Science.gov

Sample records for incoherent laser beam

  1. Incoherent combining of 100-W Yb-fiber laser beams by PTR Bragg grating

    NASA Astrophysics Data System (ADS)

    Ciapurin, Igor V.; Glebov, Leonid B.; Glebova, Larissa N.; Smirnov, Vadim I.; Rotari, Eugeniu V.

    2003-07-01

    Volume diffractive gratings (Bragg gratings) in photo-thermo-refractive (PTR) inorganic glass are proposed for incoherent laser beam combining because they have narrow spectral selectivity and diffraction efficiency greater than 95% from visible to near IR regions. They showed no laser-induced damage, no thermal lens, and no Bragg angle shift under CW Yb-fiber laser (1096 nm) irradiation at 100 kW/cm2. It opens the way to rugged, low-cost, efficient optics for high-power laser systems. Based on theoretical modeling of PTR Bragg gratings, we have designed a high-efficient technology for incoherent combining of two or several laser beams with certain wavelength shift. Two 100 W beams of Yb-fiber lasers in the range of 1080-1100 nm with the wavelength separation of 11 nm were combined with efficiency exceeding 75% while material losses did not exceed 2-4%. No fading or parameter change of PTR Bragg grating working in two 100 W beams were found. It was found that the process limiting efficiency of incoherent beam combining is the spectral widening of radiation of Yb-doped fiber lasers. At high power, their spectral width exceeds spectral selectivity of Bragg grating and causes a decrease of diffraction efficiency.

  2. Three-photon resonant atomic excitation in spatially incoherent laser beams

    SciTech Connect

    Peet, Victor; Shchemeljov, Sergei

    2003-10-01

    Two-color excitation by spatially coherent and incoherent laser beams has been used to study three-photon-resonant excitation and subsequent ionization of xenon in conditions, when internally generated sum-frequency field plays an important role in excitation of atomic resonances through interfering one-photon excitation pathway. We show that the incoherence in one of the pumping fields reduces the efficiency of generated sum-frequency field, and thus suppresses the interference between the three- and the one-photon excitation channels. The degree of suppression is controlled by varying the crossing angle between coherent and incoherent laser beams. We show that ionization profiles can be analyzed on the basis of the well-studied interference of one- and three-photon transition amplitudes, but with pumping field decomposed into multiple small-scale uncorrelated domains where coherent process of four-wave mixing occurs. The gain length for a coherent process in these domains depends on the coherence degree and excitation geometry. It gives a possibility of controlling the contribution of coherent processes to the excitation of multiphoton resonances.

  3. Multi-color γ-rays from comb-like electron beams driven by incoherent stacks of laser pulses

    NASA Astrophysics Data System (ADS)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2017-03-01

    Trains of fs-length, GeV-scale electron bunches with controlled energy spacing and a 5-D brightness up to 1017 A/m2 may be produced in a mm-scale uniform plasma. The main element of the scheme is an incoherent stack of 10-TW-scale laser pulses of different colors, with mismatched focal spots, with the highest-frequency pulse advanced in time. While driving an electron density bubble, this stack remains almost proof against nonlinear red-shift and self-compression. As a consequence, the unwanted continuous injection of background electrons is minimized. Weak focusing of the trailing (lower-frequency) component of the stack enforces expansions and contractions of the bubble, inducing controlled periodic injection. The resulting train of electron bunches maintains exceptional quality while being accelerated beyond the energy limits predicted by accepted scalings. Inverse Thomson scattering from this comb-like beam generates a sequence of quasi-monochromatic, fs-length γ-ray beams, an asset for nuclear forensics and pump-probe experiments in dense plasmas.

  4. Quasilinear theory of terahertz free-electron lasers based on Compton scattering of incoherent pump wave by intense relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Kocharovskaya, E. R.

    2016-08-01

    The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.

  5. Incoherently pumped continuous wave dye laser

    NASA Astrophysics Data System (ADS)

    Thiel, E.; Zander, C.; Drexhage, K. H.

    1987-05-01

    Continuous wave operation of a dye laser, pumped by an incoherent light source, is reported. A jet of a water-based solution of Rhodamine 6G is used as the laser medium in a spherical cavity with high reflectivity mirrors. Two high pressure arcs generated by electrical discharge between tungsten electrodes serve as pump source. They produce a power density of 0.5-10 kW/cm 2 in the jet causing the dye to lase at 615 nm.

  6. Incoherent Combining of High-Power Fiber Lasers for Directed-Energy Applications

    DTIC Science & Technology

    2008-01-16

    fiber lasers , IPG Photonics currently holds the record, producing over 3 kW per fiber of single-mode laser ...energy laser systems. The first field demonstration of incoherent beam combining using kilowatt -class, single-mode fiber lasers over a kilometer...combining using kilowatt -class, single-mode fiber lasers . The experiment combined four fiber lasers using a beam director consisting of

  7. Propagation behavior of incoherent beams in one-dimensional photonic crystals.

    PubMed

    Ding, Fei-Na; Chen, Yuan-Yuan; Shi, Jie-Long

    2010-03-01

    The propagation properties of Gaussian Schell-model spatially incoherent beams through a one-dimensional photonic crystal (1DPC) are investigated. The dynamical evolution of incoherent beams in 1DPC and the Goos-Hänchen lateral shift of the transmitted beams are obtained. The mutual effects of coherence and bandgap of the PC on the evolution of incoherent beams are analyzed. The incidence angle of the incoherent beam also has an influence on the incoherent electric field and the lateral shift.

  8. Coherent and incoherent terahertz beams measured from a terahertz photoconductive antenna

    SciTech Connect

    Ho Wu, Dong; Graber, Benjamin; Kim, Christopher; Qadri, S. B.; Garzarella, Anthony

    2014-02-03

    We have systematically measured and analyzed the terahertz beams of a photoconductive antenna fabricated on a GaAs substrate. Our data indicate that the antenna produces both coherent and incoherent terahertz beams. The former is produced largely by the plasmon, and the latter is believed to be due to the black body radiation resulting from the thermal excitations and Joule heating by both the femto-second laser and the bias voltage, applied across the electrodes of the antenna. The terahertz-beam property is greatly affected by the operating condition of the photoconductive antenna.

  9. Incoherent and Laser Photodeposition on Thin Films.

    DTIC Science & Technology

    1980-09-01

    wavelength, an incoherent Oriel Mercury arc lamp (model HR-l) with a 1000 watt u-v out- a put centered at 2537A was used. This source emitted o down...Royal Society of London Series A, 156: 108-129 (1936). 18. Gutowsky, H.S.. "The Infra-Red and Raman Spectra of Dimethyl Mercury and Dimethyl Zinc," The...II), - Cadmium (II) and - Mercury (II)," Spectrochimica Acta, 33A: 669-680 (1977). 20. Bakke, A.M.W.. "A Molecular Structure Study of Dimethylmercury

  10. Incoherent GaAlAs/GaAs semiconductor laser arrays

    NASA Technical Reports Server (NTRS)

    Hwang, C. J.; Chen, J. S.; Fu, R. J.; Wu, D. H.; Wang, C. S.

    1988-01-01

    The fabrication of an incoherent laser array is reported. The main features of the arrays are low threshold index-guided laser elements, single-lobe far-field pattern, low astigmatism, low current operation, dense packing, and total electrical and optical isolation. With further development, this device should have applications in multihead optical-disk reading and writing, multifiber optical communications, and line-of-sight communications.

  11. Incoherent synchrotron emission of laser-driven plasma edge

    SciTech Connect

    Serebryakov, D. A. Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-15

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau–Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  12. Incoherent synchrotron emission of laser-driven plasma edge

    NASA Astrophysics Data System (ADS)

    Serebryakov, D. A.; Nerush, E. N.; Kostyukov, I. Yu.

    2015-12-01

    When a relativistically intense linearly polarized laser pulse is incident on an overdense plasma, a dense electron layer is formed on the plasma edge which relativistic motion results in high harmonic generation, ion acceleration, and incoherent synchrotron emission of gamma-photons. Here we present a self-consistent analytical model that describes the edge motion and apply it to the problem of incoherent synchrotron emission by ultrarelativistic plasma electrons. The model takes into account both coherent radiation reaction from high harmonics and incoherent radiation reaction in the Landau-Lifshitz form. The analytical results are in agreement with 3D particle-in-cell simulations in a certain parameter region that corresponds to the relativistic electronic spring interaction regime.

  13. Preliminary results toward injection locking of an incoherent laser array

    NASA Technical Reports Server (NTRS)

    Daher, J.

    1986-01-01

    The preliminary results of phase locking an incoherent laser array to a master source in an attempt to achieve coherent operation are presented. The techniques necessary to demonstrate phase locking are described along with some topics for future consideration. As expected, the results obtained suggest that injection locking of an array, where the spacing between adjacent longitudinal modes of its elements is significantly larger than the locking bandwidth, may not be feasible.

  14. Coherence delay augmented laser beam homogenizer

    DOEpatents

    Rasmussen, P.; Bernhardt, A.

    1993-06-29

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  15. Coherence delay augmented laser beam homogenizer

    DOEpatents

    Rasmussen, Paul; Bernhardt, Anthony

    1993-01-01

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  16. Laser beam monitoring system

    DOEpatents

    Weil, Bradley S.; Wetherington, Jr., Grady R.

    1985-01-01

    Laser beam monitoring systems include laser-transparent plates set at an angle to the laser beam passing therethrough and light sensor for detecting light reflected from an object on which the laser beam impinges.

  17. Coherent and incoherent structural dynamics in laser-excited antimony

    NASA Astrophysics Data System (ADS)

    Waldecker, Lutz; Vasileiadis, Thomas; Bertoni, Roman; Ernstorfer, Ralph; Zier, Tobias; Valencia, Felipe H.; Garcia, Martin E.; Zijlstra, Eeuwe S.

    2017-02-01

    We investigate the excitation of phonons in photoexcited antimony and demonstrate that the entire electron-lattice interactions, in particular coherent and incoherent electron-phonon coupling, can be probed simultaneously. Using femtosecond electron diffraction (FED) with high temporal resolution, we observe the coherent excitation of the fully symmetric A1 g optical phonon mode via the shift of the minimum of the atomic potential energy surface. Ab initio molecular dynamics simulations on laser excited potential energy surfaces are performed to quantify the change in lattice potential and the associated real-space amplitude of the coherent atomic oscillations. Good agreement is obtained between the parameter-free calculations and the experiment. In addition, our experimental configuration allows observing the energy transfer from electrons to phonons via incoherent electron-lattice scattering events. The electron-phonon coupling is determined as a function of electronic temperature from our DFT calculations and the data by applying different models for the energy transfer.

  18. Research on Doppler frequency in incoherent FM/CW laser detection

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Cui, Zhanzhong

    2010-10-01

    The principle of transmitted and received laser in incoherent FM/CW laser detection is different from the one in coherent FM/CW laser detection. The methods for distance solution in both detections are similar. Incoherent FM/CW laser detection uses subcarrier to modulate the intensity of laser, and the photodetector detects the intensity of received signal. The amplified photocurrent is mixed with local oscillator signal, and the intermediate frequency (IF) signal contains the information of distance from sensor to target. The Doppler frequency for this detection is related with the relative radial velocity between sensor and target. The optical frequency is directly modulated with electro-optic device in coherent FM/CW laser detection and the received laser signal is photomixed with transmitted laser signal. The Doppler frequency in the detection relates to the optical frequency. In distance-measuring lidar, the Doppler frequency affects the solution. The Doppler frequency in incoherent FM/CW laser detection is unrelated with optical frequency, and it is much less than the one in coherent FM/CW laser detection, correspondingly. The error in incoherent FM/CW laser detection is smaller. As a result, the incoherent FM/CW laser detection is more suitable for the use of distance-measuring lidar.

  19. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  20. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  1. Laser beam generating apparatus

    DOEpatents

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  2. A survey of beam-combining technologies for laser space power transmission

    NASA Technical Reports Server (NTRS)

    Kwon, J. H.; Williams, M. D.; Lee, J. H.

    1988-01-01

    The combination of laser beams holds much promise for obtaining powerful beams. Methods are surveyed for beam combination (coherent and incoherent) and two of them are identified as the most effective means for achieving high power transmission in space. The two methods as applied to laser diode arrays are analyzed, and potentially productive work areas for the advancement of technology are delineated.

  3. Improved SPGD algorithm to avoid local extremum for incoherent beam combining

    NASA Astrophysics Data System (ADS)

    Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Wang, Tingfeng; Guo, Jin

    2017-01-01

    The stochastic parallel gradient descent (SPGD) algorithm and the fast steering mirrors (FSM) are applied for incoherent beam combining in this paper. An equation is derived to calculate the wavefront reflected from the FSM under certain control voltages and the relationship between the strength of random disturbances and the combing efficiency is discussed via simulations, indicating that the combining efficiency is inversely proportional to the square of the strength of disturbance. The maximum value of the acceptable disturbance can be determined though the fitting curve which presents an instructional way to reduce the disturbance in advance. Besides, the SPGD algorithm is improved to overcome the weakness of tending to be trapped in the local extremum in incoherent beam combining. In the proposed algorithm, pattern recognition is used to check whether the algorithm is trapped and an "additional move" can be applied to get out of local extremum. The results of simulations show that the proposed algorithm can improve the performance of the incoherent beam combining. Comparative simulations are conducted where the value of evaluation function is increased about 60% compared to the conventional algorithm under the same conditions. The threshold of disturbance also increases about 15% when the accepted value of evaluation function set to 0.8 in the normalized form showing the feasibility of the method. Also, statistical data shows the proposed method depends less on the gain coefficient.

  4. Laser beam alignment system

    DOEpatents

    Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.

    1984-01-01

    A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

  5. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  6. Single element laser beam shaper

    DOEpatents

    Zhang, Shukui; Michelle D. Shinn

    2005-09-13

    A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

  7. Incoherent Combining of High-Power Fibers Lasers for Long-Range Directed Energy Applications

    DTIC Science & Technology

    2006-06-27

    Europe meeting IPG Photonics reported [2] CW powers of 2 kW at a wavelength of A = 1.075/.n from a ytterbium fiber laser . The fiber laser operated in a...propagation of the laser beams from the fiber array of Fig. 6 to the target. HELCAP is a 3 -dimensional, fully time-dependent, nonlinear atmospheric...configuration uses recently-developed, multi- kilowatt fiber lasers . These lasers , however, are not suitable for coherent beam combining because of their

  8. Characterization of Laser Beam Quality.

    DTIC Science & Technology

    1982-12-01

    proposed a lens-less method to determine beam divergence of Gaussian -shaped laser beams. The propagation of a Gaussian beam is shown in figure 8. Given...irradiance profile of laser beams, a numerical model was developed to simulate the propagation of nondif- fraction-limited laser beams. The function of...In developing the computer model , the incident field 30 *°" [(x, 12. :h e--27,1, is assumed to be Gaussian in intensity, truncated by an aper- ture

  9. High-precision beam shaper for coherent and incoherent light using a DLP spatial light modulator

    NASA Astrophysics Data System (ADS)

    Liang, Jinyang; Kohn, Rudolph N., Jr.; Becker, Michael F.; Heinzen, Daniel J.

    2011-03-01

    We designed a precision laser beam shaper using a Texas Instruments digital micromirror device (DMD) with a telescope system containing a pinhole low-pass filter. The performance of the beam shaper was measured by comparing the intensity and wave-front uniformity to the target function and by the energy conversion efficiency. We demonstrated flattop and other laser beam profiles with 1-1.5% root-mean-square (RMS) error for a raw camera image and nearly flat phase. A noise analysis of the system revealed that lower error is possible and that most of the error came from coherent speckle noise in the camera. A previous experiment using a 1064 nm single-mode fiber (SMF) laser produced around 7% beam power conversion efficiency. Here we report improvements in system automation and laser source flexibility that result in increasing both the speed of the system to calculate and produce a beam, and the beam uniformity and energy conversion efficiency. A LabVIEW program was written to accelerate the speed of the iterative process for beam profile refinement. A 760 nm super-luminescent light emitting diode (SLED) and a 781 nm Laser Diode (LD) were used as light sources in order to reduce the beam coherence and approach the ultimate performance of the shaper. Both sources greatly reduced the speckle noise and increased measured intensity uniformity. Experiments achieved less than 0.9% RMS error over the entire flattop area with a diameter of 1.32 mm. In addition, simulations were conducted to determine the optimized wavelengths for different types of DMDs. For the .7XGA DMD, the 5th diffraction order matches 750-800 nm. Matching the laser diode to this wavelength increased the power conversion efficiency (input beam to output beam) to 19.8%.

  10. Momentum Flux Determination Using the Multi-beam Poker Flat Incoherent Scatter Radar

    NASA Technical Reports Server (NTRS)

    Nicolls, M. J.; Fritts, D. C.; Janches, Diego; Heinselman, C. J.

    2012-01-01

    In this paper, we develop an estimator for the vertical flux of horizontal momentum with arbitrary beam pointing, applicable to the case of arbitrary but fixed beam pointing with systems such as the Poker Flat Incoherent Scatter Radar (PFISR). This method uses information from all available beams to resolve the variances of the wind field in addition to the vertical flux of both meridional and zonal momentum, targeted for high-frequency wave motions. The estimator utilises the full covariance of the distributed measurements, which provides a significant reduction in errors over the direct extension of previously developed techniques and allows for the calculation of an error covariance matrix of the estimated quantities. We find that for the PFISR experiment, we can construct an unbiased and robust estimator of the momentum flux if sufficient and proper beam orientations are chosen, which can in the future be optimized for the expected frequency distribution of momentum-containing scales. However, there is a potential trade-off between biases and standard errors introduced with the new approach, which must be taken into account when assessing the momentum fluxes. We apply the estimator to PFISR measurements on 23 April 2008 and 21 December 2007, from 60-85 km altitude, and show expected results as compared to mean winds and in relation to the measured vertical velocity variances.

  11. Laser beam guard clamps

    SciTech Connect

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  12. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  13. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  14. Instability versus equilibrium propagation of a laser beam in plasma.

    PubMed

    Lushnikov, Pavel M; Rose, Harvey A

    2004-06-25

    We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam that controls the transition between statistical equilibrium and nonequilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtained, which provides an essential correction to a geometric optic approximation for beam propagation.

  15. Pulsed laser beam intensity monitor

    SciTech Connect

    Cason, C.M.; Jones, R.W.

    1982-07-13

    A pulsed laser beam intensity monitor measures the peak power within a selectable cross section of a test laser beam and measures integrated energy of the beam during the pulse period of a test laser. A continuous wave laser and a pulsed ruby laser are coaxially arranged for simultaneously transmitting optical output energy through a crystal flat during the time a test laser pulse is transmitted through the flat. Due to stress birefringence in the crystal, the ruby laser pulse transmitted through the flat is recorded and analyzed to provide peak power information about the test laser output pulse, and the continuous wave laser output reflected from the crystal flat provides a measurement of energy during the test laser pulse.

  16. Atomic laser-beam finder.

    PubMed

    Viering, Kirsten; Medellin, David; Mo, Jianyong; Raizen, Mark G

    2012-11-05

    We report on an experimental method to align a laser beam to a cloud of atoms trapped in a magneto-optical trap (MOT). We show how balanced lock-in detection leads to a very sensitive method to align the laser beam to the atoms in the plane perpendicular to the propagation direction. This provides a very reliable and fast way of aligning laser beams to atoms trapped in a MOT.

  17. Influence of laser array performance on spectrally combined beam

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Yang, Lei; Zhong, Zheqiang; Zhang, Bin

    2016-10-01

    Incoherent spectral beam combining (SBC) of multiple laser beams is accomplished along the emitters' arraying direction. Considering that the output beams from a laser array (LA) usually have deflection angles, positional displacements and divergence angles even after being collimated, a propagation model of SBC systems based on multilayer dielectric gratings has been built up. On the basis, properties of the spectrally combined beam affected by parameters of the LA have been discussed in detail. Simulation results show that with the increase in the deflection angle, both the power and the beam quality of the combined beam degrade dramatically. The positional displacement has little impact on the intensity distribution and the beam quality of combined beam but change the wavelength composition of the combined beam. The divergence angle strongly affects the intensity distribution and the beam quality of the combined beam. Additionally, the effect of the deflection angle on the output beam quality is more obvious and may shift the beam spot when comparing with that of the divergence angle.

  18. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  19. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  20. Refractive beam shapers for focused laser beams

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  1. GAUSSIAN BEAM LASER RESONATOR PROGRAM

    NASA Technical Reports Server (NTRS)

    Cross, P. L.

    1994-01-01

    In designing a laser cavity, the laser engineer is frequently concerned with more than the stability of the resonator. Other considerations include the size of the beam at various optical surfaces within the resonator or the performance of intracavity line-narrowing or other optical elements. Laser resonators obey the laws of Gaussian beam propagation, not geometric optics. The Gaussian Beam Laser Resonator Program models laser resonators using Gaussian ray trace techniques. It can be used to determine the propagation of radiation through laser resonators. The algorithm used in the Gaussian Beam Resonator program has three major components. First, the ray transfer matrix for the laser resonator must be calculated. Next calculations of the initial beam parameters, specifically, the beam stability, the beam waist size and location for the resonator input element, and the wavefront curvature and beam radius at the input surface to the first resonator element are performed. Finally the propagation of the beam through the optical elements is computed. The optical elements can be modeled as parallel plates, lenses, mirrors, dummy surfaces, or Gradient Index (GRIN) lenses. A Gradient Index lens is a good approximation of a laser rod operating under a thermal load. The optical system may contain up to 50 elements. In addition to the internal beam elements the optical system may contain elements external to the resonator. The Gaussian Beam Resonator program was written in Microsoft FORTRAN (Version 4.01). It was developed for the IBM PS/2 80-071 microcomputer and has been implemented on an IBM PC compatible under MS DOS 3.21. The program was developed in 1988 and requires approximately 95K bytes to operate.

  2. Phased laser array for generating a powerful laser beam

    DOEpatents

    Holzrichter, John F.; Ruggiero, Anthony J.

    2004-02-17

    A first injection laser signal and a first part of a reference laser beam are injected into a first laser element. At least one additional injection laser signal and at least one additional part of a reference laser beam are injected into at least one additional laser element. The first part of a reference laser beam and the at least one additional part of a reference laser beam are amplified and phase conjugated producing a first amplified output laser beam emanating from the first laser element and an additional amplified output laser beam emanating from the at least one additional laser element. The first amplified output laser beam and the additional amplified output laser beam are combined into a powerful laser beam.

  3. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  4. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    SciTech Connect

    Kalmykov, S. Y. Shadwick, B. A.; Davoine, X.; Lehe, R.; Lifschitz, A. F.

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  5. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2014-05-15

    The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

  6. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  7. New method of beam bunching in free-ion lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  8. Gaussian-Beam Laser-Resonator Program

    NASA Technical Reports Server (NTRS)

    Cross, Patricia L.; Bair, Clayton H.; Barnes, Norman

    1989-01-01

    Gaussian Beam Laser Resonator Program models laser resonators by use of Gaussian-beam-propagation techniques. Used to determine radii of beams as functions of position in laser resonators. Algorithm used in program has three major components. First, ray-transfer matrix for laser resonator must be calculated. Next, initial parameters of beam calculated. Finally, propagation of beam through optical elements computed. Written in Microsoft FORTRAN (Version 4.01).

  9. Laser processing with specially designed laser beam

    NASA Astrophysics Data System (ADS)

    Asratyan, A. A.; Bulychev, N. A.; Feofanov, I. N.; Kazaryan, M. A.; Krasovskii, V. I.; Lyabin, N. A.; Pogosyan, L. A.; Sachkov, V. I.; Zakharyan, R. A.

    2016-04-01

    The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80-100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10-30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.

  10. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    DOE PAGES

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated onmore » one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.« less

  11. Direct optical measurement of the on-shot incoherent focal spot and intensity contrast on the OMEGA EP laser

    SciTech Connect

    Dorrer, C.; Consentino, A.; Irwin, D.

    2016-05-18

    Characterizing the prepulse temporal contrast of optical pulses is required to understand their interaction with matter. Light with relatively low intensity can interact with the target before the main high-intensity pulse. Estimating the intensity contrast, instead of the spatially averaged power contrast, is important to understand intensity-dependent laser–matter interactions. A direct optical approach to determining the on-shot intensity of the incoherent pedestal on an aberrated high-intensity laser system is presented. The spatially resolved focal spot of the incoherent pedestal preceding the main coherent pulse and the intensity contrast are calculated using experimental data. Furthermore, this technique is experimentally validated on one of the chirped pulse amplification beamlines of the OMEGA EP Laser System. The intensity contrast of a 1-kJ, 10-ps laser pulse is shown to be ~10× higher than the power contrast because of the larger spatial extent of the incoherent focal spot relative to the coherent focal spot.

  12. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Chaffee, Paul H.

    1991-01-01

    A method and apparatus is disclosed that provides a laser output beam having a broad bandwidth and an intensity smooth over time. The bandwidth of the laser output can be varied easily by varying the intensity of a broadband source. The present invention includes an optical modulation apparatus comprising a narrowband laser that outputs a horizontally polarized beam (a "signal beam") and a broadband laser that outputs a vertically polarized beam (a "pump beam") whose intensity varies rapidly. The two beam are coupled into a birefringent laser material so that the respective polarizations coincide with the principal axes of the material. As the two beams travel through the material, the polarization preserving properties of the birefringent material maintain the respective polarizations of the two beam; however there is coupling between the two beams as a result of cross phase modulations, which induces a bandwidth change of the signal beam. The amount of bandwidth change is dependent upon the average intensity of the pump beam. The beams are coupled out from the birefringent material and the modulated signal beam is separated by a polarization selector. The modulated signal beam now has a wider bandwidth, and its shape remains smooth in time. This signal beam can be applied to incoherence inducing systems. The different bandwidths required by these different incoherence inducing systems can be obtained by varying the intensity of the pump beam. The United States Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  13. Single lens laser beam shaper

    DOEpatents

    Liu, Chuyu; Zhang, Shukui

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  14. Influence of incoherent scattering on stochastic deflection of high-energy negative particle beams in bent crystals

    NASA Astrophysics Data System (ADS)

    Kirillin, I. V.; Shul'ga, N. F.; Bandiera, L.; Guidi, V.; Mazzolari, A.

    2017-02-01

    An investigation on stochastic deflection of high-energy negatively charged particles in a bent crystal was carried out. On the basis of analytical calculation and numerical simulation it was shown that there is a maximum angle at which most of the beam is deflected. The existence of a maximum, which is taken in the correspondence of the optimal radius of curvature, is a novelty with respect to the case of positively charged particles, for which the deflection angle can be freely increased by increasing the crystal length. This difference has to be ascribed to the stronger contribution of incoherent scattering affecting the dynamics of negative particles that move closer to atomic nuclei and electrons. We therefore identified the ideal parameters for the exploitation of axial confinement for negatively charged particle beam manipulation in future high-energy accelerators, e.g., ILC or muon colliders.

  15. Making Laser Beams Visible.

    ERIC Educational Resources Information Center

    Knotts, Michael

    1993-01-01

    Describes an inexpensive fog machine that is useful for photography and laser demonstrations. The apparatus uses liquid nitrogen to chill steam to make a fine mist safe for precision optics. The device can be made for around $50. (MVL)

  16. Power beaming with FEL lasers

    NASA Astrophysics Data System (ADS)

    Lampel, Michael C.; Curtin, Mark S.; Burke, Robert J.; Cover, Ralph A.; Rakowsky, George; Bennett, Glenn T.

    1993-06-01

    FEL power beaming has broad application to space operations. The Rocketdyne Division of Rockwell International Corporation has examined the commercial applications of beamed power from Earth to space using the Radio Frequency LINAC Free Electron Laser (RF FEL) and has determined that there is a substantial addressable market. Rocketdyne's experience in developing and demonstrating FEL technologies, optics and atmospheric compensation and advanced power and power distribution systems ideally positions the Division to conduct the initial demonstration to prove the feasibility of using a FEL to beam power to space platforms.

  17. Ultrashort laser pulse beam shaping.

    PubMed

    Zhang, Shuyan; Ren, Yuhang; Lüpke, Gunter

    2003-02-01

    We calculated the temporal and spatial characteristics of an ultrashort laser pulse propagating through a diffractive beam-shaping system that converts a Gaussian beam into a beam with a uniform irradiance profile that was originally designed for continuous waves [Proc. SPIE 2863, 237(1996)]. The pulse front is found to be considerably curved for a 10-fs pulse, resulting in a temporal broadening of the pulse that increases with increasing radius. The spatial intensity distribution deviates significantly from a top-hat profile, whereas the fluence shows a homogeneous radial distribution.

  18. Independent assessment of laser power beaming options

    NASA Technical Reports Server (NTRS)

    Ponikvar, Donald R.

    1992-01-01

    Technical and architectural issues facing a laser power beaming system are discussed. Issues regarding the laser device, optics, beam control, propagation, and lunar site are examined. Environmental and health physics aspects are considered.

  19. Protective laser beam viewing device

    DOEpatents

    Neil, George R.; Jordan, Kevin Carl

    2012-12-18

    A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

  20. Laser beam steering device

    NASA Technical Reports Server (NTRS)

    Motamedi, M. E.; Andrews, A. P.; Gunning, W. J.

    1993-01-01

    Agile beam steering is a critical requirement for airborne and space based LIDAR and optical communication systems. Design and test results are presented for a compact beam steering device with low inertia which functions by dithering two complementary (positive and negative) binary optic microlens arrays relative to each other in directions orthogonal to the direction of light propagation. The miniaturized system has been demonstrated at scan frequencies as high as 300 Hz, generating a 13 x 13 spot array with a total field of view of 2.4 degrees. The design is readily extendable to a 9.5 degree field of view and a 52 x 52 scan pattern. The system is compact - less than 2 in. on a side. Further size reductions are anticipated.

  1. Understanding Laser Beam Quality Beyond M2

    NASA Astrophysics Data System (ADS)

    Soskind, Y. G.; Soskind, M. G.

    2016-09-01

    The laser beam M2 quality parameter is based on the second moments' theory, as defined by ISO standards, and provides a common approach for defining the propagation characteristics of laser beams as a whole. At the same time, the M2 parameter fails to quantitatively distinguish the quality of laser beams with different spatial characteristics. For example, several laser beams with very different spatial profiles may have the same M2 value. To overcome this ambiguity, a different beam quality criterion is introduced, allowing for a quantitative definition of both the structured laser beam shape and its propagation characteristics. This criterion, called the encircled power M2 (EPM2), bridges the gap between the M2 quality parameter and the structured laser beam shape. Based on several examples we demonstrate the utility of EPM2 as applied to characterization of several structured laser beam types.

  2. LASER PROFILE MEASUREMENTS OF AN H BEAM.

    SciTech Connect

    CONNOLLY,R.; CAMERON,P.; CUPOLO,J.; GRAU,M.; KESSELMAN,M.; LIAW,C.J.; SIKORA,R.

    2001-06-18

    A non-intercepting beam profile monitor for He beams is being developed at Brookhaven National Lab. An H{sup {minus}} ion has a first ionization potential of 0.75eV. Electrons can be removed from an H{sup {minus}} beam by passing light from a near-infrared laser through it. Experiments have been performed on the BNL linac to measure the transverse profile of a 750keV beam by using a Nd:YAG laser to photoneutralize narrow slices of the beam. The laser beam is scanned across the ion beam neutralizing the portion of the beam struck by the laser. The electrons are removed from the ion beam and the beam current notch is measured.

  3. Scattering apodizer for laser beams

    DOEpatents

    Summers, M.A.; Hagen, W.F.; Boyd, R.D.

    1984-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  4. Scattering apodizer for laser beams

    DOEpatents

    Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.

    1985-01-01

    A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

  5. Incoherent scatter measurements of ring-ion beam distributions produced by space shuttle exhaust injections into the ionosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Sulzer, M. P.

    2004-02-01

    When the space shuttle Orbiting Maneuver Subsystem (OMS) engines burn in the ionosphere, two types of effects are produced. First, charge exchange between the exhaust molecules and the ambient O+-ions yields beams of high-speed molecular ions that can excite plasma turbulence. Second, the molecular ions eventually recombine with electrons to yield a plasma hole. The ion-beam interactions and the formation of artificial plasma holes in the ionosphere have been studied with ground-based, incoherent-scatter radars (ISRs) during the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) series of experiments. The SIMPLEX II experiment took place in late July 1999 during the STS-93 flight of the Space Shuttle Columbia. The Orbital Maneuver Subsystem (OMS) engines provided controlled ion injections over the incoherent scatter radar (ISR) facilities located at Arecibo, Puerto Rico to excite unusual radar signatures. After charge exchange between the exhaust and the ambient plasma, pickup ions were produced with velocities near 10 km/s using a ram-burn orientation of the OMS engines relative to the vehicle orbit vector. During the SIMPLEX II experiment, the ISR spectra of the exhaust-modified plasma were obtained for the first time. The formation of ring-ion beam distributions was determined from curve fitting to the radar spectra. These spectra show the presence of the nonthermal ion distributions and enhanced scatter from electrons for thermal ion distributions with elevated ion temperatures. Analysis of the ion distributions in the modified ionosphere indicates that they were unstable and may have quickly generated plasma waves that along with ion-neutral collisions changed the ion-velocity distributions. The observations show that the perpendicular ion speed was rapidly reduced from 10 km/s to about 1 km/s. These observations open up the possibility of conducting a new series of experiments studying ring-ion beam instabilities that occur naturally in

  6. Laser beam welding of thermoplastics

    NASA Astrophysics Data System (ADS)

    Russek, Ulrich A.; Palmen, A.; Staub, H.; Poehler, J.; Wenzlau, C.; Otto, G.; Poggel, M.; Koeppe, A.; Kind, H.

    2003-07-01

    Current product development showing an ever shrinking physical volume is asking for new, reliable joining technologies. Laser beam technologies conceal innovative solutions to overcome limitations of conventional joining technologies. Laser beam welding of thermoplastics offers several process technical advantages. The joining energy is fed contact-less into the joining area, avoiding mechanical stress and thermal load to the joining partners. The energy is supplied spatially (seam width on the order of 100 μm) and timely (interaction time on the order of ms) very well defined. Different process strategies are possible leading to flexibility, product adapted irradiation, short process times and high quality weld seams as well as to high integration abilities and automation potentials. During the joining process no vibration, no thermal stress, no particle release takes place. Therefore, destruction of mechanically and electronically highly sensitive components, such as microelectronics, is avoided. The work place pollution is neglectable compared to other joining technologies, such as gluing (fume) or ultrasonic welding (noise, pieces of fluff). Not only micro-components can be welded in a reproducible way but also macro-components while obtaining a hermetic sealing with good optical appearance. In this publication firstly, an overview concerning process technical basis, aspects and challenges is given. Next, results concerning laser penetration welding of polymers using high power diode lasers are presented, while comparing contour and simultaneous welding by experimental results and the on-line process monitoring.

  7. Cascaded injection resonator for coherent beam combining of laser arrays

    DOEpatents

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  8. Raman beam combining for laser brightness enhancement

    DOEpatents

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  9. A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams

    SciTech Connect

    Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J

    2010-11-10

    Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.

  10. Method for splitting low power laser beams

    SciTech Connect

    Pierscionek, B.K. )

    1990-04-01

    A new method for producing parallel rays from a laser beam using a cylindrical lens and pinholes is presented. This method can produce a greater number of emergent rays than using a {ital beam} {ital splitter}.

