficulties with interaction had emerged, whereas in girls, problems in interaction had evolved. Even mild traumatic brain injury in early childhood disrupts normal social-emotional development having especially devastating influence on interaction skills. © The Author(s) 2014.

  4. Adolescent Brain and Cognitive Developments: Implications for Clinical Assessment in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Ciccia, Angela Hein; Meulenbroek, Peter; Turkstra, Lyn S.

    2009-01-01

    Adolescence is a time of significant physical, social, and emotional developments, accompanied by changes in cognitive and language skills. Underlying these are significant developments in brain structures and functions including changes in cortical and subcortical gray matter and white matter tracts. Among the brain regions that develop during…

  5. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    PubMed

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  6. Association between the rapid shallow breathing index and extubation success in patients with traumatic brain injury

    PubMed Central

    dos Reis, Helena França Correia; Almeida, Mônica Lajana Oliveira; da Silva, Mário Ferreira; Moreira, Julião Oliveira; Rocha, Mário de Seixas

    2013-01-01

    Objective To investigate the association between the rapid shallow breathing index and successful extubation in patients with traumatic brain injury. Methods This study was a prospective study conducted in patients with traumatic brain injury of both genders who underwent mechanical ventilation for at least two days and who passed a spontaneous breathing trial. The minute volume and respiratory rate were measured using a ventilometer, and the data were used to calculate the rapid shallow breathing index (respiratory rate/tidal volume). The dependent variable was the extubation outcome: reintubation after up to 48 hours (extubation failure) or not (extubation success). The independent variable was the rapid shallow breathing index measured after a successful spontaneous breathing trial. Results The sample comprised 119 individuals, including 111 (93.3%) males. The average age of the sample was 35.0±12.9 years old. The average duration of mechanical ventilation was 8.1±3.6 days. A total of 104 (87.4%) participants achieved successful extubation. No association was found between the rapid shallow breathing index and extubation success. Conclusion The rapid shallow breathing index was not associated with successful extubation in patients with traumatic brain injury. PMID:24213084

  7. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics... Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request. 0925-NEW...

  8. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  9. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2012-11-01

    DATES COVERED 4 October 2011- 3 October 2012 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a...interventions aimed at modulation of the endocannabinoid (EC) system targeting degradation of 20arachidonoyl glycerlol (2- AG) and N-arachidonoyl...percussion, traumatic brain injury, blood brain barrier, neuroinflammination, neurological dysfunction, endocannabinoids . 16. SECURITY CLASSIFICATION

  10. Narrative literature review: Health, activity and participation issues for women following traumatic brain injury.

    PubMed

    O'Reilly, Kate; Wilson, Nathan; Peters, Kath

    2017-06-06

    This narrative review will draw attention to the current limitations within the literature related to women following traumatic brain injury in order to stimulate discussion and inform future directions for research. There is a wide-ranging body of research about traumatic brain injury with the higher incidence of brain injury among males reflected in this body of work. As a result, the specific gendered issues facing women with traumatic brain injury are not as well understood. A search of electronic databases was conducted using the terms "traumatic brain injury", "brain injury", "women", "participation", "concussion" and "outcomes". The 36 papers revealed the following five themes (1) Relationships and life satisfaction; (2) Perception of self and body image; (3) Meaningful occupation; (4) Sexuality and sexual health; and (5) Physical function. Without research, which focuses specifically on the experience of women and girls with traumatic brain injury there is a risk that clinical care, policy development and advocacy services will not effectively accommodate them. Implications for rehabilitation Exploring the gendered issues women may experience following traumatic brain injury will enhance clinicians understanding of the unique challenges they face. Such information has the potential to guide future directions for research, policy, and practice. Screening women for hormonal imbalances such as hypopituitarism following traumatic brain injury is recommended as this may assist clinicians in addressing the far reaching implications in regard to disability, quality of life and mood. The growing literature regarding the cumulative effect of repeat concussions following domestic violence and women's increased risk of sport-related concussion may assist clinicians in advocating for appropriate rehabilitation and community support services.

  11. Using Virtual Reality and Videogames for Traumatic Brain Injury Rehabilitation: A Structured Literature Review.

    PubMed

    Pietrzak, Eva; Pullman, Stephen; McGuire, Annabel

    2014-08-01

    This article reviews the available literature about the use of novel methods of rehabilitation using virtual reality interventions for people living with posttraumatic brain injuries. The MEDLINE, EMBASE, SCOPUS, and Cochrane Library databases were searched using the terms "virtual reality" OR "video games" AND "traumatic brain injury." Included studies investigated therapeutic use of virtual reality in adults with a brain trauma resulting from acquired closed head injury, reported outcomes that included measures of motor or cognitive functionality, and were published in a peer-reviewed journal written in English. Eighteen articles fulfilled inclusion criteria. Eight were case studies, five studies had a quasi-experimental design with a pre-post comparison, and five were pilot randomized control trials or comparative studies. The virtual reality systems used were commercial or custom designed for the study and ranged from expensive, fully immersive systems to cheap online games or videogames. In before-after comparisons, improvements in balance were seen in four case studies and two small randomized control trials. Between-group comparisons in these randomized control trials showed no difference between virtual reality and traditional therapy. Post-training improvements were also seen for upper extremity functions (five small studies) and for various cognitive function measures (four case studies and one pilot randomized control trial). Attitudes of participants toward virtual reality interventions was more positive than for traditional therapy (three studies). The evidence that the use of virtual reality in rehabilitation of traumatic brain injury improves motor and cognitive functionality is currently very limited. However, this approach has the potential to provide alternative, possibly more affordable and available rehabilitation therapy for traumatic brain injury in settings where access to therapy is limited by geographical or financial constraints.

  12. Increased Small-World Network Topology Following Deployment-Acquired Traumatic Brain Injury Associated with the Development of Post-Traumatic Stress Disorder.

    PubMed

    Rowland, Jared A; Stapleton-Kotloski, Jennifer R; Dobbins, Dorothy L; Rogers, Emily; Godwin, Dwayne W; Taber, Katherine H

    2018-05-01

    Cross-sectional and longitudinal studies in active duty and veteran cohorts have both demonstrated that deployment-acquired traumatic brain injury (TBI) is an independent risk factor for developing post-traumatic stress disorder (PTSD), beyond confounds such as combat exposure, physical injury, predeployment TBI, and pre-deployment psychiatric symptoms. This study investigated how resting-state brain networks differ between individuals who developed PTSD and those who did not following deployment-acquired TBI. Participants included postdeployment veterans with deployment-acquired TBI history both with and without current PTSD diagnosis. Graph metrics, including small-worldness, clustering coefficient, and modularity, were calculated from individually constructed whole-brain networks based on 5-min eyes-open resting-state magnetoencephalography (MEG) recordings. Analyses were adjusted for age and premorbid IQ. Results demonstrated that participants with current PTSD displayed higher levels of small-worldness, F(1,12) = 5.364, p < 0.039, partial eta squared = 0.309, and Cohen's d = 0.972, and clustering coefficient, F(1, 12) = 12.204, p < 0.004, partial eta squared = 0.504, and Cohen's d = 0.905, than participants without current PTSD. There were no between-group differences in modularity or the number of modules present. These findings are consistent with a hyperconnectivity hypothesis of the effect of TBI history on functional networks rather than a disconnection hypothesis, demonstrating increased levels of clustering coefficient rather than a decrease as might be expected; however, these results do not account for potential changes in brain structure. These results demonstrate the potential pathological sequelae of changes in functional brain networks following deployment-acquired TBI and represent potential neurobiological changes associated with deployment-acquired TBI that may increase the risk of subsequently developing PTSD.

  13. Association Between Traumatic Brain Injury and Risk of Posttraumatic Stress Disorder in Active-Duty Marines

    DTIC Science & Technology

    2013-01-01

    traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder ( PTSD ) has been difficult to determine because of the prevalence of...Qualification Test; CAPS, Clinician-Administered PTSD Scale; PTSD , posttraumatic stress disorder ; TBI, traumatic brain injury. a For the zeromodel, base...New onset and persistent symptoms of post - traumatic stress disorder self reported after deployment and combat exposures. BMJ.

  14. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders

    PubMed Central

    SAAVEDRA, Juan M.

    2012-01-01

    The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT1 receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT1 receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer’s disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer’s disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury. PMID:22827472

  15. 78 FR 27972 - Agency Information Collection Activities; Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-13

    ... Administration (HRSA)--Funded Traumatic Brain Injury Grants (OMB No. 0915-xxxx)--New Abstract: This survey is designed to collect information from HRSA- funded Traumatic Brain Injury (TBI) State Implementation Partnership Grants and Protection and Advocacy for Traumatic Brain Injury (TBI) Grants regarding the impact of...

  16. Towards sustainable traumatic brain injury care systems: healthcare leadership imperatives in Canada.

    PubMed

    Caro, Denis

    2011-01-01

    Traumatic brain injuries pose strategic population health challenges in the face of burgeoning clinical demands that continue to tax capital, financial, and social resource capacities. The sustainability of traumatic brain injury care systems depends on paradigmatic shifts in healthcare leadership thinking. In quest for high-performance care and sustained quality of life for traumatic brain injury patients, this article presents a unique paradigm of seven care performance layers and seven health leadership imperatives that together form the paradigm for the systemic sustainability of TBI care systems of the future.

  17. Blood-brain barrier dysfunction in brain diseases: clinical experience.

    PubMed

    Schoknecht, Karl; Shalev, Hadar

    2012-11-01

    The blood-brain barrier, a unique feature of the cerebral vasculature, is gaining attention as a feature in common neurologic disorders including stroke, traumatic brain injury, epilepsy, and schizophrenia. Although acute blood-brain barrier dysfunction can induce cerebral edema, seizures, or neuropsychiatric symptoms, epileptogenesis and cognitive decline are among the chronic effects. The mechanisms underlying blood-brain barrier dysfunction are diverse and may range from physical endothelial damage in traumatic brain injury to degradation of extracellular matrix proteins via matrix metalloproteinases as part of an inflammatory response. Clinically, blood-brain barrier dysfunction is often detected using contrast-enhanced imaging. However, these techniques do not give any insights into the underlying mechanism. Elucidating the specific pathways of blood-brain barrier dysfunction at different time points and in different brain diseases using novel imaging techniques promises a more accurate blood-brain barrier terminology as well as new treatment options and personalized treatment. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  18. The blood-brain barrier as a target in traumatic brain injury treatment.

    PubMed

    Thal, Serge C; Neuhaus, Winfried

    2014-11-01

    Traumatic brain injury (TBI) is one of the most frequent causes of death in the young population. Several clinical trials have unsuccessfully focused on direct neuroprotective therapies. Recently immunotherapeutic strategies shifted into focus of translational research in acute CNS diseases. Cross-talk between activated microglia and blood-brain barrier (BBB) could initiate opening of the BBB and subsequent recruitment of systemic immune cells and mediators into the brain. Stabilization of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage and acute neurodegeneration. This review provides an overview on the pathophysiology of TBI and brain edema formation including definitions and classification of TBI, current clinical treatment strategies, as well as current understanding on the underlying cellular processes. A summary of in vivo and in vitro models to study different aspects of TBI is presented. Three mechanisms proposed for stabilization of the BBB, myosin light chain kinases, glucocorticoid receptors and peroxisome proliferator-activated receptors are reviewed for their influence on barrier-integrity and outcome after TBI. In conclusion, the BBB is recommended as a promising target for the treatment of traumatic brain injury, and it is suggested that a combination of BBB stabilization and neuroprotectants may improve therapeutic success. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  19. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  20. Cerebrovascular Pressure Reactivity in Children With Traumatic Brain Injury.

    PubMed

    Lewis, Philip M; Czosnyka, Marek; Carter, Bradley G; Rosenfeld, Jeffrey V; Paul, Eldho; Singhal, Nitesh; Butt, Warwick

    2015-10-01

    Traumatic brain injury is a significant cause of morbidity and mortality in children. Cerebral autoregulation disturbance after traumatic brain injury is associated with worse outcome. Pressure reactivity is a fundamental component of cerebral autoregulation that can be estimated using the pressure-reactivity index, a correlation between slow arterial blood pressure, and intracranial pressure fluctuations. Pressure-reactivity index has shown prognostic value in adult traumatic brain injury, with one study confirming this in children. Pressure-reactivity index can identify a cerebral perfusion pressure range within which pressure reactivity is optimal. An increasing difference between optimal cerebral perfusion pressure and cerebral perfusion pressure is associated with worse outcome in adult traumatic brain injury; however, this has not been investigated in children. Our objective was to study pressure-reactivity index and optimal cerebral perfusion pressure in pediatric traumatic brain injury, including associations with outcome, age, and cerebral perfusion pressure. Prospective observational study. ICU, Royal Children's Hospital, Melbourne, Australia. Patients with traumatic brain injury who are 6 months to 16 years old, are admitted to the ICU, and require arterial blood pressure and intracranial pressure monitoring. None. Arterial blood pressure, intracranial pressure, and end-tidal CO2 were recorded electronically until ICU discharge or monitoring cessation. Pressure-reactivity index and optimal cerebral perfusion pressure were computed according to previously published methods. Clinical data were collected from electronic medical records. Outcome was assessed 6 months post discharge using the modified Glasgow Outcome Score. Thirty-six patients were monitored, with 30 available for follow-up. Pressure-reactivity index correlated with modified Glasgow Outcome Score (Spearman ρ = 0.42; p = 0.023) and was higher in patients with unfavorable outcome (0.23 vs -0.09; p = 0.0009). A plot of pressure-reactivity index averaged within 5 mm Hg cerebral perfusion pressure bins showed a U-shape, reaffirming the concept of cerebral perfusion pressure optimization in children. Optimal cerebral perfusion pressure increased with age (ρ = 0.40; p = 0.02). Both the duration and magnitude of negative deviations in the difference between cerebral perfusion pressure and optimal cerebral perfusion pressure were associated with unfavorable outcome. In pediatric patients with traumatic brain injury, pressure-reactivity index has prognostic value and can identify cerebral perfusion pressure targets that may differ from treatment protocols. Our results suggest but do not confirm that cerebral perfusion pressure targeting using pressure-reactivity index as a guide may positively impact on outcome. This question should be addressed by a prospective clinical study.

  1. Epidemiology of mild traumatic brain injury and neurodegenerative disease

    PubMed Central

    Gardner, Raquel C.; Yaffe, Kristine

    2015-01-01

    Every year an estimated 42 million people worldwide suffer a mild traumatic brain injury (MTBI) or concussion. More severe traumatic brain injury (TBI) is a well-established risk factor for a variety of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). Recently, large epidemiological studies have additionally identified MTBI as a risk factor for dementia. The role of MTBI in risk of PD or ALS is less well established. Repetitive MTBI and repetitive sub-concussive head trauma has been linked to increased risk for a variety of neurodegenerative diseases including chronic traumatic encephalopathy (CTE). CTE is a unique neurodegenerative tauopathy first described in boxers but more recently described in a variety of contact sport athletes, military veterans, and civilians exposed to repetitive MTBI. Studies of repetitive MTBI and CTE have been limited by referral bias, lack of consensus clinical criteria for CTE, challenges of quantifying MTBI exposure, and potential for confounding. The prevalence of CTE is unknown and the amount of MTBI or sub-concussive trauma exposure necessary to produce CTE is unclear. This review will summarize the current literature regarding the epidemiology of MTBI, post-TBI dementia and Parkinson's disease, and CTE while highlighting methodological challenges and critical future directions of research in this field. PMID:25748121

  2. Cost-effectiveness of the PECARN rules in children with minor head trauma.

    PubMed

    Nishijima, Daniel K; Yang, Zhuo; Urbich, Michael; Holmes, James F; Zwienenberg-Lee, Marike; Melnikow, Joy; Kuppermann, Nathan

    2015-01-01

    To improve the efficiency and appropriateness of computed tomography (CT) use in children with minor head trauma, clinical prediction rules were derived and validated by the Pediatric Emergency Care Applied Research Network (PECARN). The objective of this study was to conduct a cost-effectiveness analysis comparing the PECARN traumatic brain injury prediction rules to usual care for selective CT use. We used decision analytic modeling to project the outcomes, costs, and cost-effectiveness of applying the PECARN rules compared with usual care in a hypothetical cohort of 1,000 children with minor blunt head trauma. Clinical management was directed by level of risk as specified by the presence or absence of variables in the PECARN traumatic brain injury prediction rules. Immediate costs of care (diagnostic testing, treatment [not including clinician time], and hospital stay) were derived on single-center data. Quality-adjusted life-year losses related to the sequelae of clinically important traumatic brain injuries and to radiation-induced cancers, number of CT scans, number of radiation-induced cancers, number of missed clinically important traumatic brain injury, and total costs were evaluated. Compared with the usual care strategy, the PECARN strategy was projected to miss slightly more children with clinically important traumatic brain injuries (0.26 versus 0.02 per 1,000 children) but used fewer cranial CT scans (274 versus 353), resulted in fewer radiation-induced cancers (0.34 versus 0.45), cost less ($904,940 versus $954,420), and had lower net quality-adjusted life-year loss (-4.64 versus -5.79). Because the PECARN strategy was more effective (less quality-adjusted life-year loss) and less costly, it dominated the usual care strategy. Results were robust under sensitivity analyses. Application of the PECARN traumatic brain injury prediction rules for children with minor head trauma would lead to beneficial outcomes and more cost-effective care. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  3. Hypothermia for Traumatic Brain Injury in Children-A Phase II Randomized Controlled Trial.

    PubMed

    Beca, John; McSharry, Brent; Erickson, Simon; Yung, Michael; Schibler, Andreas; Slater, Anthony; Wilkins, Barry; Singhal, Ash; Williams, Gary; Sherring, Claire; Butt, Warwick

    2015-07-01

    To perform a pilot study to assess the feasibility of performing a phase III trial of therapeutic hypothermia started early and continued for at least 72 hours in children with severe traumatic brain injury. Multicenter prospective randomized controlled phase II trial. All eight of the PICUs in Australia and New Zealand and one in Canada. Children 1-15 years old with severe traumatic brain injury and who could be randomized within 6 hours of injury. The control group had strict normothermia to a temperature of 36-37°C for 72 hours. The intervention group had therapeutic hypothermia to a temperature of 32-33°C for 72 hours followed by slow rewarming at a rate compatible with maintaining intracranial pressure and cerebral perfusion pressure. Of 764 children admitted to PICU with traumatic brain injury, 92 (12%) were eligible and 55 (7.2%) were recruited. There were five major protocol violations (9%): three related to recruitment and consent processes and two to incorrect temperature management. Rewarming took a median of 21.5 hours (16-35 hr) and was performed without compromise in the cerebral perfusion pressure. There was no increase in any complications, including infections, bleeding, and arrhythmias. There was no difference in outcomes 12 months after injury; in the therapeutic hypothermia group, four (17%) had a bad outcome (pediatric cerebral performance category, 4-6) and three (13%) died, whereas in the normothermia group, three (12%) had a bad outcome and one (4%) died. Early therapeutic hypothermia in children with severe traumatic brain injury does not improve outcome and should not be used outside a clinical trial. Recruitment rates were lower and outcomes were better than expected. Conventional randomized controlled trials in children with severe traumatic brain injury are unlikely to be feasible. A large international trials group and alternative approaches to trial design will be required to further inform practice.

  4. Hospitalizations for critically ill children with traumatic brain injuries: a longitudinal analysis.

    PubMed

    Tilford, John M; Aitken, Mary E; Anand, K J S; Green, Jerril W; Goodman, Allen C; Parker, James G; Killingsworth, Jeffrey B; Fiser, Debra H; Adelson, P David

    2005-09-01

    This study examines the incidence, utilization of procedures, and outcomes for critically ill children hospitalized with traumatic brain injury over the period 1988-1999 to describe the benefits of improved treatment. Retrospective analysis of hospital discharges was conducted using data from the Health Care Cost and Utilization Project Nationwide Inpatient Sample that approximates a 20% sample of U.S. acute care hospitals. Hospital inpatient stays from all types of U.S. community hospitals. The study sample included all children aged 0-21 with a primary or secondary ICD-9-CM diagnosis code for traumatic brain injury and a procedure code for either endotracheal intubation or mechanical ventilation. None. Deaths occurring during hospitalization were used to calculate mortality rates. Use of intracranial pressure monitoring and surgical openings of the skull were investigated as markers for the aggressiveness of treatment. Patients were further classified by insurance status, household income, and hospital characteristics. Over the 12-yr study period, mortality rates decreased 8 percentage points whereas utilization of intracranial pressure monitoring increased by 11 percentage points. The trend toward more aggressive management of traumatic brain injury corresponded with improved hospital outcomes over time. Lack of insurance was associated with vastly worse outcomes. An estimated 6,437 children survived their traumatic brain injury hospitalization because of improved treatment, and 1,418 children died because of increased mortality risk associated with being uninsured. Improved treatment was valued at approximately dollar 17 billion, whereas acute care hospitalization costs increased by dollar 1.5 billion (in constant 2000 dollars). Increased mortality in uninsured children was associated with a dollar 3.76 billion loss in economic benefits. More aggressive management of pediatric traumatic brain injury appears to have contributed to reduced mortality rates over time and saved thousands of lives. Additional lives could be saved if mortality rates could be equalized between insured and uninsured children.

  5. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    PubMed Central

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients. PMID:29186356

  6. Comprehensive 3D Model of Shock Wave-Brain Interactions in Blast-Induced Traumatic Brain Injuries

    DTIC Science & Technology

    2009-10-01

    waves can cause brain damage by other mechanisms including excess pressure (leading to contusions), excess strain (leading to subdural ... hematomas and/or diffuse axonal injuries), and, in particular, cavitation effects (leading to subcellular damage). This project aims at the development of a

  7. Risk factors for postconcussion symptom reporting after traumatic brain injury in U.S. military service members.

    PubMed

    Lange, Rael T; Brickell, Tracey; French, Louis M; Ivins, Brian; Bhagwat, Aditya; Pancholi, Sonal; Iverson, Grant L

    2013-02-15

    The purpose of this study was to identify factors that are predictive of, or associated with, postconcussion symptom reporting after traumatic brain injury (TBI) in the U.S. military. Participants were 125 U.S. military service members (age: M=29.6 years, standard deviation [SD]=8.9, range=18-56 years) who sustained a TBI, divided into two groups based on symptom criteria for postconcussional disorder (PCD): PCD-Present (n=65) and PCD-Absent (n=60). Participants completed a neuropsychological evaluation at Walter Reed Army Medical Center (M=9.4 months after injury, SD=9.9; range: 1.1 to 44.8). Factors examined included demographic characteristics, injury-related variables, psychological testing, and effort testing. There were no significant group differences for age, sex, education, race, estimated premorbid intelligence, number of deployments, combat versus non-combat related injury, or mechanism of injury (p>0.098 for all). There were significant main effects for severity of body injury, duration of loss of consciousness, duration of post-traumatic amnesia, intracranial abnormality, time tested post-injury, possible symptom exaggeration, poor effort, depression, and traumatic stress (p<0.044 for all). PCD symptom reporting was most strongly associated with possible symptom exaggeration, poor effort, depression, and traumatic stress. PCD rarely occurred in the absence of depression, traumatic stress, possible symptom exaggeration, or poor effort (n=7, 5.6%). Many factors unrelated to brain injury were influential in self-reported postconcussion symptoms in this sample. Clinicians cannot assume uncritically that endorsement of items on a postconcussion symptom checklist is indicative of residual effects from a brain injury.

  8. Outcomes in nursing home patients with traumatic brain injury.

    PubMed

    Lueckel, Stephanie N; Kosar, Cyrus M; Teno, Joan M; Monaghan, Sean F; Heffernan, Daithi S; Cioffi, William G; Thomas, Kali S

    2018-05-09

    Traumatic brain injury is a leading cause of death and disability in the United States. In survivors, traumatic brain injury remains a leading contributor to long-term disability and results in many patients being admitted to skilled nursing facilities for postacute care. Despite this very large population of traumatic brain injury patients, very little is known about the long-term outcomes of traumatic brain injury survivors, including rates of discharge to home or risk of death in long-term nursing facilities. We hypothesized that patient demographics and functional status influence outcomes of patients with traumatic brain injury admitted to skilled nursing facilities. We conducted a retrospective cohort study of Medicare fee-for-service beneficiaries aged 65 and older discharged alive and directly from hospital to a skilled nursing facility between 2011 and 2014 using the prospectively maintained Federal Minimum Data Set combined with Medicare claims data and the Centers for Medicare and Medicaid Services Vital Status files. Records were reviewed for demographic and clinical characteristics at admission to the skilled nursing facility, including age, sex, cognitive function, ability to communicate, and motor function. Activities of daily living were reassessed at discharge to calculate functional improvement. We used robust Poisson regression with skilled nursing facility fixed effects to calculate relative risks and 99% confidence intervals for mortality and functional improvement associated with the demographic and clinical characteristics present at admission. Linear regression was used to calculate adjusted mean duration of stay. Overall, 87,292 Medicare fee-for-service beneficiaries with traumatic brain injury were admitted to skilled nursing facilities. The mean age was 84 years, with 74% of patients older than age 80. Generally, older age, male sex, and poor cognitive or functional status at admission to a skilled nursing facility were associated with increased risk for poorer outcomes. Older patients (age ≥80 years) with traumatic brain injury had a 1.5 times greater risk of death within 30 days of admission compared with adults younger than 80 years (relative risk = 1.49, 99% confidence interval = 1.36, 1.64). Women were 37% less likely to die than men were (relative risk = 0.63, 99% confidence interval = 0.59, 0.68). The risk of death was greater for patients with poor cognitive function (relative risk = 2.55, 99% confidence interval = 2.32, 2.77), substantial motor impairment (relative risk = 2.44, 99% confidence interval = 2.16, 2.77), and patients with impairment in communication (relative risk = 2.58, 99% confidence interval = 2.32, 2.86) compared with those without the respective deficits. One year after admission, these risk factors continued to confer excess risk for mortality. Duration of stay was somewhat greater for older patients (30.1 compared with 27.5 average days) and patients with cognitive impairment (31.7 vs 27.5 average days). At discharge, patients with cognitive impairment (relative risk = 0.86, 99% confidence interval = 0.83, 0.88) and impairment in the ability to communicate (relative risk = 0.67, 99% confidence interval = 0.54, 0.82) were less likely to improve in physical function. Our results suggest that among patients with traumatic brain injury admitted to skilled nursing facilities, the likelihood of adverse outcomes varies significantly by key demographic and clinical characteristics. These findings may facilitate setting expectations among patients and families as well as providers when these patients are admitted to skilled nursing facilities for rehabilitation after their acute episode. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. [Changes of focal and brainstem neurologic signs in patients with traumatic brain injury and their dependence on the -675 4G/5G polymorphism in the PAI-1 gene].

    PubMed

    Potapov, O; Kmyta, O

    2014-09-01

    Regressive course of neurological signs and symptoms is an important factor of evaluating the clinical course and treatment efficacy of traumatic brain injury. This article presents changes evaluation of focal and brainstem symptoms in 200 patients with traumatic brain injury, and determines the association between these changes and the -675 4G/5G polymorphism in the PAI-1 gene. We have found a connection between 4G/4G and 4G/5G genotypes for the studied polymorphism and the changes of focal and brainstem symptoms in patients with traumatic brain injury. Thus, we have demonstrated that the clinical course of traumatic brain injury is influenced by the -675 4G/5G polymorphism in the PAI-1 gene.

  10. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy.

    PubMed

    Goldstein, Lee E; McKee, Ann C; Stanton, Patric K

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms, neuropathological features, and neurological sequelae observed in the corresponding human disorder. Understanding the purpose of an animal model and the criteria by which experimental results derived from the model are validated are critical components for useful animal modeling. Animal models that reliably demonstrate clinically relevant endpoints will expedite development of new treatments, diagnostics, preventive measures, and rehabilitative strategies for individuals affected by blast TBI and its aftermath.

  11. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy

    PubMed Central

    2014-01-01

    The association of military blast exposure and brain injury was first appreciated in World War I as commotio cerebri, and later as shell shock. Similar injuries sustained in modern military conflicts are now classified as mild traumatic brain injury (TBI). Recent research has yielded new insights into the mechanisms by which blast exposure leads to acute brain injury and chronic sequelae, including postconcussive syndrome, post-traumatic stress disorder, post-traumatic headache, and chronic traumatic encephalopathy, a tau protein neurodegenerative disease. Impediments to delivery of effective medical care for individuals affected by blast-related TBI include: poor insight into the heterogeneity of neurological insults induced by blast exposure; limited understanding of the mechanisms by which blast exposure injures the brain and triggers sequelae; failure to appreciate interactive injuries that affect frontal lobe function, pituitary regulation, and neurovegetative homeostasis; unknown influence of genetic risk factors, prior trauma, and comorbidities; absence of validated diagnostic criteria and clinical nosology that differentiate clinical endophenotypes; and lack of empirical evidence to guide medical management and therapeutic intervention. While clinicopathological analysis can provide evidence of correlative association, experimental use of animal models remains the primary tool for establishing causal mechanisms of disease. However, the TBI field is confronted by a welter of animal models with varying clinical relevance, thereby impeding scientific coherence and hindering translational progress. Animal models of blast TBI will be far more translationally useful if experimental emphasis focuses on accurate reproduction of clinically relevant endpoints (output) rather than scaled replication of idealized blast shockwaves (input). The utility of an animal model is dependent on the degree to which the model recapitulates pathophysiological mechanisms, neuropathological features, and neurological sequelae observed in the corresponding human disorder. Understanding the purpose of an animal model and the criteria by which experimental results derived from the model are validated are critical components for useful animal modeling. Animal models that reliably demonstrate clinically relevant endpoints will expedite development of new treatments, diagnostics, preventive measures, and rehabilitative strategies for individuals affected by blast TBI and its aftermath. PMID:25478023

  12. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2012-10-01

    W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury PRINCIPAL INVESTIGATOR...TITLE AND SUBTITLE Minocycline and N-acetylcysteine: a synergistic drug combination to treat traumatic brain injury 5a. CONTRACT NUMBER 5b...The grantee previously found screened that the combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function

  13. Reversing brain damage in former NFL players: implications for traumatic brain injury and substance abuse rehabilitation.

    PubMed

    Amen, Daniel G; Wu, Joseph C; Taylor, Derek; Willeumier, Kristen

    2011-01-01

    Brain injuries are common in professional American football players. Finding effective rehabilitation strategies can have widespread implications not only for retired players but also for patients with traumatic brain injury and substance abuse problems. An open label pragmatic clinical intervention was conducted in an outpatient neuropsychiatric clinic with 30 retired NFL players who demonstrated brain damage and cognitive impairment. The study included weight loss (if appropriate); fish oil (5.6 grams a day); a high-potency multiple vitamin; and a formulated brain enhancement supplement that included nutrients to enhance blood flow (ginkgo and vinpocetine), acetylcholine (acetyl-l-carnitine and huperzine A), and antioxidant activity (alpha-lipoic acid and n-acetyl-cysteine). The trial average was six months. Outcome measures were Microcog Assessment of Cognitive Functioning and brain SPECT imaging. In the retest situation, corrected for practice effect, there were statistically significant increases in scores of attention, memory, reasoning, information processing speed and accuracy on the Microcog. The brain SPECT scans, as a group, showed increased brain perfusion, especially in the prefrontal cortex, parietal lobes, occipital lobes, anterior cingulate gyrus and cerebellum. This study demonstrates that cognitive and cerebral blood flow improvements are possible in this group with multiple interventions.

  14. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes.

    PubMed

    Bramlett, Helen M; Dietrich, W Dalton

    2015-12-01

    Traumatic brain injury (TBI) is a significant clinical problem with few therapeutic interventions successfully translated to the clinic. Increased importance on the progressive, long-term consequences of TBI have been emphasized, both in the experimental and clinical literature. Thus, there is a need for a better understanding of the chronic consequences of TBI, with the ultimate goal of developing novel therapeutic interventions to treat the devastating consequences of brain injury. In models of mild, moderate, and severe TBI, histopathological and behavioral studies have emphasized the progressive nature of the initial traumatic insult and the involvement of multiple pathophysiological mechanisms, including sustained injury cascades leading to prolonged motor and cognitive deficits. Recently, the increased incidence in age-dependent neurodegenerative diseases in this patient population has also been emphasized. Pathomechanisms felt to be active in the acute and long-term consequences of TBI include excitotoxicity, apoptosis, inflammatory events, seizures, demyelination, white matter pathology, as well as decreased neurogenesis. The current article will review many of these pathophysiological mechanisms that may be important targets for limiting the chronic consequences of TBI.

  15. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  16. Incidence and impact of withdrawal of life-sustaining therapies in clinical trials of severe traumatic brain injury: A systematic review.

    PubMed

    Leblanc, Guillaume; Boutin, Amélie; Shemilt, Michèle; Lauzier, François; Moore, Lynne; Potvin, Véronique; Zarychanski, Ryan; Archambault, Patrick; Lamontagne, François; Léger, Caroline; Turgeon, Alexis F

    2018-06-01

    Background Most deaths following severe traumatic brain injury follow decisions to withdraw life-sustaining therapies. However, the incidence of the withdrawal of life-sustaining therapies and its potential impact on research data interpretation have been poorly characterized. The aim of this systematic review was to assess the reporting and the impact of withdrawal of life-sustaining therapies in randomized clinical trials of patients with severe traumatic brain injury. Methods We searched Medline, Embase, Cochrane Central, BIOSIS, and CINAHL databases and references of included trials. All randomized controlled trials published between January 2002 and August 2015 in the six highest impact journals in general medicine, critical care medicine, and neurocritical care (total of 18 journals) were considered for eligibility. Randomized controlled trials were included if they enrolled adult patients with severe traumatic brain injury (Glasgow Coma Scale ≤ 8) and reported data on mortality. Our primary objective was to assess the proportion of trials reporting the withdrawal of life-sustaining therapies in a publication. Our secondary objectives were to describe the overall mortality rate, the proportion of deaths following the withdrawal of life-sustaining therapies, and to assess the impact of the withdrawal of life-sustaining therapies on trial results. Results From 5987 citations retrieved, we included 41 randomized trials (n = 16,364, ranging from 11 to 10,008 patients). Overall mortality was 23% (range = 3%-57%). Withdrawal of life-sustaining therapies was reported in 20% of trials (8/41, 932 patients in trials) and the crude number of deaths due to the withdrawal of life-sustaining therapies was reported in 17% of trials (7/41, 884 patients in trials). In these trials, 63% of deaths were associated with the withdrawal of life-sustaining therapies (105/168). An analysis carried out by imputing a 4% differential rate in instances of withdrawal of life-sustaining therapies between study groups yielded different results and conclusions in one third of the trials. Conclusion Data on the withdrawal of life-sustaining therapies are incompletely reported in randomized controlled trials of patients with severe traumatic brain injury. Given the high proportion of deaths due to the withdrawal of life-sustaining therapies in severe traumatic brain injury patients, and the potential of this medical decision to influence the results of clinical trials, instances of withdrawal of life-sustaining therapies should be systematically reported in clinical trials in this group of patients.

