IB-LBM study on cell sorting by pinched flow fractionation.
Ma, Jingtao; Xu, Yuanqing; Tian, Fangbao; Tang, Xiaoying
2014-01-01
Separation of two categories of cells in pinched flow fractionation(PFF) device is simulated by employing IB-LBM. The separation performances at low Reynolds number (about 1) under different pinched segment widths, flow ratios, cell features, and distances between neighboring cells are studied and the results are compared with those predicted by the empirical formula. The simulation indicates that the diluent flow rate should approximate to or more than the flow rate of particle solution in order to get a relatively ideal separation performance. The discrepancy of outflow position between numerical simulation and the empirical prediction enlarges, when the cells become more flexible. Too short distance between two neighboring cells could lead to cell banding which would result in incomplete separation, and the relative position of two neighboring cells influences the banding of cells. The present study will probably provide some new applications of PFF, and make some suggestions on the design of PFF devices.
NASA Astrophysics Data System (ADS)
Zhou, Cheng-Xu; Yan, Xiao-Jun
2002-03-01
The meiotic process in Noctiluca scintillans were observed under light microscope. Some abnormal cell divisions, incompletely separated “zoospores” and the changes of the zoospores are described in this paper. Together with the findings of field samplings and the previous results by other researcher, the process of meiosis in N. scintillans was supposed to be a pathway to reduce the extra high density of NH3-N within the cell in order to ensure normal population growth.
Acute exposure to wood smoke from incomplete combustion--indications of cytotoxicity.
Muala, Ala; Rankin, Gregory; Sehlstedt, Maria; Unosson, Jon; Bosson, Jenny A; Behndig, Annelie; Pourazar, Jamshid; Nyström, Robin; Pettersson, Esbjörn; Bergvall, Christoffer; Westerholm, Roger; Jalava, Pasi I; Happo, Mikko S; Uski, Oskari; Hirvonen, Maija-Riitta; Kelly, Frank J; Mudway, Ian S; Blomberg, Anders; Boman, Christoffer; Sandström, Thomas
2015-10-29
Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans. Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 μg/m(3) for 3 h in a chamber. Bronchoscopy with bronchial wash (BW), bronchoalveolar lavage (BAL) and endobronchial mucosal biopsies was performed after 24 h. Differential cell counts and soluble components were analyzed, with biopsies stained for inflammatory markers using immunohistochemistry. In parallel experiments, the toxicity of the particulate matter (PM) generated during the chamber exposures was investigated in vitro using the RAW264.7 macrophage cell line. Significant reductions in macrophage, neutrophil and lymphocyte numbers were observed in BW (p < 0.01, <0.05, <0.05, respectively) following the wood smoke exposure, with a reduction in lymphocytes numbers in BAL fluid (<0.01. This unexpected cellular response was accompanied by decreased levels of sICAM-1, MPO and MMP-9 (p < 0.05, <0.05 and <0.01). In contrast, significant increases in submucosal and epithelial CD3+ cells, epithelial CD8+ cells and submucosal mast cells (p < 0.01, <0.05, <0.05 and <0.05, respectively), were observed after wood smoke exposure. The in vitro data demonstrated that wood smoke particles generated under these incomplete combustion conditions induced cell death and DNA damage, with only minor inflammatory responses. Short-term exposure to sooty PAH rich wood smoke did not induce an acute neutrophilic inflammation, a classic hallmark of air pollution exposure in humans. While minor proinflammatory lymphocytic and mast cells effects were observed in the bronchial biopsies, significant reductions in BW and BAL cells and soluble components were noted. This unexpected observation, combined with the in vitro data, suggests that wood smoke particles from incomplete combustion could be potentially cytotoxic. Additional research is required to establish the mechanism of this dramatic reduction in airway leukocytes and to clarify how this acute response contributes to the adverse health effects attributed to wood smoke exposure. NCT01488500.
Electrophoresis experiments in microgravity
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1991-01-01
The use of the microgravity environment to separate and purify biological cells and proteins has been a major activity since the beginning of the NASA Microgravity Science and Applications program. Purified populations of cells are needed for research, transplantation and analysis of specific cell constituents. Protein purification is a necessary step in research areas such as genetic engineering where the new protein has to be separated from the variety of other proteins synthesized from the microorganism. Sufficient data are available from the results of past electrophoresis experiments in space to show that these experiments were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. However, electrophoresis is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon
2016-02-12
Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Takegahara, Noriko; Kim, Hyunsoo; Mizuno, Hiroki; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Tomura, Michio; Kanagawa, Osami; Ishii, Masaru; Choi, Yongwon
2016-01-01
Osteoclasts are specialized polyploid cells that resorb bone. Upon stimulation with receptor activator of nuclear factor-κB ligand (RANKL), myeloid precursors commit to becoming polyploid, largely via cell fusion. Polyploidization of osteoclasts is necessary for their bone-resorbing activity, but the mechanisms by which polyploidization is controlled remain to be determined. Here, we demonstrated that in addition to cell fusion, incomplete cytokinesis also plays a role in osteoclast polyploidization. In in vitro cultured osteoclasts derived from mice expressing the fluorescent ubiquitin-based cell cycle indicator (Fucci), RANKL induced polyploidy by incomplete cytokinesis as well as cell fusion. Polyploid cells generated by incomplete cytokinesis had the potential to subsequently undergo cell fusion. Nuclear polyploidy was also observed in osteoclasts in vivo, suggesting the involvement of incomplete cytokinesis in physiological polyploidization. Furthermore, RANKL-induced incomplete cytokinesis was reduced by inhibition of Akt, resulting in impaired multinucleated osteoclast formation. Taken together, these results reveal that RANKL-induced incomplete cytokinesis contributes to polyploidization of osteoclasts via Akt activation. PMID:26670608
CT colonography after incomplete optical colonoscopy
Theis, Jake; Kim, David H.; Lubner, Meghan G.; del Rio, Alejandro Muñoz; Pickhardt, Perry J.
2017-01-01
Purpose To objectively compare the volume, density, and distribution of luminal fluid for same-day oral-contrast-enhanced CTC following incomplete optical colonoscopy (OC) versus deferred CTC on a separate day utilizing a dedicated CTC bowel preparation. Methods HIPAA-compliant, IRB-approved retrospective study compared 103 same-day CTC studies after incomplete OC (utilizing 30 ml oral diatrizoate) against 151 CTC examinations performed on a separate day after failed OC using a dedicated CTC bowel preparation (oral magnesium citrate/dilute barium/diatrizoate the evening before). A subgroup of 15 patients who had both same-day CTC and separate-day routine CTC was also identified and underwent separate analysis. CTC exams were analyzed for opacified fluid distribution within the GI tract, as well as density and volume. Data was analyzed utilizing Kruskal-Wallis and Wilcoxon Signed Rank tests. Results Opacified luminal fluid extended to the rectum in 56% (58/103) of same-day CTC versus 100% (151/151) of deferred separate-day CTC (p<0.0001). For same-day CTC, contrast failed to reach the colon in 11% (11/103) and failed to reach the left colon in 26% (27/103). Volumetric colonic fluid segmentation for fluid analysis (successful in 80 same-day and 147 separate-day cases) showed significantly more fluid in the same-day cohort (mean, 227 ml vs. 166 ml; p<0.0001); the actual difference is underestimated due to excluded cases. Mean colonic fluid attenuation was significantly lower in the same-day cohort (545 HU vs. 735 HU; p<0.0001). Similar findings were identified in the smaller cohort with direct intra-patient CTC comparison. Conclusions Dedicated CTC bowel preparation on a separate day following incomplete OC results in a much higher quality examination compared with same-day CTC. PMID:26830606
Fleischer, A B; Feldman, S R; Barlow, J O; Zheng, B; Hahn, H B; Chuang, T Y; Draft, K S; Golitz, L E; Wu, E; Katz, A S; Maize, J C; Knapp, T; Leshin, B
2001-02-01
Basal cell carcinoma (BCC) is the most common cutaneous malignancy. Surgical experience and physician specialty may affect the outcome quality of surgical excision of BCC. We performed a multicenter retrospective study of BCC excisions submitted to the respective Departments of Pathology at 4 major university medical centers. Our outcome measure was presence of histologic evidence of tumor present in surgical margins of excision specimens (incomplete excision). Clinician experience was defined as the number of excisions that a clinician performed during the study interval. The analytic sample pool included 1459 tumors that met all inclusion and exclusion criteria. Analyses included univariate and multivariate techniques involving the entire sample and separate subsample analyses that excluded 2 outlying dermatologists. Tumor was present at the surgical margins in 243 (16.6%) of 1459 specimens. A patient's sex, age, and tumor size were not significantly related to the presence of tumor in the surgical margin. Physician experience did not demonstrate a significant difference either in the entire sample (P <.09) or in the subsample analysis (P >.30). Tumors of the head and neck were more likely to be incompletely excised than truncal tumors in all the analyses (P <.03). Compared with dermatologists, otolaryngologists (P <.02) and plastic surgeons (P <.008) were more likely to incompletely excise tumors; however, subsample analysis for plastic surgeons found only a trend toward significance (P <.10). Dermatologists and general surgeons did not differ in the likelihood of performing an incomplete excision (P >.4). The physician specialty may affect the quality of care in the surgical management of BCC.
Chromatic dispersion concentrator applied to photovoltaic systems
NASA Astrophysics Data System (ADS)
Sassi, G.
1980-01-01
The aim of this paper is to show how it is possible to realize a chromatic dispersion concentrator which collects the different monochromatic components of the solar spectrum separately in subsequently concentric rings in the focal zone. This comes about without an increase in the energetic losses compared to any other type of concentrator. If different photovoltaic elements with energy gaps equal to the photon energy falling on the focal zone are put in the latter, energy losses due to incomplete utilization of the solar spectrum and to incomplete utilization of the energy of a single photon can be drastically reduced. How the losses due to the voltage factor and the fill-factor of the photovoltaic elements of the system can be reduced compared to the normal silicon cells is also demonstrated. The other contributions to losses in the conversion process have only been mentioned, foreseeing their possible variation.
A new approach to electrophoresis in space
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1990-01-01
Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
E-Kobon, Teerasak; Thongararm, Pennapa; Roytrakul, Sittiruk; Meesuk, Ladda; Chumnanpuen, Pramote
2016-01-01
Several reports have shown antimicrobial and anticancer activities of mucous glycoproteins extracted from the giant African snail Achatina fulica. Anticancer properties of the snail mucous peptides remain incompletely revealed. The aim of this study was to predict anticancer peptides from A. fulica mucus. Two of HPLC-separated mucous fractions (F2 and F5) showed in vitro cytotoxicity against the breast cancer cell line (MCF-7) and normal epithelium cell line (Vero). According to the mass spectrometric analysis, 404 and 424 peptides from the F2 and F5 fractions were identified. Our comprehensive bioinformatics workflow predicted 16 putative cationic and amphipathic anticancer peptides with diverse structures from these two peptidome data. These peptides would be promising molecules for new anti-breast cancer drug development.
Peptidoglycan architecture can specify division planes in Staphylococcus aureus.
Turner, Robert D; Ratcliffe, Emma C; Wheeler, Richard; Golestanian, Ramin; Hobbs, Jamie K; Foster, Simon J
2010-06-15
Division in Staphylococci occurs equatorially and on specific sequentially orthogonal planes in three dimensions, resulting, after incomplete cell separation, in the 'bunch of grapes' cluster organization that defines the genus. The shape of Staphylococci is principally maintained by peptidoglycan. In this study, we use Atomic Force Microscopy (AFM) and fluorescence microscopy with vancomycin labelling to examine purified peptidoglycan architecture and its dynamics in Staphylococcus aureus and correlate these with the cell cycle. At the presumptive septum, cells were found to form a large belt of peptidoglycan in the division plane before the centripetal formation of the septal disc; this often had a 'piecrust' texture. After division, the structures remain as orthogonal ribs, encoding the location of past division planes in the cell wall. We propose that this epigenetic information is used to enable S. aureus to divide in sequentially orthogonal planes, explaining how a spherical organism can maintain division plane localization with fidelity over many generations.
ERIC Educational Resources Information Center
Savalei, Victoria
2010-01-01
Incomplete nonnormal data are common occurrences in applied research. Although these 2 problems are often dealt with separately by methodologists, they often cooccur. Very little has been written about statistics appropriate for evaluating models with such data. This article extends several existing statistics for complete nonnormal data to…
Physical, chemical, biological, and biotechnological sciences are incomplete without each other
USDA-ARS?s Scientific Manuscript database
Chemical analysis and chromatographic techniques could not separate plasma lipoproteins which are now known as cholesterol- containing, heart-disease related macromolecules in human blood. Scientists at the Lawrence Berkeley Laboratory successfully separated plasma lipoproteins using equilibrium den...
Physical, Chemical, Bibological, and Biotechnological sciences are incomplete without each other
USDA-ARS?s Scientific Manuscript database
By coupling of mechanics, optics, and mathematics, Theodor Svedberg invented the ultracentrifuge, which allowed separation of important biological materials by high centrifugal force, resulting in physical chemical separation and characterization of atherogenic low density lipoproteins and other bio...
Adaptive boundary concentration control using Zakai equation
NASA Astrophysics Data System (ADS)
Tenno, R.; Mendelson, A.
2010-06-01
A mean-variance control problem is formulated with respect to a partially observed nonlinear system that includes unknown constant parameters. A physical prototype of the system is the cathode surface reaction in an electrolysis cell, where the controller aim is to keep the boundary concentration of species in the near vicinity of the cathode surface low but not zero. The boundary concentration is a diffusion-controlled process observed through the measured current density and, in practice, controlled through the applied voltage. The former incomplete data control problem is converted to complete data-to the so-called separated control problem whose solution is given by the infinite-dimensional Zakai equation. In this article, the separated control problem is solved numerically using pathwise integration of the Zakai equation. This article demonstrates precise tracking of the target trajectory with a rapid convergence of estimates to unknown parameters, which take place simultaneously with control.
Demi-embryo production from hatching of zona-drilled bovine and rabbit blastocysts.
Skrzyszowska, M; Smorag, Z; Katska, L
1997-09-01
It is known that the pregnancy rate resulting after transfer of bisected embryos is lower than after transfer of whole embryos. The main reason is the reduced cell number in the demi-embryo which is less than 1 2 of that in the intact embryo, since a number of blastomeres is damaged as a result of the procedure used in conventional embryo splitting. The aim of our experiment was to develop a non-invasive procedure which would limit cell losses during microsurgery. The experiment was carried out on bovine IVM-IVF embryos at middle, late and expanded blastocyst stage and rabbit embryos at late blastocyst stage cultured in vitro from in vivo produced zygotes. The zona pellucida of these embryos was drilled on the line between the inner cell mass and the trophoblast using a glass microneedle (= 2 microm) or micropipette (= 30 microm). The procedure resulted in expulsion of the blastocyst through the perforation and formation of an incomplete demi-embryo configuration, connected by a very thin cell bridge (figure eight in shape). To separate the parts of the embryo, the cell bridge was cut using a glass microneedle. During the separation only a few cells were damaged. As a result of the procedure 4 20 (20.0%), 48 144 (33.3%) and 3 40 (7.5%) middle, late and expanded blastocysts hatched according to the pattern described. The developed procedure could be considered as a non-invasive alternative to conventional embryo splitting.
Landscape of X chromosome inactivation across human tissues.
Tukiainen, Taru; Villani, Alexandra-Chloé; Yen, Angela; Rivas, Manuel A; Marshall, Jamie L; Satija, Rahul; Aguirre, Matt; Gauthier, Laura; Fleharty, Mark; Kirby, Andrew; Cummings, Beryl B; Castel, Stephane E; Karczewski, Konrad J; Aguet, François; Byrnes, Andrea; Lappalainen, Tuuli; Regev, Aviv; Ardlie, Kristin G; Hacohen, Nir; MacArthur, Daniel G
2017-10-11
X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.
The incomplete anti-Rh antibody agglutination mechanism of trypsinized ORh+ red cells.
Margni, R A; Leoni, J; Bazzurro, M
1977-01-01
The capacity for binding to trypsinized and non-trypsinized ORh+ red cells, of the IgG incomplete anti-Rh antibody and its F(ab')2 and Fc fragments has been investigated. An analysis has also been made of the capacity of non-specific human IgG, aggregated non-specific human IgG, human IgM (19S) and IgM (7S), and of fragments Fcgamma, Fcmu and Fc5mu to inhibit the agglutination of trypsinized ORh+ red cells by the IgG incomplete anti-Rh antibody. The results obtained indicate that these antibodies behave in a similar manner to that of nonprecipitating antibodies, and that the agglutination of trypsinized red cells seems to be a mixed reaction due to the interaction of an Fab fragment with its Rh antigenic determinant present in the surface of a red cell and the Fc of the same molecule with a receptor for Fc present in adjacent red cells. The trypsin treatment apparently results in the liberation of occult Fc receptors. It has also been demonstrated that in the agglutination of ORh+ red cells by IgG incomplete anti-Rh antibody in the presence of albumin, interaction must occur in some manner between the albumin and the Fc fragment since the F(ab')2 fragment does not give rise to agglutination under such conditions. Images Figure 1 PMID:415968
On the Synchronization of EEG Spindle Waves
NASA Astrophysics Data System (ADS)
Long, Wen; Zhang, ChengFu; Zhao, SiLan; Shi, RuiHong
2000-06-01
Based on recently sleeping cellular substrates, a network model synaptically coupled by N three-cell circuits is provided. Simulation results show that: (i) the dynamic behavior of every circuit is chaotic; (ii) the synchronization of the network is incomplete; (iii) the incomplete synchronization can integrate burst firings of cortical cells into waxing-and-wanning EEG spindle waves. These results enlighten us that this kind of incomplete synchronization may integrate microscopic, electrical activities of neurons in billions into macroscopic, functional states in human brain. In addition, the effects of coupling strength, connectional mode and noise to the synchronization are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W.R.
The spectrum of viability mutations ranging from dominant lethals to detrimentals in haploids that resulted from irradiating semen from a single haploid male was studied in the honey bee. From the decrease in viability of diploid progeny following irradiation of the spermatheca of the parental queen, it was calculated that one or more dominant lethals were induced in 60.8% of the sperm cells. In a separate test using the same dosage on an unrelated queen 60.9% dominant lethals were found. Recessive mutations and mutants with incomplete dominance were detected in haploid progeny of F-1 queens. (M.C.G.)