  11. Apparatus and method for increasing the bandwidth of a laser beam

    DOEpatents

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  12. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  13. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects

    NASA Astrophysics Data System (ADS)

    Xu, Jiangming; Lou, Zhaokai; Ye, Jun; Wu, Jian; Leng, Jinyong; Xiao, Hu; Zhang, Hanwei; Zhou, Pu

    2017-03-01

    We present a hundred-watt-level linearly-polarized random fiber laser (RFL) pumped by incoherent broadband amplified spontaneous emission (ASE) source and prospect the power scaling potential theoretically. The RFL employs half-opened cavity structure which is composed by a section of 330 m polarization maintained (PM) passive fiber and two PM high reflectivity fiber Bragg gratings. The 2nd order Stokes light centered at 1178 nm reaches the pump limited maximal power of 100.7 W with a full width at half-maximum linewidth of 2.58 nm and polarization extinction ratio of 23.5 dB. The corresponding ultimate quantum efficiency of pump to 2nd order Stokes light is 89.01%. To the best of our knowledge, this is the first demonstration of linearly-polarized high-order RFL with hundred-watt output power. Furthermore, the theoretical investigation indicates that 300 W-level linearly-polarized single-mode 1st order Stokes light can be obtained from incoherently pumped RFL with 100 m PM passive fiber.

  14. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    SciTech Connect

    Xu, Tong; Chen, Min Li, Fei-Yu; Yu, Lu-Le; Sheng, Zheng-Ming; Zhang, Jie

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

  15. Laser steering of particle beams: Refraction and reflection ofparticle beams

    SciTech Connect

    Esarey, Eric; Katsouleas, T.; Mori, W.B.; Dodd, E.; Lee, S.; Hemker, R.; Clayton, C.; Joshi, C.

    1999-11-01

    The co-propagation of an intense particle beam with an ionizing laser beam in a working gas/plasma is considered. When the axes of the laser and particle beam are not aligned, then asymmetric plasma lensing results in a net dipole field acting on the particle beam. The particle beam can be steered or bent (as well as focused) by steering the laser. An analogy is made between the bending of the particle beam by collective effects at a plasma boundary and the refraction or reflection of light at an interface. This mechanism of particle steering may be of interest in applications for which permanent magnets are inconvenient of a fast turn on is required. 3-D particle-in-cell simulations and relevance to a recent experiment are discussed.

  16. Laser Beam Duct Pressure Controller System.

    DTIC Science & Technology

    the axial flow of a conditioning gas within the laser beam duct, by matching the time rate of change of the pressure of the flowing conditioning gas...to the time rate of change of the pressure in the cavity of an operably associated laser beam turret.

  17. Laser-Bessel-Beam-Driven Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Li, Dazhi; Imasaki, Kazuo

    2005-08-01

    A vacuum-laser-driven acceleration scheme using a laser Bessel beam is presented. In contrast to the conventional Gaussian beam, the Bessel beam demonstrates diffraction-free propagation, which implies the possibility of extending the effective interaction distance for a laser-electron system. In this method, the Bessel beam is truncated by annular slits to realize a series of nonsuccessive dim regions along the path of laser propagation, where the amplitude of the laser field is reduced, making the electron slightly decelerate as it travels in the decelerating phase. We analyzed the propagation characteristics of the truncated Bessel beam with scalar diffraction theory, and then introduced this approach with careful investigation of a three-stage acceleration model.

  18. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  19. Beam Stop For High-Power Lasers

    NASA Technical Reports Server (NTRS)

    Mcdermid, Iain S.; Williamson, William B.

    1990-01-01

    Graphite/aluminum plate absorbs most of light. Beam stop fits on standard optical mounting fixture. Graphite plate thick enough to absorb incident laser beam but thin enough to transfer heat quickly to heat sink. Device used for variety of blocking purposes. For example, blocks laser beam after it passes through experimental setup, or at each stage of setup so stages checked and tested in sequence. Negligible reflectance of device is valuable safety feature, protecting both users and equipment from reflections.

  20. Method and apparatus for timing of laser beams in a multiple laser beam fusion system

    DOEpatents

    Eastman, Jay M.; Miller, Theodore L.

    1981-01-01

    The optical path lengths of a plurality of comparison laser beams directed to impinge upon a common target from different directions are compared to that of a master laser beam by using an optical heterodyne interferometric detection technique. The technique consists of frequency shifting the master laser beam and combining the master beam with a first one of the comparison laser beams to produce a time-varying heterodyne interference pattern which is detected by a photo-detector to produce an AC electrical signal indicative of the difference in the optical path lengths of the two beams which were combined. The optical path length of this first comparison laser beam is adjusted to compensate for the detected difference in the optical path lengths of the two beams. The optical path lengths of all of the comparison laser beams are made equal to the optical path length of the master laser beam by repeating the optical path length adjustment process for each of the comparison laser beams. In this manner, the comparison laser beams are synchronized or timed to arrive at the target within .+-.1.times.10.sup.-12 second of each other.

  1. Potential converter for laser-power beaming

    NASA Technical Reports Server (NTRS)

    Walker, Gilbert H.; Williams, Michael D.; Schuster, Gregory L.; Iles, Peter A.

    1991-01-01

    Future space missions, such as those associated with the Space Exploration Initiative (SEI), will require large amounts of power for operation of bases, rovers, and orbit transfer vehicles. One method for supplying this power is to beam power from a spaced based or Earth based laser power station to a receiver where laser photons can be converted to electricity. Previous research has described such laser power stations orbiting the Moon and beaming power to a receiver on the surface of the Moon by using arrays of diode lasers. Photovoltaic converters that can be efficiently used with these diode lasers are described.

  2. Robotics For High Power Laser Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Watson, Henry E.

    1989-03-01

    The research and development programs in manufacturing science at The Pennsylvania State University have a major emphasis on laser materials processing technology development. A major thrust of this program is the development of an intelligent robotic system which can manipulate a laser beam in three dimension with the precision required for welding. The robot is called LARS for Laser Articulated Robotic System. A gantry based robot was selected as the foundation for LARS and the system is divided into five major subsystems: robot, electronic control, vision, workhead, beam transport, and software. An overview of the Laser Robotics program including laser materials processing research programs will be provided.

  3. Space Optical Communications Using Laser Beam Amplification

    NASA Technical Reports Server (NTRS)

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  4. Fractional laser photothermolysis using Bessel beams

    PubMed Central

    Mignon, Charles; Rodriguez, Aura Higuera; Palero, Jonathan A.; Varghese, Babu; Jurna, Martin

    2016-01-01

    Fractional photothermolysis uses lasers to generate a pattern of microscopic columnar thermal lesions within the skin stimulating collagen remodeling. In this paper we investigate the use of Bessel beams as an alternative to conventional Gaussian beams in creating laser photothermal lesions of different aspect ratios in skin. We show for the first time the improved photothermal lesion depth-to-diameter aspect ratio using Bessel beams in ex vivo human skin as well as in numerical simulations using electric field Monte Carlo photon transport, finite difference methods and Arrhenius model. Bessel beams allow the creation of deep and narrow thermal lesions necessary for improved efficacy in fractional photothermolysis. PMID:28018718

  5. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-ray Laser

    DTIC Science & Technology

    1992-12-31

    been adequate to identify 29 first -class candidates, but further evaluation cannot proceed without remeasurements of nuclear properties with higher... under this contract. Resolution of the question of the feasibility of a gamma-ray laser now rests upon the determination of: 1) the identity of the best...the critical keys in the development of the first laser. There was a broad absorption band linked through efficient cascading to the narrow laser lavel

  6. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  7. A critical review of laser beam welding

    NASA Astrophysics Data System (ADS)

    Martukanitz, Richard P.

    2005-03-01

    The use of lasers for welding has exhibited tremendous growth over the last decade for improving efficiency and reducing costs in a broad range of industries. Much of these successes are based on the development and availability of enabling technologies, which include improvements in process understanding, enhancements in laser sources and systems, and continued development and progression in process technology for laser beam welding of macro and micro components. The development of accurate numerical simulation techniques has provided an unprecedented opportunity to view the transient nature of laser processing. Advancements in laser source technology include the introduction of higher-power Nd:YAG lasers, utilizing diode pumped rods or disks, and fiber lasers, both providing the capability for fiber optic beam delivery. Although CO2 laser systems continue to dominate thick section welding, this influence will be challenged by emerging source technologies, namely high power fiber lasers. One of the most promising advances in laser process technology is laser-arc hybrid welding, which is seeing considerable interest worldwide and is currently being evaluated for various applications within heavy industry and manufacturing. The benefit of hybrid welding is the synergistic effect of improved processing rates and joint accommodation over either of the processes viewed separately. Other processing methods are also being developed to increase the utility of laser beam welding for industry, such as the use of dual beams and beam manipulation. The continued advancement in process knowledge is seen as a key element for facilitating the development of new processes and encouraging the acceptance of new source technology.

  8. Laser beam riding artillery missiles guidance device is designed

    NASA Astrophysics Data System (ADS)

    Yan, Mingliang; Huo, Zhicheng; Chen, Wei

    2014-09-01

    Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.

  9. Satellites Would Transmit Power By Laser Beams

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Walker, Gilbert H.; HUMES D. H.; Kwon, J. H.

    1995-01-01

    Arrays of diode lasers concentrate power into narrow beams. Baseline design of system formulated with regard to two particular missions that differ greatly in power requirements, thus showing scalability and attributes of basic system. Satellite system features large-scale array amplifier of high efficiency, injection-locked amplifiers, coherent combination of beams, and use of advanced lithographic technology to fabricate diode lasers in array. Extremely rapid development of applicable technologies make features realizable within decade.

  10. Apparatus for laser beam profile measurements

    DOEpatents

    Barnes, N.P.; Gettemy, D.J.

    1985-01-30

    Apparatus for measuring the spatial intensity profile of the output beam from a continuous-wave laser oscillator. The rapid and repetitive passing of a small aperture through the otherwise totally blocked output beam of the laser under investigation provides an easily interpretable, real-time measure of the intensity characteristics thereof when detected by a single detector and the signal generated thereby displayed on an oscilloscope synthronized to the motion of the aperture.

  11. Laser wakefield acceleration of polarized electron beams

    NASA Astrophysics Data System (ADS)

    Pugacheva, D. V.; Andreev, N. E.; Cros, B.

    2016-11-01

    The acceleration of highly polarized electron beams are widely used in state-of-the-art high-energy physics experiments. In this work, a model for investigation of polarization dynamics of electron beams in the laser-plasma accelerator depending on the initial energy of electrons was developed and tested. To obtain the evolution of the trajectory and momentum of the electron for modeling its acceleration the wakefield structure was determined. The spin precession of the beam electron was described by Thomas-Bargman-Michel-Telegdi equations. The evolution of the electron beam polarization was investigated for zero-emittance beams with zero-energy spread.

  12. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  13. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  14. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  15. Single laser beam measurement of thermal diffusivity.

    PubMed

    Bourgoin, Jean-Philippe; Doiron, Serge; Deveaux, Michel; Haché, Alain

    2008-12-10

    Thermal diffusion properties of interfaces are measured using self-induced surface thermal lensing with a single laser beam. The time evolution of the reflected beam reveals information on heat diffusion away from the interface. Unambiguous correlation between measured signal and thermal diffusivity is shown, theoretically and experimentally, from which calibration curves are obtained. Being simpler and less sensitive to vibrations and misalignments, the technique offers definite advantages over standard two-beam (pump-probe) methods.

  16. Spiral laser beams in inhomogeneous media.

    PubMed

    Mahalov, Alex; Suazo, Erwin; Suslov, Sergei K

    2013-08-01

    Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned.

  17. Vertical laser beam propagation through the troposphere

    NASA Technical Reports Server (NTRS)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  18. Laser beam modeling in optical storage systems

    NASA Technical Reports Server (NTRS)

    Treptau, J. P.; Milster, T. D.; Flagello, D. G.

    1991-01-01

    A computer model has been developed that simulates light propagating through an optical data storage system. A model of a laser beam that originates at a laser diode, propagates through an optical system, interacts with a optical disk, reflects back from the optical disk into the system, and propagates to data and servo detectors is discussed.

  19. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

  20. Generation of low-divergence laser beams

    DOEpatents

    Kronberg, J.W.

    1993-09-14

    Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

  1. An Alternative Form of Laser Beam Characterization

    SciTech Connect

    KNOROVSKY,GERALD A.; MACCALLUM,DANNY O.

    2000-06-30

    Careful characterization of laser beams used in materials processing such as welding and drilling is necessary to obtain robust, reproducible processes and products. Recently, equipment and techniques have become available which make it possible to rapidly and conveniently characterize the size, shape, mode structure, beam quality (Mz), and intensity of a laser beam (incident power/unit area) as a function of distance along the beam path. This facilitates obtaining a desired focused spot size and also locating its position. However, for a given position along the beam axis, these devices typically measure where the beam intensity level has been reduced to I/ez of maximum intensity at that position to determine the beam size. While giving an intuitive indication of the beam shape since the maximum intensity of the beam varies greatly, the contour so determined is not an iso-contour of any parameter related to the beam intensity or power. In this work we shall discuss an alternative beam shape formulation where the same measured information is plotted as contour intervals of intensity.

  2. Laser beam microwelding in the watch industry

    NASA Astrophysics Data System (ADS)

    Olowinsky, Alexander M.; Kramer, Thorsten; Durand, Friedrich

    2002-06-01

    After the invention of the laser principle and its first application for drilling of jewels in watch movements, the laser was only used for marking. The still ongoing trend of miniaturization and automation opened a new field of application: laser beam micro welding. This paper gives an overview of the new application of laser beam welding in watch industry. The combination of dissimilar materials like brass and stainless steel is often needed in watch movements due to tribologic aspects. Here, laser beam micro welding offers an alternative to conventional joining techniques like press fit or gluing. Since the watch components are very small the locally limited heat input of the laser beam offers the possibility of weld seam widths < 200 micrometers . The depth and the width of the closed weld seam as well as the surface quality can be influenced especially at the end of the seam using the pulse forming capability of a pulsed Nd:YAG laser. Several watch components could be joined by means of laser beam micro welding. The width of the seam could be reduced to 100-200 micrometers . The joining geometries of an axis/wheel combination are in the range of 100 micrometers to 1 mm diameter of the axis and about 200 micrometers wheel thickness. The process of laser beam micro welding could be integrated in a fully automated assembly machine for watch movement parts. This paper will give an overview about some results of a European research project where the welding of microparts was investigated. The aim was to decrease contamination and distortion of the parts during the mending process. The work to be presented has been funded by the European Commission in a project under the contract BRPR-CT- 0634.

  3. Laser Beam Processing - A Manufacturer's Viewpoint

    NASA Astrophysics Data System (ADS)

    Peng, Y. C. J.

    1985-09-01

    The ability of continuous wave high power CO2 Lasers to generate power densities of up to 108 watts Cm makes them useful for a variety of material processing tasks. Deep-penetration laser welding, high precision laser cutting, surface heat treating by martensitic phase transformation hardening, and surface alloying are the four major areas which are accepting laser processes. This paper will cover these four primary laser applications existing in production within a variety of industries. Each individual area will be discussed in detail, describing the advantages and various parameters to achieve maximum productivity and quality. Beam config-uration, integration, and manipulation are included also. Production examples of laser welding, cutting, surface hardening and surface alloying, are examined to demonstrate the laser processing advantages. This paper also reviews the present and future status of the laser metalsworking industry in respect to the growth potential, research and development, manufacturers responsibilities etc.

  4. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, Jr., Joseph T.

    1991-01-01

    An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.

  5. Apparatus and method for laser beam diagnosis

    DOEpatents

    Salmon, J.T. Jr.

    1991-08-27

    An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.

  6. Synchronous characterization of semiconductor microcavity laser beam.

    PubMed

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  7. Transmission Of Power Via Combined Laser Beams

    NASA Technical Reports Server (NTRS)

    Kwon, Jin H.; Lee, Ja H.

    1992-01-01

    Laser Diode Array (LDA) appears to be most efficient means of transferring power from Earth to satellites and between satellites, in terms of mass and size, of various laser configurations. To form large-scale-array amplifier (LSAA), element LDA's must generate well-defined diffraction-limited beams. Coherent matching of phases among LDA's enables system to generate good beam pattern in far field over thousands of kilometers. By passing beam from master laser through number of LDA amplifiers simultaneously, one realizes coherence among amplified output beams. LSAA used for transmission of power with efficiency of approximately 80 percent into receiver of moderate size at 5,000 km. Also transmits data at high rates by line-of-sight rather than fiber optics.

  8. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  9. Modeling Incoherent Electron Cloud Effects

    SciTech Connect

    Fischer, W.; Benedetto, E.; Rumolo, G.; Schulte, D.; Tomas, R.; Zimmermann, Frank; Franchetti, G.; Ohmi, Kazuhito; Sonnad, K.G.; Vay, Jean-Luc; Pivi, M.T.F.; Raubenheimer, Tor O.; /SLAC

    2008-01-24

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e{sup +}e{sup -} scattering processes is also estimated. Options for future code development are reviewed.

  10. Modification of the Coherence Properties of a Laser Beam Propagating through a Plasma and its Consequences for Stimulated Scattering Instabilities

    SciTech Connect

    Labaune, C; Baldis, H A; Bandulet, H; Depierreux, S; Fuchs, J; Michel, P; Pesme, D

    2002-11-19

    The control of coherence is a critical issue for the high-power lasers used in inertial confinement fusion (ICF). The level of coherence is an important parameter for the control of the light intensity distribution as well as the growth rate of parametric instabilities. Over the past few years, experimental and theoretical studies have evidenced the ability of an underdense plasma to reduce the spatial and temporal coherence of an intense laser beam propagating through it. As any process affecting laser propagation, plasma-induced incoherence appears fundamental for ICF for it can impact on wave-coupling conditions. We present results obtained with the six-beam LULI laser facility, in the nanosecond regime, showing direct evidences of the reduction of spatial and temporal coherence of an initially RPP-smoothed laser beam after propagation through a preformed plasma. Plasma induced incoherence (PII) proceeds from several mechanisms which include self-focusing and filament instabilities and non-linear coupling between self-focusing and forward stimulated Brillouin scattering (FSBS). Part of these experiments was dedicated to the understanding of the physical mechanisms involved in PII, as the break up of a single hot spot and the existence of ion acoustic waves having small wave vectors transverse to the interaction beam which are produced in the PII processes. The spatial and temporal characteristics of these waves give a unique access to the influence of PII on stimulated Brillouin and Raman scattering.

  11. Rapid 2D incoherent mirror fabrication by laser interference lithography and wet etching for III-V MQW solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Freundlich, Alex

    2016-03-01

    Optimization of non-planar antireflective coating and back- (or front-) surface texturing are widely studied as advanced light management approach to further reduce the reflection losses and increase the sunlight absorption path in solar cells. Rear reflectors have been developed from coherent mirrors to incoherent mirrors in order to further increase light path, which can significantly improve the efficiency and allow for much thinner devices. A Lambertian surface, which has the most random texture, can theoretically raise the light path to 4n2 times that of a smooth surface. It's a challenge however to fabricate ideal Lambertian texture, especially in a fast and low cost way. In this work, a method is developed to overcome this challenge that combines the use of laser interference lithography (LIL) and selective wet etching. This approach allows for a rapid (10 min) wafer scale (3 inch wafer) texture processing with sub-wavelength (nano)-scale control of the pattern and the pitch. The technique appears as being particularly attractive for the development of ultrathin III-V devices, or in overcoming the weak sub-bandgap absorption in devices incorporating quantum dots or quantum wells. The structure of the device is demonstrated, without affecting active layers.

  12. The Hidden Side of a Laser Beam

    NASA Astrophysics Data System (ADS)

    Moore, Jared W.; Vyas, Reeta; Singh, Surendra

    In a frequency mixing experiment in Jan's lab, where one of us (SS) was visiting during 1989-90, a linearly polarized Ar-ion beam was accidentally directed onto a crossed polarizer. At the output of the polarizer we saw a four lobe pattern although the incident beam had the lowest order Hermite-Gaussian beam profile [HG00]. We attributed it to a small mixture of HG11 mode in the laser output and moved on. A few years later, when this phenomenon was encountered in a different context, a careful examination revealed the secret side of a gaussian beam - Maxwell's equations require linearly polarized laser beams to have a small mixture of cross-polarization component [Erikson and Singh, Phys Rev. E 49, 5778]. This effect is described here.

  13. Laser power beaming for satellite applications

    SciTech Connect

    Friedman, H.W.

    1993-09-22

    A serious consideration of laser power beaming for satellite applications appears to have grown out of a NASA mission analysis for transmitting power to lunar bases during the two week dark period. System analyses showed that laser power beaming to the moon in conjunction with efficient, large area solar cell collection panels, were an attractive alternative to other schemes such as battery storage and nuclear generators, largely because of the high space transportation costs. The primary difficulty with this scheme is the need for very high average power visible lasers. One system study indicated that lasers in excess of 10 MW at a wavelength of approximately 850 nm were required. Although such lasers systems have received much attention for military applications, their realization is still a long term goal.

  14. Initial alignment method for free space optics laser beam

    NASA Astrophysics Data System (ADS)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  15. Digital Controller For Laser-Beam-Steering Subsystem: Part 2

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Voisinet, Leeann

    1995-01-01

    A report presents additional information about laser-beam-steering apparatus described in "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193) and "More About Beam-Steering Subsystem for Laser Communication" (NPO-19381). Reiterates basic principles of operation of beam-steering subsystem, with emphasis on modes of operation, basic design concepts, and initial experiments on partial prototype of apparatus.

  16. Laser beam shaping for biomedical microscopy techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Kaiser, Peter; Laskin, Vadim; Ostrun, Aleksei

    2016-04-01

    Uniform illumination of a working field is very important in optical systems of confocal microscopy and various implementations of fluorescence microscopy like TIR, SSIM, STORM, PALM to enhance performance of these laser-based research techniques. Widely used TEM00 laser sources are characterized by essentially non-uniform Gaussian intensity profile which leads usually to non-uniform intensity distribution in a microscope working field or in a field of microlenses array of a confocal microscope optical system, this non-uniform illumination results in instability of measuring procedure and reducing precision of quantitative measurements. Therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) profile is an actual technical task, it is solved by applying beam shaping optics. Due to high demands to optical image quality the mentioned techniques have specific requirements to a uniform laser beam: flatness of phase front and extended depth of field, - from this point of view the microscopy techniques are similar to holography and interferometry. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality required in discussed microscopy techniques. We suggest applying refractive field mapping beam shapers πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. The main function of a beam shaper is transformation of laser intensity profile, further beam transformation to provide optimum for a particular technique spot size and shape has to

  17. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-Ray Laser

    DTIC Science & Technology

    1991-12-31

    utilized under this contract. Resolution of the question of the feasibility of a gamma-ray laser now rests upon the determination of: I) the identity of...even for an idealized nuclear material, computations of threshold levels of pumping are not without difficulty. However. under idealized conditions...125Te’" at 35.5 keV are clearly visible. ments. In particular, the charge passed to the converter Because of the shorter isomeric lifetimes the SrF2

  18. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  19. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  20. Rippled beam free electron Laser Amplifier

    SciTech Connect

    Carlsten, Bruce E.

    1998-04-21

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a T{sub 0n} mode. A waveguide defines an axial centerline and . A solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  1. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  2. Phoenix's Laser Beam in Action on Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image to view the animation

    The Surface Stereo Imager camera aboard NASA's Phoenix Mars Lander acquired a series of images of the laser beam in the Martian night sky. Bright spots in the beam are reflections from ice crystals in the low level ice-fog. The brighter area at the top of the beam is due to enhanced scattering of the laser light in a cloud. The Canadian-built lidar instrument emits pulses of laser light and records what is scattered back.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Synchronous characterization of semiconductor microcavity laser beam

    SciTech Connect

    Wang, T. Lippi, G. L.

    2015-06-15

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam’s tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  4. Ion beam and laser induced surface modifications

    NASA Astrophysics Data System (ADS)

    Appleton, B. R.

    1984-01-01

    The capabilities of energetic ion beam and laser processing of surfaces are reviewed. Ion implantation doping, ion beam mixing, and laser and electron beam processing techniques are capable of producing new and often unique surface properties. The inherent control of these techniques has led to significant advances in our ability to tailor the properties of solids for a wide range of technological applications. Equally important, these techniques have allowed tests of fundamental materials interactions under conditions not heretofore achievable and have resulted in increased understanding of a broad range of materials phenomena. These include new metastable phase formation, rapid nucleation and crystal growth kinetics, amorphous metals and metaglasses, supersaturated solid solutions and substitutional alloys, interface interactions, solute trapping, laser-assisted chemical modifications, and a host of other.

  5. LASER BEAM PROFILE MONITOR DEVELOPMENT AT BNL FOR SNS.

    SciTech Connect

    CONNOLLY,R.; CAMERON,P.; CUPOLO,J.; GASSNER,D.; GRAU,M.; KESSELMAN,M.; PENG,S.; SIKORA,R.

    2002-05-06

    A beam profile monitor for H-beams based on laser photoneutralization is being developed at Brookhaven National Laboratory (BNL) for use on the Spallation Neutron Source (SNS) [l]. An H ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser (h=1064nm). To measure beam profiles, a narrow laser beam is passed through the ion beam neutralizing a portion of the H-beam struck by the laser. The laser trajectory is stepped across the ion beam. At each laser position, the reduction of the beam current caused by the laser is measured. A proof-of-principle experiment was done earlier at 750keV. This paper reports on measurements made on 200MeV beam at BNL and with a compact scanner prototype at Lawrence Berkeley National Lab on beam from the SNS RFQ.

  6. Laser beam shaping and packaging system

    NASA Astrophysics Data System (ADS)

    Luo, Daxin; Zhao, Baiqin

    2012-10-01

    This paper presents a semiconductor laser beam shaping system, that can collimate the irradiance profile effectively and package the laser diode(LD) at the same time. Due to the semiconductor LD is a kind of line source, a particular ellipsoidal lens is designed after both the fast-axis and the slow-axis of the laser beam analyzed. Geometrical optics analysis based on the ray tracing method is done and the formulas to calculate the shape of the lens are given. Both the theoretical and experimental result show that the laser beam system works effectively; the divergence angle is reduced to less than 0.5 degree in the fast-axial direction and 1.8 degree in the slow-axial direction. In addition, it is the same process that makes the laser beam shaper and packages the LD by using epoxy resin, which simplifies the manufacturing process and reduces the LD volume greatly. Because of the advantages of small volume, low-cost, high rigidity and easy fabrication, the shaper is of great value in the field of semiconductor LD applications.

  7. Miniature long-range light beam transmitter resorting to a high-power broad area laser diode

    NASA Astrophysics Data System (ADS)

    Yue, Wenjing; Lee, Sang-Shin

    2014-08-01

    A miniature long-range light beam transmitter, which taps into a high-power broad area laser diode (BALD), was realized to exhibit a uniform detectable width. An effective model was proposed to practically emulate the multimode characteristics of the beam generated by the BALD. The model, solely based on the emitting region and far-field divergence angle pertaining to the LD, is established through an incoherent superposition of multiple normalized Hermit-Gaussian modes. The feasibility of the proposed model was successfully verified in terms of the calculated and observed irradiance distributions of the light beams. A long-range light beam transmitter was then designed and constructed taking advantage of the BALD source in conjunction with a beam shaper. The manufactured transmitter was corroborated to provide an infrared beam with a constant detectable width of ~1 m, over a distance ranging up to 400 m, for a predefined threshold level.

  8. Beam shaping for laser initiated optical primers

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-08-01

    Remington was one of the first firearm manufacturing companies to file a patent for laser initiated firearms, in 1969. Nearly 40 years later, the development of laser initiated firearms has not become a mainstream technology in the civilian market. Requiring a battery is definitely a short coming, so it is easy to see how such a concept would be problematic. Having a firearm operate reliably and the delivery of laser energy in an efficient manner to ignite the shock-sensitive explosive primer mixtures is a tall task indeed. There has been considerable research on optical element based methods of transferring or compressing laser energy to ignite primer charges, including windows, laser chip primers and various lens shaped windows to focus the laser energy. The focusing of laser light needs to achieve igniting temperatures upwards of >400°C. Many of the patent filings covering this type of technology discuss simple approaches where a single point of light might be sufficient to perform this task. Alternatively a multi-point method might provide better performance, especially for mission critical applications, such as precision military firearms. This paper covers initial design and performance test of the laser beam shaping optics to create simultaneous multiple point ignition locations and a circumferential intense ring for igniting primer charge compounds. A simple initial test of the ring beam shaping technique was evaluated on a standard large caliber primer to determine its effectiveness on igniting the primer material. Several tests were conducted to gauge the feasibility of laser beam shaping, including optic fabrication and mounting on a cartridge, optic durability and functional ignition performance. Initial data will be presented, including testing of optically elements and empirical primer ignition / burn analysis.

  9. Laser beam propagation in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  10. Laser synchrotron radiation and beam cooling

    SciTech Connect

    Esarey, E.; Sprangle, P.; Ting, A.

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  11. Resonant Laser Manipulation of an Atomic Beam

    NASA Astrophysics Data System (ADS)

    Lilly, T. C.; Ketsdever, A. D.; Gimelshein, S. F.

    2011-05-01

    Theories for laser-atom interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. A representative numerical investigation was conducted using a custom collisionless gas particle trajectory code, demonstrating this goal in the present study. The investigation covered neutral atomic beam steering and collimation using near-resonant laser fields. In addition to the numerical investigation, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. These simulations showed trends and some limitations associated with the use of a continuous-wave Gaussian laser fields for the steering and collimation of a geometrically skimmed cesium atomic beam using the photon scattering force and the near-resonant induced dipole gradient force. These simulations indicate possible integration of the resonant laser-atom interaction with other rarefied and collisional solvers for similar species such as alkali metals.

  12. More About Beam-Steering Subsystem For Laser Communication

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Chen, Chien-Chu; Hemmati, Hamid; Lesh, James R.

    1995-01-01

    Two reports present additional information about developmental beam-steering subsystem of laser-communication system. Aspects of this subsystem described previously in "Beam-Steering Subsystem for Laser Communication" (NPO-19069) and "Digital Controller for Laser-Beam-Steering Subsystem" (NPO-19193). Reports reiterate basic principles of operation of beam-steering subsystem and of laser-communication system as whole. Also presents some of details of optical and mechanical design of prototype of subsystem, called Optical Communication Demonstrator.

  13. Systems analysis on laser beamed power

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The NASA SELENE power beaming program is intended to supply cost-effective power to space assets via Earth-based lasers and active optics systems. Key elements of the program are analyzed, the overall effort is reviewed, and recommendations are presented.

  14. Workshop summary: Receivers for laser power beaming

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1993-01-01

    At the Space Photovoltaics Research and Technology (SPRAT) conference at NASA Lewis Research Center, a workshop session was held to discuss issues involved in using photovoltaic arrays ('solar cells') to convert laser power into electrical power for use as receiving elements for beamed power.

  15. Multiple beam laser cell micropatterning system

    NASA Astrophysics Data System (ADS)

    Narasimhan, Sriram V.; Goodwin, Richard L.; Borg, Thomas K.; Dawson, Darren M.; Gao, Bruce Z.

    2004-10-01

    The various cell mechanisms, including cell-cell interactions, in native tissue could be better understood by engineering a cell coculture with a micro environment that closely mimics the natural cell arrangement. To this end, we developed a cell micropatterning system that uses a weakly focused laser beam to trap individual cells at the center of the beam and propel them forward onto an appropriate substrate. The optimal methods of introducing different cell types to be patterned into the patterning system and preventing cells from randomly falling onto the pattern were issues to be addressed with this system. Here, we report the development of a multi-chamber, multi-beam laser cell micropatterning system, in which the delivery of specific cells into the beam can be controlled using secondary laser beams. This permits consecutive creation of a pattern involving multiple cell types at specific relative positions. As examples, various patterns of fibroblasts have been created on collagen coated coverslips. In addition, two asynchronously beating clusters of cardiomyocytes were connected with fibroblasts of cardiac origin, yielding a deeper insight into the electrophysiological role of fibroblasts in conduction of the action potentials among cardiomyocytes.

  16. Compression of Ultrafast Laser Beams

    DTIC Science & Technology

    2016-03-01

    the theory, construction, and evaluation of 2 separate algorithms, a modified genetic algorithm and the multiphoton intrapulse interference phase...pulse compression was evaluated, and it was found that the MIIPS algorithm was superior to the genetic algorithm for pulse compression. 15...SUBJECT TERMS ultrafast lasers, pulse compression, genetic algorithm, MIIPS algorithm, pulse shaping, pulse shaper construction 16. SECURITY

  17. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  18. Safe Laser Beam Propagation for Interplanetary Links

    NASA Technical Reports Server (NTRS)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  19. Enhanced Photoacoustic Beam Profiling of Pulsed Lasers

    NASA Astrophysics Data System (ADS)

    González, M.; Santiago, G.; Paz, M.; Slezak, V.; Peuriot, A.

    2013-09-01

    An improved version of a photoacoustic beam profiler of pulsed lasers is presented. The new model resorts to high-bandwidth condenser microphones to register higher-order, excited acoustic modes, thus enabling more accurate profiling. In addition, Xe was used as a buffer gas since its high atomic weight further reduces the eigenfrequencies. Furthermore, a new gas-handling system makes up for some deficiencies found in the first model. The system was calibrated using the Airy pattern generated with a pinhole illuminated by a frequency-doubled Nd:YAG laser that excited traces. Once calibrated, the beam profile of a TEA laser was obtained, using ethylene as the absorbing species. This profiler returns more accurate profiles than thermal paper.

  20. Laser-cooled bunched ion beam

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  1. Phasing surface emitting diode laser outputs into a coherent laser beam

    DOEpatents

    Holzrichter, John F.

    2006-10-10

    A system for generating a powerful laser beam includes a first laser element and at least one additional laser element having a rear laser mirror, an output mirror that is 100% reflective at normal incidence and <5% reflective at an input beam angle, and laser material between the rear laser mirror and the output mirror. The system includes an injector, a reference laser beam source, an amplifier and phase conjugater, and a combiner.

  2. Beam quality measurements using digitized laser beam images

    SciTech Connect

    Duncan, M.D. ); Mahon, R. )

    1989-11-01

    A method is described for measuring various laser beam characteristics with modest experimental complexity by digital processing of the near and far field images. Gaussian spot sizes, peak intensities, and spatial distributions of the images are easily found. Far field beam focusability is determined by computationally applying apertures of circular of elliptical diameters to the digitized image. Visualization of the magnitude of phase and intensity distortions is accomplished by comparing the 2-D fast Fourier transform of both smoothed and unsmoothed near field data to the actual far field data. The digital processing may be performed on current personal computers to give the experimenter unprecedented capabilities for rapid beam characteriztion at relatively low cost.

  3. Laser beam bending of metallic foils

    NASA Astrophysics Data System (ADS)

    Geiger, Manfred; Meyer-Pittroff, Frank

    2002-02-01

    The increasing miniaturization, especially in mass production of electronic and mechatronic devices demands for new technologies for forming, handling and assembly of micro components. Contactless laser beam forming without application of any exterior forces may be such a means. Potential applications for laser forming of micro parts can be found where the introduction of exterior forces or bending moments into the component causes a problem due to its small geometric dimensions, where further handling after the forming process may damage the component or, where a forming step is not required until after the assembly. Contactless laser forming may serve as a solution for high precision manipulation of functional electronic or optical devices or for tuning forces as in relays-springs. Desired changes in position may be in the sub-micrometer range. Due to its extremely short pulse duration, the excimer laser is suited for applying a temperature gradient over the cross section of even very thin metals plates, thus leading to their bending. However, beside thermal mechanisms also non- thermal mechanical effects are responsible for laser beam bending of very thin metal plates by excimer laser irradiation, when irradiating with fluences above the ablation threshold.

  4. Laser-cooled continuous ion beams

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    A collaboration with a group in Arhus, Denmark, using their storage ring ASTRID, brought about better understanding of ion beams cooled to very low temperatures. The longitudinal Schottky fluctuation noise signals from a cooled beam were studied. The fluctuation signals are distorted by the effects of space charge as was observed in earlier measurements at other facilities. However, the signal also exhibits previously unobserved coherent components. The ions` velocity distribution, measured by a laser fluorescence technique suggests that the coherence is due to suppression of Landau damping. The observed behavior has important implications for the eventual attainment of a crystalline ion beam in a storage ring. A significant issue is the transverse temperature of the beam -- where no direct diagnostics are available and where molecular dynamics simulations raise interesting questions about equilibrium.