  17. 77 FR 40412 - Rehabilitation Research and Development Service Scientific Merit Review Board, Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Spinal Cord Injury. August 7-8 Brain Injury: Traumatic Brain Injury and Stroke; Musculoskeletal... Program. August 14 Brain Injury: Traumatic Brain Injury and Stroke. August 14-15 Psychological Health and...

  18. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    indicator of mTBI. Further, these results establish a baseline data set, which may be useful in comparing concussed individuals. 14. SUBJECT TERMS... Concussion , mild traumatic brain injury (mTBI), traumatic brain injury (TBI), balance, Sensory Organization Test, Balance Error Scoring System, center of...43 5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 44 Appendix A Military Acute Concussion Evaluation 47

  19. Legacy Clinical Data from the Epo TBI Trial

    DTIC Science & Technology

    2016-06-01

    investigators through the Federal Interagency Traumatic Brain Injury (FITBIR) Informatics System. This trial was funded by National Institute of Neurological...Effects of Erythropoietin (Epo) on Cerebral Vascular Dysfunction and Anemia in Traumatic Brain Injury (TBI)” which we will share with other...the format required by FITBIR. 2. KEYWORDS: Traumatic brain injury Erythropoietin Anemia Transfusion threshold 3. ACCOMPLISHMENTS: What

  20. New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury

    DTIC Science & Technology

    2012-02-01

    Subdural hemor- rhage (or hematoma ) is a form of traumatic brain injury, in which blood gathers between the du- ra and arachnoid mater (in meningeal...to an hour. Subdural hemorrhage (or hematoma ) is a form of traumatic brain injury, in which blood gathers between the dura and arachnoid mater (in

  1. 77 FR 37909 - Meeting: Board of Scientific Counselors, National Center for Injury Prevention and Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Traumatic Brain Injury (TBI) among Children in the United States (U01); CE12-005: Field Triage of Traumatic Brain Injury (TBI) in Older Adults Taking Anticoagulants or Platelet Inhibitors (U01); CE12-006: Alcohol... Short and Long Term Consequences of Traumatic Brain Injury (TBI) among Children in the United States...

  2. Severe Traumatic Brain Injury, Frontal Lesions, and Social Aspects of Language Use: A Study of French-Speaking Adults

    ERIC Educational Resources Information Center

    Dardier, Virginie; Bernicot, Josie; Delanoe, Anaig; Vanberten, Melanie; Fayada, Catherine; Chevignard, Mathilde; Delaye, Corinne; Laurent-Vannier, Anne; Dubois, Bruno

    2011-01-01

    The purpose of this study was to gain insight into the social (pragmatic) aspects of language use by French-speaking individuals with frontal lesions following a severe traumatic brain injury. Eleven participants with traumatic brain injury performed tasks in three areas of communication: production (interview situation), comprehension (direct…

  3. "In my before life": relationships, coping and post-traumatic growth in adolescent survivors of a traumatic brain injury.

    PubMed

    Di Battista, Ashley; Godfrey, Celia; Soo, Cheryl; Catroppa, Cathy; Anderson, Vicki

    2014-11-01

    Explore the individual, adolescent phenomeno-logy of quality of life after traumatic brain injury. Adolescent survivors of traumatic brain injury. Qualitative interviews with 10 adolescents, mean age at assessment 17.09 years (SD 1.81). Mean time since injury 4.62 years (SD 2.89). Data were analysed using a primarily interpretative phenomenological analysis approach. Two major findings: (1) perceived quality of life was not automatically impacted by a traumatic brain injury, but when it was, the directionality of impact (positive, negative) varied depending on the life-domain; (2) changes in ability post-traumatic brain injury were attributed to the injury (more often cognitive and physical changes) or to a sense of normal maturation processes (72% and 28%, respectively). Attribution processing permeated themes of personal and social discrepancies, which also yielded themes of: altered family and relationships, roles, responsibilities, independence, coping and post-traumatic growth. All participants reported a happy life at the time of interview. The adolescents' appraisal of their identity from pre- to post-injury life was related to their current sense of well-being. Most notably was the sense of balance; participants addressed the negative and positive consequences of brain injury to qualify their sense of wellbeing.

  4. 78 FR 39299 - National Institute of Neurological Disorders and Stroke; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Disorders and Stroke Special, Emphasis Panel, International Traumatic Brain Injury Research Initiative. Date... Traumatic Encephalopathy and Delayed Effects of Traumatic Brain Injury. Date: July 19, 2013. Time: 1:30 p.m...

  5. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    PubMed

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  6. Interest of workplace support for returning to work after a traumatic brain injury: a retrospective study.

    PubMed

    Bonneterre, V; Pérennou, D; Trovatello, V; Mignot, N; Segal, P; Balducci, F; Laloua, F; de Gaudemaris, R

    2013-12-01

    To analyse usefulness of the SPASE programme, a coordinated facility programme to assist traumatic brain injury (TBI) persons in returning to work and retaining their job in the ordinary work environment. A retrospective study including 100 subjects aged over 18 who had suffered traumatic brain injury (GOS 1 or 2). The criterion for return to work (RTW) success was the ability to return to the job he/she had before the accident or to a new professional activity. Factors associated with RTW success were at short-term (2-3 years): the presence of significant workplace support OR=15.1 [3.7-61.7], the presence of physical disabilities OR=0.32 [0.12-0.87] or serious traumatic brain injury OR=0.22 [0.07-0.66]. At medium-term (over 3 years) these factors were: significant workplace support OR=3.9 [1.3-11.3] and presence of mental illness OR=0.15 [0.03-0.7]. This study suggests that a case coordination vocational programme may facilitate the return and maintain to work of TBI persons. It reveals that the workplace support is a key factor for job retention in the medium-term. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Clinical factors predictive of traumatic brain injuries in case of mild traumatic brain injury in children: case-control study.

    PubMed

    Gueddari, Widad; Ouardi, Amine; Talbi, Sanaa; Salam, Sihem; Zineddine, Abdelhadi

    2017-07-01

    Mild head injury (MHI) is very common in children and the problem is a lack of consensus criteria for the indication of a brain CT. To determine predictors of cranio-cerebral lesions (CCL) in the case of MHI in children. Case-control study over a period of 3 years. Included children aged 1 month to 15 years, were those admitted to the department of Pediatric Emergencies for MHI and had performed a brain CT. The principal outcome was the presence of traumatic brain injury. Statistical analysis focused on univariate and multivariate tests was done using SPSS version 16.0. We included 418 children. The median age was 6 years with a sex ratio of 2.24. The main mechanisms of trauma were the traffic accident. Cerebral CT proved to be abnormal in 191 children (45.7%). The main lesions found were the skull fractures, brain contusion and epidural hematoma. Predictors retained after logistic regression were the presence of an initial loss of consciousness regardless of its duration (p = 0.007), hematoma of the scalp (p = < 0.0001) and at least one clinical sign for a fracture of the skull base (p = 0.016). In case of MHI in children, the initial loss of consciousness, the presence of a hematoma of the scalp and the presence of at least one sign in favor of the skull base fracture seem most predictive of cranio-cerebral lesions.

  8. Survivors of a Silent Epidemic: The Learning Experience of College Students with a History of Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Schlessman, Heather A.

    2010-01-01

    A significant proportion of young adults experience a traumatic brain injury (TBI) every year, and students with this history are becoming a growing presence on college campuses. A review of the literature revealed very little research exploring the learning experiences of college students with a history of traumatic brain injury. The purpose of…

  9. [The incidence and risk factors of ventilator-associated pneumonia in patients with severe traumatic brain injury].

    PubMed

    Marjanović, Vesna; Novak, Vesna; Velicković, Ljubinka; Marjanović, Goran

    2011-01-01

    Patients with severe traumatic brain injury are at a risk of developing ventilator-associated pneumonia. The aim of this study was to describe the incidence, etiology, risk factors for development of ventilator-associated pneumonia and outcome in patients with severe traumatic brain injury. A retrospective study was done in 72 patients with severe traumatic brain injury, who required mechanical ventilation for more than 48 hours. Ventilator-associated pneumonia was found in 31 of 72 (43.06%) patients with severe traumatic brain injury. The risk factors for ventilator-associated pneumonia were: prolonged mechanical ventilation (12.42 vs 4.34 days, p < 0.001), longer stay at intensive care unit (17 vs 5 days, p < 0.001) and chest injury (51.61 vs 19.51%, p < 0.009) compared to patients without ventilator-associated pneumonia. The mortality rate in the patients with ventilator-associated pneumonia was higher (38.71 vs 21.95%, p = 0.12). The development of ventilator-associated pneumonia in patients with severe traumatic brain injury led to the increased morbidity due to the prolonged mechanical ventilation, longer stay at intensive care unit and chest injury, but had no effect on mortality.

  10. Cognitive and behavioural post-traumatic impairments: what is the specificity of a brain injury ? A study within the ESPARR cohort.

    PubMed

    Nash, S; Luauté, J; Bar, J Y; Sancho, P O; Hours, M; Chossegros, L; Tournier, C; Charnay, P; Mazaux, J M; Boisson, D

    2014-12-01

    The variety and extent of impairments occurring after traumatic brain injury vary according to the nature and severity of the lesions. In order to better understand their interactions and long-term outcome, we have studied and compared the cognitive and neurobehavioral profile one year post onset of patients with and without traumatic brain injury in a cohort of motor vehicle accident victims. The study population is composed of 207 seriously injured persons from the ESPARR cohort. This cohort, which has been followed up in time, consists in 1168 motor vehicle accident victims (aged 16 years or more) with injuries with all degrees of severity. Inclusion criteria were: living in Rhone county, victim of a traffic accident having involved at least one wheel-conducted vehicle and having occurred in Rhone county, alive at the time of arrival in hospital and having presented in one of the different ER facilities of the county. The cohort's representativeness regarding social and geographic criteria and the specificities of the accidents were ensured by the specific targeting of recruitment. Deficits and impairments were assessed one year after the accident using the Neurobehavioral Rating Scale - Revised and the Trail-Making Test. Within our seriously injured group, based on the Glasgow Score, the presence of neurological deficits, aggravation of neurological condition in the first 72hours and/or abnormal cerebral imaging, we identified three categories: (i) moderate/severe traumatic brain injury (n=48), (ii) mild traumatic brain injury (n=89), and (iii) severely injured but without traumatic brain injury (n=70). The most frequently observed symptoms were anxiety, irritability, memory and attention impairments, depressive mood and emotional lability. While depressive mood and irritability were observed with similar frequency in all three groups, memory and attention impairments, anxiety and reduced initiative were more specific to traumatic brain injury whereas executive disorders were associated with moderate/severe traumatic brain injury. The presence and the initial severity of a traumatic brain injury condition the nature and frequency of residual effects after one year. Some impairments such as irritability, which is generally associated with traumatic brain injury, do not appear to be specific to this population, nor does depressive mood. Substantial interactions between cognitive, affective and neurobehavioral disorders have been highlighted. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  12. Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population Based Medical Record Review Analysis

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0573 TITLE: Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease: A Population-Based...Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Understanding the Connection Between Traumatic Brain Injury and Alzheimer’s Disease...TERMS Population; epidemiology; dementia; neurocognitive disorders; brain injuries; Parkinsonian disorders 16. SECURITY CLASSIFICATION OF: U 17

  13. Traumatic Brain Injury (TBI) in Kids

    MedlinePlus

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  14. Traumatic injury to the immature frontal lobe: a new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits.

    PubMed

    Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D

    2013-01-01

    Traumatic brain injury in children commonly involves the frontal lobes and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here, we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p)21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 or 7 days later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to the bregma. While cell death and accumulated β-amyloid precursor protein were characteristic features of the pericontusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory likely reflects several variables, including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. © 2013 S. Karger AG, Basel.

  15. Traumatic injury to the immature frontal lobe: A new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits

    PubMed Central

    Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D

    2014-01-01

    Traumatic brain injury in children commonly involves the frontal lobes, and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p) 21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 and 7 d later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to Bregma. While cell death and accumulated beta-amyloid precursor protein were characteristic features of the peri-contusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory, likely reflect several variables including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. PMID:24247103

  16. Inflammation and white matter degeneration persist for years after a single traumatic brain injury.

    PubMed

    Johnson, Victoria E; Stewart, Janice E; Begbie, Finn D; Trojanowski, John Q; Smith, Douglas H; Stewart, William

    2013-01-01

    A single traumatic brain injury is associated with an increased risk of dementia and, in a proportion of patients surviving a year or more from injury, the development of hallmark Alzheimer's disease-like pathologies. However, the pathological processes linking traumatic brain injury and neurodegenerative disease remain poorly understood. Growing evidence supports a role for neuroinflammation in the development of Alzheimer's disease. In contrast, little is known about the neuroinflammatory response to brain injury and, in particular, its temporal dynamics and any potential role in neurodegeneration. Cases of traumatic brain injury with survivals ranging from 10 h to 47 years post injury (n = 52) and age-matched, uninjured control subjects (n = 44) were selected from the Glasgow Traumatic Brain Injury archive. From these, sections of the corpus callosum and adjacent parasaggital cortex were examined for microglial density and morphology, and for indices of white matter pathology and integrity. With survival of ≥3 months from injury, cases with traumatic brain injury frequently displayed extensive, densely packed, reactive microglia (CR3/43- and/or CD68-immunoreactive), a pathology not seen in control subjects or acutely injured cases. Of particular note, these reactive microglia were present in 28% of cases with survival of >1 year and up to 18 years post-trauma. In cases displaying this inflammatory pathology, evidence of ongoing white matter degradation could also be observed. Moreover, there was a 25% reduction in the corpus callosum thickness with survival >1 year post-injury. These data present striking evidence of persistent inflammation and ongoing white matter degeneration for many years after just a single traumatic brain injury in humans. Future studies to determine whether inflammation occurs in response to or, conversely, promotes white matter degeneration will be important. These findings may provide parallels for studying neurodegenerative disease, with traumatic brain injury patients serving as a model for longitudinal investigations, in particular with a view to identifying potential therapeutic interventions.

  17. EPO improved neurologic outcome in rat pups late after traumatic brain injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Rodesch, Christopher K

    2018-05-01

    In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  18. EAAT Training for Injured Brains

    ERIC Educational Resources Information Center

    Flynn, Perry; Lundgren, Kristine; Mankoff, Lyn; Johnson, Leslie

    2011-01-01

    Cognitive impairments resulting from traumatic brain injury (TBI) are often long-lasting and difficult to remediate. These include problems with thinking, memory, reasoning, expressing and understanding emotion, social communication and social appropriateness. Survivors are often limited in their ability to return to a previous level of…

  19. Project Career: Perceived benefits of iPad apps among college students with Traumatic Brain Injury (TBI).

    PubMed

    Jacobs, K; Leopold, A; Hendricks, D J; Sampson, E; Nardone, A; Lopez, K B; Rumrill, P; Stauffer, C; Elias, E; Scherer, M; Dembe, J

    2017-09-14

    Project Career is an interprofessional five-year development project designed to improve academic and employment success of undergraduate students with a traumatic brain injury (TBI) at two- and four-year colleges and universities. Students receive technology in the form of iPad applications ("apps") to support them in and out of the classroom. To assess participants' perspectives on technology at baseline and perceived benefit of apps after 6 and 12 months of use. This article address a component of a larger study. Participants included 50 college-aged students with traumatic brain injuries. Statistical analysis included data from two Matching Person and Technology (MPT) assessment forms, including the Survey of Technology Use at baseline and the Assistive Technology Use Follow-Up Survey: Apps Currently Using, administered at 6- and 12-months re-evaluation. Analyses included frequencies and descriptives. Average scores at baseline indicated positive perspectives on technology. At 6 months, quality of life (67%) and academics (76%) improved moderately or more from the use of iPad apps. At 12 months, quality of life (65%) and academics (82%) improved moderately or more from the use of iPad apps. Students with a TBI have positive perspectives on technology use. The results on perceived benefit of apps indicated that students with a TBI (including civilians and veterans) report that the apps help them perform in daily life and academic settings.

  20. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study.

    PubMed

    Choi, Gyu-Sik; Kwak, Sang Gyu; Lee, Han Do; Chang, Min Cheol

    2018-02-28

    Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz) repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Prospective randomized feasibility study. Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions) or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS) was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1), 10th transcranial magnetic stimulation session (post2), and 1 (post3), 2 (post4), and 4 weeks (post 5) after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36), including physical and mental component scores (PCS, MCS). The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group's SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  1. Effects of penetrating traumatic brain injury on event segmentation and memory.

    PubMed

    Zacks, Jeffrey M; Kurby, Christopher A; Landazabal, Claudia S; Krueger, Frank; Grafman, Jordan

    2016-01-01

    Penetrating traumatic brain injury (pTBI) is associated with deficits in cognitive tasks including comprehension and memory, and also with impairments in tasks of daily living. In naturalistic settings, one important component of cognitive task performance is event segmentation, the ability to parse the ongoing stream of behavior into meaningful units. Event segmentation ability is associated with memory performance and with action control, but is not well assessed by standard neuropsychological assessments or laboratory tasks. Here, we measured event segmentation and memory in a sample of 123 male military veterans aged 59-81 who had suffered a traumatic brain injury as young men, and 34 demographically similar controls. Participants watched movies of everyday activities and segmented them to identify fine-grained or coarse-grained events, and then completed tests of recognition memory for pictures from the movies and of memory for the temporal order of actions in the movies. Lesion location and volume were assessed with computed tomography (CT) imaging. Patients with traumatic brain injury were impaired on event segmentation. Those with larger lesions had larger impairments for fine segmentation and also impairments for both memory measures. Further, the degree of memory impairment was statistically mediated by the degree of event segmentation impairment. There was some evidence that lesions to the ventromedial prefrontal cortex (vmPFC) selectively impaired coarse segmentation; however, lesions outside of a priori regions of interest also were associated with impaired segmentation. One possibility is that the effect of vmPFC damage reflects the role of prefrontal event knowledge representations in ongoing comprehension. These results suggest that assessment of naturalistic event comprehension can be a valuable component of cognitive assessment in cases of traumatic brain injury, and that interventions aimed at event segmentation could be clinically helpful. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development of In Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2014-02-01

    multiple concussive traumatic brain injuries are at high risk for delayed, progressive neurological and psychiatric deterioration 1-9. This syndrome is...personnel 13, 14 and others who have sustained multiple concussive traumatic brain injuries 15-17 may also be at risk for this condition. Currently...11 Appendices……………………………………………………………………………... 12 4 INTRODUCTION: Athletes in contact sports who have sustained multiple concussive traumatic

  3. Professional fighters brain health study: rationale and methods.

    PubMed

    Bernick, Charles; Banks, Sarah; Phillips, Michael; Lowe, Mark; Shin, Wanyong; Obuchowski, Nancy; Jones, Stephen; Modic, Michael

    2013-07-15

    Repetitive head trauma is a risk factor for Alzheimer's disease and is the primary cause of chronic traumatic encephalopathy. However, little is known about the natural history of, and risk factors for, chronic traumatic encephalopathy or about means of early detection and intervention. The Professional Fighters Brain Health Study is a longitudinal study of active professional fighters (boxers and mixed martial artists), retired professional fighters, and controls matched for age and level of education. The main objective of the Professional Fighters Brain Health Study is to determine the relationships between measures of head trauma exposure and other potential modifiers and changes in brain imaging and neurological and behavioral function over time. The study is designed to extend over 5 years, and we anticipate enrollment of more than 400 boxers and mixed martial artists. Participants will undergo annual evaluations that include 3-tesla magnetic resonance imaging scanning, computerized cognitive assessments, speech analysis, surveys of mood and impulsivity, and blood sampling for genotyping and exploratory biomarker studies. Statistical models will be developed and validated to predict early and progressive changes in brain structure and function. A composite fight exposure index, developed as a summary measure of cumulative traumatic exposure, shows promise as a predictor of brain volumes and cognitive function.

  4. Is there evidence for neurodegenerative change following traumatic brain injury in children and youth? A scoping review.

    PubMed

    Keightley, Michelle L; Sinopoli, Katia J; Davis, Karen D; Mikulis, David J; Wennberg, Richard; Tartaglia, Maria C; Chen, Jen-Kai; Tator, Charles H

    2014-01-01

    While generalized cerebral atrophy and neurodegenerative change following traumatic brain injury (TBI) is well recognized in adults, it remains comparatively understudied in the pediatric population, suggesting that research should address the potential for neurodegenerative change in children and youth following TBI. This focused review examines original research findings documenting evidence for neurodegenerative change following TBI of all severities in children and youth. Our relevant inclusion and exclusion criteria identified a total of 16 articles for review. Taken together, the studies reviewed suggest there is evidence for long-term neurodegenerative change following TBI in children and youth. In particular both cross-sectional and longitudinal studies revealed volume loss in selected brain regions including the hippocampus, amygdala, globus pallidus, thalamus, periventricular white matter, cerebellum, and brain stem as well as overall decreased whole brain volume and increased CSF and ventricular space. Diffusion Tensor Imaging (DTI) studies also report evidence for decreased cellular integrity, particularly in the corpus callosum. Sensitivity of the hippocampus and deep limbic structures in pediatric populations are similar to findings in the adult literature and we consider the data supporting these changes as well as the need to investigate the possibility of neurodegenerative onset in childhood associated with mild traumatic brain injury (mTBI).

  5. Omega-3 Fatty Acids for Major Depressive Disorder: A Systematic Review

    DTIC Science & Technology

    2015-01-01

    trademark. iii Preface The Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury is interested in determining the efficacy...the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury and conducted within the Forces and Resources Policy Center of...Excellence for Psychological Health and Traumatic Brain Injury (DCoE). We gratefully acknowledge Kristie Gore for her support and guidance throughout

  6. Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    DTIC Science & Technology

    2014-11-01

    GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast... traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected...mitigation strategies. 15. SUBJECT TERMS Traumatic Brain Injury (TBI), Kevlar Vests, Neuroprotection 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  7. Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology

    DTIC Science & Technology

    2015-12-01

    Clinic. (2013) “Opposing Acute and Chronic Effects of Traumatic Brain Injury in a Mouse Model of Alzheimer’s Disease” Kokiko-Cochran, O.N.  Annual...nanosymposium, Washington, D.C. (2014) “ Traumatic brain injury induces a distinct macrophage response at acute and chronic time points in a mouse model...SUPPLEMENTARY NOTES 14. ABSTRACT Individuals exposed to traumatic brain injury (TBI) are at a greatly increased risk for developing a number of

  8. Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study.

    PubMed

    Easter, Joshua S; Bakes, Katherine; Dhaliwal, Jasmeet; Miller, Michael; Caruso, Emily; Haukoos, Jason S

    2014-08-01

    We evaluate the diagnostic accuracy of clinical decision rules and physician judgment for identifying clinically important traumatic brain injuries in children with minor head injuries presenting to the emergency department. We prospectively enrolled children younger than 18 years and with minor head injury (Glasgow Coma Scale score 13 to 15), presenting within 24 hours of their injuries. We assessed the ability of 3 clinical decision rules (Canadian Assessment of Tomography for Childhood Head Injury [CATCH], Children's Head Injury Algorithm for the Prediction of Important Clinical Events [CHALICE], and Pediatric Emergency Care Applied Research Network [PECARN]) and 2 measures of physician judgment (estimated of <1% risk of traumatic brain injury and actual computed tomography ordering practice) to predict clinically important traumatic brain injury, as defined by death from traumatic brain injury, need for neurosurgery, intubation greater than 24 hours for traumatic brain injury, or hospital admission greater than 2 nights for traumatic brain injury. Among the 1,009 children, 21 (2%; 95% confidence interval [CI] 1% to 3%) had clinically important traumatic brain injuries. Only physician practice and PECARN identified all clinically important traumatic brain injuries, with ranked sensitivities as follows: physician practice and PECARN each 100% (95% CI 84% to 100%), physician estimates 95% (95% CI 76% to 100%), CATCH 91% (95% CI 70% to 99%), and CHALICE 84% (95% CI 60% to 97%). Ranked specificities were as follows: CHALICE 85% (95% CI 82% to 87%), physician estimates 68% (95% CI 65% to 71%), PECARN 62% (95% CI 59% to 66%), physician practice 50% (95% CI 47% to 53%), and CATCH 44% (95% CI 41% to 47%). Of the 5 modalities studied, only physician practice and PECARN identified all clinically important traumatic brain injuries, with PECARN being slightly more specific. CHALICE was incompletely sensitive but the most specific of all rules. CATCH was incompletely sensitive and had the poorest specificity of all modalities. Copyright © 2014 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  9. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  10. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury.

    PubMed

    Helmy, Adel; De Simoni, Maria-Grazia; Guilfoyle, Mathew R; Carpenter, Keri L H; Hutchinson, Peter J

    2011-11-01

    There is an increasing recognition that following traumatic brain injury, a cascade of inflammatory mediators is produced, and contributes to the pathological consequences of central nervous system injury. This review summarises the key literature from pre-clinical models that underlies our understanding of innate inflammation following traumatic brain injury before focussing on the growing evidence from human studies. In addition, the underlying molecular mediators responsible for blood brain barrier dysfunction have been discussed. In particular, we have highlighted the different sampling methodologies available and the difficulties in interpreting human data of this sort. Ultimately, understanding the innate inflammatory response to traumatic brain injury may provide a therapeutic avenue in the treatment of central nervous system disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  12. Exploring the role of insomnia in the relation between PTSD and pain in veterans with polytrauma injuries.

    PubMed

    Lang, Katie P; Veazey-Morris, Katherine; Andrasik, Frank

    2014-01-01

    Soldiers returning from Operation Enduring Freedom/Operation Iraqi Freedom experience polytrauma injuries including traumatic brain injury. Traumatic brain injury is often complicated by symptoms of insomnia, posttraumatic stress disorder (PTSD), and pain that can impact treatment and rehabilitation. The medical records of 137 veterans seen at a Veterans Affairs Medical Center Polytrauma clinic who sustained traumatic brain injury in combat were reviewed for this study. Demographic variables include age, sex, ethnicity, military branch, and service connection. Outcome measures include PTSD, pain, and insomnia. Analyses revealed a high prevalence of PTSD, insomnia, and pain co-occurring in 51.8% of veterans. Increased PTSD symptomatology was significantly correlated with reports of more pain severity (r = 0.53), pain interference (r = 0.61), and insomnia (r = 0.67). Further analyses, controlling for service connection, indicated that insomnia partially mediated the relation between PTSD and both pain severity and interference. These results highlight the overlap and complexity of presenting complaints in veterans and help identify the role of sleep disturbances in complicating diagnosis and treatment of veterans. As sleep problems reduce pain tolerance and exacerbate other symptoms, such as cognitive deficits and irritability, failure to address sleep disturbances may compromise rehabilitation efforts, suggesting the importance of a multidisciplinary team approach to assessing and treating these veterans.

  13. What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment

    PubMed Central

    Reis, Cesar; Wang, Yuechun; Akyol, Onat; Ho, Wing Mann; Applegate II, Richard; Stier, Gary; Martin, Robert; Zhang, John H.

    2015-01-01

    Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI. PMID:26016501

  14. Sleep disruption and the sequelae associated with traumatic brain injury.

    PubMed

    Lucke-Wold, Brandon P; Smith, Kelly E; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Jackson, Garrett J; Huber, Jason D; Rosen, Charles L; Miller, Diane B

    2015-08-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. Published by Elsevier Ltd.

  15. Sleep disruption and the sequelae associated with traumatic brain injury

    PubMed Central

    Lucke-Wold, Brandon P.; Smith, Kelly E.; Nguyen, Linda; Turner, Ryan C.; Logsdon, Aric F.; Jackson, Garrett J.; Huber, Jason D.; Rosen, Charles L.; Miller, Diane B.

    2016-01-01

    Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy. PMID:25956251

  16. Monitoring Neurocognitive Performance and Electrophysiological Activity After Mild Traumatic Brain Injury (mTBI)

    DTIC Science & Technology

    2014-03-01

    return to duty’ decisions. 15. SUBJECT TERMS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI, biomarkers, actigraphy 16...within approximately two years of the writing of this report. 3. KEYWORDS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI...Merrifield, PhD) i. Magnetoencephalography ( MEG ) laboratory is fully operational after two weeks of cool down and testing in February 2014. Pilot testing

  17. Legacy Clinical Data from the Epo TBI Trial

    DTIC Science & Technology

    2015-10-01

    Anemia in Traumatic Brain Injury (TBI)” which we will share with other investigators through the Federal Interagency Traumatic Brain Injury (FITBIR... Informatics System. This trial was funded by National Institute of Neurological Disorders and Stroke (NINDS) grant #P01-NS38660. The study began...Data Elements (CDEs) for TBI, and therefore requires work to convert the data to the format required by FITBIR. 2. KEYWORDS: Traumatic brain

  18. Synergistic Mechanisms Between Traumatic Brain Injury and Migraine

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-15-1-0209 TITLE: Synergistic Mechanisms Between Traumatic Brain Injury and Migraine PRINCIPAL INVESTIGATOR: Amynah Pradhan...SUBTITLE Synergistic Mechanisms Between Traumatic Brain Injury and Migraine 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0209 5c. PROGRAM ELEMENT...and can persist for months after the initial trauma. The most severe and long lasting posttraumatic headaches are usually classified as migraine ; and

  19. Traumatic Brain Injury (TBI) Studies at Grady Memorial Hospital

    DTIC Science & Technology

    2010-09-01

    communication among clinicians and along the care continuum during the treatment of a patient’s emergent conditions. Ancillary reports are distributed...data necessary to improve the treatment of traumatic brain injury and compare treatment and outcomes by injury type. Specific Aims: 1. Develop and...Our research will utilize both of these tests to assess patients during treatment in the Emergency Department at GMH for mild traumatic brain

  20. The pattern of traumatic brain injuries: a country undergoing rapid development.

    PubMed

    Bener, Abdulbari; Omar, Azhar O Kh; Ahmad, Amal E; Al-Mulla, Fatma H; Abdul Rahman, Yassir S

    2010-02-01

    Traumatic brain injuries (TBIs) remain an important public health problem in most industrial developed and especially in developing countries. This may also result in temporary or permanent disability. The aim of this study was to examine the trends in the distribution of traumatic brain injuries by gender, age, severity of injury and outcome and describe the incidence in the injury patterns. This is a retrospective, descriptive, hospital-based study that included all cases of TBI during the period from January 2003 to December 2007. This study is a retrospective analysis of 1919 patients with traumatic brain injury attended and treated at the Accident and Emergency Department of the Hamad General Hospital and other Trauma Centers of the Hamad Medical Corporation. Details of all TBI cases were extracted from the database of the Emergency Medical Services (EMS). Severity of TBI was assessed by Glasgow Coma Scale (GCS). This study was based on 1919 patients suffering from traumatic brain injury, where 154 died and 97 (5.1%) of them died in the intensive care unit. The number of TBI cases increased remarkably in 2007 by 69.7%. However, the incidence rate was nearly stable across the years (4.2-4.9/10 000 population). Of the total TBI cases, the majority of them were non-Qataris (72.7%) and men (88.6%). There was a significant increase in number of TBI cases between 2003 and 2007 in terms of age group (p = 0.003), nationality (p = 0.004) and severity of injuries (p = 0.05). The highest peak rate of TBI cases was observed among the population over 65 years old, followed by 15-24 year olds. Falls caused most TBIs in the 1-14 years age group, road traffic accidents in the age group 15-24 years and sports and recreation in the age group 25-34 years. The present study findings revealed that traumatic brain injury is a major public health problem, especially among young adults and older people. Although there was a sharp increase found in the number of TBI cases, the incidence rate of TBI took a stable trend during the study period.

  1. Differences in Callosal and Forniceal Diffusion between Patients with and without Postconcussive Migraine.

    PubMed

    Alhilali, L M; Delic, J; Fakhran, S

    2017-04-01

    Posttraumatic migraines are common after mild traumatic brain injury. The purpose of this study was to determine if a specific axonal injury pattern underlies posttraumatic migraines after mild traumatic brain injury utilizing Tract-Based Spatial Statistics analysis of diffusion tensor imaging. DTI was performed in 58 patients with mild traumatic brain injury with posttraumatic migraines. Controls consisted of 17 patients with mild traumatic brain injury without posttraumatic migraines. Fractional anisotropy and diffusivity maps were generated to measure white matter integrity and were evaluated by using Tract-Based Spatial Statistics regression analysis with a general linear model. DTI findings were correlated with symptom severity, neurocognitive test scores, and time to recovery with the Pearson correlation coefficient. Patients with mild traumatic brain injury with posttraumatic migraines were not significantly different from controls in terms of age, sex, type of injury, or neurocognitive test performance. Patients with posttraumatic migraines had higher initial symptom severity ( P = .01) than controls. Compared with controls, patients with mild traumatic brain injury with posttraumatic migraines had decreased fractional anisotropy in the corpus callosum ( P = .03) and fornix/septohippocampal circuit ( P = .045). Injury to the fornix/septohippocampal circuit correlated with decreased visual memory ( r = 0.325, P = .01). Injury to corpus callosum trended toward inverse correlation with recovery ( r = -0.260, P = .05). Injuries to the corpus callosum and fornix/septohippocampal circuit were seen in patients with mild traumatic brain injury with posttraumatic migraines, with injuries in the fornix/septohippocampal circuit correlating with decreased performance on neurocognitive testing. © 2017 by American Journal of Neuroradiology.

  2. Self-regulated learning in a dynamic coaching model for supporting college students with traumatic brain injury: two case reports.

    PubMed

    Kennedy, Mary R T; Krause, Miriam O

    2011-01-01

    To describe a program that integrates self-regulated learning theory with supported education for college students with traumatic brain injury using a dynamic coaching model; to demonstrate the feasibility of developing and implementing such a program; and to identify individualized outcomes. Case study comparisons. University setting. Two severely injured students with cognitive impairments. A dynamic coaching model of supported education which incorporated self-regulated learning was provided for students with traumatic brain injury while attending college. Outcomes were both short and long term including decontextualized standardized test scores, self-reported academic challenges, number and specificity of reported strategies, grades on assignments, number of credits completed versus attempted, and changes in academic status and campus life. Students improved on graded assignments after strategy instruction and reported using more strategies by the end of the year. Students completed most of the credits they attempted, were in good academic standing, and made positive academic decisions. Performance on decontextualized tests pre- and postintervention was variable. It is feasible to deliver a hybrid supported education program that is dynamically responsive to individual students' needs and learning styles. Reasons for including both functional and standardized test outcomes are discussed.