Tbx1 regulates oral epithelial adhesion and palatal development
Funato, Noriko; Nakamura, Masataka; Richardson, James A.; Srivastava, Deepak; Yanagisawa, Hiromi
2012-01-01
Cleft palate, the most frequent congenital craniofacial birth defect, is a multifactorial condition induced by the interaction of genetic and environmental factors. In addition to complete cleft palate, a large number of human cases involve soft palate cleft and submucosal cleft palate. However, the etiology of these forms of cleft palate has not been well understood. T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Here, we show that genetic disruption of Tbx1, a major candidate gene for the human congenital disorder 22q11.2 deletion syndrome (Velo-cardio-facial/DiGeorge syndrome), led to abnormal epithelial adhesion between the palate and mandible in mouse, resulting in various forms of cleft palate similar to human conditions. We found that hyperproliferative epithelium failed to undergo complete differentiation in Tbx1-null mice (Tbx1−/−). Inactivation of Tbx1 specifically in the keratinocyte lineage (Tbx1KCKO) resulted in an incomplete cleft palate confined to the anterior region of the palate. Interestingly, Tbx1 overexpression resulted in decreased cell growth and promoted cell-cycle arrest in MCF7 epithelial cells. These findings suggest that Tbx1 regulates the balance between proliferation and differentiation of keratinocytes and is essential for palatal fusion and oral mucosal differentiation. The impaired adhesion separation of the oral epithelium together with compromised palatal mesenchymal growth is an underlying cause for various forms of cleft palate phenotypes in Tbx1−/− mice. Our present study reveals new pathogenesis of incomplete and submucous cleft palate during mammalian palatogenesis. PMID:22371266
Collino, Federica; Pomatto, Margherita; Bruno, Stefania; Lindoso, Rafael Soares; Tapparo, Marta; Sicheng, Wen; Quesenberry, Peter; Camussi, Giovanni
2017-04-01
Several studies have suggested that extracellular vesicles (EVs) released from mesenchymal stem cells (MSCs) may mediate MSC paracrine action on kidney regeneration. This activity has been, at least in part, ascribed to the transfer of proteins/transcription factors and different RNA species. Information on the RNA/protein content of different MSC EV subpopulations and the correlation with their biological activity is currently incomplete. The aim of this study was to evaluate the molecular composition and the functional properties on renal target cells of MSC EV sub-populations separated by gradient floatation. The results demonstrated heterogeneity in quantity and composition of MSC EVs. Two peaks of diameter were observed (90-110 and 170-190 nm). The distribution of exosomal markers and miRNAs evaluated in the twelve gradient fractions showed an enrichment in fractions with a flotation density of 1.08-1.14 g/mL. Based on this observation, we evaluated the biological activity on renal cell proliferation and apoptosis resistance of low (CF1), medium (CF2) and high (CF3) floatation density fractions. EVs derived from all fractions, were internalized by renal cells, CF1 and CF2 but not CF3 fraction stimulated significant cell proliferation. CF2 also inhibited apoptosis on renal tubular cells submitted to ischemia-reperfusion injury. Comparative miRNomic and proteomic profiles reveal a cluster of miRNAs and proteins common to all three fractions and an enrichment of selected molecules related to renal regeneration in CF2 fraction. In conclusion, the CF2 fraction enriched in exosomal markers was the most active on renal tubular cell proliferation and protection from apoptosis.
The potential of tumor-derived exosomes for noninvasive cancer monitoring
Whiteside, Theresa L.
2016-01-01
Tumor-derived exosomes (TEXs) are emerging as a new type of cancer biomarker. TEXs are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEXs are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEXs as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward. PMID:26289602
The potential of tumor-derived exosomes for noninvasive cancer monitoring.
Whiteside, Theresa L
2015-01-01
Tumor-derived exosomes (TEX) are emerging as a new type of cancer biomarker. TEX are membrane-bound, virus-size vesicles of endocytic origin present in all body fluids of cancer patients. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by tumor cells and cancer cell-specific molecular and genetic contents, TEX are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of tumor cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma of cancer patients responding to therapies appear to correlate with clinical endpoints. However, methods for TEX isolation and separation from the bulk of human plasma-derived exosomes are not yet established and their role as biomarkers remains to be confirmed. Further development and validation of TEX as noninvasive, liquid equivalents of tumor biopsies are necessary to move this effort forward.
Bell, Jill A.; Reed, Melissa A.; Consitt, Leslie A.; Martin, Ola J.; Haynie, Kimberly R.; Hulver, Matthew W.; Muoio, Deborah M.; Dohm, G. Lynis
2010-01-01
Context: Intracellular lipid partitioning toward storage and the incomplete oxidation of fatty acids (FA) have been linked to insulin resistance. Objective: To gain insight into how intracellular lipid metabolism is related to insulin signal transduction, we examined the effects of severe obesity, excess FA, and overexpression of the FA transporter, FA translocase (FAT)/CD36, in primary human skeletal myocytes. Design, Setting, and Patients: Insulin signal transduction, FA oxidation, and metabolism were measured in skeletal muscle cells harvested from lean and severely obese women. To emulate the obesity phenotype in our cell culture system, we incubated cells from lean individuals with excess FA or overexpressed FAT/CD36 using recombinant adenoviral technology. Results: Complete oxidation of FA was significantly reduced, whereas total lipid accumulation, FA esterification into lipid intermediates, and incomplete oxidation were up-regulated in the muscle cells of severely obese subjects. Insulin signal transduction was reduced in the muscle cells from severely obese subjects compared to lean controls. Incubation of muscle cells from lean subjects with lipids reduced insulin signal transduction and increased lipid storage and incomplete FA oxidation. CD36 overexpression increased FA transport capacity, but did not impair complete FA oxidation and insulin signal transduction in muscle cells from lean subjects. Conclusions: Cultured myocytes from severely obese women express perturbations in FA metabolism and insulin signaling reminiscent of those observed in vivo. The obesity phenotype can be recapitulated in muscle cells from lean subjects via exposure to excess lipid, but not by overexpressing the FAT/CD36 FA transporter. PMID:20427507
Metheny, Leland; Eid, Saada; Lingas, Karen; Ofir, Racheli; Pinzur, Lena; Meyerson, Howard; Lazarus, Hillard M.; Huang, Alex Y.
2018-01-01
Late-term complications of hematopoietic cell transplantation (HCT) are numerous and include incomplete engraftment. One possible mechanism of incomplete engraftment after HCT is cytokine-mediated suppression or dysfunction of the bone marrow microenvironment. Mesenchymal stromal cells (MSCs) elaborate cytokines that nurture or stimulate the marrow microenvironment by several mechanisms. We hypothesize that the administration of exogenous MSCs may modulate the bone marrow milieu and improve peripheral blood count recovery in the setting of incomplete engraftment. In the current study, we demonstrated that posttransplant intramuscular administration of human placental derived mesenchymal-like adherent stromal cells [PLacental eXpanded (PLX)-R18] harvested from a three-dimensional in vitro culture system improved posttransplant engraftment of human immune compartment in an immune-deficient murine transplantation model. As measured by the percentage of CD45+ cell recovery, we observed improvement in the peripheral blood counts at weeks 6 (8.4 vs. 24.1%, p < 0.001) and 8 (7.3 vs. 13.1%, p < 0.05) and in the bone marrow at week 8 (28 vs. 40.0%, p < 0.01) in the PLX-R18 cohort. As measured by percentage of CD19+ cell recovery, there was improvement at weeks 6 (12.6 vs. 3.8%) and 8 (10.1 vs. 4.1%). These results suggest that PLX-R18 may have a therapeutic role in improving incomplete engraftment after HCT. PMID:29520362
Metheny, Leland; Eid, Saada; Lingas, Karen; Ofir, Racheli; Pinzur, Lena; Meyerson, Howard; Lazarus, Hillard M; Huang, Alex Y
2018-01-01
Late-term complications of hematopoietic cell transplantation (HCT) are numerous and include incomplete engraftment. One possible mechanism of incomplete engraftment after HCT is cytokine-mediated suppression or dysfunction of the bone marrow microenvironment. Mesenchymal stromal cells (MSCs) elaborate cytokines that nurture or stimulate the marrow microenvironment by several mechanisms. We hypothesize that the administration of exogenous MSCs may modulate the bone marrow milieu and improve peripheral blood count recovery in the setting of incomplete engraftment. In the current study, we demonstrated that posttransplant intramuscular administration of human placental derived mesenchymal-like adherent stromal cells [PLacental eXpanded (PLX)-R18] harvested from a three-dimensional in vitro culture system improved posttransplant engraftment of human immune compartment in an immune-deficient murine transplantation model. As measured by the percentage of CD45 + cell recovery, we observed improvement in the peripheral blood counts at weeks 6 (8.4 vs. 24.1%, p < 0.001) and 8 (7.3 vs. 13.1%, p < 0.05) and in the bone marrow at week 8 (28 vs. 40.0%, p < 0.01) in the PLX-R18 cohort. As measured by percentage of CD19 + cell recovery, there was improvement at weeks 6 (12.6 vs. 3.8%) and 8 (10.1 vs. 4.1%). These results suggest that PLX-R18 may have a therapeutic role in improving incomplete engraftment after HCT.
NASA Technical Reports Server (NTRS)
Wu, Honglu; Durante, marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.
2003-01-01
Confluent human fibroblast cells (AG 1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allow identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single Fe ion track.
Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R
2009-08-01
To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.
Cannabinoids induce incomplete maturation of cultured human leukemia cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murison, G.; Chubb, C.B.H.; Maeda, S.
Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. Themore » THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.« less
Immunogenic Activity of a Ribosomal Fraction Obtained from Mycobacterium tuberculosis
Youmans, Anne S.; Youmans, Guy P.
1965-01-01
Youmans, Anne S. (Northwestern University Medical School, Chicago, Ill.), and Guy P. Youmans. Immunogenic activity of a ribosomal fraction obtained from Mycobacterium tuberculosis. J. Bacteriol. 89:1291–1298. 1965.—The highly immunogenic particulate fraction obtained from mechanically ruptured cells of the H37Ra strain of Mycobacterium tuberculosis was suspended and centrifuged at 20,360 × g. The supernatant liquid from this centrifugation was centrifuged at 56,550 × g to remove the larger particles, and the supernatant liquid from this was centrifuged at 144,000 × g to obtain a ribosomal fraction. The sediments from the first two centrifugations were highly immunogenic, but the ribosomal fraction showed only slight capacity to immunize mice. However, when the ribosomal fraction was mixed with Freund's incomplete adjuvant, the immunogenic activity was equivalent to the particulate fraction from which it was prepared. To test the hypothesis that some membranous substance in the particulate fraction was acting as an adjuvant for the smaller particles in the ribosomal fraction, portions of the particulate fraction were treated separately with each of the membrane-disrupting agents, sodium deoxycholate, sodium lauryl sulfate, and 1 m sodium chloride. The treated materials were then centrifuged at 144,000 × g, and the sediments were tested for immunogenicity both with and without the addition of Freund's incomplete adjuvant. Without the adjuvant, the immunizing activities were very weak or absent; with the adjuvant, they were equivalent to that of the particulate fraction from which they were prepared. Other factors which have been found to damage or destroy membranes, such as freezing and thawing, and heat, also significantly decreased the immunogenic activity of the particulate fraction unless it was incorporated into Freund's incomplete adjuvant. The larger particles which sedimented at 56,550 × g were also treated with sodium lauryl sulfate and sodium chloride. Again, immunogenicity was greatly reduced but was fully restored by use of Freund's incomplete adjuvant. The data suggest, then, that the immunizing component of the particulate fraction is a substance (ribosomal?) which sediments at 144,000 × g, but for maximal immunizing activity a labile, possibly membranous, moiety of the mycobacterial cell, which has the properties of an adjuvant, is required. PMID:14293000
Estimation from incomplete multinomial data. Ph.D. Thesis - Harvard Univ.
NASA Technical Reports Server (NTRS)
Credeur, K. R.
1978-01-01
The vector of multinomial cell probabilities was estimated from incomplete data, incomplete in that it contains partially classified observations. Each such partially classified observation was observed to fall in one of two or more selected categories but was not classified further into a single category. The data were assumed to be incomplete at random. The estimation criterion was minimization of risk for quadratic loss. The estimators were the classical maximum likelihood estimate, the Bayesian posterior mode, and the posterior mean. An approximation was developed for the posterior mean. The Dirichlet, the conjugate prior for the multinomial distribution, was assumed for the prior distribution.
Schrand, Amanda M; Powell, Thomas; Robertson, Tiffany; Hussain, Saber M
2015-02-01
In this study, we examined the feasibility of extracting DNA from whole cell lysates exposed to nanoparticles using two different methodologies for evaluation of fragmentation with microfluidic electrophoretic separation. Human lung macrophages were exposed to five different carbon- and metal-based nanoparticles at two different time points (2 h, 24 h) and two different doses (5 µg/ml, 100 µg/ml). The primary difference in the banding patterns after 2 h of nanoparticle exposure is more DNA fragmentation at the higher NP concentration when examining cells exposed to nanoparticles of the same composition. However, higher doses of carbon and silver nanoparticles at both short and long dosing periods can contribute to erroneous or incomplete data with this technique. Also comparing DNA isolation methodologies, we recommend the centrifugation extraction technique, which provides more consistent banding patterns in the control samples compared to the spooling technique. Here we demonstrate that multi-walled carbon nanotubes, 15 nm silver nanoparticles and the positive control cadmium oxide cause similar DNA fragmentation at the short time point of 2 h with the centrifugation extraction technique. Therefore, the results of these studies contribute to elucidating the relationship between nanoparticle physicochemical properties and DNA fragmentation results while providing the pros and cons of altering the DNA isolation methodology. Overall, this technique provides a high throughput way to analyze subcellular alterations in DNA profiles of cells exposed to nanomaterials to aid in understanding the consequences of exposure and mechanistic effects. Future studies in microfluidic electrophoretic separation technologies should be investigated to determine the utility of protein or other assays applicable to cellular systems exposed to nanoparticles.
Garner, M; van Kreeveld, S; Su, T T
2001-10-16
Drosophila double park encodes a homolog of Cdt1 that functions in initiation of DNA replication in fission yeast and Xenopus. dup mutants complete the first 15 embryonic cell cycles, presumably via maternal dup products, and show defects in the 16(th) S phase (S16). Cells carrying dup(a1) allele forgo S16 altogether but enter mitosis 16 (M16). We find that the timing of entry into M16 is similar in dup(a1) and heterozygous or wild-type (wt) controls. In contrast, we find that mutant cells carrying another allele, dup(a3), undergo a partial S16 and delay the entry into M16. Thus, initiation of S16 appears necessary for delaying M16. This delay is absent in double mutants of dup(a3) and mei-41 (Drosophila ATR), indicating that a mei-41-dependent checkpoint acts to delay the entry into mitosis in response to incomplete DNA replication. dup(a3) and dup(a1) mutant cells that enter M16 become arrested in M16. We find that mitotic cyclins are stabilized and that a spindle checkpoint protein, Bub1, localizes onto chromosomes during mitotic arrest in dup mutants. These features suggest an arrest prior to metaphase-anaphase transition. dup(a3) bub1 double mutant cells exit M16, indicating that a bub1-mediated checkpoint acts to block mitotic exit in dup mutants. To our knowledge, this is the first report of (1) incomplete DNA replication affecting both the entry into and the exit from mitosis in a single cell cycle via different mechanisms and (2) the role of bub1 in regulating mitotic exit in response to incomplete DNA replication.
Liu, Jun; Ben-Shahar, Tom Rolef; Riemer, Dieter; Treinin, Millet; Spann, Perah; Weber, Klaus; Fire, Andrew; Gruenbaum, Yosef
2000-01-01
Caenorhabditis elegans has a single lamin gene, designated lmn-1 (previously termed CeLam-1). Antibodies raised against the lmn-1 product (Ce-lamin) detected a 64-kDa nuclear envelope protein. Ce-lamin was detected in the nuclear periphery of all cells except sperm and was found in the nuclear interior in embryonic cells and in a fraction of adult cells. Reductions in the amount of Ce-lamin protein produce embryonic lethality. Although the majority of affected embryos survive to produce several hundred nuclei, defects can be detected as early as the first nuclear divisions. Abnormalities include rapid changes in nuclear morphology during interphase, loss of chromosomes, unequal separation of chromosomes into daughter nuclei, abnormal condensation of chromatin, an increase in DNA content, and abnormal distribution of nuclear pore complexes (NPCs). Under conditions of incomplete RNA interference, a fraction of embryos escaped embryonic arrest and continue to develop through larval life. These animals exhibit additional phenotypes including sterility and defective segregation of chromosomes in germ cells. Our observations show that lmn-1 is an essential gene in C. elegans, and that the nuclear lamins are involved in chromatin organization, cell cycle progression, chromosome segregation, and correct spacing of NPCs. PMID:11071918
NASA Astrophysics Data System (ADS)
Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.
2016-08-01
Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.
Nasoalveolar molding in a case of incomplete cleft lip: Is it worth doing?
Esenlik, Elçin; Aydin, Mustafa Asim
2015-01-01
The purpose of this study was to evaluate the effects of presurgical nasoalveolar molding in an infant with incomplete cleft lip and alveolar notch. The patient was a 15-day-old female infant with a two-thirds vertical separation of the left side of the upper lip, with an intact nasal sill. A modified molding appliance was made to improve nasal esthetics and correct the alveolar notch. Although the nasal and alveolar region abnormalities were not serious, the molding appliance improved the nasal and lip esthetics and was stable during the 4-year follow-up.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
NASA Astrophysics Data System (ADS)
Diaz-Torres, A.; Boselli, M.
2016-05-01
Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Bumann, Dirk
2001-01-01
Live attenuated Salmonella strains that express a foreign antigen are promising oral vaccine candidates. Numerous genetic modifications have been empirically tested, but their effects on immunogenicity are difficult to interpret since important in vivo properties of recombinant Salmonella strains such as antigen expression and localization are incompletely characterized and the crucial early inductive events of an immune response to the foreign antigen are not fully understood. Here, methods were developed to directly localize and quantitate the in situ expression of an ovalbumin model antigen in recombinant Salmonella enterica serovar Typhimurium using two-color flow cytometry and confocal microscopy. In parallel, the in vivo activation, blast formation, and division of ovalbumin-specific CD4+ T cells were followed using a well-characterized transgenic T-cell receptor mouse model. This combined approach revealed a biphasic induction of ovalbumin-specific T cells in the Peyer's patches that followed the local ovalbumin expression of orally administered recombinant Salmonella cells in a dose- and time-dependent manner. Interestingly, intact Salmonella cells and cognate T cells seemed to remain in separate tissue compartments throughout induction, suggesting a transport of killed Salmonella cells from the colonized subepithelial dome area to the interfollicular inductive sites. The findings of this study will help to rationally optimize recombinant Salmonella strains as efficacious live antigen carriers for oral vaccination. PMID:11402006
Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout.
Sokolova, Niina; Vendelin, Marko; Birkedal, Rikke
2009-12-17
Restriction of intracellular diffusion of adenine nucleotides has been studied intensively on adult rat cardiomyocytes. However, their cause and role in vivo is still uncertain. Intracellular membrane structures have been suggested to play a role. We therefore chose to study cardiomyocytes from rainbow trout (Oncorhynchus mykiss), which are thinner and have fewer intracellular membrane structures than adult rat cardiomyocytes. Previous studies suggest that trout permeabilized cardiac fibers also have diffusion restrictions. However, results from fibers may be affected by incomplete separation of the cells. This is avoided when studying permeabilized, isolated cardiomyocytes. The aim of this study was to verify the existence of diffusion restrictions in trout cardiomyocytes by comparing ADP-kinetics of mitochondrial respiration in permeabilized fibers, permeabilized cardiomyocytes and isolated mitochondria from rainbow trout heart. Experiments were performed at 10, 15 and 20 degrees C in the absence and presence of creatine. Trout cardiomyocytes hypercontracted in the solutions used for mammalian cardiomyocytes. We developed a new solution in which they retained their shape and showed stable steady state respiration rates throughout an experiment. The apparent ADP-affinity of permeabilized cardiomyocytes was different from that of fibers. It was higher, independent of temperature and not increased by creatine. However, it was still about ten times lower than in isolated mitochondria. The differences between fibers and cardiomyocytes suggest that results from trout heart fibers were affected by incomplete separation of the cells. However, the lower ADP-affinity of cardiomyocytes compared to isolated mitochondria indicate that intracellular diffusion restrictions are still present in trout cardiomyocytes despite their lower density of intracellular membrane structures. The lack of a creatine effect indicates that trout heart lacks mitochondrial creatine kinase tightly coupled to respiration. This argues against diffusion restriction by the outer mitochondrial membrane. These results from rainbow trout cardiomyocytes resemble those from other low-performance hearts such as neonatal rat and rabbit hearts. Thus, it seems that metabolic regulation is related to cardiac performance, and it is likely that rainbow trout can be used as a model animal for further studies of the localization and role of diffusion restrictions in low-performance hearts.
NASA Technical Reports Server (NTRS)
Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.