  5. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    NASA Astrophysics Data System (ADS)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-10-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  6. Laser power beaming system analyses

    NASA Technical Reports Server (NTRS)

    Zeiders, Glenn W., Jr.

    1993-01-01

    The successful demonstration of the PAMELA adaptive optics hardware and the fabrication of the BTOS truss structure were identified by the program office as the two most critical elements of the NASA power beaming program, so it was these that received attention during this program. Much of the effort was expended in direct program support at MSFC, but detailed technical analyses of the AMP deterministic control scheme and the BTOS truss structure (both the JPL design and a spherical one) were prepared and are attached, and recommendations are given.

  7. Coherence delay augmented laser beam homogenizer

    SciTech Connect

    Rasmussen, P.; Bernhardt, A.

    1991-12-31

    It is an object of the present invention to provide an apparatus that can reduce the apparent coherence length of a laser beam so the beam can be used with an inexpensive homogenizer to produce an output beam with a uniform spatial intensity across its entire cross section. It is a further object of the invention to provide an improved homogenizer with a variable aperture size that is simple and easily made. It is still an additional object of the invention to provide an improved liquid filled homogenizer utilizing total internal reflection for improved efficiency. These, and other objects of the invention are realized by using a ``coherence delay line,`` according to the present invention, in series between a laser and a homogenizer. The coherence delay line is an optical ``line`` that comprises two mirrors, one partially reflecting, and one totally reflecting, arranged so that light incident from the laser first strikes the partially reflecting mirror. A portion of the beam passes through, and a portion is reflected back to the totally reflecting mirror.

  8. An intense polarized beam by a laser ionization injection

    NASA Astrophysics Data System (ADS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of: (1) producing the neutral hydrogen beam by Lorentz stripping; (2) excitation of the neutral hydrogen beam with a laser; and (3) ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98 percent and a polarization of 80 percent can be expected by an intense laser beam from a free electron laser (FEL).

  9. Wavefront autocorrelation of femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Grunwald, Ruediger; Neumann, Uwe J.; Griebner, Uwe; Reimann, Klaus; Steinmeyer, Guenter; Kebbel, Volker

    2004-06-01

    Spatially resolved wavefront sensing and time-resolved autocorrelation measurement of ultrashort pulses are usually separated procedures. For few-cycle pulses with significant spatial inhomogeneities and poor beam quality, a fully spatio-temporal beam characterization is necessary. Here we report on a new concept for a joint two-dimensional mapping of local temporal coherence and local wavefront tilt based on the combination of collinear autocorrelation and Shack-Hartmann wavefront sensing. Essentially for this "wavefront autocorrelation" is a splitting of the beam into a matrix of Bessel-like sub-beams by an array of thin-film microaxicons. The sub-beams are further processed by a two-dimensional collinear autocorrelation setup. The second harmonic distribution of sub-beams at a defined distance is imaged onto a CCD camera. The nondiffractive sub-beams ensure an extended depth of focus and a low sensitivity towards angular misalignment or axial displacement. With low-dispersion small-angle refractive-reflective shapers, wavefront-sensing of Ti:sapphire laser wavepackets was demonstrated experimentally for the first time.

  10. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  11. VideoBeam portable laser communicator

    NASA Astrophysics Data System (ADS)

    Mecherle, G. Stephen; Holcomb, Terry L.

    1999-01-01

    A VideoBeamTM portable laser communicator has been developed which provides full duplex communication links consisting of high quality analog video and stereo audio. The 3.2-pound unit resembles a binocular-type form factor and has an operational range of over two miles (clear air) with excellent jam-resistance and low probability of interception characteristics. The VideoBeamTM unit is ideally suited for numerous military scenarios, surveillance/espionage, industrial precious mineral exploration, and campus video teleconferencing applications.

  12. Freeform beam shaping for high-power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  13. Laser cleaving on glass sheets with multiple laser beams

    NASA Astrophysics Data System (ADS)

    Kuo, Yen-Liang; Lin, Jehnming

    2008-05-01

    A multiple laser system consisting of CO 2 line-shaped and Nd-YAG pulsed lasers was applied to cleave a soda-lime glass substrate in this study. Due to an increase of absorption coefficient of the wavelength of 1.06 μm for Nd-YAG laser on the soda-lime glass at high temperatures, the glass sheets were preheated by the CO 2 line-shaped laser and followed with the pulsed Nd-YAG laser to generate a mixture fracture mode on the substrate. The stress distribution on the glass substrate cleaved by the multiple laser beams has been analyzed. An uncoupled thermal-elastic analysis based on the finite-element method (FEM) was made. The numerical results show that the stress field of the fracture region is caused by a complex stress state and the cleavages are significantly affected by the pulsed laser. A clean cut of the soda-lime glass substrate could be obtained due to a large shear stress state on the cutting direction with the pulsed laser radiated on the glass substrate.

  14. Nonlinear Dynamics of Arrays of Coherent Laser Beams

    DTIC Science & Technology

    2012-09-23

    AFRL-AFOSR-UK-TR-2012-0058 Nonlinear dynamics of arrays of coherent laser beams Professor Sergei K. Turitsyn Aston...Report 3. DATES COVERED (From – To) 20 June 2010 – 19 June 2012 4. TITLE AND SUBTITLE Nonlinear dynamics of arrays of coherent laser beams 5a...have been verified using numerical simulations. 15. SUBJECT TERMS EOARD, Laser Beams, Lasers 16. SECURITY CLASSIFICATION OF

  15. Laser power beaming applications and technology

    NASA Astrophysics Data System (ADS)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  16. Wavelength Beam-Combined Laser Diode Arrays

    DTIC Science & Technology

    2012-01-01

    focal length f f f Diffraction grating Output...lead Water in/out Figure 3. Lincoln Laboratory-designed WBC “laser in a box.” To reduce the overall size of the WBC device, multiple folding mirrors were implemented between the diode array and the concave mirror . ...spatially merges multiple wave- length sources into a single high-inten- sity beam with an order-of-magnitude improvement in brightness compared

  17. Laser beamed power: Satellite demonstration applications

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Westerlund, Larry H.

    1992-01-01

    It is possible to use a ground-based laser to beam light to the solar arrays of orbiting satellites, to a level sufficient to provide all or some of the operating power required. Near-term applications of this technology for providing supplemental power to existing satellites are discussed. Two missions with significant commercial pay-off are supplementing solar power for radiation-degraded arrays and providing satellite power during eclipse for satellites with failed batteries.

  18. Solid-State Laser, Resonant Ionization Laser Ion Source (Rilis) and Laser Beam Transport at Radioactive Ion Beam Facilities

    NASA Astrophysics Data System (ADS)

    Lassen, J.; Bricault, P.; Dombsky, M.; Izdebski, F.; Lavoie, J. P.; Gillner, M.; Gottwald, T.; Hellbusch, F.; Teigelhöfer, A.; Voss, A.; Wendt, K. D. A.

    2009-03-01

    The inception of laser resonance ionization spectroscopy and its application as a resonant ionization laser ion source (RILIS) took place merely 20 years ago with pulsed dye lasers [1-5]. By now next generation radioactive ion beam (RIB) facilities are being planned or built. Understanding and considering the unique RILIS requirements in the layout of next generation RIB facilities will allow for cost-effective implementation of this versatile ion source. This discussion touches on laser beam transport and RILIS requirements not necessarily obvious to experts in conventional ion sources.

  19. Mechanically assisted laser forming of thin beams

    NASA Astrophysics Data System (ADS)

    Mucha, Zygmunt; Widłaszewski, Jacek; Kurp, Piotr; Mulczyk, Krystian

    2016-12-01

    Laser-assisted forming techniques have been developed in recent years to aid plastic working of materials, which are difficult in processing at normal temperatures due to a high brittleness, effects of high work-hardening or a high spring-back phenomenon. This paper reports initial experimental investigations and numerical simulations of a mechanically-assisted laser forming process. The research is aimed at facilitating plastic shaping of thin-walled parts made of high temperature resistant alloys. Stainless steel plate, 1 mm thick, 20 mm wide, was mounted in the cantilever arrangement and a gravitational load was applied to its free end. A CO2 laser beam with rectangular cross-section traversed along the plate, towards the fixed edge. Laser spot covered the whole width of the plate. Experiments and simulations using the finite element method were performed for different values of mechanical load and with constant laser processing parameters. Experimentally validated numerical model allowed analysis of plastic deformation mechanism under the hybrid thermo-mechanical processing. The revealed mechanism of deformation consists in intense material plastic flow near the laser heated surface. This behavior results mainly from the tension state close to the heated surface and the decrease of material yield stress at elevated temperature. Stress state near the side edges of the processed plate favored more intense plastic deformation and the involved residual stress in this region.

  20. Non-collinear upconversion of incoherent light: designing infrared spectrometers and imaging systems

    NASA Astrophysics Data System (ADS)

    Dam, Jeppe Seidelin; Hu, Qi; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2014-02-01

    Upconversion of incoherent mid-infrared radiation to near visible wavelengths, offers very attractive sensitivity compared to conventional means of infrared detection. Incoherent light, focused into a nonlinear crystal, results in noncollinear phase matching of a narrow range of wavelengths for each angle of propagation. Non-collinear phase matching has been an area of limited attention for many years due to inherent incompatibility with tightly focused laser beams typically used for most second order processes in order to achieve acceptable conversion efficiency. The development of periodically poled crystals have allowed for non-critical collinear phase matching of most wavelengths, virtually eliminating the need for non-collinear phase matching. When considering upconversion of thermal light, spectral radiance is limited due to the finite temperature of the Planck radiation source. It is, however, straightforward to increase the incoherent power by increasing the receiving aperture of the upconversion unit i.e. the diameter of the upconversion laser beam. Hence, the optimal conversion efficiency for incoherent light is not achieved by tightly focused beams. In this paper we show that filling the nonlinear crystal with as large a pump beam as possible yields the best conversion as this allows for upconversion of large angles of incoming incoherent light. We present results of non-collinear mixing and how it affects spectral and spatial resolution in the image and compare against experiments. We finally discuss how it can be used to design and predict system performance and how incoherent upconversion can be used for mid-IR spectroscopy and imaging.

  1. A laser beam quality definition based on induced temperature rise.

    PubMed

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  2. Quantum well, beam deflecting surface emitting lasers

    NASA Technical Reports Server (NTRS)

    Kim, Jae H. (Inventor)

    1992-01-01

    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  3. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  4. Efficient laser production of energetic neutral beams

    NASA Astrophysics Data System (ADS)

    Mollica, F.; Antonelli, L.; Flacco, A.; Braenzel, J.; Vauzour, B.; Folpini, G.; Birindelli, G.; Schnuerer, M.; Batani, D.; Malka, V.

    2016-03-01

    Laser-driven ion acceleration by intense, ultra-short, laser pulse has received increasing attention in recent years, and the availability of much compact and versatile ions sources motivates the study of laser-driven sources of energetic neutral atoms. We demonstrate the production of a neutral and directional beam of hydrogen and carbon atoms up to 200 keV per nucleon, with a peak flow of 2.7× {{10}13} atom s-1. Laser accelerated ions are neutralized in a pulsed, supersonic argon jet with tunable density between 1.5× {{10}17} cm-3and 6× {{10}18} cm-3. The neutralization efficiency has been measured by a time-of-flight detector for different argon densities. An optimum is found, for which complete neutralization occurs. The neutralization rate can be explained only at high areal densities (>1× {{10}17} cm-2) by single electron charge transfer processes. These results suggest a new perspective for the study of neutral production by laser and open discussion of neutralization at a lower density.

  5. Incoherent holography

    NASA Astrophysics Data System (ADS)

    Abramson, Nils H.

    2000-10-01

    Dennis Gabor invented in-line holography in 1947, but at that time the coherent light from a laser did not yet exist and therefore the holograms he produced were of very low quality. When the laser was born in 1960 beautiful 3-D off- center holograms were for the first time produced by Emmett Leith and Juris Upatnieks. However, already as early as 1934 the inventor and artist Hans Weil patented a method to produce simple pictures that appeared floating in space, by scratching a transparent or metallic surface in certain directions. In 1995 William J. Beaty published a method for Hand-Drawn Holograms. Then it became possible for any artist to draw his own 3-D pictures of simple objects and using his ingenious techniques these hand drawn images will mimic many of the qualities of ordinary holograms.

  6. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  7. Laser beam riding guided system principle and design research

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao

    2016-01-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  8. Ultraviolet laser beam monitor using radiation responsive crystals

    DOEpatents

    McCann, Michael P.; Chen, Chung H.

    1988-01-01

    An apparatus and method for monitoring an ultraviolet laser beam includes disposing in the path of an ultraviolet laser beam a substantially transparent crystal that will produce a color pattern in response to ultraviolet radiation. The crystal is exposed to the ultraviolet laser beam and a color pattern is produced within the crystal corresponding to the laser beam intensity distribution therein. The crystal is then exposed to visible light, and the color pattern is observed by means of the visible light to determine the characteristics of the laser beam that passed through crystal. In this manner, a perpendicular cross sectional intensity profile and a longitudinal intensity profile of the ultraviolet laser beam may be determined. The observation of the color pattern may be made with forward or back scattered light and may be made with the naked eye or with optical systems such as microscopes and television cameras.

  9. Impact of Laser Beam Speckle Structure on Crossed Beam Energy Transfer via Beam Deflections and Ponderomotive Self-Focusing

    NASA Astrophysics Data System (ADS)

    Raj, G.; Hüller, S.

    2017-02-01

    The role of laser speckle structure (hot spots) and its ponderomotive self-focusing (PSF), in crossed beam energy transfer (CBET), of smoothed laser beams is investigated in an inhomogeneous expanding plasma. Numerical simulations using the code harmony in two spatial dimensions, demonstrate how self-focusing of laser hot spots in crossed beams can significantly affect the transfer of energy from one beam to the other in addition to the stimulated Brillouin scattering (SBS) process. It is shown that for sufficiently intense laser beams, when the laser hot spots exceed the criterion for self-focusing in a plasma with flow, the angular spread of transmitted light beams increases considerably with the intensity, which arises in particular, in expanding plasma where significant beam deflection is observed. It is shown for the first time that besides SBS, the contribution of speckle structure, PSF, and deflections of the intense hot spots in multiple speckle beams to CBET, therefore matters.

  10. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    DOEpatents

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  11. Digital Computer Simulation Programs for Electrostrictive Laser Beam Trapping,

    DTIC Science & Technology

    output is a printed computer movie showing the beam propagation trajectory at selected intervals during the laser pulse, and a graph of peak achieved intensity along the beam axis. The movie may also be plotted. (Author)

  12. Higher order annular Gaussian laser beam propagation in free space

    NASA Astrophysics Data System (ADS)

    Eyyuboglu, Halil T.; Yenice, Yusuf E.; Baykal, Yahya K.

    2006-03-01

    Propagation of higher order annular Gaussian (HOAG) laser beams in free space is examined. HOAG beams are defined as the difference of two Hermite-Gaussian (HG) beams; thus, they can be produced by subtracting a smaller beam from a larger beam, that are cocentered and both possess HG mode field distributions. Such beams can be considered as a generalization of the well-known annular Gaussian beams. We formulate the source and receiver plane characteristics and kurtosis parameter of HOAG beams propagating in free space and evaluate them numerically. In comparison to HG beams, HOAG beams have a broader beam size with outer lobes of kidney shape. The amount of received power within the same receiver aperture size, that is, power in bucket, is generally lower for higher order beams. The convergence of the kurtosis parameter to an asymptotic value for higher order beams takes much longer propagation distances compared to zero-order beams.

  13. Phase stability of injection-locked beam of semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Kwon, Jin Hyuk; Kim, Do Hoon; Schuster, Gregory; Lee, Ja H.

    1992-01-01

    An experiment on the phase stability of an injection locked beam was done by using AlGaAs semiconductor lasers. The coherence of two beams from master and slave lasers was measured by interference between the beams in the Twymann-Green interferometer. The phase change of the output beam of the slave laser as a function of the driving current was measured in a Mach-Zehnder interferometer consisting of the master and slave lasers, and a value of 2.5 radians/mA was obtained.

  14. Characterising laser beams with liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  15. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  16. Variable xy-UV beam expander for high-power laser beam shaping

    NASA Astrophysics Data System (ADS)

    Nadorff, Georg; DeWitt, Frank; Lindau, Sten

    2012-10-01

    A five element zoomable anamorphic beam expander is designed and fabricated for a laser illumination system used in the manufacture of patterned micro-circuit substrates. The beam expander is the front end of a Gaussian to top-hat beam shaping illuminator. The tightly toleranced optical system downstream of the beam expander should not be readjusted with changes to the input beam. The job of the beam expander is to maintain, independent of the input beam, a constant diffraction limited output beam size as well as a specific waist location. A high power quasi-CW laser at 355 nm is employed for high throughput. The specifications of the laser allow for a range of x,y-beam diameters (ellipticity), x,y-waist locations (astigmatism), and x,y-divergence. As the laser's frequency tripling crystal is exposed to high fluence over time, the beam parameters will change. At some point the laser is exchanged for a new one, and a new set of beam parameters is presented to the beam expander. Movable cylindrical lenses enable the independent adjustment of x- and y-beam parameters. The mounting cells are motorized to enable adjustments remotely. We present the optical design approach using Gaussian beam ray tracing and discuss the mechanical implementation.

  17. Effect of Laser Beam Filamentation on Second Harmonic Spectrum in Laser Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Sharma, R. P.

    2009-11-01

    This paper presents the laser beam filamentation at ultra relativistic laser powers, when the restriction on the beam is relaxed during filamentation process. On account of laser beam intensity gradient and background density gradients in filamentary regions the electron plasma wave (epw) at pump wave frequency is generated, this epw is found to be highly localized on account of the laser beam filaments. Interaction of incident laser beam with these epw leads to second harmonic generation. The second harmonic spectrum has also been studied in detail and its correlation with the filamentation of the laser beam has been established. Starting almost with a monochromatic component of laser beam propagation, the second harmonic spectrum becomes more complicated and broadened as the laser beam propagates further, and filamentation takes place. For the typical laser beam and plasma parameters: λ0= 1064 nm, power flux (10^22 W/cm^2),φp=0.03φ0, vth=0.1c, n0=1.9x10^19. We found that conversion efficiency comes out to be (E2/E0) = 8x10-3, and the spectrum is quite broad which depends upon the laser beam propagation distance. The results (specifically, second harmonic spectral feature) presented here may be used for the diagnostics of laser produced plasmas.

  18. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations

    SciTech Connect

    Zhu Fan; Tan Jiubin; Cui Jiwen

    2013-06-15

    Beam splitting target reflector based compensation for the angular drift of laser beam in laser autocollimation is proposed in this article to improve the measurement accuracy and stability of small angle deviations. A beam splitting target reflector is used to replace the plane mirror in laser autocollimation to generate a reference beam when returning the measurement beam. The reference beam and measurement beam have the same angular drift, but have different sensitivities to the rotation angle of the reflector due to the unique characteristics of the reflector. Thus, the angular drift of laser beam in laser autocollimation can be compensated in real time by using the drift of reference beam. Experimental results indicate that an output stability of 0.085 arc sec in 2 h can be achieved after compensation. And a measurement accuracy of {+-}0.032 arc sec can be obtained over the range of {+-}1190 arc sec with an effective resolution of 0.006 arc sec. It is confirmed that the compensation method for the angular drift of laser beam is necessary for improving the measurement accuracy and stability in laser autocollimation.

  19. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  20. Optically pumped Cs vapor lasers: pump-to-laser beam overlap optimization

    NASA Astrophysics Data System (ADS)

    Auslender, Ilya; Cohen, Tom; Lebiush, Eyal; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-01-01

    We present the results of an experimental study of Ti:Sapphire pumped Cs laser and theoretical modeling of these results, where we focused on the influence of the pump-to-laser beam overlap, a crucial parameter for optimizing the output laser power. The dependence of the output laser power on the incident pump power was found for varying pump beam cross-section widths and for a constant laser beam. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency 55% was obtained. Non monotonic dependence of the laser power and threshold power on the pump beam radius (at a given pump power) was observed with a maximum laser power and minimum threshold power achieved at the ratio 0.7 between the optimal pump beam and laser beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the incident pump power at different pump beam radii and of the laser power, threshold power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency but rather the pump and laser beam spatial shapes as input parameters. This model can be applied to different optically pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  1. Optical homodyne tomography of information carrying laser beams

    NASA Astrophysics Data System (ADS)

    Wu, Jinwei; Lam, Ping Koy; Gray, Malcolm; Bachor, Hans Albert

    1998-08-01

    Optical homodyne tomography (OHT) is a tool that allows the reconstruction of Wigner functions for each detection frequency of a propagating optical beam. It can measure probability distribution functions (PDF's) of the field amplitude for any given quadrature of interest. We demonstrate OHT for a range of classical optical states with constant and time varying modulations and show the advantage of OHT over conventional homodyne detection. The OHT simultaneously determines the signal to noise ratio in both amplitude and phase quadratures. We show that highly non-Gaussian Wigner functions can be obtained from incoherent superpositions of optical states.

  2. Do twisted laser beams evoke nuclear hyperpolarization?

    NASA Astrophysics Data System (ADS)

    Schmidt, A. B.; Andrews, D. L.; Rohrbach, A.; Gohn-Kreuz, C.; Shatokhin, V. N.; Kiselev, V. G.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5 nm and various topological charges. We acquired 1H and 19F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5 mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  3. PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

    2011-04-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the

  4. Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu

    2014-05-01

    A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.

  5. Hybrid laser beam steerer for laser communications applications

    NASA Astrophysics Data System (ADS)

    Sofka, Jozef; Nikulin, Vladimir V.; Skormin, Victor A.; Nicholson, Donald J.

    2004-01-01

    Omniwrist is a new sensor mount developed under the Air Force funding that emulates the kinematics of a human wrist. Driven by two linear motors and equipped with a dedicated computer implementing advanced control laws, it is capable of a full 180° hemisphere of pitch/yaw motion and demonstrates performance characteristics comparable with an electro-mechanical beam steering system. While exceeding the bandwidth requirements for the coarse beam steering task, Omniwrist"s dynamic response is much slower than the one of the acousto-optic device (Bragg cell) that is virtually inertia-free. At the same time, the steering range of a Bragg cell, +/- .5°, is too small for many applications. The authors have been successful in the enhancement of the design and development of control laws improving its dynamic characteristics of a Bragg cell. This paper presents the research aimed at the development of a hybrid laser beam steering system comprising Bragg cells installed on the Omniwrist platform. An optimal control strategy facilitating such applications as scanning, search, rapid repositioning, tracking, feedback and feedforward compensation of environmental vibration of the optical platform (satellite-based and airborne) has been developed, implemented and tested. This includes the solution of such underlying problems as mathematical description of the hybrid system, optimal task distribution between the "coarse" and the "fine" positioning tasks, coordination of the operation of the "coarse" and "fine" system controllers. The efficiency of the developed system in various applications will be investigated further and compared against known designs.

  6. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, William C.; Seppala, Lynn

    1995-01-01

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.

  7. Method for changing the cross section of a laser beam

    DOEpatents

    Sweatt, W.C.; Seppala, L.

    1995-12-05

    A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.

  8. Hough Transform Based Corner Detection for Laser Beam Positioning

    SciTech Connect

    Awwal, A S

    2005-07-26

    In laser beam alignment in addition to detecting position, one must also determine the rotation of the beam. This is essential when a commissioning new laser beam for National Ignition Facility located at the Lawrence Livermore National Laboratory. When the beam is square, the positions of the corners with respect to one another provides an estimate of the rotation of the beam. This work demonstrates corner detection in the presence or absence of a second order non-uniform illumination caused by a spatial mask. The Hough transform coupled with illumination dependent pre-processing is used to determine the corner points. We show examples from simulated and real NIF images.

  9. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  10. Intelligent beam monitoring and diagnostics for CO2 lasers

    NASA Astrophysics Data System (ADS)

    Kaierle, Stefan; Mann, Stefan; Ortmann, Juergen; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2001-04-01

    Changes in the laser beam quality caused by pollution, wasting or defects of the optical components and the laser beam source usually only can be detected by time-consumptive methods. Therefore a system is developed to automate and simplify the diagnosis of the laser beam radiation. As a solution a laser beam analyzer is permanently integrated into the laser system, an ergonomic user software is developed and the analyzer, the tooling-machine, and the laser are controlled by one computer. The user of a laser machine is enabled with this system to detect changes in the beam quality in an early state by daily measurements which are easy and fast to be carried out. Failures can be retraced to defects of the laser source, the beam guiding system, and the focussing optics by the use of image processing methods and fuzzy algorithms. Furthermore it is possible to detect stealing changes in the beam mode structure. Within the scope of quality assurance the data can be archived according to EN ISO 900x to be able to assign processing parameters to work-pieces.

  11. Chirped microlens arrays for diode laser circularization and beam expansion

    NASA Astrophysics Data System (ADS)

    Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik

    2005-08-01

    Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.

  12. A four-color beam smoothing irradiation system for laser-plasma interaction experiments at LLNL

    SciTech Connect

    Pennington, D.M.; Henesian, M.A.; Wilcox, R.B.; Weiland, T.L.; Eimerl, D.; Ehrlich, R.B.; Laumann, C.W.; Miller, J.L.

    1995-06-26

    A novel four-color beam smoothing scheme with a capability similar to that planned for the proposed National Ignition Facility has been deployed on the Nova laser, and has been successfully used for laser fusion experiments. Wavefront aberrations in high power laser systems produce nonuniformities in the energy distribution of the focal spot that can significantly degrade the coupling of the energy into a fusion target, driving various plasma instabilities. The introduction of temporal and spatial incoherence over the face of the beam using techniques such as smoothing by spectral dispersion (SSD) can reduce these variation in the focal irradiance when averaged over a finite time interval. We developed a multiple frequency source that is spatially separated into four quadrants, each containing a different central frequency. Each quadrant is independently converted to the third harmonic in a four-segment Type I/ Type II KDP crystal array with independent phase-matching for efficient frequency conversion. Up to 2.3 kJ of third harmonic light is generated in a 1 ns pulse, corresponding to up to 65% conversion efficiency. SSD is implemented by adding limited frequency modulated bandwidth to each frequency component. Smoothing by spectral dispersion is implemented during the spatial separation of the FM modulated beams to provide additional smoothing, reaching a 16% rms intensity variation level. The four- color system was successfully used to probe NIF-like plasmas, producing {lt} 1% SBS backscatter at {gt} 2x10{sup 15} W/cm{sup 2}. This paper discusses the detailed implementation and performance of the segmented four-color system on the Nova laser system.

  13. Near-term feasibility demonstration of laser power beaming

    SciTech Connect

    Friedman, H.W.

    1994-01-01

    A mission to recharge batteries of satellites in geostationary orbits (geosats) may be a commercially viable application which could be achieved with laser systems somewhat larger than present state-of-the-art. The lifetime of batteries on geosats is limited by repetitive discharge cycles which occur when the satellites are eclipsed by the earth during the spring and fall equinoxes. By coupling high power lasers with modern, large aperture telescopes and laser guide star adaptive optics systems, present day communications satellites could be targeted. It is important that a near term demonstration of laser power beaming be accomplished using lasers in the kilowatt range so that issues associated with high average power be addressed. The Laser Guide Star Facility at LLNL has all the necessary subsystems needed for such a near term demonstration, including high power lasers for both the power beam and guide star, beam directors and satellite tracking system.

  14. Electron beam switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, Lyn D.; Murray, John R.; Goldhar, Julius; Bradley, Laird P.

    1981-01-01

    Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  15. The study of laser beam riding guided system based on 980nm diode laser

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Xu, Haifeng; Sui, Xin; Yang, Kun

    2015-10-01

    With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.

  16. CO2 laser beam propagation with ZnSe optics

    NASA Astrophysics Data System (ADS)

    Leong, K. H.; Liu, Yi; Holdridge, D. J.

    Beam propagation characteristics of ZnSe optics used in kiloWatt power CO2 laser aided material processing applications are determined using the Prometec Laser Beam Analyzer. The laser used was a Rofin Sinar RS6000 CO2 laser with mode aperturing. Beam power varied from 500W to 6300W and beam modes used were TEM(sub 00), TEM(sub 01), TEM(sub 10), and TEM(sub 20). Both transmissive and reflective optics were examined. The ZnSe lenses tested included meniscus, diffractive, and cylindrical lenses of 5 in. focal length and a 10 in. focal length integrating lens. Reflective optics included an integrator and a 5 in. focal length parabolic mirror for welding. Parameters obtained included beam propagation profiles, intensity profiles, depth of focus, spot size, and back focal length. A subset of the data obtained is presented here. Details of the work will appear in a full length paper.

  17. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  18. Beam Cooling and Laser Spectroscopy (BECOLA) Project at NSCL

    NASA Astrophysics Data System (ADS)

    Minamisono, K.; Barquest, B. R.; Bollen, G.; Mantica, P. F.; Morrissey, D. J.; Ringle, R.; Schwarz, S.

    2009-10-01

    A new beam line for beam cooling and laser spectroscopy (BECOLA) has been designed and is being installed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The BECOLA beam line will be capable of accepting ions of energy up to 60 keV. A linear Radio Frequency Quadrupole (RFQ) ion trap [1] will be used to cool and bunch the beam upstream of the BECOLA beam line. This beam line will have two dedicated experimental legs, one for collinear-laser spectroscopy with the bunched beam and another for polarization by optical pumping of low energy atoms/ions for β-NMR experiments. Initial studies at NSCL will include the measurement of μ, Q and of light- and medium-mass refractory isotopes, using both the laser spectroscopy and the β-NMR technique. A frequency doubled light of Ti:Sapphire ring laser pumped by diode-pumped solid state laser will be used for spectroscopy and optical pumping for polarization. The present status of BECOLA beam line as well as the laser system will be presented. [4pt] [1] G. Bollen et al., Nucl. Instr. and Meth. A 532, 203 (2004).

  19. Effect of ultrarelativistic laser beam filamentation on third harmonic spectrum

    NASA Astrophysics Data System (ADS)

    Gupta, Ruchika; Sharma, Prerana; Chauhan, Prashant K.; Rafat, M.; Sharma, R. P.

    2009-04-01

    This paper investigates the generation of plasma wave and third harmonic generation in a hot collision less plasma by an intense laser beam. On the account of the V→×B→ force, a plasma wave at 2ω0 (here ω0 is the pump laser frequency) is generated. The solution of the pump laser beam has been obtained within the nonparaxial ray approximation. Filamentary structures of the laser beam are observed due to relativistic nonlinearity. By expanding the eikonal and the other relevant quantities up to the fourth power of r it is observed that the focusing of the laser beams become fast in the nonparaxial region. Interaction of the plasma wave with the incident laser beam generates the third harmonics. The mechanism of the plasma wave, third harmonic generation, and the parameters, which govern the third harmonic yield and hence the spectrum of third harmonics, have been studied in detail. Correlation of the third harmonic spectrum with the filamentation has been pointed out. Therefore, the broadening of the third harmonic spectra can be used as a diagnostic tool to study the presence of the filamentation of laser beams in laser plasma experiments.

  20. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  1. Laser power beaming for rocket propulsion and airbreathing propulsion

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1980-01-01

    The developing technology of laser power beaming is introduced, and two systems are used as examples of the capabilities of the laser for beamed energy. In the first system, the potential of the laser to power flight systems ranging from hypersonic air-breathing launch vehicles to commercial jet transports is examined. Attention is given to the possibility of an air-breathing propulsion which offers the promise of a global air transportation network independent of kerosene and powered by solar energy. In addition, consideration is given to a new type of rocket propulsion based on the laser's ability to concentrate coherent laser energy to high power densities. Focused laser beams would heat the propellants directly to produce specific impulses approaching ion and MHD rocket levels, and would do so without the burden of a heavy electrical power supply.

  2. Beamed laser power in support of near-earth missions

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.; Schuster, Gregory L.; Weaver, Willard; Humes, Donald H.

    1989-01-01

    It was found that solar-pumped laser-beamed power is lighter than photovoltaic for power requirements of 150 KWe and above, and is competitive with combined photovoltaic/solar-dynamic over the entire power range investigated. A space station supported by laser-beamed power can be a lower-g facility (reduced drag) than with PV or PV + SD power; has greater freedom of orientation (small receiver moves rather than large arrays or concentrators); and requires less structure (arrays, alpha joints, booms) permitting easier control and fewer vibrational modes. Laser power beaming offers a revolutionary concept for planning designing, and powering large orbiting spacecraft.

  3. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  4. Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-03-01

    The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.

  5. Laser beam combiner for Thomson scattering core LIDAR.

    PubMed

    Balboa, I; Huang, B; Naylor, G; Walsh, M; Sirinelli, A; Parsons, P; Fessey, J; Townsend, M; Beurskens, M; Conway, N; Flanagan, J; Kempenaars, M; Kirk, A

    2010-10-01

    The light detection and ranging Thomson scattering (TS) diagnostic is advantageous since it only requires a single view port into the tokamak. This technique requires a short pulse laser at high energy, usually showing a limited repetition rate. Having multiple lasers will increase the repetition rate. This paper presents a scanning mirror as a laser beam combiner. Measurements of the position accuracy and jitter show that the pointing stability of the laser beam is within ±25 μrad for over tens of seconds. A control feedback loop is implemented to demonstrate the long term stability. Such a system could be applied for ITER and JET.

  6. Laser ion source for high brightness heavy ion beam

    SciTech Connect

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  7. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  8. Laser ion source for high brightness heavy ion beam

    NASA Astrophysics Data System (ADS)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  9. Laser beam brazing of car body and aircraft components

    SciTech Connect

    Haferkamp, H.; Kreutzburg, K.

    1994-12-31

    At present, when brazing car body components for the automotive industry, manual flame brazing is mostly used. The advantage of brazing as compared to welding, is the lower hardness of the braze metal, making postmachining easier. But manual flame brazing also shows several main disadvantages, such as pores within the seam and a high thermal influence on the workpiece. Therefore, investigations on laser beam brazing concerning the reduction of the technological and economical disadvantages of the flame brazing process were carried out. Laser beam brazing of aluminum alloys is also a main topic of this presentation. The fundamental research in brazing mild steel was done on lap joints. The investigations about brazing mild steel and aluminum alloys have demonstrated that it is possible to braze these metals using laser beam radiation. Laser beam brazing of 3-dimensional mild steel components requires a special program for the brazing sequence, and new specifications in design and fabrication. But comparing seams made by laser beam brazing to manual flame brazing show that there are advantages to using the automated laser process. Laser beam brazing of aluminum alloys makes it possible to join metals with poor brazeability, although brazing conditions lead to a slight melting of the gap sides.

  10. Activation of cells using femtosecond laser beam (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Satpathy, Sarmishtha; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Study of communication in cellular systems requires precise activation of targeted cell(s) in the network. In contrast to chemical, electrical, thermal, mechanical stimulation, optical stimulation is non-invasive and is better suited for stimulation of targeted cells. As compared to visible lasers, the near infrared (NIR) microsecond/nanosecond pulsed laser beams are being used as preferred stimulation tool as they provide higher penetration depth in tissues. Femotosecond (FS) laser beams in NIR are also being used for direct and indirect (i.e. via two-photon optogenetics) stimulation of cells. Here, we present a comparative evaluation of efficacy of NIR FS laser beam for direct (no optogenetic sensitization) and 2ph optogenetic stimulation of cells. Further, for the first time, we demonstrate the use of blue (~450 nm, obtained by second harmonic generation) FS laser beam for stimulation of cells with and without Channelrhodopisn-2 (ChR2) expression. Comparative analysis of photocurrent generated by blue FS laser beam and continuous wave blue light for optogenetics stimulation of ChR2 transfected HEK cells will be presented. The use of ultrafast laser micro-beam for focal, non-contact, and repeated stimulation of single cells in a cellular circuitry allowed us to study the communication between different cell types.