  3. Outcome in Women with Traumatic Brain Injury Admitted to a Level 1 Trauma Center

    PubMed Central

    de Guise, Elaine; Tinawi, Simon; Marcoux, Judith; Maleki, Mohammed

    2014-01-01

    Background. The aim of this study was to compare acute outcome between men and women after sustaining a traumatic brain injury (TBI). Methods. A total of 5,642 patients admitted to the Traumatic Brain Injury Program of the McGill University Health Centre-Montreal General Hospital between 2000 and 2011 and diagnosed with a TBI were included in the study. The overall percentage of women with TBI was 30.6% (n = 1728). Outcome measures included the length of stay (LOS), the Extended Glasgow Outcome Scale (GOSE), the functional independence measure instrument (FIM), discharge destination, and mortality rate. Results. LOS, GOSE, the FIM ratings, and discharge destination did not show significant differences between genders once controlling for several confounding variables and running the appropriate diagnostic tests (P < 0.05). However, women had less chance of dying during their acute care hospitalization than men of the same age, with the same TBI severity and following the same mechanism of injury. Although gender was a statistically significant predictor, its contribution in explaining variation in mortality was small. Conclusion. More research is needed to better understand gender differences in mortality; as to date, the research findings remain inconclusive. PMID:27355011

  4. Defense.gov Special Report: Traumatic Brain Injury

    Science.gov Websites

    Excellence TBI Resources Brainline Military The Michael E. DeBakey VA Medical Center Congressionally Directed Medical Research Program NIH: National Institute of Neurological Disorders NIH: Traumatic Brain Injury Research CDC: Give Brain Injury a Voice Center for Medical Excellence for Multimedia Brainline.org - Brain

  5. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    PubMed

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Exploratory Application of Neuropharmacometabolomics in Severe Childhood Traumatic Brain Injury.

    PubMed

    Hagos, Fanuel T; Empey, Philip E; Wang, Pengcheng; Ma, Xiaochao; Poloyac, Samuel M; Bayır, Hülya; Kochanek, Patrick M; Bell, Michael J; Clark, Robert S B

    2018-05-07

    To employ metabolomics-based pathway and network analyses to evaluate the cerebrospinal fluid metabolome after severe traumatic brain injury in children and the capacity of combination therapy with probenecid and N-acetylcysteine to impact glutathione-related and other pathways and networks, relative to placebo treatment. Analysis of cerebrospinal fluid obtained from children enrolled in an Institutional Review Board-approved, randomized, placebo-controlled trial of a combination of probenecid and N-acetylcysteine after severe traumatic brain injury (Trial Registration NCT01322009). Thirty-six-bed PICU in a university-affiliated children's hospital. Twelve children 2-18 years old after severe traumatic brain injury and five age-matched control subjects. Probenecid (25 mg/kg) and N-acetylcysteine (140 mg/kg) or placebo administered via naso/orogastric tube. The cerebrospinal fluid metabolome was analyzed in samples from traumatic brain injury patients 24 hours after the first dose of drugs or placebo and control subjects. Feature detection, retention time, alignment, annotation, and principal component analysis and statistical analysis were conducted using XCMS-online. The software "mummichog" was used for pathway and network analyses. A two-component principal component analysis revealed clustering of each of the groups, with distinct metabolomics signatures. Several novel pathways with plausible mechanistic involvement in traumatic brain injury were identified. A combination of metabolomics and pathway/network analyses showed that seven glutathione-centered pathways and two networks were enriched in the cerebrospinal fluid of traumatic brain injury patients treated with probenecid and N-acetylcysteine versus placebo-treated patients. Several additional pathways/networks consisting of components that are known substrates of probenecid-inhibitable transporters were also identified, providing additional mechanistic validation. This proof-of-concept neuropharmacometabolomics assessment reveals alterations in known and previously unidentified metabolic pathways and supports therapeutic target engagement of the combination of probenecid and N-acetylcysteine treatment after severe traumatic brain injury in children.

  7. Concussion - what to ask your doctor - adult

    MedlinePlus

    ... Adult brain injury - what to ask your doctor; Traumatic brain injury - what to ask the doctor ... Begaz T. Traumatic brain injury (adult). In: Adams JG, ed. Emergency Medicine . 2nd ed. Philadelphia, PA: Elsevier Saunders; 2013:chap 73. Giza CC, ...

  8. Exploring the Use of Isolated Expressions and Film Clips to Evaluate Emotion Recognition by People with Traumatic Brain Injury

    PubMed Central

    Zupan, Barbra; Neumann, Dawn

    2016-01-01

    The current study presented 60 people with traumatic brain injury (TBI) and 60 controls with isolated facial emotion expressions, isolated vocal emotion expressions, and multimodal (i.e., film clips) stimuli that included contextual cues. All stimuli were presented via computer. Participants were required to indicate how the person in each stimulus was feeling using a forced-choice format. Additionally, for the film clips, participants had to indicate how they felt in response to the stimulus, and the level of intensity with which they experienced that emotion. PMID:27213280

  9. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    PubMed

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Low pressure hyperbaric oxygen therapy and SPECT brain imaging in the treatment of blast-induced chronic traumatic brain injury (post-concussion syndrome) and post traumatic stress disorder: a case report

    PubMed Central

    2009-01-01

    A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822

  11. Dementia resulting from traumatic brain injury

    PubMed Central

    Ramalho, Joana; Castillo, Mauricio

    2015-01-01

    Traumatic brain injury (TBI) represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge. PMID:29213985

  12. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    PubMed Central

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow-up period, as well as to changes in memory performance, prior to multiple comparison correction. In conclusion, traumatic brain injury results in progressive loss of brain tissue volume, which continues for many years post-injury. Atrophy is most prominent in the white matter, but is also more pronounced in cortical sulci compared to gyri. These findings suggest the Jacobian determinant provides a method of quantifying brain atrophy following a traumatic brain injury and is informative in determining the long-term neurodegenerative effects after injury. Power calculations indicate that Jacobian determinant images are an efficient surrogate marker in clinical trials of neuroprotective therapeutics. PMID:29309542

  13. The history and evolution of traumatic brain injury rehabilitation in military service members and veterans.

    PubMed

    Cifu, David X; Cohen, Sara I; Lew, Henry L; Jaffee, Michael; Sigford, Barbara

    2010-08-01

    The field of traumatic brain injury has evolved since the time of the Civil War in response to the needs of patients with injuries and disabilities resulting from war. The Department of Veterans Affairs and the Defense and Veterans Brain Injury Center have been in the forefront of the development of the interdisciplinary approach to the rehabilitation of soldiers with traumatic brain injury, particularly those injured from the recent conflicts in Iraq and Afghanistan. The objectives of this literature review are to examine how the casualties resulting from major wars in the past led to the establishment of the current model of evaluation and treatment of traumatic brain injury and to review how the field has expanded in response to the growing cohort of military service members and veterans with TBI.

  14. Metabolic Acetate Therapy for the Treatment of Traumatic Brain Injury

    PubMed Central

    Arun, Peethambaran; Ariyannur, Prasanth S.; Moffett, John R.; Xing, Guoqiang; Hamilton, Kristen; Grunberg, Neil E.; Ives, John A.

    2010-01-01

    Abstract Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury. PMID:19803785

  15. Metabolic acetate therapy for the treatment of traumatic brain injury.

    PubMed

    Arun, Peethambaran; Ariyannur, Prasanth S; Moffett, John R; Xing, Guoqiang; Hamilton, Kristen; Grunberg, Neil E; Ives, John A; Namboodiri, Aryan M A

    2010-01-01

    Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.

  16. Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation.

    PubMed

    Scheibel, Randall S; Newsome, Mary R; Troyanskaya, Maya; Steinberg, Joel L; Goldstein, Felicia C; Mao, Hui; Levin, Harvey S

    2009-09-01

    Functional magnetic resonance imaging (fMRI) has revealed more extensive cognitive-control related brain activation following traumatic brain injury (TBI), but little is known about how activation varies with TBI severity. Thirty patients with moderate to severe TBI and 10 with orthopedic injury (OI) underwent fMRI at 3 months post-injury using a stimulus response compatibility task. Regression analyses indicated that lower total Glasgow Coma Scale (GCS) and GCS verbal component scores were associated with higher levels of brain activation. Brain-injured patients were also divided into three groups based upon their total GCS score (3-4, 5-8, or 9-15), and patients with a total GCS score of 8 or less produced increased, diffuse activation that included structures thought to mediate visual attention and cognitive control. The cingulate gyrus and thalamus were among the areas showing greatest increases, and this is consistent with vulnerability of these midline structures in severe, diffuse TBI. Better task performance was associated with higher activation, and there were differences in the over-activation pattern that varied with TBI severity, including greater reliance upon left-lateralized brain structures in patients with the most severe injuries. These findings suggest that over-activation is at least partially effective for improving performance and may be compensatory.

  17. Case control study: hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder

    PubMed Central

    Harch, Paul G.; Andrews, Susan R.; Fogarty, Edward F.; Lucarini, Juliette; Van Meter, Keith W.

    2017-01-01

    Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18–65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects) experienced due to the HBOT: reversible middle ear barotrauma (n = 6), transient deterioration in symptoms (n = 7), reversible bronchospasm (n = 1), and increased anxiety (n = 2; not related to confinement); unrelated to HBOT: ureterolithiasis (n = 1), chest pain (n = 2). Significant improvement (29 subjects) was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation), and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and reduction in psychoactive medication use. PMID:29152209

  18. Case control study: hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder.

    PubMed

    Harch, Paul G; Andrews, Susan R; Fogarty, Edward F; Lucarini, Juliette; Van Meter, Keith W

    2017-01-01

    Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18-65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects) experienced due to the HBOT: reversible middle ear barotrauma ( n = 6), transient deterioration in symptoms ( n = 7), reversible bronchospasm ( n = 1), and increased anxiety ( n = 2; not related to confinement); unrelated to HBOT: ureterolithiasis ( n = 1), chest pain ( n = 2). Significant improvement (29 subjects) was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation), and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and reduction in psychoactive medication use.

  19. Post-traumatic stress symptoms and psychological functioning in children of parents with acquired brain injury.

    PubMed

    Kieffer-Kristensen, Rikke; Teasdale, Thomas W; Bilenberg, Niels

    2011-01-01

    The effect of parental brain injury on children has been relatively little investigated. This study examines post-traumatic stress symptoms (PSS) and psychological functioning in children with a parent with an acquired brain injury. The participants were 35 patients with acquired brain injury, their spouses and children aged 7-14 years recruited from out-patient brain injury rehabilitation units across Denmark. Children self-reported psychological functioning using the Becks Youth Inventory (BYI) and Child Impact of Events revised (CRIES) measuring PSS symptoms. Emotional and behavioural problems among the children were also identified by the parents using the Achenbach's Child Behaviour Checklist (CBCL). A matched control group, consisting of 20 children of parents suffering from diabetes, was recruited from the National Danish Diabetes Register. Post-traumatic stress symptoms above cut-off score (<30) were found (CRIES) in 46% of the children in the brain injury group compared to 10% in the diabetes group. The parents in the brain injury group reported more emotional and behavioural problems in their children when compared to published norms (CBCL). When parents have acquired brain injury, their children appear to be at a substantial risk for developing post-traumatic stress symptoms. These results indicate the need for a child-centred family support service to reduce the risk of children being traumatized by parental brain injury, with a special focus on the relational changes within the family.

  20. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse.

    PubMed

    Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2014-09-01

    Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient.

  1. Clinical correlates of plasma brain-derived neurotrophic factor in post-traumatic stress disorder spectrum after a natural disaster.

    PubMed

    Stratta, Paolo; Sanità, Patrizia; Bonanni, Roberto L; de Cataldo, Stefano; Angelucci, Adriano; Rossi, Rodolfo; Origlia, Nicola; Domenici, Luciano; Carmassi, Claudia; Piccinni, Armando; Dell'Osso, Liliana; Rossi, Alessandro

    2016-10-30

    Clinical correlates of plasma Brain-Derived Neurotrophic Factor (BDNF) have been investigated in a clinical population with Post Traumatic Stress Disorder (PTSD) symptoms and healthy control subjects who survived to the L'Aquila 2009 earthquake. Twenty-six outpatients and 14 control subjects were recruited. Assessments included: Structured Clinical Interview for DSM-IV Axis-I disorders Patient Version, Trauma and Loss Spectrum-Self Report (TALS-SR) for post-traumatic spectrum symptoms. Thirteen patients were diagnosed as Full PTSD and 13 as Partial PTSD. The subjects with full-blown PTSD showed lower BDNF level than subjects with partial PTSD and controls. Different relationship patterns of BDNF with post-traumatic stress spectrum symptoms have been reported in the three samples. Our findings add more insight on the mechanisms regulating BDNF levels in response to stress and further proofs of the utility of the distinction of PTSD into full and partial categories. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Management of post-traumatic headaches in children and adolescents.

    PubMed

    Kacperski, Joanne; Arthur, Todd

    2016-01-01

    Traumatic brain injuries (TBI) occur in an estimated 475,000 children aged 0-14 each year. Worldwide, mild traumatic brain injuries (mTBI) represent around 75-90% of all hospital admissions for TBI. mTBI are a common occurrence in children and adolescents, particularly in those involved in athletic activities. An estimated 1.6-3.8 million sports-related TBIs occur each year, including those for which no medical care is sought. Headache is a common occurrence following TBI, reported in as many as 86% of high school and college athletes who have suffered from head trauma. As most clinicians who manage concussion and post-traumatic headaches (PTHs) can attest, these headaches may be difficult to treat. There are currently no established guidelines for the treatment of PTHs, especially when persistent, and practices can vary widely from one clinician to the next. Making medical management more challenging, there are currently no randomized controlled trials evaluating the efficacy of therapies for PTHs in children and adolescents. © 2015 American Headache Society.

  3. Development of in Vivo Biomarkers for Progressive Tau Pathology after Traumatic Brain Injury

    DTIC Science & Technology

    2016-02-01

    14. ABSTRACT Athletes in contact sports who have sustained multiple concussive traumatic brain injuries are at high risk for delayed, progressive...pugilistica 3, 11 or ‘punch drunk’ syndrome 9, 12. US military personnel 13, 14 and others who have sustained multiple concussive traumatic brain...Progress to date: To date, none of the attempts to model progressive tau pathology after repetitive concussive TBI in mice has been optimal. Ongoing

  4. A Double Blind Trial of Divalproex Sodium for Affective Liability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2014-10-01

    approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive...TITLE: A Double Blind Trial of Divalproex Sodium for Affective L ability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL...NUMBER Liability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  5. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2009-10-01

    SUBJECT TERMS Traumatic Brain Injury, Alcohol Use , Mood , Mood Stabilization 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT 18...1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to prevent recurrent manic or depressive episodes during long...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL

  6. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0389 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury...2015 4. TITLE AND SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  7. American Indians/Native Alaskans with Traumatic Brain Injury: Examining the Impairments of Traumatic Brain Injury, Disparities in Service Provision, and Employment Outcomes

    ERIC Educational Resources Information Center

    Whitfield, Harold Wayne; Lloyd, Rosalind

    2008-01-01

    The researchers analyzed data from fiscal year 2006 and found that American Indians/Native Alaskans (AI/NA) with traumatic brain injury experienced similar functional limitations at application as did non-AI/NA. Fewer funds were expended on purchased services for AI/NA than for non-AI/NA. The wages of AI/NA were equitable to those of non-AI/NA at…

  8. EEGgui: a program used to detect electroencephalogram anomalies after traumatic brain injury.

    PubMed

    Sick, Justin; Bray, Eric; Bregy, Amade; Dietrich, W Dalton; Bramlett, Helen M; Sick, Thomas

    2013-05-21

    Identifying and quantifying pathological changes in brain electrical activity is important for investigations of brain injury and neurological disease. An example is the development of epilepsy, a secondary consequence of traumatic brain injury. While certain epileptiform events can be identified visually from electroencephalographic (EEG) or electrocorticographic (ECoG) records, quantification of these pathological events has proved to be more difficult. In this study we developed MATLAB-based software that would assist detection of pathological brain electrical activity following traumatic brain injury (TBI) and present our MATLAB code used for the analysis of the ECoG. Software was developed using MATLAB(™) and features of the open access EEGLAB. EEGgui is a graphical user interface in the MATLAB programming platform that allows scientists who are not proficient in computer programming to perform a number of elaborate analyses on ECoG signals. The different analyses include Power Spectral Density (PSD), Short Time Fourier analysis and Spectral Entropy (SE). ECoG records used for demonstration of this software were derived from rats that had undergone traumatic brain injury one year earlier. The software provided in this report provides a graphical user interface for displaying ECoG activity and calculating normalized power density using fast fourier transform of the major brain wave frequencies (Delta, Theta, Alpha, Beta1, Beta2 and Gamma). The software further detects events in which power density for these frequency bands exceeds normal ECoG by more than 4 standard deviations. We found that epileptic events could be identified and distinguished from a variety of ECoG phenomena associated with normal changes in behavior. We further found that analysis of spectral entropy was less effective in distinguishing epileptic from normal changes in ECoG activity. The software presented here was a successful modification of EEGLAB in the Matlab environment that allows detection of epileptiform ECoG signals in animals after TBI. The code allows import of large EEG or ECoG data records as standard text files and uses fast fourier transform as a basis for detection of abnormal events. The software can also be used to monitor injury-induced changes in spectral entropy if required. We hope that the software will be useful for other investigators in the field of traumatic brain injury and will stimulate future advances of quantitative analysis of brain electrical activity after neurological injury or disease.

  9. Functional brain imaging and the induction of traumatic recall: a cross-correlational review between neuroimaging and hypnosis.

    PubMed

    Vermetten, Eric; Douglas Bremner, J

    2004-07-01

    The behavioral and psychophysiological alterations during recall in patients with trauma disorders often resemble phenomena that are seen in hypnosis. In studies of emotional recall as well as in neuroimaging studies of hypnotic processes similar brain structures are involved: thalamus, hippocampus, amygdala, medial prefrontal cortex, anterior cingulate cortex. This paper focuses on cross-correlations in traumatic recall and hypnotic responses and reviews correlations between the involvement of brain structures in traumatic recall and processes that are involved in hypnotic responsiveness. To further improve uniformity of results of brain imaging specifically for traumatic recall studies, attention is needed for standardization of hypnotic variables, isolation of the emotional process of interest (state),and assessment of trait-related differences.

  10. Bang to the Brain: What We Know about Concussions

    MedlinePlus

    ... as a concussion. More than 1 million mild traumatic brain injuries occur nationwide each year. These injuries can be ... olds treated in an emergency room for mild traumatic brain injury. “We found that the majority of these kids ...

  11. Mild traumatic brain injury literature review and proposed changes to classification.

    PubMed

    Krainin, Benjamin M; Forsten, Robert D; Kotwal, Russ S; Lutz, Robert H; Guskiewicz, Kevin M

    2011-01-01

    Mild traumatic brain injury (mTBI) reportedly occurs in 8-22% of U.S. servicemembers who conduct combat operations in Afghanistan and Iraq. The current definition for mTBI found in the medical literature, to include the Department of Defense (DoD) and Veterans Administration (VA) clinical practice guidelines is limited by the parameters of loss of consciousness, altered consciousness, or post-traumatic amnesia, and does not account for other constellations of potential symptoms. Although mTBI symptoms typically resolve within seven days, some servicemembers experience symptoms that continue for weeks, months, or years following an injury. Mild TBI is one of few disorders in medicine where a benign and misleading diagnostic classification is bestowed on patients at the time of injury, yet still can be associated with lifelong complications. This article comprehensively reviews the clinical literature over the past 20 years and proposes a new classification for TBI that addresses acute, sub-acute, and chronic phases, and includes neurocognitive, somatic, and psychological symptom presentation. 2011.

  12. The chronic and evolving neurological consequences of traumatic brain injury.

    PubMed

    Wilson, Lindsay; Stewart, William; Dams-O'Connor, Kristen; Diaz-Arrastia, Ramon; Horton, Lindsay; Menon, David K; Polinder, Suzanne

    2017-10-01

    Traumatic brain injury (TBI) can have lifelong and dynamic effects on health and wellbeing. Research on the long-term consequences emphasises that, for many patients, TBI should be conceptualised as a chronic health condition. Evidence suggests that functional outcomes after TBI can show improvement or deterioration up to two decades after injury, and rates of all-cause mortality remain elevated for many years. Furthermore, TBI represents a risk factor for a variety of neurological illnesses, including epilepsy, stroke, and neurodegenerative disease. With respect to neurodegeneration after TBI, post-mortem studies on the long-term neuropathology after injury have identified complex persisting and evolving abnormalities best described as polypathology, which includes chronic traumatic encephalopathy. Despite growing awareness of the lifelong consequences of TBI, substantial gaps in research exist. Improvements are therefore needed in understanding chronic pathologies and their implications for survivors of TBI, which could inform long-term health management in this sizeable patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Facilitating return to work through early specialist health-based interventions (FRESH): protocol for a feasibility randomised controlled trial.

    PubMed

    Radford, Kathryn A; Phillips, Julie; Jones, Trevor; Gibson, Ali; Sutton, Chris; Watkins, Caroline; Sach, Tracey; Duley, Lelia; Walker, Marion; Drummond, Avril; Hoffman, Karen; O'Connor, Rory; Forshaw, Denise; Shakespeare, David

    2015-01-01

    Over one million people sustain traumatic brain injury each year in the UK and more than 10 % of these are moderate or severe injuries, resulting in cognitive and psychological problems that affect the ability to work. Returning to work is a primary rehabilitation goal but fewer than half of traumatic brain injury survivors achieve this. Work is a recognised health service outcome, yet UK service provision varies widely and there is little robust evidence to inform rehabilitation practice. A single-centre cohort comparison suggested better work outcomes may be achieved through early occupational therapy targeted at job retention. This study aims to determine whether this intervention can be delivered in three new trauma centres and to conduct a feasibility, randomised controlled trial to determine whether its effects and cost effectiveness can be measured to inform a definitive trial. Mixed methods study, including feasibility randomised controlled trial, embedded qualitative studies and feasibility economic evaluation will recruit 102 people with traumatic brain injury and their nominated carers from three English UK National Health Service (NHS) trauma centres. Participants will be randomised to receive either usual NHS rehabilitation or usual rehabilitation plus early specialist traumatic brain injury vocational rehabilitation delivered by an occupational therapist. The primary objective is to assess the feasibility of conducting a definitive trial; secondary objectives include measurement of protocol integrity (inclusion/exclusion criteria, intervention adherence, reasons for non-adherence) recruitment rate, the proportion of eligible patients recruited, reasons for non-recruitment, spectrum of TBI severity, proportion of and reasons for loss to follow-up, completeness of data collection, gains in face-to-face V s postal data collection and the most appropriate methods of measuring primary outcomes (return to work, retention) to determine the sample size for a larger trial. To our knowledge, this is the first feasibility randomised controlled trial of a vocational rehabilitation health intervention specific to traumatic brain injury. The results will inform the design of a definitive trial. The trial is registered ISRCTN Number 38581822.

  14. Neuro emotional technique effects on brain physiology in cancer patients with traumatic stress symptoms: preliminary findings.

    PubMed

    Monti, Daniel A; Tobia, Anna; Stoner, Marie; Wintering, Nancy; Matthews, Michael; He, Xiao-Song; Doucet, Gaelle; Chervoneva, Inna; Tracy, Joseph I; Newberg, Andrew B

    2017-08-01

    The purpose of this study was to characterize the neurophysiological and clinical effects that may result from the neuro emotional technique (NET) in patients with traumatic stress symptoms associated with a cancer-related event. We hypothesized that self-regulatory processing of traumatic memories would be observable as physiological changes in key brain areas after undergoing the NET intervention and that these changes would be associated with improvement of traumatic stress symptoms. We enrolled 23 participants with a prior cancer diagnosis who expressed a distressing cancer-related memory that was associated with traumatic stress symptoms of at least 6 months in duration. Participants were randomized to either the NET intervention or a waitlist control condition. To evaluate the primary outcome of neurophysiological effects, all participants received functional magnetic resonance imaging (fMRI) during the auditory presentation of both a neutral stimulus and a description of the specific traumatic event. Pre/post-comparisons were performed between the traumatic and neutral condition, within and between groups. Psychological measures included the Impact of Event Scale (IES), State Trait Anxiety Index (STAI), Brief Symptom Inventory (BSI)-18, and Posttraumatic Cognitions Inventory (PTCI). The initial fMRI scans in both groups showed significant increases in the bilateral parahippocampus and brainstem. After NET, reactivity in the parahippocampus, brainstem, anterior cingulate, and insula was significantly decreased during the traumatic stimulus. Likewise, participants receiving the NET intervention had significant reductions (p < 0.05) compared to the control group in distress as measured by the BSI-18 global severity index, anxiety as measured by the STAI, and traumatic stress as measured by the IES and PTCI. This study is an initial step towards understanding mechanistic features of the NET intervention. Specifically, brain regions involved with traumatic memories and distress such as the brainstem, insula, anterior cingulate gyrus, and parahippocampus had significantly reduced activity after the NET intervention and were associated with clinical improvement of symptoms associated with distressing recollections. This preliminary study suggests that the NET intervention may be effective at reducing emotional distress in patients who suffer from traumatic stress symptoms associated with a cancer-related event.

  15. Managing cognitive difficulties after traumatic brain injury: a review of online resources for families.

    PubMed

    Poulin, Valérie; Dawson, Deirdre R; Bottari, Carolina; Verreault, Cynthia; Turcotte, Samantha; Jean, Alexandra

    2018-03-22

    To identify and critically appraise the content, readability, reliability and usability of websites providing information for managing cognitive difficulties in everyday life for the families of adults with moderate to severe traumatic brain injury. Systematic searches on the Internet for relevant websites were conducted using five search engines, and through consultation of the lists of resources published on websites of traumatic brain injury organizations. Two team members assessed eligibility of the websites. To be included, they had to provide information related to management of cognitive difficulties following moderate to severe traumatic brain injury, to be in English or French and available free of charge. Two reviewers evaluated each website according to: (1) its readability using Flesch-Kincaid Grade Level; (2) the quality of its content using a checklist of eight recommendations for managing memory, attention and executive function problems; (3) its usability (e.g., clear design) and reliability (e.g., currency of information) using the Minervation Validation Instrument for Health Care Web Sites. Of the 38 websites included, 10 provide specific tips for families that cover several domains of cognitive function, including memory, attention and executive function. The most frequent recommendations focused on the use of environmental supports for memory problems (n = 33 websites). The readability of information is below the recommended grade 7 for only nine of the websites. All sites show acceptable usability, but their quality is variable in terms of reliability of the information. This review provides useful information for selecting online resources to educate families about the management of cognitive difficulties following moderate to severe traumatic brain injury, as a complement to information and training provided by the rehabilitation team. Implications for rehabilitation This review describes standardized criteria for the evaluation of the content, readability, reliability and usability of websites for family education post-TBI. Given the variability in the content, the readability and the reliability of websites providing information for families about the management of cognitive difficulties post-TBI, careful attention to the selection of appropriate resources is required. Findings from this review may facilitate clinicians' identification of relevant websites to educate families about the management of cognitive difficulties post-TBI, as a complement to other information and training from the rehabilitation team.

  16. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  17. DRAG REDUCING POLYMER ENCHANCES MICROVASCULAR PERFUSION IN THE TRAUMATIZED BRAIN WITH INTRACRANIAL HYPERTENSION

    PubMed Central

    Bragin, Denis E.; Thomson, Susan; Bragina, Olga; Statom, Gloria; Kameneva, Marina V.; Nemoto, Edwin M.

    2016-01-01

    SUMMARY Current treatments for traumatic brain injury (TBI) have not focused on improving microvascular perfusion. Drag-reducing polymers (DRP), linear, long-chain, blood soluble non-toxic macromolecules, may offer a new approach to improving cerebral perfusion by primary alteration of the fluid dynamic properties of blood. Nanomolar concentrations of DRP have been shown to improve hemodynamics in animal models of ischemic myocardium and limb, but have not yet been studied in the brain. Recently, we demonstrated that that DRP improved microvascular perfusion and tissue oxygenation in a normal rat brain. We hypothesized that DRP could restore microvascular perfusion in hypertensive brain after TBI. Using the in-vivo 2-photon laser scanning microscopy we examined the effect of DRP on microvascular blood flow and tissue oxygenation in hypertensive rat brains with and without TBI. DRP enhanced and restored capillary flow, decreased microvascular shunt flow and, as a result, reduced tissue hypoxia in both un-traumatized and traumatized rat brains at high ICP. Our study suggests that DRP could be an effective treatment for improving microvascular flow in brain ischemia caused by high ICP after TBI. PMID:27165871

  18. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    PubMed

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  19. Targeting different pathophysiological events after traumatic brain injury in mice: Role of melatonin and memantine.

    PubMed

    Kelestemur, Taha; Yulug, Burak; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Kilic, Ulkan; Caglayan, Berrak; Yalcin, Esra; Gundogdu, Reyhan Zeynep; Kilic, Ertugrul

    2016-01-26

    The tissue damage that emerges during traumatic brain injury (TBI) is a consequence of a variety of pathophysiological events, including free radical generation and over-activation of N-methyl-d-aspartate-type glutamate receptors (NMDAR). Considering the complex pathophysiology of TBI, we hypothesized that combination of neuroprotective compounds, targeting different events which appear during injury, may be a more promising approach for patients. In this context, both NMDAR antagonist memantine and free radical scavenger melatonin are safe in humans and promising agents for the treatment of TBI. Herein, we examined the effects of melatonin administered alone or in combination with memantine on the activation of signaling pathways, injury development and DNA fragmentation. Both compounds reduced brain injury moderately and the density of DNA fragmentation significantly. Notably, melatonin/memantine combination decreased brain injury and DNA fragmentation significantly, which was associated with reduced p38 and ERK-1/2 phosphorylation. As compared with melatonin and memantine groups, SAPK/JNK-1/2 phosphorylation was also reduced in melatonin/memantine combined animals. In addition, melatonin, memantine and their combination decreased iNOS activity significantly. Here, we provide evidence that melatonin/memantine combination protects brain from traumatic injury, which was associated with decreased DNA fragmentation, p38 phosphorylation and iNOS activity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Predictors of Hypopituitarism in Patients with Traumatic Brain Injury.

    PubMed

    Silva, Paula P B; Bhatnagar, Saurabha; Herman, Seth D; Zafonte, Ross; Klibanski, Anne; Miller, Karen K; Tritos, Nicholas A

    2015-11-15

    Hypopituitarism may often occur in association with traumatic brain injury (TBI). Identification of reliable predictors of pituitary dysfunction is of importance in order to establish a rational testing approach. We searched the records of patients with TBI, who underwent neuroendocrine evaluation in our institution between 2007 and 2013. One hundred sixty-six adults (70% men) with TBI (median age: 41.6 years; range: 18-76) were evaluated at a median interval of 40.4 months (0.2-430.4).Of these, 31% had ≥1 pituitary deficiency, including 29% of patients with mild TBI and 35% with moderate/severe TBI. Growth hormone deficiency was the most common deficiency (21%); when body mass index (BMI)-dependent cutpoints were used, this was reduced to 15%. Central hypoadrenalism occurred in10%, who were more likely to have suffered a motor vehicle accident (MVA, p = 0.04), experienced post-traumatic seizures (p = 0.04), demonstrated any intracranial hemorrhage (p = 0.05), petechial brain hemorrhages (p = 0.017), or focal cortical parenchymal contusions (p = 0.02). Central hypothyroidism occurred in 8% and central hypogonadism in 12%; the latter subgroup had higher BMI (p = 0.03), were less likely to be working after TBI (p = 0.002), and had lower Global Assessment of Functioning (GAF) scores (p = 0.03). Central diabetes insipidus (DI) occurred in 6%, who were more likely to have experienced MVA (p < 0.001) or sustained moderate/severe TBI (p < 0.001). Patients with MVA and those with post-traumatic seizures, intracranial hemorrhage, petechial brain hemorrhages, and/or focal cortical contusions are at particular risk for serious pituitary dysfunction, including adrenal insufficiency and DI, and should be referred for neuroendocrine testing. However, a substantial proportion of patients without these risk factors also developed hypopituitarism.

  1. Fever in trauma patients: evaluation of risk factors, including traumatic brain injury.

    PubMed

    Bengualid, Victoria; Talari, Goutham; Rubin, David; Albaeni, Aiham; Ciubotaru, Ronald L; Berger, Judith

    2015-03-01

    The role of fever in trauma patients remains unclear. Fever occurs as a response to release of cytokines and prostaglandins by white blood cells. Many factors, including trauma, can trigger release of these factors. To determine whether (1) fever in the first 48 hours is related to a favorable outcome in trauma patients and (2) fever is more common in patients with head trauma. Retrospective study of trauma patients admitted to the intensive care unit for at least 2 days. Data were analyzed by using multivariate analysis. Of 162 patients studied, 40% had fever during the first 48 hours. Febrile patients had higher mortality rates than did afebrile patients. When adjusted for severity of injuries, fever did not correlate with mortality. Neither the incidence of fever in the first 48 hours after admission to the intensive care unit nor the number of days febrile in the unit differed between patients with and patients without head trauma (traumatic brain injury). About 70% of febrile patients did not have a source found for their fever. Febrile patients without an identified source of infection had lower peak white blood cell counts, lower maximum body temperature, and higher minimum platelet counts than did febrile patients who had an infectious source identified. The most common infection was pneumonia. No relationship was found between the presence of fever during the first 48 hours and mortality. Patients with traumatic brain injury did not have a higher incidence of fever than did patients without traumatic brain injury. About 30% of febrile patients had an identifiable source of infection. Further studies are needed to understand the origin and role of fever in trauma patients. ©2015 American Association of Critical-Care Nurses.