2003-01-01
Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon silicon ions, or iron ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 degrees C for 24 h after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. To verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole-chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after irradiation with the heavy ions of high LET, and consequently the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/microm, the highest LET included in the present study. For samples exposed to 200 MeV/nucleon iron ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique, which allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy iron ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges; these ratios were higher than those obtained after exposure to 6 Gy gamma rays. After 0.7 Gy of iron ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single iron-ion track.
[Cellphone electromagnetic radiation damages the testicular ultrastructure of male rats].
Gao, Xiao-Hui; Hu, Hui-Rong; Ma, Xue-Lian; Chen, Jie; Zhang, Guo-Hong
2016-06-01
To investigate the influence of cellphone electromagnetic radiation (CER) on the testicular ultrastructure and the apoptosis of spermatogenic cells in male rats.atability, feasibility, applicability, and controllability in the construction of experimental animal models, we compared the major anatomic features of the penis of 20 adult beagle dogs with those of 10 adult men. Using microsurgical techniques, we performed cross-transplantation of the penis in the 20 (10 pairs) beagle dogs and observed the survival rate of the transplanted penises by FK506+MMF+MP immune induction. We compared the relevant indexes with those of the 10 cases of microsurgical replantation of the amputated penis. Thirty adult male SD rats were equally randomized into a 2 h CER, a 4 h CER, and a normal control group, the former two groups exposed to 30 days of 900 MHz CER for 2 and 4 hours a day, respectively, while the latter left untreated. Then the changes in the ultrastructure of the testis tissue were observed under the transmission electron microscope and the apoptosis of the spermatogenic cells was determined by TUNEL. Compared with the normal controls, the rats of the 2 h CER group showed swollen basement membrane of seminiferous tubules, separated tight junction of Sertoli cells, increased cell intervals, apparent vacuoles and medullization in some mitochondria, and increased apoptosis of spermatogenic cells, mainly the apoptosis of primary spermatocytes (P<0.05 ). In comparison with the 2 h CER group, the animals of the 4 h CER group exhibited swollen basement membrane of seminiferous tubules, more separated tight junction of Sertoli cells, wider cell intervals, incomplete membrane of spermatogonial cells, fragments of cytoplasm, nuclear pyknosis and notch, slight dilation of perinuclear space, abnormalities of intracellular mitochondria with vacuoles, fuzzy structure, and fusion or disappearance of some cristae, and increased damage of mitochondria and apoptosis of spermatogenic cells, including the apoptosis of spermatogonial cells, primary spermatocytes, and secondary spermatocytes (P<0.05 ). CER can damage the testicular ultrastructure and increase the apoptosis of spermatogenic cells of the male rat in a time-dependent manner, and the apoptosis of spermatogenic cells may be associated with the damage to mitochondria.
Cold Atmospheric Plasma for Selectively Ablating Metastatic Breast Cancer Cells
Wang, Mian; Holmes, Benjamin; Cheng, Xiaoqian; Zhu, Wei; Keidar, Michael; Zhang, Lijie Grace
2013-01-01
Traditional breast cancer treatments such as surgery and radiotherapy contain many inherent limitations with regards to incomplete and nonselective tumor ablation. Cold atomospheric plasma (CAP) is an ionized gas where the ion temperature is close to room temperature. It contains electrons, charged particles, radicals, various excited molecules, UV photons and transient electric fields. These various compositional elements have the potential to either enhance and promote cellular activity, or disrupt and destroy them. In particular, based on this unique composition, CAP could offer a minimally-invasive surgical approach allowing for specific cancer cell or tumor tissue removal without influencing healthy cells. Thus, the objective of this research is to investigate a novel CAP-based therapy for selectively bone metastatic breast cancer treatment. For this purpose, human metastatic breast cancer (BrCa) cells and bone marrow derived human mesenchymal stem cells (MSCs) were separately treated with CAP, and behavioral changes were evaluated after 1, 3, and 5 days of culture. With different treatment times, different BrCa and MSC cell responses were observed. Our results showed that BrCa cells were more sensitive to these CAP treatments than MSCs under plasma dose conditions tested. It demonstrated that CAP can selectively ablate metastatic BrCa cells in vitro without damaging healthy MSCs at the metastatic bone site. In addition, our study showed that CAP treatment can significantly inhibit the migration and invasion of BrCa cells. The results suggest the great potential of CAP for breast cancer therapy. PMID:24040051
Xu, Hong-Ping; Burbridge, Timothy J.; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z. Jimmy
2016-01-01
Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical, in vitro and in vivo electrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the “recurrent network” model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic “retinal waves” are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as “readouts” of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. PMID:27030771
Rodilla, V
1993-08-01
It has recently been described that cisplatin is an agent able to induce binucleated cells (BC) in cultured CHO cells. Both the origin and the significance of those cells within a population are unknown although several hypothesis have been suggested such as blocking of cytokinesis or cell fusion. Using interval photography we have found that at least two mechanisms are involved in the production of BC. These cells can arise in a culture as a result of an incomplete process of cell division, i.e. karyokinesis with incomplete cytokinesis or as a result of the mitotic division of a pre-existent BC. The mitotic division of a BC can give rise to different types of daughter cells. These BC sometimes enter mitosis but fail to divide and as a consequence they remain BC. When the process of division is successful (in the vast majority of cases), the results that have been found are either two mononucleated cells or one mononucleated and one binucleated cell. The possible implications and significance of BC and BC with micronuclei in a given population are discussed.
Mahlapuu, M; Ormestad, M; Enerbäck, S; Carlsson, P
2001-01-01
The murine Foxf1 gene encodes a forkhead transcription factor expressed in extra-embryonic and lateral plate mesoderm and later in splanchnic mesenchyme surrounding the gut and its derivatives. We have disrupted Foxf1 and show that mutant embryos die at midgestation due to defects in mesodermal differentiation and cell adhesion. The embryos do not turn and become deformed by the constraints of a small, inflexible amnion. Extra-embryonic structures exhibit a number of differentiation defects: no vasculogenesis occurs in yolk sac or allantois; chorioallantoic fusion fails; the amnion does not expand with the growth of the embryo, but misexpresses vascular and hematopoietic markers. Separation of the bulk of yolk sac mesoderm from the endodermal layer and adherence between mesoderm of yolk sac and amnion, indicate altered cell adhesion properties and enhanced intramesodermal cohesion. A possible cause of this is misexpression of the cell-adhesion protein VCAM1 in Foxf1-deficient extra-embryonic mesoderm, which leads to co-expression of VCAM with its receptor, alpha(4)-integrin. The expression level of Bmp4 is decreased in the posterior part of the embryo proper. Consistent with this, mesodermal proliferation in the primitive streak is reduced and somite formation is retarded. Expression of Foxf1 and the homeobox gene Irx3 defines the splanchnic and somatic mesodermal layers, respectively. In Foxf1-deficient embryos incomplete separation of splanchnic and somatic mesoderm is accompanied by misexpression of Irx3 in the splanchnopleure, which implicates Foxf1 as a repressor of Irx3 and as a factor involved in coelom formation.
Neuronal nuclei isolation from human postmortem brain tissue.
Matevossian, Anouch; Akbarian, Schahram
2008-10-01
Neurons in the human brain become postmitotic largely during prenatal development, and thus maintain their nuclei throughout the full lifespan. However, little is known about changes in neuronal chromatin and nuclear organization during the course of development and aging, or in chronic neuropsychiatric disease. However, to date most chromatin and DNA based assays (other than FISH) lack single cell resolution. To this end, the considerable cellular heterogeneity of brain tissue poses a significant limitation, because typically various subpopulations of neurons are intermingled with different types of glia and other non-neuronal cells. One possible solution would be to grow cell-type specific cultures, but most CNS cells, including neurons, are ex vivo sustainable, at best, for only a few weeks and thus would provide an incomplete model for epigenetic mechanisms potentially operating across the full lifespan. Here, we provide a protocol to extract and purify nuclei from frozen (never fixed) human postmortem brain. The method involves extraction of nuclei in hypotonic lysis buffer, followed by ultracentrifugation and immunotagging with anti-NeuN antibody. Labeled neuronal nuclei are then collected separately using fluorescence-activated sorting. This method should be applicable to any brain region in a wide range of species and suitable for chromatin immunoprecipitation studies with site- and modification-specific anti-histone antibodies, and for DNA methylation and other assays.
Permeabilized Rat Cardiomyocyte Response Demonstrates Intracellular Origin of Diffusion Obstacles
Jepihhina, Natalja; Beraud, Nathalie; Sepp, Mervi; Birkedal, Rikke; Vendelin, Marko
2011-01-01
Intracellular diffusion restrictions for ADP and other molecules have been predicted earlier based on experiments on permeabilized fibers or cardiomyocytes. However, it is possible that the effective diffusion distance is larger than the cell dimensions due to clumping of cells and incomplete separation of cells in fiber preparations. The aim of this work was to check whether diffusion restrictions exist inside rat cardiomyocytes or are caused by large effective diffusion distance. For that, we determined the response of oxidative phosphorylation (OxPhos) to exogenous ADP and ATP stimulation in permeabilized rat cardiomyocytes using fluorescence microscopy. The state of OxPhos was monitored via NADH and flavoprotein autofluorescence. By varying the ADP or ATP concentration in flow chamber, we determined that OxPhos has a low affinity in cardiomyocytes. The experiments were repeated in a fluorometer on cardiomyocyte suspensions leading to similar autofluorescence changes induced by ADP as recorded under the microscope. ATP stimulated OxPhos more in a fluorometer than under the microscope, which was attributed to accumulation of ADP in fluorometer chamber. By calculating the flow profile around the cell in the microscope chamber and comparing model solutions to measured data, we demonstrate that intracellular structures impose significant diffusion obstacles in rat cardiomyocytes. PMID:22067148
Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1.
Castilla, Carolina; Flores, M Luz; Medina, Rafael; Pérez-Valderrama, Begoña; Romero, Francisco; Tortolero, María; Japón, Miguel A; Sáez, Carmen
2014-10-01
PTTG1 protein, the human securin, has a central role in sister chromatid separation during mitosis, and its altered expression has been reported in many tumor types. Paclitaxel is a widely used chemotherapeutic drug, whose mechanism of action is related to its ability to arrest cells in mitosis and the subsequent induction of the intrinsic apoptotic pathway. By using two prostate cancer cell lines with different responses to paclitaxel treatment, we have identified two situations in which PTTG1 influences cell fate differentially. In slippage-prone PC3 cells, both PTTG1 downregulation and overexpression induce an increase in mitotic cells that is associated with diminished apoptosis after paclitaxel treatment. In LNCaP cells, however, PTTG1 downregulation prevents mitotic entry and, subsequently, inhibits mitosis-associated, paclitaxel-induced apoptosis. In contrast, PTTG1 overexpression induces an increase in mitotic cells and apoptosis after paclitaxel treatment. We have also identified a role for Mcl-1 protein in preventing apoptosis during mitosis in PC3 cells, as simultaneous PTTG1 and Mcl-1 silencing enhances mitosis-associated apoptosis after paclitaxel treatment. The finding that a more efficient mitotic arrest alone in PC3 cells is not enough to increase apoptosis was also confirmed with the observation that a selected paclitaxel-resistant PC3 cell line showed an apoptosis-resistant phenotype associated with increased mitosis upon paclitaxel treatment. These findings could contribute to identify putative responsive and nonresponsive cells and help us to approach incomplete responses to paclitaxel in the clinical setting. ©2014 American Association for Cancer Research.
Genetic structure of the four wil tomato species in the Solanum peruvianum s.l. species complex
USDA-ARS?s Scientific Manuscript database
The most diverse wild tomato species Solanum peruvianum sensu lato (s.l.) has been reclassified into four separate species. However, reproductive barriers among the species are incomplete and this can lead to discrepancies regarding genetic identity of germplasm. We used genotyping by sequencing (...
Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; ...
2016-08-05
Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO 2 and SrTiO 3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~10 12 inch –2). Here, we systematicallymore » show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.« less
Eat, breathe, ROS: controlling stem cell fate through metabolism.
Kubli, Dieter A; Sussman, Mark A
2017-05-01
Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered: Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary: The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes.
Eat, breathe, ROS: controlling stem cell fate through metabolism
Kubli, Dieter A.; Sussman, Mark A.
2017-01-01
Introduction Research reveals cardiac regeneration exists at levels previously deemed unattainable. Clinical trials using stem cells demonstrate promising cardiomyogenic and regenerative potential but insufficient contractile recovery. Incomplete understanding of the biology of administered cells likely contributes to inconsistent patient outcomes. Metabolism is a core component of many well-characterized stem cell types, and metabolic changes fundamentally alter stem cell fate from self-renewal to lineage commitment, and vice versa. However, the metabolism of stem cells currently studied for cardiac regeneration remains incompletely understood. Areas covered Key metabolic features of stem cells are reviewed and unique stem cell metabolic characteristics are discussed. Metabolic changes altering stem cell fate are considered from quiescence and self-renewal to lineage commitment. Key metabolic concepts are applied toward examining cardiac regeneration through stem cell-based approaches, and clinical implications of current cell therapies are evaluated to identify potential areas of improvement. Expert commentary The metabolism and biology of stem cells used for cardiac therapy remain poorly characterized. A growing appreciation for the fundamental relationship between stem cell functionality and metabolic phenotype is developing. Future studies unraveling links between cardiac stem cell metabolism and regenerative potential may considerably improve treatment strategies and therapeutic outcomes. PMID:28406333
Krisa, L; Gaughan, J; Vogel, L; Betz, R R; Mulcahey, M J
2013-01-01
A prospective repeated measures multicenter study to determine reliability at individual spinal levels when applied to young persons with spinal cord injury (SCI). To evaluate intra- and inter-rater agreement of repeated motor and sensory scores at individual spinal levels. Shriners Hospitals for Children--Philadelphia and Chicago, USA. A total 189 youth with complete and incomplete SCI underwent four neurological exams by two different raters. Agreement between and within raters for each myotome and dermatome was evaluated for complete and incomplete SCI separately. Intraclass correlation coefficients and 95% confidence intervals were calculated. Overall, both intra- and inter-rater agreement resulted in moderate-to-high agreement among myotomes. Subjects with complete SCI had moderate agreement for light touch (LT) and pin prick (PP) testing, whereas subjects with incomplete SCI had >60.0% of dermatomes resulting in poor agreement for PP testing. Overall, moderate-to-high agreement was found for muscle strength comparisons and moderate-to-poor agreement was found for PP and LT.
Li, Hongru; Zony, Chati; Chen, Ping; Chen, Benjamin K
2017-05-01
Broadly neutralizing antibodies (bNAbs) have been isolated from HIV-1 patients and can potently block infection of a wide spectrum of HIV-1 subtypes. These antibodies define common epitopes shared by many viral isolates. While bNAbs potently antagonize infection with cell-free virus, inhibition of HIV-1 transmission from infected to uninfected CD4 + T cells through virological synapses (VS) has been found to require greater amounts of antibody. In this study, we examined two well-studied molecular clones and two transmitted/founder (T/F) clones for their sensitivities to a panel of bNAbs in cell-free and cell-to-cell infection assays. We observed resistance of cell-to-cell transmission to antibody neutralization that was reflected not only by reductions of antibody potency but also by decreases in maximum neutralization capacity relative to the levels seen with cell-free infections. BNAbs targeting different epitopes exhibited incomplete neutralization against cell-associated virus with T/F Envs, which was not observed with the cell-free form of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif as a determinant that can affect the incomplete neutralization of these T/F clones in cell-to-cell infection. These findings indicate that the signal that affects surface expression and/or internalization of Env from the plasma membrane can modulate the presentation of neutralizing epitopes on infected cells. These results highlight that a fraction of virus can escape from high concentrations of antibody through cell-to-cell infection while remaining sensitive to neutralization in cell-free infection. The ability to fully inhibit cell-to-cell transmission may represent an important consideration in the development of antibodies for treatment or prophylaxis. IMPORTANCE In recent years, isolation of new-generation HIV-1 bNAbs has invigorated HIV vaccine research. These bNAbs display remarkable potency and breadth of coverage against cell-free virus; however, they exhibit a diminished ability to block HIV-1 cell-to-cell transmission. The mechanism(s) by which HIV-1 resists neutralization when transmitting through VS remains uncertain. We examined a panel of bNAbs for their ability to neutralize HIV-1 T/F viruses in cell-to-cell infection assays. We found that some antibodies exhibit not only reduced potency but also decreased maximum neutralization capacity or in vitro efficacy against cell-to-cell infection of HIV-1 with T/F Envs compared to cell-free infection of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif YXXL as a determinant that can affect the incomplete neutralization phenotype of these T/F clones. When the maximum neutralization capacity falls short of 100%, this can have a major impact on the ability of antibodies to halt viral replication. Copyright © 2017 American Society for Microbiology.
Neurons for hunger and thirst transmit a negative-valence teaching signal.
Betley, J Nicholas; Xu, Shengjin; Cao, Zhen Fang Huang; Gong, Rong; Magnus, Christopher J; Yu, Yang; Sternson, Scott M
2015-05-14
Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics of two separate neuron populations that regulate energy and fluid homeostasis by using cell-type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis.
Molecular and cellular mechanisms of pulmonary fibrosis
2012-01-01
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096
Chang, Kevin J; Rekhi, Satinder S; Anderson, Stephan W; Soto, Jorge A
2011-01-01
To evaluate the distal extent and attenuation of bowel opacification achieved after administration of a single low volume dose of oral contrast 2 hours before computed tomographic colonography (CTC) after incomplete optical colonoscopy. This retrospective study included 144 patients undergoing CTC after incomplete colonoscopy from April 2006 to July 2008 at 2 separate medical centers. Each patient received 20 to 30 mL of diatrizoate meglumine and diatrizoate sodium solution 2 hours before being scanned. The distalmost extent of opacification was: stomach/small bowel, n = 13; cecum, n = 2; ascending colon, n = 7; transverse colon, n = 19; descending colon, n = 14; sigmoid colon, n = 24; rectum, n = 65. The mean attenuation of each opacified segment was: cecum, 449 Hounsfield units (HU); ascending colon, 474 HU; transverse colon, 468 HU; descending colon, 421 HU; sigmoid colon, 391 HU; and rectum, 382 HU. In 103 (71.5%) patients, oral contrast reached the distal colon (descending colon, sigmoid colon, or rectum). The oral contrast did not reach the colon in only 13 (9.0%) patients. Oral administration of a small volume hyperosmolar oral contrast agent 2 hours before CTC results in satisfactory colonic opacification in the majority of patients. Adding same-day fluid tagging in incomplete colonoscopy patients presenting for completion CTC should result in adequate fluid opacification for most of the colon, especially proximal segments not visualized at the time of incomplete colonoscopy.
Nam, Seo Hee; Kang, Minkyung; Ryu, Jihye; Kim, Hye-Jin; Kim, Doyeun; Kim, Dae Gyu; Kwon, Nam Hoon; Kim, Sunghoon; Lee, Jung Weon
2016-04-01
The cell-adhesion properties of cancer cells can be targeted to block cancer metastasis. Although cytosolic lysyl-tRNA synthetase (KRS) functions in protein synthesis, KRS on the plasma membrane is involved in cancer metastasis. We hypothesized that KRS is involved in cell adhesion-related signal transduction for cellular migration. To test this hypothesis, colon cancer cells with modulated KRS protein levels were analyzed for cell-cell contact and cell-substrate adhesion properties and cellular behavior. Although KRS suppression decreased expression of cell-cell adhesion molecules, cells still formed colonies without being scattered, supporting an incomplete epithelial mesenchymal transition. Noteworthy, KRS-suppressed cells still exhibited focal adhesions on laminin, with Tyr397-phopshorylated focal adhesion kinase (FAK), but they lacked laminin-adhesion-mediated extracellular signal-regulated kinase (ERK) and paxillin activation. KRS, p67LR and integrin α6β1 were found to interact, presumably to activate ERK for paxillin expression and Tyr118 phosphorylation even without involvement of FAK, so that specific inhibition of ERK or KRS in parental HCT116 cells blocked cell-cell adhesion and cell-substrate properties for focal adhesion formation and signaling activity. Together, these results indicate that KRS can promote cell-cell and cell-ECM adhesion for migration.