  11. Advances in fiber laser spectral beam combining for power scaling

    NASA Astrophysics Data System (ADS)

    Honea, Eric; Afzal, Robert S.; Savage-Leuchs, Matthias; Henrie, Jason; Brar, Khush; Kurz, Nathan; Jander, Don; Gitkind, Neil; Hu, Dan; Robin, Craig; Jones, Andrew M.; Kasinadhuni, Ravi; Humphreys, Richard

    2016-03-01

    Spectral Beam Combining (SBC) of fiber lasers provides a simple, robust architecture for high brightness power scaling beyond the limit of a single fiber. We review recent progress in power scaling and describe what we believe is the highest power SBC fiber demonstration and largest number of fiber lasers combined to date. Here we report results on a fiber SBC system where we achieved > 30 kW by combining 96 individual fiber lasers into a single high brightness beam with a beam quality of M2 = 1.6 x 1.8. The potential for further power scaling at the system level is highlighted with examples of beam combinable fiber laser power scaling.

  12. A comparison of the physics of Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW), and Laser Beam Welding (LBW)

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1985-01-01

    The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

  13. 3w Transmitted Beam Diagnostic at the Omega Laser Facility

    SciTech Connect

    Froula, D H; Rekow, V; Sorce, C; Piston, K; Knight, R; Alvarez, S; Griffith, R; Hargrove, D; Ross, J S; Dixit, S; Pollock, B; Divol, L; Glenzer, S H; Armstrong, W; Bahr, R; Thorp, K; Pien, G

    2006-04-24

    A 3{omega} transmitted beam diagnostic has been commissioned on the Omega Laser at the Laboratory for Laser Energetics, University of Rochester [Soures et.al., Laser Part. Beams 11 (1993)]. Transmitted light from one beam is collected by a large focusing mirror and directed onto a diagnostic platform. The near field of the transmitted light is imaged; the system collects information from twice the original f-cone of the beam. Two gated optical cameras capture the near field image of the transmitted light. Thirteen spatial positions around the measurement region are temporally resolved using fast photodiodes to allow a measure of the beam spray evolution. The Forward stimulated Raman scattering and forward simulated Brillion scattering are spectrally and temporally resolved at 5 independent locations within twice the original f-cone. The total transmitted energy is measured in two spectral bands ({delta}{lambda} < 400 nm and {delta}{lambda} > 400 nm).

  14. Dual-Beam Atom Laser Driven by Spinor Dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Aveline, David

    2007-01-01

    An atom laser now undergoing development simultaneously generates two pulsed beams of correlated Rb-87 atoms. (An atom laser is a source of atoms in beams characterized by coherent matter waves, analogous to a conventional laser, which is a source of coherent light waves.) The pumping mechanism of this atom laser is based on spinor dynamics in a Bose-Einstein condensate. By virtue of the angular-momentum conserving collisions that generate the two beams, the number of atoms in one beam is correlated with the number of atoms in the other beam. Such correlations are intimately linked to entanglement and squeezing in atomic ensembles, and atom lasers like this one could be used in exploring related aspects of Bose-Einstein condensates, and as components of future sensors relying on atom interferometry. In this atom-laser apparatus, a Bose-Einstein condensate of about 2 x 10(exp 6) Rb-87 atoms at a temperature of about 120 micro-K is first formed through all-optical means in a relatively weak singlebeam running-wave dipole trap that has been formed by focusing of a CO2-laser beam. By a technique that is established in the art, the trap is loaded from an ultrahigh-vacuum magnetooptical trap that is, itself, loaded via a cold atomic beam from an upstream two-dimensional magneto-optical trap that resides in a rubidium-vapor cell that is differentially pumped from an adjoining vacuum chamber, wherein are performed scientific observations of the beams ultimately generated by the atom laser.

  15. Development of laser-ion beam photodissociation methods

    SciTech Connect

    Russell, D.H.

    1990-08-01

    During this report period our research efforts have concentrated on studies of the dissociation reactions of model peptides and other biologically important molecules. In addition, a considerable amount of research effort has been directed toward improving the apparatus used for laser-ion beam photodissociation. The instrumental improvements include some changes on the original apparatus, but most of this effort involved designing a second generation laser-ion beam photodissociation instrument.

  16. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  17. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  18. Disintegration of urinary calculi by laser beam: drilling experiment in extracted urinary stones.

    PubMed

    Tanahashi, Y; Orikasa, S; Chiba, R; Tahira, K; Fukatsu, T; Miyakawa, T

    1979-06-01

    Disintegration of urinary calculi was attempted by the use of laser beam. As a first step, drilling of extracted urinary stones was attempted using a continuous wave CO2 laser and a pulse ruby laser. Stones were drilled easily by either laser beam. The power around 10 W of continuous CO2 laser beam was sufficient to drill through the stone.

  19. Effects of laser fluence on silicon modification by four-beam laser interference

    SciTech Connect

    Zhao, Le; Li, Dayou; Wang, Zuobin Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-12-21

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm{sup 2}, 495 mJ/cm{sup 2}, and 637 mJ/cm{sup 2}, the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications.

  20. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  1. A comparison between using incoherent or coherent sources to align and test an adaptive optical telescope

    NASA Technical Reports Server (NTRS)

    Anderson, Richard

    1994-01-01

    The concept in the initial alignment of the segmented mirror adaptive optics telescope called the phased array mirror extendable large aperture telescope (Pamela) is to produce an optical transfer function (OTF) which closely approximates the diffraction limited value which would correspond to a system pupil function that is unity over the aperture and zero outside. There are differences in the theory of intensity measurements between coherent and incoherent radiation. As a result, some of the classical quantities which describe the performance of an optical system for incoherent radiation can not be defined for a coherent field. The most important quantity describing the quality of an optical system is the OTF and for a coherent source the OTF is not defined. Instead a coherent transfer function (CTF) is defined. The main conclusion of the paper is that an incoherent collimated source and not a collimated laser source is preferred to calibrate the Hartmann wavefront sensor (WFS) of an aligned adaptive optical system. A distant laser source can be used with minimum problems to correct the system for atmospheric turbulence. The collimation of the HeNe laser alignment source can be improved by using a very small pin hole in the spatial filter so only the central portion of the beam is transmitted and the beam from the filter is nearly constant in amplitude. The size of this pin hole will be limited by the sensitivity of the lateral effect diode (LEDD) elements.

  2. Laser assisted direct write process with novel beam profiles

    NASA Astrophysics Data System (ADS)

    Shang, Shuo; Wellburn, Dan; Fearon, Eamonn; Yan, Shilian; Edwardson, Stuart; Dearden, G.; Watkins, K. G.

    2013-05-01

    The Laser Assisted Direct Write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally with a laser. Compared to conventional oven curing, laser curing can be used in-situ, over complicated 3D contours, and selectively cure over heat sensitive substrates. The intensity distribution of the laser beam used has significant influence on many surface heating processes. A conventional Gaussian beam would lead to uneven heating across the beam path. To overcome this issue, Wellburn has designed a novel beam shaping device, which allows one to convert a Gaussian beam profile into an annular ring with a variable level of central plateau fill [1]. Shang et al. have developed and verified a predictive Finite Element Method (FEM) model to simulate the laser curing process for a generic combination of processing parameters. Laser modes can be flexibly varied within this model. Hence it can be used to predict the performance of curing with differently intensity distributions. This study investigates the curing process under different intensity profiles obtained with the beam shaping device. Electrical resistivity and scratch resistance of cured samples are tested as measures of the curing quality achieved. Results obtained are then compared with the FEM model predictions, and indicate the best intensity distribution for this particular application.

  3. Laser-based profile and energy monitor for H beams

    SciTech Connect

    Connolly,R.; Alessi, J.; Bellavia, S.; Dawson, C.; Degen, C.; Meng, W.; Raparia, D.; Russo, T.; Tsoupas, N.

    2008-09-29

    A beam profile and energy monitor for H{sup -} beams based on laser photoneutralization was built at Brookhaven National Laboratory (BNL)* for use on the High Intensity Neutrino Source (HMS) at Fermilab. An H{sup -} ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser ({lambda}=1064nm). To measure beam profiles, a narrow laser beam is stepped across the ion beam, removing electrons from the portion of the H{sup -} beam intercepted by the laser. These electrons are channeled into a Faraday cup by a curved axial magnetic field. To measure the energy distribution of the electrons, the laser position is fixed and the voltage on a screen in front of the Faraday cup is raised in small steps. We present a model which reproduces the measured energy spectrum from calculated beam energy and space-charge fields. Measurements are reported from experiments in the BNL linac MEBT at 750keV.

  4. Monoenergetic collimated nano-Coulomb electron beams driven by crossed laser beams

    SciTech Connect

    Wang Jingwei; Murakami, M.; Weng, S. M.; Ruhl, H.; Luan Shixia; Yu Wei

    2013-07-08

    Monoenergetic collimated electron acceleration by two crossed laser beams is investigated through an analytical model and particle-in-cell simulations. Electron bunches with a total charge of order nano-Coulombs are accelerated by the axial electric field formed by the crossed laser beams to nearly 760 MeV with an energy spread of 2.7%. The transverse components of both electric and magnetic fields vanish along the axis, making the electron beam highly collimated. This acceleration scheme appears promising in producing high quality electron beams.

  5. Laser beam scintillation beyond the turbulent atmosphere A numerical computation

    NASA Technical Reports Server (NTRS)

    Bufton, J. L.; Taylor, L. S.

    1976-01-01

    The extended Huygens-Fresnel formulation for propagation through turbulence is used to examine scintillation of a finite laser beam. The method is demonstrated analytically for propagation beyond a weak Gaussian phase screen. A numerical integration technique is used to extend the results to a more realistic turbulence model. Results are compared with existing Gaussian beam propagation theory.

  6. Digital Controller For Laser-Beam-Steering Subsystem

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon

    1995-01-01

    Report presents additional information about proposed apparatus described in "Beam-Steering Subsystem for Laser Communication" (NPO-19069). Discusses design of digital beam-steering control subsystem and, in particular, that part of design pertaining to digital compensation for frequency response of steering mirror.

  7. A picosecond beam-timing system for the OMEGA laser

    DOE PAGES

    Donaldson, W. R.; Katz, J.; Huff, R.; ...

    2016-05-27

    Here, a timing system is demonstrated for the OMEGA Laser System that guarantees all 60 beams will arrive on target simultaneously with a root mean square variability of 4 ps. The system relies on placing a scattering sphere at the target position to couple the UV light from each beam into a single photodetector.

  8. Dual beam translator for use in Laser Doppler anemometry

    DOEpatents

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  9. Flat-top beam for laser-stimulated pain

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark

    2005-04-01

    One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.

  10. Laser beam complex amplitude measurement by phase diversity.

    PubMed

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  11. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  12. Noncontact Acousto-Ultrasonic Testing With Laser Beams

    NASA Technical Reports Server (NTRS)

    Huber, Robert D.; Green, Robert E., Jr.

    1994-01-01

    Laser beams used to excite and detect acoustic waves in specimens. Laser/acousto-ultrasonic technique entails no mechanical contact between specimens and testing apparatus. Apparatus located at relatively large distances (meters) from specimens, making it possible to test specimens too hot for contact measurements or located in inaccessible places, vacuums, or hostile environments.

  13. Laser ion source for low charge heavy ion beams

    SciTech Connect

    Okamura,M.; Pikin, A.; Zajic, V.; Kanesue, T.; Tamura, J.

    2008-08-03

    For heavy ion inertial fusion application, a combination of a laser ion source and direct plasma injection scheme into an RFQ is proposed. The combination might provide more than 100 mA of singly charged heavy ion beam from a single laser shot. A planned feasibility test with moderate current is also discussed.

  14. Modeling beam propagation and frequency conversion for the beamlet laser

    SciTech Connect

    Auerbach, J.M.

    1996-06-01

    The development of the Beamlet laser has involved extensive and detailed modeling of laser performance and beam propagation to: (1) predict the performance limits of the laser, (2) select system configurations with higher performance, (3) analyze experiments and provide guidance for subsequent laser shots, and (4) design optical components and establish component manufacturing specifications. In contrast to modeling efforts of previous laser systems such as Nova, those for Beamlet include as much measured optical characterization data as possible. This article concentrates on modeling of beam propagation in the Beamlet laser system, including the frequency converter, and compares modeling predictions with experimental results for several Beamlet shots. It briefly describes the workstation-based propagation and frequency conversion codes used to accomplish modeling of the Beamlet.

  15. Laser beam steering approaches for microstructuring of copper layers

    NASA Astrophysics Data System (ADS)

    Mur, Jaka; Podobnik, Boštjan; Poberaj, Igor

    2017-02-01

    We have investigated the process of copper layer ablation with a tightly focused Q-switched 532 nm laser. Focusing 40 ns long laser pulses to a micrometer-sized spot results in high energy density and gives rise to ablation phenomena not seen during laser processing with larger beam diameters. Use of acousto-optic deflectors (AODs) enabled us to test different laser beam steering approaches in terms of choosing the position for each laser pulse independently of the previous pulses. Random addressing of desired positions across a microstructure proved to be the most efficient method compared to various scanning approaches. Assigning a random order to the spatial sequence of laser pulses resulted in the fastest microstructuring process and featured lowest residual heating of the substrate.

  16. Radially polarized cylindrical vector beams from a monolithic microchip laser

    NASA Astrophysics Data System (ADS)

    Naidoo, Darryl; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2015-11-01

    Monolithic microchip lasers consist of a thin slice of laser crystal where the cavity mirrors are deposited directly onto the end faces. While this property makes such lasers very compact and robust, it prohibits the use of intracavity laser beam shaping techniques to produce complex light fields. We overcome this limitation and demonstrate the selection of complex light fields in the form of vector-vortex beams directly from a monolithic microchip laser. We employ pump reshaping and a thermal gradient across the crystal surface to control both the intensity and polarization profile of the output mode. In particular, we show laser oscillation on a superposition of Laguerre-Gaussian modes of zero radial and nonzero azimuthal index in both the scalar and vector regimes. Such complex light fields created directly from the source could find applications in fiber injection, materials processing and in simulating quantum processes.

  17. Nanosecond laser micro machining using an external beam attenuator

    NASA Astrophysics Data System (ADS)

    Bosman, Johan; Kettelarij, Henk; de Kok, Corne J. G. M.

    2003-11-01

    The pulse width -- pulse energy relationship of a solid-state laser can reduce the accuracy of micro machined features. Our goal is to control a depth of a laser mark with an accuracy of 0.1 μm and reduce the line width below the spot diameter. Reaching this depth and width in a stable and industrial viable laser process would not have been possible without the additional control generated by the beam attenuator.

  18. Electron beam-switched discharge for rapidly pulsed lasers

    DOEpatents

    Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

    1979-12-11

    A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

  19. Measurement system with high accuracy for laser beam quality.

    PubMed

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  20. Hundred-watt diode laser source by spectral beam combining

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Peng, Hangyu; Liu, Yun; Qin, Li; Cao, Junsheng; Shan, Xiaonan; Zeng, Yugang; Fu, Xihong; Tong, Cunzhu; Ning, Yongqiang; Wang, Lijun

    2014-12-01

    A diode laser source with a continuous wavelength (CW) power of 106 W and the beam quality M2 of 14.6 is demonstrated by spectrum beam combining (SBC) of three 800 nm LDAs. With the help of relay optics, a wavelength interval of 0.21 nm and a whole spectrum span of 13.9 nm are achieved, which is almost 10 times narrower than those of the structure without the relay optics. This presents a method to obtain a high power and high beam quality SBC laser source with a narrow spectrum.

  1. Intense high-quality medical proton beams via laser fields.

    PubMed

    Galow, Benjamin J; Harman, Zoltán; Keitel, Christoph H

    2010-12-06

    Simulations based on the coupled relativistic equations of motion show that protons stemming from laser-plasma processes can be efficiently post-accelerated employing single and crossed pulsed laser beams focused to spot radii on the order of the laser wavelength. We demonstrate that the crossed beams produce quasi-monoenergetic accelerated protons with kinetic energies exceeding 200 MeV, small energy spreads of about 1% and high densities as required for hadron cancer therapy. To our knowledge, this is the first scheme allowing for this important application based on an all-optical set-up.

  2. Adaptive laser beam forming for laser shock micro-forming for 3D MEMS devices fabrication

    NASA Astrophysics Data System (ADS)

    Zou, Ran; Wang, Shuliang; Wang, Mohan; Li, Shuo; Huang, Sheng; Lin, Yankun; Chen, Kevin P.

    2016-07-01

    Laser shock micro-forming is a non-thermal laser forming method that use laser-induced shockwave to modify surface properties and to adjust shapes and geometry of work pieces. In this paper, we present an adaptive optical technique to engineer spatial profiles of the laser beam to exert precision control on the laser shock forming process for free-standing MEMS structures. Using a spatial light modulator, on-target laser energy profiles are engineered to control shape, size, and deformation magnitude, which has led to significant improvement of the laser shock processing outcome at micrometer scales. The results presented in this paper show that the adaptive-optics laser beam forming is an effective method to improve both quality and throughput of the laser forming process at micrometer scales.

  3. Laser and optical system for laser assisted hydrogen ion beam stripping at SNS

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rakhman, A.; Menshov, A.; Webster, A.; Gorlov, T.; Aleksandrov, A.; Cousineau, S.

    2017-03-01

    Recently, a high-efficiency laser assisted hydrogen ion (H-) beam stripping was successfully carried out in the Spallation Neutron Source (SNS) accelerator. The experiment was not only an important step toward foil-less H- stripping for charge exchange injection, it also set up a first example of using megawatt ultraviolet (UV) laser source in an operational high power proton accelerator facility. This paper reports in detail the design, installation, and commissioning result of a macro-pulsed multi-megawatt UV laser system and laser beam transport line for the laser stripping experiment.

  4. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.W.; Albrecht, G.F.; Beach, R.J.

    1994-01-01

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  5. Scaling of solid state lasers for satellite power beaming applications

    SciTech Connect

    Friedman, H.; Albrecht, G.; Beach, R.

    1994-12-31

    The power requirements for a satellite power beaming laser system depend upon the diameter of the beam director, the performance of the adaptive optics system, and the mission requirements. For an 8 meter beam director and overall Strehl ratio of 50%, a 30 kW laser at 850 nm can deliver an equivalent solar flux to a satellite at geostationary orbit. Advances in Diode Pumped Solid State Lasers (DPSSL) have brought these small, efficient and reliable devices to high average power and they should be considered for satellite power beaming applications. Two solid state systems are described: a diode pumped Alexandrite and diode pumped Thulium doped YAG. Both can deliver high average power at 850 nm in a single aperture.

  6. Laser-driven shock acceleration of monoenergetic ion beams.

    PubMed

    Fiuza, F; Stockem, A; Boella, E; Fonseca, R A; Silva, L O; Haberberger, D; Tochitsky, S; Gong, C; Mori, W B; Joshi, C

    2012-11-21

    We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-in-cell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate ~200 MeV proton beams with state-of-the-art 100 TW class laser systems.

  7. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    NASA Astrophysics Data System (ADS)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  8. Multimode laser beam analyzer instrument using electrically programmable optics.

    PubMed

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  9. Calibration of Laser Beam Direction for Inner Diameter Measuring Device

    PubMed Central

    Yang, Tongyu; Wang, Zhong; Wu, Zhengang; Li, Xingqiang; Wang, Lei; Liu, Changjie

    2017-01-01

    The laser triangulation method is one of the most advanced methods for large inner diameter measurement. Our research group proposed a kind of inner diameter measuring device that is principally composed of three laser displacement sensors known to be fixed in the same plane measurement position. It is necessary to calibrate the direction of the laser beams that are emitted by laser displacement sensors because they do not meet the theoretical model accurately. For the purpose of calibrating the direction of laser beams, a calibration method and mathematical model were proposed. The inner diameter measuring device is equipped with the spindle of the machine tool. The laser beams rotate and translate in the plane and constitute the rotary rays which are driven to scan the inner surface of the ring gauge. The direction calibration of the laser beams can be completed by the sensors’ distance information and corresponding data processing method. The corresponding error sources are analyzed and the validity of the method is verified. After the calibration, the measurement error of the inner diameter measuring device reduced from ±25 μm to ±15 μm and the relative error was not more than 0.011%. PMID:28165432

  10. Beam shaping for laser-based adaptive optics in astronomy.

    PubMed

    Béchet, Clémentine; Guesalaga, Andrés; Neichel, Benoit; Fesquet, Vincent; González-Núñez, Héctor; Zúñiga, Sebastián; Escarate, Pedro; Guzman, Dani

    2014-06-02

    The availability and performance of laser-based adaptive optics (AO) systems are strongly dependent on the power and quality of the laser beam before being projected to the sky. Frequent and time-consuming alignment procedures are usually required in the laser systems with free-space optics to optimize the beam. Despite these procedures, significant distortions of the laser beam have been observed during the first two years of operation of the Gemini South multi-conjugate adaptive optics system (GeMS). A beam shaping concept with two deformable mirrors is investigated in order to provide automated optimization of the laser quality for astronomical AO. This study aims at demonstrating the correction of quasi-static aberrations of the laser, in both amplitude and phase, testing a prototype of this two-deformable mirror concept on GeMS. The paper presents the results of the preparatory study before the experimental phase. An algorithm to control amplitude and phase correction, based on phase retrieval techniques, is presented with a novel unwrapping method. Its performance is assessed via numerical simulations, using aberrations measured at GeMS as reference. The results predict effective amplitude and phase correction of the laser distortions with about 120 actuators per mirror and a separation of 1.4 m between the mirrors. The spot size is estimated to be reduced by up to 15% thanks to the correction. In terms of AO noise level, this has the same benefit as increasing the photon flux by 40%.

  11. Calibration of Laser Beam Direction for Inner Diameter Measuring Device.

    PubMed

    Yang, Tongyu; Wang, Zhong; Wu, Zhengang; Li, Xingqiang; Wang, Lei; Liu, Changjie

    2017-02-05

    The laser triangulation method is one of the most advanced methods for large inner diameter measurement. Our research group proposed a kind of inner diameter measuring device that is principally composed of three laser displacement sensors known to be fixed in the same plane measurement position. It is necessary to calibrate the direction of the laser beams that are emitted by laser displacement sensors because they do not meet the theoretical model accurately. For the purpose of calibrating the direction of laser beams, a calibration method and mathematical model were proposed. The inner diameter measuring device is equipped with the spindle of the machine tool. The laser beams rotate and translate in the plane and constitute the rotary rays which are driven to scan the inner surface of the ring gauge. The direction calibration of the laser beams can be completed by the sensors' distance information and corresponding data processing method. The corresponding error sources are analyzed and the validity of the method is verified. After the calibration, the measurement error of the inner diameter measuring device reduced from ± 25 μ m to ± 15 μ m and the relative error was not more than 0.011%.

  12. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  13. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  14. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  15. Vortex beam based more stable annular laser guide star

    NASA Astrophysics Data System (ADS)

    Luo, Ruiyao; Cui, Wenda; Li, Lei; Sun, Quan; He, Yulong; Wang, Hongyan; Ning, Yu; Xu, Xiaojun

    2016-11-01

    We present an annular laser guide star (LGS) concept for large ground-based telescopes in this paper. The more stable annular LGS is generated by turbulence-resisted vortex beam. In the uplink, a vortex beam tends to wander more slightly than a Gaussian beam does in atmospheric turbulence. This may enable an annular LGS to wander more slightly than a traditional Gaussian beam generated LGS does, which would ease the burden of uplink tip-tilt mirror and benefit a dynamical closed-loop adaptive optics system. We conducted numerical simulation to validate the feasibility of this concept. And we have gotten 31% reduced variance of spot wandering of annular LGS. Besides, we set up a spatial light modulator based laser guide star simulator for beam propagation in turbulent atmosphere to experimentally test the annular LGS concept. Preliminary experimental results are given. To the best of our knowledge, it is the first time this concept is formulated.

  16. Measurement of beam characteristics from C(6+) laser ion source.

    PubMed

    Yamaguchi, A; Sako, K; Sato, K; Hayashizaki, N; Hattori, T

    2014-02-01

    We developed a C(6+) laser ion source for a heavy-ion accelerator. A carbon target was irradiated with a Q-switched Nd:YAG laser (1064 nm wavelength, 1.4 J maximum laser energy, 10 ns pulse duration) to generate a high-density plasma. The laser ion source employed a rotating carbon target for continuous operation. Ion beams were extracted from the plasma through a drift space using a direct plasma injection scheme [B. Yu. Sharkov, A. V. Shumshurov, V. P. Dubenkow, O. B. Shamaev, and A. A. Golubev, Rev. Sci. Instrum. 63, 2841 (1992)] up to a maximum voltage of 40 kV. We measured the characteristics of the ion beams from the laser ion source and present the results of experiments here.

  17. Stability of a Light Sail Riding on a Laser Beam

    NASA Astrophysics Data System (ADS)

    Manchester, Zachary; Loeb, Abraham

    2017-03-01

    The stability of a light sail riding on a laser beam is analyzed both analytically and numerically. Conical sails on Gaussian beams, which have been studied in the past, are shown to be unstable without active control or additional mechanical modifications. A new architecture for a passively stable sail-and-beam configuration is proposed. The novel spherical shell design for the sail is capable of “beam riding” without the need for active feedback control. Full three-dimensional ray-tracing simulations are performed to verify our analytical results.

  18. Near spherical illumination of ion-beam and laser targets

    SciTech Connect

    Mark, J.W.K.

    1985-12-12

    A procedure is developed for reducing energy-deposition asymmetry in spherical targets driven directly by ion or laser beams. This work is part of a strategy for achieving illumination symmetry in such targets, which is proposed as an alternative to those in the literature. This strategy allows an axially symmetric placement of beamlets, which would be convenient for some driven or reactor scenarios. It also allows the use of beam currents or energy fluxes and beam transverse profiles to help reduce deposition asymmetry with fewer beamlets. In the ideal limit of thin deposition layers and controlled beam profiles, at most six beamlets are needed for target symmetry.

  19. Terahertz plasmonic laser radiating in an ultra-narrow beam

    DOE PAGES

    Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...

    2016-07-07

    Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity

  20. Terahertz plasmonic laser radiating in an ultra-narrow beam

    SciTech Connect

    Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; Kumar, Sushil

    2016-07-07

    Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) that is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity

  1. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  2. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  3. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  4. Laser beam steering via wave mixing in volumetric thermal gratings

    NASA Astrophysics Data System (ADS)

    Tyler, David W.

    1992-06-01

    A volumetric thermal grating (VTG) is a spatially periodic refractive index variation in a volume of gas or liquid, generated by imaging interference fringes into the medium. The fringes can be created and varied by steering laser write beams electronically with acousto- optic (A-O) cells. While the wavelength of the write beams is chosen to be absorbed by a dopant in the VTG medium, a read beam at an off-resonance wavelength can be manipulated by diffraction from the resulting index grating. Potential applications include resonator and amplifier optical isolation prepulse suppression in high-gain amplifiers, noninertial steering of large-diameter laser beams, transfer of phase information between beams to facilitate adaptive optics, Q-switching of chemical lasers, and line selection in broadband lasers. In this paper, we present a preliminary assessment of VTG utility for these optical systems applications by quantitative analysis of the medium density dynamics. In Section 2, we derive a relation between A-O acoustic frequency uncertainty and VTG pointing/steering uncertainty, which also scales desired steering range to required A-O frequency modulation bandwidth. In Section 3, we discuss the temporal response of a doped rare-gas VTG medium. Section 4 is an assessment of VTG beam-steering performance potential using available technology.

  5. Laser beacon adaptive optics for power beaming applications

    SciTech Connect

    Fugate, R.Q.

    1994-12-31

    This paper discusses the laser beam control system requirements for power beaming applications. Power beaming applications include electric and thermal engine propulsion for orbit transfer, station changing, and recharging batteries. Beam control includes satellite acquisition, high accuracy tracking, higher order atmospheric compensation using adaptive optics, and precision point-ahead. Beam control may also include local laser beam clean-up with a low order adaptive optics system. This paper also presents results of tracking and higher-order correction experiments on astronomical objects. The results were obtained with a laser beacon adaptive optics system at Phillips Laboratory`s Starfire Optical Range near Albuquerque, NM. At a wavelength of 0.85 {mu}m, the author has achieved Strehl ratios of {approximately}0.50 using laser beacons and {approximately}0.65 using natural stars for exposures longer than one minute on objects of {approximately}8{sup th} magnitude. The resulting point spread function has a full width half maximum (FWHM) of 0.13 arcsec.

  6. Laser beam interactions with vapor plumes during Nd:YAG laser welding on aluminum

    NASA Astrophysics Data System (ADS)

    Peebles, H. C.; Russo, A. J.; Hadley, G. R.; Akau, R. L.

    Welds produced on pure aluminum targets using pulsed Nd:YAG lasers can be accurately described using a relatively simple conduction mode heat transfer model provided that the fraction of laser energy absorbed is known and the amount of metal vaporized is smalled however at laser fluences commonly used in many production welding schedules significant aluminum vaporization does occur. The possible mechanisms have been identified which could result in laser beam attenuation by the vapor plume.

  7. Enhanced direct laser vacuum acceleration of a charged particle in crossing plane-wave laser beams

    SciTech Connect

    Lin, H; Liu, C P; Wang, C; Shen, B F

    2015-09-30

    Strict theory shows that in the field of two laser beams crossing in vacuum with a phase delay π/2, a unique dynamics of the electron is observed. Unlike a single-beam case in which the velocity component along the laser magnetic field is always zero, the electron motion in the case of crossing beams is completely three-dimensional and hence a larger maximum value of the relativistic factor Γ, i.e. acceleration of an electron to larger energies, can be achieved. (laser acceleration of electrons)

  8. Direct design of laser-beam shapers, zoom-beam expanders, and combinations thereof

    NASA Astrophysics Data System (ADS)

    Duerr, Fabian; Thienpont, Hugo

    2016-10-01

    Laser sources have become indispensable for industrial materials processing applications like surface treatment, cutting or welding to name a few examples. Many of these applications pose different requirements on the delivered laser irradiance distribution. Some applications might not only favor a specific irradiance distribution (e.g. a at-top) but can additionally benefit from time-varying distributions. We present an overview of a recently developed design approach that allows direct calculation of virtually any refractive or reflective laser beam shaping system. The derived analytic solution is fully described by few initial parameters and does allow an increasingly accurate calculation of all optical surfaces. Unlike other existing direct design methods for laser beam shaping, there is almost no limitation in the number of surfaces that can be calculated with this approach. This is of particular importance for optical designs of dynamic systems such as variable optical beam expanders that require four (or more) optical surfaces. Besides conventional static beam shapers, we present direct designs of zoom beam expanders, and as a novelty, a class of dynamic systems that shape and expand the input beam simultaneously. Such dynamic zoom beam shapers consist of a minimal number of optical elements and provide a much more compact solution, yet achieving excellent overall optical performance throughout the full range of zoom positions.

  9. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  10. Beam Extraction from Laser Driven Multi-Charged Ion Source

    SciTech Connect

    Anderson, O A; Logan, B G

    2001-03-19

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. They discuss extraction and focusing for the particular case of a 4.1-MV beam of Xe{sup 16+} ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. The design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from the initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. They conclude with an improved design which increases the surviving beam to more than 70 amperes.

  11. Novel materials and beam delivery technique for ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    Sun, Ju

    2002-01-01

    Ultrafast lasers offer significant advantages for novel laser materials processing, especially at small length scales. Their extremely high optical intensity results in nonlinear laser-material interaction and energy deposition, which provide unique, non-traditional material processing capabilities. In this work, a Ti:sapphire femtosecond laser system is applied for both practical and fundamental investigations of ultrafast laser materials processing. For practical applications, experimental techniques are developed to characterize and process two novel materials: (1) silica aerogels, and (2) thermal-sprayed materials, both of which are difficult to micromachine using any conventional technique. The breakdown threshold as well as the low-level absorption coefficient of the aerogel material are measured, while the material removal rate is characterized as a function of the laser fluence and the number of laser shots. Thermal-sprayed line patterns are trimmed by synchronizing the femtosecond laser pulses with a three-dimensional motorized micro-positioning system. A trimmed line width ˜50 mum is obtained, from an original line width ˜500 mum. In addition to developing experimental techniques for practical ultrafast laser processing of novel materials, investigations on improving the machining quality and efficiency by characterizing the nonlinear interactions between the femtosecond laser pulses and the beam delivery gas medium are also conducted in this work. A theoretical model based on the nonlinear Schrodinger equation is applied to simulate the pulse propagation under the coupled effects of two nonlinear mechanisms. The model predictions show that the beam profile can be dramatically distorted due to the nonlinear changes in the refractive index in air, which can be minimized by delivering the beam using an inert gas, particularly helium, due to its unique physical properties. Machining of copper sample by delivering the femtosecond laser pulse in four

  12. Excimer Laser Beam Analyzer Based on CVD Diamond

    NASA Astrophysics Data System (ADS)

    Girolami, Marco; Salvatori, Stefano; Conte, Gennaro

    2010-11-01

    1-D and 2-D detector arrays have been realized on CVD-diamond. The relatively high resistivity of diamond in the dark allowed the fabrication of photoconductive "sandwich" strip (1D) or pixel (2D) detectors: a semitransparent light-receiving back-side contact was used for detector biasing. Cross-talk between pixels was limited by using intermediate guard contacts connected at the same ground potential of the pixels. Each pixel photocurrent was conditioned by a read-out electronics composed by a high sensitive integrator and a Σ-Δ ADC converter. The overall 500 μs conversion time allowed a data acquisition rate up to 2 kSPS. The measured fast photoresponse of the samples in the ns time regime suggests to use the proposed devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The technology of laser beam profiling is evolving with the increase of excimer lasers applications that span from laser-cutting to VLSI and MEMS technologies. Indeed, to improve emission performances, fine tuning of the laser cavity is required. In such a view, the development of a beam-profiler, able to work in real-time between each laser pulse, is mandatory.

  13. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  14. Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer

    NASA Astrophysics Data System (ADS)

    Nuroso, H.; Kurniawan, W.; Marwoto, P.

    2016-08-01

    A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.

  15. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    PubMed

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  16. Turbulence-induced persistence in laser beam wandering.

    PubMed

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  17. Deflection of a Reflected Intense Vortex Laser Beam

    NASA Astrophysics Data System (ADS)

    Zhang, Lingang; Shen, Baifei; Zhang, Xiaomei; Huang, Shan; Shi, Yin; Liu, Chen; Wang, Wenpeng; Xu, Jiancai; Pei, Zhikun; Xu, Zhizhan

    2016-09-01

    An interesting deflection effect deviating the optical reflection law is revealed in the relativistic regime of intense vortex laser plasma interaction. When an intense vortex laser obliquely impinges onto an overdense plasma target, the reflected beam deflects out of the plane of incidence with an experimentally observable deflection angle. The mechanism is demonstrated by full three-dimensional particle-in-cell simulation as well as analytical modeling using the Maxwell stress tensor. The deflection results from the rotational symmetry breaking of the foil driven by the unsymmetrical shear stress of the vortex beam. The l -dependent shear stress, where l is the topological charge, as an intrinsic characteristic to the vortex beam, plays an important role as the ponderomotive force in relativistic vortex laser matter interaction.

  18. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, Stanley; Kessler, Terrance J.; Short, Robert W.; Craxton, Stephen; Letzring, Samuel A.; Soures, John

    1991-01-01

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies ("colors") cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers.

  19. Mid-IR laser source using hollow waveguide beam combining

    NASA Astrophysics Data System (ADS)

    Elder, Ian F.; Thorne, Daniel H.; Lamb, Robert A.; Jenkins, R. M.