  2. Chronic traumatic encephalopathy in a National Football League player.

    PubMed

    Omalu, Bennet I; DeKosky, Steven T; Minster, Ryan L; Kamboh, M Ilyas; Hamilton, Ronald L; Wecht, Cyril H

    2005-07-01

    We present the results of the autopsy of a retired professional football player that revealed neuropathological changes consistent with long-term repetitive concussive brain injury. This case draws attention to the need for further studies in the cohort of retired National Football League players to elucidate the neuropathological sequelae of repeated mild traumatic brain injury in professional football. The patient's premortem medical history included symptoms of cognitive impairment, a mood disorder, and parkinsonian symptoms. There was no family history of Alzheimer's disease or any other head trauma outside football. A complete autopsy with a comprehensive neuropathological examination was performed on the retired National Football League player approximately 12 years after retirement. He died suddenly as a result of coronary atherosclerotic disease. Studies included determination of apolipoprotein E genotype. Autopsy confirmed the presence of coronary atherosclerotic disease with dilated cardiomyopathy. The brain demonstrated no cortical atrophy, cortical contusion, hemorrhage, or infarcts. The substantia nigra revealed mild pallor with mild dropout of pigmented neurons. There was mild neuronal dropout in the frontal, parietal, and temporal neocortex. Chronic traumatic encephalopathy was evident with many diffuse amyloid plaques as well as sparse neurofibrillary tangles and tau-positive neuritic threads in neocortical areas. There were no neurofibrillary tangles or neuropil threads in the hippocampus or entorhinal cortex. Lewy bodies were absent. The apolipoprotein E genotype was E3/E3. This case highlights potential long-term neurodegenerative outcomes in retired professional National Football League players subjected to repeated mild traumatic brain injury. The prevalence and pathoetiological mechanisms of these possible adverse long-term outcomes and their relation to duration of years of playing football have not been sufficiently studied. We recommend comprehensive clinical and forensic approaches to understand and further elucidate this emergent professional sport hazard.

  3. Preventable and Potentially Preventable Traumatic Death Rates in Neurosurgery Department: A Single Center Experience.

    PubMed

    Ha, Mahnjeong; Kim, Byung Chul; Choi, Seonuoo; Cho, Won Ho; Choi, Hyuk Jin

    2016-10-01

    Preventable and potentially preventable traumatic death rates is a method to evaluate the preventability of the traumatic deaths in emergency medical department. To evaluate the preventability of the traumatic deaths in patients who were admitted to neurosurgery department, we performed this study. A retrospective review identified 52 patients who admitted to neurosurgery department with severe traumatic brain injuries between 2013 and 2014. Based on radiologic and clinical state at emergency room, each preventability of death was estimated by professional panel discussion. And the final death rates were calculated. The preventable and potentially preventable traumatic death rates was 19.2% in this study. This result is lower than that of the research of 2012, Korean preventable and potentially preventable traumatic death rates. The rate of preventable and potentially preventable traumatic death of operation group is lower than that of conservative treatment group. Also, we confirmed that direct transfer and the time to operation are important to reduce the preventability. We report the preventable and potentially preventable traumatic death rates of our institute for evaluation of preventability in severe traumatic brain injuries during the last 2 years. For decrease of preventable death, we suggest that continuous survey of the death rate of traumatic brain injury patients is required.

  4. Preventable and Potentially Preventable Traumatic Death Rates in Neurosurgery Department: A Single Center Experience

    PubMed Central

    Ha, Mahnjeong; Kim, Byung Chul; Choi, Seonuoo; Cho, Won Ho

    2016-01-01

    Objective Preventable and potentially preventable traumatic death rates is a method to evaluate the preventability of the traumatic deaths in emergency medical department. To evaluate the preventability of the traumatic deaths in patients who were admitted to neurosurgery department, we performed this study. Methods A retrospective review identified 52 patients who admitted to neurosurgery department with severe traumatic brain injuries between 2013 and 2014. Based on radiologic and clinical state at emergency room, each preventability of death was estimated by professional panel discussion. And the final death rates were calculated. Results The preventable and potentially preventable traumatic death rates was 19.2% in this study. This result is lower than that of the research of 2012, Korean preventable and potentially preventable traumatic death rates. The rate of preventable and potentially preventable traumatic death of operation group is lower than that of conservative treatment group. Also, we confirmed that direct transfer and the time to operation are important to reduce the preventability. Conclusion We report the preventable and potentially preventable traumatic death rates of our institute for evaluation of preventability in severe traumatic brain injuries during the last 2 years. For decrease of preventable death, we suggest that continuous survey of the death rate of traumatic brain injury patients is required. PMID:27857910

  5. Sleep Disorders Associated With Mild Traumatic Brain Injury Using Sport Concussion Assessment Tool 3.

    PubMed

    Tkachenko, Nataliya; Singh, Kanwaljit; Hasanaj, Lisena; Serrano, Liliana; Kothare, Sanjeev V

    2016-04-01

    Sleep problems affect 30% to 80% of patients with mild traumatic brain injury. We assessed the prevalence of sleep disorders after mild traumatic brain injury and its correlation with other symptoms. Individuals with mild traumatic brain injury were assessed at the New York University Concussion Center during 2013-2014 with the Sports Concussion Assessment Tool, third edition, data following mild traumatic brain injury. The relationship between sleep problems (drowsiness, difficulty falling asleep, fatigue or low energy), psychiatric symptoms (sadness, nervousness or anxiousness), headache, and dizziness were analyzed by Spearman correlation and logistic regression using moderate to severe versus none to mild categorization. Ninety-three patients were retrospectively considered. The most common injury causes were falls (34.4%) and motor vehicle accidents (21.5%). There was a positive correlation between dizziness, headache, psychiatric problems (sadness, anxiety, irritability), and sleep problems (fatigue, drowsiness, and difficulty falling asleep) (P < 0.001). Logistic regression showed a significant association between moderate to severe psychiatric symptoms and moderate to severe sleep symptoms (P < 0.05). Sleep symptoms became more severe with increased time interval from mild traumatic brain injury to Sport Concussion Assessment Tool 3 administration (odds ratio = 1.005, 1.006, and 1.008, P < 0.05). There was significant correlation between motor vehicle accident and drowsiness and difficulty falling asleep (P < 0.05). Medications given in the emergency department had a positive correlation with drowsiness (P < 0.05). Individuals who report moderate to severe headache, dizziness, and psychiatric symptoms have a higher likelihood of reporting moderate to severe sleep disorders following mild traumatic brain injury and should be counseled and initiated with early interventions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Diagnosis and Management of Combined Central Diabetes Insipidus and Cerebral Salt Wasting Syndrome After Traumatic Brain Injury.

    PubMed

    Wu, Xuehai; Zhou, Xiaolan; Gao, Liang; Wu, Xing; Fei, Li; Mao, Ying; Hu, Jin; Zhou, Liangfu

    2016-04-01

    Combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury (TBI) is rare, is characterized by massive polyuria leading to severe water and electrolyte disturbances, and usually is associated with very high mortality mainly as a result of delayed diagnosis and improper management. We retrospectively reviewed the clinical presentation, management, and outcomes of 11 patients who developed combined central diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury to define distinctive features for timely diagnosis and proper management. The most typical clinical presentation was massive polyuria (10,000 mL/24 hours or >1000 mL/hour) refractory to vasopressin alone but responsive to vasopressin plus cortisone acetate. Other characteristic presentations included low central venous pressure, high brain natriuretic peptide precursor level without cardiac dysfunction, high 24-hour urine sodium excretion and hypovolemia, and much higher urine than serum osmolarity; normal serum sodium level and urine specific gravity can also be present. Timely and adequate infusion of sodium chloride was key in treatment. Of 11 patients, 5 had a good prognosis 3 months later (Extended Glasgow Outcome Scale score ≥6), 1 had an Extended Glasgow Outcome Scale score of 4, 2 died in the hospital of brain hernia, and 3 developed a vegetative state. For combined diabetes insipidus and cerebral salt wasting syndrome after traumatic brain injury, massive polyuria is a major typical presentation, and intensive monitoring of fluid and sodium status is key for timely diagnosis. To achieve a favorable outcome, proper sodium chloride supplementation and cortisone acetate and vasopressin coadministration are key. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0388 TITLE: Demyelination as a Target for Cell-Based Therapy of Chronic Blast- Induced Traumatic Brain Injury...SUBTITLE Demyelination as a Target for Cell-Based Therapy of Chronic Blast-Induced Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...disabling behavioral and cognitive abnormalities noted in significant number of combat veterans. These clinical phenotypes suggest impairment in

  8. BPSD following traumatic brain injury.

    PubMed

    Anghinah, Renato; Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; Schmidt, Magali Taino; Calado, Vanessa Tomé Gonçalves; Ianof, Jéssica Natuline; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson Luis

    2013-01-01

    Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI) in Brazil. We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD) findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  9. Challenges in Determining the Role of Rest and Exercise in the Management of Mild Traumatic Brain Injury.

    PubMed

    Wells, Elizabeth M; Goodkin, Howard P; Griesbach, Grace S

    2016-01-01

    Current consensus guidelines recommending physical and cognitive rest until a patient is asymptomatic after a sports concussion (ie, a mild traumatic brain injury) are being called into question, particularly for patients who are slower to recover and in light of preclinical and clinical research demonstrating that exercise aids neurorehabilitation. The pathophysiological response to mild traumatic brain injury includes a complex neurometabolic cascade of events resulting in a neurologic energy deficit. It has been proposed that this energy deficit leads to a period of vulnerability during which the brain is at risk for additional injury, explains why early postconcussive symptoms are exacerbated by cognitive and physical exertion, and is used to rationalize absolute rest until all symptoms have resolved. However, at some point, rest might no longer be beneficial and exercise might need to be introduced. At both extremes, excessive exertion and prolonged avoidance of exercise (physical and mental) have negative consequences. Individuals who have experienced a concussion need guidance for avoidance of triggers of severe symptoms and a plan for graduated exercise to promote recovery as well as optimal functioning (physical, educational, and social) during the postconcussion period. © The Author(s) 2015.

  10. Traumatic brain injury: next steps, research needed, and priority focus areas.

    PubMed

    Helmick, Kathy; Baugh, Laura; Lattimore, Tracie; Goldman, Sarah

    2012-08-01

    Traumatic brain injury (TBI) has been not only a major focus of concern during the recent conflicts in Afghanistan and Iraq, but also among our garrison service members. The prevalence of these injuries has compelled the nation and Congress to invest in the development of policies and programs that support evidence-based care for the full continuum of TBI, from mild (otherwise known as concussion) to severe and penetrating brain injuries. Although, the Department of Defense has made great strides in the areas of TBI clinical care, education, and research, there remains a great need to leverage scientific, policy, and clinical advancement to maximize care of the service member. The purpose of this article is to outline the 7 major areas of work currently being undertaken to help advance the field of TBI. The 7 areas include: (1) eliminating undetected mild traumatic brain injury through prompt early diagnosis, (2) ensuring force readiness and addressing cultural barriers, (3) improving collaborations with the Department of Veterans Affairs, other federal agencies, and academic and civilian organizations, (4) improving deployment-related assessments, (5) deploying effective treatments, (6) conducting military-relevant and targeted research, and (7) enhancing information technology systems.

  11. [What happens after the accident? Psychosocial needs of people with traumatic brain injury and their families].

    PubMed

    Gifre, Mariona; Gil, Ángel; Pla, Laura; Roig, Teresa; Monreal-Bosch, Pilar

    2015-09-01

    To identify factors that people with a traumatic brain injury and their families perceived as helping to improve their quality of life. Three focus groups and five interviews were conducted with a total of 37 participants: 14 persons with traumatic brain injury and 23 caregivers. A content analysis was conducted. The constant comparative method was applied. We detected five factors that improved the quality of life of persons with a traumatic brain and their families: 1) Informal support (family and friends); 2) formal support (counseling, employment, built and bureaucratic environment); 3) type of clinical characteristics; 4) social participation, and 5) social visibility. The needs expressed by our participants primarily focused on social and emotional factors. For persons with severe traumatic brain injury attempting to achieve the best possible community integration, a new semiology is required, not limited to medical care, but also involving social and psychological care tailored to the needs of each individual and family and their environment. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  12. Correlates of invalid neuropsychological test performance after traumatic brain injury.

    PubMed

    Donders, Jacobus; Boonstra, Tyler

    2007-03-01

    To investigate external correlates of invalid test performance after traumatic brain injury, as assessed by the California Verbal Learning Test - Second Edition (CVLT-II) and Word Memory Test (WMT). Consecutive 2-year series of rehabilitation referrals with a diagnosis of traumatic brain injury (n = 87). Logistic regression analysis was used to determine which demographic and neurological variables best differentiated those with vs. without actuarial CVLT-II or WMT evidence for invalid responding. Twenty-one participants (about 24%) performed in the invalid range. The combination of a premorbid psychiatric history with minimal or no coma was associated with an approximately four-fold increase in the likelihood of invalid performance. Premorbid psychosocial complicating factors constitute a significant threat to validity of neuropsychological test results after (especially mild) traumatic brain injury. At the same time, care should be taken to not routinely assume that all persons with mild traumatic brain injury and premorbid psychiatric histories are simply malingering. The WMT appears to be a promising instrument for the purpose of identifying those cases where neuropsychological test results are confounded by factors not directly related to acquired cerebral impairment.

  13. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies

    PubMed Central

    Knowles, Charles H; Whyte, Greg P

    2007-01-01

    Objective To evaluate the risk of chronic traumatic brain injury from amateur boxing. Setting Secondary research performed by combination of sport physicians and clinical academics. Design, data sources, and methods Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). Results 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. Conclusion There is no strong evidence to associate chronic traumatic brain injury with amateur boxing. PMID:17916811

  14. Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies.

    PubMed

    Loosemore, Mike; Knowles, Charles H; Whyte, Greg P

    2007-10-20

    To evaluate the risk of chronic traumatic brain injury from amateur boxing. Secondary research performed by combination of sport physicians and clinical academics. DESIGN, DATA SOURCES, AND METHODS: Systematic review of observational studies in which chronic traumatic brain injury was defined as any abnormality on clinical neurological examination, psychometric testing, neuroimaging studies, and electroencephalography. Studies were identified through database (1950 to date) and bibliographic searches without language restrictions. Two reviewers extracted study characteristics, quality, and data, with adherence to a protocol developed from a widely recommended method for systematic review of observational studies (MOOSE). 36 papers had relevant extractable data (from a detailed evaluation of 93 studies of 943 identified from the initial search). Quality of evidence was generally poor. The best quality studies were those with a cohort design and those that used psychometric tests. These yielded the most negative results: only four of 17 (24%) better quality studies found any indication of chronic traumatic brain injury in a minority of boxers studied. There is no strong evidence to associate chronic traumatic brain injury with amateur boxing.

  15. Traumatic Brain Injury in Domestic Violence Victims: A Retrospective Study at the Barrow Neurological Institute.

    PubMed

    Zieman, Glynnis; Bridwell, Ashley; Cárdenas, Javier F

    2017-02-15

    Domestic violence is a national health crisis, which affects people of all ages, races, and socioeconomic classes. Traumatic brain injury is common in victims because of the high frequency of head and neck injuries inflicted through abuse. These recurrent injuries can lead to chronic symptoms with high morbidity. We conducted a retrospective chart review of 115 patients with a history of head trauma as a result of domestic violence. All patients were seen in a subspecialty traumatic brain injury clinic, at which time information regarding their histories and self-reported symptoms were recorded. In total, 109 females and 6 males were included in our study, with an age range of 4-68 years. Overall, 88% reported more than one injury and 81% reported a history of loss of consciousness associated with their injuries. Only 21% sought medical help at the time of injury. Whereas 85% had a history of abuse in adulthood, 22% had experienced abuse in both childhood and adulthood, and 60% of the patients abused as children went on to be abused as adults. Headache was the most common chief complaint, but on a self-reported symptom severity scale, behavioral symptoms were the most severe. Psychiatric disease was present in 84% of patients. Traumatic brain injury is a frequent sequela of domestic violence, from which many victims sustain multiple injuries without seeking medical care. Brain injuries are often sustained over many years and lead to lasting physical, behavioral, and cognitive consequences. Better understanding of these injuries will lead to improved care for this population.

  16. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  17. The possibility of application of spiral brain computed tomography to traumatic brain injury.

    PubMed

    Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin

    2014-09-01

    The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  19. Traumatic Brain Injury - Multiple Languages

    MedlinePlus

    ... FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Traumatic Brain Injury URL of this page: https://medlineplus.gov/ ...

  20. Levetiracetam-induced neutropenia following traumatic brain injury.

    PubMed

    Bunnell, Kristen; Pucci, Francesco

    2015-01-01

    Levetiracetam is being increasingly utilized for post-traumatic brain injury seizure prophylaxis, in part because of its more favourable adverse effect profile compared to other anti-epileptics. This report highlights an unusual, clinically significant adverse drug reaction attributed to levetiracetam use in a patient with blunt traumatic brain injury. This study describes a case of isolated neutropenia associated with levetiracetam in a 52-year-old man with traumatic brain injury. The patient developed neutropenia on day 3 of therapy with levetiracetam, with an absolute neutrophil count nadir of 200. There were no other medications that may have been implicated in the development of this haematological toxicity. Neutropenia rapidly resolved upon cessation of levetiracetam therapy. Clinicians should be aware of potentially serious adverse reactions associated with levetiracetam in patients with neurological injury.

  1. Dyskalaemia following diffuse axonal injury: case report and review of the literature

    PubMed Central

    Cronin, David; Kaliaperumal, Chandrasekaran; Kumar, Ramanathan; Kaar, George

    2012-01-01

    Traumatic brain injury, and its management, commonly causes derangements in potassium balance. There are a number of recognised causative factors including head trauma, hypothermia and iatrogenic factors such as pharmacological agents and permissive cooling. We describe a case of a 19-year-old man with a severe traumatic brain injury. In a 36-h period, his intracranial pressure increased despite maximal medical therapy and he developed refractory hypokalaemia. Immediately following a decompressive craniectomy, the patient was noted to be profoundly hyperkalaemic; this led to the development of ventricular tachycardia and cardiac arrest, from which the patient did not recover. The effects of brain injury on potassium balance are not well appreciated; the effect of decompressive craniectomy on potassium (K+) balance has not been described previously. We would like to emphasise the potential effect of diffuse axonal injury, a severe form of brain injury and decompressive craniectomy on potassium balance. PMID:23060370

  2. The effects of performing the YMCA Bike protocol on general brain function in athletes with and without mild traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Gay, Michael

    Research into concussion or mild traumatic brain injury (mTBI) has increased significantly within the past decade. In the literature some researchers are reporting 1.6 to 3.8 million concussions occurring in sports (Langlois, 2006), mTBI accounts for 80% of all reported traumatic brain injuries (Ruff, 2011). With these alarming statistics and an increasing number of athletes suffering a concussion there has been an increased emphasis for sports medicine practitioners to properly diagnose and treat those recovering from brain injury so that they may return safely to school, sports or work. Current clinical tools available to practitioners give them the ability to assess functional recovery in clinical measures of personality change; patient self reported symptom scales; functional cognitive domains (computer based neuropsychological batteries) and clinical balance measures. These current methods of clinical measurement, diagnosis and return to play protocols have remained largely unchanged for the past 20 years. In addition, there is some controversy into the application of these clinical measures within repeated measure testing as improvement does not necessarily reflect post-traumatic recovery but may instead reflect practice or "ceiling effects" of measurement. Therefore, diagnostic platforms that measure structural physiologic recovery must be implemented to assist the clinician in the 'Return to Play' process for athletic participation. In this study quantitative EEG (qEEG) analysis using a 128-lead dense array system during the first aerobic challenge in a 'Return to Play' protocol was performed. Subjects recovering from concussion and normal volunteers with no history of concussion were included and their neuroelectric activity recorded before, during, after and 24 hours post light aerobic exercise on a stationary bike. Subjects recovering from concussion demonstrated altered spectral absolute power across relevant regions of interest in the frontal, central (parietal) and posterior (occipital) regions of the brain. In addition connectivity measures (coherence across all frequency bands) are altered in subjects recovering from concussion both as a condition of group and exercise. In conclusion, these findings demonstrate the viability of the use of exercise to induce physiologic differences between uninjured normal volunteers and athletes recovering from concussion. These findings also support the use of qEEG as a supplementary tool in the clinical assessment of mild traumatic brain injury and concussion. Finally, qEEG can be used in the 'Return to Play' decision making process to assist clinicians in tracking physiologic recovery from concussion or mild traumatic brain injury.

  3. 78 FR 27198 - Applications for New Awards; National Institute on Disability and Rehabilitation Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Rehabilitation Research--Traumatic Brain Injury Model Systems Centers Collaborative Research Project AGENCY... Brain Injury Model Systems Centers Collaborative Research Projects; Notice inviting applications for new... competition. Priority 1, the DRRP Priority for the Traumatic Brain Injury Model Systems Centers Collaborative...

  4. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  5. Revisited: A Systematic Review of Therapeutic Hypothermia for Adult Patients Following Traumatic Brain Injury.

    PubMed

    Watson, Hannah I; Shepherd, Andrew A; Rhodes, Jonathan K J; Andrews, Peter J D

    2018-06-01

    Therapeutic hypothermia has been of topical interest for many years and with the publication of two international, multicenter randomized controlled trials, the evidence base now needs updating. The aim of this systematic review of randomized controlled trials is to assess the efficacy of therapeutic hypothermia in adult traumatic brain injury focusing on mortality, poor outcomes, and new pneumonia. The following databases were searched from January 1, 2011, to January 26, 2018: Cochrane Central Register of Controlled Trial, MEDLINE, PubMed, and EMBASE. Only foreign articles published in the English language were included. Only articles that were randomized controlled trials investigating adult traumatic brain injury sustained following an acute, closed head injury were included. Two authors independently assessed at each stage. Quality was assessed using the Cochrane Collaboration's tool for assessing the risk of bias. All extracted data were combined using the Mantel-Haenszel estimator for pooled risk ratio with 95% CIs. p value of less than 0.05 was considered statistically significant. All statistical analyses were conducted using RevMan 5 (Cochrane Collaboration, Version 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Twenty-two studies with 2,346 patients are included. Randomized controlled trials with a low risk of bias show significantly more mortality in the therapeutic hypothermia group (risk ratio, 1.37; 95% CI, 1.04-1.79; p = 0.02), whereas randomized controlled trials with a high risk of bias show the opposite with a higher mortality in the control group (risk ratio, 0.70; 95% CI, 0.60-0.82; p < 0.00001). Overall, this review is in-keeping with the conclusions published by the most recent randomized controlled trials. High-quality studies show no significant difference in mortality, poor outcomes, or new pneumonia. In addition, this review shows a place for fever control in the management of traumatic brain injury.

  6. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2010-10-01

    Susceptibility- weighted MR imaging: a review of clinical applications in children . AJNR Am J Neuroradiol. 2008 Jan;29(1):9-17. Hou DJ, Tong KA, Ashwal S ...2005;33:184-194. Holshouser BA, Tong KA, Ashwal S . “Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury...Proton spectroscopy detected myoinositol in children with traumatic brain injury.” Pediatr Res 2004;56:630-638. Ashwal S , Holshouser B, Tong K, Serna T

  7. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2013-10-01

    acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with lithium or carbamazepine to...0652 TITLE: A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury...and Alcohol Use Following Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  8. A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury

    DTIC Science & Technology

    2010-10-01

    comparable to lithium in treating acutely manic bipolar patients, and the FDA approved it in 1995 for this indication. Also, it is used in conjunction with...A Double Blind Trial of Divalproex Sodium for Affective Lability and Alcohol Use Following Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Lability and Alcohol Use Following Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-08-2-0652 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  9. Treatment of traumatized refugees with sertraline versus venlafaxine in combination with psychotherapy - study protocol for a randomized clinical trial.

    PubMed

    Sonne, Charlotte; Carlsson, Jessica; Elklit, Ask; Mortensen, Erik Lykke; Ekstrøm, Morten

    2013-05-11

    Sufficient evidence is lacking to draw final conclusions on the efficiency of medical and psychological treatments of traumatized refugees with PTSD. The pharmacological treatments of choice today for post-traumatic stress disorder are antidepressants from the subgroup selective serotonin reuptake inhibitors, especially sertraline. The evidence for the use of selective serotonin reuptake inhibitors in the treatment of complex post-traumatic stress disorder in traumatized refugees is very limited. Venlafaxine is a dual-action antidepressant that works on several pathways in the brain. It influences areas in the brain which are responsible for the enhanced anxiety and hyper-arousal experienced by traumatized refugees and which some studies have found to be enlarged among patients suffering from post-traumatic stress disorder. This study will include approximately 150 patients, randomized into two different groups treated with either sertraline or venlafaxine. Patients in both groups will receive the same manual-based cognitive behavioral therapy, which has been especially adapted to this group of patients. The treatment period will be 6 to 7 months. The trial endpoints will be post-traumatic stress disorder and depressive symptoms and social functioning, all measured on validated ratings scales. Furthermore the study will examine the relation between a psycho-social resources and treatment outcome based on 15 different possible outcome predictors. This study is expected to bring forward new knowledge on treatment and clinical evaluation of traumatized refugees and the results are expected to be used in reference programs and clinical guidelines. ClinicalTrials.gov NCT01569685.

  10. Treatment of traumatized refugees with Sertraline versus Venlafaxine in combination with psychotherapy – study protocol for a randomized clinical trial

    PubMed Central

    2013-01-01

    Background Sufficient evidence is lacking to draw final conclusions on the efficiency of medical and psychological treatments of traumatized refugees with PTSD. The pharmacological treatments of choice today for post-traumatic stress disorder are antidepressants from the subgroup selective serotonin reuptake inhibitors, especially Sertraline. The evidence for the use of selective serotonin reuptake inhibitors in the treatment of complex post-traumatic stress disorder in traumatized refugees is very limited. Venlafaxine is a dual-action antidepressant that works on several pathways in the brain. It influences areas in the brain which are responsible for the enhanced anxiety and hyper-arousal experienced by traumatized refugees and which some studies have found to be enlarged among patients suffering from post-traumatic stress disorder. Design This study will include approximately 150 patients, randomized into two different groups treated with either Sertraline or Venlafaxine. Patients in both groups will receive the same manual-based cognitive behavioral therapy, which has been especially adapted to this group of patients. The treatment period will be 6 to 7 months. The trial endpoints will be post-traumatic stress disorder and depressive symptoms and social functioning, all measured on validated ratings scales. Furthermore the study will examine the relation between a psycho-social resources and treatment outcome based on 15 different possible outcome predictors. Discussion This study is expected to bring forward new knowledge on treatment and clinical evaluation of traumatized refugees and the results are expected to be used in reference programs and clinical guidelines. Trial registration ClinicalTrials.gov NCT01569685 PMID:23663588

  11. [Practice guideline 'Management of patients with mild traumatic head/brain injury' in the Netherlands].

    PubMed

    van den Brand, Crispijn L; Rambach, A H J H Annelijn; Postma, Roelie; van de Craats, Victoria L; Lengers, Frank; Bénit, Christa P; Verbree, Femke C; Jellema, Korné

    2014-01-01

    To evaluate the effect of the revised practice guideline 'Management of patients with mild traumatic head/brain injury' (MHI) in the Netherlands using the number of CT scans of the cerebrum, number of hospital admissions, and the number of intracranial traumatic findings on CT scan. Retrospective before-and-after study. A structured chart review over the 3-month period considerable time after implementation of the MHI guideline (study period) was compared with the 3-month-period before its introduction (control period). Both children and adults were included. Primary outcome measures were the percentage of hospital admissions and percentage of cerebrum CT scans in patients with MHI. Secondary outcome measures were traumatic findings on CT scan, neurosurgical intervention and adherence to the guideline. During the study and control periods, respectively 1063 and 1026 patients with MHI attended the emergency department of the study centre. During the study period a CT scan was carried out in 34.2% of patients, significantly more than in the control period 18.8%; p < 0.01). The percentage of admissions also increased from 13.8% to 18.2% (p = 0.01). The differences between the two periods were mainly in adults and in children aged 6 and older. There was no significant change in traumatic intracranial findings or neurosurgical interventions. Adherence to the guideline in regard to hospitalization (81.7% guideline adherence) and CT brain imaging (88.3% guideline adherence) was reasonably high. After introduction of the current MHI guideline in the Netherlands, percentages of both hospitalization and CT of cerebrum have increased significantly. It was expected that the guideline would result in decreases of this percentages. This increase does not seem to be related to more or serious head/brain injury.

  12. Treatment of persistent post-concussion syndrome due to mild traumatic brain injury: current status and future directions.

    PubMed

    Hadanny, Amir; Efrati, Shai

    2016-08-01

    Persistent post-concussion syndrome caused by mild traumatic brain injury has become a major cause of morbidity and poor quality of life. Unlike the acute care of concussion, there is no consensus for treatment of chronic symptoms. Moreover, most of the pharmacologic and non-pharmacologic treatments have failed to demonstrate significant efficacy on both the clinical symptoms as well as the pathophysiologic cascade responsible for the permanent brain injury. This article reviews the pathophysiology of PCS, the diagnostic tools and criteria, the current available treatments including pharmacotherapy and different cognitive rehabilitation programs, and promising new treatment directions. A most promising new direction is the use of hyperbaric oxygen therapy, which targets the basic pathological processes responsible for post-concussion symptoms; it is discussed here in depth.

  13. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Mental Health in Women With Traumatic Brain Injury: A Systematic Review on Depression and Hope

    PubMed Central

    OYESANYA, TOLU O.; WARD, EARLISE C.

    2017-01-01

    The prevalence of traumatic brain injury (TBI) in women has recently increased from 25% to 40%. Current literature inadequately captures challenges women face after injury, including depression. The limited focus on depression is problematic as rates of depression are increasing simultaneously with rates of TBI. A disabling symptom of depression is lack of hope; thus, depression, comorbid with TBI, leads to disability among women. Unfortunately, depression and hope among women with TBI has yet to be systematically examined. The purpose of this systematic review is to examine and synthesize current literature focusing on women with TBI, comorbid with depression, and hope. PMID:25635844

  15. A Critical Examination of Mild Traumatic Brain Injury Management Information Distributed to Parents.

    PubMed

    Boddé, Tamar Roos Annemarie; Scheinberg, Adam; McKinlay, Audrey

    2015-01-01

    Considerable confusion surrounds pediatric mild traumatic brain injury (mTBI) and its management. This study provides a comparison between mTBI management pamphlets distributed by Australasian hospitals and the Centers for Disease Control and Prevention (CDC) gold standard. Twenty-seven different pamphlets were collected from 96 hospitals in Australia and New Zealand and were assessed for readability, compliance with nine CDC criteria, and inclusion of confusing or incorrect information. None of the pamphlets completely complied with the CDC criteria and all included incorrect information. Findings demonstrate that mTBI management information in Australasia needs urgent revision, and evaluation in other countries is strongly advised.

  16. Swallowing Disorders

    MedlinePlus

    ... most common cause of dysphagia); traumatic brain injury; cerebral palsy; Parkinson disease and other degenerative neurological disorders such ... most common cause of dysphagia); traumatic brain injury; cerebral palsy; Parkinson disease and other degenerative neurological disorders such ...

  17. Superoxide and Nitric Oxide Mechanisms in Traumatic Brain Injury and Hemorrhagic Hypotension.

    DTIC Science & Technology

    1999-12-01

    DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Traumatic brain injury (TBI) renders the brain vulnerable to secondary ischemia and poor outcome...cerebral blood flow (CBF) and renders the brain vulnerable to secondary ischemia. There is clinical evidence that hypotension contributes to poor...without TBI. These data indicate that even moderate TBI renders the brain sensitive to ischemic injury during relative mild levels of hypotension that

  18. Salience network integrity predicts default mode network function after traumatic brain injury

    PubMed Central

    Bonnelle, Valerie; Ham, Timothy E.; Leech, Robert; Kinnunen, Kirsi M.; Mehta, Mitul A.; Greenwood, Richard J.; Sharp, David J.

    2012-01-01

    Efficient behavior involves the coordinated activity of large-scale brain networks, but the way in which these networks interact is uncertain. One theory is that the salience network (SN)—which includes the anterior cingulate cortex, presupplementary motor area, and anterior insulae—regulates dynamic changes in other networks. If this is the case, then damage to the structural connectivity of the SN should disrupt the regulation of associated networks. To investigate this hypothesis, we studied a group of 57 patients with cognitive impairments following traumatic brain injury (TBI) and 25 control subjects using the stop-signal task. The pattern of brain activity associated with stop-signal task performance was studied by using functional MRI, and the structural integrity of network connections was quantified by using diffusion tensor imaging. Efficient inhibitory control was associated with rapid deactivation within parts of the default mode network (DMN), including the precuneus and posterior cingulate cortex. TBI patients showed a failure of DMN deactivation, which was associated with an impairment of inhibitory control. TBI frequently results in traumatic axonal injury, which can disconnect brain networks by damaging white matter tracts. The abnormality of DMN function was specifically predicted by the amount of white matter damage in the SN tract connecting the right anterior insulae to the presupplementary motor area and dorsal anterior cingulate cortex. The results provide evidence that structural integrity of the SN is necessary for the efficient regulation of activity in the DMN, and that a failure of this regulation leads to inefficient cognitive control. PMID:22393019

  19. The profile of head injuries and traumatic brain injury deaths in Kashmir.

    PubMed

    Yattoo, Gh; Tabish, Amin

    2008-06-21

    This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI) deaths were also studied retrospectively for a period of eight years (1996 to 2003).The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21-30 years (18.8%), followed by 11-20 years age group (17.8%) and 31-40 years (14.3%). The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas.To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres) need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients.

  20. Traumatic brain injuries in children: A hospital-based study in Nigeria.

    PubMed

    Udoh, David O; Adeyemo, Adebolajo A

    2013-01-01

    Traumatic Brain Injury (TBI) is a significant cause of morbidity and mortality worldwide. Our previous studies showed a high frequency of motor vehicle accidents among neurosurgical patients. However, there is a dearth of data on head injuries in children in Nigeria. To determine the epidemiology of paediatric traumatic brain injuries. This is a prospective analysis of paediatric head trauma at the University of Benin Teaching Hospital, a major referral centre for all traumatic brain injuries in Nigeria between October 2006 and September 2011. We studied the demographic, clinical and radiological data and treatment outcomes. Data was analysed using statistical package for the social sciences (SPSS) 16.0. We managed 127 cases of paediatric head injuries, 65 boys and 62 girls representing 13% of all head injuries managed over the 5-year period. They were aged 3 months to 17 years. The mean age was 7.4 years (median 7 years) with peak incidence occurring at 6-8 years i.e. 31 (24.4%) cases. Motor vehicle accidents resulted in 67.7%, falls 14% and violence 7%. The most frequent computed tomography finding was intracerebral haemorrhage. Mean duration of hospitalization was 18 days (median 11 days). Eleven patients died, mortality correlating well with severity and the presence of intracerebral haematoma. Head injuries in children are due to motor vehicle and motor vehicle-related accidents. Hence, rational priorities for prevention of head injuries in children should include prevention of vehicular, especially pedestrian, accidents in developing countries.