Feeding Techniques for Children Who Have Cleft Lip and Palate.
ERIC Educational Resources Information Center
Klein, Marsha Dunn
This pamphlet on feeding techniques for children who have cleft lip and palate emphasizes the role of the parent as part of a team involving many specialists. The pamphlet begins with explanations of complete and incomplete separations of the lip, unilateral and bilateral cleft lips, corrective surgical procedures, etc. The importance of weight…
On the asteroidal jet-stream Flora A
NASA Technical Reports Server (NTRS)
Klacka, Jozef
1992-01-01
The problems of the virtual existence of the Flora 1, separated from the rest of the Flora family, and jet-stream Flora A (Alfven 1969) is discussed in connection with the observational selection effects. It is shown that observational selection effects operate as a whole and can be important in incomplete observational data set.
Partial and Incomplete Voices: The Political and Three Early Childhood Teachers' Learning
ERIC Educational Resources Information Center
Henderson, Linda
2014-01-01
The early childhood-school relationship is reported as having points of separation and difference. In particular, early childhood teachers located in a school setting report experiencing a push-down effect. This paper reports on a participatory action research project involving three early childhood teachers working within an independent school.…
Théon, A P; Lecouteur, R A; Carr, E A; Griffey, S M
2000-03-01
To assess the influence of tumor cell proliferation and sex-hormone receptors on the efficacy of megavoltage irradiation for dogs with incompletely resected meningiomas. Longitudinal clinical trial. 20 dogs with incompletely resected intracranial meningiomas. Dogs were treated with 48 Gy of radiation administered 3 times per week on an alternate-day schedule of 4 Gy/fraction for 4 weeks, using bilateral parallel-opposed fields. Tumor proliferative fraction measured by immunohistochemical detection of proliferating cell nuclear antigen (PFPCNA index) ranged from 10 to 42% (median, 24%). Progesterone receptor immunoreactivity was detected in 70% of tumors. Estrogen receptor immunoreactivity was not detected. An inverse correlation was found between detection of progesterone receptors and the PFPCNA index. The overall 2-year progression-free survival (PFS) rate was 68%. The only prognostic factor that significantly affected PFS rate was the PFPCNA index. The 2-year PFS was 42% for tumors with a high PFPCNA index (value > or = 24%) and 91% for tumors with a low PFPCNA index (value < 24%). Tumors with a high PFPCNA index were 9.1 times as likely to recur as were tumors with a low PFPCNA index. This study confirms the value of irradiation for dogs with incompletely resected meningiomas. Prognostic value of the PFPCNA index suggests-that duration of treatment and interval from surgery to start of irradiation may affect outcome. Loss of progesterone receptors in some tumors may be responsible for an increase in PFPCNA index and may indirectly affect prognosis after radiation therapy.
Nonallelic heterogeneity in autosomal dominant retinitis pigmentosa with incomplete penetrance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.K.; Berson, E.L.; Dryja, T.P.
1994-08-01
Retinitis pigmentosa is a group of retinal diseases in which photoreceptor cells throughout the retina degenerate. Although there is considerable genetic heterogeneity (autosomal dominant, autosomal recessive, and X-linked forms exist), there is a possibility that some clinically defined subtypes of the disease may be the result of mutations at the same locus. One possible clinically defined subtype is that of autosomal dominant retinitis pigmentosa (ADRP) with incomplete penetrance. Whereas in most families with ADRP, carriers can be clearly identified because of visual loss, ophthalmological findings, or abnormal electroretinograms (ERGs), in occasional families some obligate carriers are asymptomatic and have normalmore » or nearly normal ERGs even late in life. A recent paper reported the mapping of the diseases locus in one pedigree (designated adRP7) with ADRP with incomplete penetrance to chromosome 7p. To test the idea that ADRP with incomplete penetrance may be genetically homogeneous, we have evaluated whether a different family with incomplete penetrance also has a disease gene linked to the same region. 4 refs., 1 fig., 1 tab.« less
Chen, Yunru; Yang, Xueliang; Ye, Feng; Chen, Tianyan; Liu, Zhengwen; Zhao, Yingren
2016-07-01
This retrospective study is aimed to investigate the clinical features of the patients with history of incomplete vaccination against hemorrhagic fever with renal syndrome (HFRS). Data of 140 cases of hospitalized patients with HFRS were collected. The patients were divided into incomplete vaccinated group (n = 10) and unvaccinated group (n = 130) according to vaccination status. Demographic, clinical, and laboratory characteristics of the two groups' patients were compared through t test, Pearson χ(2) test, and Mann-Whitney test. In comparison with the unvaccinated group, the incidence rate of vomiting and hypotensive-shock, the white blood cell (WBC) and platelet count, the level of blood urea nitrogen and albumin, total number of dialysis and hospitalization cost of patients in the incomplete vaccinated group have statistically significant differences. HFRS disease may still occur in individuals with a history of HFRS incomplete vaccination although the symptoms may be mild. Effective vaccination against HFRS needs sufficient doses and booster shot of the vaccine. © 2015 Wiley Periodicals, Inc.
Patra, Krushna C; Bardeesy, Nabeel
2018-06-18
The factors determining longevity of different animals are incompletely defined. In this issue of Developmental Cell, Anzi et al. (2018) show that distinct strategies for postnatal pancreatic growth operate in different mammals and correlate with lifespan, with short-lived species exhibiting increasing pancreatic cell size and long-lived animals increasing cell number. Copyright © 2018 Elsevier Inc. All rights reserved.
Rice, Thomas W; Gress, Donna M; Patil, Deepa T; Hofstetter, Wayne L; Kelsen, David P; Blackstone, Eugene H
2017-07-08
Answer questions and earn CME/CNE New to the eighth edition of the American Joint Committee on Cancer (AJCC) Cancer Staging Manual for epithelial cancers of the esophagus and esophagogastric junction are separate, temporally related cancer classifications: 1) before treatment decision (clinical); 2) after esophagectomy alone (pathologic); and 3) after preresection therapy followed by esophagectomy (postneoadjuvant pathologic). The addition of clinical and postneoadjuvant pathologic stage groupings was driven by a lack of correspondence of survival, and thus prognosis, between both clinical and postneoadjuvant pathologic cancer categories (facts about the cancer) and pathologic categories. This was revealed by a machine-learning analysis of 6-continent data from the Worldwide Esophageal Cancer Collaboration, with consensus of the AJCC Upper GI Expert Panel. Survival is markedly affected by histopathologic cell type (squamous cell carcinoma and adenocarcinoma) in clinically and pathologically staged patients, requiring separate stage grouping for each cell type. However, postneoadjuvant pathologic stage groups are identical. For the future, more refined and granular data are needed. This requires: 1) more accurate clinical staging; 2) innovative solutions to pathologic staging challenges in endoscopically resected cancers; 3) integration of genomics into staging; and 4) precision cancer care with targeted therapy. It is the responsibility of the oncology team to accurately determine and record registry data, which requires eliminating both common errors and those related to incompleteness and inconsistency. Despite the new complexity of eighth edition staging of cancers of the esophagus and esophagogastric junction, these key concepts and new directions will facilitate precision cancer care. CA Cancer J Clin 2017;67:304-317. © 2017 American Cancer Society. © 2017 American Cancer Society.
Light and electron microscopic analyses of Vasa expression in adult germ cells of the fish medaka.
Yuan, Yongming; Li, Mingyou; Hong, Yunhan
2014-07-15
Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development. Copyright © 2014 Elsevier B.V. All rights reserved.
Direct Tumor Embolization of Sinonasal Unclassified Spindle Cell Sarcoma with Onyx.
Kansal, Ankit; Srinet, Prateek; Manes, Richard Peter
2016-07-01
To evaluate the use of a new tumor embolization agent, Onyx (Covidien, Dublin, Ireland), for the use of intraoperative embolization of a sinonasal unclassified spindle cell sarcoma. A 45-year-old female patient presented to the rhinology clinic with a nasal mass. A biopsy revealed a highly vascular mass consistent with a sinonasal unclassified spindle cell sarcoma. Secondary to its extensive vascularity, the patient underwent preoperative transarterial embolization (TAE) before definitive resection. Due to complex vascular anatomy including feeding vessels emanating from intracranial circulation, incomplete embolization was achieved. Subsequently, intraoperative embolization with Onyx at the time of resection was performed. Intraoperative Onyx use resulted in almost complete devascularization of the tumor with decreased risk of intracranial embolization. Intraoperative embolization with Onyx after an incomplete TAE can be a safe and effective method of achieving near-total embolization of sinonasal tumors.
Rpn9 Is Required for Efficient Assembly of the Yeast 26S Proteasome
Takeuchi, Junko; Fujimuro, Masahiro; Yokosawa, Hideyosi; Tanaka, Keiji; Toh-e, Akio
1999-01-01
We have isolated the RPN9 gene by two-hybrid screening with, as bait, RPN10 (formerly SUN1), which encodes a multiubiquitin chain receptor residing in the regulatory particle of the 26S proteasome. Rpn9 is a nonessential subunit of the regulatory particle of the 26S proteasome, but the deletion of this gene results in temperature-sensitive growth. At the restrictive temperature, the Δrpn9 strain accumulated multiubiquitinated proteins, indicating that the RPN9 function is needed for the 26S proteasome activity at a higher temperature. We analyzed the proteasome fractions separated by glycerol density gradient centrifugation by native polyacrylamide gel electrophoresis and found that a smaller amount of the 26S proteasome was produced in the Δrpn9 cells and that the 26S proteasome was shifted to lighter fractions than expected. The incomplete proteasome complexes were found to accumulate in the Δrpn9 cells. Furthermore, Rpn10 was not detected in the fractions containing proteasomes of the Δrpn9 cells. These results indicate that Rpn9 is needed for incorporating Rpn10 into the 26S proteasome and that Rpn9 participates in the assembly and/or stability of the 26S proteasome. PMID:10490597
Classical Chinese Landscape Painting and the Aesthetic Appreciation of Nature
ERIC Educational Resources Information Center
Turner, Matthew
2009-01-01
Recent theories of the aesthetic appreciation of nature or natural environments have done much to clarify what might be essential to such appreciation. Such accounts are incomplete, however, as they depend on a strict separation between works of art and nature itself. This paper shows how classical Chinese landscape painting offers a way to…
Comparative studies on lecithin as a component of cardiolipin antigens
Pontecorvo, M.; Rappaport, F.; Tompkins, V.; Vogelsang, T.
1955-01-01
Egg-yolk lecithin prepared as described in the second edition of of the WHO monograph on cardiolipin antigens was known to be satisfactory, but documentation was incomplete. In this paper, the authors discuss results of comparisons between egg-yolk lecithin and lecithin of beef-heart origin, carried out in four separate laboratories. PMID:13260890
Preliminary checklist of amphibians and reptiles from Baramita, Guyana
Reynolds, R.P.; MacCulloch, R.D.
2012-01-01
We provide an initial checklist of the herpetofauna of Baramita, a lowland rainforest site in the Northwest Region of Guyana. Twenty-five amphibian and 28 reptile species were collected during two separate dry-season visits. New country records for two species of snakes are documented, contributing to the knowledge on the incompletely known herpetofauna of Guyana.
NOGGIN IS REQUIRED FOR NORMAL LOBE PATTERNING AND DUCTAL BUDDING IN THE MOUSE PROSTATE
Cook, Crist; Vezina, Chad M.; Hicks, Sarah M.; Shaw, Aubie; Yu, Min; Peterson, Richard E.; Bushman, Wade
2008-01-01
Mesenchymal expression of the BMP antagonist NOGGIN during prostate development plays a critical role in pre-natal ventral prostate development and opposes BMP4-mediated inhibition of cell proliferation during postnatal ductal development. Morphologic examination of newborn Noggin-/- male fetuses revealed genitourinary anomalies including cryptorchidism, incomplete separation of the hindgut from the urogenital sinus (UGS), absence of the ventral mesenchymal pad and a complete loss of ventral prostate (VP) budding. Examination of lobe-specific marker expression in the E14 Noggin-/- UGS rescued by transplantation under the renal capsule of a male nude mouse confirmed a complete loss of VP determination. More modest effects were observed in the other lobes, including decreased number of ductal buds in the dorsal and lateral prostates of newborn Noggin-/- males. BMP4 and BMP7 have been shown to inhibit ductal budding and outgrowth by negatively regulating epithelial cell proliferation. We show here that NOGGIN can neutralize budding inhibition by BMP4 and rescues branching morphogenesis of BMP4-exposed UGS in organ culture and show that the effects of BMP4 and NOGGIN activities converge on P63+ epithelial cells located at nascent duct tips. Together, these studies show that the BMP-NOGGIN axis regulates patterning of the ventral prostate, regulates ductal budding, and controls proliferation of P63+ epithelial cells in the nascent ducts of developing mouse prostate. PMID:18028901
Accessory replicative helicases and the replication of protein-bound DNA.
Brüning, Jan-Gert; Howard, Jamieson L; McGlynn, Peter
2014-12-12
Complete, accurate duplication of the genetic material is a prerequisite for successful cell division. Achieving this accuracy is challenging since there are many barriers to replication forks that may cause failure to complete genome duplication or result in possibly catastrophic corruption of the genetic code. One of the most important types of replicative barriers are proteins bound to the template DNA, especially transcription complexes. Removal of these barriers demands energy input not only to separate the DNA strands but also to disrupt multiple bonds between the protein and DNA. Replicative helicases that unwind the template DNA for polymerases at the fork can displace proteins bound to the template. However, even occasional failures in protein displacement by the replicative helicase could spell disaster. In such circumstances, failure to restart replication could result in incomplete genome duplication. Avoiding incomplete genome duplication via the repair and restart of blocked replication forks also challenges viability since the involvement of recombination enzymes is associated with the risk of genome rearrangements. Organisms have therefore evolved accessory replicative helicases that aid replication fork movement along protein-bound DNA. These helicases reduce the dangers associated with replication blockage by protein-DNA complexes, aiding clearance of blocks and resumption of replication by the same replisome thus circumventing the need for replication repair and restart. This review summarises recent work in bacteria and eukaryotes that has begun to delineate features of accessory replicative helicases and their importance in genome stability. Copyright © 2014. Published by Elsevier Ltd.
Antoniou, Georgia; Papakyriacou, Irineos; Papaneophytou, Christos
2017-10-01
Human rhinovirus (HRV) 3C protease is widely used in recombinant protein production for various applications such as biochemical characterization and structural biology projects to separate recombinant fusion proteins from their affinity tags in order to prevent interference between these tags and the target proteins. Herein, we report the optimization of expression and purification conditions of glutathione S-transferase (GST)-tagged HRV 3C protease by statistically designed experiments. Soluble expression of GST-HRV 3C protease was initially optimized by response surface methodology (RSM), and a 5.5-fold increase in enzyme yield was achieved. Subsequently, we developed a new incomplete factorial (IF) design that examines four variables (bacterial strain, expression temperature, induction time, and inducer concentration) in a single experiment. The new design called Incomplete Factorial-Strain/Temperature/Time/Inducer (IF-STTI) was validated using three GST-tagged proteins. In all cases, IF-STTI resulted in only 10% lower expression yields than those obtained by RSM. Purification of GST-HRV 3C was optimized by an IF design that examines simultaneously the effect of the amount of resin, incubation time of cell lysate with resin, and glycerol and DTT concentration in buffers, and a further 15% increase in protease recovery was achieved. Purified GST-HRV 3C protease was active at both 4 and 25 °C in a variety of buffers.
Xu, Hong-Ping; Burbridge, Timothy J; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z Jimmy; Crair, Michael C
2016-03-30
Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical,in vitroandin vivoelectrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the "recurrent network" model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic "retinal waves" are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as "readouts" of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. Copyright © 2016 the authors 0270-6474/16/363872-16$15.00/0.
PD-L2 Elbows out PD-L1 to Rescue T Cell Immunity to Malaria.
Crompton, Peter D; Pierce, Susan K
2016-08-16
How early interactions between innate and adaptive immune cells influence outcomes of acute infections is incompletely understood. In this issue of Immunity, Karunarathne et al. (2016) show that dendritic cells help CD4(+) T helper 1 cell immunity against malaria through PD-L2's competition with PD-L1. Published by Elsevier Inc.
Ma, Yi-ming; Han, Wei; Li, Jia; Hu, Li-hong; Zhou, Yu-bo
2015-01-01
Aim: To investigate the effects of physalin B insolated from Physalis divericata on human colon cancer cells in vitro and its anticancer mechanisms. Methods: Human HCT116 colon cancer cell line was tested. Cell viability and apoptosis were detected, and relevant proteins were measured using Western blot analyses. Autophagosomes were observed in stable GFP-LC3 HCT116 cells. Localization of autophagosomes and lysosomes was evaluated in GFP-LC3/RFP-LAMP1-co-transfected cells. Microtubules and F-actin microfilaments were observed with confocal microscope. Mitochondrial ROS (mito-ROS) was detected with flow cytometry in the cells stained with MitoSox dye. Results: Physalin B inhibited the viability of HCT116 cells with an IC50 value of 1.35 μmol/L. Treatment of the cells with physalin B (2.5–10 μmol/L) induced apoptosis and the cleavage of PARP and caspase-3. Meanwhile, physalin B treatment induced autophagosome formation, and accumulation of LC3-II and p62, but decreased Beclin 1 protein level. Marked changes of microtubules and F-actin microfilaments were observed in physalin B-treated cells, which led to the blockage of co-localization of autophagosomes and lysosomes. Physalin B treatment dose-dependently increased the phosphorylation of p38, ERK and JNK in the cells, whereas the p38 inhibitor SB202190, ERK inhibitor U0126 or JNK inhibitor SP600125 could partially reduce physalin B-induced PARP cleavage and p62 accumulation. Moreover, physalin B treatment dose-dependently increased mito-ROS production in the cells, whereas the ROS scavenger NAC could reverse physalin B-induced effects, including incomplete autophagic response, accumulation of ubiquitinated proteins, changes of microtubules and F-actin, activation of p38, ERK and JNK, as well as cell death and apoptosis. Conclusion: Physalin B induces mito-ROS, which not only inhibits the ubiquitin-proteasome pathway but also induces incomplete autophagic response in HCT116 cells in vitro. PMID:25832431
Smith, J; Kiupel, M; Farrelly, J; Cohen, R; Olmsted, G; Kirpensteijn, J; Brocks, B; Post, G
2017-03-01
Grade II mast cell tumours (MCT) are tumours with variable biologic behaviour. Multiple factors have been associated with outcome, including proliferation markers. The purpose of this study was to determine if extent of surgical excision affects recurrence rate in dogs with grade II MCT with low proliferation activity, determined by Ki67 and argyrophilic nucleolar organising regions (AgNOR). Eighty-six dogs with cutaneous MCT were evaluated. All dogs had surgical excision of their MCT with a low Ki67 index and combined AgNORxKi67 (Ag67) values. Twenty-three (27%) dogs developed local or distant recurrence during the median follow-up time. Of these dogs, six (7%) had local recurrence, one had complete and five had incomplete histologic margins. This difference in recurrence rates between dogs with complete and incomplete histologic margins was not significant. On the basis of this study, ancillary therapy may not be necessary for patients with incompletely excised grade II MCT with low proliferation activity. © 2015 John Wiley & Sons Ltd.