    2016-03-01

    Hollow waveguide technology is a route to efficient beam combining of multiple laser sources in a compact footprint. It is a technology appropriate for combining free-space or fibre-coupled beams generated by semiconductor, fibre or solidstate laser sources. This paper will present results of a breadboard mid-IR system comprising four laser sources combined using a hollow waveguide optical circuit. In this approach the individual dichroic beam combiner components are held in precision alignment slots in the hollow waveguide circuit and the different input wavelengths are guided between the components to a common output port. The hollow waveguide circuit is formed in the surface of a Macor (machinable glass-ceramic) substrate using precision CNC machining techniques. The hollow waveguides have fundamentally different propagation characteristics to solid core waveguides leading to transmission characteristics close to those of the atmosphere while still providing useful light guidance properties. The transmission efficiency and power handling of the hollow waveguide circuit can be designed to be very high across a broad waveband range. Three of the sources are quantum cascade lasers (QCLs), a semiconductor laser technology providing direct generation of midwave IR output. The combined beams provide 4.2 W of near diffraction-limited output co-boresighted to better than 20 µrad. High coupling efficiency into the waveguides is demonstrated, with negligible waveguide transmission losses. The overall transmission of the hollow waveguide beam combining optical circuit, weighted by the laser power at each wavelength, is 93%. This loss is dominated by the performance of the dichroic optics used to combine the beams.

  20. Laser beam propagation through inertial confinement fusion hohlraum plasmas

    SciTech Connect

    Froula, D. H.; Divol, L.; Meezan, N. B.; Dixit, S.; Neumayer, P.; Moody, J. D.; Pollock, B. B.; Ross, J. S.; Suter, L.; Glenzer, S. H.

    2007-05-15

    A study of the laser-plasma interaction processes have been performed in plasmas that are created to emulate the plasma conditions in indirect drive inertial confinement fusion targets. The plasma emulator is produced in a gas-filled hohlraum; a blue 351-nm laser beam propagates along the axis of the hohlraum interacting with a high-temperature (T{sub e}=3.5 keV), dense (n{sub e}=5x10{sup 20} cm{sup -3}), long-scale length (L{approx}2 mm) plasma. Experiments at these conditions have demonstrated that the interaction beam produces less than 1% total backscatter resulting in transmission greater than 90% for laser intensities less than I<2x10{sup 15} W cm{sup -2}. The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows a stimulated Brillouin scattering threshold (R=10%) for a linear gain of 15; these high temperature, low density experiments produce plasma conditions comparable to those along the outer beams in ignition hohlraum designs. By increasing the gas fill density (n{sub e}=10{sup 21} cm{sup -3}) in these targets, the inner beam ignition hohlraum conditions are accessed. In this case, stimulated Raman scattering dominates the backscattering processes and we show that scattering is small for gains less than 20 which can be achieved through proper choice of the laser beam intensity.

  1. Flexible printed circuit boards laser bonding using a laser beam homogenization process

    NASA Astrophysics Data System (ADS)

    Kim, Joohan; Choi, Haewoon

    2012-11-01

    A laser micro-bonding process using laser beam shaping is successfully demonstrated for flexible printed circuit boards. A CW Ytterbium fiber laser with a wavelength of 1070 nm and a laser power density of 1-7 W/mm2 is employed as a local heat source for bonding flexible printed circuit boards to rigid printed circuit boards. To improve the bonding quality, a micro-lens array is used to modify the Gaussian laser beam for the bonding process. An electromagnetic modeling and heat transfer simulation is conducted to verify the effect of the micro-lens array on the laser bonding process. The optimal bonding parameters are found experimentally. As the measured temperature ramp rate of the boards exceeds 1100 K/s, bonding occurs within 100-200 ms at a laser power density of 5 W/mm2. The bonding quality of the FPCB is verified with a shear strength test. Process characteristics are also discussed.

  2. Laser beam temporal and spatial tailoring for laser shock processing

    DOEpatents

    Hackel, Lloyd; Dane, C. Brent

    2001-01-01

    Techniques are provided for formatting laser pulse spatial shape and for effectively and efficiently delivering the laser energy to a work surface in the laser shock process. An appropriately formatted pulse helps to eliminate breakdown and generate uniform shocks. The invention uses a high power laser technology capable of meeting the laser requirements for a high throughput process, that is, a laser which can treat many square centimeters of surface area per second. The shock process has a broad range of applications, especially in the aerospace industry, where treating parts to reduce or eliminate corrosion failure is very important. The invention may be used for treating metal components to improve strength and corrosion resistance. The invention has a broad range of applications for parts that are currently shot peened and/or require peening by means other than shot peening. Major applications for the invention are in the automotive and aerospace industries for components such as turbine blades, compressor components, gears, etc.

  3. Laser beam centering and pointing system

    DOEpatents

    Rushford, Michael Charles

    2015-01-13

    An optical instrument aligns an optical beam without the need for physical intervention of the instrument within the apparatus or platforms from which the trajectory of the beam to be ascertained. The alignment apparatus and method enable the desired function to be realized without the placement of physical apertures or sensors directly in the path of the beam through the system whose spatial position and slope is to be sought. An image plane provides the observer with a pair of well-defined images that are indicative of the beam centering and pointing alignment parameters. The optical alignment can be realized without the need for referencing to an external or fixed set of coordinates or fiducials. The instrument can therefore service situations where adverse environments would otherwise prohibit the use of such instruments, including regions of high radiation, high temperature, vacuum and/or cryogenic atmospheres.

  4. Filamentation of Focused and Collimated Laser Beams in Liquids

    NASA Astrophysics Data System (ADS)

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.; Khoroshaeva, E. E.

    2015-05-01

    Experimental results of investigations into the transformation of the spectral and spatial characteristics of femtosecond collimated and focused Ti:Sa -laser beams with wavelengths of 800 and 400 nm upon filamentation in continuous liquid media are presented. It is shown that broadening of the laser pulse spectrum due to phase self-modulation in the medium with a cubic nonlinearity depends on the pulse power and beam diameter. Dependences of the number of filaments, width of laser radiation spectrum, nonlinear focusing distance, and diameter of the filamentation region on the laser pulse power are measured. The existence of a relative power interval in which the explosive growth of the number of filaments occurs, is established.

  5. Filamentation of focused and collimated laser beams in liquids

    NASA Astrophysics Data System (ADS)

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.; Khoroshaeva, E. E.

    2015-11-01

    Experimental results of investigations into the transformation of the spectral and spatial characteristics of femtosecond collimated and focused Ti:Sapphire-laser beams with wavelengths of 800 and 400 nm upon filamentation in continuous liquid media are presented. It is shown that broadening of the laser pulse spectrum due to phase self-modulation in the medium with a cubic nonlinearity depends on the pulse power and beam diameter. Dependences of the number of filaments, width of laser radiation spectrum, nonlinear focusing distance, and diameter of the filamentation region on the laser pulse power are measured. The existence of a relative power interval in which the explosive growth of the number of filaments occurs, is established.

  6. Characteristic of laser diode beam propagation through a collimating lens.

    PubMed

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  7. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  8. System requirements for laser power beaming to geosynchronous satellites

    SciTech Connect

    Neal, R.D.; McKechnie, T.S.; Neal, D.R.

    1994-03-01

    Geosynchronous satellites use solar arrays as their primary source of electrical power. During earth eclipse, which occurs 90 times each year, the satellites are powered by batteries, but the heavy charge-discharge cycle decreases their life expectancy. By beaming laser power to satellites during the eclipses, satellite life expectancy can be significantly increased. In this paper, the authors investigate the basic system parameters and trade-offs of using reactor pumped laser technology to beam power from the Nevada Test Site. A first order argument is used to develop a consistent set of requirements for such a system.

  9. Large area electron beam pumped krypton fluoride laser amplifier

    SciTech Connect

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-06-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm {times} 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high {times} 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. {copyright} {ital 1997 American Institute of Physics.}

  10. Symmetric compression of 'laser greenhouse' targets by a few laser beams

    SciTech Connect

    Gus'kov, Sergei Yu; Demchenko, N N; Rozanov, Vladislav B; Stepanov, R V; Zmitrenko, N V; Caruso, A; Strangio, C

    2003-02-28

    The possibility of efficient and symmetric compression of a target with a low-density structured absorber by a few laser beams is considered. An equation of state is proposed for a porous medium, which takes into account the special features of the absorption of high-power nanosecond laser pulses. The open version of this target is shown to allow the use of ordinary Gaussian beams, requiring no special profiling of the absorber surface. The conditions are defined under which such targets can be compressed efficiently by only two laser beams (or beam clusters). Simulations show that for a 2.1-MJ laser pulse, a seven-fold gain for the target under study is achieved. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  11. Influence of the pump-to-laser beam overlap on the performance of optically pumped cesium vapor laser.

    PubMed

    Cohen, Tom; Lebiush, Eyal; Auslender, Ilya; Barmashenko, Boris D; Rosenwaks, Salman

    2016-06-27

    Experimental and theoretical study of the influence of the pump-to-laser beam overlap, a crucial parameter for optimization of optically pumped alkali atom lasers, is reported for Ti:Sapphire pumped Cs laser. Maximum laser power > 370 mW with an optical-to-optical efficiency of 43% and slope efficiency ~55% was obtained. The dependence of the lasing power on the pump power was found for different pump beam radii at constant laser beam radius. Non monotonic dependence of the laser power (optimized over the temperature of the Cs cell) on the pump beam radius was observed with a maximum achieved at the ratio ~0.7 between the pump and laser beam radii. The optimal temperature decreased with increasing pump beam radius. A simple optical model of the laser, where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams were assumed, was compared to the experiments. Good agreement was obtained between the measured and calculated dependence of the laser power on the pump power at different pump beam radii and also of the laser power, threshold pump power and optimal temperature on the pump beam radius. The model does not use empirical parameters such as mode overlap efficiency and can be applied to different Ti:Sapphire and diode pumped alkali lasers with arbitrary spatial distributions of the pump and laser beam widths.

  12. Dual-beam laser autofocusing system based on liquid lens

    NASA Astrophysics Data System (ADS)

    Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing

    2017-02-01

    A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme "Time-sharing focus, fast conversion" is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.

  13. Long range laser propagation: power scaling and beam quality issues

    NASA Astrophysics Data System (ADS)

    Bohn, Willy L.

    2010-09-01

    This paper will address long range laser propagation applications where power and, in particular beam quality issues play a major role. Hereby the power level is defined by the specific mission under consideration. I restrict myself to the following application areas: (1)Remote sensing/Space based LIDAR, (2) Space debris removal (3)Energy transmission, and (4)Directed energy weapons Typical examples for space based LIDARs are the ADM Aeolus ESA mission using the ALADIN Nd:YAG laser with its third harmonic at 355 nm and the NASA 2 μm Tm:Ho:LuLiF convectively cooled solid state laser. Space debris removal has attracted more attention in the last years due to the dangerous accumulation of debris in orbit which become a threat to the satellites and the ISS space station. High power high brightness lasers may contribute to this problem by partially ablating the debris material and hence generating an impulse which will eventually de-orbit the debris with their subsequent disintegration in the lower atmosphere. Energy transmission via laser beam from space to earth has long been discussed as a novel long term approach to solve the energy problem on earth. In addition orbital transfer and stationkeeping are among the more mid-term applications of high power laser beams. Finally, directed energy weapons are becoming closer to reality as corresponding laser sources have matured due to recent efforts in the JHPSSL program. All of this can only be realized if he laser sources fulfill the necessary power requirements while keeping the beam quality as close as possible to the diffraction limited value. And this is the rationale and motivation of this paper.

  14. Comparison of laser and neutral particle beam discrimination

    NASA Astrophysics Data System (ADS)

    Canavan, Gregory H.

    1989-09-01

    The relative ability of lasers and neutral particle beams (NPBs) to discriminate reentry vehicle (RV) and anti-satellite (ASAT) decoys is pivotal in assessing their relative worth as strategic defenses. Their ability is evaluated and their relative contributions are assessed. It is concluded that NPBs can typically discriminate about 100 times as many objects as can lasers, and do so with significantly greater certainty.

  15. Comparison of laser and neutral particle beam discrimination

    SciTech Connect

    Canavan, G.H.

    1989-09-01

    The relative ability of lasers and neutral particle beams (NPBs) to discriminate reentry vehicle (RV) and anti-satellite (ASAT) decoys is pivotal in assessing their relative worth as strategic defenses. This report evaluates their ability and assesses their relative contributions, concluding that NPBs can typically discriminate about 100 times as many objects as can lasers, and do so with significantly greater certainty. 7 refs., 2 figs.

  16. Laser absorption velocimetry using an optical vortex beam

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Morisaki, Tomohiro

    2016-09-01

    A plain-wave-like beam, or a Hermite-Gaussian mode, has been used for conventional laser spectroscopy. Since the Doppler shift in frequency of light absorbed by a moving atom is given by the dot product of the wave vector of the light beam and an atomic velocity, it is essentially a one-dimensional measurement. It has a merit that the interpretation of the result is clear and straightforward; however, it simultaneously poses a limitation that the measurable velocity component is confined to the projection along the wave vector. This limitation may be overcome by using an optical vortex beam, or a Laguerre-Gaussian mode, which has helical phase fronts associated with orbital angular momentum of light. Due to its three-dimensional phase structure, the Doppler shift for an atom moving in the optical vortex beam has three components. Therefore, the laser measurement method that has a sensitivity even for transverse motion across the beam is possible to be achieved. We have performed laser absorption measurements using optical vortex beams as a proof-of-principle experiment, where an additional frequency shift in the absorption spectra of metastable argon neutrals in a plasma has been observed. The details of experimental results will be discussed in the conference. This study was partially supported by JSPS KAKENHI Grand Numbers 15K05365 and 25287152.

  17. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    SciTech Connect

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  18. Concrete "Waffle" Provides Laser Beam Accuracy

    ERIC Educational Resources Information Center

    Building Design and Construction, 1978

    1978-01-01

    A massive concrete "waffle," riding on a bed of specially treated gravel and sand inside another building, provides the structural rigidity needed by the University of Rochester's Laboratory for Laser Energetics. (Author)

  19. Surface emitting distributed feedback laser as a source for laser radar

    NASA Astrophysics Data System (ADS)

    Akkapeddi, P.; Macomber, S. H.

    1991-08-01

    The requirements for a diode source for a laser radar system are presented. It is shown how microcollimation of incoherent diode laser arrays can produce a usable beam divergence. A unique diode source under development and the associated technologies required for a compact, efficient, reliable and low divergence source are described.

  20. Beam Shaped Single Mode Spiral Lasers

    DTIC Science & Technology

    2011-12-31

    directionality; he showed that suitably deformed (Limaçon shaped) resonators can partially circumvent this problem and also achieve higher optical power. He...volume, highly directional light sources possible in the future for many important applications, e.g. photonic integrated circuits, optical ...communications, and medical/biological high-sensitive sensors.Quantum cascade laser, limacon shaped, microcavity semiconductor lasers, ray optics , wave

  1. Direct laser patterning of self-assembled monolayer using elliptical laser beams: A theoretical parametric study

    NASA Astrophysics Data System (ADS)

    Zhang, Martin Y.; Shadnam, Mohammad Reza; Amirfazli, A.

    2011-11-01

    A theoretical quantitative analysis of processing parameters for application of an elliptical laser beam to achieve maximum patterning area is the focus of this study. Direct laser patterning (DLP) of self-assembled monolayers (SAM) is achieved by localized heating of the sample above the SAM desorption temperature. Through use of elliptical laser beams in the present work, three goals are achieved by analyzing the heat diffusion model and related thermo-kinetics model: (1) optimal working conditions (combination of laser power, scanning velocity and aspect ratio) for DLP to produce maximum feature size, or highest processing velocity at a given power; (2) identification of conditions that reduces the potential thermal damage to the substrate; (3) shedding light on issues related to uniformity or homogeneity of heating a substrate using an elliptical laser beam. A heat diffusion model is employed to provide the resulting surface temperature caused by elliptical laser beams, and the coupled thermo-kinetics model is used to determine the final SAM coverage generated by DLP. Parametric analysis revealed that 70-150 mW can be used to pattern feature sizes in the range of 2-10 times of equivalent circular beam size. It is also found that each elliptical laser beam has a unique optimal aspect ratio to result in the widest feature size for a given laser power and scanning velocity. The edge transition width increases with an increase of the aspect ratio. Keeping the aspect ratio of elliptical laser beam small (i.e. β<20), a sharp edge definition could be obtained; if an aspect ratio larger than 30 is used, a surface with gradual edge definition could be obtained.

  2. Runaway electron beam control for longitudinally pumped metal vapor lasers

    NASA Astrophysics Data System (ADS)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  3. Geodetic constraints from multi-beam laser altimeter crossovers

    NASA Astrophysics Data System (ADS)

    Mazarico, Erwan; Neumann, G. A.; Rowlands, D. D.; Smith, D. E.

    2010-06-01

    The round-trip travel time measurements made by spacecraft laser altimeters are primarily used to construct topographic maps of the target body. The accuracy of the calculated bounce point locations of the laser pulses depends on the quality of the spacecraft trajectory reconstruction. The trajectory constraints from Doppler and range radio tracking data can be supplemented by altimetric “crossovers”, to greatly improve the reconstruction of the spacecraft trajectory. Crossovers have been used successfully in the past (e.g., Mars Orbiter Laser Altimeter on Mars Global Surveyor), but only with single-beam altimeters. The same algorithms can be used with a multi-beam laser altimeter, but we present a method using the unique cross-track topographic information present in the multi-beam data. Those crossovers are especially adapted to shallow (small angle) intersections, as the overlapping area is large, reducing the inherent ambiguities of single-beam data in that situation. We call those “swath crossovers”. They prove particularly useful in the case of polar-orbiting spacecraft over slowly rotating bodies, because all the non-polar crossovers have small intersection angles. To demonstrate this method, we perform a simplified simulation based on the Lunar Reconnaissance Orbiter (LRO) and its five-beam Lunar Orbiter Laser Altimeter. We show that swath crossovers over one lunar month can independently, from geometry alone, recover the imposed orbital perturbations with great accuracy (5 m horizontal, < 1 m vertical, about one order of magnitude smaller than the imposed perturbations). We also present new types of constraints that can be derived from the swath crossovers, and designed to be used in a precision orbit determination setup. In future work, we will use such multi-beam altimetric constraints with data from LRO.

  4. Laser Beam Propagation through Inertial Confinement Fusion Hohlraum Plasmas

    SciTech Connect

    Froula, D H; Divol, L; Meezan, N B; DIxit, S; Neumayer, P; Moody, J D; Pollock, B B; Ross, J S; Glenzer, S H

    2006-10-26

    A study of the relevant laser-plasma interaction processes has been performed in long-scale length plasmas that emulate the plasma conditions in indirect drive inertial confinement fusion targets. Experiments in this high-temperature (T{sub e} = 3.5 keV), dense (n{sub e} = 0.5 - 1 x 10{sup -3}) hohlraum plasma have demonstrated that blue 351-nm laser beams produce less than 1% total backscatter resulting in transmission greater than 90% for ignition relevant laser intensities (I < 2 x 10{sup 15} W cm{sup -2}). The bulk plasma conditions have been independently characterized using Thomson scattering where the peak electron temperatures are shown to scale with the hohlraum heater beam energy in the range from 2 keV to 3.5 keV. This feature has allowed us to determine the thresholds for both backscattering and filamentation instabilities; the former measured with absolutely calibrated full aperture backscatter and near backscatter diagnostics and the latter with a transmitted beam diagnostics. Comparing the experimental results with detailed gain calculations for the onset of significant laser scattering processes shows that these results are relevant for the outer beams in ignition hohlraum experiments corresponding to a gain threshold for stimulated Brillouin scattering of 15. By increasing the gas fill density in these experiments further accesses inner beam ignition hohlraum conditions. In this case, stimulated Raman scattering dominates the backscattering processes. They show that scattering is small for gains smaller than 20, which can be achieved through proper choice of the laser beam intensity.

  5. Hole-boring through clouds for laser power beaming

    SciTech Connect

    Lipinski, R.J.; Walter, R.F.

    1994-12-31

    Power beaming to satellites with a ground-based laser can be limited by clouds. Hole-boring through the clouds with a laser has been proposed as a way to overcome this obstacle. This paper reviews the past work on laser hole-boring and concludes that hole-boring for direct beaming to satellites is likely to require 10--100 MW. However, it may be possible to use an airborne relay mirror at 10--25 km altitude for some applications in order to extend the range of the laser (e.g., for beaming to satellites near the horizon). In these cases, use of the relay mirror also would allow a narrow beam between the laser and the relay, as well as the possibility of reducing the crosswind if the plane matched speed with the cloud temporarily. Under these conditions, the power requirement to bore a hole through most cirrus and cirrostratus clouds might be only 500-kW if the hole is less than 1 m in diameter and if the crosswind speed is less than 10 m/s. Overcoming cirrus and cirrostratus clouds would reduce the downtime due to weather by a factor of 2. However, 500 kW is a large laser, and it may be more effective instead to establish a second power beaming site in a separate weather zone. An assessment of optimum wavelengths for hole boring also was made, and the best options were found to be 3.0--3.4 {mu}m and above 10 {mu}m.

  6. Improving the intensity of a focused laser beam

    NASA Astrophysics Data System (ADS)

    Haddadi, Sofiane; Fromager, Michael; Louhibi, Djelloul; Hasnaoui, Abdelkrim; Harfouche, Ali; Cagniot, Emmanuel; ńit-Ameur, Kamel

    2015-03-01

    Let us consider the family of symmetrical Laguerre-Gaus modes of zero azimuthal order which will be denoted as LGp0 . The latter is made up of central lobe surrounded by p concentric rings of light. The fundamental mode LG00 is a Gaussian beam of width W. The focusing of a LGp0 beam of power P by a converging lens of focal length f produces a focal spot keeping the LGp0 -shape and having a central intensity I0= 2PW2/(λf)2 whatever the value of the radial order p. Many applications of lasers (laser marking, laser ablation, …) seek nowadays for a focal laser spot with the highest as possible intensity. For a given power P, increasing intensity I0 can be achieved by increasing W and reducing the focal length f. However, this way of doing is in fact limited because the ratio W/f cannot increase indefinitely at the risk of introducing a huge truncation upon the edge of the lens. In fact, it is possible to produce a single-lobed focal spot with a central intensity of about p times the intensity I0. This result has been obtained by reshaping (rectification) a LGp0 beam thanks to a proper Binary Diffractive Optical Element (BDOE). In addition, forcing a laser cavity to oscillate upon a LGp0 can improve the power extract due to a mode volume increasing with the mode order p. This could allow envisaging an economy of scale in term of laser pumping power for producing a given intensity I0. In addition, we have demonstrated that a rectified LGp0 beam better stand the lens spherical aberration than the usual Gaussian beam.

  7. Thermal effect on prebunched two-beam free electron laser

    NASA Astrophysics Data System (ADS)

    Mirian, N. S.; Maraghechi, B.

    2013-08-01

    A numerical simulation in one-dimension is conducted to study the two-beam free electron laser. The fundamental resonance of the fast electron beam coincides with the fifth harmonic of the slow electron beam in order to generate extreme ultraviolet radiation. Thermal effect in the form of the longitudinal velocity spread is included in the analysis. In order to reduce the length of the wiggler, prebunched slow electron beam is considered. The evaluation of the radiation power, bunching parameter, distribution function of energy, and the distribution function of the pondermotive phase is studied. Sensitivity of the power of the fifth harmonic to the jitter in the energy difference between the two beams is also studied. A phase space is presented that shows the trapped electrons at the saturation point.

  8. Delivering pump light to a laser gain element while maintaining access to the laser beam

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.

    2001-01-01

    A lens duct is used for pump delivery and the laser beam is accessed through an additional component called the intermediate beam extractor which can be implemented as part of the gain element, part of the lens duct or a separate component entirely.

  9. Modeling of dynamic effects of a low power laser beam

    NASA Technical Reports Server (NTRS)

    Lawrence, George N.; Scholl, Marija S.; Khatib, AL

    1988-01-01

    Methods of modeling some of the dynamic effects involved in laser beam propagation through the atmosphere are addressed with emphasis on the development of simple but accurate models which are readily implemented in a physical optics code. A space relay system with a ground based laser facility is considered as an example. The modeling of such characteristic phenomena as laser output distribution, flat and curved mirrors, diffraction propagation, atmospheric effects (aberration and wind shear), adaptive mirrors, jitter, and time integration of power on target, is discussed.

  10. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  11. Propagation and focusing properties of high-power laser beams

    NASA Astrophysics Data System (ADS)

    Lu, Baida; Bin, Zhang

    1996-11-01

    In This paper, on the basis of the generalized Huygens- Fresnel diffraction integral and by using the statistical- optics model of high-power lasers presented by Manes and Simmons at LLNL, the propagation and focusing properties of high-power lasers with amplitude modulations (AMs) and phase fluctuations (PFs) have been studied in detail. Numerical calculations for the apertured case have been performed, showing the dependence of focused field characteristics on the truncation parameter, Fresnel number of the system, phase fluctuations and amplitude modulations of high-power laser beams.

  12. Quantum radiation reaction in laser-electron-beam collisions.

    PubMed

    Blackburn, T G; Ridgers, C P; Kirk, J G; Bell, A R

    2014-01-10

    It is possible using current high-intensity laser facilities to reach the quantum radiation reaction regime for energetic electrons. An experiment using a wakefield accelerator to drive GeV electrons into a counterpropagating laser pulse would demonstrate the increase in the yield of high-energy photons caused by the stochastic nature of quantum synchrotron emission: we show that a beam of 10(9) 1 GeV electrons colliding with a 30 fs laser pulse of intensity 10(22)  W cm(-2) will emit 6300 photons with energy greater than 700 MeV, 60× the number predicted by classical theory.

  13. Guided Radiation Beams in Free Electron Lasers.

    DTIC Science & Technology

    1988-05-19

    the electron beam in an FEL that the radiation beam will remain guided. 0 20 II. Refractive Index Associated with FELs In our model, the vector ...eIAw/ymOc(exp(ikwz) + c.c.) ex/2 , is the wiggle velocity, y is the Lorentz factor, Aw is the vector potential amplitude of the planar wiggler...Balboa Avenue Palo Alto, CA 94303 San Diego, CA 92123 38 Dr. S. Krinsky Nat. Synchrotron Light Source Dr. Michael Lavan Brookhaven National Laboratory U.S

  14. HUBBLE DISCOVERS POWERFUL LASER BEAMED FROM CHAOTIC STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's concept of a gas cloud (left) that acts as a natural ultraviolet laser, near the huge, unstable star Eta Carinae (right) -- one of most massive and energetic stars in our Milky Way Galaxy. The super-laser was identified by a team led by Kris Davidson of the University of Minnesota, and including nine other collaborators in the U.S. and Sweden during spectroscpic observations made with the Goddard High Resolution spectrograph aboard NASA's Hubble Space Telescope. Since it's unlikely that a single beam from the cloud would happen to be precisely aimed in earth's driection, the astronomers conclude that numerous beams must be radiating from the cloud in all directions - beams from a dance hall mirror-ball. The interstellar laser may result from Eta Carinae's violently chaotic eruptions, illustrated here as a reddish (due to light scattering by dust) outflow from the bright star. A laser, (an acronym for Light Amplification by Stimulated Emission of Radiation) creates an intense coherent beam of light when atoms or molecules in a gas, liquid or solid medium, force an incoming mix of wavelengths (or colors) of light to work in phase, or, at the same wavelength. Though a natural infrared laser was identified in space in 1995, lasers are very rare in space and nothing like the UV laser has ever been seen before. Eta Carinae is several million times brighter than the Sun, and one hundred times as massive. The superstar, located 8,000 light-years away in the souther constellation Carina, underwent a colossal outburst 150 years ago. Illustration courtesy James Gitlin/STScI

  15. Optical Device for Converting a Laser Beam into Two Co-aligned but Oppositely Directed Beams

    NASA Technical Reports Server (NTRS)

    Jennings, Donald

    2013-01-01

    Optical systems consisting of a series of optical elements require alignment from the input end to the output end. The optical elements can be mirrors, lenses, sources, detectors, or other devices. Complex optical systems are often difficult to align from end-to-end because the alignment beam must be inserted at one end in order for the beam to traverse the entire optical path to the other end. The ends of the optical train may not be easily accessible to the alignment beam. Typically, when a series of optical elements is to be aligned, an alignment laser beam is inserted into the optical path with a pick-off mirror at one end of the series of elements. But it may be impossible to insert the beam at an end-point. It can be difficult to locate the pick-off mirror at the desired position because there is not enough space, there is no mounting surface, or the location is occupied by a source, detector, or other component. Alternatively, the laser beam might be inserted at an intermediate location (not at an end-point) and sent, first in one direction and then the other, to the opposite ends of the optical system for alignment. However, in this case, alignment must be performed in two directions and extra effort is required to co-align the two beams to make them parallel and coincident, i.e., to follow the same path as an end-to-end beam. An optical device has been developed that accepts a laser beam as input and produces two co-aligned, but counter-propagating beams. In contrast to a conventional alignment laser placed at one end of the optical path, this invention can be placed at a convenient position within the optical train and aligned to send its two beams simultaneously along precisely opposite paths that, taken together, trace out exactly the same path as the conventional alignment laser. This invention allows the user the freedom to choose locations within the optical train for placement of the alignment beam. It is also self-aligned by design and requires

  16. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  17. Approach for laser beam welding under hyperbaric conditions

    SciTech Connect

    Franz, T.; Schubert, E.; Sepold, G.

    1995-12-31

    A new approach for welding under hyperbaric conditions can be the application of laser beams. Welding experiments have been performed with CVO{sub 2} and Nd:YAG lasers at elevated pressures. Deep penetration welding with CO{sub 2} laser radiation ({lambda} = 10,6 {micro}m) is not possible at elevated pressure, since the appearing metal vapor plume shields the surface. The results of trials done with a Nd:YAG laser ({lambda} = 1,06 {micro}m) show that it is possible to perform deep penetration welding up to an overpressure of 2 to 3 bar today. At higher pressures heat conduction welding can be performed. This pressure level can be extended by influencing the metal vapor plume. Nd:YAG laser radiation can be transmitted through optical fibers and therefore easily be guided below sea level. This has led to the development of a mobile Nd:YAG laser system which consists of a containerized Nd:YAG laser source, a fiber for beam transmission and a working head which is capable to be remotely controlled and operated at a pressure of up to 10 bar.

  18. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    PubMed Central

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-01-01

    Abstract Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) PMID:22930653

  19. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams.

    PubMed

    Hofmann, Kerstin M; Schell, Stefan; Wilkens, Jan J

    2012-11-01

    Laser-accelerated particles are a promising option for radiation therapy of cancer by potentially combining a compact, cost-efficient treatment unit with the physical advantages of charged particle beams. To design such a treatment unit we consider different dose delivery schemes and analyze the necessary devices in the required particle beam line for each case. Furthermore, we point out that laser-driven treatment units may be ideal tools for motion adaptation during radiotherapy. Reasons for this are the potential of a flexible gantry and the time structure of the beam with high particle numbers in ultrashort bunches. One challenge that needs to be addressed is the secondary radiation produced in several beam line elements.

  20. Laser-accelerated ion beam diagnostics with TOF detectors for the ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Milluzzo, G.; Scuderi, V.; Amico, A. G.; Borghesi, M.; Cirrone, G. A. P.; Cuttone, G.; De Napoli, M.; Doria, D.; Dostal, J.; Larosa, G.; Leanza, R.; Margarone, D.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Velyhan, A.

    2017-02-01

    Laser-accelerated ion beams could represent the future of particle acceleration in several multidisciplinary applications, as for instance medical physics, hadrontherapy and imaging field, being a concrete alternative to old paradigm of acceleration, characterized by huge and complex machines. In this framework, following on from the ELIMED collaboration, launched in 2012 between INFN-LNS and ELI-Beamlines, in 2014 a three-years contract has been signed between the two institutions for the design and the development of a complete transport beam-line for high-energy ion beams (up to 60 MeV) coupled with innovative diagnostics and in-air dosimetry devices. The beam-line will be installed at the ELI-Beamlines facility and will be available for users. The measurement of the beam characteristics, such as energy spectra, angular distributions and dose-rate is mandatory to optimize the transport as well as the beam delivery at the irradiation point. In order to achieve this purpose, the development of appropriate on-line diagnostics devices capable to detect high-pulsed beams with high accuracy, represents a crucial point in the ELIMED beamline development. The diagnostics solution, based on the use of silicon carbide (SiC) and diamond detectors using TOF technique, will be presented together with the preliminary results obtained with laser-accelerated proton beams.

  1. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  2. Resonant Laser Manipulation of an Atomic Beam

    DTIC Science & Technology

    2010-07-01

    direction, due to the photon scattering force from a near resonant laser field, is given by ( ) 1 2 0 scat 01 2 2 ks F s d -Gé ù = + + Gê ú ê úë û h (1...resonant laser field, is given by ( ) 2 2 dip sat ( )1 4 2 8 g I r F r r r I r e d d d æ ö¶ D ¶¶ W W¶W G÷ç ÷@- = - ç = - = -÷ç ÷ç¶ ¶ ¶ ¶è ø h h h (3

  3. CO2 lasers: beam patterns in relation to surgical use.

    PubMed

    Fava, G; Emanuelli, H; Cascinelli, N; Bandieramonte, G; Canestri, F; Marchesini, R

    1983-01-01

    According to surgeons operating with a variety of CO2 lasers available at the National Cancer Institute of Milan (Coherent, Sharplan, Valfivre), these lasers have different cutting and coagulation properties. To identify what physical parameters might corroborate the subjective impression of the surgeons, a comparative study of the crater forms in perspex samples was performed. Perspex was chosen for its thermal properties (in fact, its thermal conductivity and diffusivity are similar to those of organic tissue) and because it allowed good visualization and measurement of crater characteristics. Depth of penetration, crater diameter, and extension of thermal damage were measured against power, focal length, and exposure time for each CO2 laser model. These results can be used as an index of behaviour of different surgical lasers. It appears that for fully characterizing the interaction of surgical lasers with the sample, it is necessary to specify either power, focal length, exposure time, or beam mode.

  4. High efficiency solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, G. A.

    1995-01-01

    Understanding solar cell response to pulsed laser outputs is important for the evaluation of power beaming applications. The time response of high efficiency GaAs and silicon solar cells to a 25 nS monochromatic pulse input is described. The PC-1D computer code is used to analyze the cell current during and after the pulse for various conditions.

  5. Image Processing In Laser-Beam-Steering Subsystem

    NASA Technical Reports Server (NTRS)

    Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.

    1996-01-01

    Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.

  6. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    NASA Astrophysics Data System (ADS)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  7. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    ERIC Educational Resources Information Center

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  8. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    SciTech Connect

    Castro, Alonso

    2016-06-22

    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  9. Laser induced focusing for over-dense plasma beams

    SciTech Connect

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-09-15

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing.

  10. Developing beam phasing on the Nova laser

    SciTech Connect

    Ehrlich, R.B.; Amendt, P.A.; Dixit, S.N.; Hammel, B.A.; Kalantar, D.H.; Pennington, D.M.; Weiland, T.L.

    1997-03-10

    We are presently adding the capability to irradiate indirectly-driven Nova targets with two rings of illumination inside each end of the hohlraum for studies of time-dependent second Legendre (P2) and time- integrated fourth Legendre (P4) flux asymmetry control. The rings will be formed with specially designed kinoform phase plates (KPPs), which will direct each half of each beam into two separate rings that are nearly uniform azimuthally. The timing and temporal pulse shape of the outer rings will be controlled independently from those of the inner rings, allowing for phasing of the pulse shapes to control time dependent asymmetry. Modifications to the incident beam diagnostics (IBDS) will enable us to verify that acceptable levels of power balance among the contributing segments of each ring have been achieved on each shot. Current techniques for precision beam pointing and timing are expected to be sufficiently accurate for these experiments. We present a design for an affordable retrofit to achieve beam phasing on Nova, results of a simplified demonstration, and calculations highlighting the anticipated benefits.