  1. Movement Path Tortuosity Predicts Compliance With Therapeutic Behavioral Prompts in Patients With Traumatic Brain Injury.

    PubMed

    Kearns, William D; Fozard, James L; Ray, Roger D; Scott, Steven; Jasiewicz, Jan M; Craighead, Jeffrey D; Pagano, Craig V

    2016-01-01

    Rehabilitation of patients with traumatic brain injury typically includes therapeutic prompts for keeping appointments and adhering to medication regimens. Level of cognitive impairment may significantly affect a traumatic brain injury victim's ability to benefit from text-based prompting. We tested the hypothesis that spatial disorientation as measured by movement path tortuosity during ambulation would be associated with poorer compliance with automated prompts by veterans actively being treated for traumatic brain injury. Clinical polytrauma center. Ten (1 female) veteran patients mean age = 35.4 (SD = 12.4) years. Small group correlational study without random assignment. Fractal Dimension, a measure of movement path tortuosity derived from a GPS logging device used to record casual outdoor ambulation at the start of the study. Compliance with smart home machine-generated therapeutic prompts received during rehabilitation at the James A. Haley Veterans Administration Hospital Polytrauma Transitional Rehabilitation Program. A patient was compliant with a prompt if they transited from where the prompt was presented to the prescribed destination (both within the Polytrauma Transitional Rehabilitation Program) within 30 minutes. Noncompliance was failure to appear at the destination within the allotted time. Fractal dimension was significantly inversely related to overall prompt compliance (r = -0.603, n = 10, P = .032; 1-tailed). The findings support the hypothesis that increased spatial disorientation adversely impacts compliance with automated prompts throughout therapy. The results are consistent with previous studies linking elevated path tortuosity to cognitive impairment and increased risk for falls in assisted living facility residents.

  2. A Systematic Review of the Prevalence of Oropharyngeal Dysphagia in Stroke, Parkinson's Disease, Alzheimer's Disease, Head Injury, and Pneumonia.

    PubMed

    Takizawa, Claire; Gemmell, Elizabeth; Kenworthy, James; Speyer, Renée

    2016-06-01

    Oropharyngeal dysphagia is a common condition after stroke, Parkinson's disease (PD), and Alzheimer's disease (AD), and can cause serious complications including malnutrition, aspiration pneumonia, and premature mortality. Despite its high prevalence among the elderly and associated serious complications, dysphagia is often overlooked and under-diagnosed in vulnerable patient populations. This systematic review aimed to improve understanding and awareness of the prevalence of dysphagia in susceptible patient populations. MEDLINE, EMBASE, the Cochrane library, PROSPERO, and disease-specific websites were systematically searched for studies reporting oropharyngeal dysphagia prevalence or incidence in people with stroke, PD, AD, traumatic brain injury, and community-acquired pneumonia, from the USA, Canada, France, Germany, Italy, Spain, UK, Japan, China, and regional studies. The quality of study descriptions were assessed based on STROBE guidelines. A total of 1207 publications were identified and 33 met inclusion criteria: 24 in stroke, six in PD, two in traumatic brain injury, and one in patients with traumatic brain injury. Dysphagia was reported in 8.1-80 % of stroke patients, 11-81 % of PD, 27-30 % of traumatic brain injury patients, and 91.7 % of patients with community-acquired pneumonia. No relevant studies of dysphagia in AD were identified. This review demonstrates that dysphagia is highly prevalent in these populations, and highlights discrepancies between studies, gaps in dysphagia research, and the need for better dysphagia management starting with a reliable, standardized, and validated method for oropharyngeal dysphagia identification.

  3. The effect of spectacle treatment in patients with mild traumatic brain injury: a pilot study.

    PubMed

    Johansson, Jan; Nygren de Boussard, Catharina; Öqvist Seimyr, Gustaf; Pansell, Tony

    2017-05-01

    Visual symptoms and dysfunctions may be a part of the long-term issues following mild traumatic brain injury. These issues may have an impact on near work and reading, and thus affect activities of daily life and the ability to return to work. The purpose of the study was to assess the effect of spectacle treatment on near work-related visual symptoms, visual function and reading performance in patients with persisting symptoms after mild traumatic brain injury. Eight patients with persisting symptoms after mild traumatic brain injury and anomalies of binocular function were included. Binocular function, visual symptoms and reading performance were assessed before and after spectacle treatment. Reading eye movements were recorded with eye tracking. Four patients showed a considerable symptom reduction along with minor improvement in clinical visual measures. Reading performance improved in four patients; however, the relationship to symptom reduction was inconsistent. The improvement was correlated to reduced average number of fixations per word (r = -0.89, p = 0.02), reduced proportion of regressive saccades (r = -0.93, p = 0.01) and a significant increase of mean progressive saccade length (p = 0.03). This pilot study found that spectacle treatment, specifically directed at optimising near task visual function, significantly reduced symptoms in 50 per cent of patients and improved reading performance in 50 per cent. While promising, lack of placebo control and lack of correlation between reading performance and symptom improvements means we cannot decipher mechanisms without further study. © 2016 Optometry Australia.

  4. Standardizing Data Collection in Traumatic Brain Injury

    DTIC Science & Technology

    2010-01-01

    om th is p ro of . 15 Definitions of mild TBI vary considerably across studies ( Comper et al 2005). The American Congress of Rehabilitation...451-627. Comper P, Bisschop S, Carnide N, Tricco A (2005). A Systematic Review of Treatments for Mild Traumatic Brain Injury. Brain Injury 19, 863

  5. Surviving Traumatic Brain Injury: A Study of Post Acute Rehabilitation Services.

    ERIC Educational Resources Information Center

    Schuyler, Suellen

    The problems facing a rehabilitation counselor in successfully working with survivors of brain trauma are myriad. This review examined evaluation techniques, rehabilitation therapies, and existing services that have proven effective with traumatic brain injury (TBI) clients. There is a gap in rehabilitation services that results in the TBI…

  6. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... DEPARTMENT OF VETERANS AFFAIRS 38 CFR Part 3 RIN 2900-AN89 Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury Correction In proposed rule document 2012-29709...: The factors considered are: Structural imaging of the brain. LOC--Loss of consciousness. AOC...

  7. 76 FR 68460 - Findings of Research Misconduct

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ... Plasticity after Head Injury,'' D.A. Hovda, P.I. R01 NS052406, ``Age-dependent Ketone Metabolism after Brain Injury,'' M.L. Prims, P.I. K08 NS002197, ``NMDA Receptor Dysfunction after Traumatic Brain Injury,'' C.C... of calcium influx and modulation of local neurotransmitters as hallmarks of pediatric traumatic brain...

  8. 76 FR 72957 - 4th Annual Trauma Spectrum Conference: Bridging the Gap Between Research and Clinical Practice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Brain Injury: Prevention, Diagnosis, Treatment and Recovery for the Iraq and Afghanistan Cohort Notice... Clinical Practice of Psychological Health and Traumatic Brain Injury: Prevention, Diagnosis, Treatment and... clinical practices for psychological health and traumatic brain injury (TBI) health concerns for returning...

  9. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  10. Social dysfunction after pediatric traumatic brain injury: a translational perspective

    PubMed Central

    Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.

    2016-01-01

    Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224

  11. Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model

    PubMed Central

    2012-01-01

    Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury. PMID:22860222

  12. SPECT brain perfusion findings in mild or moderate traumatic brain injury.

    PubMed

    Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M

    2000-01-01

    The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion abnormalities can occur in the absence of LOC.

  13. Work-related mild-moderate traumatic brain injury and the construction industry.

    PubMed

    Liu, Margaret; Wei, Wenli; Fergenbaum, Jennifer; Comper, Paul; Colantonio, Angela

    2011-01-01

    Consequences of traumatic brain injury underscore the need to study high-risk groups. Few studies have investigated work-related traumatic brain injuries (WrTBIs) in the construction industry. To examine WrTBIs in Ontario for the construction industry compared to other industries. A retrospective study of individuals who sustained a WrTBI and had a clinical assessment as an outpatient at a hospital-based referral centre. Data were collected for a number of factors including demographic, injury and occupation and were analyzed according to the Person-Environment-Occupation (PEO) model. 435 individuals who sustained a WrTBI. There were 19.1% in the construction industry, 80.9% in other industries. Compared to other industries, individuals in the construction industry were more likely to be male, to not have attained post-secondary education, and experience multiple traumas. WrTBIs in the construction industry were commonly due to elevated work. The construction occupations involved included skilled workers and general labourers, and compared to other industries, WrTBIs occurred most often for those employed for a short duration in the construction industry. Construction industry workers experience serious WrTBIs that are amenable to prevention. Use of the PEO model increased our understanding of WrTBIs in the construction industry.

  14. Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.

    PubMed

    Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2015-08-01

    Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.

  15. Feasibility and results of a case study of yoga to improve physical functioning in people with chronic traumatic brain injury.

    PubMed

    Schmid, Arlene A; Miller, Kristine K; Van Puymbroeck, Marieke; Schalk, Nancy

    2016-01-01

    The purpose of this mixed-methods case study was to investigate whether an 8-week 1:1 yoga program was feasible and beneficial to people with traumatic brain injury (TBI). This was a mixed-methods case study of one-to-one yoga for people with TBI included three people. We completed assessments before and after the 8-week yoga intervention and included measures of balance, balance confidence, pain, range of motion, strength and mobility. Qualitative interviews were included at the post-assessment. We include a percent change calculation and salient quotes that represent the perceived impact of the yoga intervention. All participants completed the yoga intervention and all demonstrated improvements in physical outcome measures. For the group, balance increased by 36%, balance confidence by 39%, lower extremity strength by 100% and endurance by 105%. Qualitative data support the use of yoga to improve multiple aspects of physical functioning, one participant stated: "I mean it's rocked my world. It's changed my life. I mean all the different aspects. I mean physically, emotionally, mentally, it's given me you know my life back…". Yoga, delivered in a one-to-one setting, appears to be feasible and beneficial to people with chronic TBI. Chronic traumatic brain injury (TBI) leads to many aspects of physical functioning impairment. Yoga delivered in a one-to-one setting may be feasible and beneficial for people with chronic TBI.

  16. Intracranial Pressure Monitoring in Infants and Young Children With Traumatic Brain Injury.

    PubMed

    Dixon, Rebecca R; Nocera, Maryalice; Zolotor, Adam J; Keenan, Heather T

    2016-11-01

    To examine the use of intracranial pressure monitors and treatment for elevated intracranial pressure in children 24 months old or younger with traumatic brain injury in North Carolina between April 2009 and March 2012 and compare this with a similar cohort recruited 2000-2001. Prospective, observational cohort study. Twelve PICUs in North Carolina. All children 24 months old or younger with traumatic brain injury, admitted to an included PICU. None. The use of intracranial pressure monitors and treatments for elevated intracranial pressure were evaluated in 238 children with traumatic brain injury. Intracranial pressure monitoring (risk ratio, 3.7; 95% CI, 1.5-9.3) and intracranial pressure therapies were more common in children with Glasgow Coma Scale less than or equal to 8 compared with Glasgow Coma Scale greater than 8. However, only 17% of children with Glasgow Coma Scale less than or equal to 8 received a monitoring device. Treatments for elevated intracranial pressure were more common in children with monitors; yet, some children without monitors received therapies traditionally used to lower intracranial pressure. Unadjusted predictors of monitoring were Glasgow Coma Scale less than or equal to 8, receipt of cardiopulmonary resuscitation, nonwhite race. Logistic regression showed no strong predictors of intracranial pressure monitor use. Compared with the 2000 cohort, children in the 2010 cohort with Glasgow Coma Scale less than or equal to 8 were less likely to receive monitoring (risk ratio, 0.5; 95% CI, 0.3-1.0), although the estimate was not precise, or intracranial pressure management therapies. Children in the 2010 cohort with a Glasgow Coma Scale less than or equal to 8 were less likely to receive an intracranial pressure monitor or hyperosmolar therapy than children in the 2000 cohort; however, about 10% of children without monitors received therapies to decrease intracranial pressure. This suggests treatment heterogeneity in children 24 months old or younger with traumatic brain injury and a need for better evidence to support treatment recommendations for this group of children.

  17. Predictive value of neuron-specific enolase for prognosis in patients with moderate or severe traumatic brain injury: a systematic review and meta-analysis

    PubMed Central

    Mercier, Eric; Boutin, Amélie; Shemilt, Michèle; Lauzier, François; Zarychanski, Ryan; Fergusson, Dean A.; Moore, Lynne; McIntyre, Lauralyn A.; Archambault, Patrick; Légaré, France; Rousseau, François; Lamontagne, François; Nadeau, Linda; Turgeon, Alexis F.

    2016-01-01

    Background: Prognosis is difficult to establish early after moderate or severe traumatic brain injury despite representing an important concern for patients, families and medical teams. Biomarkers, such as neuron-specific enolase, have been proposed as potential early prognostic indicators. Our objective was to determine the association between neuron-specific enolase and clinical outcomes, and the prognostic value of neuron-specific enolase after a moderate or severe traumatic brain injury. Methods: We searched MEDLINE, Embase, The Cochrane Library and Biosis Previews, and reviewed reference lists of eligible articles to identify studies. We included cohort studies and randomized controlled trials that evaluated the prognostic value of neuron-specific enolase to predict mortality or Glasgow Outcome Scale score in patients with moderate or severe traumatic brain injury. Two reviewers independently collected data. The pooled mean differences were analyzed using random-effects models. We assessed risk of bias using a customized Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Subgroup and sensitivity analyses were performed based on a priori hypotheses. Results: We screened 5026 citations from which 30 studies (involving 1321 participants) met our eligibility criteria. We found a significant positive association between neuron-specific enolase serum levels and mortality (10 studies, n = 474; mean difference [MD] 18.46 µg/L, 95% confidence interval [CI] 10.81 to 26.11 µg/L; I2 = 83%) and a Glasgow Outcome Scale ≤ 3 (14 studies, n = 603; MD 17.25 µg/L, 95% CI 11.42 to 23.07 µg/L; I2 = 82%). We were unable to determine a clinical threshold value using the available patient data. Interpretation: In patients with moderate or severe traumatic brain injury, increased neuron-specific enolase serum levels are associated with unfavourable outcomes. The optimal neuron-specific enolase threshold value to predict unfavourable prognosis remains unknown and clinical decision-making is currently not recommended until additional studies are made available. PMID:27975043

  18. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  19. Using geographical information systems mapping to identify areas presenting high risk for traumatic brain injury

    PubMed Central

    2011-01-01

    Background The aim of this study is to show how geographical information systems (GIS) can be used to track and compare hospitalization rates for traumatic brain injury (TBI) over time and across a large geographical area using population based data. Results & Discussion Data on TBI hospitalizations, and geographic and demographic variables, came from the Ontario Trauma Registry Minimum Data Set for the fiscal years 1993-1994 and 2001-2002. Various visualization techniques, exploratory data analysis and spatial analysis were employed to map and analyze these data. Both the raw and standardized rates by age/gender of the geographical unit were studied. Data analyses revealed persistent high rates of hospitalization for TBI resulting from any injury mechanism between two time periods in specific geographic locations. Conclusions This study shows how geographic information systems can be successfully used to investigate hospitalizaton rates for traumatic brain injury using a range of tools and techniques; findings can be used for local planning of both injury prevention and post discharge services, including rehabilitation. PMID:22054220

  20. Patient navigation for traumatic brain injury promotes community re-integration and reduces re-hospitalizations.

    PubMed

    Rosario, Emily R; Espinoza, Laura; Kaplan, Stephanie; Khonsari, Sepehr; Thurndyke, Earl; Bustos, Melissa; Vickers, Kayla; Navarro, Brittney; Scudder, Bonnie

    2017-01-01

    To determine the effectiveness of a Navigation programme for patients with traumatic brain injury. Prospective programme evaluation. Inpatient rehabilitation facility and community settings. Eighteen individuals who suffered a traumatic brain injury (TBI), were between the ages of 16-70 years, and had a Rancho Score greater than IV. Patient navigation programme focused on identifying and addressing barriers to positive outcomes, including coordination of care and facilitating communication among the family and healthcare providers, psychosocial support, caregiver support, adherence to treatment, education, community resources and financial issues. Functional status, re-hospitalizations, falls, neurobehavioral symptom inventory, neuroendocrine status, activities of daily living, community integration and caregiver burden. There was a significant reduction in re-hospitalization and fall rate when comparing individuals who received navigation services and those who did not. We also observed improved adherence treatment plans and a significant increase in community integration, independence level and functional abilities. This study begins to highlight the effectiveness of a patient navigation programme for individuals with TBI. Future research with a larger sample will continue to help us refine patient navigation for chronic disabling conditions and determine its sustainability.

  1. 24 CFR 583.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... emotional impairment, including an impairment caused by alcohol or drug abuse, post-traumatic stress disorder, or brain injury; (2) A developmental disability, as defined in this section; or (3) The disease...

  2. 24 CFR 583.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... emotional impairment, including an impairment caused by alcohol or drug abuse, post-traumatic stress disorder, or brain injury; (2) A developmental disability, as defined in this section; or (3) The disease...

  3. 24 CFR 583.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... emotional impairment, including an impairment caused by alcohol or drug abuse, post-traumatic stress disorder, or brain injury; (2) A developmental disability, as defined in this section; or (3) The disease...

  4. The efficacy and safety of extended-release methylphenidate following traumatic brain injury: a randomised controlled pilot study.

    PubMed

    Dymowski, Alicia R; Ponsford, Jennie L; Owens, Jacqueline A; Olver, John H; Ponsford, Michael; Willmott, Catherine

    2017-06-01

    To investigate the feasibility, safety and efficacy of extended-release methylphenidate in enhancing processing speed, complex attentional functioning and everyday attentional behaviour after traumatic brain injury. Seven week randomised, placebo-controlled, double-blind, parallel pilot study. Inpatient and outpatient Acquired Brain Injury Rehabilitation Program. Eleven individuals with reduced processing speed and/or attention deficits following complicated mild to severe traumatic brain injury. Participants were allocated using a blocked randomisation schedule to receive daily extended-release methylphenidate (Ritalin ® LA at a dose of 0.6 mg/kg) or placebo (lactose) in identical capsules. Tests of processing speed and complex attention, and ratings of everyday attentional behaviour were completed at baseline, week 7 (on-drug), week 8 (off-drug) and 9 months follow-up. Vital signs and side effects were monitored from baseline to week 8. Three percent ( n = 11) of individuals screened participated (mean post-traumatic amnesia duration = 63.80 days, SD = 45.15). Results were analysed for six and four individuals on methylphenidate and placebo, respectively. Groups did not differ on attentional test performance or relative/therapist ratings of everyday attentional behaviour. One methylphenidate participant withdrew due to difficulty sleeping. Methylphenidate was associated with trends towards increased blood pressure and reported anxiety. Methylphenidate was not associated with enhanced processing speed, attentional functioning or everyday attentional behaviour after traumatic brain injury. Alternative treatments for attention deficits after traumatic brain injury should be explored given the limited feasibility of methylphenidate in this population.

  5. Hypopituitarism Following Traumatic Brain Injury: Determining Factors for Diagnosis

    PubMed Central

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana Isabel; Kelestimur, Fahrettin; Casanueva, Felipe F.

    2011-01-01

    Neuroendocrine dysfunction, long recognized as a consequence of traumatic brain injury (TBI), is a major cause of disability that includes physical and psychological involvement with long-term cognitive, behavioral, and social changes. There is no standard procedure regarding at what time after trauma the diagnosis should be made. Also there is uncertainty on defining the best methods for diagnosis and testing and what types of patients should be selected for screening. Common criteria for evaluating these patients are required on account of the high prevalence of TBI worldwide and the potential new cases of hypopituitarism. The aim of this review is to clarify, based on the evidence, when endocrine assessment should be performed after TBI and which patients should be evaluated. Additional studies are still needed to know the impact of post-traumatic hypopituitarism and to assess the impact of hormone replacement in the prognosis. PMID:22649368

  6. Hypopituitarism following traumatic brain injury: determining factors for diagnosis.

    PubMed

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana Isabel; Kelestimur, Fahrettin; Casanueva, Felipe F

    2011-01-01

    Neuroendocrine dysfunction, long recognized as a consequence of traumatic brain injury (TBI), is a major cause of disability that includes physical and psychological involvement with long-term cognitive, behavioral, and social changes. There is no standard procedure regarding at what time after trauma the diagnosis should be made. Also there is uncertainty on defining the best methods for diagnosis and testing and what types of patients should be selected for screening. Common criteria for evaluating these patients are required on account of the high prevalence of TBI worldwide and the potential new cases of hypopituitarism. The aim of this review is to clarify, based on the evidence, when endocrine assessment should be performed after TBI and which patients should be evaluated. Additional studies are still needed to know the impact of post-traumatic hypopituitarism and to assess the impact of hormone replacement in the prognosis.

  7. Effectiveness of Prolonged Exposure and Cognitive Processing Therapy for U.S. Veterans With a History of Traumatic Brain Injury.

    PubMed

    Ragsdale, Katie A; Voss Horrell, Sarah C

    2016-10-01

    This retrospective analysis of previously existing nonrandomized clinical data examined the effectiveness of completing prolonged exposure (PE) or cognitive processing therapy (CPT) in a sample of 41 U.S. veterans at a Veterans Affairs medical center. The sample included 19 veterans with diagnoses of posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) and 22 veterans with PTSD only. Diagnostic groups did not significantly differ on PTSD and depression symptom reduction, F(2, 36) = 0.05, p = .951; Pillai's trace = 0.00, partial η 2 = .00. Veterans who completed PE showed greater symptom reduction than those who completed CPT, F(2, 36) = 12.10, p < .001; Pillai's trace = 0.40, partial η 2 = .40, regardless of TBI status. Overall, our results suggested that TBI status should not preclude individuals from being offered trauma-focused PTSD treatment. Copyright © 2016 International Society for Traumatic Stress Studies.

  8. Post-traumatic stress disorder vs traumatic brain injury

    PubMed Central

    Bryant, Richard

    2011-01-01

    Post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI) often coexist because brain injuries are often sustained in traumatic experiences. This review outlines the significant overlap between PTSD and TBI by commencing with a critical outline of the overlapping symptoms and problems of differential diagnosis. The impact of TBI on PTSD is then described, with increasing evidence suggesting that mild TBI can increase risk for PTSD. Several explanations are offered for this enhanced risk. Recent evidence suggests that impairment secondary to mild TBI is largely attributable to stress reactions after TBI, which challenges the long-held belief that postconcussive symptoms are a function of neurological insult This recent evidence is pointing to new directions for treatment of postconcussive symptoms that acknowledge that treating stress factors following TBI may be the optimal means to manage the effects of many TBIs, PMID:22034252

  9. Disequilibrium after Traumatic Brain Injury: Vestibular Mechanisms

    DTIC Science & Technology

    2012-09-01

    potentially modifiable factors. 0078 Chiropractic Sacro Occipital Technique (SOT) and Cranial Treatment Model for Traumatic Brain Injury Along with...model incorporating laboratory testing to evaluate neurotrans- mitter balance and chiropractic cranial care for the treatment of a patient with traumatic...Approach She has been under care for three years, which consisted of chiropractic sacro occipital technique (SOT) and cranial treat- ment. Within the

  10. JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    DTIC Science & Technology

    2014-09-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a well-established inducer of temporal lobe epilepsy (TLE...INTRODUCTION: This research addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well- established etiology of temporal ... lobe epilepsy (TLE), a frequently medically intractable and often progressive epilepsy syndrome. Much evidence indicates that abnormalities in

  11. Acute Neuroimmune Modulation Attenuates the Development of Anxiety-Like Freezing Behavior in an Animal Model of Traumatic Brain Injury

    PubMed Central

    Rodgers, Krista M.; Bercum, Florencia M.; McCallum, Danielle L.; Rudy, Jerry W.; Frey, Lauren C.; Johnson, Kirk W.; Watkins, Linda R.

    2012-01-01

    Abstract Chronic anxiety is a common and debilitating result of traumatic brain injury (TBI) in humans. While little is known about the neural mechanisms of this disorder, inflammation resulting from activation of the brain's immune response to insult has been implicated in both human post-traumatic anxiety and in recently developed animal models. In this study, we used a lateral fluid percussion injury (LFPI) model of TBI in the rat and examined freezing behavior as a measure of post-traumatic anxiety. We found that LFPI produced anxiety-like freezing behavior accompanied by increased reactive gliosis (reflecting neuroimmune inflammatory responses) in key brain structures associated with anxiety: the amygdala, insula, and hippocampus. Acute peri-injury administration of ibudilast (MN166), a glial cell activation inhibitor, suppressed both reactive gliosis and freezing behavior, and continued neuroprotective effects were apparent several months post-injury. These results support the conclusion that inflammation produced by neuroimmune responses to TBI play a role in post-traumatic anxiety, and that acute suppression of injury-induced glial cell activation may have promise for the prevention of post-traumatic anxiety in humans. PMID:22435644

  12. Brainstem auditory-evoked potentials as an objective tool for evaluating hearing dysfunction in traumatic brain injury.

    PubMed

    Lew, Henry L; Lee, Eun Ha; Miyoshi, Yasushi; Chang, Douglas G; Date, Elaine S; Jerger, James F

    2004-03-01

    Because of the violent nature of traumatic brain injury, traumatic brain injury patients are susceptible to various types of trauma involving the auditory system. We report a case of a 55-yr-old man who presented with communication problems after traumatic brain injury. Initial results from behavioral audiometry and Weber/Rinne tests were not reliable because of poor cooperation. He was transferred to our service for inpatient rehabilitation, where review of the initial head computed tomographic scan showed only left temporal bone fracture. Brainstem auditory-evoked potential was then performed to evaluate his hearing function. The results showed bilateral absence of auditory-evoked responses, which strongly suggested bilateral deafness. This finding led to a follow-up computed tomographic scan, with focus on bilateral temporal bones. A subtle transverse fracture of the right temporal bone was then detected, in addition to the left temporal bone fracture previously identified. Like children with hearing impairment, traumatic brain injury patients may not be able to verbalize their auditory deficits in a timely manner. If hearing loss is suspected in a patient who is unable to participate in traditional behavioral audiometric testing, brainstem auditory-evoked potential may be an option for evaluating hearing dysfunction.

  13. PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic Brain Injury

    DTIC Science & Technology

    2016-06-01

    smartphone or tablet computer platforms, including both Google Android™ and Apple iOS based devices. Recruiting for the pilot study was very...framework design.. 15. SUBJECT TERMS PTSD, post-traumatic stress disorder, mobile health, self-help, iOS , Android, mindfulness, relaxation... study and subsequent randomized controlled trial (RCT) with post-deployed personnel; and (5) adapting the developed system for several popular

  14. Finite element simulations of the head-brain responses to the top impacts of a construction helmet: Effects of the neck and body mass.

    PubMed

    Wu, John Z; Pan, Christopher S; Wimer, Bryan M; Rosen, Charles L

    2017-01-01

    Traumatic brain injuries are among the most common severely disabling injuries in the United States. Construction helmets are considered essential personal protective equipment for reducing traumatic brain injury risks at work sites. In this study, we proposed a practical finite element modeling approach that would be suitable for engineers to optimize construction helmet design. The finite element model includes all essential anatomical structures of a human head (i.e. skin, scalp, skull, cerebrospinal fluid, brain, medulla, spinal cord, cervical vertebrae, and discs) and all major engineering components of a construction helmet (i.e. shell and suspension system). The head finite element model has been calibrated using the experimental data in the literature. It is technically difficult to precisely account for the effects of the neck and body mass on the dynamic responses, because the finite element model does not include the entire human body. An approximation approach has been developed to account for the effects of the neck and body mass on the dynamic responses of the head-brain. Using the proposed model, we have calculated the responses of the head-brain during a top impact when wearing a construction helmet. The proposed modeling approach would provide a tool to improve the helmet design on a biomechanical basis.

  15. Is Traumatic and Non-Traumatic Neck Pain Associated with Brain Alterations? - A Systematic Review.

    PubMed

    DePauw, Robby; Coppieters, Iris; Meeus, Mira; Caeyenberghs, Karen; Danneels, Lieven; Cagnie, Barbara

    2017-05-01

    Chronic neck pain affects 50% - 85% of people who have experienced an acute episode. This transition and the persistence of chronic complaints are believed to be mediated by brain alterations among different central mechanisms. This study aimed to systematically review and critically appraise the current existing evidence regarding structural and functional brain alterations in patients with whiplash associated disorders (WAD) and idiopathic neck pain (INP). Additionally, associations between brain alterations and clinical symptoms reported in neck pain patients were evaluated. Systematic review. The present systematic review was performed according to the PRISMA guidelines. PubMed, Web of Science, and Cochrane databases were searched. First, the obtained articles were screened based on title and abstract. Secondly, the screening was based on the full text. Risk of bias in included studies was investigated. Twelve studies met the inclusion criteria. Alterations in brain morphology and function, including perfusion, neurotransmission, and blood oxygenation level dependent-signal, were demonstrated in chronic neck pain patients. There is some to moderate evidence for both structural and functional brain alterations in patients with chronic neck pain. In contrast, no evidence for structural brain alterations in acute neck pain patients was found. Only 12 articles were included, which allows only cautious conclusions to be drawn. Brain alterations were observed in both patients with chronic WAD and chronic INP. Furthermore, more evidence exists for brain alterations in chronic WAD, and different underlying mechanisms might be present in both pathologies. In addition, pain and disability were correlated with the observed brain alterations. Accordingly, morphological and functional brain alterations should be further investigated in patients with chronic WAD and chronic INP with newer and more sensitive techniques, and associative clinical measurements seem indispensable in future research.

  16. 75 FR 62487 - Compassionate Allowances for Cardiovascular Disease and Multiple Organ Transplants, Office of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... hearings concerned rare diseases, cancers, traumatic brain injury and stroke, early-onset Alzheimer's... held five hearings since December 2007. These hearings were on rare diseases, cancers, traumatic brain...

  17. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    USDA-ARS?s Scientific Manuscript database

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  18. 78 FR 53764 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... days of this notice. Proposed Project Examining Traumatic Brain Injury in Youth--NEW--National Center...). Background and Brief Description Traumatic brain injury (TBI) is one of the highest priorities in public... penetrating head injury that disrupts the normal function of the brain. The severity of a TBI may range from...

  19. 77 FR 34359 - Applications for New Awards: Disability and Rehabilitation Research Projects and Centers Program...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Projects and Centers Program; Traumatic Brain Injury Model Systems Centers AGENCY: Office of Special... Brain Injury Model Systems Centers (TBIMS). Notice inviting applications for new awards for fiscal year... 28, 2006 (71 FR 25472). The Traumatic Brain Injury Model Systems Centers priority is from the notice...

  20. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  1. Traumatic asphyxia due to blunt chest trauma: a case report and literature review

    PubMed Central

    2012-01-01

    Introduction Crush asphyxia is different from positional asphyxia, as respiratory compromise in the latter is caused by splinting of the chest and/or diaphragm, thus preventing normal chest expansion. There are only a few cases or small case series of crush asphyxia in the literature, reporting usually poor outcomes. Case presentation We present the case of a 44-year-old Caucasian man who developed traumatic asphyxia with severe thoracic injury and mild brain edema after being crushed under heavy auto vehicle mechanical parts. He remained unconscious for an unknown time. The treatment included oropharyngeal intubation and mechanical ventilation, bilateral chest tube thoracostomies, treatment of brain edema and other supportive measures. Our patient’s outcome was good. Traumatic asphyxia is generally under-reported and most authors apply supportive measures, while the final outcome seems to be dependent on the length of time of the chest compression and on the associated injuries. Conclusion Treatment for traumatic asphyxia is mainly supportive with special attention to the re-establishment of adequate oxygenation and perfusion; treatment of the concomitant injuries might also affect the final outcome. PMID:22935547

  2. Head trauma in the cat: 2. assessment and management of traumatic brain injury.

    PubMed

    Garosi, Laurent; Adamantos, Sophie

    2011-11-01

    Feline trauma patients are commonly seen in general practice and frequently have sustained some degree of brain injury. Cats with traumatic brain injuries may have a variety of clinical signs, ranging from minor neurological deficits to life-threatening neurological impairment. Appropriate management depends on prompt and accurate patient assessment, and an understanding of the pathophysiology of brain injury. The most important consideration in managing these patients is maintenance of cerebral perfusion and oxygenation. For cats with severe head injury requiring decompressive surgery, early intervention is critical. There is a limited clinical evidence base to support the treatment of traumatic brain injury in cats, despite its relative frequency in general practice. Appropriate therapy is, therefore, controversial in veterinary medicine and mostly based on experimental studies or human head trauma studies. This review, which sets out to describe the specific approach to diagnosis and management of traumatic brain injury in cats, draws on the current evidence, as far as it exists, as well as the authors' clinical experience. Copyright © 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  3. Initiating Nutritional Support Before 72 Hours Is Associated With Favorable Outcome After Severe Traumatic Brain Injury in Children: A Secondary Analysis of a Randomized, Controlled Trial of Therapeutic Hypothermia.