McCoy, Laura E.; Falkowska, Emilia; Doores, Katie J.; Le, Khoa; Sok, Devin; van Gils, Marit J.; Euler, Zelda; Burger, Judith A.; Seaman, Michael S.; Sanders, Rogier W.; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R.
2015-01-01
The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design. PMID:26267277
McCoy, Laura E; Falkowska, Emilia; Doores, Katie J; Le, Khoa; Sok, Devin; van Gils, Marit J; Euler, Zelda; Burger, Judith A; Seaman, Michael S; Sanders, Rogier W; Schuitemaker, Hanneke; Poignard, Pascal; Wrin, Terri; Burton, Dennis R
2015-08-01
The broadly neutralizing HIV monoclonal antibodies (bnMAbs) PG9, PG16, PGT151, and PGT152 have been shown earlier to occasionally display an unusual virus neutralization profile with a non-sigmoidal slope and a plateau at <100% neutralization. In the current study, we were interested in determining the extent of non-sigmoidal slopes and plateaus at <100% for HIV bnMAbs more generally. Using both a 278 panel of pseudoviruses in a CD4 T-cell (U87.CCR5.CXCR4) assay and a panel of 117 viruses in the TZM-bl assay, we found that bnMAbs targeting many neutralizing epitopes of the spike had neutralization profiles for at least one virus that plateaued at <90%. Across both panels the bnMAbs targeting the V2 apex of Env and gp41 were most likely to show neutralization curves that plateaued <100%. Conversely, bnMAbs targeting the high-mannose patch epitopes were less likely to show such behavior. Two CD4 binding site (CD4bs) Abs also showed this behavior relatively infrequently. The phenomenon of incomplete neutralization was also observed in a large peripheral blood mononuclear cells (PBMC)-grown molecular virus clone panel derived from patient viral swarms. In addition, five bnMAbs were compared against an 18-virus panel of molecular clones produced in 293T cells and PBMCs and assayed in TZM-bl cells. Examples of plateaus <90% were seen with both types of virus production with no consistent patterns observed. In conclusion, incomplete neutralization and non-sigmoidal neutralization curves are possible for all HIV bnMAbs against a wide range of viruses produced and assayed in both cell lines and primary cells with implications for the use of antibodies in therapy and as tools for vaccine design.
Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis.
Reinecke, James B; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve
2015-01-01
During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Devil Is in the Details: Incomplete Reporting in Preclinical Animal Research.
Avey, Marc T; Moher, David; Sullivan, Katrina J; Fergusson, Dean; Griffin, Gilly; Grimshaw, Jeremy M; Hutton, Brian; Lalu, Manoj M; Macleod, Malcolm; Marshall, John; Mei, Shirley H J; Rudnicki, Michael; Stewart, Duncan J; Turgeon, Alexis F; McIntyre, Lauralyn
2016-01-01
Incomplete reporting of study methods and results has become a focal point for failures in the reproducibility and translation of findings from preclinical research. Here we demonstrate that incomplete reporting of preclinical research is not limited to a few elements of research design, but rather is a broader problem that extends to the reporting of the methods and results. We evaluated 47 preclinical research studies from a systematic review of acute lung injury that use mesenchymal stem cells (MSCs) as a treatment. We operationalized the ARRIVE (Animal Research: Reporting of In Vivo Experiments) reporting guidelines for pre-clinical studies into 109 discrete reporting sub-items and extracted 5,123 data elements. Overall, studies reported less than half (47%) of all sub-items (median 51 items; range 37-64). Across all studies, the Methods Section reported less than half (45%) and the Results Section reported less than a third (29%). There was no association between journal impact factor and completeness of reporting, which suggests that incomplete reporting of preclinical research occurs across all journals regardless of their perceived prestige. Incomplete reporting of methods and results will impede attempts to replicate research findings and maximize the value of preclinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, H.J.; Choi, K.C.; Choi, K.S.
2013-07-01
As a destructive quantification method of {sup 3}H in low and intermediate level radwastes, bomb oxidation, sample oxidation, and wet oxidation methods have been introduced. These methods have some merits and demerits in the radiochemical separation of {sup 3}H radionuclides. That is, since the bomb oxidation and sample oxidation methods are techniques using heating at high temperature, the separation methods of the radionuclides are relatively simple. However, since {sup 3}H radionuclide has a property of being diffused deeply into the inside of metals, {sup 3}H which is distributed on the surface of the metals can only be extracted if themore » methods are applied. As an another separation method, the wet oxidation method makes {sup 3}H oxidized with an acidic solution, and extracted completely to an oxidized HTO compound. However, incomplete oxidized {sup 3}H compounds, which are produced by reactions of acidic solutions and metallic radwastes, can be released into the air. Thus, in this study, a wet oxidation method to extract and quantify the {sup 3}H radionuclide from metallic radwastes was established. In particular, a complete extraction method and complete oxidation method of incomplete chemical compounds of {sup 3}H using a Pt catalyst were studied. The radioactivity of {sup 3}H in metallic radwastes is extracted and measured using a wet oxidation method and liquid scintillation counter. Considering the surface dose rate of the sample, the appropriate size of the sample was determined and weighed, and a mixture of oxidants was added to a 200 ml round flask with 3 tubes. The flask was quickly connected to the distilling apparatus. 20 mL of 16 wt% H{sub 2}SO{sub 4} was given into the 200-ml round flask through a dropping funnel while under stirring and refluxing. After dropping, the temperature of the mixture was raised to 96 deg. C and the sample was leached and oxidized by refluxing for 3 hours. At that time, the incomplete oxidized {sup 3}H compounds were completely oxidized using the Pt catalysts and produced a stable HTO compound. After that, about a 20 ml solution was distilled in the separation apparatus, and the distillate was mixed with an ultimagold LLT as a cocktail solution. The solution in the vial was left standing for at least 24 hours. The radioactivity of {sup 3}H was counted directly using a liquid scintillation analyzer (Packard, 2500 TR/AB, Alpha and Beta Liquid Scintillation Analyzer). (authors)« less
SUPEROXIDE-DEPENDENT IRON UPTAKE: A NEW ROLE FOR ANION EXCHANGE PROTEIN 2
Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involvi...
Configuration of separability and tests for multipartite entanglement in bell-type experiments.
Nagata, Koji; Koashi, Masato; Imoto, Nobuyuki
2002-12-23
We derive tight quadratic inequalities for all kinds of hybrid separable-inseparable n-particle density operators on an arbitrary dimensional space. This methodology enables us to derive a tight quadratic inequality as tests for full n-partite entanglement in various Bell-type correlation experiments on the systems that may not be identified as a collection of qubits, e.g., those involving photons measured by incomplete detectors. It is also proved that when the two measured observables are assumed to precisely anticommute, a stronger quadratic inequality can be used as a witness of full n-partite entanglement.
A 'smart' tube holder enables real-time sample monitoring in a standard lab centrifuge.
Hoang, Tony; Moskwa, Nicholas; Halvorsen, Ken
2018-01-01
The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their "black box" nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades.
A ‘smart’ tube holder enables real-time sample monitoring in a standard lab centrifuge
Hoang, Tony; Moskwa, Nicholas
2018-01-01
The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their “black box” nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades. PMID:29659624
Countercurrent distribution of biological cells
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1982-01-01
Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.
Porro, Laura B; Witmer, Lawrence M; Barrett, Paul M
2015-01-01
Several skulls of the ornithischian dinosaur Lesothosaurus diagnosticus (Lower Jurassic, southern Africa) are known, but all are either incomplete, deformed, or incompletely prepared. This has hampered attempts to provide a comprehensive description of skull osteology in this crucial early dinosaurian taxon. Using visualization software, computed tomographic scans of the Lesothosaurus syntypes were digitally segmented to remove matrix, and identify and separate individual cranial and mandibular bones, revealing new anatomical details such as sutural morphology and the presence of several previously undescribed elements. Together with visual inspection of exposed skull bones, these CT data enable a complete description of skull anatomy in this taxon. Comparisons with our new data suggest that two specimens previously identified as Lesothosaurus sp. (MNHN LES 17 and MNHN LES 18) probably represent additional individuals of Lesothosaurus diagnosticus.
Self-Efficacy and Vicarious Learning in Doctoral Studies at a Distance
ERIC Educational Resources Information Center
Kozar, Olga; Lum, Juliet F.; Benson, Phil
2015-01-01
Even though there are increasing numbers of PhD students in the distance mode, our current understanding of PhD candidature at a distance is limited and incomplete. On the one end of the spectrum are accounts of unhappy and isolated doctoral students who are separated from communities of practice. At the same time, literature offers accounts of…
Relational Contract: Applicable to Department of Defense Contracts
1989-12-01
examine the evolution of contract law and, in particular, the role of contractual incompleteness in exchange relationships. 2.1.1. The Classical Approach...Classical contract law facilitates exchange by separately detailing all aspects of the contracting process 9 at the outset by prespecification of all...modifications after contractual performance has begun. According to Williamson (1979), classical contract law implements prespecification through legal
NASA Astrophysics Data System (ADS)
Villarreal, Oscar; Chen, Liao; Whetten, Robert; Yacaman, Miguel
2015-03-01
We studied the interactions of functionalized Au144 nanoparticles (NPs) in a near-physiological environment through all-atom molecular dynamics simulations. The AuNPs were coated with a homogeneous selection of 60 thiolates: 11-mercapto-1-undecanesulfonate, 5-mercapto-1-pentanesulfonate, 5-mercapto-1-pentane-amine, 4-mercapto-benzoate or 4-mercapto-benzamide. These ligands were selected to elucidate how the aggregation behavior depends on the ligands' sign of charge, length, and flexibility. Simulating the dynamics of a pair of identical AuNPs in a cell of saline of 150 mM NaCl in addition to 120 Na+/Cl- counter-ions, we computed the aggregation affinities from the potential of mean force as a function of the pair separation. We found that NPs coated with negatively charged, short ligands have the strongest affinities mediated by multiple Na+ counter-ions residing on a plane in-between the pair and forming ``salt bridges'' to both NPs. Positively charged NPs have weaker affinities, as Cl counter-ions form fewer and weaker salt bridges. The longer ligands' large fluctuations disfavor the forming of salt bridges, enable hydrophobic contact between the exposed hydrocarbon chains and interact at greater separations due to the fact that the screening effect is rather incomplete. Supported by the CONACYT, NIH, NSF and TACC.
Darnaude, Audrey M.
2016-01-01
Background Mixture models (MM) can be used to describe mixed stocks considering three sets of parameters: the total number of contributing sources, their chemical baseline signatures and their mixing proportions. When all nursery sources have been previously identified and sampled for juvenile fish to produce baseline nursery-signatures, mixing proportions are the only unknown set of parameters to be estimated from the mixed-stock data. Otherwise, the number of sources, as well as some/all nursery-signatures may need to be also estimated from the mixed-stock data. Our goal was to assess bias and uncertainty in these MM parameters when estimated using unconditional maximum likelihood approaches (ML-MM), under several incomplete sampling and nursery-signature separation scenarios. Methods We used a comprehensive dataset containing otolith elemental signatures of 301 juvenile Sparus aurata, sampled in three contrasting years (2008, 2010, 2011), from four distinct nursery habitats. (Mediterranean lagoons) Artificial nursery-source and mixed-stock datasets were produced considering: five different sampling scenarios where 0–4 lagoons were excluded from the nursery-source dataset and six nursery-signature separation scenarios that simulated data separated 0.5, 1.5, 2.5, 3.5, 4.5 and 5.5 standard deviations among nursery-signature centroids. Bias (BI) and uncertainty (SE) were computed to assess reliability for each of the three sets of MM parameters. Results Both bias and uncertainty in mixing proportion estimates were low (BI ≤ 0.14, SE ≤ 0.06) when all nursery-sources were sampled but exhibited large variability among cohorts and increased with the number of non-sampled sources up to BI = 0.24 and SE = 0.11. Bias and variability in baseline signature estimates also increased with the number of non-sampled sources, but tended to be less biased, and more uncertain than mixing proportion ones, across all sampling scenarios (BI < 0.13, SE < 0.29). Increasing separation among nursery signatures improved reliability of mixing proportion estimates, but lead to non-linear responses in baseline signature parameters. Low uncertainty, but a consistent underestimation bias affected the estimated number of nursery sources, across all incomplete sampling scenarios. Discussion ML-MM produced reliable estimates of mixing proportions and nursery-signatures under an important range of incomplete sampling and nursery-signature separation scenarios. This method failed, however, in estimating the true number of nursery sources, reflecting a pervasive issue affecting mixture models, within and beyond the ML framework. Large differences in bias and uncertainty found among cohorts were linked to differences in separation of chemical signatures among nursery habitats. Simulation approaches, such as those presented here, could be useful to evaluate sensitivity of MM results to separation and variability in nursery-signatures for other species, habitats or cohorts. PMID:27761305
Mohammadi, Younes; Parsaeian, Mahboubeh; Farzadfar, Farshad; Kasaeian, Amir; Mehdipour, Parinaz; Sheidaei, Ali; Mansouri, Anita; Saeedi Moghaddam, Sahar; Djalalinia, Shirin; Mahmoudi, Mahmood; Khosravi, Ardeshir; Yazdani, Kamran
2014-03-01
Calculation of burden of diseases and risk factors is crucial to set priorities in the health care systems. Nevertheless, the reliable measurement of mortality rates is the main barrier to reach this goal. Unfortunately, in many developing countries the vital registration system (VRS) is either defective or does not exist at all. Consequently, alternative methods have been developed to measure mortality. This study is a subcomponent of NASBOD project, which is currently conducting in Iran. In this study, we aim to calculate incompleteness of the Death Registration System (DRS) and then to estimate levels and trends of child and adult mortality using reliable methods. In order to estimate mortality rates, first, we identify all possible data sources. Then, we calculate incompleteness of child and adult morality separately. For incompleteness of child mortality, we analyze summary birth history data using maternal age cohort and maternal age period methods. Then, we combine these two methods using LOESS regression. However, these estimates are not plausible for some provinces. We use additional information of covariates such as wealth index and years of schooling to make predictions for these provinces using spatio-temporal model. We generate yearly estimates of mortality using Gaussian process regression that covers both sampling and non-sampling errors within uncertainty intervals. By comparing the resulted estimates with mortality rates from DRS, we calculate child mortality incompleteness. For incompleteness of adult mortality, Generalized Growth Balance, Synthetic Extinct Generation and a hybrid of two mentioned methods are used. Afterwards, we combine incompleteness of three methods using GPR, and apply it to correct and adjust the number of deaths. In this study, we develop a conceptual framework to overcome the existing challenges for accurate measuring of mortality rates. The resulting estimates can be used to inform policy-makers about past, current and future mortality rates as a major indicator of health status of a population.
Kot, Marta; Büning, Jürgen; Jankowska, Władysława; Drohojowska, Jowita; Szklarzewicz, Teresa
2016-07-01
The development and organization of the ovaries of ten species from four Psylloidea families (Psyllidae, Triozidae, Aphalaridae and Liviidae) have been investigated. The ovaries of the last larval stage (i.e. fifth instar) of all examined species are filled with numerous clusters of cystocytes which undergo synchronous incomplete mitotic division. Cystocytes of the given cluster are arranged into a rosette with polyfusome in the centre. These clusters are associated with single somatic cells. At the end of the fifth instar, the clusters begin to separate from each other, forming spherical ovarioles which are surrounded by a single layer of somatic cells. In the ovarioles of very young females all cystocytes enter the prophase of meiosis and differentiate shortly thereafter into oocytes and trophocytes (nurse cells). Meanwhile, somatic cells differentiate into cells of the inner epithelial sheath surrounding the trophocytes and into the prefollicular cells that encompass the oocytes. During this final differentiation, the trophocytes lose their cell membranes and become syncytial. Oocytes remain cellular and most of them (termed arrested oocytes) do not grow. In the ovarioles of older females, one oocyte encompassed by its follicle cells starts growing, still connected to the syncytial tropharium by a nutritive cord. After the short phase of previtellogenesis alone, the oocyte enters its vitellogenic the growth phase in the vitellarium. At that time, the second oocyte may enter the vitellarium and start its previtellogenic growth. In the light of the obtained results, the phylogeny of psyllids, as well as phylogenetic relationships between taxa of Hemiptera: Sternorrhyncha are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Glioma stem cells (GSCs) and epithelial-mesenchymal transition (EMT) are strongly associated with therapy resistance and tumor recurrence, but the underlying mechanisms are incompletely understood. Here we show that S100A4 is a novel biomarker of GSCs. S100A4+ cells in gliomas are enriched with canc...
Muessig, L; Hauser, J; Wills, T J; Cacucci, F
2016-08-01
Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. © The Author 2016. Published by Oxford University Press.
Magnetic resonance separation imaging using a divided inversion recovery technique (DIRT).
Goldfarb, James W
2010-04-01
The divided inversion recovery technique is an MRI separation method based on tissue T(1) relaxation differences. When tissue T(1) relaxation times are longer than the time between inversion pulses in a segmented inversion recovery pulse sequence, longitudinal magnetization does not pass through the null point. Prior to additional inversion pulses, longitudinal magnetization may have an opposite polarity. Spatial displacement of tissues in inversion recovery balanced steady-state free-precession imaging has been shown to be due to this magnetization phase change resulting from incomplete magnetization recovery. In this paper, it is shown how this phase change can be used to provide image separation. A pulse sequence parameter, the time between inversion pulses (T180), can be adjusted to provide water-fat or fluid separation. Example water-fat and fluid separation images of the head, heart, and abdomen are presented. The water-fat separation performance was investigated by comparing image intensities in short-axis divided inversion recovery technique images of the heart. Fat, blood, and fluid signal was suppressed to the background noise level. Additionally, the separation performance was not affected by main magnetic field inhomogeneities.
Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumors and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood.
Neurons for hunger and thirst transmit a negative-valence teaching signal
Gong, Rong; Magnus, Christopher J.; Yu, Yang; Sternson, Scott M.
2015-01-01
Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics and dynamics of two separate neuron populations that regulate energy and fluid homeostasis by using cell type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis. PMID:25915020
Abscission: The Phytogerontological Effects of Ethylene
Abeles, F. B.; Craker, L. E.; Leather, G. R.
1971-01-01
The role of ethylene in the aging of bean (Phaseolus vulgaris L. cv. Red Kidney) petiole abscission zone explants was examined. The data indicate that ethylene does accelerate aging in addition to inducing changes in break strength. Application of ethylene during the aging stage (stage 1) promoted abscission when followed by a second ethylene treatment during the cell separating stage (stage 2). The half-maximal effective concentration of ethylene to induce aging was around 0.3 microliter per liter; 10 microliters per liter was a saturating dose. CO2 reversal of ethylene action during stage 1 was incomplete and gave ambiguous results. CO2 (10%) reversed the effect of 10 microliters per liter ethylene but not 1 microliter per liter ethylene. The possibility that ethylene not only accelerated aging but was also a requirement for it was tested, and experimental evidence in favor of this idea was obtained. It was concluded that ethylene plays a dual role in the abscission of bean petiole explants: a phytogerontological effect and a cellulase-inducing effect. PMID:16657581
NASA Astrophysics Data System (ADS)
Conder, Joanna; Bouchet, Renaud; Trabesinger, Sigita; Marino, Cyril; Gubler, Lorenz; Villevieille, Claire
2017-06-01
In the on going quest towards lithium-battery chemistries beyond the lithium-ion technology, the lithium-sulfur system is emerging as one of the most promising candidates. The major outstanding challenge on the route to commercialization is controlling the so-called polysulfide shuttle, which is responsible for the poor cycling efficiency of the current generation of lithium-sulfur batteries. However, the mechanistic understanding of the reactions underlying the polysulfide shuttle is still incomplete. Here we report the direct observation of lithium polysulfides in a lithium-sulfur cell during operation by means of operando X-ray diffraction. We identify signatures of polysulfides adsorbed on the surface of a glass-fibre separator and monitor their evolution during cycling. Furthermore, we demonstrate that the adsorption of the polysulfides onto SiO2 can be harnessed for buffering the polysulfide redox shuttle. The use of fumed silica as an electrolyte additive therefore significantly improves the specific charge and Coulombic efficiency of lithium-sulfur batteries.