  11. Gamma ray sources based on resonant backscattering of laser beams with relativistic heavy ion beams

    SciTech Connect

    Bessonov, E.G.; Kim, Kwang-Je

    1995-04-01

    Resonant backscattering of high-power laser beam with non-fully stripped, ultra-relativistic ion beams in storage rings is studied as a source for {gamma}-ray beams for elementary particle physics experiments. The laser frequency is chosen to be resonant with one of the transition frequencies of the moving ions, and the bandwidth is chosen to cover the full Doppler broadening of the ions in the beam. Due to the resonance, the scattering cross section is enhanced by a large factor compared to the Thomson cross section, of the order 10{sup 8} for some examples considered here. The performance of the LHC as a possible {gamma}-generator or a {gamma} {minus} {gamma} collider is estimated. We study the case where hydrogen-like Pb ions with 2.8 TeV per nucleon are scattered by a train of 1100 {Angstrom}, 20 mg laser pulses with the same pulse time format as the ion beam. A free electron laser can be designed satisfying the requirements. It is estimated that {gamma}-rays of maximum quantum energy of 0.4 give at an average rate of 0.67 10{sup 18} are generated in this scheme. The luminosity of the corresponding {gamma} {minus} {gamma} collider will be about 0.9 10{sup 33} cm{sup {minus}2}s{sup {minus}1}.

  12. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    NASA Astrophysics Data System (ADS)

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-01

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  13. Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams

    SciTech Connect

    Hofmann, K. M.; Schell, S.; Wilkens, J. J.

    2013-07-26

    Laser-accelerated particles can provide a promising opportunity for radiation therapy of cancer. Potential advantages arise from combining a compact, cost-efficient treatment unit with the physical advantages in dose delivery of charged particle beams. We consider different dose delivery schemes and the required devices to design a possible treatment unit. The secondary radiation produced in several beam line elements remains a challenge to be addressed.

  14. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, R.A.; Henesian, M.A.

    1984-10-19

    The present invention relates to switching laser beams out of laser cavities, and more particularly, it relates to the use of generating harmonics of the laser beam to accomplish the switching. When laser light is generatd in a laser cavity the problem arises of how to switch the laser light out of the cavity in order to make use of the resulting laser beam in a well known multitude of ways. These uses include range finding, communication, remote sensing, medical surgery, laser fusion applications and many more. The switch-out problem becomes more difficult as the size of the laser aperture grows such as in laser fusion applications. The final amplifier stages of the Nova and Novette lasers at Lawrence Livermore National Laboratory are 46 centimeters with the laser beam expanded to 74 centimeters thereafter. Larger aperture lasers are planned.

  15. Role of beam absorption in plasma during laser welding

    SciTech Connect

    SEMAK,V.V.; STEELE,R.J.; FUERSCHBACH,PHILLIP W.; DAMKROGER,BRIAN K.

    2000-05-15

    The relationship between beam focus position and penetration depth in CW laser welding was studied numerically and experimentally for different welding conditions. Calculations were performed using a transient hydrodynamic model that incorporates the effect of evaporation recoil pressure and the associated melt expulsion. The simulation results are compared with measurements made on a series of test welds obtained using a 1650 W CO{sub 2} laser. The simulations predict, and the experiments confirm, that maximum penetration occurs with a specific location of the beam focus, with respect to the original sample surface, and that this relationship depends on the processing conditions. In particular, beam absorption in the plasma has a significant effect on the relationship between penetration and focus position. When the process parameters result in strong beam absorption in the keyhole plasma, the maximum penetration will occur when the laser focus is at or above the sample surface. In a case of weak absorption however, the penetration depth reaches its maximum value when the beam focus is located below the sample surface. In all cases, the numerical results are in good agreement with the experimental measurements.

  16. Beam shaping in the MegaJoule laser project

    NASA Astrophysics Data System (ADS)

    Luce, Jacques

    2011-10-01

    The LMJ (Laser MegaJoule) is dedicated to inertial confinement fusion. To perform this type of experiment, 160 square beams are frequency converted and focused onto a target filled with a deuterium tritium mixture. We propose to review how these beams are shaped along their propagation through the LMJ. Going upstream from the target to the laser source, specific optics has been designed to meet the beam shaping requirement. A focusing grating and a pseudorandom phase plate concentrate the energy onto the target. A deformable mirror controls and compensates the spatial phase defect occurring during the propagation through the main slab amplifiers. A liquid crystal cell shapes the beam in order to compensate the gain profile of the main amplifiers. It also protects the growth of damages that take place in the final optics of the chain. At last, a phase mirror generates a square flat top mode from a gaussian beam within a regenerative amplifier. All these optical components have one common principle: they control the phase of the spatial laser field.

  17. Characterization of a laser-beam spinning technique

    SciTech Connect

    Brandon, E.

    1990-06-01

    The objective of this study was to evaluate the beam spinning technique for bridging gaps in butt joints that are CO{sub 2} laser-welded. A device was designed and built to circularly oscillate a CO{sub 2} laser beam on the plant of a work surface. A series of welds was made using a continuous-wave output power of 805 watts, and the resultant weld bead profile was characterized as a function of three process parameters. From the experimental results, predictor equations were derived for laser-beam spinning speed and amplitude of the beam spinning pattern on the work surface. The data collected in this experiment indicate that the width of the weld bead is increased by oscillating the beam and that this increase may be made without significantly reducing the weld penetration. The increased width of the weld may offer a solution to variable gaps in weld joints, which has been a recurring production problem. 13 figs., 1 tab.

  18. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end radiation of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency (Fig. 10.1), lifetime and color properties.

  19. Incoherent Light Sources

    NASA Astrophysics Data System (ADS)

    Bertram, Dietrich; Born, Matthias; Jüstel, Thomas

    Since the invention and industrialization of incandescent lamps at the end of the 19th century electrical lighting has become a commodity in our daily life. Today, incoherent light sources are used for numerous application areas. Major improvements have been achieved over the past decades with respect to lamp efficiency Fig. 10.1, lifetime and color properties.

  20. Next Generation Laser-Compton Gamma-ray Beam Facilities

    NASA Astrophysics Data System (ADS)

    Wu, Ying

    2014-09-01

    Since late 1970s, laser driven Compton gamma-ray beam facilities have been developed, contradicted and operated around the world for basic science research in nuclear physics and astrophysics, and for applied research in the areas of national security and industrial applications. Currently, TUNL's High Intensity Gamma-ray Source (HIGS) located at Duke University campus is the most intense Compton gamma-ray beam facility dedicated for scientific research. Driven by a high power storage ring Free-Electron Laser (FEL), HIGS produces nearly monochromatic, highly polarized gamma-ray beams from 1 to 100 MeV, with its peak performance of total flux up to few 1E10 g/s and a spectral flux of more than 1E3 g/s/eV in the few MeV to 10 MeV region. The next generation Compton gamma-ray sources will be developed using advanced laser technologies. This talk will provide an overview of new Compton gamma-beam projects, including the ELI-NP (Extreme Light Infrastructure - Nuclear Physics) project in Romania and the HIGS upgrade project - HIGS2. Since late 1970s, laser driven Compton gamma-ray beam facilities have been developed, contradicted and operated around the world for basic science research in nuclear physics and astrophysics, and for applied research in the areas of national security and industrial applications. Currently, TUNL's High Intensity Gamma-ray Source (HIGS) located at Duke University campus is the most intense Compton gamma-ray beam facility dedicated for scientific research. Driven by a high power storage ring Free-Electron Laser (FEL), HIGS produces nearly monochromatic, highly polarized gamma-ray beams from 1 to 100 MeV, with its peak performance of total flux up to few 1E10 g/s and a spectral flux of more than 1E3 g/s/eV in the few MeV to 10 MeV region. The next generation Compton gamma-ray sources will be developed using advanced laser technologies. This talk will provide an overview of new Compton gamma-beam projects, including the ELI-NP (Extreme Light

  1. Laser beaming demonstrations to high-orbit satellites

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.

    1994-12-31

    Laser power beaming to satellites and orbital transfer vehicles requires the accurate pointing of a low-divergence laser beam to its target, whether the target is in the sunlight or the earth`s shadow. The Air Force Phillips Laboratory (AFPL) has demonstrated reduction in the image size of stars by a factor of 10 or more by using laser beacons and adaptive optics for atmospheric compensation. This same technology is applicable to reducing the divergence of laser beams propagated from earth to space. A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate the state of the art in this area with laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1--50 kW and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. The authors will attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. The authors will utilize the return signal from the retro-reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This will be especially challenging because the retro-reflectors will need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, the authors will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. The authors will utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m{sup 2} on orbit is needed for this demonstration.

  2. Laser beaming demonstrations to high-orbit satellites

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.

    1993-12-31

    Laser power beaming to satellites and orbital transfer vehicles requires the accurate pointing of a low-divergence laser beam to its target, whether the target is in the sunlight or the earth`s shadow. The Air Force Phillips Laboratory (AFPL) has demonstrated reduction in the image size of stars by a factor of 10 or more by using laser beacons and adaptive optics for atmospheric compensation. This same technology is applicable to reducing the divergence of laser beams propagated from earth to space. A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate the state of the art in this area with laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1--50 kill and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We will attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We will utilize the return signal from the retro-reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This will be especially challenging because the retro-reflectors will need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We will utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m{sup 2} on orbit is needed for this demonstration.

  3. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  4. Laser beaming demonstrations at the Starfire Optical Range

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.; Leatherman, P.; Fugate, R.Q.; Maes, C.; Lange, W.J.; Cowan, W.

    1995-03-01

    The ability to acquire, track, and accurately direct a laser beam to a satellite is crucial for power-beaming and laser-communications. To assess the state of the art in this area, a team consisting of Air Force Phillips Laboratory, Sandia National Laboratories, and COMSAT Corporation personnel performed some laser beaming demonstrations to various satellites. A ruby laser and a frequency-doubled YAG laser were used with the Phillips Lab Starfire Optical Range (SOR) beam director for this activity. The ruby laser projected 20 J in 6 ms out the telescope with a beam divergence that increased from 1.4 to 4 times the diffraction limit during that time. The doubled YAG projected 0.09 J in 10 ns at 20 Hz. The SOR team demonstrated the ability to move rapidly to a satellite, center it in the telescope, then lock onto it with the tracker, and establish illumination. Several low-earth-orbit satellites with corner-cube retro-reflectors were illuminated at ranges from 1000 to 6000 km with a beam divergence estimated to be about 20 {mu}radians. The return signal from the ruby laser was collected in a 15-cm telescope, detected by a photomultiplier tube, and recorded at 400 kHz. Rapid variations in intensity (as short at 15 {mu}s) were noted, which may be due to speckles caused by phase interference from light reflected from different retro-reflectors on the satellite. The return light from the YAG was collected by a 35-cm telescope and detected by an intensified CCD camera. The satellite brightened by about a factor of 30 in the sunlight when the laser was turned on, and dimmed back to normal when the 50-{mu}radian point-ahead was turned off. The satellite was illuminated at 1 Hz as it entered the earth`s shadow and followed for about 10 seconds in the shadow. In another demonstration, four neighboring GEO satellites were located and centered in succession with a 3.5-m telescope at a rate of about 16 seconds per satellite.

  5. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  6. Spectral and spatial characterisation of laser-driven positron beams

    NASA Astrophysics Data System (ADS)

    Sarri, G.; Warwick, J.; Schumaker, W.; Poder, K.; Cole, J.; Doria, D.; Dzelzainis, T.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Romagnani, L.; Samarin, G. M.; Symes, D.; Thomas, A. G. R.; Yeung, M.; Zepf, M.

    2017-01-01

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. The results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

  7. Spectral and spatial characterisation of laser-driven positron beams

    DOE PAGES

    Sarri, G.; Warwick, J.; Schumaker, W.; ...

    2016-10-18

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allowsmore » to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.« less

  8. Spectral and spatial characterisation of laser-driven positron beams

    SciTech Connect

    Sarri, G.; Warwick, J.; Schumaker, W.; Poder, K.; Cole, J.; Doria, D.; Dzelzainis, T.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Romagnani, L.; Samarin, G. M.; Symes, D.; Thomas, A. G. R.; Yeung, M.; Zepf, M.

    2016-10-18

    The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. Lastly, the results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

  9. Simultaneous ion beam profile scan using a single laser source

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Long, C.; Huang, C.; Dickson, R.; Aleksandrov, A.

    2013-01-01

    We report on the world’s first experiment of a simultaneous profile scan of the hydrogen ion (H-) beam using a laser wire system. The system was developed and brought to operational level of application at the superconducting linac of the Spallation Neutron Source accelerator complex. The laser wire profile scanner is based on a photodetachment process and therefore can be conducted on a 1-MW neutron production H- beam in a nonintrusive manner. The new simultaneous profile scanning system allows one to simultaneously measure profiles of the H- beam at nine different locations of the linac with high speed and accuracy, and therefore provides a unique tool for accelerator tuning and physics study. This paper describes the design, optical system and software platform developments, and measurement results of the simultaneous profile scanning system.

  10. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    NASA Astrophysics Data System (ADS)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  11. Laser beam apparatus and method for analyzing solar cells

    DOEpatents

    Staebler, David L.

    1980-01-01

    A laser beam apparatus and method for analyzing, inter alia, the current versus voltage curve at the point of illumination on a solar cell and the open circuit voltage of a solar cell. The apparatus incorporates a lock-in amplifier, and a laser beam light chopper which permits the measurement of the AC current of the solar cell at an applied DC voltage at the position on the solar cell where the cell is illuminated and a feedback scheme which permits the direct scanning measurements of the open circuit voltage. The accuracy of the measurement is a function of the intensity and wavelength of the laser light with respect to the intensity and wavelength distribution of sunlight and the percentage the dark current is at the open circuit voltage to the short circuit current of the solar cell.

  12. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  13. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Harres, K.; Nürnberg, F.; Blažević, A.; Audebert, P.; Brambrink, E.; Fernández, J. C.; Flippo, K. A.; Gautier, D. C.; Geißel, M.; Hegelich, B. M.; Schreiber, J.; Roth, M.

    2008-05-01

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50μm Au) is only modified due to multiple small angle scattering. Thin targets (10μm) show large source sizes of over 100μm diameter for 5MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  14. Laser beam-profile impression and target thickness impact on laser-accelerated protons

    SciTech Connect

    Schollmeier, M.; Harres, K.; Nuernberg, F.; Roth, M.; Blazevic, A.; Audebert, P.; Brambrink, E.; Fernandez, J. C.; Flippo, K. A.; Gautier, D. C.; Geissel, M.; Hegelich, B. M.; Schreiber, J.

    2008-05-15

    Experimental results on the influence of the laser focal spot shape onto the beam profile of laser-accelerated protons from gold foils are reported. The targets' microgrooved rear side, together with a stack of radiochromic films, allowed us to deduce the energy-dependent proton source-shape and size, respectively. The experiments show, that shape and size of the proton source depend only weakly on target thickness as well as shape of the laser focus, although they strongly influence the proton's intensity distribution. It was shown that the laser creates an electron beam that closely follows the laser beam topology, which is maintained during the propagation through the target. Protons are then accelerated from the rear side with an electron created electric field of a similar shape. Simulations with the Sheath-Accelerated Beam Ray-tracing for IoN Analysis code SABRINA, which calculates the proton distribution in the detector for a given laser-beam profile, show that the electron distribution during the transport through a thick target (50 {mu}m Au) is only modified due to multiple small angle scattering. Thin targets (10 {mu}m) show large source sizes of over 100 {mu}m diameter for 5 MeV protons, which cannot be explained by multiple scattering only and are most likely the result of refluxing electrons.

  15. ELIMED, future hadrontherapy applications of laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Cirrone, Giuseppe A. P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications.

  16. Laser beam drilling of metal-based composites

    NASA Astrophysics Data System (ADS)

    Riegel, H.; Merkel, M.; Ã-chsner, A.

    2014-02-01

    Laser drilling is a highly efficient technique to generate holes in almost any material. The relatively small amount of heat being involved during the process results in a small heat affected zone. This characteristic makes laser processing interesting for composite materials. The drilling process has to be adapted to the special characteristics of the composite material. In this paper investigations were performed with an advanced composite material, that is a metallic hollow sphere structure (MHSS). Numerical simulation was used to predict heat flux and temperature levels for different geometric parameters of the spheres (diameter, wall thickness) in order to optimize the drilling process. The numerical simulation allows a detailed analysis of the physical process in the zone that is influenced by the laser beam, which can hardly be analyzed by any measuring technique. The models for transient numerical analysis consider heat conduction and convection. The experimental work was done by a CO2-laser. The percussion drilling method has been used as drilling technique. The pulse duration was in the millisecond time regime. Investigations have been done with a mean power of 100 W, 200 W and 400 W. Two focal lenses have been used with focal lengths of 5.0´´ and 7.5´´. The laser beam melts the hollow sphere structure inside the beam leaving a hole in the structure as well as in individual hollow spheres. An image processing technique was developed to determine the circularity on the spheres and the drilled diameter in the structure. The circularity declines with increasing drill depth. The diameter as function of depth can be well described with lines of constant intensity of the focussed laser beam, the isophotes.

  17. Laser beam shaping profiles and propagation.

    PubMed

    Shealy, David L; Hoffnagle, John A

    2006-07-20

    We consider four families of functions--the super-Gaussian, flattened Gaussian, Fermi-Dirac, and super-Lorentzian--that have been used to describe flattened irradiance profiles. We determine the shape and width parameters of the different distributions, when each flattened profile has the same radius and slope of the irradiance at its half-height point, and then we evaluate the implicit functional relationship between the shape and width parameters for matched profiles, which provides a quantitative way to compare profiles described by different families of functions. We conclude from an analysis of each profile with matched parameters using Kirchhoff-Fresnel diffraction theory and M2 analysis that the diffraction patterns as they propagate differ by small amounts, which may not be distinguished experimentally. Thus, beam shaping optics is designed to produce either of these four flattened output irradiance distributions with matched parameters will yield similar irradiance distributions as the beam propagates.

  18. Confocal scanning beam laser microscope/macroscope: applications in fluorescence

    NASA Astrophysics Data System (ADS)

    Dixon, Arthur E.; Damaskinos, Savvas; Ribes, Alfonso

    1996-03-01

    A new confocal scanning beam laser microscope/macroscope is described that combines the rapid scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. This instrument combines an infinity-corrected confocal scanning laser microscope with a scanning laser macroscope that uses a telecentric f*(Theta) laser scan lens to produce a confocal imaging system with a resolution of 0.25 microns at a field of view of 25 microns and 5 microns at a field of view of 75,000 microns. The frame rate is 5 seconds per frame for a 512 by 512 pixel image, and 25 seconds for a 2048 by 2048 pixel image. Applications in fluorescence are discussed that focus on two important advantages of the instrument over a confocal scanning laser microscope: an extremely wide range of magnification, and the ability to image very large specimens. Examples are presented of fluorescence and reflected-light images of high quality printing, fluorescence images of latent fingerprints, packaging foam, and confocal autofluorescence images of a cricket.

  19. Beam shaping applications in laser micromachining for the microelectronics industry

    NASA Astrophysics Data System (ADS)

    Dunsky, Corey M.

    2001-10-01

    Laser micromachining has been a part of the manufacturing process for semiconductors and microelectronics devices for several decades. More recent applications such as the drilling of microvia holes in high-density electronic packages have recently entered broad industrial use for high-volume production. In such applications, process stability and throughput are key drivers of commercial success. Particularly in the UV, where solid-state laser power is growing rapidly but is still limited to less than 10 watts, innovations that permit the available laser power to be applied at the work surface more efficiently are of interest. Within the last two years, the use of beam shapers to create round laser spots with near-uniform irradiance at the work surface has been demonstrated. Shaping the irradiance profile has been shown to both increase process speed and improve the quality of the drilled holes, which range in diameter between 20 and 150 micrometers . This paper gives an historical overview of laser via drilling, presents the Gaussian-to-flattop beam shaping optics used in the microvia laser drills, and discusses the process results obtained.

  20. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  1. Quantum Radiation Reaction: From Interference to Incoherence.

    PubMed

    Dinu, Victor; Harvey, Chris; Ilderton, Anton; Marklund, Mattias; Torgrimsson, Greger

    2016-01-29

    We investigate quantum radiation reaction in laser-electron interactions across different energy and intensity regimes. Using a fully quantum approach which also accounts exactly for the effect of the strong laser pulse on the electron motion, we identify in particular a regime in which radiation reaction is dominated by quantum interference. We find signatures of quantum radiation reaction in the electron spectra which have no classical analogue and which cannot be captured by the incoherent approximations typically used in the high-intensity regime. These signatures are measurable with presently available laser and accelerator technology.

  2. Laser beam control and diagnostic systems for the copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Bliss, E.S.; Peterson, R.L.; Salmon, J.T.; Thomas, R.A.

    1992-11-01

    The laser system described in the previous paper is used for experiments in which success requires tight tolerances on beam position, direction, and wavefront. Indeed, the optimum performance of the laser itself depends on careful delivery of copper laser light to the dye amplifiers, precise propagation of dye laser beams through restricted amplifier apertures, and accurate monitoring of laser power at key locations. This paper describes the alignment systems, wavefront correction systems, and laser diagnostics systems which ensure that the control requirements of both the laser and associated experiments are met. Because laser isotope separation processes utilize more than one wavelength, these systems monitor and control multiple wavelengths simultaneously.

  3. Laser power beaming system analyses. Final report

    SciTech Connect

    Zeiders, G.W. Jr.

    1993-08-01

    The successful demonstration of the PAMELA adaptive optics hardware and the fabrication of the BTOS truss structure were identified by the program office as the two most critical elements of the NASA power beaming program, so it was these that received attention during this program. Much of the effort was expended in direct program support at MSFC, but detailed technical analyses of the AMP deterministic control scheme and the BTOS truss structure (both the JPL design and a spherical one) were prepared and are attached, and recommendations are given.

  4. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical

  5. Beaconless operation for optimal laser beam propagation through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-09-01

    Corruption of the wavefront, beam wondering and power density degradation at the receiving end are the effects typically observed at laser beam propagation through turbulent atmosphere. Compensation of these effects can be achieved if the reciprocal conditions for the propagating wave are satisfied along the propagation range. Practical realization of these conditions requires placing a localized beacon at the receiving end of the range and high-performance adaptive optics system (AOS). The key condition for an effective performance of AOS is a high value of the reciprocal component in the outgoing wave, since only this component is getting compensated after propagating turbulence perturbed path. The nonreciprocal components that is present in the wave directed toward the target is caused by three factors (detailed in this paper) that determine the partial restoration of the structure of the beacon beam. Thus solution of a complex problem of focusing the laser beam propagating through turbulent media can be achieved for the share of the outgoing wave that has a reciprocal component. This paper examines the ways and means that can be used in achieving the stated goal of effective laser power delivery on the distant image-resolved object.

  6. Frequency-resolved nonlinear interferometry with incoherent light and applications to coherent Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Stimson, Michael Jay

    1997-12-01

    Demonstrations of several frequency resolved incoherent field non-linear interferometric spectroscopies are presented with emphasis on applications to coherent Raman scattering (two incoherent field actions- I(2)CRS). The properties of the incoherent (noisy) laser sources used for time resolution of ultrafast dynamics are explored in detail theoretically and experimentally. A new technique for the measurement of noisy light correlation functions (I(2)FROG-two incoherent field actions in frequency resolved optical gating) is developed theoretically and used for experimental explorations of the nature of noisy optical fields and their relation to coherent short pulsed optical fields. I(2)FROG and I(2)CRS signals are frequency dispersed and multichannel detected, which when combined with interferometric time resolution allows the creation of two-dimensional representations of these signals (spectrally resolved interferograms, or spectrograms). Spectrograms offer a large redundancy in the sampling of signals, thus allowing great precision in the measurement of observable parameters. In I(2)FROG, the observable parameters characterize the noisy light in the form of the intensity and phase of cross correlation functions between beams of broadband light. In I(2)CRS, the observable parameters quantify material properties such as lineshape parameters, transition frequencies and ratios of resonant to non-resonant contributions to molecular hyperpolarizability tensor elements. Algorithms for the recovery of the observable parameters are developed and applied to the spectrograms derived from many condensed phase materials. Systems explored via spectrogram representation include pure substances and non-reactive mixtures. A novel modification of the original I(2)CRS experiment is presented in which spectrally tailored fields are used to control the properties of the I(2)CRS signals. Newly predicted fifth order signals (I(3)FOOCRS-three incoherent field actions in fifth order

  7. Diode laser power module for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Williams, M. D.; Lee, J. H.; Conway, E. J.

    1991-01-01

    Recent progress with powerful, efficient, and coherent monolithic diode master-oscillator/power-amplifier (M-MOPA) systems is promising for the development of a space-based diode laser power station. A conceptual design of a 50-kW diode laser power module was made for space-based power stations capable of beaming coherent power to the moon, Martian rovers, or other satellites. The laser diode power module consists of a solar photovoltaic array or nuclear power source, diode laser arrays (LDAs), a phase controller, beam-steering optics, a thermal management unit, and a radiator. Thermal load management and other relevant aspects of the system (such as power requirements and system mass) are considered. The 50-kW power module described includes the highest available efficiency of LD M-MOPA system to date. However, the overall efficiency of three amplifier stages, including the coupling efficiency, turns out to be 55.5 percent. Though a chain of PA stages generates a high-power coherent beam, there is a penalty due to the coupling loss between stages. The specific power of the 50-kW module using solar power is 6.58 W/kg.

  8. Ion Beam Analysis applied to laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  9. Undulator radiation driven by laser-wakefield accelerator electron beams

    NASA Astrophysics Data System (ADS)

    Wiggins, S. M.; Anania, M. P.; Welsh, G. H.; Brunetti, E.; Cipiccia, S.; Grant, P. A.; Reboredo, D.; Manahan, G.; Grant, D. W.; Jaroszynski, D. A.

    2015-05-01

    The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of coherent, bright, short-wavelength radiation pulses. The new Scottish Centre for the Application of Plasma-based Accelerators (SCAPA) will develop a wide range of applications utilising such light sources. Electron bunches can be propagated through a magnetic undulator with the aim of generating fully coherent free-electron laser (FEL) radiation in the ultra-violet and Xrays spectral ranges. Demonstration experiments producing spontaneous undulator radiation have been conducted at visible and extreme ultra-violet wavelengths but it is an on-going challenge to generate and maintain electron bunches of sufficient quality in order to stimulate FEL behaviour. In the ALPHA-X beam line experiments, a Ti:sapphire femtosecond laser system with peak power 20 TW has been used to generate electron bunches of energy 80-150 MeV in a 2 mm gas jet laser-plasma wakefield accelerator and these bunches have been transported through a 100 period planar undulator. High peak brilliance, narrow band spontaneous radiation pulses in the vacuum ultra-violet wavelength range have been generated. Analysis is provided with respect to the magnetic quadrupole beam transport system and subsequent effect on beam emittance and duration. Requirements for coherent spontaneous emission and FEL operation are presented.

  10. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    NASA Astrophysics Data System (ADS)

    Jafari, M. J.; Jafari Milani, M. R.; Niknam, A. R.

    2016-07-01

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).

  11. The random walk of a drilling laser beam

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.

    1980-01-01

    The disregistry of holes drilled with a pulse laser beam in 330-micron-thick single-crystal silicon-on-sapphire wafers is examined. The exit positions of the holes were displaced from the hole entrance positions on the opposing face of the wafer, and this random displacement increased with the number of laser pulses required. A model in which the bottom of the drill hole experiences small random displacements during each laser pulse is used to describe the experimental observations. It is shown that the average random displacement caused by each pulse is only a few percent of the hole diameter and can be reduced by using as few laser pulses as necessary while avoiding the cracking and spalling of the wafer that occur with a hole drilled with a single pulse.

  12. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    PubMed

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  13. Challenges in plasma and laser wakefield accelerated beams diagnostic

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Anania, M. P.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Ferrario, M.; Gatti, G.; Marchetti, B.; Mostacci, A.; Pompili, R.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.

    2013-08-01

    The new frontier in the particle beam accelerator is the so called plasma acceleration. Using the strong electric field inside a plasma it is possible to achieve accelerating gradients in the order of magnitude larger with respect to the actual technologies. Different schemes have been proposed and several already tested, producing beams of energy of several GeV. Mainly two approaches are followed: either the beam is directly produced by the interaction of a TW/PW class laser with a gas jet or a preexisting particle beam is accelerated in a plasma channel. In both cases a precise determination of the emerging beam parameters is mandatory for the fine tuning of the devices. The measurement of these parameters, in particular the emittance, is not trivial, mainly due to the large energy spread and to the tight focusing of these beams or to the background noise produced in the plasma channel. We show the problems related to the diagnostic of this kind of beams and the proposed or already realized solutions.

  14. High power tube solid-state laser with zigzag propagation of pump and laser beam

    NASA Astrophysics Data System (ADS)

    Savich, Michael

    2015-02-01

    A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.

  15. A new beam source for free electron lasers

    SciTech Connect

    Wang, M.C.; Wang, Z.J.; Zhu, J.B.

    1995-12-31

    A high power, high current density and high voltage electron beam was generated with the pseudospark discharge (PS), this is a new beam source for free electron lasers. The design and construction of the pseudospark discharge was described, the device has low cost and is easy to fabricate. The experiments are presented, the configuration parameters of the modified pulse line accelerator (PLA) are as follows. The PS hollow cavity has a 3 cm diameter and 4.1 cm long. The discharge chamber consists of planar cathode with hollow cavity, sets of intermediate electrodes and insulators with a common channel, and a planar anode. The electrodes are made of brass and the insulators are made of Plexiglas. The diameter of the channel is 3.2 mm. The anode-cathode gap distance is varied in 10-100 mm. The electron beams have voltage of 200 KeV, current of 2 KA and beam diameter of 1mm. The beam penetrated a 0.3 mm hole on a copper foil of 0.05 mm thick at the distance of 5 cm from the anode and penetrated a 0.6 mm hole on an acid-sensitive film at the distance of 15 cm. A compact free electron laser with a table size is discussed.

  16. Incoherent Multifocus Hololens Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Rallison, Richard D.

    1990-04-01

    Several 5 x 5 multifocus Hololenses have been produced with diffraction efficiencies between 20% and 75%. Low intermodulation noise was achieved by going off axis 16 degrees and using SHG and DCG materials to record the master and copies respectively. Astigmatism and Bragg tilt errors were minimized but images showed more coma than prior art. Both coherent and incoherent copies were made, the oherent copies were always low in efficiency because of very high intermodulation noise or because beam ratios were made high to avoid intermodulation noise. Incoherent copies proved to be only a little more difficult to fabricate and the master copy process in an index matching fluid proved to be more versatile as well as optically cleaner. Problems with uniformity from exposure to exposure were found and cured or probable causes were found. A limit to uniformity probably exists that relates to random coherent phasing of overlapping Bragg structures added to very small thermal and mechanical instabilities during exposure. All copies are made in a contact copy jig with each exposure running about 2 seconds. The process for obtaining an unaberrated master at 633 nm while making copies at 488 nm is described for both the coherent and incoherent methods. Test results for an incoherent 5x5 array working at 633 nm are given including an intensity profile of a spot, power distribution and output with crosstalk. Suggestions for further improvements are given.

  17. Vortex array laser beam generation from a Dove prism-embedded unbalanced Mach-Zehnder interferometer.

    PubMed

    Chu, Shu-Chun; Yang, Chao-Shun; Otsuka, Kenju

    2008-11-24

    This paper proposes a new scheme for generating vortex laser beams from a laser. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p x p vortex array beams from Ince-Gaussian modes, IG(e) (p,p) modes. An incident IG(e)(p,p) laser beam of variety order p can easily be generated from an end-pumped solid-state laser system with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation, analytically derives the vortex positions of the resulting vortex array laser beams, and discusses beam propagation effects. The resulting vortex array laser beam can be applied to optical tweezers and atom traps in the form of two-dimensional arrays, or used to study the transfer of angular momentum to micro particles or atoms (Bose-Einstein condensate).

  18. Analysis of laser beam propagation in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Clarke, R. H.

    1985-09-01

    The beam propagation method, based on the parabolic approximation to the wave equation, is used in conjunction with Papoulis' redefinition for optical fields of Woodward's ambiguity function. A simple derivation is given of Tatarskii's formula for the lateral coherence function, and hence the mean intensity profile, of a laser beam propagating through a turbulent atmosphere. Statistics of the received signal and the effects of spatial nonstationarity of the turbulence can also be deduced using this technique, as can the effects of very large-scale variations in refractive index and receiver directivity.

  19. Spatter Formation in Laser Welding with Beam Oscillation

    NASA Astrophysics Data System (ADS)

    Schweier, M.; Heins, J. F.; Haubold, M. W.; Zaeh, M. F.

    The investigation presented in this paper aims on a quantitative analysis of spatter formation in laser beam welding with superposed beam oscillation. After a discussion of design space limitations, which result from the scanner dynamics and theoretical considerations on the welding process itself, an optimal experimental design is created. By the use of high speed camera imaging, spatters were captured during statistically designed welding experiments and correlations between the number of spatters and the welding parameters have been derived. To evaluate the spatter characteristics in the high speed videos, a state space approach was applied, which is based on automated image data processing.

  20. Laser beam self-focusing in the atmosphere

    SciTech Connect

    Rubenchik, A M; Fedoruk, M P; Turitsyn, S K

    2008-09-09

    We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that if the self-focusing length is comparable with the atmosphere height the self-focusing can reduce the spot size on the ground well below the diffraction limited one without beam quality degradation. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.

  1. Propagation properties of apertured laser beams with amplitude modulations and phase fluctuations through atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Ji, X.; Li, X.

    2011-07-01

    The propagation properties of apertured laser beams with amplitude modulations (AMs) and phase fluctuations (PFs) through atmospheric turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity, power in the bucket ( PIB) and Strehl ratio ( S R ) of apertured laser beams with AMs and PFs propagating through atmospheric turbulence are derived. It is found that the worse the phase fluctuation and the higher the amplitude modulation are, the less laser beams are affected by turbulence. Furthermore, apertured Gaussian beams are more sensitive to turbulence than apertured laser beams with AMs and PFs. The average intensity of apertured laser beams with AMs and PFs may be even larger than that of apertured Gaussian beams due to turbulence. In particular, the influence of turbulence on the average maximum intensity of apertured laser beams with PFs and AMs may become serious if an unsuitable truncated parameter is chosen, which should be avoided in practice.

  2. CO{sub 2} Laser Ablation Propulsion Tractor Beams

    SciTech Connect

    Sinko, John E.; Schlecht, Clifford A.

    2010-05-06

    Manipulation of objects at a distance has already been achieved with no small measure of success in the realm of microscopic objects on the scale size of nanometers to micrometers in applications including laser trapping and laser tweezers. However, there has been relatively little effort to apply such remote control to macroscopic systems. A space tractor beam could be applied to a wide range of applications, including removal of orbital debris, facilitation of spacecraft docking, adjustment of satellite attitude or orbital position, etc. In this paper, an ablative laser propulsion tractor beam is demonstrated based on radiation from a CO{sub 2} laser. Cooperative, layered polymer targets were used for remote impulse generation using a CO{sub 2} laser. The use of a structured ablatant enabling switching between thrust directional parity (i.e., forward or reverse) and imparting torque to a remote target. Fluence-dependent results are presented in the context of polymer ablation modeling work and with consideration of confined ablation effects.

  3. Automating the E-Beam Laser Laboratory.

    DTIC Science & Technology

    1979-11-30

    system is set to a suitable acceleratin g voltage, and depression of a “fire ” button causes the Marx generator to erect and energetic electrons to...9002 JAN. 2,1979 TEST TIME 900 PAGE 1 E—BEAM PARAMETERS SW I TCH PRESSURES DIODE AREA • 10 BY 100 CM TRICATRON • 37.~~586 PSIA N2 A-K GAP — 2 CM MARX ...PRESS1JRES” ’TA8(1.5)~ ”0IODE AREA — “;H;” BY “;I.;” cM”1705 9” TRIGATRON — ‘,.fl.” PSIA N2”~ TAB (1e5) ”A—K GAP — “;H2 ; ” CM”1710 9” MARX

  4. Cold-atom dynamics in crossed-laser-beam waveguides

    SciTech Connect

    Torrontegui, E.; Muga, J. G.; Echanobe, J.; Ruschhaupt, A.; Guery-Odelin, D.