    PubMed

    Meinert, Elizabeth; Bell, Michael J; Buttram, Sandra; Kochanek, Patrick M; Balasubramani, Goundappa K; Wisniewski, Stephen R; Adelson, P David

    2018-04-01

    To understand the relationship between the timing of initiation of nutritional support in children with severe traumatic brain injury and outcomes. Secondary analysis of a randomized, controlled trial of therapeutic hypothermia (Pediatric Traumatic Brain Injury Consortium: Hypothermia, also known as "the Cool Kids Trial" (NCT 00222742). Fifteen clinical sites in the United States, Australia, and New Zealand. Inclusion criteria included 1) age less than 18 years, 2) postresuscitation Glasgow Coma Scale less than or equal to 8, 3) Glasgow Coma Scale motor score less than 6, and 4) available to be randomized within 6 hours after injury. Exclusion criteria included normal head CT, Glasgow Coma Scale equals to 3, hypotension for greater than 10 minutes (< fifth percentile for age), uncorrectable coagulopathy, hypoxia (arterial oxygen saturation < 90% for > 30 min), pregnancy, penetrating injury, and unavailability of a parent or guardian to consent at centers without emergency waiver of consent. Therapeutic hypothermia (32-33°C for 48 hr) followed by slow rewarming for the primary study. For this analysis, the only intervention was the extraction of data regarding nutritional support from the existing database. Timing of initiation of nutritional support was determined and patients stratified into four groups (group 1-no nutritional support over first 7 d; group 2-nutritional support initiated < 48 hr after injury; group 3-nutritional support initiated 48 to < 72 hr after injury; group 4-nutritional support initiated 72-168 hr after injury). Outcomes were also stratified (mortality and Glasgow Outcomes Scale-Extended for Pediatrics; 1-4, 5-7, 8) at 6 and 12 months. Mixed-effects models were performed to define the relationship between nutrition and outcome. Children (n = 90, 77 randomized, 13 run-in) were enrolled (mean Glasgow Coma Scale = 5.8); the mortality rate was 13.3%. 57.8% of subjects received hypothermia Initiation of nutrition before 72 hours was associated with survival (p = 0.01), favorable 6 months Glasgow Outcomes Scale-Extended for Pediatrics (p = 0.03), and favorable 12 months Glasgow Outcomes Scale-Extended for Pediatrics (p = 0.04). Specifically, groups 2 and 3 had favorable outcomes versus group 1. Initiation of nutritional support before 72 hours after traumatic brain injury was associated with decreased mortality and favorable outcome in this secondary analysis. Although this provides a rationale to initiate nutritional support early after traumatic brain injury, definitive studies that control for important covariates (severity of injury, clinical site, calories delivered, parenteral/enteral routes, and other factors) are needed to provide definitive evidence on the optimization of the timing of nutritional support after severe traumatic brain injury in children.

  4. Lactate and the Lactate-to-Pyruvate Molar Ratio Cannot Be Used as Independent Biomarkers for Monitoring Brain Energetic Metabolism: A Microdialysis Study in Patients with Traumatic Brain Injuries

    PubMed Central

    Sahuquillo, Juan; Merino, Maria-Angels; Sánchez-Guerrero, Angela; Arikan, Fuat; Vidal-Jorge, Marian; Martínez-Valverde, Tamara; Rey, Anna; Riveiro, Marilyn; Poca, Maria-Antonia

    2014-01-01

    Background For decades, lactate has been considered an excellent biomarker for oxygen limitation and therefore of organ ischemia. The aim of the present study was to evaluate the frequency of increased brain lactate levels and the LP ratio (LPR) in a cohort of patients with severe or moderate traumatic brain injury (TBI) subjected to brain microdialysis monitoring to analyze the agreement between these two biomarkers and to indicate brain energy metabolism dysfunction. Methods Forty-six patients with an admission Glasgow coma scale score of ≤13 after resuscitation admitted to a dedicated 10-bed Neurotraumatology Intensive Care Unit were included, and 5305 verified samples of good microdialysis data were analyzed. Results Lactate levels were above 2.5 mmol/L in 56.9% of the samples. The relationships between lactate and the LPR could not be adequately modeled by any linear or non-linear model. Neither Cohen’s kappa nor Gwet’s statistic showed an acceptable agreement between both biomarkers to classify the samples in regard to normal or abnormal metabolism. The dataset was divided into four patterns defined by the lactate concentrations and the LPR. A potential interpretation for these patterns is suggested and discussed. Pattern 4 (low pyruvate levels) was found in 10.7% of the samples and was characterized by a significantly low concentration of brain glucose compared with the other groups. Conclusions Our study shows that metabolic abnormalities are frequent in the macroscopically normal brain in patients with traumatic brain injuries and a very poor agreement between lactate and the LPR when classifying metabolism. The concentration of lactate in the dialysates must be interpreted while taking into consideration the LPR to distinguish between anaerobic metabolism and aerobic hyperglycolysis. PMID:25025772

  5. 78 FR 76196 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...The Department of Veterans Affairs (VA) amends its adjudication regulations concerning service connection. This final rule acts upon a report of the National Academy of Sciences, Institute of Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. This amendment establishes that if a veteran who has a service-connected TBI also has one of these diagnosable illnesses, then that illness will be considered service connected as secondary to the TBI.

  6. Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction

    PubMed Central

    Dang, Baoqi; Chen, Wenli; He, Weichun

    2017-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability. Worldwide, it is the leading cause of disability in the under 40s. Behavioral problems, mood, cognition, particularly memory, attention, and executive function are commonly impaired by TBI. Spending to assist, TBI survivors with disabilities are estimated to be costly per year. Such impaired functional outcomes following TBI can be improved via various rehabilitative approaches. The objective of the present paper is to review the current rehabilitation treatment of traumatic brain injury in adults. PMID:28491478

  7. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    PubMed

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  8. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  9. Treatment of Sleep Disorders after Traumatic Brain Injury

    PubMed Central

    Castriotta, Richard J.; Atanasov, Strahil; Wilde, Mark C.; Masel, Brent E.; Lai, Jenny M.; Kuna, Samuel T.

    2009-01-01

    Study Objectives: Determine whether treatment of sleep disorders identified in brain injured adults would result in resolution of those sleep disorders and improvement of symptoms and daytime function. Methods: Prospective evaluation of unselected traumatic brain injury patients with nocturnal polysomnography (NPSG), multiple sleep latency test (MSLT), Epworth Sleepiness Scale (ESS), and neuropsychological testing including Psychomotor Vigilance Test (PVT), Profile of Mood States (POMS), and Functional Outcome of Sleep Questionnaire (FOSQ) before and after treatment with continuous positive airway pressure (CPAP) for obstructive sleep apnea (OSA), modafinil (200 mg) for narcolepsy and posttraumatic hypersomnia (PTH), or pramipexole (0.375 mg) for periodic limb movements in sleep (PLMS). Setting: Three academic medical centers. Participants: Fifty-seven (57) adults ≥ 3 months post traumatic brain injury (TBI). Measurements And Results: Abnormal sleep studies were found in 22 subjects (39%), of whom 13 (23%) had OSA, 2 (3%) had PTH, 3 (5%) had narcolepsy, 4 (7%) had PLMS, and 12 had objective excessive daytime sleepiness with MSLT score < 10 minutes. Apneas, hypopneas, and snoring were eliminated by CPAP in OSA subjects, but there was no significant change in MSLT scores. Periodic limb movements were eliminated with pramipexole. One of 3 narcolepsy subjects and 1 of 2 PTH subjects had resolution of hypersomnia with modafinil. There was no significant change in FOSQ, POMS, or PVT results after treatment. Conclusions: Treatment of sleep disorders after TBI may result in polysomnographic resolution without change in sleepiness or neuropsychological function. Citation: Castriotta RJ; Atanasov S; Wilde MC; Masel BE; Lai JM; Kuna ST. Treatment of sleep disorders after traumatic brain injury. J Clin Sleep Med 2009;5(2):137-144. PMID:19968047

  10. Machine learning algorithm for automatic detection of CT-identifiable hyperdense lesions associated with traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Keshavamurthy, Krishna N.; Leary, Owen P.; Merck, Lisa H.; Kimia, Benjamin; Collins, Scott; Wright, David W.; Allen, Jason W.; Brock, Jeffrey F.; Merck, Derek

    2017-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability in the United States. Time to treatment is often related to patient outcome. Access to cerebral imaging data in a timely manner is a vital component of patient care. Current methods of detecting and quantifying intracranial pathology can be time-consuming and require careful review of 2D/3D patient images by a radiologist. Additional time is needed for image protocoling, acquisition, and processing. These steps often occur in series, adding more time to the process and potentially delaying time-dependent management decisions for patients with traumatic brain injury. Our team adapted machine learning and computer vision methods to develop a technique that rapidly and automatically detects CT-identifiable lesions. Specifically, we use scale invariant feature transform (SIFT)1 and deep convolutional neural networks (CNN)2 to identify important image features that can distinguish TBI lesions from background data. Our learning algorithm is a linear support vector machine (SVM)3. Further, we also employ tools from topological data analysis (TDA) for gleaning insights into the correlation patterns between healthy and pathological data. The technique was validated using 409 CT scans of the brain, acquired via the Progesterone for the Treatment of Traumatic Brain Injury phase III clinical trial (ProTECT_III) which studied patients with moderate to severe TBI4. CT data were annotated by a central radiologist and included patients with positive and negative scans. Additionally, the largest lesion on each positive scan was manually segmented. We reserved 80% of the data for training the SVM and used the remaining 20% for testing. Preliminary results are promising with 92.55% prediction accuracy (sensitivity = 91.15%, specificity = 93.45%), indicating the potential usefulness of this technique in clinical scenarios.

  11. Chronic traumatic encephalopathy: The unknown disease.

    PubMed

    Martínez-Pérez, R; Paredes, I; Munarriz, P M; Paredes, B; Alén, J F

    2017-04-01

    Chronic traumatic encephalopathy is a neurodegenerative disease produced by accumulated minor traumatic brain injuries; no definitive premortem diagnosis and no treatments are available for chronic traumatic encephalopathy. Risk factors associated with chronic traumatic encephalopathy include playing contact sports, presence of the apolipoprotein E4, and old age. Although it shares certain histopathological findings with Alzheimer disease, chronic traumatic encephalopathy has a more specific presentation (hyperphosphorylated tau protein deposited as neurofibrillary tangles, associated with neuropil threads and sometimes with beta-amyloid plaques). Its clinical presentation is insidious; patients show mild cognitive and emotional symptoms before progressing to parkinsonian motor signs and finally dementia. Results from new experimental diagnostic tools are promising, but these tools are not yet available. The mainstay of managing this disease is prevention and early detection of its first symptoms. Copyright © 2014 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis.

    PubMed

    Vespa, Paul M; Miller, Chad; McArthur, David; Eliseo, Mathew; Etchepare, Maria; Hirt, Daniel; Glenn, Thomas C; Martin, Neil; Hovda, David

    2007-12-01

    To determine whether nonconvulsive electrographic post-traumatic seizures result in increases in intracranial pressure and microdialysis lactate/pyruvate ratio. Prospective monitoring with retrospective data analysis. Single center academic neurologic intensive care unit. Twenty moderate to severe traumatic brain injury patients (Glasgow Coma Score 3-13). Continuous electroencephalography and cerebral microdialysis were performed for 7 days after injury. Ten patients had seizures and were compared with a matched cohort of traumatic brain injury patients without seizures. The seizures were repetitive and constituted status epilepticus in seven of ten patients. Using a within-subject design, post-traumatic seizures resulted in episodic increases in intracranial pressure (22.4 +/- 7 vs. 12.8 +/- 4.3 mm Hg; p < .001) and an episodic increase in lactate/pyruvate ratio (49.4 +/- 16 vs. 23.8 +/- 7.6; p < .001) in the seizure group. Using a between-subjects comparison, the seizure group demonstrated a higher mean intracranial pressure (17.6 +/- 6.5 vs. 12.2 +/- 4.2 mm Hg; p < .001), a higher mean lactate/pyruvate ratio (38.6 +/- 18 vs. 27 +/- 9; p < .001) compared with nonseizure patients. The intracranial pressure and lactate/pyruvate ratio remained elevated beyond postinjury hour 100 in the seizure group but not the nonseizure group (p < .02). Post-traumatic seizures result in episodic as well as long-lasting increases in intracranial pressure and microdialysis lactate/pyruvate ratio. These data suggest that post-traumatic seizures represent a therapeutic target for patients with traumatic brain injury.

  13. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  14. [Personality Change due to Brain Trauma Caused by Traffic Accidents and Its Assessment of Psychiatric Impairment].

    PubMed

    Fan, Hui-yu; Zhang, Qin-ting; Tang, Tao; Cai, Wei-xiong

    2016-04-01

    To explore the main performance of personality change in people with mild psychiatric impairments which due to the brain trauma caused by traffic accidents and its value in assessment of psychiatric impairment. The condition of personality change of patients with traumatic brain injury caused by traffic accident was evaluated by the Scale of Personality Change Post-traumatic Brain Injury (SPCPTBI). Furthermore, the correlation between the personality change and the degrees of traumatic brain injury and psychiatric impairment were explored. Results In 271 samples, 239 (88.2%) with personality changes. Among these 239 samples, 178 (65.7%), 46 (17.0%), 15 (5.5%) with mild, moderate and severe personality changes, respectively. The ratio based on the extent of personality changes to the degree of brain trauma was not significant (P > 0.05), but the total score difference between the groups was significant (P < 0.05). There was no statistical significance between the medium and high severity brain trauma groups. The higher degree of personality changes, the higher rank of mental disabilities. The total score difference of the scale of personality change among the different mild psychiatric impairment group was significant (P<0.05). The difference between other psychiatric impairment levels had statistical significance (P < 0.05) except level 7 and 8. The occurrence of personality change due to traumatic brain injury caused by traffic accident was high. Correlations exist between the personality change and the degree of psychiatric impairment. Personality change due to brain trauma caused by traffic accident can be assessed effectively by means of SPCPTBI, and the correlation between the total score and the extent of traumatic brain injury can be found.

  15. Acute and long-term pituitary insufficiency in traumatic brain injury: a prospective single-centre study.

    PubMed

    Klose, M; Juul, A; Struck, J; Morgenthaler, N G; Kosteljanetz, M; Feldt-Rasmussen, U

    2007-10-01

    To assess the prevalence of hypopituitarism following traumatic brain injury (TBI), describe the time-course and assess the association with trauma-related parameters and early post-traumatic hormone alterations. A 12-month prospective study. Forty-six consecutive patients with TBI (mild: N = 22; moderate: N = 9; severe: N = 15). Baseline and stimulated hormone concentrations were assessed in the early phase (0-12 days post-traumatically), and at 3, 6 and 12 months postinjury. Pituitary tests included the Synacthen-test (acute +6 months) and the insulin tolerance test (ITT) or the GHRH + arginine test if the ITT was contraindicated (3 + 12 months). Insufficiencies were confirmed by retesting. Early post-traumatic hormone alterations mimicking central hypogonadism or hypothyroidism were present in 35 of the 46 (76%) patients. Three months post-traumatically, 6 of the 46 patients failed anterior pituitary testing. At 12 months, one patient had recovered, whereas none developed new insufficiencies. All insufficient patients had GH deficiency (5 out of 46), followed by ACTH- (3 out of 46), TSH- (1 out of 46), LH/FSH- (1 out of 46) and ADH deficiency (1 out of 46). Hypopituitary patients had more frequently been exposed to severe TBI (4 out of 15) than to mild or moderate TBI (1 out of 31) (P = 0.02). Early endocrine alterations including lowered thyroid and gonadal hormones, and increased total cortisol, free cortisol and copeptin were positively associated to TBI severity (P < 0.05), but not to long-term development of hypopituitarism (P > 0.1), although it was indicative in some. Long-term hypopituitarism was frequent only in severe TBI. During the 3-12 months follow-up, recovery but no new insufficiencies were recorded, indicating manifest hypothalamic or pituitary damage already a few months postinjury. Very early hormone alterations were not associated to long-term post-traumatic hypopituitarism. Clinicians should, nonetheless, be aware of potential ACTH deficiency in the early post-traumatic period.

  16. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology

    PubMed Central

    Ghajari, Mazdak; Hellyer, Peter J; Sharp, David J

    2017-01-01

    Abstract Traumatic brain injury can lead to the neurodegenerative disease chronic traumatic encephalopathy. This condition has a clear neuropathological definition but the relationship between the initial head impact and the pattern of progressive brain pathology is poorly understood. We test the hypothesis that mechanical strain and strain rate are greatest in sulci, where neuropathology is prominently seen in chronic traumatic encephalopathy, and whether human neuroimaging observations converge with computational predictions. Three distinct types of injury were simulated. Chronic traumatic encephalopathy can occur after sporting injuries, so we studied a helmet-to-helmet impact in an American football game. In addition, we investigated an occipital head impact due to a fall from ground level and a helmeted head impact in a road traffic accident involving a motorcycle and a car. A high fidelity 3D computational model of brain injury biomechanics was developed and the contours of strain and strain rate at the grey matter–white matter boundary were mapped. Diffusion tensor imaging abnormalities in a cohort of 97 traumatic brain injury patients were also mapped at the grey matter–white matter boundary. Fifty-one healthy subjects served as controls. The computational models predicted large strain most prominent at the depths of sulci. The volume fraction of sulcal regions exceeding brain injury thresholds were significantly larger than that of gyral regions. Strain and strain rates were highest for the road traffic accident and sporting injury. Strain was greater in the sulci for all injury types, but strain rate was greater only in the road traffic and sporting injuries. Diffusion tensor imaging showed converging imaging abnormalities within sulcal regions with a significant decrease in fractional anisotropy in the patient group compared to controls within the sulci. Our results show that brain tissue deformation induced by head impact loading is greatest in sulcal locations, where pathology in cases of chronic traumatic encephalopathy is observed. In addition, the nature of initial head loading can have a significant influence on the magnitude and pattern of injury. Clarifying this relationship is key to understanding the long-term effects of head impacts and improving protective strategies, such as helmet design. PMID:28043957

  17. TBI Symptoms, Diagnosis, Treatment, Prevention

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury TBI Symptoms, Diagnosis, Treatment, Prevention Past Issues / Fall ... very lucky in my ongoing recovery from the traumatic brain injury I suffered in Iraq." —Bob Woodruff Treatment Immediate ...

  18. Going Local to Find Help

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury Going Local to Find Help Past Issues / Fall ... all the time. From the MedlinePlus page on Traumatic Brain Injury, you can use Go Local to find specific ...

  19. Workplace discrimination and traumatic brain injury: the national EEOC ADA research project.

    PubMed

    McMahon, Brian T; West, Steven L; Shaw, Linda R; Waid-Ebbs, Kay; Belongia, Lisa

    2005-01-01

    Using the Integrated Mission System of the Equal Employment Opportunity Commission, the employment discrimination experience of Americans with traumatic brain injury is documented. Researchers compare and contrast the key dimensions of workplace discrimination involving Americans with traumatic brain injury and persons with other physical, sensory, and neurological impairments. Specifically, the researchers examine demographic characteristics of the charging parties; the industry designation, location, and size of employers against whom complaints are filed; the nature of discrimination (i.e., type of adverse action) alleged to occur; and the outcome or resolution of the investigations. Findings indicate that persons with traumatic brain injury were more likely to encounter discrimination after obtaining employment as opposed to during the hiring process. They were also more likely to encounter discrimination when they were younger or Caucasian or when employed in the Midwestern or Western United States. Implications are addressed.

  20. [Stress adaptive effects after traumatic brain injury].

    PubMed

    Teryaeva, N B; Moshkin, A V

    Neuroendocrine dysfunction, in particular impaired synthesis of anterior pituitary hormones, is a common complication of traumatic brain injury. Deficiency of tropic pituitary hormones entails a hypofunction of the related peripheral endocrine glands and can be accompanied by persistent endocrine and metabolic disorders. In particular, the hypophyseal mechanisms are the key ones in implementation of most stress effects. Adequate implementation of these mechanisms largely determines a favorable outcome in the acute stage of disease. Traumatic brain injury (as well as any significant injury) initiates a stress response that can not develop in full in the case of pituitary gland failure. It is logical to suppose that the course of the acute phase of stress in the presence of hypopituitarism is different to a certain extent from the typical course, which inevitably affects certain adaptation elements. In this review, we analyzed the adaptive effects of stress after traumatic brain injury.

  1. [Methods of data selection from the French medical information system program for trauma patient's analysis: Burns and traumatic brain injuries].

    PubMed

    Paget, L-M; Dupont, A; Pédrono, G; Lasbeur, L; Thélot, B

    2017-10-01

    Data from the French medical information system program in medicine, surgery, obstetrics and dentistry can be adapted in some cases and under certain conditions, to account for hospitalizations for injuries. Two areas have been explored: burn and traumatic brain injury victims. An algorithm selecting data from the Medical information system program was established and implemented for several years for the study of burn victims. The methods of selection of stays for traumatic brain injuries, which are the subject of a more recent exploration, are described. Production of results in routine on the hospitalization for burns. Expected production of results on the hospitalization for traumatic brain injuries. In both cases, the knowledge obtained from these utilizations of the Medical information system program contributes to epidemiological surveillance and prevention and are useful for health care organization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Perspectives on Creating Clinically Relevant Blast Models for Mild Traumatic Brain Injury and Post Traumatic Stress Disorder Symptoms

    PubMed Central

    Brenner, Lisa A.; Bahraini, Nazanin; Hernández, Theresa D.

    2012-01-01

    Military personnel are returning from Iraq and Afghanistan and reporting non-specific physical (somatic), behavioral, psychological, and cognitive symptoms. Many of these symptoms are frequently associated with mild traumatic brain injury (mTBI) and/or post traumatic stress disorder (PTSD). Despite significant attention and advances in assessment and intervention for these two conditions, challenges persist. To address this, clinically relevant blast models are essential in the full characterization of this type of injury, as well as in the testing and identification of potential treatment strategies. In this publication, existing diagnostic challenges and current treatment practices for mTBI and/or PTSD will be summarized, along with suggestions regarding how what has been learned from existing models of PTSD and traditional mechanism (e.g., non-blast) traumatic brain injury can be used to facilitate the development of clinically relevant blast models. PMID:22408635

  3. Nutritional status, assessment, requirements and adequacy of traumatic brain injury patients.

    PubMed

    Daradkeh, Ghazi; Essa, Musthafa Mohamed; Al-Adawi, S Samir; Subash, Selvaraju; Mahmood, Lubna; Kumar, Parvathy R

    2014-10-01

    Traumatic Brain Injury (TBI) has been considered as a serious public health problem. Each year, traumatic brain injuries are contributing to a substantial number of cases of permanent disability and deaths and it can be classified according to the severity into penetrating and closed head injury. Symptoms, beside to be unconscious can be defined as vomiting, nausea, headache, dizziness, lack of motor coordination, difficulty in balancing, blurred vision and lightheadedness, bad taste in the mouth, ringing in the ears, fatigue and lethargy as well as changes in sleep patterns. The brain is known to be the functional regulator for all the metabolic activities inside the body and TBI patients mostly have a complex metabolic alterations including aberrant cellular metabolism, abnormal metabolic processes, changes in hormones functions and inflammatory cascade. The TBI patient's status needed to be assessed medically and nutritionally since the medical status of the patients can affect the nutrition part. Data from the four assessment tools are needed to be correctly used and interpreted in order to make a proper nutritional diagnosis, clinical assessment, biochemistry as well as anthropometric measurements. Regardless the methods used for assessing TBI patients, having adequate intake and medical care can lead to a reduction in hospital costs, numbers of day hospitalized, numbers of hours of mechanical ventilation and in the overall infection rates.

  4. The validity of the Brain Injury Cognitive Screen (BICS) as a neuropsychological screening assessment for traumatic and non-traumatic brain injury.

    PubMed

    Vaughan, Frances L; Neal, Jo Anne; Mulla, Farzana Nizam; Edwards, Barbara; Coetzer, Rudi

    2017-04-01

    The Brain Injury Cognitive Screen (BICS) was developed as an in-service cognitive assessment battery for acquired brain injury patients entering community rehabilitation. The BICS focuses on domains that are particularly compromised following TBI, and provides a broader and more detailed assessment of executive function, attention and information processing than comparable screening assessments. The BICS also includes brief assessments of perception, naming, and construction, which were predicted to be more sensitive to impairments following non-traumatic brain injury. The studies reported here examine preliminary evidence for its validity in post-acute rehabilitation. In Study 1, TBI patients completed the BICS and were compared with matched controls. Patients with focal lesions and matched controls were compared in Study 2. Study 3 examined demographic effects in a sample of normative data. TBI and focal lesion patients obtained significantly lower composite memory, executive function and attention and information processing BICS scores than healthy controls. Injury severity effects were also obtained. Logistic regression analyses indicated that each group of BICS memory, executive function and attention measures reliably differentiated TBI and focal lesion participants from controls. Design Recall, Prospective Memory, Verbal Fluency, and Visual Search test scores showed significant independent regression effects. Other subtest measures showed evidence of sensitivity to brain injury. The study provides preliminary evidence of the BICS' sensitivity to cognitive impairment caused by acquired brain injury, and its potential clinical utility as a cognitive screen. Further validation based on a revised version of the BICS and more normative data are required.

  5. MHC Class I Immune Proteins Are Critical for Hippocampus-Dependent Memory and Gate NMDAR-Dependent Hippocampal Long-Term Depression

    ERIC Educational Resources Information Center

    Nelson, P. Austin; Sage, Jennifer R.; Wood, Suzanne C.; Davenport, Christopher M.; Anagnostaras, Stephan G.; Boulanger, Lisa M.

    2013-01-01

    Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that…

  6. Abusive Head Trauma and Mortality-An Analysis From an International Comparative Effectiveness Study of Children With Severe Traumatic Brain Injury.

    PubMed

    Miller Ferguson, Nikki; Sarnaik, Ajit; Miles, Darryl; Shafi, Nadeem; Peters, Mark J; Truemper, Edward; Vavilala, Monica S; Bell, Michael J; Wisniewski, Stephen R; Luther, James F; Hartman, Adam L; Kochanek, Patrick M

    2017-08-01

    Small series have suggested that outcomes after abusive head trauma are less favorable than after other injury mechanisms. We sought to determine the impact of abusive head trauma on mortality and identify factors that differentiate children with abusive head trauma from those with traumatic brain injury from other mechanisms. First 200 subjects from the Approaches and Decisions in Acute Pediatric Traumatic Brain Injury Trial-a comparative effectiveness study using an observational, cohort study design. PICUs in tertiary children's hospitals in United States and abroad. Consecutive children (age < 18 yr) with severe traumatic brain injury (Glasgow Coma Scale ≤ 8; intracranial pressure monitoring). None. Demographics, injury-related scores, prehospital, and resuscitation events were analyzed. Children were dichotomized based on likelihood of abusive head trauma. A total of 190 children were included (n = 35 with abusive head trauma). Abusive head trauma subjects were younger (1.87 ± 0.32 vs 9.23 ± 0.39 yr; p < 0.001) and a greater proportion were female (54.3% vs 34.8%; p = 0.032). Abusive head trauma were more likely to 1) be transported from home (60.0% vs 33.5%; p < 0.001), 2) have apnea (34.3% vs 12.3%; p = 0.002), and 3) have seizures (28.6% vs 7.7%; p < 0.001) during prehospital care. Abusive head trauma had a higher prevalence of seizures during resuscitation (31.4 vs 9.7%; p = 0.002). After adjusting for covariates, there was no difference in mortality (abusive head trauma, 25.7% vs nonabusive head trauma, 18.7%; hazard ratio, 1.758; p = 0.60). A similar proportion died due to refractory intracranial hypertension in each group (abusive head trauma, 66.7% vs nonabusive head trauma, 69.0%). In this large, multicenter series, children with abusive head trauma had differences in prehospital and in-hospital secondary injuries which could have therapeutic implications. Unlike other traumatic brain injury populations in children, female predominance was seen in abusive head trauma in our cohort. Similar mortality rates and refractory intracranial pressure deaths suggest that children with severe abusive head trauma may benefit from therapies including invasive monitoring and adherence to evidence-based guidelines.

  7. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    PubMed

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.

  8. Striatonigral Degeneration

    MedlinePlus

    ... NINDS Focus on Disorders Alzheimer's & Related Dementias Epilepsy Parkinson's Disease Spinal Cord Injury Traumatic Brain Injury Focus On ... the disorder resemble some of those seen in Parkinson's disease, including rigidity, instability, impaired speech, and slow movements. × ...

  9. The Changed Brain: Teacher Awareness of Traumatic Brain Injury and Instruction Methods to Enhance Cognitive Processing in Mathematics

    ERIC Educational Resources Information Center

    Stahl, Judith M.

    2008-01-01

    Traumatic brain injury (TBI) has come to subjugate and exert its authority on education as some survivors re-enter the academic arena. A key component of a TBI student's academic success is dependent upon a teacher's awareness of the TBI learner and a willingness to modify curriculum to promote the uniqueness of the changed brain and therefore,…

  10. Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury

    PubMed Central

    2013-01-01

    Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353

  11. Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist☆

    PubMed Central

    Sewell, Diane L.; Nacewicz, Brendon; Liu, Frances; Macvilay, Sinarack; Erdei, Anna; Lambris, John D.; Sandor, Matyas; Fabry, Zsuzsa

    2016-01-01

    The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3−/− or C5−/− mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3−/− mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5−/− mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury. PMID:15342196

  12. Traumatic Brain Injury among US Active Duty Military Personnel and Negative Drinking-Related Consequences

    PubMed Central

    Adams, Rachel Sayko; Larson, Mary Jo; Corrigan, John D.; Ritter, Grant A.; Williams, Thomas V.

    2013-01-01

    This study used the 2008 Department of Defense Survey of Health Related Behaviors among Active Duty Military Personnel to determine whether traumatic brain injury (TBI) is associated with past year drinking-related consequences. The study sample included currently-drinking personnel who had a combat deployment in the past year and were home for ≥6 months (N = 3,350). Negative binomial regression models were used to assess the incidence rate ratios of consequences, by TBI-level. Experiencing a TBI with a loss of consciousness >20 minutes was significantly associated with consequences independent of demographics, combat exposure, posttraumatic stress disorder, and binge drinking. The study’s limitations are noted. PMID:23869456

  13. Chronic morbidities after traumatic brain injury: an update for the advanced practice nurse.

    PubMed

    Bay, Esther H; Chartier, Kattlynn S

    2014-06-01

    Emerging data suggest that traumatic brain injury (TBI) is a disease process with considerable long-range morbidities requiring lifelong monitoring and treatment. Multiple chronic morbidities develop across the life span after TBI, including mental health disorders, headaches, seizures, and neuroendocrine imbalances as well as chronic diseases. Still, there has been limited focus on effective guides and strategies for helping persons with TBI meet their chronic health needs as they live with the consequences of TBI. The advanced practice nurse is well positioned to participate collaboratively in practices that promote health screening and chronic disease management after TBI to ameliorate distress and enhance quality of life as persons with TBI live with lifelong consequences.

  14. Traumatic Brain Injury: A Guide for Caregivers of Service Members and Veterans. Module 1: Introduction to Traumatic Brain Injury

    DTIC Science & Technology

    2010-04-01

    bruising. An MRI scan provides detailed images of the brain using magnetic energy rather than x-ray technology . Intracranial means within the...member/veteran is unable to swallow for many days to weeks, a per cutaneous gastronomy tube (PEG tube) will be placed directly into his or her

  15. Structural Dissociation of Attentional Control and Memory in Adults with and without Mild Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Niogi, Sumit N.; Mukherjee, Pratik; Ghajar, Jamshid; Johnson, Carl E.; Kolster, Rachel; Lee, Hana; Suh, Minah; Zimmerman, Robert D.; Manley, Geoffrey T.; McCandliss, Bruce D.

    2008-01-01

    Memory and attentional control impairments are the two most common forms of dysfunction following mild traumatic brain injury (TBI) and lead to significant morbidity in patients, yet these functions are thought to be supported by different brain networks. This 3 T magnetic resonance diffusion tensor imaging (DTI) study investigates whether…

  16. Measurement of Physical Performance and Objective Fatigability in People with Mild-to-Moderate Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Merritta, Catherine; Cherian, Binu; Macaden, Ashish S.; John, Judy Ann

    2010-01-01

    The aims of this study were to objectively measure the physical performance and physical endurance of patients with traumatic brain injury with minimization of cognitive and psychological fatigue, and to compare the physical performance of brain injured patients with that of healthy controls. This was a nonrandomized partially blinded controlled…

  17. Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury

    DTIC Science & Technology

    2013-11-01

    COVERED 4 October 201 - 3 October 201 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT...injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids Table of Contents Introduction...promote neuroinflammation and potentially lead to neurodegeneration. We have previously demonstrated that treatments to the endocannabinoid system 2

  18. Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Huisman, Thierry A. G. M.

    2009-01-01

    Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

  19. Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into their Communities: Understanding the Scope and Timeline of Post-Deployment Driving Problems

    DTIC Science & Technology

    2015-10-01

    behaviors and anxieties among post- deployed SMs with and without traumatic brain injury (TBI), post-traumatic stress syndrome (PTSD) or TBI with...post- traumatic stress syndrome (TBI/PTSD). The goal was to compare SMs who were post-deployment to SMs who had not served in OEF/OIF/OND, however all...in situations when SM would typically drive (p=.02) with TBI/PTSD reporting this more common than TBI and 0Dx. • Move to middle of road or onto

  20. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  1. 77 FR 30015 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... announced below concerns Field Triage of Traumatic Brain Injury (TBI) in Older Adults Taking Anticoagulants... received in response to ``Field Triage of Traumatic Brain Injury (TBI) in Older Adults Taking...

  2. Traumatic spinal cord injuries in Ile-Ife, Nigeria, and its environs.

    PubMed

    Olasode, Babatunde J; Komolafe, I E; Komolafe, M; Olasode, Olayinka A

    2006-07-01

    In Ile-Ife, Nigeria, traumatic brain injuries are largely due to traffic accidents caused mainly by the bad maintenance of the roads and unsafe driving. Young men in the productive stage of their lives are those most affected. The resultant disabilities include quadriplegia (in more than half the patients) and paraplegia. The cost of treating and providing adequate facilities for these patients imposes a heavy economic burden upon developing countries.

  3. Factors associated with remission of post-traumatic brain injury fatigue in the years following traumatic brain injury (TBI): a TBI model systems module study.

    PubMed

    Lequerica, Anthony H; Botticello, Amanda L; Lengenfelder, Jean; Chiaravalloti, Nancy; Bushnik, Tamara; Dijkers, Marcel P; Hammond, Flora M; Kolakowsky-Hayner, Stephanie A; Rosenthal, Joseph

    2017-10-01

    Post-traumatic brain injury fatigue (PTBIF) is a major problem in the years after traumatic brain injury (TBI), yet little is known about its persistence and resolution. The objective of the study was to identify factors related to PTBIF remission and resolution. TBI Model System registrants at five centres participated in interviews at either one and two years post-injury (Y1-2 Cohort), or two and five years post-injury (Y2-5 Cohort). Characteristics of participants with PTBIF remission were compared to those with PTBIF persistence. Variables studied included the presence of and changes in disability, sleep dysfunction, mood, and community participation. The Functional Independence Measure did not differ significantly between groups or over time. In the Y1-2 Cohort the Fatigue Resolved group scored significantly better on the Disability Rating Scale and Pittsburgh Sleep Quality Index. In the Y2-5 Cohort the Fatigue Resolved group scored significantly higher on a measure of community participation. It was concluded that fewer than half of the sample in each cohort experienced a remission of PTBIF between time points. Persistence of PTBIF 1-2 years post-injury is associated with disability, sleep disturbance, and depression while persistence of fatigue beyond 2 years post-injury appears to be related to participation level, underscoring the potential impact of effective surveillance, assessment, and treatment of this condition in optimising life after TBI. Differences in fatigue progression may point to the presence of different types of PTBIF.