Characteristics of an axisymmetric sudden expansion flow
NASA Technical Reports Server (NTRS)
Stevenson, W. H.; Thompson, H. D.
1985-01-01
A two-color, two component Laser Doppler Velocimeter (LDV) system operating in forward scatter has been developed in order to make simultaneous measurements of the axial and radial velocity components in an axisymmetric sudden expansion flow with and without combustion. The LDV system includes Bragg cell modulators in the four beam paths to allow a net frequency shift of 5MHz in both the green and blue beams. This permits an unambiguous measurement of negative velocities and also eliminates incomplete signal bias. The green beam probe volume has a waist diameter of 0.200 mm and is approximately 2mm long. The blue beam has a probe volume waist of 0.250 mm and is approximately 1 mm long. The scattered light from the probe volume is separated so that approximately 80% of each color passes to its respective photomultiplier tube by using a dichroic filter. Narrow bandpass filters are used to further filter unwanted signals before they are detected. A schematic diagram of the LDV system is shown.
NASA Technical Reports Server (NTRS)
Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.
2003-01-01
Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 0 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Unrejoined chromosomal breaks and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, indicating the maximum number of chromosome domains traversed by a single Fe ion track. 2
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots.
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-11
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
Three-dimensional reconstruction of single-cell chromosome structure using recurrence plots
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Oda, Arisa; Ohta, Kunihiro; Aihara, Kazuyuki
2016-10-01
Single-cell analysis of the three-dimensional (3D) chromosome structure can reveal cell-to-cell variability in genome activities. Here, we propose to apply recurrence plots, a mathematical method of nonlinear time series analysis, to reconstruct the 3D chromosome structure of a single cell based on information of chromosomal contacts from genome-wide chromosome conformation capture (Hi-C) data. This recurrence plot-based reconstruction (RPR) method enables rapid reconstruction of a unique structure in single cells, even from incomplete Hi-C information.
A computer program for estimation from incomplete multinomial data
NASA Technical Reports Server (NTRS)
Credeur, K. R.
1978-01-01
Coding is given for maximum likelihood and Bayesian estimation of the vector p of multinomial cell probabilities from incomplete data. Also included is coding to calculate and approximate elements of the posterior mean and covariance matrices. The program is written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system (NOS) 1.1. The program requires approximately 44000 octal locations of core storage. A typical case requires from 72 seconds to 92 seconds on CYBER 175 depending on the value of the prior parameter.
Liu, Jun; Nikaido, Hiroshi
1999-01-01
Mycolic acids are a major constituent of the mycobacterial cell wall, and they form an effective permeability barrier to protect mycobacteria from antimicrobial agents. Although the chemical structures of mycolic acids are well established, little is known on their biosynthesis. We have isolated a mycolate-deficient mutant strain of Mycobacterium smegmatis mc2-155 by chemical mutagenesis followed by screening for increased sensitivity to novobiocin. This mutant also was hypersensitive to other hydrophobic compounds such as crystal violet, rifampicin, and erythromycin. Entry of hydrophobic probes into mutant cells occurred much more rapidly than that into the wild-type cells. HPLC and TLC analysis of fatty acid composition after saponification showed that the mutant failed to synthesize full-length mycolic acids. Instead, it accumulated a series of long-chain fatty acids, which were not detected in the wild-type strain. Analysis by 1H NMR, electrospray and electron impact mass spectroscopy, and permanganate cleavage of double bonds showed that these compounds corresponded to the incomplete meromycolate chain of mycolic acids, except for the presence of a β-hydroxyl group. This direct identification of meromycolates as precursors of mycolic acids provides a strong support for the previously proposed pathway for mycolic acid biosynthesis involving the separate synthesis of meromycolate chain and the α-branch of mycolic acids, followed by the joining of these two branches. PMID:10097154
Khorramirouz, Reza; Sabetkish, Shabnam; Akbarzadeh, Aram; Muhammadnejad, Ahad; Heidari, Reza; Kajbafzadeh, Abdol-Mohammad
2014-09-01
To determine the best method for decellularisation of aortic valve conduits (AVCs) that efficiently removes the cells while preserving the extracellular matrix (ECM) by examining the valvular and conduit sections separately. Sheep AVCs were decellularised by using three different protocols: detergent-based (1% SDS+1% SDC), detergent and enzyme-based (Triton+EDTA+RNase and DNase), and enzyme-based (Trypsin+RNase and DNase) methods. The efficacy of the decellularisation methods to completely remove the cells while preserving the ECM was evaluated by histological evaluation, scanning electron microscopy (SEM), hydroxyproline analysis, tensile test, and DAPI staining. The detergent-based method completely removed the cells and left the ECM and collagen content in the valve and conduit sections relatively well preserved. The detergent and enzyme-based protocol did not completely remove the cells, but left the collagen content in both sections well preserved. ECM deterioration was observed in the aortic valves (AVs), but the ultrastructure of the conduits was well preserved, with no media distortion. The enzyme-based protocol removed the cells relatively well; however, mild structural distortion and poor collagen content was observed in the AVs. Incomplete cell removal (better than that observed with the detergent and enzyme-based protocol), poor collagen preservation, and mild structural distortion were observed in conduits treated with the enzyme-based method. The results suggested that the detergent-based methods are the most effective protocols for cell removal and ECM preservation of AVCs. The AVCs treated with this detergent-based method may be excellent scaffolds for recellularisation. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Mulcahy, Michelle E.; Geoghegan, Joan A.; Monk, Ian R.; O'Keeffe, Kate M.; Walsh, Evelyn J.
2012-01-01
Staphylococcus aureus asymptomatically colonises the anterior nares, but the host and bacterial factors that facilitate colonisation remain incompletely understood. The S. aureus surface protein ClfB has been shown to mediate adherence to squamous epithelial cells in vitro and to promote nasal colonisation in both mice and humans. Here, we demonstrate that the squamous epithelial cell envelope protein loricrin represents the major target ligand for ClfB during S. aureus nasal colonisation. In vitro adherence assays indicated that bacteria expressing ClfB bound loricrin most likely by the “dock, lock and latch” mechanism. Using surface plasmon resonance we showed that ClfB bound cytokeratin 10 (K10), a structural protein of squamous epithelial cells, and loricrin with similar affinities that were in the low µM range. Loricrin is composed of three separate regions comprising GS-rich omega loops. Each loop was expressed separately and found to bind ClfB, However region 2 bound with highest affinity. To investigate if the specific interaction between ClfB and loricrin was sufficient to facilitate S. aureus nasal colonisation, we compared the ability of ClfB+ S. aureus to colonise the nares of wild-type and loricrin-deficient (Lor−/−) mice. In the absence of loricrin, S. aureus nasal colonisation was significantly impaired. Furthermore a ClfB− mutant colonised wild-type mice less efficiently than the parental ClfB+ strain whereas a similar lower level of colonisation was observed with both the parental strain and the ClfB− mutant in the Lor−/− mice. The ability of ClfB to support nasal colonisation by binding loricrin in vivo was confirmed by the ability of Lactococcus lactis expressing ClfB to be retained in the nares of WT mice but not in the Lor−/− mice. By combining in vitro biochemical analysis with animal model studies we have identified the squamous epithelial cell envelope protein loricrin as the target ligand for ClfB during nasal colonisation by S. aureus. PMID:23300445
The leading cause of death from cancer is not a primary tumor but is the metastases, or invasion of tumor cells into other locations in the body, that result from it. A complex and incompletely understood process, metastatic tumor formation is thought to require several steps in which tumor cells invade the tissue surrounding the primary tumor, enter local blood vessels,
Blakely, Collin M.; Pazarentzos, Evangelos; Olivas, Victor; Asthana, Saurabh; Yan, Jenny Jiacheng; Tan, Irena; Hrustanovic, Gorjan; Chan, Elton; Lin, Luping; Neel, Dana S.; Newton, William; Bobb, Kathryn; Fouts, Timothy; Meshulam, Jeffrey; Gubens, Matthew A.; Jablons, David M.; Johnson, Jeffrey R.; Bandyopadhyay, Sourav; Krogan, Nevan J.; Bivona, Trever G.
2015-01-01
Summary Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR-mutant lung adenocarcinoma we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses. PMID:25843712
Colavecchia, S B; Jolly, A; Fernández, B; Fontanals, A M; Fernández, E; Mundo, S L
2012-02-01
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.
Colavecchia, S.B.; Jolly, A.; Fernández, B.; Fontanals, A.M.; Fernández, E.; Mundo, S.L.
2012-01-01
The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis. PMID:22286534
Argonne Geothermal Geochemical Database v2.0
Harto, Christopher
2013-05-22
A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.
Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; ...
2015-03-11
The peroxydisulfate anion has long been used for the preparation of hexavalent americium (Am VI) from the normally stable Am III valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (Am V) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of Am VI. Incomplete oxidation would be expected to leave residual Am III, or to produce Am V in treated solutions. However, until recently, the use ofmore » peroxydisulfate as an Am V reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative Am V was prepared in an acidic solution and the UV/Vis extinction coefficients of the Am V 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of Am V for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.« less
[A rare tumor of the infratemporal fossa].
Bourhaleb, Z; Chekrine, T; Bouamama, I; Bouchbika, Z; Benchakroun, N; Jouhadi, H; Tawfiq, N; Sahraoui, S; Benider, A
2010-06-01
Giant cell tumors of bone (GCT) are usually benign and relatively rare. They have an aggressive behavior and an unpredictable prognosis. They occur mainly in the young adult, with a preferential localization in long bones. We report a giant cell infratemporal fossa tumor. A 55-year-old female patient consulted for swelling in the right cheek. Surgical excision was incomplete because of the subtemporal tumor localization. Histological assessment proved a GCT. Forty-five grays postoperative external radiotherapy was applied to the surgical site. The patient had local control at the 12-month follow-up. GCTs are seldom observed in the facial skeleton (2%). The recommended treatment is surgery. Radiotherapy can be indicated in case of incomplete or impossible surgical excision, or when surgery would be responsible for a major functional deficit. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Wu, Hao; Noé, Frank
2011-03-01
Diffusion processes are relevant for a variety of phenomena in the natural sciences, including diffusion of cells or biomolecules within cells, diffusion of molecules on a membrane or surface, and diffusion of a molecular conformation within a complex energy landscape. Many experimental tools exist now to track such diffusive motions in single cells or molecules, including high-resolution light microscopy, optical tweezers, fluorescence quenching, and Förster resonance energy transfer (FRET). Experimental observations are most often indirect and incomplete: (1) They do not directly reveal the potential or diffusion constants that govern the diffusion process, (2) they have limited time and space resolution, and (3) the highest-resolution experiments do not track the motion directly but rather probe it stochastically by recording single events, such as photons, whose properties depend on the state of the system under investigation. Here, we propose a general Bayesian framework to model diffusion processes with nonlinear drift based on incomplete observations as generated by various types of experiments. A maximum penalized likelihood estimator is given as well as a Gibbs sampling method that allows to estimate the trajectories that have caused the measurement, the nonlinear drift or potential function and the noise or diffusion matrices, as well as uncertainty estimates of these properties. The approach is illustrated on numerical simulations of FRET experiments where it is shown that trajectories, potentials, and diffusion constants can be efficiently and reliably estimated even in cases with little statistics or nonequilibrium measurement conditions.
Modeling Aggressive Medulloblastoma Using Human Induced Pluripotent Stem Cells
2017-09-01
and Myc in turn induces expression of AT1R creating a positive feedback loop and development of aggression tumor phenotype. The therapeutic...strengths are the relevant expertise of the applicant and his collaborating team, the novel paracrine positive feedback loop in EC-tumor cell...to as MYC-driven MB. The molecular mechanisms that drive MYC hyper -activation in MB remain incompletely understood. MB cells in actual tumors interact
Stable Isotope Quantitative N-Glycan Analysis by Liquid Separation Techniques and Mass Spectrometry.
Mittermayr, Stefan; Albrecht, Simone; Váradi, Csaba; Millán-Martín, Silvia; Bones, Jonathan
2017-01-01
Liquid phase separation analysis and subsequent quantitation remains a challenging task for protein-derived oligosaccharides due to their inherent structural complexity and diversity. Incomplete resolution or co-detection of multiple glycan species complicates peak area-based quantitation and associated statistical analysis when optical detection methods are used. The approach outlined herein describes the utilization of stable isotope variants of commonly used fluorescent tags that allow for mass-based glycan identification and relative quantitation following separation by liquid chromatography (LC) or capillary electrophoresis (CE). Comparability assessment of glycoprotein-derived oligosaccharides is performed by derivatization with commercially available isotope variants of 2-aminobenzoic acid or aniline and analysis by LC- and CE-mass spectrometry. Quantitative information is attained from the extracted ion chromatogram/electropherogram ratios generated from the light and heavy isotope clusters.
Reconstruction of incomplete cell paths through a 3D-2D level set segmentation
NASA Astrophysics Data System (ADS)
Hariri, Maia; Wan, Justin W. L.
2012-02-01
Segmentation of fluorescent cell images has been a popular technique for tracking live cells. One challenge of segmenting cells from fluorescence microscopy is that cells in fluorescent images frequently disappear. When the images are stacked together to form a 3D image volume, the disappearance of the cells leads to broken cell paths. In this paper, we present a segmentation method that can reconstruct incomplete cell paths. The key idea of this model is to perform 2D segmentation in a 3D framework. The 2D segmentation captures the cells that appear in the image slices while the 3D segmentation connects the broken cell paths. The formulation is similar to the Chan-Vese level set segmentation which detects edges by comparing the intensity value at each voxel with the mean intensity values inside and outside of the level set surface. Our model, however, performs the comparison on each 2D slice with the means calculated by the 2D projected contour. The resulting effect is to segment the cells on each image slice. Unlike segmentation on each image frame individually, these 2D contours together form the 3D level set function. By enforcing minimum mean curvature on the level set surface, our segmentation model is able to extend the cell contours right before (and after) the cell disappears (and reappears) into the gaps, eventually connecting the broken paths. We will present segmentation results of C2C12 cells in fluorescent images to illustrate the effectiveness of our model qualitatively and quantitatively by different numerical examples.
Disease networks. Uncovering disease-disease relationships through the incomplete interactome.
Menche, Jörg; Sharma, Amitabh; Kitsak, Maksim; Ghiassian, Susan Dina; Vidal, Marc; Loscalzo, Joseph; Barabási, Albert-László
2015-02-20
According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes. Copyright © 2015, American Association for the Advancement of Science.
RSR' pattern and the risk of mortality in men and women free of cardiovascular disease.
O'Neal, Wesley T; Qureshi, Waqas; Li, Yabing; Soliman, Elsayed Z
2015-01-01
This study included 6,398 participants (mean age 55 ± 0.34 years; 54% female; 49% white; 22% black; 24% Mexican; 4.3% other) free of clinical cardiovascular disease (CVD) and major ECG abnormalities. Cox regression was used to examine the association between the RSR' (incomplete right bundle branch block (RBBB) or right ventricular conduction delay) pattern and CVD and all-cause mortalities. The RSR' pattern was not associated with an increased risk of CVD (HR=1.10; 95%CI=0.63, 1.91) mortality or all-cause (HR=0.95; 95%CI=0.66, 1.35) mortality. The results were similar when the RSR' pattern was further separated into incomplete RBBB and right ventricular conduction delay. In conclusion, the RSR' pattern is a benign finding in older adults free of clinical CVD. Copyright © 2015 Elsevier Inc. All rights reserved.
Gene Expression Profiles of Sporadic Canine Hemangiosarcoma Are Uniquely Associated with Breed
Tamburini, Beth A.; Trapp, Susan; Phang, Tzu Lip; Schappa, Jill T.; Hunter, Lawrence E.; Modiano, Jaime F.
2009-01-01
The role an individual's genetic background plays on phenotype and biological behavior of sporadic tumors remains incompletely understood. We showed previously that lymphomas from Golden Retrievers harbor defined, recurrent chromosomal aberrations that occur less frequently in lymphomas from other dog breeds, suggesting spontaneous canine tumors provide suitable models to define how heritable traits influence cancer genotypes. Here, we report a complementary approach using gene expression profiling in a naturally occurring endothelial sarcoma of dogs (hemangiosarcoma). Naturally occurring hemangiosarcomas of Golden Retrievers clustered separately from those of non-Golden Retrievers, with contributions from transcription factors, survival factors, and from pro-inflammatory and angiogenic genes, and which were exclusively present in hemangiosarcoma and not in other tumors or normal cells (i.e., they were not due simply to variation in these genes among breeds). Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) was among genes preferentially enriched within known pathways derived from gene set enrichment analysis when characterizing tumors from Golden Retrievers versus other breeds. Heightened VEGFR1 expression in these tumors also was apparent at the protein level and targeted inhibition of VEGFR1 increased proliferation of hemangiosarcoma cells derived from tumors of Golden Retrievers, but not from other breeds. Our results suggest heritable factors mold gene expression phenotypes, and consequently biological behavior in sporadic, naturally occurring tumors. PMID:19461996
Masias, Emilse; Sanches, Paulo R S; Dupuy, Fernando G; Acuna, Leonardo; Bellomio, Augusto; Cilli, Eduardo; Saavedra, Lucila; Minahk, Carlos
2015-01-01
Two shorter peptides derived from enterocin CRL35, a 43-mer bacteriocin, were synthesized i.e. the N-terminal fragment spanning from residues 1 to 15, and a 28-mer fragment that represents the C-terminal of enterocin CRL35, the residues 16 to 43. The separate peptides showed no activity when combined. On one hand, the 28-mer peptide displayed an unpredicted antimicrobial activity. On the other, 15- mer peptide had no consistent anti-Listeria effect. The dissociation constants calculated from experimental data indicated that all peptides could bind at similar extent to the sensitive cells. However, transmembrane electrical potential was not dissipated to the same level by the different peptides; whereas the full-length and the C-terminal 28-mer fragment induced almost full dissipation, 15-mer fragment produced only a slow and incomplete effect. Furthermore, a different interaction of each peptide with membranes was demonstrated based on studies carried out with liposomes, which led us to conclude that activity was related to structure rather than to net positive charges. These results open up the possibility of designing new peptides based on the 28-mer fragment with enhanced activity, which would represent a promising approach for combating Listeria and other pathogens.
McCunniff, Peter T; Ramey, James S; Scott, Meredith L; Roach, Mary J; Vallier, Heather A; Moore, Timothy A; Kelly, Michael L
2017-10-01
Surgery for patients with gunshot wound spinal cord injury (GSCI) remains controversial. Few recent studies provide standardized follow-up and detailed functional outcomes. To our knowledge, the research we present in this study is unique in that we are the first to incorporate Functional Independence Measure (FIM) scores as an outcomes measure for neurologic recovery in patients with GSCI. Patients with GSCI were divided into surgical and nonsurgical groups. Neurologic function was measured according to the American Spinal Injury Association impairment scale and defined as either complete or incomplete injury. Outcomes were then analyzed separately for complete and incomplete GSCI groups during hospitalization and rehabilitation. Baseline admissions characteristics were similar between surgical and nonsurgical groups except for a greater median injury severity score in the nonsurgical group (34 vs. 27; P = 0.02). For complete GSCI, total length of stay (LOS) was significantly longer in the surgical group (52 vs. 42 days; P = 0.04), and no difference was observed in overall FIM scores (58 vs. 54; P = 0.7). For incomplete GSCI, rehabilitation LOS was longer (35 vs. 21; P = 0.02) and a trend towards longer total LOS was observed in the surgical group (40 vs. 32; P = 0.07). No difference was observed in overall FIM scores (61 vs. 62; P = 0.9). Surgery for patients with GSCI is associated with increased LOS and is not associated with improved FIM scores for patients with either complete or incomplete spinal cord injuries. Copyright © 2017 Elsevier Inc. All rights reserved.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis.