    2010-10-15

    We study the dynamics of neutral cold atoms in an L-shaped crossed-beam optical waveguide formed by two perpendicular red-detuned lasers of different intensities and a blue-detuned laser at the corner. The motion in one sense is optimized, and the motion in the other sense may be suppressed even if it is energetically allowed. Quantum and classical simulations are performed and give similar results. Complemented with a vibrational cooling process we find a range of parameters for which this setting works as a one-way device or 'atom diode'.

  5. Fast Fiber-Laser Alignment: Beam Spot-Size Method

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Guo, Jingyan; Shi, Frank G.

    2005-03-01

    A novel fast and cost-effective method is introduced for the active alignment of a fiber to a laser diode: only four easy laser beam spot-size measurements are required for moving the fiber tip from the far field to the proximity of the optimal alignment position, thus dramatically reducing the total alignment time (at least five times faster than a conventional method),as experimentally confirmed. Moreover, in contrast to the existing methods,the new method is failure-proof. The principle of the proposed method can be applied generally to any type of packages and is illustrated by an example of a butterfly package.

  6. Electron capture acceleration channel in a slit laser beam

    SciTech Connect

    Wang, P. X.; Scheid, W.; Ho, Y. K.

    2007-03-12

    Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.

  7. Optomechanical design of the grating laser beam combiner (GLBC) laser diode header

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Spadin, Paul L.

    1989-01-01

    A laser diode header has been fabricated for a grating laser beam combiner (GLBC). The laser diode header provides the thermal control, the drive electronics, and the optical system necessary for proper operation of the beam combiner. The diode header is required to provide diffraction limited optical performance while providing correction for worst case defocus aberration, 0.6 mrad excess divergence, and worst case decenter aberration, 1.0 mrad pointing error. The design of the header considered the mechanical design and the optical design together resulting in a small, self-contained header with 0.7 mrad range for focus correction and +/- 2.5 mrad of beam steering. The complete diode header is currently undergoing optical and mechanical performance testing.

  8. Electro-optic harmonic conversion to switch a laser beam out of a cavity

    DOEpatents

    Haas, Roger A.; Henesian, Mark A.

    1987-01-01

    The invention is a switch to permit a laser beam to escape a laser cavity through the use of an externally applied electric field across a harmonic conversion crystal. Amplification takes place in the laser cavity, and then the laser beam is switched out by the laser light being harmonically converted with dichroic or polarization sensitive elements present to alter the optical path of the harmonically converted laser light. Modulation of the laser beam can also be accomplished by varying the external electric field.

  9. Non-intrusive beam power monitor for high power pulsed or continuous wave lasers

    DOEpatents

    Hawsey, Robert A.; Scudiere, Matthew B.

    1993-01-01

    A system and method for monitoring the output of a laser is provided in which the output of a photodiode disposed in the cavity of the laser is used to provide a correlated indication of the laser power. The photodiode is disposed out of the laser beam to view the extraneous light generated in the laser cavity whose intensity has been found to be a direct correlation of the laser beam output power level. Further, the system provides means for monitoring the phase of the laser output beam relative to a modulated control signal through the photodiode monitor.

  10. Beam Conditioning and Harmonic Generation in Free ElectronLasers

    SciTech Connect

    Charman, A.E.; Penn, G.; Wolski, A.; Wurtele, J.S.

    2004-07-05

    The next generation of large-scale free-electron lasers (FELs) such as Euro-XFEL and LCLS are to be devices which produce coherent X-rays using Self-Amplified Spontaneous Emission (SASE). The performance of these devices is limited by the spread in longitudinal velocities of the beam. In the case where this spread arises primarily from large transverse oscillation amplitudes, beam conditioning can significantly enhance FEL performance. Future X-ray sources may also exploit harmonic generation starting from laser-seeded modulation. Preliminary analysis of such devices is discussed, based on a novel trial-function/variational-principle approach, which shows good agreement with more lengthy numerical simulations.

  11. Particle confinement by a radially polarized laser Bessel beam

    NASA Astrophysics Data System (ADS)

    Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi

    2017-03-01

    The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.

  12. Power transmission by laser beam from lunar-synchronous satellite

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Deyoung, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-01-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  13. Monte Carlo simulation of laser beam scattering by water droplets

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Tong, Guang-de; Lin, Jia-xuan

    2013-09-01

    Monte Carlo simulation of laser beam scattering in discrete water droplets is present and the temporal profile of LIDAR signal scattered from random distributed water droplets such as raindrop and fog is acquired. A photon source model is developed in the simulation for laser beam of arbitrary intensity distribution. Mie theory and geometrical optics approximation is used to calculate optical parameters, such as scattering coefficient, Aledo and average asymmetry factor, for water droplets of variable size with gamma distribution. The scattering angle is calculated using the probability distribution given by Henyey-Greenstein phase function. The model solving semi-infinite homogeneous media problem is capable of handling a variety of geometries and arbitrary spatio-temporal pulse profiles.

  14. Power transmission by laser beam from lunar-synchronous satellite

    NASA Astrophysics Data System (ADS)

    Williams, M. D.; De Young, R. J.; Schuster, G. L.; Choi, S. H.; Dagle, J. E.; Coomes, E. P.; Antoniak, Z. I.; Bamberger, J. A.; Bates, J. M.; Chiu, M. A.

    1993-11-01

    The possibility of beaming power from synchronous lunar orbits (the L1 and L2 Lagrange points) to a manned long-range lunar rover is addressed. The rover and two versions of a satellite system (one powered by a nuclear reactor, the other by photovoltaics) are described in terms of their masses, geometries, power needs, missions, and technological capabilities. Laser beam power is generated by a laser diode array in the satellite and converted to 30 kW of electrical power at the rover. Present technological capabilities, with some extrapolation to near future capabilities, are used in the descriptions. The advantages of the two satellite/rover systems over other such systems and over rovers with onboard power are discussed along with the possibility of enabling other missions.

  15. Gaussian laser beam transformation into an optical vortex beam by helical lens

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2016-01-01

    In this article, we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance ζ from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of pth order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles, and radii, at any z distance behind the HL plane, as well as in the near and far field.

  16. Characterization of the laser cleaving on glass sheets with a line-shape laser beam

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Zan; Lin, Jehnming

    2007-07-01

    A CO 2 laser with a line-shape beam was used to cleave a soda-lime glass substrate at various beam-rotation angles to the cutting direction. The stress distribution on the glass substrate cleaved by the laser beam has been analyzed in this study. An uncoupled thermal-elastic analysis was achieved by the ABAQUS software based on the finite element method. The numerical results show that the stress field of the fracture is caused by a complex stress state and the cleavages are significantly affected by the heat diffusion and beam rotation angle. At the rotation angle of zero degree to the cleaving direction, the phenomena of the chip formation have been found due to a large temperature gradient at the cleaving depth of the glass substrate.

  17. Laser Deposition of Polymer Micro- and Nanoassembly from Solution Using Focused Near-Infrared Laser Beam

    NASA Astrophysics Data System (ADS)

    Nabetani, Yu; Yoshikawa, Hiroyuki; Grimsdale, Andrew C.; Müllen, Klaus; Masuhara, Hiroshi

    2007-01-01

    We have demonstrated the laser deposition of polymer micro- and nanoassemblies from a solution onto a glass substrate. The size and shape of the deposited dot-like assembly can be controlled by the laser power (P) and the concentration of the solution (C). For an example, a nanoassembly of a π-conjugated polymer, whose width and height are 280 and 23 nm, respectively, is deposited at the conditions of C=1.0× 10-5 mg/ml and P=700 mW. This laser deposition can be attributed to the optical trapping and the surface deformation of the solution layer using a focused laser beam. It is also demonstrated that the molecular orientation in the assembly can be aligned in the direction of the laser polarization. The present laser deposition is applicable to the micropatterning of various polymers dissolved in an organic solvent.

  18. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    NASA Astrophysics Data System (ADS)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  19. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    NASA Astrophysics Data System (ADS)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  20. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Astrophysics Data System (ADS)

    Harris, Michael R.; Willetts, David V.

    1990-06-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  1. Biomimetic surface structuring using cylindrical vector femtosecond laser beams.

    PubMed

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-22

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark's skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus' leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  2. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    PubMed Central

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-01-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611

  3. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  4. Dissociation phenomena in electron-beam sustained carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Harris, Michael R.; Willetts, David V.

    1990-01-01

    A number of applications are emerging requiring efficient, long pulse, long-life sealed CO2 lasers. Examples include the proposed NASA and ESA wind lidars. Electron-beam sustained discharge devices are strong contenders. Unlike self-sustained discharges, e-beam sustenance readily provides efficient performance from large volume discharges and offers pulse lengths well in excess of the microsecond or so generally associated with self-sustained devices. In the case of the e-beam sustained laser, since the plasma is externally maintained and operated at electric field strengths less than that associated with the glow to arc transition, the discharges can be run even in the presence of strongly attacking species such as O2. Build up of large levels of attacking contaminants is nevertheless undesirable as their presence reduces the current drawn by the plasma and thus the pumping rate to the upper laser level. The impedance rise leads to a mismatch of the pulse forming network with a consequent loss of control over energy deposition, operating E/N, and gain. Clearly CO2 dissociation rates, the influence of dissociation products on the discharge and gain, and tolerance of the discharge to these products need to be determined. This information can then be used to assess co-oxidation catalyst requirements for sealed operation.

  5. Laser beam surface melting of high alloy austenitic stainless steel

    SciTech Connect

    Woollin, P.

    1996-12-31

    The welding of high alloy austenitic stainless steels is generally accompanied by a substantial reduction in pitting corrosion resistance relative to the parent, due to microsegregation of Mo and Cr. This prevents the exploitation of the full potential of these steels. Processing to achieve remelting and rapid solidification offers a means of reducing microsegregation levels and improving corrosion resistance. Surface melting of parent UNS S31254 steel by laser beam has been demonstrated as a successful means of producing fine, as-solidified structures with pitting resistance similar to that of the parent, provided that an appropriate minimum beam travel speed is exceeded. The use of N{sub 2} laser trail gas increased the pitting resistance of the surface melted layer. Application of the technique to gas tungsten arc (GTA) melt runs has shown the ability to raise the pitting resistance significantly. Indeed, the use of optimized beam conditions, N{sub 2} trail gas and appropriate surface preparation prior to laser treatment increased the pitting resistance of GTA melt runs to a level approaching that of the parent material.

  6. Emittance growth mechanisms for laser-accelerated proton beams.

    PubMed

    Kemp, Andreas J; Fuchs, J; Sentoku, Y; Sotnikov, V; Bakeman, M; Antici, P; Cowan, T E

    2007-05-01

    In recent experiments the transverse normalized rms emittance of laser-accelerated MeV ion beams was found to be < 0.002 mm mrad, which is at least 100 times smaller than the emittance of thermal ion sources used in accelerators [T. E. Cowan, Phys. Rev. Lett. 92, 204801 (2004)]. We investigate the origin for the low emittance of laser-accelerated proton beams by studying several candidates for emittance-growth mechanisms. As our main tools, we use analytical models and one- and two-dimensional particle-in-cell simulations that have been modified to include binary collisions between particles. We find that the dominant source of emittance is filamentation of the laser-generated hot electron jets that drive the ion acceleration. Cold electron-ion collisions that occur before ions are accelerated contribute less than ten percent of the final emittance. Our results are in qualitative agreement with the experiment, for which we present a refined analysis relating emittance to temperature, a better representative of the fundamental beam physics.

  7. The Nike Electron Beam-Pumped KrF Laser Amplifiers

    DTIC Science & Technology

    1995-07-01

    enclosed in a sealed tunnel. The design considerations for the amplifier are described in greater detail elsewhere7• SOhm WATER DIELECTRIC PULSE... issues of direct drive laser fusion1• It uses spatially and temporally incoherent light to reduce the low-mode intensity nonuniformities to less than 2...Routine jitter of the switch firing with this arrangement is less than ± 5 nsec. The vacuum insulator is a radial monolithic arrangement which uses

  8. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  9. Optical beam-shaping design based on aspherical lenses for circularization, collimation, and expansion of elliptical laser beams.

    PubMed

    Serkan, Mert; Kirkici, Hulya

    2008-01-10

    We present two optical system designs using aspherical lenses for beam circularization, collimation, and expansion of semiconductor lasers for possible application in lidar systems. Two different optical lens systems are investigated; namely, two aspherical lens and single aspherical lens systems. Software package programs of ZEMAX and MATLAB to simulate the optical designs are used. The beam reshaping results are presented for one specific laser beam output.

  10. Optical beam-shaping design based on aspherical lenses for circularization collimation, and expansion of elliptical laser beams

    NASA Astrophysics Data System (ADS)

    Serkan, Mert; Kirkici, Hulya

    2008-01-01

    We present two optical system designs using aspherical lenses for beam circularization, collimation, and expansion of semiconductor lasers for possible application in lidar systems. Two different optical lens systems are investigated; namely, two aspherical lens and single aspherical lens systems. Software package programs of ZEMAX and MATLAB to simulate the optical designs are used. The beam reshaping results are presented for one specific laser beam output.

  11. GaAs solar cells for laser power beaming

    NASA Technical Reports Server (NTRS)

    Olsen, Larry C.; Dunham, Glen; Huber, Daniel A.; Addis, F. William; Anheier, Norman; Coomes, E. P.

    1991-01-01

    Efforts to develop GaAs solar cells for coupling to laser beams in the wavelength range of 800 to 840 nm are described. This work was motivated primarily by interests in space-tp-space power beaming applications. In particular, the Battelle Pacific Northwest Laboratories is conducting studies of the utilization of power beaming for several future space missions. Modeling calculations of GaAs cell performance were carried out using PC-1D to determine an appropriate design for a p/n cell structure. Epitaxial wafers were grown by MOCVD and cells fabricated at WSU Tri-Cities. Under simulated conditions, an efficiency of 53 percent was achieved for a cell coupled to 806 nm light at 400 mW/sq cm.

  12. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1986-01-01

    The generation of energetic pulsed atomic oxygen beams by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin indium-tin oxide (ITO) films is reported. Mass spectroscopy is used in the mass and energy characterization of beams from the ozone/oxygen films, and a peak flux of 3 x 10 to the 20th/sq m per sec at 10 eV is found. Analysis of the time-of-flight data suggests that several processes contribute to the formation of the oxygen beam. Results show the absence of metastable states such as the 2p(3)3s(1)(5S) level of atomic oxygen blown-off from the ITO films. The present process has application to the study of the oxygen degradation problem of LEO materials.

  13. Ideal Laser Beam Propagation through high temperature ignition hohlraum plasmas

    SciTech Connect

    Froula, D H; Divol, L; Meezan, N; Dixit, S; Moody, J D; Pollock, B B; Ross, J S; Glenzer, S H

    2006-09-20

    We demonstrate that a blue (3{omega}, 351 nm) laser beam with an intensity of 2 x 10{sup 15} W-cm{sup -2} propagates within the original beam cone through a 2-mm long, T{sub e}=3.5 keV high density (n{sub e} = 5 x 10{sup 20} cm{sup -3}) plasma. The beam produced less than 1% total backscatter; the resulting transmission is greater than 90%. Scaling of the electron temperature in the plasma shows that the plasma becomes transparent for uniform electron temperatures above 3 keV. These results are consistent with linear theory thresholds for both filamentation and backscatter instabilities inferred from detailed hydrodynamic simulations. This provides a strong justification for current inertial confinement fusion designs to remain below these thresholds.

  14. Research on beam splitting prism in laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  15. Mono-Energetic Beams from Laser Plasma Interactions

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  16. Propagation modeling results for narrow-beam undersea laser communications

    NASA Astrophysics Data System (ADS)

    Fletcher, Andrew S.; Hardy, Nicholas D.; Hamilton, Scott A.

    2016-03-01

    Communication links through ocean waters are challenging due to undersea propagation physics. Undersea optical communications at blue or green wavelengths can achieve high data rates (megabit- to gigabit-per-second class links) despite the challenging undersea medium. Absorption and scattering in ocean waters attenuate optical signals and distort the waveform through dense multipath. The exponential propagation loss and the temporal spread due to multipath limit the achievable link distance and data rate. In this paper, we describe the Monte Carlo modeling of the undersea scattering and absorption channel. We model photon signal attenuation levels, spatial photon distributions, time of arrival statistics, and angle of arrival statistics for a variety of lasercom scenarios through both clear and turbid water environments. Modeling results inform the design options for an undersea optical communication system, particularly illustrating the advantages of narrow-beam lasers compared to wide beam methods (e.g. LED sources). The modeled pupil plane and focal plane photon arrival distributions enable beam tracking techniques for robust pointing solutions, even in highly scattering harbor waters. Laser communication with collimated beams maximizes the photon transfer through the scattering medium and enables spatial and temporal filters to minimize waveform distortion and background interference.

  17. A laser-plasma accelerator producing monoenergetic electron beams.

    PubMed

    Faure, J; Glinec, Y; Pukhov, A; Kiselev, S; Gordienko, S; Lefebvre, E; Rousseau, J-P; Burgy, F; Malka, V

    2004-09-30

    Particle accelerators are used in a wide variety of fields, ranging from medicine and biology to high-energy physics. The accelerating fields in conventional accelerators are limited to a few tens of MeV m(-1), owing to material breakdown at the walls of the structure. Thus, the production of energetic particle beams currently requires large-scale accelerators and expensive infrastructures. Laser-plasma accelerators have been proposed as a next generation of compact accelerators because of the huge electric fields they can sustain (>100 GeV m(-1)). However, it has been difficult to use them efficiently for applications because they have produced poor-quality particle beams with large energy spreads, owing to a randomization of electrons in phase space. Here we demonstrate that this randomization can be suppressed and that the quality of the electron beams can be dramatically enhanced. Within a length of 3 mm, the laser drives a plasma bubble that traps and accelerates plasma electrons. The resulting electron beam is extremely collimated and quasi-monoenergetic, with a high charge of 0.5 nC at 170 MeV.

  18. Divergence of laser-driven relativistic electron beams.

    PubMed

    Debayle, A; Honrubia, J J; d'Humières, E; Tikhonchuk, V T

    2010-09-01

    Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force. The random angular dispersion is due to the small scale magnetic fields excited near the critical density due to the collisionless Weibel instability. When a preplasma is present, the radial beam deviation increases due to the electron acceleration in larger volumes and can become comparable to the local angular dispersion. This effect has been neglected so far in most of the fast electron transport calculations, overestimating significantly the beam collimation by resistive magnetic fields. Simulations with a two-dimensional cylindrically-symmetric hybrid code accounting for the electron radial velocity demonstrate a substantially reduced strength and a shorter penetration of the azimuthal magnetic field in solid targets.

  19. Laser Beam MicroMachining (LBMM) - A review

    NASA Astrophysics Data System (ADS)

    Mishra, Sanjay; Yadava, Vinod

    2015-10-01

    The use of short and ultrashort laser pulses for micromachining application is an emerging technology. Laser Beam MicroMachining (LBMM) has revolutionized many industries by providing innovative solutions in numerous industrial micro-engineering applications. High-intensity short or ultrashort laser pulses are powerful thermal energy source for creating micro-features in wide range of materials. These lasers can precisely ablate various types of materials with little or no collateral damage. An overview of LBMM is given so that we can obtain a current view of capabilities and tradeoffs associated with LBMM of sub-micron size. The fundamental understanding of ultrafast laser ablation process has been elucidated and the various research activities performed with nanosecond, picosecond and femtosecond, lasers have been discussed to understand the physical mechanisms and the critical experimental parameters involved in the LBMM. The critical analysis of various theoretical and experimental models used to describe the performance analysis of LBMM has been elaborated so that we can identify the relevant principles underlying the process.

  20. Scanning laser beam displays based on a 2D MEMS

    NASA Astrophysics Data System (ADS)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  1. Spectroscopic Analysis of High Intensity Laser Beam Jets Interaction Experiments on the Leopard Laser at UNR

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Weller, M. E.; Kantsyrev, V. L.; Safronova, A. S.; Moschella, J. J.; Shrestha, I.; Shlyapsteva, V. V.; Stafford, A.; Keim, S. F.; University of Nevada Reno Team

    2013-10-01

    Results of Ar gas-puff experiments performed on the high power Leopard laser at UNR are presented. Flux density of laser radiation in focal spot was up to 2 × 1016 W/cm2 (pulse duration was 0.8 ns and laser wavelength was 1.057 μm). Specifically, spectroscopic analysis of K-shell Ar spectra are investigated and compared as functions of the orientation of the laser beam to linear gas jet. The laser beam axis was positioned either along the jet plane or orthogonal to it at a distance of 1 mm from the nozzle output. The diagnostics used included a time-integrated x-ray spectrometer along with a set of filtered Si diodes with various cutoff energies. In order to identify lines, a non-local thermodynamic equilibrium (non-LTE) kinetic model was utilized and was also used to determine plasma parameters such as electron temperature and density. The importance of the spectroscopic study of high intensity laser beam-jets interaction experiments is discussed. This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno, and in part by the DOE/NNSA Cooperative agreements DE-NA0001984 and DE-FC52-06NA27616.

  2. Diode laser satellite systems for beamed power transmission

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Kwon, J. H.; Walker, G. H.; Humes, D. H.

    1990-01-01

    A power system composed of an orbiting laser satellite and a surface-based receiver/converter is described. Power is transmitted from the satellite to the receiver/converter by laser beam. The satellite components are: (1) solar collector; (2) blackbody; (3) photovoltaic cells; (4) heat radiators; (5) laser system; and (6) transmission optics. The receiver/converter components are: receiver dish; lenticular lens; photocells; and heat radiator. Although the system can be adapted to missions at many locations in the solar system, only two are examined here: powering a lunar habitat; and powering a lunar rover. Power system components are described and their masses, dimensions, operating powers, and temperatures, are estimated using known or feasible component capabilities. The critical technologies involved are discussed and other potential missions are mentioned.

  3. Optimization of electron-beam pumped excimer laser

    NASA Astrophysics Data System (ADS)

    Lowum, T. F.; Swecker, J. L.

    The output energy of an electron-beam pumped xenon flouride laser has been enhanced by optimizing certain electron-gun and gas-mix parameters. The optimized e-gun parameters include anode-cathode spacing, magnetic field strength, and cathode voltage. The optimized laser gas parameters include NF3 concentration, Xe concentration, and total pressure. The shortest anode-cathode spacing (9 cm), the strongest magnetic guide field (1600 Gauss), and the highest cathode voltage (375 kV) gave the highest laser output. The optimum gas concentrations were 0.05 percent NF3, 0.3 percent Xe, with Ne added to bring the total gas pressure to 60 psia. The energy degraded by 2 percent per shot with this gas mix.

  4. Determination of the beam centroid of an obstructed focused Gaussian laser beam

    SciTech Connect

    Doyle St John, W.

    2009-08-01

    Diffraction of an obstructed focused Gaussian laser beam has been treated theoretically using the Huygens-Fresnel diffraction integral and was found to be in good agreement with experimental measurements. The obstruction is a vertically oriented opaque cylinder treated as a flat hard aperture. Measurements and calculations are compared for the diffracted irradiance profile and the beam centroid as a function of cylinder diameter and lateral and longitudinal placement along the optic axis. The cylinders used were gauge pins and/or wires with diameters from 0.5 to 100 mil.

  5. Laser beam propagation through turbulence and adaptive optics for beam delivery improvement

    NASA Astrophysics Data System (ADS)

    Nicolas, Stephane

    2015-10-01

    We report results from numerical simulations of laser beam propagation through atmospheric turbulence. In particular, we study the statistical variations of the fractional beam energy hitting inside an optical aperture placed at several kilometer distance. The simulations are performed for different turbulence conditions and engagement ranges, with and without the use of turbulence mitigation. Turbulence mitigation is simulated with phase conjugation. The energy fluctuations are deduced from time sequence realizations. It is shown that turbulence mitigation leads to an increase of the mean energy inside the aperture and decrease of the fluctuations even in strong turbulence conditions and long distance engagement. As an example, the results are applied to a high energy laser countermeasure system, where we determine the probability that a single laser pulse, or one of the pulses in a sequence, will provide a lethal energy inside the target aperture. Again, turbulence mitigation contributes to increase the performance of the system at long-distance and for strong turbulence conditions in terms of kill probability. We also discuss a specific case where turbulence contributes to increase the pulse energy within the target aperture. The present analysis can be used to evaluate the performance of a variety of systems, such as directed countermeasures, laser communication, and laser weapons.

  6. Beam shaping for kilowatt fiber-coupled diode lasers by using one-step beam cutting-rotating of prisms.

    PubMed

    Wu, Yulong; Dong, Zhiyong; Chen, Yongqi; Qi, Yaoyao; Yuan, Xiandan; Qi, Yunfei; Xu, Li; Lin, Xuechun; Zou, Yonggang; Zhao, Pengfei

    2016-12-01

    The beam quality mismatch of laser diode stacks in both axes limits many direct applications for fiber or solid laser pumping and material processing. In this paper, a one-step cutting-rotating beam shaping system has been designed to homogenize the beam quality of two polarization-multiplexing laser diode stacks. Coupling laser diode stacks consisting of eight bars into a standard fiber with a core diameter of 600 μm and an NA of 0.22 is achieved. The simulative result shows that the system will have an output power over 1056 W. By using the technique, the production of compact and high brightness fiber-coupling diode lasers can be directly used for laser cladding and laser surface hardening processes.

  7. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    SciTech Connect

    Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  8. Incoherent holography to obtain depth information by a rotational shearing interferometer

    NASA Astrophysics Data System (ADS)

    Watanabe, Kaho; Nomura, Takanori

    2015-09-01

    The system to record incoherent holograms using a rotational shearing interferometer is proposed. It enables us to record a hologram without coherent illumination such as a laser. The systems can record an incoherent hologram by self-interference. A rotational shearing interferometer to record incoherent cosine hologram is described. Furthermore, a rotational shearing interferometer with lenses to record incoherent hologram is described. It has the advantage of obtaining depth information by the reconstruction owing to lenses for the shear which is parallel to the optical axis. The preliminary experiments were performed. An LED and a liquid crystal display with an LED backlight were used as incoherent objects. The incoherent holograms were recorded. The object images were reconstructed numerically. The experimental results confirm the proposed incoherent holography using a rotational shearing interferometer.

  9. Real-time determination of laser beam quality by modal decomposition.

    PubMed

    Schmidt, Oliver A; Schulze, Christian; Flamm, Daniel; Brüning, Robert; Kaiser, Thomas; Schröter, Siegmund; Duparré, Michael

    2011-03-28

    We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.

  10. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    SciTech Connect

    Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

    2001-08-30

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

  11. Vacuum electron acceleration and bunch compression by a flat-top laser beam.

    PubMed

    Wang, W; Wang, P X; Ho, Y K; Kong, Q; Gu, Y; Wang, S J

    2007-09-01

    The field intensity distribution and phase velocity characteristics of a flat-top laser beam are analyzed and discussed. The dynamics of electron acceleration in this kind of beam are investigated using three-dimensional test particle simulations. Compared with the standard (i.e., TEM(00) mode) Gaussian beam, a flat-top laser beam has a stronger longitudinal electric field and a larger diffraction angle. These characteristics make it easier for electrons to be trapped and accelerated by the beam. With a flat-top shape, the laser beam is also applicable to the acceleration of low energy electron and bunch compression.

  12. Improve the Performance of Integrated Diode Laser Beam Combining Through Grating Regrowth

    DTIC Science & Technology

    2014-11-30

    SECURITY CLASSIFICATION OF: This project aims to improve the output power and coherence of monolithically combined broad-area diode lasers through...grating regrowth. We have recently demonstrated coherent beam combining in a new, completely integrated approach to edge- emitting semiconductor lasers...2014 Approved for Public Release; Distribution Unlimited Final Report: Improve the Performance of Integrated Diode Laser Beam Combining Through Grating

  13. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  14. Structured beam shaping for precision laser dicing of multilayered substrates

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2007-02-01

    Laser dicing of wafer based devices; such as light emitting diodes (LEDs) is multifaceted since these devices are formed from various materials in a layered structure. Many of these layers include active device materials, passivation coatings, conductors and dielectric films all deposited on top of a bulk wafer substrate and all potentially having different ablation thresholds. These composite multi-layered structures require high finesse laser processes to ensure yields, high quality and low cost. Such processes have become very complex over the years as new devices become miniaturized, requiring smaller micro-machined features, greater precision and reduction of thermal stress to minimize substrate micro-cracking and maintain device integrity over its projected lifetime. Newer laser processes often involve the sequential use of single or multiple diode pumped solid state (DPSS) lasers, such as UV DPSS (355nn, 266nm), VIS DPSS (~532 nm) and IR DPSS (1064nm, 1070nm) as well as DPFL (Diode Pumped Fiber Lasers) lasers to penetrate various and differing material layers and substrates including SiC, Silicon and Sapphire. Development of beam shaping optics with the purpose of permitting two or more differing energy densities within a single focused or imaged beam spot would provide opportunities for pre-processing or pre-scribing of thinner cover layers, while following through with a higher energy density portion to cut through base substrates. This technique is also possible using multiple wavelengths simultaneously for micro-machining or dicing. Using multiple wavelengths offers advantages where high photon energies from such wavelengths as 266 nm can cause adverse effects to doped materials such as silicon or to active device layers such as GaN or other III-V materials deposited on the substrate surface. This paper will describe the development of variable intensity beam shaping optical elements targeting micromachining, dicing and patterning of delicate thin film

  15. Beam-quality measurements for materials processing lasers and the proposed ISO standard

    SciTech Connect

    Fuerschbach, P.W.; Essien, M.

    1993-11-01

    Laser beam-quality can indicate the maximum power density that can be obtained with a specific laser and serves as a figure-of-merit when comparing lasers, calibrating lasers, and in assessing a laser`s operating condition. Measurements of laser beam-quality for a 1000 watt continuous wave CO{sub 2} laser and a 400 watt pulsed Nd:YAG laser have been completed. These measurements were made with two different type instruments: (1) a specially constructed apparatus that uses an integrating sphere and diamond apertures and (2) a commercially available instrument that incorporates a scanning and spinning hollow needle. Laser beam-quality and the propagation constants have been determined using a non-linear curve-fitting technique and the new proposed ISO standard for measuring laser beam-quality. The curve fitting analysis and the ISO analysis were found to produce approximately the same values for beam-quality and the propagation constants. However, a comparison of the experimental procedures required with the two techniques showed significant differences. The utility of the ISO technique was limited by it`s experimental procedural restrictions. The importance of spherical aberration in distorting laser beam-quality measurements and in limiting the application of beam-quality to laser spotsize prediction is also detailed.

  16. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  17. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    NASA Astrophysics Data System (ADS)

    ten Haaf, G.; Wouters, S. H. W.; van der Geer, S. B.; Vredenbregt, E. J. D.; Mutsaers, P. H. A.

    2014-12-01

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  18. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage.

    PubMed

    Barberio, M; Veltri, S; Scisciò, M; Antici, P

    2017-03-07

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  19. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-03-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  20. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    PubMed Central

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-01-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient. PMID:28266496

  1. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    SciTech Connect

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-27

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  2. Guiding of laser beams in plasmas by electromagnetic cascade compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, S.; Shvets, G.

    2006-10-01

    The near-resonant beatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few- femtosecond electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red- and blue-shifted by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser phase, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. Thus, a train of high intensity radiation spikes with continually evolving longitudinal profile can be self- guided over several Rayleigh lengths in homogeneous plasma. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW show that achieving GeV energy is possible under realistic experimental conditions.

  3. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-01

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  4. Characterization and control of tunable quantum cascade laser beam parameters for stand-off spectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Christopher A.; Papantonakis, Michael R.; Nguyen, Viet; McGill, R. Andrew

    2016-05-01

    Infrared active stand-off detection techniques often employ high power tunable quantum cascade lasers (QCLs) for target illumination. Due to the distances involved, any fluctuation of the laser beam direction and/or beam profile is amplified at the sample position. If not accounted for, this leads to diminished performance (both sensitivity and selectivity) of the detection technique as a direct result of uncertainties in laser irradiance at each imaged pixel of the sample. This is especially true for detection approaches which illuminate a relatively small footprint at the target since the laser beam profile spatial fluctuations are often comparable to the (focused) laser spot size. Also, there is often a necessary trade-off between high output QCL power and beam quality. Therefore, precise characterization of the laser beam profile and direction as a function of laser properties (tuning wavelength, current and operating mode: pulsed or CW) is imperative. We present detailed measurements of beam profiles, beam wander and power fluctuations and their reproducibility as function of laser wavelength and stand-off distance for a commercially available tunable quantum cascade laser. We present strategies for improving beam quality by compensating for fluctuations using a motorized mirror and a pair of motorized lenses. We also investigate QCL mode hops and how they affect laser beam properties at the sample. Detailed mode-hop stability maps were measured.

  5. Dual-beam laser traps in biology and medicine: when one beam is not enough

    NASA Astrophysics Data System (ADS)

    Whyte, Graeme; Lautenschläger, Franziska; Kreysing, Moritz; Boyde, Lars; Ekpenyong, Andrew; Delabre, Ulysse; Chalut, Kevin; Franze, Kristian; Guck, Jochen

    2010-08-01

    Optical traps are nowadays quite ubiquitous in biophysical and biological studies. The term is often used synonymously with optical tweezers, one particular incarnation of optical traps. However, there is another kind of optical trap consisting of two non-focused, counter-propagating laser beams. This dual-beam trap predates optical tweezers by almost two decades and currently experiences a renaissance. The advantages of dual-beam traps include lower intensities on the trapped object, decoupling from imaging optics, and the possibility to trap cells and cell clusters up to 100 microns in diameter. When used for deforming cells this trap is referred to as an optical stretcher. I will review several applications of such traps in biology and medicine for the detection of cancer cells, sorting stem cells, testing light guiding properties of retinal cells and the controlled rotation of cells for single cell tomography.

  6. Introduction to Wave Turbulence Formalisms for Incoherent Optical Waves

    NASA Astrophysics Data System (ADS)

    Picozzi, Antonio; Garnier, Josselin; Xu, Gang; Rica, Sergio

    We provide an introduction to different wave turbulence formalisms describing the propagation of partially incoherent optical waves in nonlinear media. We consider the nonlinear Schrödinger equation as a representative model accounting for a nonlocal or a noninstantaneous nonlinearity, as well as higher-order dispersion effects. We discuss the wave turbulence kinetic equation describing, e.g., wave condensation or wave thermalization through supercontinuum generation; the Vlasov formalism describing incoherent modulational instabilities and the formation of large scale incoherent localized structures in analogy with long-range gravitational systems; and the weak Langmuir turbulence formalism describing spectral incoherent solitons, as well as spectral shock or collapse singularities. Finally, recent developments and some open questions are discussed, in particular in relation with a wave turbulence formulation of laser systems and different mechanisms of breakdown of thermalization.

  7. Transient beam oscillation with a highly dynamic scanner for laser beam fusion cutting

    NASA Astrophysics Data System (ADS)

    Goppold, Cindy; Pinder, Thomas; Herwig, Patrick

    2016-02-01

    Sheet metals with thicknesses >8 mm have a distinct cutting performance. The free choice of the optical configuration composed of fiber diameter, collimation, and focal length offers many opportunities to influence the static beam geometry. Previous analysis points out the limitations of this method in the thick section area. Within the present study, an experimental investigation of fiber laser fusion cutting of 12 mm stainless steel was performed by means of dynamical beam oscillation. Two standard optical setups are combined with a highly dynamic galvano-driven scanner that achieves frequencies up to 4 kHz. Dependencies of the scanner parameter, the optical circumstances, and the conventional cutting parameters are discussed. The aim is to characterize the capabilities and challenges of the dynamic beam shaping in comparison to the state-of-the-art static beam shaping. Thus, the trials are evaluated by quality criteria of the cut edge as surface roughness and burr height, the feed rate, and the cut kerf geometry. The investigation emphasizes promising procedural possibilities for improvements of the cutting performance in the case of fiber laser fusion cutting of thick stainless steel by means of the application of a highly dynamic scanner.