  4. Epidemiology of Mild Traumatic Brain Injury with Intracranial Hemorrhage: Focusing Predictive Models for Neurosurgical Intervention.

    PubMed

    Orlando, Alessandro; Levy, A Stewart; Carrick, Matthew M; Tanner, Allen; Mains, Charles W; Bar-Or, David

    2017-11-01

    To outline differences in neurosurgical intervention (NI) rates between intracranial hemorrhage (ICH) types in mild traumatic brain injuries and help identify which ICH types are most likely to benefit from creation of predictive models for NI. A multicenter retrospective study of adult patients spanning 3 years at 4 U.S. trauma centers was performed. Patients were included if they presented with mild traumatic brain injury (Glasgow Coma Scale score 13-15) with head CT scan positive for ICH. Patients were excluded for skull fractures, "unspecified hemorrhage," or coagulopathy. Primary outcome was NI. Stepwise multivariable logistic regression models were built to analyze the independent association between ICH variables and outcome measures. The study comprised 1876 patients. NI rate was 6.7%. There was a significant difference in rate of NI by ICH type. Subdural hematomas had the highest rate of NI (15.5%) and accounted for 78% of all NIs. Isolated subarachnoid hemorrhages had the lowest, nonzero, NI rate (0.19%). Logistic regression models identified ICH type as the most influential independent variable when examining NI. A model predicting NI for isolated subarachnoid hemorrhages would require 26,928 patients, but a model predicting NI for isolated subdural hematomas would require only 328 patients. This study highlighted disparate NI rates among ICH types in patients with mild traumatic brain injury and identified mild, isolated subdural hematomas as most appropriate for construction of predictive NI models. Increased health care efficiency will be driven by accurate understanding of risk, which can come only from accurate predictive models. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Young adults with mild traumatic brain injury--the influence of alcohol consumption--a retrospective analysis.

    PubMed

    Leute, P J F; Moos, R N M; Osterhoff, G; Volbracht, J; Simmen, H-P; Ciritsis, B D

    2015-06-01

    Alcohol abuse has been associated with aggressive behavior and interpersonal violence. Aim of the study was to investigate the role of alcohol consumption in a population of young adults with mild traumatic brain injuries and the attendant epidemiological circumstances of the trauma. All cases of mild traumatic brain injury among young adults under 30 with an injury severity score <16 who were treated as inpatients between 2009 and 2012 at our trauma center were analyzed with regard to the influence of alcohol consumption by multiple regression analysis. 793 patients, 560 men, and 233 women were included. The age median was 23 (range 14-30). Alcohol consumption was present in 302 cases. Most common trauma mechanism was interpersonal violence followed by simple falls on even ground. Alcohol consumption was present more often in men, unemployed men, patients who had interpersonal violence as a trauma mechanism, and in patients who were admitted to the hospital at weekends or during night time. It also increased the odds ratio to suffer concomitant injuries, open wounds, or fractures independently from the trauma mechanism. Length of hospital stay or incapacity to work did not increase with alcohol consumption. Among young adults men and unemployed men have a higher statistical probability to have consumed alcohol prior to suffering mild traumatic brain injury. The most common trauma mechanism in this age group is interpersonal violence and occurs more often in patients who have consumed alcohol. Alcohol consumption and interpersonal violence increase the odds ratio for concomitant injuries, open wounds, and fractures independently from another.

  6. The AIS-2005 Revision in Severe Traumatic Brain Injury: Mission Accomplished or Problems for Future Research?

    PubMed Central

    Carroll, Christopher P.; Cochran, Joseph A.; Price, Janet P.; Guse, Clare E.; Wang, Marjorie C.

    2010-01-01

    The Abbreviated Injury Scale (AIS) is commonly used to score injury severity and describe types of injuries. In 2005, the AIS-Head section was revised to capture more detailed information about head injuries and to better reflect their clinical severity, but the impact of these changes is largely unknown. The purpose of this study was to compare AIS-1998 and AIS-2005 coding of traumatic brain injuries (TBI) using medical records at a single Level I trauma center. We included patients with severe TBI (Glasgow Coma Scale 3–8) after blunt injury, excluding those who were missing medical records. Detailed descriptions of injuries were collected, then manually coded into AIS-1998 and AIS-2005 by the same Certified AIS Specialist. Compared to AIS-1998, AIS-2005 coded the same injuries with lower severity scores [p<0.01] and with decreased mean and maximum AIS-Head scores [p<0.01]. Of the types of traumatic brain injuries, most of the changes occurred among cerebellar and cerebral injuries. Traumatic hypoxic brain injury secondary to systemic dysfunction was captured by AIS-2005 but not by AIS-1998. However, AIS-2005 captured fewer loss of consciousness cases due to changes in criteria for coding concussive injury. In conclusion, changes from AIS-1998 to AIS-2005 result in significant differences in severity scores and types of injuries captured. This may complicate future TBI research by precluding direct comparison to datasets using AIS-1998. TBIs should be coded into the same AIS-version for comparison or evaluation of trends, and specify which AIS-version is used. PMID:21050606

  7. The AIS-2005 Revision in Severe Traumatic Brain Injury: Mission Accomplished or Problems for Future Research?

    PubMed

    Carroll, Christopher P; Cochran, Joseph A; Price, Janet P; Guse, Clare E; Wang, Marjorie C

    2010-01-01

    The Abbreviated Injury Scale (AIS) is commonly used to score injury severity and describe types of injuries. In 2005, the AIS-Head section was revised to capture more detailed information about head injuries and to better reflect their clinical severity, but the impact of these changes is largely unknown. The purpose of this study was to compare AIS-1998 and AIS-2005 coding of traumatic brain injuries (TBI) using medical records at a single Level I trauma center. We included patients with severe TBI (Glasgow Coma Scale 3-8) after blunt injury, excluding those who were missing medical records. Detailed descriptions of injuries were collected, then manually coded into AIS-1998 and AIS-2005 by the same Certified AIS Specialist. Compared to AIS-1998, AIS-2005 coded the same injuries with lower severity scores [p<0.01] and with decreased mean and maximum AIS-Head scores [p<0.01]. Of the types of traumatic brain injuries, most of the changes occurred among cerebellar and cerebral injuries. Traumatic hypoxic brain injury secondary to systemic dysfunction was captured by AIS-2005 but not by AIS-1998. However, AIS-2005 captured fewer loss of consciousness cases due to changes in criteria for coding concussive injury. In conclusion, changes from AIS-1998 to AIS-2005 result in significant differences in severity scores and types of injuries captured. This may complicate future TBI research by precluding direct comparison to datasets using AIS-1998. TBIs should be coded into the same AIS-version for comparison or evaluation of trends, and specify which AIS-version is used.

  8. Measurement of intracranial pressure and short-term outcomes of patients with traumatic brain injury: a propensity-matched analysis

    PubMed Central

    Ferreira, Cesar Biselli; Bassi, Estevão; Lucena, Lucas; Carreta, Hernandez; Miranda, Leandro Costa; Tierno, Paulo Fernando Guimarães Mazorcchi; Amorim, Robson Luis; Zampieri, Fernando Godinho; Malbouisson, Luis Marcelo Sá

    2015-01-01

    Objective To assess the impact of intracranial pressure monitoring on the short-term outcomes of traumatic brain injury patients. Methods Retrospective observational study including 299 consecutive patients admitted due to traumatic brain injury from January 2011 through July 2012 at a Level 1 trauma center in São Paulo, Brazil. Patients were categorized in two groups according to the measurement of intracranial pressure (measured intracranial pressure and non-measured intracranial pressure groups). We applied a propensity-matched analysis to adjust for possible confounders (variables contained in the Crash Score prognostic algorithm). Results Global mortality at 14 days (16%) was equal to that observed in high-income countries in the CRASH Study and was better than expected based on the CRASH calculator score (20.6%), with a standardized mortality ratio of 0.77. A total of 28 patients received intracranial pressure monitoring (measured intracranial pressure group), of whom 26 were paired in a 1:1 fashion with patients from the non-measured intracranial pressure group. There was no improvement in the measured intracranial pressure group compared to the non-measured intracranial pressure group regarding hospital mortality, 14-day mortality, or combined hospital and chronic care facility mortality. Survival up to 14 days was also similar between groups. Conclusion Patients receiving intracranial pressure monitoring tend to have more severe traumatic brain injuries. However, after adjusting for multiple confounders using propensity scoring, no benefits in terms of survival were observed among intracranial pressure-monitored patients and those managed with a systematic clinical protocol. PMID:26761468

  9. Measurement of intracranial pressure and short-term outcomes of patients with traumatic brain injury: a propensity-matched analysis.

    PubMed

    Ferreira, Cesar Biselli; Bassi, Estevão; Lucena, Lucas; Carreta, Hernandez; Miranda, Leandro Costa; Tierno, Paulo Fernando Guimarães Mazorcchi; Amorim, Robson Luis; Zampieri, Fernando Godinho; Malbouisson, Luis Marcelo Sá

    2015-01-01

    To assess the impact of intracranial pressure monitoring on the short-term outcomes of traumatic brain injury patients. Retrospective observational study including 299 consecutive patients admitted due to traumatic brain injury from January 2011 through July 2012 at a Level 1 trauma center in São Paulo, Brazil. Patients were categorized in two groups according to the measurement of intracranial pressure (measured intracranial pressure and non-measured intracranial pressure groups). We applied a propensity-matched analysis to adjust for possible confounders (variables contained in the Crash Score prognostic algorithm). Global mortality at 14 days (16%) was equal to that observed in high-income countries in the CRASH Study and was better than expected based on the CRASH calculator score (20.6%), with a standardized mortality ratio of 0.77. A total of 28 patients received intracranial pressure monitoring (measured intracranial pressure group), of whom 26 were paired in a 1:1 fashion with patients from the non-measured intracranial pressure group. There was no improvement in the measured intracranial pressure group compared to the non-measured intracranial pressure group regarding hospital mortality, 14-day mortality, or combined hospital and chronic care facility mortality. Survival up to 14 days was also similar between groups. Patients receiving intracranial pressure monitoring tend to have more severe traumatic brain injuries. However, after adjusting for multiple confounders using propensity scoring, no benefits in terms of survival were observed among intracranial pressure-monitored patients and those managed with a systematic clinical protocol.

  10. The Traumatic Brain Injury Endpoints Development (TED) Initiative: Progress on a Public-Private Regulatory Collaboration to Accelerate Diagnosis and Treatment of Traumatic Brain Injury.

    PubMed

    Manley, Geoffrey T; MacDonald, Christine L; Markowitz, Amy; Stephenson, Diane; Robbins, Ann; Gardner, Raquel C; Winkler, Ethan A; Bodien, Yelena; Taylor, Sabrina; Yue, John K; Kannan, Lakshmi; Kumar, Allison; McCrea, Michael; Wang, Kevin K W

    2017-03-31

    The Traumatic Brain Injury Endpoints Development (TED) Initiative is a 5-year, Department of Defense (DoD) funded project that is working toward the ultimate goal of developing better designed clinical trials, leading to more precise diagnosis, and effective treatments for traumatic brain injury (TBI). TED is comprised of leading academic clinician-scientists, along with innovative industry leaders in biotechnology and imaging technology, patient advocacy organizations, and philanthropists, working collaboratively with regulatory authorities, specifically the US Food and Drug Administration (FDA). The goals of the TED Initiative are to gain consensus and validation of TBI clinical outcome assessment measures and biomarkers for endorsement by global regulatory agencies for use in drug and device development processes. This manuscript summarizes the Initiative's Stage 1 progress over the first 18 months, including intensive engagement with a number of FDA divisions responsible for review and validation of biomarkers and clinical outcome assessments, progression into the prequalification phase of FDA's Medical Device Development Tool program for a candidate set of neuroimaging biomarkers, and receipt of FDA's Recognition of Research Importance Letter regarding TBI. Other signal achievements relate to the creation of the TED Metadataset, harmonizing study measures across eight major TBI studies, and the leadership role played by TED investigators in the conversion of the NINDS TBI Common Data Elements (CDEs) to Clinical Data Interchange Standards Consortium (CDISC) standards. This paper frames both the near-term expectations and the Initiative's long-term vision to accelerate approval of treatments for patients affected by TBI in urgent need of effective therapies.

  11. The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy.

    PubMed

    Petraglia, Anthony L; Plog, Benjamin A; Dayawansa, Samantha; Dashnaw, Matthew L; Czerniecka, Katarzyna; Walker, Corey T; Chen, Michael; Hyrien, Ollivier; Iliff, Jeffrey J; Deane, Rashid; Huang, Jason H; Nedergaard, Maiken

    2014-01-01

    An animal model of chronic traumatic encephalopathy (CTE) is essential for further understanding the pathophysiological link between repetitive head injury and the development of chronic neurodegenerative disease. We previously described a model of repetitive mild traumatic brain injury (mTBI) in mice that encapsulates the neurobehavioral spectrum characteristic of patients with CTE. We aimed to study the pathophysiological mechanisms underlying this animal model. Our previously described model allows for controlled, closed head impacts to unanesthetized mice. Briefly, 12-week-old mice were divided into three groups: Control, single, and repetitive mTBI. Repetitive mTBI mice received six concussive impacts daily, for 7 days. Mice were then subsequently sacrificed for macro- and micro-histopathologic analysis at 7 days, 1 month, and 6 months after the last TBI received. Brain sections were immunostained for glial fibrillary acidic protein (GFAP) for astrocytes, CD68 for activated microglia, and AT8 for phosphorylated tau protein. Brains from single and repetitive mTBI mice lacked macroscopic tissue damage at all time-points. Single mTBI resulted in an acute rea ctive astrocytosis at 7 days and increased phospho-tau immunoreactivity that was present acutely and at 1 month, but was not persistent at 6 months. Repetitive mTBI resulted in a more marked neuroinflammatory response, with persistent and widespread astrogliosis and microglial activation, as well as significantly elevated phospho-tau immunoreactivity to 6-months. The neuropathological findings in this new model of repetitive mTBI resemble some of the histopathological hallmarks of CTE, including increased astrogliosis, microglial activation, and hyperphosphorylated tau protein accumulation.

  12. Modeling Pediatric Brain Trauma: Piglet Model of Controlled Cortical Impact.

    PubMed

    Pareja, Jennifer C Munoz; Keeley, Kristen; Duhaime, Ann-Christine; Dodge, Carter P

    2016-01-01

    The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.

  13. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    PubMed Central

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  14. 77 FR 30015 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Initial Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... announced below concerns Characterizing the Short and Long Term Consequences of Traumatic Brain Injury (TBI... ``Characterizing the Short and Long Term Consequences of Traumatic Brain Injury (TBI) among Children in the United...

  15. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  16. Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide.

    PubMed

    Omalu, Bennet; Hammers, Jennifer L; Bailes, Julian; Hamilton, Ronald L; Kamboh, M Ilyas; Webster, Garrett; Fitzsimmons, Robert P

    2011-11-01

    Following his discovery of chronic traumatic encephalopathy (CTE) in football players in 2002, Dr. Bennet Omalu hypothesized that posttraumatic stress disorder (PTSD) in military veterans may belong to the CTE spectrum of diseases. The CTE surveillance at the Brain Injury Research Institute was therefore expanded to include deceased military veterans diagnosed with PTSD. The authors report the case of a 27-year-old United States Marine Corps (USMC) Iraqi war veteran, an amphibious assault vehicle crewman, who committed suicide by hanging after two deployments to Fallujah and Ramadi. He experienced combat and was exposed to mortar blasts and improvised explosive device blasts less than 50 m away. Following his second deployment he developed a progressive history of cognitive impairment, impaired memory, behavioral and mood disorders, and alcohol abuse. Neuropsychiatric assessment revealed a diagnosis of PTSD with hyperarousal (irritability and insomnia) and numbing. He committed suicide approximately 8 months after his honorable discharge from the USMC. His brain at autopsy appeared grossly unremarkable except for congestive brain swelling. There was no atrophy or remote focal traumatic brain injury such as contusional necrosis or hemorrhage. Histochemical and immunohistochemical brain tissue analysis revealed CTE changes comprising multifocal, neocortical, and subcortical neurofibrillary tangles and neuritic threads (ranging from none, to sparse, to frequent) with the skip phenomenon, accentuated in the depths of sulci and in the frontal cortex. The subcortical white matter showed mild rarefaction, sparse perivascular and neuropil infiltration by histiocytes, and mild fibrillary astrogliosis. Apolipoprotein E genotype was 3/4. The authors report this case as a sentinel case of CTE in an Iraqi war veteran diagnosed with PTSD to possibly stimulate new lines of thought and research in the possible pathoetiology and pathogenesis of PTSD in military veterans as part of the CTE spectrum of diseases, and as chronic sequelae and outcomes of repetitive traumatic brain injuries.

  17. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects

    PubMed Central

    Darwazeh, Rami; Yan, Yi

    2013-01-01

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. PMID:25206579

  18. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects.

    PubMed

    Darwazeh, Rami; Yan, Yi

    2013-10-05

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.

  19. Mesenchymal Stem Cells Regulate Blood Brain Barrier Integrity in Traumatic Brain Injury Through Production of the Soluble Factor TIMP3

    PubMed Central

    Menge, Tyler; Zhao, Yuhai; Zhao, Jing; Wataha, Kathryn; Geber, Michael; Zhang, Jianhu; Letourneau, Phillip; Redell, John; Shen, Li; Wang, Jing; Peng, Zhalong; Xue, Hasen; Kozar, Rosemary; Cox, Charles S.; Khakoo, Aarif Y.; Holcomb, John B.; Dash, Pramod K.; Pati, Shibani

    2013-01-01

    Mesenchymal stem cells (MCSs) have been shown to have therapeutic potential in multiple disease states associated with vascular instability including traumatic brain injury (TBI). In the present study, Tissue Inhibitor of Matrix Metalloproteinase-3 (TIMP3) is identified as the soluble factor produced by MSCs that can recapitulate the beneficial effects of MSCs on endothelial function and blood brain barrier (BBB) compromise in TBI. Attenuation of TIMP3 expression in MSCs completely abrogates the effect of MSCs on BBB permeability and stability, while intravenous administration of rTIMP3 alone can inhibit BBB permeability in TBI. Our results demonstrate that MSCs increase circulating levels of soluble TIMP3, which inhibits VEGF-A induced breakdown of endothelial AJs in vitro and in vivo. These findings elucidate a clear molecular mechanism for the effects of MSCs on the BBB in TBI, and directly demonstrate a role for TIMP3 in regulation of BBB integrity. PMID:23175708

  20. Hyperbaric oxygen for mild traumatic brain injury: Design and baseline summary.

    PubMed

    Weaver, Lindell K; Chhoeu, Austin; Lindblad, Anne S; Churchill, Susan; Wilson, Steffanie H

    2016-01-01

    The Brain Injury and Mechanisms of Action of Hyperbaric Oxygen for Persistent Post-Concussive Symptoms after Mild Traumatic Brain Injury (mTBI) (BIMA) study, sponsored by the Department of Defense, is a randomized double-blind, sham-controlled clinical trial that has a longer duration of follow-up and more comprehensive assessment battery compared to recent HBO₂ studies. BIMA randomized 71 participants from September 2012 to May 2014. Primary results are expected in 2017. Randomized military personnel received hyperbaric oxygen (HBO₂) at 1.5 atmospheres absolute (ATA) or sham chamber sessions at 1.2 ATA, air, for 60 minutes daily for 40 sessions. Outcomes include neuropsychological, neuroimaging, neurological, vestibular, autonomic function, electroencephalography, and visual systems evaluated at baseline, immediately following intervention at 13 weeks and six months with self-report symptom and quality of life questionnaires at 12 months, 24 months and 36 months. Characteristics include: median age 33 years (range 21-53); 99% male; 82% Caucasian; 49% diagnosed post-traumatic stress disorder; 28% with most recent injury three months to one year prior to enrollment; 32% blast injuries; and 73% multiple injuries. This manuscript describes the study design, outcome assessment battery, and baseline characteristics. Independent of a therapeutic role of HBO₂, results of BIMA will aid understanding of mTBI. ClinicalTrials.gov Identifier: NCT01611194; https://clinicaltrials.gov/show/NCT01611194. Copyright© Undersea and Hyperbaric Medical Society.

  1. Updates and Current Perspectives of Psychiatric Assessments after Traumatic Brain Injury: A Systematic Review

    PubMed Central

    Zaninotto, Ana Luiza; Vicentini, Jessica Elias; Fregni, Felipe; Rodrigues, Priscila Aparecida; Botelho, Cibele; de Lucia, Mara Cristina Souza; Paiva, Wellingson Silva

    2016-01-01

    Neuropsychological and psychiatric disorders represent a major concern and cause of disabilities after the trauma, contributing to worse recovery after traumatic brain injury (TBI). However, the lack of well-defined parameters to evaluate patient’s psychiatric disorders leads to a wide range of diagnoses and symptoms. The aim of this study was to perform a review of literature in order to gather data of the most common scales and inventories used to assess and diagnose depression, anxiety, and posttraumatic stress disorder (PTSD) after TBI. We conducted a literature search via MEDLINE, PubMed, and Web of Science. We included reviews, systematic reviews, and meta-analysis studies, and we used the following keywords: “traumatic brain injury OR TBI,” “depression OR depressive disorder,” “anxiety,” and “posttraumatic stress disorder OR PTSD.” From 610 titles, a total of 68 systematic reviews or meta-analysis were included in the section “Results” of this review: depression (n = 32), anxiety (n = 9), and PTSD (n = 27). Depression after TBI is a more established condition, with more homogeneous studies. Anxiety and PTSD disorders have been studied in a heterogeneous way, usually as comorbidity with other psychiatric disorders. Some scales and inventories designed for the general community may not be appropriate for patients with TBI. PMID:27378949

  2. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics.

    PubMed

    Pearn, Matthew L; Niesman, Ingrid R; Egawa, Junji; Sawada, Atsushi; Almenar-Queralt, Angels; Shah, Sameer B; Duckworth, Josh L; Head, Brian P

    2017-05-01

    Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood-brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury.

  3. [FEATURES OF PTSD IN THE PARTICIPANTS OF THE ANTI-TERRORIST OPERATION--UKRAINIAN SYNDROME].

    PubMed

    Matyash, M N; Khudenko, L I

    2014-12-01

    The article gives information about the results of research of characteristics of post traumatic stress disorder (PTSD) in the participants of the anti-terrorist operation (ATO), and refugees. Drawn attention to the fact that the demonstration took place in the study of PTSD patients, in the form of the following options: invasion (penetration); avoiding (displacement); hyperactivation. In the study took part 71 serviceman (69 men and 2 women) aged from 22 to 35 years (average age 26,2 years) that have closed traumatic brain injury , in the form of a brain concussions, contusions and suffered on PTSD (main group), studies conducted in 3-6 months after received closed traumatic brain injury. In the group of comparison included 37 patients (34 women and 3 men) aged 27-42 years (average age 32,2 years) that have had PTSD. In a group that included military personnel, in which in addition to PTSD, the clinical picture had existing consequences of craniocerebral injury observed in asthenic symptom complex--27 patients (38.1%); the anxious-phobic--in 19 patients (26.7%); hysterical--in 8 patients (11.3%); a depressive--in 17 patients (23.9%). In a group of patients and refugees from the ATO was: asthenic symptom complex--in 12 patients (32.4%), the anxious-phobic--in 11 patients (29.7%), hysterical--in 6 patients (16.2%), a depressive--in 8 patients (21.7%).

  4. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  5. Getting My Bearings, Returning to School: Issues Facing Adolescents with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Schilling, Ethan J.; Getch, Yvette Q.

    2012-01-01

    Traumatic brain injury (TBI) is characterized by a blow to the head or other penetrating head injury resulting in impairment of the brain's functioning. Despite the high incidence of TBI in adolescents, many educators still consider TBI to be a low-incidence disability. In addition, school personnel often report receiving little to no pre-service…

  6. Delayed Traumatic Intracranial Haemorrhage and Progressive Traumatic Brain Injury in a Major Referral Centre Based in a Developing Country

    PubMed Central

    Jeng, Toh Charng; Haspani, Mohd Saffari Mohd; Adnan, Johari Siregar; Naing, Nyi Nyi

    2008-01-01

    A repeat Computer Tomographic (CT) brain after 24–48 hours from the 1st scanning is usually practiced in most hospitals in South East Asia where intracranial pressure monitoring (ICP) is routinely not done. This interval for repeat CT would be shortened if there was a deterioration in Glasgow Coma Scale (GCS). Most of the time the prognosis of any intervention may be too late especially in hospitals with high patient-to-doctor ratio causing high mortality and morbidity. The purpose of this study was to determine the important predictors for early detection of Delayed Traumatic Intracranial Haemorrhage (DTICH) and Progressive Traumatic Brain Injury (PTBI) before deterioration of GCS occurred, as well as the most ideal timing of repeated CT brain for patients admitted in Malaysian hospitals. A total of 81 patients were included in this study over a period of six months. The CT scan brain was studied by comparing the first and second CT brain to diagnose the presence of DTICH/PTBI. The predictors tested were categorised into patient factors, CT brain findings and laboratory investigations. The mean age was 33.1 ± 15.7 years with a male preponderance of 6.36:1. Among them, 81.5% were patients from road traffic accidents with Glasgow Coma Scale ranging from 4 – 15 (median of 12) upon admission. The mean time interval delay between trauma and first CT brain was 179.8 ± 121.3 minutes for the PTBI group. The DTICH group, 9.9% of the patients were found to have new intracranial clots. Significant predictors detected were different referral hospitals (p=0.02), total GCS status (p=0.026), motor component of GCS (p=0.043), haemoglobin level (p<0.001), platelet count (p=0.011) and time interval between trauma and first CT brain (p=0.022). In the PTBI group, 42.0% of the patients were found to have new changes (new clot occurrence, old clot expansion and oedema) in the repeat CT brain. Univariate statistical analysis revealed that age (p=0.03), race (p=0.035), types of admission (p=0.024), GCS status (p=0.02), pupillary changes (p=0.014), number of intracranial lesion (p=0.004), haemoglobin level (p=0.038), prothrombin time (p=0.016) as the best predictors of early detection of changes. Multiple logistics regression analysis indicated that age, severity, GCS status (motor component) and GCS during admission were significantly associated with second CT scan with changes. This study showed that 9.9% of the total patients seen in the period of study had DTICH and 42% had PTBI. In the early period after traumatic head injury, the initial CT brain did not reveal the full extent of haemorrhagic injury and associated cerebral oedema. Different referral hospitals of different trauma level, GCS status, motor component of the GCS, haemoglobin level, platelet count and time interval between trauma and the first CT brain were the significant predictors for DTICH. Whereas the key determinants of PTBI were age, race, types of admission, GCS status, pupillary changes, number of intracranial bleed, haemoglobin level, prothrombin time and of course time interval between trauma and first CT brain. Any patients who had traumatic head injury in hospitals with no protocol of repeat CT scan or intracranial pressure monitoring especially in developing countries are advised to have to repeat CT brain at the appropriate quickest time . PMID:22589639

  7. Electrophysiological biomarkers of epileptogenicity after traumatic brain injury.

    PubMed

    Perucca, Piero; Smith, Gregory; Santana-Gomez, Cesar; Bragin, Anatol; Staba, Richard

    2018-06-05

    Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis.

    PubMed

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P; Thangavel, Ramasamy; Ahmed, Mohammad E; Zaheer, Smita; Raikwar, Sudhanshu P; Iyer, Shankar S; Bhagavan, Sachin M; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD.

  9. Mast Cell Activation in Brain Injury, Stress, and Post-traumatic Stress Disorder and Alzheimer's Disease Pathogenesis

    PubMed Central

    Kempuraj, Duraisamy; Selvakumar, Govindhasamy P.; Thangavel, Ramasamy; Ahmed, Mohammad E.; Zaheer, Smita; Raikwar, Sudhanshu P.; Iyer, Shankar S.; Bhagavan, Sachin M.; Beladakere-Ramaswamy, Swathi; Zaheer, Asgar

    2017-01-01

    Mast cells are localized throughout the body and mediate allergic, immune, and inflammatory reactions. They are heterogeneous, tissue-resident, long-lived, and granulated cells. Mast cells increase their numbers in specific site in the body by proliferation, increased recruitment, increased survival, and increased rate of maturation from its progenitors. Mast cells are implicated in brain injuries, neuropsychiatric disorders, stress, neuroinflammation, and neurodegeneration. Brain mast cells are the first responders before microglia in the brain injuries since mast cells can release prestored mediators. Mast cells also can detect amyloid plaque formation during Alzheimer's disease (AD) pathogenesis. Stress conditions activate mast cells to release prestored and newly synthesized inflammatory mediators and induce increased blood-brain barrier permeability, recruitment of immune and inflammatory cells into the brain and neuroinflammation. Stress induces the release of corticotropin-releasing hormone (CRH) from paraventricular nucleus of hypothalamus and mast cells. CRH activates glial cells and mast cells through CRH receptors and releases neuroinflammatory mediators. Stress also increases proinflammatory mediator release in the peripheral systems that can induce and augment neuroinflammation. Post-traumatic stress disorder (PTSD) is a traumatic-chronic stress related mental dysfunction. Currently there is no specific therapy to treat PTSD since its disease mechanisms are not yet clearly understood. Moreover, recent reports indicate that PTSD could induce and augment neuroinflammation and neurodegeneration in the pathogenesis of neurodegenerative diseases. Mast cells play a crucial role in the peripheral inflammation as well as in neuroinflammation due to brain injuries, stress, depression, and PTSD. Therefore, mast cells activation in brain injury, stress, and PTSD may accelerate the pathogenesis of neuroinflammatory and neurodegenerative diseases including AD. This review focusses on how mast cells in brain injuries, stress, and PTSD may promote the pathogenesis of AD. We suggest that inhibition of mast cells activation and brain cells associated inflammatory pathways in the brain injuries, stress, and PTSD can be explored as a new therapeutic target to delay or prevent the pathogenesis and severity of AD. PMID:29302258

  10. Traumatic Brain Injury: An Overview of School Re-Entry.

    ERIC Educational Resources Information Center

    Tucker, Bonnie Foster; Colson, Steven E.

    1992-01-01

    This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)

  11. Mild Traumatic Brain Injury: Facilitating School Success.

    ERIC Educational Resources Information Center

    Hux, Karen; Hacksley, Carolyn

    1996-01-01

    A case study is used to demonstrate the effects of mild traumatic brain injury on educational efforts. Discussion covers factors complicating school reintegration, ways to facilitate school reintegration, identification of cognitive and behavioral consequences, minimization of educators' discomfort, reintegration program design, and family…

  12. Plasticity-Based Adaptive Cognitive Remediation (PACR) for OIF/OEF Veterans: A Randomized Controlled Trial

    DTIC Science & Technology

    2015-10-01

    TERMS traumatic brain injury, tbi, concussion , persistent post- concussive symptoms, cognition, cognitive function, cognitive rehabilitation...veterans and active duty military personnel suffering from persistent post- concussive symptoms (PPCS) following mild traumatic brain injury (mTBI) at

  13. Severe Traumatic Brain Injury

    MedlinePlus

    ... but it also has a large societal and economic toll. The estimated economic cost of TBI in 2010, including direct and ... P, Miller T and associates. The Incidence and Economic Burden of Injuries in the United States. New ...

  14. The gut in trauma.

    PubMed

    Patel, Jayshil J; Rosenthal, Martin D; Miller, Keith R; Martindale, Robert G

    2016-08-01

    The purpose of this review is to describe established and emerging mechanisms of gut injury and dysfunction in trauma, describe emerging strategies to improve gut dysfunction, detail the effect of trauma on the gut microbiome, and describe the gut-brain connection in traumatic brain injury. Newer data suggest intraluminal contents, pancreatic enzymes, and hepatobiliary factors disrupt the intestinal mucosal layer. These mechanisms serve to perpetuate the inflammatory response leading to multiple organ dysfunction syndrome (MODS). To date, therapies to mitigate acute gut dysfunction have included enteral nutrition and immunonutrition; emerging therapies aimed to intestinal mucosal layer disruption, however, include protease inhibitors such as tranexamic acid, parenteral nutrition-supplemented bombesin, and hypothermia. Clinical trials to demonstrate benefit in humans are needed before widespread applications can be recommended. Despite resuscitation, gut dysfunction promotes distant organ injury. In addition, postresuscitation nosocomial and iatrogenic 'hits' exaggerate the immune response, contributing to MODS. This was a provocative concept, suggesting infectious and noninfectious causes of inflammation may trigger, heighten, and perpetuate an inflammatory response culminating in MODS and death. Emerging evidence suggests posttraumatic injury mechanisms, such as intestinal mucosal disruption and shifting of the gut microbiome to a pathobiome. In addition, traumatic brain injury activates the gut-brain axis and increases intestinal permeability.

  15. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  16. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    PubMed

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  17. Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.

    PubMed

    Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane

    2016-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention.

  18. New and Recurrent Concussions in High-School Athletes Before and After Traumatic Brain Injury Laws, 2005-2016.

    PubMed

    Yang, Jingzhen; Comstock, R Dawn; Yi, Honggang; Harvey, Hosea H; Xun, Pengcheng

    2017-12-01

    To examine the trends of new and recurrent sports-related concussions in high-school athletes before and after youth sports traumatic brain injury laws. We used an interrupted time-series design and analyzed the concussion data (2005-2016) from High School Reporting Injury Online. We examined the trends of new or recurrent concussion rates among US representative high-school athletes participating in 9 sports across prelaw, immediate-postlaw, and postlaw periods by using general linear models. We defined 1 athlete exposure as attending 1 competition or practice. We included a total of 8043 reported concussions (88.7% new, 11.3% recurrent). The average annual concussion rate was 39.8 per 100 000 athlete exposures. We observed significantly increased trends of reported new and recurrent concussions from the prelaw, through immediate-postlaw, into the postlaw period. However, the recurrent concussion rate showed a significant decline 2.6 years after the laws went into effect. Football exhibited different trends compared with other boys' sports and girls' sports. Observed trends of increased concussion rates are likely attributable to increased identification and reporting. Additional research is needed to evaluate intended long-term impact of traumatic brain injury laws.