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-08-08
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-01-01
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases. PMID:28786947
Wilkins, Ruth; Flegal, Farrah; Knoll, Joan H.M.; Rogan, Peter K.
2017-01-01
Accurate digital image analysis of abnormal microscopic structures relies on high quality images and on minimizing the rates of false positive (FP) and negative objects in images. Cytogenetic biodosimetry detects dicentric chromosomes (DCs) that arise from exposure to ionizing radiation, and determines radiation dose received based on DC frequency. Improvements in automated DC recognition increase the accuracy of dose estimates by reclassifying FP DCs as monocentric chromosomes or chromosome fragments. We also present image segmentation methods to rank high quality digital metaphase images and eliminate suboptimal metaphase cells. A set of chromosome morphology segmentation methods selectively filtered out FP DCs arising primarily from sister chromatid separation, chromosome fragmentation, and cellular debris. This reduced FPs by an average of 55% and was highly specific to these abnormal structures (≥97.7%) in three samples. Additional filters selectively removed images with incomplete, highly overlapped, or missing metaphase cells, or with poor overall chromosome morphologies that increased FP rates. Image selection is optimized and FP DCs are minimized by combining multiple feature based segmentation filters and a novel image sorting procedure based on the known distribution of chromosome lengths. Applying the same image segmentation filtering procedures to both calibration and test samples reduced the average dose estimation error from 0.4 Gy to <0.2 Gy, obviating the need to first manually review these images. This reliable and scalable solution enables batch processing for multiple samples of unknown dose, and meets current requirements for triage radiation biodosimetry of high quality metaphase cell preparations. PMID:29026522
Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Warwick, Peter D.; Corum, Margo D.
2012-01-01
This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.
Schmidt, Alexander H.; Solloch, Ute V.; Baier, Daniel; Grathwohl, Alois; Hofmann, Jan; Pingel, Julia; Stahr, Andrea; Ehninger, Gerhard
2011-01-01
Large registries of potential unrelated stem cell donors have been established in order to enable stem cell transplantation for patients without HLA-identical related donors. Donor search is complicated by the fact that the stored HLA information of many registered donors is incomplete. We carried out a project that was aimed to improve chances of patients with ongoing donor searches to find an HLA-matched unrelated donor. For that purpose, we carried out additional donor center-initiated HLA-DRB1 typing of donors who were only typed for the HLA loci A and B so far and were potential matches for patients in need of a stem cell transplant. In total, 8,861 donors were contacted for donor center-initiated HLA-DRB1 typing within 1,089 donor searches. 12 of these donors have donated stem cells so far, 8 thereof for their respective target patients. We conclude that chances of patients with ongoing donor searches to find an HLA-matched unrelated donor can indeed be improved by donor-center initiated typing that is carried out in addition to the standard donor search process. Our results also raise questions regarding the appropriate use of incompletely typed donors within unrelated donor searches. PMID:21625451
Assessment of stem cell differentiation based on genome-wide expression profiles.
Godoy, Patricio; Schmidt-Heck, Wolfgang; Hellwig, Birte; Nell, Patrick; Feuerborn, David; Rahnenführer, Jörg; Kattler, Kathrin; Walter, Jörn; Blüthgen, Nils; Hengstler, Jan G
2018-07-05
In recent years, protocols have been established to differentiate stem and precursor cells into more mature cell types. However, progress in this field has been hampered by difficulties to assess the differentiation status of stem cell-derived cells in an unbiased manner. Here, we present an analysis pipeline based on published data and methods to quantify the degree of differentiation and to identify transcriptional control factors explaining differences from the intended target cells or tissues. The pipeline requires RNA-Seq or gene array data of the stem cell starting population, derived 'mature' cells and primary target cells or tissue. It consists of a principal component analysis to represent global expression changes and to identify possible problems of the dataset that require special attention, such as: batch effects; clustering techniques to identify gene groups with similar features; over-representation analysis to characterize biological motifs and transcriptional control factors of the identified gene clusters; and metagenes as well as gene regulatory networks for quantitative cell-type assessment and identification of influential transcription factors. Possibilities and limitations of the analysis pipeline are illustrated using the example of human embryonic stem cell and human induced pluripotent cells to generate 'hepatocyte-like cells'. The pipeline quantifies the degree of incomplete differentiation as well as remaining stemness and identifies unwanted features, such as colon- and fibroblast-associated gene clusters that are absent in real hepatocytes but typically induced by currently available differentiation protocols. Finally, transcription factors responsible for incomplete and unwanted differentiation are identified. The proposed method is widely applicable and allows an unbiased and quantitative assessment of stem cell-derived cells.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Author(s).
Lin, Lei; Liu, Xinyue; Zhang, Fuming; Chi, Lianli; Amster, I Jonathan; Leach, Franklyn E; Xia, Qiangwei; Linhardt, Robert J
2017-01-01
Most hyphenated analytical approaches that rely on liquid chromatography-MS require relatively long separation times, produce incomplete resolution of oligosaccharide mixtures, use eluents that are incompatible with electrospray ionization, or require oligosaccharide derivatization. Here we demonstrate the analysis of heparin oligosaccharides, including disaccharides, ultralow molecular weight heparin, and a low molecular weight heparin, using a novel electrokinetic pump-based CE-MS coupling eletrospray ion source. Reverse polarity CE separation and negative-mode electrospray ionization were optimized using a volatile methanolic ammonium acetate electrolyte and sheath fluid. The online CE hyphenated negative-ion electrospray ionization MS on an LTQ Orbitrap mass spectrometer was useful in disaccharide compositional analysis and bottom-up and top-down analysis of low molecular weight heparin. The application of this CE-MS method to ultralow molecular heparin suggests that a charge state distribution and the low level of sulfate group loss that is achieved make this method useful for online tandem MS analysis of heparins. Graphical abstract Most hyphenated analytical approaches that rely on liquid chromatography-MS require relatively long separation times, produce incomplete resolution of oligosaccharide mixtures, use eluents that are incompatible with electrospray ionization, or require oligosaccharide derivatization. Here we demonstrate the analysis of heparin oligosaccharides, including disaccharides, ultralow molecular weight heparin, and a low molecular weight heparin, using a novel electrokinetic pump-based CE-MS coupling eletrospray ion source. Reverse polarity CE separation and negative-mode electrospray ionization were optimized using a volatile methanolic ammonium acetate electrolyte and sheath fluid. The online CE hyphenated negative-ion electrospray ionization MS on an LTQ Orbitrap mass spectrometer was useful in disaccharide compositional analysis and bottom-up and top-down analysis of low molecular weight heparin. The application of this CE-MS method to ultralow molecular heparin suggests that a charge state distribution and the low level of sulfate group loss that is achieved make this method useful for online tandem MS analysis of heparins.
Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.
Fukuda, Kazuma; Yamada, Yoshiya; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji
2013-01-01
In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0-5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed. Copyright © 2012 Elsevier GmbH. All rights reserved.
Wafer screening device and methods for wafer screening
Sopori, Bhushan; Rupnowski, Przemyslaw
2014-07-15
Wafer breakage is a serious problem in the photovoltaic industry because a large fraction of wafers (between 5 and 10%) break during solar cell/module fabrication. The major cause of this excessive wafer breakage is that these wafers have residual microcracks--microcracks that were not completely etched. Additional propensity for breakage is caused by texture etching and incomplete edge grinding. To eliminate the cost of processing the wafers that break, it is best to remove them prior to cell fabrication. Some attempts have been made to develop optical techniques to detect microcracks. Unfortunately, it is very difficult to detect microcracks that are embedded within the roughness/texture of the wafers. Furthermore, even if such detection is successful, it is not straightforward to relate them to wafer breakage. We believe that the best way to isolate the wafers with fatal microcracks is to apply a stress to wafers--a stress that mimics the highest stress during cell/module processing. If a wafer survives this stress, it has a high probability of surviving without breakage during cell/module fabrication. Based on this, we have developed a high throughput, noncontact method for applying a predetermined stress to a wafer. The wafers are carried on a belt through a chamber that illuminates the wafer with an intense light of a predetermined intensity distribution that can be varied by changing the power to the light source. As the wafers move under the light source, each wafer undergoes a dynamic temperature profile that produces a preset elastic stress. If this stress exceeds the wafer strength, the wafer will break. The broken wafers are separated early, eliminating cost of processing into cell/module. We will describe details of the system and show comparison of breakage statistics with the breakage on a production line.
Kasparov, A A; Kasparova, Evg A; Fadeeva, L L; Subbot, A M; Borodina, N V; Kasparova, E A; Kobzova, M V; Musaeva, G M; Pavliuk, A S
2013-01-01
The article presents the results of a long-term research on development and clinical application of personalized cell therapy (PCT) for treatment of early postoperative (manifesting within the first 3 months after surgery) bullous keratopathy (BK). The method of intracameral PCT implies in vitro incubation of the patient's blood sample with poly(A:U) stimulator, separation of the serum with activated leukocytes, and injection of the final cell preparation into the anterior chamber. The fundamental part of the research was aimed at a detailed description of the cell preparation and investigation of its possible mechanisms of action. Cytokine and growth factor level in the cell preparation suggested that its high clinical efficacy might be due to its ability to improve regeneration of damaged corneal endothelium. The clinical study was conducted on a group of 52 patients with early BK. A significant effect (smoothing of the Descement's membrane folds, complete resorption of corneal edema, improvement of corneal transparency, reduction of corneal thickness and increase of visual acuity by 0.49 +/- 0.27) was achieved in 44.2% of patients, while partial effect was seen in 21.1% of patients. There was no clinical effect in 34.6% of patients. In those patients who developed significant or partial clinical effect after the PCT, many endotheliocytes appeared to have multiple nuclei (2 and more). In some patients polyploid nuclei persisted for 3-5 years after the treatment. Polyploidy results from incomplete mitosis which might be due to regenerative processes in the endothelium stimulated by the PCT. Obviously, high efficacy and relative simplicity of the method should promote its further clinical introduction.
Gainey, Melanie A; Aman, Joseph W; Feldman, Daniel E
2018-04-20
Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 day whisker deprivation drives rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing E-I conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, associated with an increase in low-threshold, voltage activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation were precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex. SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1-day) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex. Copyright © 2018 the authors.
Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies
Perin, Silvia; McCann, Conor J.; Borrelli, Osvaldo; De Coppi, Paolo; Thapar, Nikhil
2017-01-01
Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine. PMID:28503544
Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies.
Perin, Silvia; McCann, Conor J; Borrelli, Osvaldo; De Coppi, Paolo; Thapar, Nikhil
2017-01-01
Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine.
Barker, Brittany; Kerr, Thomas; Dong, Huiru; Wood, Evan; DeBeck, Kora
2017-03-01
While the link between educational attainment and future health and wellness is well understood, little investigation has considered the potential impacts of distinct forms of childhood maltreatment on high school completion. In the present study, the relationship between five categories of childhood maltreatment (physical, emotional, and sexual abuse, and physical and emotional neglect) and completion of high school education were examined using the Childhood Trauma Questionnaire (CTQ). From September 2005 to May 2013, data were collected for the At-Risk Youth Study (ARYS), a cohort of street-involved young people who use illicit drugs in Vancouver, Canada. We used logistic regression to examine the relationship between childhood maltreatment and high school completion, while controlling for a range of potential confounding variables. Specifically, five separate models for each category of maltreatment and two combined models were employed to examine the relative associations between, and cumulative impact of, different forms of childhood maltreatment and educational attainment. Among 974 young people, 737 (76%) reported not completing high school. In separate multivariable analyses physical abuse, emotional abuse, physical neglect, and emotional neglect remained positively and independently associated with an incomplete high school education. In a combined multivariable model with all forms of childhood maltreatment considered together, emotional abuse (adjusted odds ratio = 2.08; 95% confidence interval: 1.51-2.86) was the only form of maltreatment that remained significantly associated with an incomplete high school education. The cumulative impact assessment indicated a moderate dose-dependent trend where the greater the number of different forms of childhood maltreatment the greater the risk of not completing a high school education. These findings point to the need for trauma-informed interventions to improve educational attainment among vulnerable young people, as well as evidence-based prevention programmes, such as the Nurse-Family Partnership, aimed at supporting at-risk families before maltreatment occurs. © 2015 John Wiley & Sons Ltd.
Uptake of gentamicin by separated, viable renal tubules from rabbits.
Barza, M; Murray, T; Hamburger, R J
1980-04-01
The proximal renal tubules have a marked affinity for gentamicin; they also are the major site of nephrotoxicity caused by this drug. The uptake of radiolabeled gentamicin in separated, viable renal tubules prepared by enzymatic digestion of rabbit kidneys was studied. The preparations showed rapid initial uptake of gentamicin followed by continued slower uptake. Accumulation was not affected by pH, but was significantly inhibited by ouabain, dinitrophenol, anoxia, and hypothermia in the absence of evident cellular damage. At gentamicin concentrations of greater than 50 microgram/ml in the medium, there was competition for drug uptake. Gentamicin efflux in tubules that were taken from a medium containing antibiotic and placed into antibiotic-free fluid was slow and incomplete. From these data it appears that gentamicin uptake by separated renal tubules occurs by a process that requires metabolic energy; thereafter, the drug resides in a poorly exchangeable cellular pool.
Rare-gas-rich separates from carbonaceous chondrites
NASA Technical Reports Server (NTRS)
Reynolds, J. H.; Frick, U.; Neil, J. M.; Phinney, D. L.
1978-01-01
This paper describes an analysis of carbon-rich separates prepared by demineralization of colloidal fractions after disaggregation of bulk samples of the type C2 meteorites Murray, Murchison, and Cold Bokkeveld, as well as a methanol colloid extracted from acid-resistant residues of the Allende meteorite (type C3V) obtained by dissolution of most of the minerals in HCl and HF acids. The carbonaceous separates, or lAlates (a coined word designating colloids prepared sometimes before and sometimes after acid treatment), are characterized incompletely and with difficulty. A stepwise heating experiment on a Murray lAlate is discussed which revealed bimodal release of all noble gases, with similar patterns for Ar, Kr, and Xe. Chemical reactions are suggested as the likely mechanism for gas release. The results are shown to support the concept of a carbonaceous gas carrier uniformly present in meteorites of various types.
Fundamentals of affinity cell separations.
Zhang, Ye; Lyons, Veronica; Pappas, Dimitri
2018-03-01
Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disruption of iron homeostasis in mesothelial cells following talc pleurodesis
The mechanism for biological effect following particle exposure is incompletely understood. One postulate proposed to explain biological effect after particles is an altered iron homeostasis in the host. The fibro-inflammatory properties of particles are exploited therapeutically...
Wang, Ming-yi; Shao, Chen; Li, Jie; Yang, Ya-Chao; Wang, Shao-bo; Hao, Jun-ling; Wu, Chun-mei; Gao, Xiao-zhong; Shao, Shi-he
2015-07-01
The duodenal ulcer promoting gene (dupA), located in the plasticity region of Helicobacter pylori (H. pylori), is predicted to form a type IV secretory system (T4SS) with vir genes around dupA. In the study, we investigated the association between the dupA cluster status and the virulence of H. pylori in a littoral region of Northeast China. Two hundred and sixty-two H. pylori strains isolated from the chronic gastritis were examined to evaluate the dupA cluster status, cag PAI genes and vacA genotype using PCR and Western blot. Histopathologic evaluations of biopsy specimens were performed to analysis the association between the dupA cluster and the inflammatory response. IL-8 productions in gastric mucosa and from GES-1 cells co-cultured with H. pylori were measured, respectively, to analysis the association between the dupA cluster status and IL-8 production. We found that gastric mucosal inflammatory cell infiltration was significantly higher in patients with dupA-positive H. pylori, including H. pylori with complete dupA cluster (2.71 ± 0.79) and incomplete dupA cluster (2.09 ± 0.61) than in patients with dupA-negative strain (1.73 ± 0.60, p < 0.01), whereas no significant difference in the gastric mucosal atrophy was found according to the status of dupA cluster. Gastric mucosal IL-8 levels were higher in the complete dupA cluster group than in other groups (p < 0.01), and IL-8 production from GES-1 cells was also significantly higher in strains with a complete dupA cluster (1527.9 ± 180.0 pg/ml) than in those with an incomplete dupA cluster (1229.4 ± 75.3 pg/ml, p < 0.01) or those with dupA negative (1201.9 ± 92.3 pg/ml, p < 0.01). In conclusion, the complete dupA cluster in H. pylori is associated with inflammatory cell infiltration and IL-8 secretion, and H. pylori strain with a complete dupA cluster seems to be more virulent than other strains with the incomplete dupA cluster or dupA negative.
Long life, rechargeable nickel-zinc battery
NASA Technical Reports Server (NTRS)
Luksha, E.
1974-01-01
A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.
Ancelet, Lindsay; Kirman, Joanna
2012-02-01
Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.
Adjuvant electrochemotherapy for incompletely excised anal sac carcinoma in a dog.
Spugnini, Enrico P; Dotsinsky, Ivan; Mudrov, Nikolay; Bufalini, Massimiliano; Giannini, Giovanni; Citro, Gennaro; Feroce, Florinda; Baldi, Alfonso
2008-01-01
Canine anal sac gland carcinoma (ASGC) is a frequently described neoplasm that is highly aggressive and can frequently lead to metastatic spread. In this paper, we describe the successful treatment of an incompletely excised ASGC by using cisplatin selectively driven within the tumor cells by trains of biphasic pulses. The dog received two courses of electrochemotherapy 14 days apart. Neither systemic nor local toxicities were detected during the whole course of therapy. The dog is still in complete remission after 18 months. Electrochemotherapy is a safe and efficacious adjuvant therapy for ASGC and warrants further investigation in order to standardize its protocols.
Catalytic combustion with incompletely vaporized residual fuel
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1981-01-01
Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.
NASA Astrophysics Data System (ADS)
Gollub, J. P.; Rothstein, David; Losert, Wolfgang
1998-11-01
We report a systematic experimental study of transient mixing in a family of two-dimensional vortex flows driven by magneto-hydrodynamic forces. The forcing method allows a number of distinct cases to be investigated spanning the range from Lagrangian chaos to 2D turbulence. Both spatially ordered and spatially irregular forcing situations are considered. The basic methodology is to label half of the fluid layer with a fluorescent dye, and to measure the subsequent dye distribution with a precision CCD camera. Diagnostics are devised that allow us separately to monitor the stretching of fluid elements and development of fine striations, diffusive smearing, and the transport of material across the cell. Various statistical measures are used, including the probability distribution, the scalar gradient PDF, and the power spectrum. We find major differences between the time-periodic and nonperiodic cases. The former generally show evidence of "KAM surfaces" or barriers to transport, so that mixing, while substantial, is incomplete. After a modest number of cycles (typically 10-20), the flow structure usually reaches a slowly evolving limiting form whose amplitude then decays, as has been proposed in several theoretical studies.
Edwards, Taylor; Vaughn, Mercy; Rosen, Philip C.; Torres, Ma. Cristina Melendez; Karl, Alice E.; Culver, Melanie; Murphy, Robert W.
2015-01-01
The historically shifting ecotone between tropical deciduous forest and Sonoran desertscrub appears to be a boundary that fostered divergence between parapatric lineages of tortoises. The sharp genetic cline between the two lineages suggests that periods of isolation in temporary refugia due to Pleistocene climatic cycling influenced divergence. Despite incomplete reproductive isolation, the Sonoran and Sinaloan lineages of G. morafkai are on separate evolutionary trajectories.