  8. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  9. Amplification of Conically Diverging Laser Beams in the Gas Amplifier of the THL-100 Laser System

    NASA Astrophysics Data System (ADS)

    Ivanov, N. G.; Ivanov, M. V.; Losev, V. F.; Yastremskii, A. G.

    2016-11-01

    Amplification of conically diverging laser beams in the XeF(C-A) amplifier of the THL-100 hybrid laser system operating in the visible range (λ = 475 nm) is investigated experimentally and theoretically. Energies of 2 and 2.5 J are obtained experimentally and theoretically at the output from the XeF(C-A) amplifier for the chirped start pulse with energy of 0.8 mJ and duration of 2 ps. Patterns of changes of energy and spatial and temporal distribution of the amplified laser beam intensity are investigated theoretically. The maximal calculated energy density and the radiation pulse intensity are Wmax = 100 mJ/cm2 and Imax = 64 GW/cm2, respectively.

  10. Compact prisms for polarisation splitting of fibre laser beams

    SciTech Connect

    Davydov, B L; Yagodkin, D I

    2005-11-30

    Simple compact monoprisms for spatial splitting of polarised laser beams with relatively small diameters (no more than 1 mm) are considered. Prisms can be made of optically inactive CaCO{sub 3}, {alpha}-BaB{sub 2}O{sub 4} ({alpha}-BBO), LiIO{sub 3}, LiNbO{sub 3}, YVO{sub 4}, and TiO{sub 2} crystals known in polarisation optics. The exact solution of the Snell equation for the extraordinary wave reflected from a surface arbitrarily tilted to its wave vector is obtained. The analysis of variants of the solution allows the fabrication of prisms with any deviation angles of the extraordinary wave by preserving the propagation direction of the ordinary wave. Three variants of prisms are considered: with minimised dimensions, with the Brewster output of the extraordinary beam, and with the deviation of the extraordinary wave by 90{sup 0}. Calcite prisms with the deviation angles for the extraordinary beam {approx}19{sup 0} and 90{sup 0} are tested experimentally. (control of laser radiation parameters)

  11. Advanced Lyapunov control of a novel laser beam tracking system

    NASA Astrophysics Data System (ADS)

    Nikulin, Vladimir V.; Sofka, Jozef; Skormin, Victor A.

    2005-05-01

    Laser communication systems developed for mobile platforms, such as satellites, aircraft, and terrain vehicles, require fast wide-range beam-steering devices to establish and maintain a communication link. Conventionally, the low-bandwidth, high-steering-range part of the beam-positioning task is performed by gimbals that inherently constitutes the system bottleneck in terms of reliability, accuracy and dynamic performance. Omni-WristTM, a novel robotic sensor mount capable of carrying a payload of 5 lb and providing a full 180-deg hemisphere of azimuth/declination motion is known to be free of most of the deficiencies of gimbals. Provided with appropriate controls, it has the potential to become a new generation of gimbals systems. The approach we demonstrate describes an adaptive controller enabling Omni-WristTM to be utilized as a part of a laser beam positioning system. It is based on a Lyapunov function that ensures global asymptotic stability of the entire system while achieving high tracking accuracy. The proposed scheme is highly robust, does not require knowledge of complex system dynamics, and facilitates independent control of each channel by full decoupling of the Omni-WristTM dynamics. We summarize the basic algorithm and demonstrate the results obtained in the simulation environment.

  12. Interaction of high power laser beams with plasma in ICF hohlraum using the FDTD method

    NASA Astrophysics Data System (ADS)

    Lin, Zhili

    2016-11-01

    In the indirect-drive Inertial confinement fusion (ICF) system, groups of laser beams are injected into a gold cylindrical hohlraum and plasma is stimulated with the ablation of the wall of hohlraum by the laser beams. In our work, the finite-difference time-domain (FDTD) method associated with the bilinear transform and Maclaurin series expansion approaches is utilized to examine the laser beam propagation in plasma described by the Drude model. The state-of-the-art approaches for generating the laser beams are presented and realized according to the full utilization of the TF/SF source condition. Base on the previous technologies, the quantitatively numerical analysis of the propagation characteristics of laser beams in the plasma is conducted. The obtained results are illustrated and discussed that are helpful for the parameter optimization of laser beams for an ICF system.

  13. Implementation and performance of beam smoothing on 10 beams of the Nova Laser

    SciTech Connect

    Pennington, D. M.; Dixit, S. N.; Weiland, T. L.; Ehrlich, R.; Rothenberg, J. E.

    1997-03-11

    Recent simulations and experiments on Nova indicate that some level of smoothing may be required to suppress filamentation in plasmas on the National Ignition Facility (NIF), resulting in the addition of 1-D smoothing capability to the current baseline design. Control of stimulated Brillouin scattering (SBS) and filamentation is considered essential to the success of laser fusion because they affect the amount and location of laser energy delivered to the x-ray conversion region (hohlraum wall) for indirect drive and to the absorptive region for direct drive, Smoothing by spectral dispersion (SSD)[1], reduces these instabilities by reducing nonuniformities in the focal irradiance when averaged over a finite time interval. We have installed SSD on Nova to produce beam smoothing on all 10 beam lines. A single dispersion grating is located in a position common to all 10 beam lines early in the preamplifier chain. This location limits the 1{omega} bandwidth to 2.2 {angstrom} with sufficient dispersion to displace the speckle field of each frequency component at the target plane by one half speckle diameter. Several beam lines were modified to allow orientation of the dispersion on each arm relative to the hohlraum wall. After conversion to the third harmonic the beam passes through a kinoform phase plate (KPP) designed to produce an elliptical spot at best focus. The KPPs produce a focal spot having an elliptical flat-top envelope with a superimposed speckle pattern. Over 93% of the energy is contained in the central 400 km. Calculations indicate a 16% rms. intensity variance will be reached after 330 ps for a single beam.

  14. Implementation and performance of beam smoothing on 10 beams of the Nova laser

    NASA Astrophysics Data System (ADS)

    Pennington, Deanna M.; Dixit, Sham N.; Weiland, Timothy L.; Ehrlich, Robert B.; Rothenberg, Joshua E.

    1997-12-01

    Recent simulations and experiments on Nova indicate that some level of smoothing may be required to suppress filamentation in plasmas on the National Ignition Facility, resulting in the addition of 1D smoothing capability to the current baseline design. Control of stimulated Brillouin scattering and filamentation is considered essential to the success of laser fusion because they affect the amount and location of laser energy delivered to the x-ray conversion region (holhraum wall) for indirect drive and to the absorptive region for direct drive. Smoothing by spectral dispersion (SSD), reduces these instabilities by reducing nonuniformities in the focal irradiance when averaged over a finite time interval. We have installed SSD on Nova to produce beam smoothing on all 10 beam lines. A single dispersion grating is located in a position common to all 10 beam lines early in the preamplifier chain. This location limits the 1(omega) bandwidth to 2.2 angstroms with sufficient dispersion to displace the speckle field of each frequency component at the target plane by one half speckle diameter. Several beam lines were modified to allow orientation of the dispersion on each arm relative to the holhraum wall. After conversion to the third harmonic the beam passes through a kinoform phase plate (KPP) designed to produce an elliptical spot at best focus. The KPPs produce a focal spot having an elliptical flat-top envelope with a superimposed speckle pattern. Over 93% of the energy is contained in the central 400 micrometers . Calculations indicate a 16% rms intensity variance will be reached after 330 ps for a single beam.

  15. The Collinear Fast Beam laser Spectroscopy (CFBS) experiment at TRIUMF

    NASA Astrophysics Data System (ADS)

    Voss, A.; Procter, T. J.; Shelbaya, O.; Amaudruz, P.; Buchinger, F.; Crawford, J. E.; Daviel, S.; Mané, E.; Pearson, M. R.; Tamimi, W. Al

    2016-03-01

    Laser spectroscopy experiments at radioactive ion beam facilities around the world investigate properties of exotic nuclei for scientific endeavours such as, but not limited to, the investigation of nuclear structure. Advancements in experimental sensitivity and performance are continuously needed in order to extend the reach of nuclei that can be measured. The collinear fast beam laser spectroscopy (CFBS) setup at TRIUMF, coupled to an out-of-plane radio-frequency quadrupole Paul trap, enables measurements of some of the most fundamental nuclear properties for long-lived ground and isomeric states. The first comprehensive overview of the CFBS experiment is provided along with descriptions of key developments that extend the reach of laser spectroscopy experiments. A novel data acquisition technique structured around three-dimensional spectra is presented, where the integration of a custom multi-channel-scalar provides photon counts correlated with arrival time and acceleration voltage for post-experiment analysis. In addition, new rapid light manipulation techniques are discussed that suppress undesirable hyperfine pumping effects and regain losses in experimental efficiency.

  16. Laser-driven relativistic electron beam interaction with solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-01

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of ˜2×1018W/cm2 a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is ˜2×1019cm-3. Magnetic and electric fields are less than ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a maximum of ˜0.5 eV. 2D interference phase shift shows the "fountain effect" of electron beam. The very low ionization inside glass target ˜0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  17. Laser-driven relativistic electron beam interaction with solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  18. CONTROL OF LASER RADIATION PARAMETERS: Beam structure of a diode-side-pumped Nd:YVO4 slab laser

    NASA Astrophysics Data System (ADS)

    Novikov, A. A.; Zinov'ev, A. P.; Antipov, Oleg L.

    2009-11-01

    The beam spatial structure of a diode-side-pumped Nd:YVO4 slab laser with grazing-incidence bounce geometry is studied. It is found how the mode structure changes with changing the cavity parameters in the cw and active Q-switching regimes. The parameters that allow one to improve the output beam quality retaining high output laser power are found.

  19. Spectrally beam combined fiber lasers for high power, efficiency, and brightness

    NASA Astrophysics Data System (ADS)

    Honea, Eric; Afzal, Robert S.; Savage-Leuchs, Matthias; Gitkind, Neil; Humphreys, Richard; Henrie, Jason; Brar, Khush; Jander, Don

    2013-03-01

    Spectral Beam Combining (SBC) of fiber lasers provides a simple, robust architecture for power scaling lasers to high power. With appropriate designs, power scaling beyond the single fiber limit can be achieved while maintaining near diffraction limited beam quality and high efficiency. We present experimental results where we achieved > 3 kW at an M2 = 1.35 and > 39% E-O efficiency by combining 12 individual fiber lasers into a single high brightness beam.

  20. Laser action in xenon pumped by pulsed beams of runaway electrons

    SciTech Connect

    Kolbychev, G.V.; Samyshkin, E.A.

    1983-02-01

    A report is given of the use of pulsed beams of runaway electrons for the pumping of gas lasers. Electron beams were generated inside a laser chamber. The average energy of these electrons was 1--4 keV. Lasing was observed as a result of the 3d/sub 2/--2p/sub 7/ transition in xenon. An analysis was made of the possibility of using runaway-electron beams in other types of gas laser.

  1. Wind Tunnel Testing of a One-Dimensional Laser Beam Scanning and Laser Sheet Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Grigory; Anderson, Robert; Hirt, Stefanie; Huang, John; Floyd, Bertram

    2012-01-01

    A 15- by 15-cm supersonic wind tunnel application of a one-dimensional laser beam scanning approach to shock sensing is presented. The measurement system design allowed easy switching between a focused beam and a laser sheet mode for comparison purposes. The scanning results were compared to images from the tunnel Schlieren imaging system. The tests revealed detectable changes in the laser beam in the presence of shocks. The results lend support to the use of the one-dimensional scanning beam approach for detecting and locating shocks in a flow, but some issues must be addressed in regards to noise and other limitations of the system.

  2. Large aperture laser beam alignment system based on far field sampling technique

    NASA Astrophysics Data System (ADS)

    Zhang, J. C.; Liu, D. Z.; Ouyang, X. P.; Kang, J.; Xie, X. L.; Zhou, J.; Gong, L.; Zhu, B. Q.

    2016-11-01

    Laser beam alignment is very important for high-power laser facility. Long laser path and large-aperture lens for alignment are generally used, while the proposed alignment system with a wedge by far-field sampling technique reduces both space and cost requirements. General alignment system for large-aperture laser beam is long in distance and large in volum because of taking near-field sampling technique. With the development of laser fusion facilities, the space for alignment system is limited. A new alignment system for large-aperture laser beam is designed to save space and reduce operating costs. The new alignment for large-aperture laser beam with a wedge is based on far-field sampling technique. The wedge is placed behind the spatial filter to reflect some laser beam as signal light for alignment. Therefore, laser beam diameter in alignment system is small, which can save space for the laser facility. Comparing to general alignment system for large-aperture laser beam, large-aperture lenses for near-field and far-field sampling, long distance laser path are unnecessary for proposed alignment system, which saves cost and space greatly. This alignment system for large-aperture laser beam has been demonstrated well on the Muliti-PW Facility which uses the 7th beam of the SG-Ⅱ Facility as pump source. The experimental results indicate that the average near-field alignment error is less than 1% of reference, and the average far-filed alignment error is less than 5% of spatial filter pinhole diameter, which meet the alignment system requirements for laser beam of Multi-PW Facility.

  3. Adaptive slit beam shaping for direct laser written waveguides.

    PubMed

    Salter, P S; Jesacher, A; Spring, J B; Metcalf, B J; Thomas-Peter, N; Simmonds, R D; Langford, N K; Walmsley, I A; Booth, M J

    2012-02-15

    We demonstrate an improved method for fabricating optical waveguides in bulk materials by means of femtosecond laser writing. We use an LC spatial light modulator (SLM) to shape the beam focus by generating adaptive slit illumination in the pupil of the objective lens. A diffraction grating is applied in a strip across the SLM to simulate a slit, with the first diffracted order mapped onto the pupil plane of the objective lens while the zeroth order is blocked. This technique enables real-time control of the beam-shaping parameters during writing, facilitating the fabrication of more complicated structures than is possible using nonadaptive methods. Waveguides are demonstrated in fused silica with a coupling loss to single-mode fibers in the range of 0.2 to 0.5 dB and propagation loss <0.4 dB/cm.

  4. Laser beam welding of 5182 aluminum alloys sheet.

    SciTech Connect

    Leong, K. H.; Sabo, K. R.; Altshuller, B.; Wilkinson, T. L.; Albright, C. E.; Technology Development; Alcan International Limited; Reynolds Metals Co.; Ohio State Univ.

    1999-06-01

    Conditions were determined for consistent coupling of a CO{sub 2} laser beam to weld 5182 aluminum alloy sheet. Full penetration butt and bead-on-plate welds on 0.8 and 1.8 mm sheets were performed. Process conditions examined included beam mode, spot size and irradiance, shielding gas flow, and edge quality and fitup. The observed weld quality variations with the different process parameters were consistent with physical phenomena and a threshold irradiance model. Optimal conditions were determined for obtaining consistent welds on 5182 alloy sheets. Formability and tensile tests were performed on the welded samples. All test failures occurred in the fusion zone. Reduction in formability and tensile strength of the welded samples are discussed with respect to weld profiles and process parameters.

  5. Polarization of a probe laser beam due to nonlinear QED effects

    NASA Astrophysics Data System (ADS)

    Shakeri, Soroush; Kalantari, Seyed Zafarollah; Xue, She-Sheng

    2017-01-01

    Nonlinear QED interactions induce different polarization properties on a given probe beam. We consider the polarization effects caused by the photon-photon interaction in laser experiments, when a laser beam propagates through a constant magnetic field or collides with another laser beam. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian for both time-dependent and constant background field to explore the time evolution of the Stokes parameters Q, U, and V describing polarization. Assuming an initially linearly polarized probe laser beam, we also calculate the induced ellipticity and rotation of the polarization plane.

  6. Laser Doppler velocity measurement without directional ambiguity by using frequency shifted incident beams

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.

    1970-01-01

    Laser Doppler heterodyning system for velocity measurements without directional ambiguity, employing incident beams of different frequencies through rotating diffraction grating or Bragg cell application

  7. Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique

    SciTech Connect

    Halavanau, Aliaksei; Edstrom, Dean; Gai, Wei; Ha, Gwanghui; Piot, Philippe; Power, John; Qiang, Gao; Ruan, Jinhao; Santucci, James; Wisniewski, Eric

    2016-06-01

    In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.

  8. Parametric study of beam refraction problems across laser anemometer windows

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1986-01-01

    The experimenter is often required to view flows through a window with a different index of refraction than either the medium being observed or the medium that the laser anemometer is immersed in. The refraction that occurs at the window surfaces may lead to undesirable changes in probe volume position or beam crossing angle and can lead to partial or complete beam uncrossing. This report describes the results of a parametric study of this problem using a ray tracing technique to predict these changes. The windows studied were a flat plate and a simple cyclinder. For the flat-plate study: (1) surface thickness, (2) beam crossing angle, (3) bisecting line - surface normal angle, and (4) incoming beam plane surface orientation were varied. For the cylindrical window additional parameters were also varied: (1) probe volume immersion, (2) probe volume off-radial position, and (3) probe volume position out of the R-theta plane of the lens. A number of empirical correlations were deduced to aid the interested reader in determining the movement, uncrossing, and change in crossing angle for a particular situation.

  9. Production of pulsed atomic oxygen beams via laser vaporization methods

    NASA Technical Reports Server (NTRS)

    Brinza, David E.; Coulter, Daniel R.; Liang, Ranty H.; Gupta, Amitava

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P sub J) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus.

  10. Electrostatic-accelerator free-electron lasers for power beaming

    SciTech Connect

    Pinhasi, Y.; Yakover, I.M.; Gover, A.

    1995-12-31

    Novel concepts of electrostatic-accelerator free-electron lasers (EA-FELs) for energy transfer through the atmosphere are presented. The high average power attained from an EA-FEL makes it an efficient source of mm-wave for power beaming from a ground stations. General aspects of operating the FEL as a high power oscillator (like acceleration voltage, e-beam. current, gain and efficiency) are studied and design considerations are described. The study takes into account requirements of power beaming application such as characteristic dips in the atmospheric absorption spectrum, sizes of transmitting and receiving antennas and meteorological conditions. We present a conceptual design of a moderate voltage (.5-3 MeV) high current (1-10 Amp) EA-FEL operating at mm-wavelength bands, where the atmospheric attenuation allows efficient power beaming to space. The FEL parameters were calculated, employing analytical and numerical models. The performance parameters of the FEL (power, energy conversion efficiency average power) will be discussed in connection to the proposed application.

  11. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    NASA Astrophysics Data System (ADS)

    Cros, B.; Paradkar, B. S.; Davoine, X.; Chancé, A.; Desforges, F. G.; Dobosz-Dufrénoy, S.; Delerue, N.; Ju, J.; Audet, T. L.; Maynard, G.; Lobet, M.; Gremillet, L.; Mora, P.; Schwindling, J.; Delferrière, O.; Bruni, C.; Rimbault, C.; Vinatier, T.; Di Piazza, A.; Grech, M.; Riconda, C.; Marquès, J. R.; Beck, A.; Specka, A.; Martin, Ph.; Monot, P.; Normand, D.; Mathieu, F.; Audebert, P.; Amiranoff, F.

    2014-03-01

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (> 15 fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  12. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  13. Analysis of laser beam weldability of Inconel 738 superalloy

    SciTech Connect

    Egbewande, A.T.; Buckson, R.A.; Ojo, O.A.

    2010-05-15

    The susceptibility of pre-weld heat treated laser beam welded IN 738 superalloy to heat affected zone (HAZ) cracking was studied. A pre-weld heat treatment that produced the minimal grain boundary liquation resulted in a higher level of cracking compared to those with more intergranular liquation. This deviation from the general expectation of influence of intergranular liquation extent on HAZ microfissuring is attributable to the reduction in the ability of the base alloy to accommodate welding tensile stress that accompanied a pre-weld heat treatment condition designed to minimize intergranular liquation. Furthermore, in contrast to what has been generally reported in other nickel-based superalloys, a decrease in laser welding speed resulted in increased HAZ cracking in the IN 738, which can be attributed to exacerbated process instability at lower welding speeds.

  14. Extremely high-power CO2 laser beam correction.

    PubMed

    Kudryashov, Alexis; Alexandrov, Alexander; Rukosuev, Alexey; Samarkin, Vadim; Galarneau, Pierre; Turbide, Simon; Châteauneuf, François

    2015-05-10

    This paper presents the results of high-power CO2 laser-aberration correction and jitter stabilization. A bimorph deformable mirror and two tip-tilt piezo correctors were used as executive elements. Two types of wavefront sensors, one Hartmann to measure higher-order aberrations (defocus, astigmatism etc.) based on an uncooled microbolometer long-wave infrared camera and the other a tip-tilt one based on the technology of obliquely sputtered, thin chromium films on Si substrates, were applied to measure wavefront aberrations. We discuss both positive and negative attributes of suggested wavefront sensors. The adaptive system is allowed to reduce aberrations of incoming laser radiation by seven times peak-to-valley and to stabilize the jitter of incoming beams up to 25 μrad at a speed of 100 Hz. The adaptive system frequency range for high-order aberration correction was 50 Hz.

  15. Laser beam self-focusing in turbulent dissipative media.

    PubMed

    Hafizi, B; Peñano, J R; Palastro, J P; Fischer, R P; DiComo, G

    2017-01-15

    A high-power laser beam propagating through a dielectric in the presence of fluctuations is subject to diffraction, dissipation, and optical Kerr nonlinearity. A method of moments was applied to a stochastic, nonlinear enveloped wave equation to analyze the evolution of the long-term spot radius. For propagation in atmospheric turbulence described by a Kolmogorov-von Kármán spectral density, the analysis was benchmarked against field experiments in the low-power limit and compared with simulation results in the high-power regime. Dissipation reduced the effect of self-focusing and led to chromatic aberration.

  16. Optical guiding of laser beam in nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Singh Gill, Tarsem

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi ( Phys. Plasmas, 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.}

  17. Marking of organic materials by CO2 laser beam scanning

    NASA Astrophysics Data System (ADS)

    Dumitras, Dan C.; Chitu, Livia; Blanaru, Constantin; Cernat, Ramona C.; Bucatica, Irina Alexandra L.; Puiu, Adriana P.

    2003-11-01

    CO2 laser beam scanning method was used for marking of organic materials (leather, paper, wood) both in continuous wave and in pulsed regime. The computer controlled X-Y galvometric scanner and the software developed for this application control every parameter of irradiation and allow programmable marking of simple marks, logos, alphanumeric characters, filled text, codes, graphics, or highly complex drawings and images. The factors influencing the quality of the marking were analyzed and the irradiation conditions were optimized to produce marks on organic materials with a quality imposed by industry standards.

  18. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    PubMed

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  19. Self-reconstruction of diffraction-free and accelerating laser beams in scattering media

    NASA Astrophysics Data System (ADS)

    Ersoy, T.; Yalizay, B.; Akturk, S.

    2012-12-01

    We experimentally investigate propagation of laser beams with different intensity profiles in highly scattering media. We generate transverse laser amplitude profiles with Gaussian, Bessel and Airy function envelopes. We then propagate these beams through optical phantoms formed with variable density intralipid solutions. At the sample exit, we compare change in maximum intensities, as well as beam profile reconstruction. We show that self-reconstruction properties of Bessel and Airy beams bring about slower decrease in maximum intensity with increasing scatterer density. On the other hand, the beam profiles deteriorate faster, as compared to reference Gaussian beams. Slower decrease in the intensity can be attributed to the wavevector spectra providing a continuous flow of energy to the beam center, while beam deterioration is linked to total beam volume in the scattering medium. These results show that beam shaping methods can significantly enhance delivery of intense light deeper into turbid media, but this enhancement is compromised by stronger speckling of beam profiles.

  20. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    PubMed Central

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures. PMID:26776569

  1. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-01

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  2. High gain pre-amplifier laser beam quality evaluating system

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yu, Jin; Zhao, Tianzhuo; Zhang, Xue; Fan, Zhongwei

    2011-06-01

    Designed a system for the high gain laser pre-amplifier to evaluate the image quality. The system uses 4f imaging principle and Kepler type telescope was choiced, it has two advantages: avert optical distortion and eliminate aberration in the measurement system. Combined with the location of the lens inside of pre-amplifier such as the spatial filter , the near field imaging structure was designed. The structure can be reduced to 11.9 times the beam image, and clearly passed the image to the CCD target surface. The location of first positive lens focus is the location of far field image. In this article, one laser pre-amplifier was measured. The average measured near field modulation M=1.34, the average measured far field diffraction limit is 2.94. Experiments show that the stability of measuring system is less than+/-5%, it can meet the measurement requirements of ICF laser pre-amplifier parameters. Use this system we can discover the problem during the design and installation. There is great meaning for develop of laser pre-amplifier in ICF for further.

  3. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures.

    PubMed

    Kuchmizhak, Aleksandr; Gurbatov, Stanislav; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2016-01-18

    Simple high-performance, two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique, a thin noble-metal film on a dielectric substrate is irradiated by a single tightly focused nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar(+)) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar(+)-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depend on the laser pulse energy and metal film thickness, while subsequent Ar(+)-ion polishing enables to vary height of the resulting nanostructures. Plasmonic properties of the fabricated nanostructures were characterized by dark-field micro-spectroscopy, Raman and photoluminescence measurements performed on single nanofeatures, as well as by supporting numerical calculations of the related electromagnetic near-fields and Purcell factors. The developed simple two-stage technique represents a new step towards direct large-scale laser-induced fabrication of highly ordered arrays of complex plasmonic nanostructures.

  4. Proton beam production by a laser ion source with hydride target

    SciTech Connect

    Okamura, M.; Stifler, C.; Palm, K.; Steski, D.; Kanesue, T.; Ikeda, S.; Kumaki, M.

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  5. Particle selection and beam collimation system for laser-accelerated proton beam therapy.

    PubMed

    Luo, Wei; Fourkal, Eugene; Li, Jinsheng; Ma, Chang-Ming

    2005-03-01

    In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications.

  6. Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.

    PubMed

    Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul

    2009-03-30

    The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis.

  7. System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD)

    DOEpatents

    Skupsky, S.; Kessler, T.J.; Short, R.W.; Craxton, S.; Letzring, S.A.; Soures, J.

    1991-09-10

    In an SSD (smoothing by spectral dispersion) system which reduces the time-averaged spatial variations in intensity of the laser light to provide uniform illumination of a laser fusion target, an electro-optic phase modulator through which a laser beam passes produces a broadband output beam by imposing a frequency modulated bandwidth on the laser beam. A grating provides spatial and angular spectral dispersion of the beam. Due to the phase modulation, the frequencies (''colors'') cycle across the beam. The dispersed beam may be amplified and frequency converted (e.g., tripled) in a plurality of beam lines. A distributed phase plate (DPP) in each line is irradiated by the spectrally dispersed beam and the beam is focused on the target where a smooth (uniform intensity) pattern is produced. The color cycling enhances smoothing and the use of a frequency modulated laser pulse prevents the formation of high intensity spikes which could damage the laser medium in the power amplifiers. 8 figures.

  8. Experimental and Numerical Investigations of Laser Beam Welding with an Ultra-high Brightness Direct-diode Laser

    NASA Astrophysics Data System (ADS)

    Laukart, Artur; Kohl, Stefanie; Fritsche, Haro; Grohe, Andreas; Kruschke, Bastian; Schmidt, Michael

    Laser beam welding of steel sheets with conventional disc and fibre lasers is part of many manufacturing processes, e.g. car manufacturing. In modern times, all manufacturing processes are also evaluated regarding sustainability. Although conventional beam sources have an ever increasing efficiency, direct-diode lasers are said to make a step in the wall-plug efficiency in comparison to conventional beam sources due to a missing brightness-converter. Investigations concerning laser beam welding with ultra-high brightness direct-diode lasers were carried out, showing heat conduction welding as well as deep penetration welding of 22MnB5 steel sheets is possible. Furthermore a beam parameter product of about 8 mm-mrad was measured, showing comparable beam quality to conventional disc and fibre lasers. Metallographic cuts were used for determining the welding penetration depth and cross-section. Especially the cross-sections, as a measure for process efficiency, show almost the same result using a direct-diode laser or a disc laser. Due to the limited laser power of 500W, numerical simulations were used to extend the experimental results.

  9. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  10. Using an intense laser beam in interaction with muon/electron beam to probe the noncommutative QED

    NASA Astrophysics Data System (ADS)

    Tizchang, S.; Batebi, S.; Haghighat, M.; Mohammadi, R.

    2017-02-01

    It is known that the linearly polarized photons can partly transform to circularly polarized ones via forward Compton scattering in a background such as the external magnetic field or noncommutative space time. Based on this fact we explore the effects of the NC-background on the scattering of a linearly polarized laser beam from an intense beam of charged leptons. We show that for a muon/electron beam flux {overline{ɛ}}_{μ, e}˜ 1{0}^{12}/{10}^{10} TeV cm-2 sec-1 and a linearly polarized laser beam with energy k 0 ˜1 eV and average power {overline{P}}_{laser}˜eq 1{0}^3 KW, the generation rate of circularly polarized photons is about R V ˜ 104 /sec for noncommutative energy scale ΛNC ˜ 10 TeV. This is fairly large and can grow for more intense beams in near future.

  11. Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption

    NASA Astrophysics Data System (ADS)

    Singh, Navpreet; Gupta, Naveen; Singh, Arvinder

    2016-12-01

    This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.

  12. 200 Hz repetition frequency joule-level high beam quality Nd:YAG nanosecond laser

    NASA Astrophysics Data System (ADS)

    Qiu, Jisi; Tang, Xiongxin; Fan, Zhongwei; Wang, Haocheng

    2016-06-01

    A joule-level Nd:YAG nanosecond laser of high repetition frequency and high beam quality is developed out. The laser is designed as a MOPA system mainly including single longitudinal mode seed, pre-amplifier unit an d power amplifier unit. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate the laser beam distortion. Under the condition of 200 Hz high repetition frequency and 8.19 μJ single pulse energy injected by the single longitudinal mode seed, 1.53 J output energy is gained. The output laser beam is of 9 mm diameter, 7.41 ns pulse width, the far field beam spot 1.32 times the value of the diffraction limit, 1.2% energy stability (RMS) and less than 13 μrad far field beam spot angle shift.

  13. Electron Injection into Laser Wakefields by the Two-Beam Colliding Pulse Scheme

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Michel, P.; Toth, C. S.; Geddes, C. G. R.; van Tilborg, J.; Fubiani, G.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Cary, J. R.; Giacone, R.; Bruhwiler, D.

    2004-11-01

    Laser driven acceleration in plasmas has succeeded in producing electron beams containing considerable amount of charge (> 100 pC) at energies in excess of 100 MeV. Control of the trapping process is needed to generate monoenergetic electron beams in a reproducible manner. We report on experimental progress of laser triggered injection of electrons into laser wakefields with a two-pulse colliding laser scheme[1]. The experiments use the multi-beam, multi-terawatt Ti:Al_2O3 laser at the l'OASIS facility of LBNL. In the experiments, two counter propagating beams 30^rc angle are focused onto a high density ( ˜10^19/cm^3) gas jet. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiments will be shown as well as comparisons with simulations. [1] G. Fubiani, et., al, Phys. Rev. E 70, 016402 (2004).

  14. Instability and dynamics of two nonlinearly coupled laser beams in a two-temperature electron plasma.

    PubMed

    Eliasson, B; Shukla, P K

    2006-10-01

    We consider nonlinear interactions between two colliding laser beams in an electron plasma, accounting for the relativistic electron mass increase in the laser fields and radiation pressure driven electron-acoustic (EA) perturbations that are supported by hot and cold electrons. By using the hydrodynamic and Maxwell equations, we obtain the relevant equations for nonlinearly coupled laser beams and EA perturbations. The coupled equations are then Fourier analyzed to obtain a nonlinear dispersion relation. The latter is numerically solved to show the existence of new classes of the parametric instabilities in the presence of two colliding laser beams in a two-electron plasma. The dynamics of nonlinearly coupled laser beams in our electron plasma is also investigated. The results should be useful in understanding the nonlinear propagation characteristics of multiple electromagnetic beams in laser-produced plasmas as well as in space plasmas.

  15. Laser Beam Failure Mode Effects and Analysis (FMEA) of the Solid State Heat Capacity Laser (SSHCL)

    SciTech Connect

    King, J.

    2015-09-07

    A laser beam related FMEA of the SSHCL was performed to determine potential personnel and equipment safety issues. As part of the FMEA, a request was made to test a sample of the drywall material used for walls in the room for burn-through. This material was tested with a full power beam for five seconds. The surface paper material burned off and the inner calcium carbonate turned from white to brown. The result of the test is shown in the photo below.

  16. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging

    NASA Astrophysics Data System (ADS)

    Pan, X.; Veetil, S. P.; Liu, C.; Tao, H.; Jiang, Y.; Lin, Q.; Li, X.; Zhu, J.

    2016-05-01

    A coherent-modulation-imaging-based (CMI) algorithm has been employed for on-shot laser beam diagnostics in high-power laser facilities, where high-intensity short-pulsed lasers from terawatt to petawatt are designed to realize inertial confinement fusion (ICF). A single-shot intensity measurement is sufficient for wave-front reconstruction, both for the near-field and far-field at the same time. The iterative reconstruction process is computationally very efficient and was completed in dozens of seconds by the additional use of a GPU device to speed it up. The compact measurement unit—including a CCD and a piece of pre-characterized phase plate—makes it convenient for focal-spot intensity prediction in the target chamber. It can be placed almost anywhere in high-power laser facilities to achieve near-field wave-front diagnostics. The feasibility of the method has been demonstrated by conducting a series of experiments with diagnostic beams and seed pulses with deactivated amplifiers in our high-power laser system.

  17. In-plane vibration characterization of microelectromechanical systems using acousto-optic modulated partially incoherent stroboscopic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Dung-An; Sheu, Fang-Wen; Chiu, Yen-Sih

    2011-07-01

    A technique using acousto-optic modulated partially incoherent stroboscopic imaging for measurement of in-plane motion of microelectromechanical systems (MEMS) is presented. Vibration measurement is allowed by using flashes of the partially incoherent light source to freeze the positions of the microstructure at 12 equally spaced phases of the vibration period. The first-order diffracted beam taken out by an acousto-optic modulator (AOM) from the light beam of a laser is made partially incoherent by a rotating diffuser and then serves as the stroboscopic light source. Both the MEMS excitation signal and the flash control signal are provided by a dual-channel function generator. The main advantage of this measurement method is the absence of a stroboscopic generator and a high speed digital camera. Microscale prototypes are fabricated and tested. Quantitative estimates of the harmonic responses of the prototypes are obtained from the recorded images. The results agree with those obtained with a commercial MEMS motion analyzer TM with relative errors less than 2%.

  18. Silicon carbide formation with e-beam and laser pulses

    NASA Astrophysics Data System (ADS)

    D'Anna, E.; Leggieri, G.; Luches, A.; Nassisi, V.; Perrone, A.; Majni, G.; Mengucci, P.

    Polycrystalline SiC layers were obtained through pulsed annealing of thin (100 nm) carbon films deposited on single-crystalline silicon wafers. The samples were submitted to electron beam irradiation (25 keV, 50 ns) at various current densities in vacuum (˜10 -4 mbar) and to XeCl excimer laser pulses (308 nm, 15 ns) in air. Rutherford backscattering analysis showed that in the e-beam annealed samples mixing of the elements at the interface starts at current densities of about 1200 A/cm 2. The mixed layer thickness increases almost linearly with current density. At current densities higher than 2400 A/cm 2 ablation of the C film was always observed. Using the XeCl excimer laser, a good intermixing of the deposited C film with the Si substrate was observed after a single 0.3 J/cm 2 pulse. From the RBS spectra a composition of the intermixed layers close to the SiC compound was deduced. Transmission electron microscopy and electron diffraction studies clearly evidenced the formation of SiC polycrystals.

  19. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  20. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737