  19. Chronic Traumatic Encephalopathy: Where Are We and Where Are We Going?

    PubMed Central

    Mez, Jesse; Stern, Robert A.; McKee, Ann C.

    2015-01-01

    Chronic traumatic encephalopathy (CTE, previously called punch drunk and dementia pugilistica) has a rich history in the medical literature in association with boxing, but has only recently been recognized with other contact sports, such as football and ice hockey, as well as with military blast injuries. CTE is thought to be a neurodegenerative disease associated with repeated concussive and subconcussive blows to the head. There is characteristic gross and microscopic pathology found in the brain, including frontal and temporal atrophy, axonal degeneration, and hyperphosphorylated tau and TAR DNA-binding protein 43 pathology. Clinically, there are characteristic progressive deficits in cognition (memory, executive dysfunction), behavior (explosivity, aggression), mood (depression, suicidality), and motor function (parkinsonism), which correlate with the anatomic distribution of brain pathology. While CTE shares clinical and neuropathological traits with other neurodegenerative diseases, the clinical syndrome and the neuropathology as a whole are distinct from other neurodegenerative diseases. Here we review the CTE literature to date. We also draw on the literature from mild traumatic brain injury and other neurodegenerative dementias, particularly when these studies provide guidance for future CTE research. We conclude by suggesting seven essential areas for future CTE research. PMID:24136455

  20. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities.

    PubMed

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2018-06-01

    Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  1. Investigation of the Correlation Between Neurocognitive Function with Advanced Magnetic Resonance Imaging (MRI), Electroencephalography (EEG) in Patients with Traumatic Brain Injury Exposure: Neurocognitive function and advanced MRI and EEG

    DTIC Science & Technology

    2011-01-01

    rotation soudaine , à la tête engendré par des forces externes. Des symptômes persistants tels que maux de tête, troubles du sommeil, problèmes...neuropsychological findings in veterans with traumatic brain injury and/or post traumatic stress disorder. Military Medicine. Brenner, L.A. et al . (2010

  2. Sport-related concussions.

    PubMed

    Ianof, Jéssica Natuline; Freire, Fabio Rios; Calado, Vanessa Tomé Gonçalves; Lacerda, Juliana Rhein; Coelho, Fernanda; Veitzman, Silvia; Schmidt, Magali Taino; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson; Anghinah, Renato

    2014-01-01

    Traumatic brain injury (TBI) is a major cause of lifelong disability and death worldwide. Sport-related traumatic brain injury is an important public health concern. The purpose of this review was to highlight the importance of sport-related concussions. Concussion refers to a transient alteration in consciousness induced by external biomechanical forces transmitted directly or indirectly to the brain. It is a common, although most likely underreported, condition. Contact sports such as American football, rugby, soccer, boxing, basketball and hockey are associated with a relatively high prevalence of concussion. Various factors may be associated with a greater risk of sport-related concussion, such as age, sex, sport played, level of sport played and equipment used. Physical complaints (headache, fatigue, dizziness), behavioral changes (depression, anxiety, irritability) and cognitive impairment are very common after a concussion. The risk of premature return to activities includes the prolongation of post-concussive symptoms and increased risk of concussion recurrence.

  3. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury.

    PubMed

    Haneef, Zulfi; Levin, Harvey S; Frost, James D; Mizrahi, Eli M

    2013-04-15

    Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.

  4. Electroencephalography and Quantitative Electroencephalography in Mild Traumatic Brain Injury

    PubMed Central

    Levin, Harvey S.; Frost, James D.; Mizrahi, Eli M.

    2013-01-01

    Abstract Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods. PMID:23249295

  5. Traumatic Brain Injury as a Risk Factor for Alzheimer's Disease: Is Inflammatory Signaling a Key Player?

    PubMed

    Djordjevic, Jelena; Sabbir, Mohammad Golam; Albensi, Benedict C

    2016-01-01

    Traumatic brain injury (TBI) has become a significant medical and social concern within the last 30 years. TBI has acute devastating effects, and in many cases, seems to initiate long-term neurodegeneration. With advances in medical technology, many people are now surviving severe brain injuries and their long term consequences. Post trauma effects include communication problems, sensory deficits, emotional and behavioral problems, physical complications and pain, increased suicide risk, dementia, and an increased risk for chronic CNS diseases, such as Alzheimer's disease (AD). In this review, we provide an introduction to TBI and hypothesize how it may lead to neurodegenerative disease in general and AD in particular. In addition, we discuss the evidence that supports the hypothesis that TBI may lead to AD. In particular, we focus on inflammatory responses as key processes in TBI-induced secondary injury, with emphasis on nuclear factor kappa B (NF-κB) signaling.

  6. Injury-Related Production of Cysteinyl Leukotrienes Contributes to Brain Damage following Experimental Traumatic Brain Injury

    PubMed Central

    Farias, Santiago; Frey, Lauren C.; Murphy, Robert C.

    2009-01-01

    Abstract The leukotrienes belong to a family of biologically active lipids derived from arachidonate that are often involved in inflammatory responses. In the central nervous system, a group of leukotrienes, known as the cysteinyl leukotrienes, is generated in brain tissue in response to a variety of acute brain injuries. Although the exact clinical significance of this excess production remains unclear, the cysteinyl leukotrienes may contribute to injury-related disruption of the brain-blood barrier and exacerbate secondary injury processes. In the present study, the formation and role of cysteinyl leukotrienes was explored in the fluid percussion injury model of traumatic brain injury in rats. The results showed that levels of the cysteinyl leukotrienes were elevated after fluid percussion injury with a maximal formation 1 hour after the injury. Neutrophils contributed to cysteinyl leukotriene formation in the injured brain hemisphere, potentially through a transcellular biosynthetic mechanism. Furthermore, pharmacological reduction of cysteinyl leukotriene formation after the injury, using MK-886, resulted in reduction of brain lesion volumes, suggesting that the cysteinyl leukotrienes play an important role in traumatic brain injury. PMID:19886806

  7. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.

    PubMed

    Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay

    2017-10-01

    Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.

  8. Systematic review of clinical practice guidelines to identify recommendations for rehabilitation after stroke and other acquired brain injuries

    PubMed Central

    Lannin, Natasha A; Hoffmann, Tammy

    2018-01-01

    Objectives Rehabilitation clinical practice guidelines (CPGs) contain recommendation statements aimed at optimising care for adults with stroke and other brain injury. The aim of this study was to determine the quality, scope and consistency of CPG recommendations for rehabilitation covering the acquired brain injury populations. Design Systematic review. Interventions Included CPGs contained recommendations for inpatient rehabilitation or community rehabilitation for adults with an acquired brain injury diagnosis (stroke, traumatic or other non-progressive acquired brain impairments). Electronic databases (n=2), guideline organisations (n=4) and websites of professional societies (n=17) were searched up to November 2017. Two independent reviewers used the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, and textual syntheses were used to appraise and compare recommendations. Results From 427 papers screened, 20 guidelines met the inclusion criteria. Only three guidelines were rated high (>75%) across all domains of AGREE-II; highest rated domains were ‘scope and purpose’ (85.1, SD 18.3) and ‘clarity’ (76.2%, SD 20.5). Recommendations for assessment and for motor therapies were most commonly reported, however, varied in the level of detail across guidelines. Conclusion Rehabilitation CPGs were consistent in scope, suggesting little difference in rehabilitation approaches between vascular and traumatic brain injury. There was, however, variability in included studies and methodological quality. PROSPERO registration number CRD42016026936. PMID:29490958

  9. Adversity and Resilience Are Associated with Outcome after Mild Traumatic Brain Injury in Military Service Members.

    PubMed

    Reid, Matthew W; Cooper, Douglas B; Lu, Lisa H; Iverson, Grant L; Kennedy, Jan E

    2018-05-15

    The objective of this study was to assess the associations between resilience, adversity, post-concussion symptoms, and post-traumatic stress symptom reporting after mild traumatic brain injury (mTBI). We hypothesized that resilience would be associated with less symptom reporting, and adversity would be associated with greater symptom reporting. This was a cross-sectional study of retrospective data collected for an ongoing TBI repository. United States military service members who screened positive for mTBI during a primary care visit completed the Trauma History Screen (THS), Connor-Davidson Resilience Scale (CD-RISC), Neurobehavioral Symptom Inventory (NSI), and post-traumatic stress disorder (PTSD) Checklist-Civilian Version (PCL-C). Data collected from February 2015 to August 2016 were used for the present study. Only participants with complete data for the above measures were included, yielding a sample size of 165 participants. Adversity (THS) and resilience (CD-RISC) scores were each correlated significantly with post-concussion (NSI) and traumatic stress (PCL-C) total and subscale scores in the hypothesized direction. Interactions between adversity and resilience were absent for all measures except the NSI sensory subscale. Four traumatic event types were significantly associated positively with most NSI and PCL-C total and subscale scores, but the age at which traumatic events were first experienced showed few and mixed significant associations. In conclusion, resilience and adversity were significantly associated with symptom endorsement after mTBI. Screening for cumulative adversity may identify individuals at greater risk of developing persistent post-concussion symptoms and/or PTSD, and interventions that increase resilience may reduce symptom severity.

  10. Persistent post-traumatic headache, postconcussion syndrome, and whiplash injuries: the evidence for a non-traumatic basis with an historical review.

    PubMed

    Evans, Randolph W

    2010-04-01

    There has been intense controversy about postconcussion syndrome since Erichsen's publication in 1866 on railway brain and railway spine. The fascinating history of this debate will be reviewed and then the non-organic explanations for postconcussion syndrome, headaches after head injury, and chronic whiplash injuries and headaches will be explored including the following: psychogenic, psychosocial, sociocultural, base rate misattribution, chronic pain, compensation and litigation, and malingering.

  11. Blood-Brain Barrier Breakdown Following Traumatic Brain Injury: A Possible Role in Posttraumatic Epilepsy

    PubMed Central

    Tomkins, Oren; Feintuch, Akiva; Benifla, Moni; Cohen, Avi; Friedman, Alon; Shelef, Ilan

    2011-01-01

    Recent animal experiments indicate a critical role for opening of the blood-brain barrier (BBB) in the pathogenesis of post-traumatic epilepsy (PTE). This study aimed to investigate the frequency, extent, and functional correlates of BBB disruption in epileptic patients following mild traumatic brain injury (TBI). Thirty-seven TBI patients were included in this study, 19 of whom suffered from PTE. All underwent electroencephalographic (EEG) recordings and brain magnetic resonance imaging (bMRI). bMRIs were evaluated for BBB disruption using novel quantitative techniques. Cortical dysfunction was localized using standardized low-resolution brain electromagnetic tomography (sLORETA). TBI patients displayed significant EEG slowing compared to controls with no significant differences between PTE and nonepileptic patients. BBB disruption was found in 82.4% of PTE compared to 25% of non-epileptic patients (P = .001) and could be observed even years following the trauma. The volume of cerebral cortex with BBB disruption was significantly larger in PTE patients (P = .001). Slow wave EEG activity was localized to the same region of BBB disruption in 70% of patients and correlated to the volume of BBB disrupted cortex. We finally present a patient suffering from early cortical dysfunction and BBB breakdown with a gradual and parallel resolution of both pathologies. Our findings demonstrate that BBB pathology is frequently found following mild TBI. Lasting BBB breakdown is found with increased frequency and extent in PTE patients. Based on recent animal studies and the colocalization found between the region of disrupted BBB and abnormal EEG activity, we suggest a role for a vascular lesion in the pathogenesis of PTE. PMID:21436875

  12. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    PubMed

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  13. A comparative study of brain perfusion single-photon emission computed tomography and magnetic resonance imaging in patients with post-traumatic anosmia.

    PubMed

    Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi

    2009-01-01

    Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.

  14. Religion and spirituality in rehabilitation outcomes among individuals with traumatic brain injury.

    PubMed

    Waldron-Perrine, Brigid; Rapport, Lisa J; Hanks, Robin A; Lumley, Mark; Meachen, Sarah-Jane; Hubbarth, Paul

    2011-05-01

    The long-term consequences of traumatic brain injury affect millions of Americans, many of whom report using religion and spirituality to cope. Little research, however, has investigated how various elements of the religious and spiritual belief systems affect rehabilitation outcomes. The present study sought to assess the use of specifically defined elements of religion and spirituality as psychosocial resources in a sample of traumatically brain injured adults. The sample included 88 adults with brain injury from 1 to 20 years post injury and their knowledgeable significant others (SOs). The majority of the participants with brain injury were male (76%), African American (75%) and Christian (76%). Participants subjectively reported on their religious/spiritual beliefs and psychosocial resources as well as their current physical and psychological status. Significant others reported objective rehabilitation outcomes. Hierarchical multiple regression analyses were used to determine the proportion of variance in outcomes accounted for by demographic, injury related, psychosocial and religious/spiritual variables. The results indicate that religious well-being (a sense of connection to a higher power) was a unique predictor for life satisfaction, distress and functional ability whereas public religious practice and existential well-being were not. The findings of this project indicate that specific facets of religious and spiritual belief systems do play direct and unique roles in predicting rehabilitation outcomes whereas religious activity does not. Notably, a self-reported individual connection to a higher power was an extremely robust predictor of both subjective and objective outcome.

  15. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    PubMed

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and environmental factors related to recovery after traumatic brain injury in children.

  16. Changing the Odds A North Carolina family's search to help those with TBI

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury Changing the Odds A North Carolina family's search ... his. But the 1984 crash left him with traumatic brain injury (TBI)—and changed his family's life forever. "Back ...

  17. Cerebrovascular regulation, exercise, and mild traumatic brain injury

    PubMed Central

    Meehan, William P.; Iverson, Grant L.; Taylor, J. Andrew

    2014-01-01

    A substantial number of people who sustain a mild traumatic brain injury report persistent symptoms. Most common among these symptoms are headache, dizziness, and cognitive difficulties. One possible contributor to sustained symptoms may be compromised cerebrovascular regulation. In addition to injury-related cerebrovascular dysfunction, it is possible that prolonged rest after mild traumatic brain injury leads to deconditioning that may induce physiologic changes in cerebral blood flow control that contributes to persistent symptoms in some people. There is some evidence that exercise training may reduce symptoms perhaps because it engages an array of cerebrovascular regulatory mechanisms. Unfortunately, there is very little work on the degree of impairment in cerebrovascular control that may exist in patients with mild traumatic brain injury, and there are no published studies on the subacute phase of recovery from this injury. This review aims to integrate the current knowledge of cerebrovascular mechanisms that might underlie persistent symptoms and seeks to synthesize these data in the context of exploring aerobic exercise as a feasible intervention to treat the underlying pathophysiology. PMID:25274845

  18. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  19. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model.

    PubMed

    Campos-Pires, Rita; Koziakova, Mariia; Yonis, Amina; Pau, Ashni; Macdonald, Warren; Harris, Katie; Edge, Christopher J; Franks, Nicholas P; Mahoney, Peter F; Dickinson, Robert

    2018-04-15

    The aim of this study was to evaluate the neuroprotective efficacy of the inert gas xenon as a treatment for patients with blast-induced traumatic brain injury in an in vitro laboratory model. We developed a novel blast traumatic brain injury model using C57BL/6N mouse organotypic hippocampal brain-slice cultures exposed to a single shockwave, with the resulting injury quantified using propidium iodide fluorescence. A shock tube blast generator was used to simulate open field explosive blast shockwaves, modeled by the Friedlander waveform. Exposure to blast shockwave resulted in significant (p < 0.01) injury that increased with peak-overpressure and impulse of the shockwave, and which exhibited a secondary injury development up to 72 h after trauma. Blast-induced propidium iodide fluorescence overlapped with cleaved caspase-3 immunofluorescence, indicating that shock-wave-induced cell death involves apoptosis. Xenon (50% atm) applied 1 h after blast exposure reduced injury 24 h (p < 0.01), 48 h (p < 0.05), and 72 h (p < 0.001) later, compared with untreated control injury. Xenon-treated injured slices were not significantly different from uninjured sham slices at 24 h and 72 h. We demonstrate for the first time that xenon treatment after blast traumatic brain injury reduces initial injury and prevents subsequent injury development in vitro. Our findings support the idea that xenon may be a potential first-line treatment for those with blast-induced traumatic brain injury.

  20. Toll-like receptor 4 enhancement of non-NMDA synaptic currents increases dentate excitability after brain injury.

    PubMed

    Li, Ying; Korgaonkar, Akshata A; Swietek, Bogumila; Wang, Jianfeng; Elgammal, Fatima S; Elkabes, Stella; Santhakumar, Vijayalakshmi

    2015-02-01

    Concussive brain injury results in neuronal degeneration, microglial activation and enhanced excitability in the hippocampal dentate gyrus, increasing the risk for epilepsy and memory dysfunction. Endogenous molecules released during injury can activate innate immune responses including toll-like receptor 4 (TLR4). Recent studies indicate that immune mediators can modulate neuronal excitability. Since non-specific agents that reduce TLR4 signaling can limit post-traumatic neuropathology, we examined whether TLR4 signaling contributes to early changes in dentate excitability after brain injury. Concussive brain injury caused a transient increase in hippocampal TLR4 expression within 4h, which peaked at 24h. Post-injury increase in TLR4 expression in the dentate gyrus was primarily neuronal and persisted for one week. Acute, in vitro treatment with TLR4 ligands caused bidirectional modulation of dentate excitability in control and brain-injured rats, with a reversal in the direction of modulation after brain injury. TLR4 antagonists decreased, and agonist increased, afferent-evoked dentate excitability one week after brain injury. NMDA receptor antagonist did not occlude the ability of LPS-RS, a TLR4 antagonist, to decrease post-traumatic dentate excitability. LPS-RS failed to modulate granule cell NMDA EPSCs but decreased perforant path-evoked non-NMDA EPSC peak amplitude and charge transfer in both granule cells and mossy cells. Our findings indicate an active role for TLR4 signaling in early post-traumatic dentate hyperexcitability. The novel TLR4 modulation of non-NMDA glutamatergic currents, identified herein, could represent a general mechanism by which immune activation influences neuronal excitability in neurological disorders that recruit sterile inflammatory responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration

    PubMed Central

    Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.

    2017-01-01

    Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725

  2. [Cortical spreading depolarization phenomena in patients with traumatic and ischemic brain injuries. Results of a pilot study].

    PubMed

    Sueiras, M; Sahuquillo, J; García-López, B; Sánchez-Guerrero, Á; Poca, M A; Santamarina, E; Riveiro, M; Fabricius, M; Strong, A J

    2014-10-01

    To determine the frequency and duration of cortical spreading depolarization (CSD) and CSD-like episodes in patients with traumatic brain injury (TBI) and malignant middle cerebral artery infarction (MMCAI) requiring craniotomy. A descriptive observational study was carried out during 19 months. Neurocritical patients. Sixteen patients were included: 9 with MMCAI and 7 with moderate or severe TBI, requiring surgical treatment. A 6-electrode subdural electrocorticographic (ECoG) strip was placed onto the perilesional cortex. An analysis was made of the time profile and the number and duration of CSD and CSD-like episodes recorded from the ECoGs. Of the 16 patients enrolled, 9 presented episodes of CSD or CSD-like phenomena, of highly variable frequency and duration. Episodes of CSD and CSD-like phenomena are frequently detected in the ischemic penumbra and/or traumatic cortical regions of patients with MMCAI who require decompressive craniectomy or of patients with contusional TBI. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  3. Conversion of Clinical Data from the NABISH 1 and 2 into FITBIR

    DTIC Science & Technology

    2015-10-01

    Research (FITBIR) Informatics System. Data sets from the National Acute Brain Injury Study: Hypothermia (NABISH) projects will be reviewed, analyzed, and...Keywords and Acronyms: Common Data Elements (CDEs) FITBIR – the Federal Interagency Traumatic Brain Injury Research Informatics System Form...NOTES 14. ABSTRACT This project will prepare a related group of legacy data sets for addition to the Federal Interagency Traumatic Brain Injury

  4. Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury

    DTIC Science & Technology

    2011-10-01

    AD_________________ Award Number: W81XWH-10-2-0171 TITLE: Minocycline and N-acetylcysteine: A... Minocycline and N-acetylcysteine: A Synergistic Drug Combination to Treat Traumatic Brain Injury 5b. GRANT NUMBER W81XWH-10-2-0171 5c. PROGRAM...combination of minocycline (MINO) and N-acetyl cysteine (NAC) synergistically improved brain function when dosed one hour following closed cortical

  5. Does Speech-to-Text Assistive Technology Improve the Written Expression of Students with Traumatic Brain Injury?

    ERIC Educational Resources Information Center

    Noakes, Michaela Ann

    2017-01-01

    Traumatic Brain Injury outcomes vary by individual due to age at the onset of injury, the location of the injury, and the degree to which the deficits appear to be pronounced, among other factors. As an acquired injury to the brain, the neurophysiological consequences are not homogenous; they are as varied as the individuals who experience them.…

  6. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  7. Traumatic Brain Injury in Iraq and Afghanistan Veterans: New Results From a National Random Sample Study.

    PubMed

    Lindquist, Lisa K; Love, Holly C; Elbogen, Eric B

    2017-01-01

    This study randomly sampled post-9/11 military veterans and reports on causes, predictors, and frequency of traumatic brain injury (TBI) (N=1,388). A total of 17.3% met criteria for TBI during military service, with about one-half reporting multiple head injuries, which were related to higher rates of posttraumatic stress disorder, depression, back pain, and suicidal ideation. The most common mechanisms of TBI included blasts (33.1%), objects hitting head (31.7%), and fall (13.5%). TBI was associated with enlisted rank, male gender, high combat exposure, and sustaining TBI prior to military service. Clinical and research efforts in veterans should consider TBI mechanism, effects of cumulative TBI, and screening for premilitary TBI.

  8. Psychological problems, self-esteem and body dissatisfaction in a sample of adolescents with brain lesions: A comparison with a control group.

    PubMed

    Pastore, Valentina; Colombo, Katia; Maestroni, Deborah; Galbiati, Susanna; Villa, Federica; Recla, Monica; Locatelli, Federica; Strazzer, Sandra

    2015-01-01

    This study aims to describe psychological problems, self-esteem difficulties and body dissatisfaction in a sample of adolescents with acquired brain lesions and to compare them with an age- and gender-matched control group. In an experimental design, the psychological profile of 26 adolescents with brain lesions of traumatic or vascular aetiology, aged 12-18 years, was compared with that of 18 typically-developing subjects. Moreover, within the clinical group, patients with TBI were compared with patients with vascular lesions. The psychological and adaptive profile of the adolescents was assessed by a specific protocol, including CBCL, VABS, RSES, EDI-2 and BES. Adolescents with brain lesions showed more marked psychological problems than their healthy peers; they also presented with a greater impairment of adaptive skills and a lower self-esteem. No significant differences were found between patients with traumatic lesions and patients with vascular lesions. Adolescents with acquired brain lesions were at higher risk to develop psychological and behavioural difficulties. Furthermore, in the clinical sample, some variables such as the long hospitalization and isolation from family and peers were associated to a greater psychological burden than the aetiology of the brain damage.

  9. A functional magnetic resonance imaging investigation of episodic memory after traumatic brain injury.

    PubMed

    Russell, Kathryn C; Arenth, Patricia M; Scanlon, Joelle M; Kessler, Lauren J; Ricker, Joseph H

    2011-06-01

    Traumatic brain injury often negatively impacts episodic memory; however, studies of the neural substrates of this impairment have been limited. In this study, both encoding and recognition of visually presented stimuli were examined with functional magnetic resonance imaging. Twelve adults with chronic complicated mild, moderate, and severe injuries were compared with a matched group of 12 controls. Behavioral task performance did not differentiate the groups. During neuroimaging, however, the group of individuals with traumatic brain injury exhibited increased activation, as well as increased bilaterality and dispersion as compared to controls. Findings are discussed in terms of increased resource recruitment.

  10. Invited commentary on Quality of care indicators for the rehabilitation of children with traumatic brain injury, and Quality of care indicators for the structure and organization of inpatient rehabilitation care of children with traumatic brain injury.

    PubMed

    Whyte, John

    2012-03-01

    Measures of structure and process in health care have been shown to be associated with care outcomes in prior research. Two articles in this issue propose measures of structure and process that may be relevant to pediatric traumatic brain injury rehabilitation. This commentary considers how these potential measures may be related to the actual treatments and services that ultimately affect patient outcomes. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Numerical modeling and characterization of blast waves for application in blast-induced mild traumatic brain injury research

    NASA Astrophysics Data System (ADS)

    Phillips, Michael G.

    Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.

  12. Transplantation of autologous bone marrow-derived mesenchymal stem cells for traumatic brain injury☆

    PubMed Central

    Jiang, Jindou; Bu, Xingyao; Liu, Meng; Cheng, Peixun

    2012-01-01

    Results from the present study demonstrated that transplantation of autologous bone marrow-derived mesenchymal stem cells into the lesion site in rat brain significantly ameliorated brain tissue pathological changes and brain edema, attenuated glial cell proliferation, and increased brain-derived neurotrophic factor expression. In addition, the number of cells double-labeled for 5-bromodeoxyuridine/glial fibrillary acidic protein and cells expressing nestin increased. Finally, blood vessels were newly generated, and the rats exhibited improved motor and cognitive functions. These results suggested that transplantation of autologous bone marrow-derived mesenchymal stem cells promoted brain remodeling and improved neurological functions following traumatic brain injury. PMID:25806058

  13. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Portable MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espy, Michelle A.

    This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection,more » chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.« less

  15. PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic Brain Injury

    DTIC Science & Technology

    2015-04-01

    Award Number: W81XWH-11-2-0129 TITLE: PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic Brain Injury...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-2-0129 PHIT for Duty, a Personal Health Intervention Tool for Psychological Health and Traumatic...health problems. PHIT for Duty integrates self-report and physiological sensor instruments to assess health status via brief weekly screening

  16. Movement disorders secondary to craniocerebral trauma.

    PubMed

    Krauss, Joachim K

    2015-01-01

    Over the past few decades it has been recognized that traumatic brain injury may result in various movement disorders. In survivors of severe head injury, post-traumatic movement disorders were reported in about 20%, and they persisted in about 10% of patients. The most frequent persisting movement disorder in this population is kinetic cerebellar outflow tremor in about 9%, followed by dystonia in about 4%. While tremor is associated most frequently with cerebellar or mesencephalic lesions, patients with dystonia frequently have basal ganglia or thalamic lesions. Moderate or mild traumatic brain injury only rarely causes persistent post-traumatic movement disorders. It appears that the frequency of post-traumatic movement disorders overall has been declining which most likely is secondary to improved treatment of brain injury. In patients with disabling post-traumatic movement disorders which are refractory to medical treatment, stereotactic neurosurgery can provide long-lasting benefit. While in the past the primary option for severe kinetic tremor was thalamotomy and for dystonia thalamotomy or pallidotomy, today deep brain stimulation has become the preferred treatment. Parkinsonism is a rare consequence of single head injury, but repeated head injury such as seen in boxing can result in chronic encephalopathy with parkinsonian features. While there is still controversy whether or not head injury is a risk factor for the development of Parkinson's disease, recent studies indicate that genetic susceptibility might be relevant. © 2015 Elsevier B.V. All rights reserved.

  17. A nested mechanistic sub-study into the effect of tranexamic acid versus placebo on intracranial haemorrhage and cerebral ischaemia in isolated traumatic brain injury: study protocol for a randomised controlled trial (CRASH-3 Trial Intracranial Bleeding Mechanistic Sub-Study [CRASH-3 IBMS]).

    PubMed

    Mahmood, Abda; Roberts, Ian; Shakur, Haleema

    2017-07-17

    Tranexamic acid prevents blood clots from breaking down and reduces bleeding. However, it is uncertain whether tranexamic acid is effective in traumatic brain injury. The CRASH-3 trial is a randomised controlled trial that will examine the effect of tranexamic acid (versus placebo) on death and disability in 13,000 patients with traumatic brain injury. The CRASH-3 trial hypothesizes that tranexamic acid will reduce intracranial haemorrhage, which will reduce the risk of death. Although it is possible that tranexamic acid will reduce intracranial bleeding, there is also a potential for harm. In particular, tranexamic acid may increase the risk of cerebral thrombosis and ischaemia. The protocol detailed here is for a mechanistic sub-study nested within the CRASH-3 trial. This mechanistic sub-study aims to examine the effect of tranexamic acid (versus placebo) on intracranial bleeding and cerebral ischaemia. The CRASH-3 Intracranial Bleeding Mechanistic Sub-Study (CRASH-3 IBMS) is nested within a prospective, double-blind, multi-centre, parallel-arm randomised trial called the CRASH-3 trial. The CRASH-3 IBMS will be conducted in a cohort of approximately 1000 isolated traumatic brain injury patients enrolled in the CRASH-3 trial. In the CRASH-3 IBMS, brain scans acquired before and after randomisation are examined, using validated methods, for evidence of intracranial bleeding and cerebral ischaemia. The primary outcome is the total volume of intracranial bleeding measured on computed tomography after randomisation, adjusting for baseline bleeding volume. Secondary outcomes include progression of intracranial haemorrhage (from pre- to post-randomisation scans), new intracranial haemorrhage (seen on post- but not pre-randomisation scans), intracranial haemorrhage following neurosurgery, and new focal ischaemic lesions (seen on post-but not pre-randomisation scans). A linear regression model will examine whether receipt of the trial treatment can predict haemorrhage volume. Bleeding volumes and new ischaemic lesions will be compared across treatment groups using relative risks and 95% confidence intervals. The CRASH-3 IBMS will provide an insight into the mechanism of action of tranexamic acid in traumatic brain injury, as well as information about the risks and benefits. Evidence from this trial could inform the management of patients with traumatic brain injury. The CRASH-3 trial was prospectively registered and the CRASH-3 IBMS is an addition to the original protocol registered at the International Standard Randomised Controlled Trials registry ( ISRCTN15088122 ) 19 July 2011, and ClinicalTrials.gov on 25 July 2011 (NCT01402882).

  18. Hypothermia and rapid rewarming is associated with worse outcome following traumatic brain injury.

    PubMed

    Thompson, Hilaire J; Kirkness, Catherine J; Mitchell, Pamela H

    2010-01-01

    The purpose of the present study was to determine (1) the prevalence and degree of hypothermia in patients on emergency department admission and (2) the effect of hypothermia and rate of rewarming on patient outcomes. Secondary data analysis was conducted on patients admitted to a level I trauma center following severe traumatic brain injury (n = 147). Patients were grouped according to temperature on admission according to hypothermia status and rate of rewarming (rapid or slow). Regression analyses were performed. Hypothermic patients were more likely to have lower postresuscitation Glasgow Coma Scale scores and a higher initial injury severity score. Hypothermia on admission was correlated with longer intensive care unit stays, a lower Glasgow Coma Scale score at discharge, higher mortality rate, and lower Glasgow outcome score-extended scores up to 6 months postinjury (P < .05). When controlling for other factors, rewarming rates more than 0.25°C/h were associated with lower Glasgow Coma Scale scores at discharge, longer intensive care unit length of stay, and higher mortality rate than patients rewarmed more slowly although these did not reach statistical significance. Hypothermia on admission is correlated with worse outcomes in brain-injured patients. Patients with traumatic brain injury who are rapidly rewarmed may be more likely to have worse outcomes. Trauma protocols may need to be reexamined to include controlled rewarming at rates 0.25°C/h or less.

  19. Cognitive and functional outcomes of terror victims who suffered from traumatic brain injury.

    PubMed

    Schwartz, Isabella; Tuchner, Maya; Tsenter, Jeanna; Shochina, Mara; Shoshan, Yigal; Katz-Leurer, Michal; Meiner, Zeev

    2008-03-01

    To describe the outcomes of terror victims suffered from traumatic brain injury (TBI). Retrospective chart review of 17 terror and 39 non-terror TBI patients treated in a rehabilitation department during the same period. Variables include demographic data, Injury Severity Scale (ISS), length of stay (LOS) and imaging results. ADL was measured using the Functional Independence Measurement (FIM), cognitive and memory functions were measured using the Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) battery and the Rivermead Battery Memory Test (RBMT), respectively. Terror TBI patients were significantly younger, had higher ISS score and higher rates of intracerebral haemorrhage (ICH), brain surgery and penetrating brain injuries than the non-terror TBI group. There was no difference in mean LOS, mean FIM values, mean FIM gain and mean cognitive and memory improvement between groups. Terror victims suffered from a higher percentage of post-traumatic epilepsy (35% vs. 10%, p=0.05), whereas the rate of PTSD and the rate of return to previous occupation were similar between groups. Although TBI terror victims had more severe injury, they gained most of ADL functions and their rehabilitation outcomes were similar to non-terror TBI patients. These favourable results were achieved due to a comprehensive interdisciplinary approach to terror victims and also by national support which allowed an adequate period of treatment and sufficient resources as needed.

  20. Voluntary Exercise Preconditioning Activates Multiple Antiapoptotic Mechanisms and Improves Neurological Recovery after Experimental Traumatic Brain Injury

    PubMed Central

    Zhao, Zaorui; Sabirzhanov, Boris; Wu, Junfang; Faden, Alan I.

    2015-01-01

    Abstract Physical activity can attenuate neuronal loss, reduce neuroinflammation, and facilitate recovery after brain injury. However, little is known about the mechanisms of exercise-induced neuroprotection after traumatic brain injury (TBI) or its modulation of post-traumatic neuronal cell death. Voluntary exercise, using a running wheel, was conducted for 4 weeks immediately preceding (preconditioning) moderate-level controlled cortical impact (CCI), a well-established experimental TBI model in mice. Compared to nonexercised controls, exercise preconditioning (pre-exercise) improved recovery of sensorimotor performance in the beam walk task, as well as cognitive/affective functions in the Morris water maze, novel object recognition, and tail-suspension tests. Further, pre-exercise reduced lesion size, attenuated neuronal loss in the hippocampus, cortex, and thalamus, and decreased microglial activation in the cortex. In addition, exercise preconditioning activated the brain-derived neurotrophic factor pathway before trauma and amplified the injury-dependent increase in heat shock protein 70 expression, thus attenuating key apoptotic pathways. The latter include reduction in CCI-induced up-regulation of proapoptotic B-cell lymphoma 2 (Bcl-2)-homology 3–only Bcl-2 family molecules (Bid, Puma), decreased mitochondria permeabilization with attenuated release of cytochrome c and apoptosis-inducing factor (AIF), reduced AIF translocation to the nucleus, and attenuated caspase activation. Given these neuroprotective actions, voluntary physical exercise may serve to limit the consequences of TBI. PMID:25419789

Top