Bisping, G; Lügering, N; Lütke-Brintrup, S; Pauels, H -G; Schürmann, G; Domschke, W; Kucharzik, T
2001-01-01
Intestinal epithelial cells seem to play a key role during IBD. The network of cellular interactions between epithelial cells and lamina propria mononuclear cells is still incompletely understood. In the following co-culture model we investigated the influence of intestinal epithelial cells on cytokine expression of T cytotoxic and T helper cells from patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMC) were purified by a Ficoll–Hypaque gradient followed by co-incubation with epithelial cells in multiwell cell culture insert plates in direct contact as well as separated by transwell filters. We used Caco-2 cells as well as freshly isolated colonic epithelia obtained from surgical specimens. Three-colour immunofluorescence flow cytometry was performed after collection, stimulation and staining of PBMC with anti-CD4, anti-CD8, anti-IFN-γ and anti-IL-4. Patients with IBD (Crohn's disease (CD), n = 12; ulcerative colitis (UC), n = 16) and healthy controls (n = 10) were included in the study. After 24 h of co-incubation with Caco-2 cells we found a significant increase of IFN-γ-producing CD8+ lymphocytes in patients with IBD. In contrast, healthy controls did not respond to the epithelial stimulus. No significant differences could be found between CD and UC or active and inactive disease. A significant increase of IFN-γ+/CD8+ lymphocytes in patients with UC was also seen after direct co-incubation with primary cultures of colonic crypt cells. The observed epithelial–lymphocyte interaction seems to be MHC I-restricted. No significant epithelial cell-mediated effects on cytokine expression were detected in the PBMC CD4+ subsets. Patients with IBD—even in an inactive state of disease—exert an increased capacity for IFN-γ induction in CD8+ lymphocytes mediated by intestinal epithelial cells. This mechanism may be important during chronic intestinal inflammation, as in the case of altered mucosal barrier function epithelial cells may become targets for IFN-γ-producing CD8+ lymphocytes. PMID:11167992
Separation of cancer cells from white blood cells by pinched flow fractionation.
Pødenphant, Marie; Ashley, Neil; Koprowska, Kamila; Mir, Kalim U; Zalkovskij, Maksim; Bilenberg, Brian; Bodmer, Walter; Kristensen, Anders; Marie, Rodolphe
2015-12-21
In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is challenged by the size overlap between cancer cells and the 10(6) times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells.
Zeidler-Erdely, Patti C; Calhoun, William J; Ameredes, Bill T; Clark, Melissa P; Deye, Gregory J; Baron, Paul; Jones, William; Blake, Terri; Castranova, Vincent
2006-01-01
Background Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber-exposed human macrophage cultures. In contrast, rat macrophages exhibited both incomplete phagocytosis of long fibers and length-dependent toxicity. The results of the human and rat cell studies suggest that incomplete engulfment may enhance cytotoxicity of fiber glass. However, the possibility should not be ruled out that differences between human versus rat macrophages other than cell diameter could account for differences in fiber effects. PMID:16569233
Luo, Tao; Fan, Lei; Zeng, Yixiao; Liu, Ya; Chen, Shuxun; Tan, Qiulin; Lam, Raymond H W; Sun, Dong
2018-05-04
Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.
Bone-Immune Cell Crosstalk: Bone Diseases
Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta
2015-01-01
Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma. PMID:26000310
Bone-immune cell crosstalk: bone diseases.
Mori, Giorgio; D'Amelio, Patrizia; Faccio, Roberta; Brunetti, Giacomina
2015-01-01
Bone diseases are associated with great morbidity; thus, the understanding of the mechanisms leading to their development represents a great challenge to improve bone health. Recent reports suggest that a large number of molecules produced by immune cells affect bone cell activity. However, the mechanisms are incompletely understood. This review aims to shed new lights into the mechanisms of bone diseases involving immune cells. In particular, we focused our attention on the major pathogenic mechanism underlying periodontal disease, psoriatic arthritis, postmenopausal osteoporosis, glucocorticoid-induced osteoporosis, metastatic solid tumors, and multiple myeloma.
Favale, Fabrizia; Messaoudi, Kahia; Varghese, Leila N; Boukour, Siham; Pecquet, Christian; Gryshkova, Vitalina; Defour, Jean Philippe; Albu, Roxana-Irina; Bluteau, Olivier; Ballerini, Paola; Leverger, Guy; Plo, Isabelle; Debili, Najet; Raslova, Hana; Favier, Remi; Constantinescu, Stefan N; Vainchenker, William
2016-12-29
The mechanisms behind the hereditary thrombocytosis induced by the thrombopoietin (THPO) receptor MPL P106L mutant remain unknown. A complete trafficking defect to the cell surface has been reported, suggesting either weak constitutive activity or nonconventional THPO-dependent mechanisms. Here, we report that the thrombocytosis phenotype induced by MPL P106L belongs to the paradoxical group, where low MPL levels on platelets and mature megakaryocytes (MKs) lead to high serum THPO levels, whereas weak but not absent MPL cell-surface localization in earlier MK progenitors allows response to THPO by signaling and amplification of the platelet lineage. MK progenitors from patients showed no spontaneous growth and responded to THPO, and MKs expressed MPL on their cell surface at low levels, whereas their platelets did not respond to THPO. Transduction of MPL P106L in CD34 + cells showed that this receptor was more efficiently localized at the cell surface on immature than on mature MKs, explaining a proliferative response to THPO of immature cells and a defect in THPO clearance in mature cells. In a retroviral mouse model performed in Mpl -/- mice, MPL P106L could induce a thrombocytosis phenotype with high circulating THPO levels. Furthermore, we could select THPO-dependent cell lines with more cell-surface MPL P106L localization that was detected by flow cytometry and [ 125 I]-THPO binding. Altogether, these results demonstrate that MPL P106L is a receptor with an incomplete defect in trafficking, which induces a low but not absent localization of the receptor on cell surface and a response to THPO in immature MK cells. © 2016 by The American Society of Hematology.
Type-1-cytokines synergize with oncogene inhibition to induce tumor growth arrest
Acquavella, Nicolas; Clever, David; Yu, Zhiya; Roelke-Parker, Melody; Palmer, Douglas C.; Xi, Liqiang; Pflicke, Holger; Ji, Yun; Gros, Alena; Hanada, Ken-ichi; Goldlust, Ian S.; Mehta, Gautam U.; Klebanoff, Christopher A.; Crompton, Joseph G.; Sukumar, Madhusudhanan; Morrow, James J.; Franco, Zulmarie; Gattinoni, Luca; Liu, Hui; Wang, Ena; Marincola, Francesco; Stroncek, David F.; Lee, Chyi-Chia R.; Raffeld, Mark; Bosenberg, Marcus W.; Roychoudhuri, Rahul; Restifo, Nicholas P.
2014-01-01
Both targeted inhibition of oncogenic driver mutations and immune-based therapies show efficacy in treatment of patients with metastatic cancer but responses can be either short-lived or incompletely effective. Oncogene inhibition can augment the efficacy of immune-based therapy but mechanisms by which these two interventions might cooperate are incompletely resolved. Using a novel transplantable BRAFV600E-mutant murine melanoma model (SB-3123), we explore potential mechanisms of synergy between the selective BRAFV600E inhibitor vemurafenib and adoptive cell transfer (ACT)-based immunotherapy. We found that vemurafenib cooperated with ACT to delay melanoma progression without significantly affecting tumor infiltration or effector function of endogenous or adoptively transferred CD8+ T cells as previously observed. Instead, we found that the T-cell cytokines IFNγ and TNFα synergized with vemurafenib to induce cell-cycle arrest of tumor cells in vitro. This combinatorial effect was recapitulated in human melanoma-derived cell lines and was restricted to cancers bearing a BRAFV600E-mutation. Molecular profiling of treated SB-3123 indicated that the provision of vemurafenib promoted the sensitization of SB-3123 to the anti-proliferative effects of T-cell effector cytokines. The unexpected finding that immune cytokines synergize with oncogene inhibitors to induce growth arrest have major implications for understanding cancer biology at the intersection of oncogenic and immune signaling and provides a basis for design of combinatorial therapeutic approaches for patients with metastatic cancer. PMID:25358764
Antibody-immobilized column for quick cell separation based on cell rolling.
Mahara, Atsushi; Yamaoka, Tetsuji
2010-01-01
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.
Olbrich, Marcus; Rieger, Melanie; Reinert, Siegmar; Alexander, Dorothea
2012-01-01
Human jaw periosteum tissue contains osteoprogenitors that have potential for tissue engineering applications in oral and maxillofacial surgeries. To isolate osteoprogenitor cells from heterogeneous cell populations, we used the specific mesenchymal stem cell antigen-1 (MSCA-1) antibody and compared two magnetic separation methods. We analyzed the obtained MSCA-1(+) and MSCA-1(-) fractions in terms of purity, yield of positive/negative cells and proliferative and mineralization potentials. The analysis of cell viability after separation revealed that the EasySep method yielded higher viability rates, whereas the flow cytometry results showed a higher purity for the MACS-separated cell fractions. The mineralization capacity of the osteogenic induced MSCA-1(+) cells compared with the MSCA-1(-) controls using MACS was 5-fold higher, whereas the same comparison after EasySep showed no significant differences between both fractions. By analyzing cell proliferation, we detected a significant difference between the proliferative potential of the osteogenic cells versus untreated cells after the MACS and EasySep separations. The differentiated cells after MACS separation adjusted their proliferative capacity, whereas the EasySep-separated cells failed to do so. The protein expression analysis showed small differences between the two separation methods. Our findings suggest that MACS is a more suitable separation method to isolate osteoprogenitors from the entire jaw periosteal cell population.
Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss
2017-10-01
protection against outer hair cell loss at the high frequency responsive region of the organ of Corti was observed. Importantly, these findings demonstrated...a high dose would be detrimental to hearing sensitivity or to outer hair cell viability. The 25 and 100 µM doses were similar to the 50 µM dose in...Completion of outer hair cell counts on the 200 µM study group revealed that this higher dose did not reduce OHC survival in the treated ear
21 CFR 864.9245 - Automated blood cell separator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...
21 CFR 864.9245 - Automated blood cell separator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...
21 CFR 864.9245 - Automated blood cell separator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...
21 CFR 864.9245 - Automated blood cell separator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...
21 CFR 864.9245 - Automated blood cell separator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle to...
Zhao, Wujun; Cheng, Rui; Lim, So Hyun; Miller, Joshua R; Zhang, Weizhong; Tang, Wei; Xie, Jin; Mao, Leidong
2017-06-27
This paper reports a biocompatible and label-free cell separation method using ferrofluids that can separate a variety of low-concentration cancer cells from cell culture lines (∼100 cancer cells per mL) from undiluted white blood cells, with a throughput of 1.2 mL h -1 and an average separation efficiency of 82.2%. The separation is based on the size difference of the cancer cells and white blood cells, and is conducted in a custom-made biocompatible ferrofluid that retains not only excellent short-term viabilities but also normal proliferations of 7 commonly used cancer cell lines. A microfluidic device is designed and optimized specifically to shorten the time of live cells' exposure to ferrofluids from hours to seconds, by eliminating time-consuming off-chip sample preparation and extraction steps and integrating them on-chip to achieve a one-step process. As a proof-of-concept demonstration, a ferrofluid with 0.26% volume fraction was used in this microfluidic device to separate spiked cancer cells from cell lines at a concentration of ∼100 cells per mL from white blood cells with a throughput of 1.2 mL h -1 . The separation efficiencies were 80 ± 3%, 81 ± 5%, 82 ± 5%, 82 ± 4%, and 86 ± 6% for A549 lung cancer, H1299 lung cancer, MCF-7 breast cancer, MDA-MB-231 breast cancer, and PC-3 prostate cancer cell lines, respectively. The separated cancer cells' purity was between 25.3% and 28.8%. In addition, the separated cancer cells from this strategy showed an average short-term viability of 94.4 ± 1.3%, and these separated cells were cultured and demonstrated normal proliferation to confluence even after the separation process. Owing to its excellent biocompatibility and label-free operation and its ability to recover low concentrations of cancer cells from white blood cells, this method could lead to a promising tool for rare cell separation.
Sequestration of mitochondrial iron by silica particles initiates a biological effect.
Summary Inhalation of particulate matter has presented a challenge to human health for thousands of years. The underlying mechanism for biological effect following particle exposure is incompletely understood. We tested the postulate that particle sequestration of cell and mit...
Cannabidiol Reduces Leukemic Cell Size - But Is It Important?
Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L
2017-01-01
The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro . However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent.
Cannabidiol Reduces Leukemic Cell Size – But Is It Important?
Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.
2017-01-01
The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent. PMID:28392768
Trade Study of Five In-Situ Propellant Production System for a Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Green, S. T.; Deffenbaugh, D. M.; Miller, M. A.
1999-01-01
One of the goals of NASA''s HEDS enterprise is to establish a long-term human presence on Mars at a fraction of the cost of employing today''s technology. The most direct method of reducing mission cost is to reduce the launch mass of the spacecraft. If the propellants for the return phase of the mission are produced on Mars, the total spacecraft mass could be reduced significantly. An interim goal is a Mars Sample Return (MSR) mission, which is proposed to demonstrate the feasibility of in-situ propellant production (ISPP). Five candidate ISPP systems for producing two fuels and oxygen from the Martian atmosphere are considered in this design trade-off study:(1) Zirconia cell with methanol synthesis, (2) Reverse water gas shift (RWGS) with water electrolysis and methanol synthesis, (3) Sabatier process for methane production with water electrolysis, (4) Sabatier process with water electrolysis and partial methane pyrolysis, and (5) Sabatier/RWGS combination with water electrolysis. These systems have been the subject of numerous previous analytical studies and laboratory demonstrations. In this investigation, the systems are objectively compared on the basis of thermochemical performance models using a commonly used chemical plant analysis software package. The realistic effects of incomplete chemical conversion and gas phase separator performance are included in these models. This study focuses on the chemical processing and product separation subsystems. The CO2 compression upstream of the chemical plane and the liquefaction/storage components are not included here.
Method for dissolving plutonium oxide with HI and separating plutonium
Vondra, Benedict L.; Tallent, Othar K.; Mailen, James C.
1979-01-01
PuO.sub.2 -containing solids, particularly residues from incomplete HNO.sub.3 dissolution of irradiated nuclear fuels, are dissolved in aqueous HI. The resulting solution is evaporated to dryness and the solids are dissolved in HNO.sub.3 for further chemical reprocessing. Alternatively, the HI solution containing dissolved Pu values, can be contacted with a cation exchange resin causing the Pu values to load the resin. The Pu values are selectively eluted from the resin with more concentrated HI.
Emission and absorption x-ray edges of Li
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callcott, T A; Arakawa, E T; Ederer, D L
1977-01-01
Measurements of the K X-ray absorption and emission edges of Li are reported. They were made with the same spectrometer at the NBS storage ring and serve to establish a 0.1 eV separation between the edges with no possibility of instrument calibration error. These results are compared with recent theories of Almbladh and Mahan describing the effects of incomplete phonon relaxation about the core hole. It is concluded that these theories give a satisfactory explanation of the data.
Pearling Instabilities of a Viscoelastic Thread
NASA Astrophysics Data System (ADS)
Deblais, A.; Velikov, K. P.; Bonn, D.
2018-05-01
Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.
Radon Spectrum and Its Application for Small Moving Target Detection
2015-04-01
cumulative distribution function) starts separating from the exact distribution only at the very end of the upper tail, normally in the 610−= faP or...131059.1 −×= PNtotal (15) According to (15), for instance, to determine the threshold for 610−= faP , a total 91059.1 × samples shall...is the incomplete Gamma function9 Suppose we require a false-alarm rate of 610−= faP for the original data, therefore after non-coherent multi
Dynamic acoustic field activated cell separation (DAFACS).
Skotis, G D; Cumming, D R S; Roberts, J N; Riehle, M O; Bernassau, A L
2015-02-07
Advances in diagnostics, cell and stem cell technologies drive the development of application-specific tools for cell and particle separation. Acoustic micro-particle separation offers a promising avenue for high-throughput, label-free, high recovery, cell and particle separation and isolation in regenerative medicine. Here, we demonstrate a novel approach utilizing a dynamic acoustic field that is capable of separating an arbitrary size range of cells. We first demonstrate the method for the separation of particles with different diameters between 6 and 45 μm and secondly particles of different densities in a heterogeneous medium. The dynamic acoustic field is then used to separate dorsal root ganglion cells. The shearless, label-free and low damage characteristics make this method of manipulation particularly suited for biological applications. Advantages of using a dynamic acoustic field for the separation of cells include its inherent safety and biocompatibility, the possibility to operate over large distances (centimetres), high purity (ratio of particle population, up to 100%), and high efficiency (ratio of separated particles over total number of particles to separate, up to 100%).
Differential electrophoretic separation of cells and its effect on cell viability
NASA Technical Reports Server (NTRS)
Leise, E. M.; Lesane, F.
1974-01-01
An electrophoretic separation method was applied to the separation of cells. To determine the efficiency of the separation, it was necessary to apply existing methodology and develop new methods to assess the characteristics and functions of the separated subpopulations. Through appropriate application of the widely used isoelectric focusing procedure, a reproducible separation method was developed. Cells accumulated at defined pH and 70-80% remained viable. The cells were suitable for further biologic, biochemical and immunologic studies.
Mizuno, A; Nakamura, Y; Takayasu, H; Saitoh, H
1993-05-01
Successful repair of a 8-month-old girl with polysplenia was reported. The cardiovascular anomalies were TAPVC (II b), incomplete ECD, interruption of inferior vena cava with hemiazygos continuation, bilateral superior vena cava, and left superior vena cava draining into the coronary sinus. Cardiopulmonary bypass was established with ascending aortic perfusion and caval cannulation. A left superior vena cava was directly cannulated after establishing partial bypass. In this case the left pulmonary vein drained into the right atrium near the orifice of the coronary sinus, so the atrial septal flap was made and sutured between the orifice of the left pulmonary vein and the coronary sinus in order to avoid late pulmonary vein obstruction. Then, atrium was separated by an intraatrial baffle which was sutured to the atrial septal flap. Recently, it becomes possible to surgical repair of polysplenia syndrome according to the advancements of the diagnostic methods, cardiopulmonary bypass, and the technique of the open heart surgery.
49 CFR 587.15 - Verification of aluminum honeycomb crush strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., the fringes (“e”) are at least half the length of one bonded cell wall (“d”) (in the ribbon direction... width is 150 mm (5.9 in) ±6 mm (0.24 in), and the thickness is 25 mm (1 in) ±2 mm (0.08 in). The walls of incomplete cells around the edge of the sample are trimmed as follows (See Figure 3). In the width...
Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40)
Basu, Amitabha; Kligman, Lorraine H; Samulewicz, Stefan J; Howe, Chin C
2001-01-01
Background SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them. Results In large (25 mm) wounds, SPARC-null mice showed a significant delay in healing as compared to wild-type mice (31 days versus 24 days). Granulation tissue formation and extracellular matrix protein production were delayed in small 6 mm SPARC-null wounds initially but were resolved by day 6. In in vitro wound-healing assays, while wild-type primary dermal fibroblasts showed essentially complete wound closure at 11 hours, wound closure of SPARC-null cells was incomplete even at 31 hours. Addition of purified SPARC restored the normal time course of wound closure. Treatment of SPARC-null cells with mitomycin C to analyze cell migration without cell proliferation showed that wound repair remained incomplete after 31 hours. Cell proliferation as measured by 3H-thymidine incorporation and collagen gel contraction by SPARC-null cells were not compromised. Conclusions A significant delay in healing large excisional wounds and setback in granulation tissue formation and extracellular matrix protein production in small wounds establish that SPARC is required for granulation tissue formation during normal repair of skin wounds in mice. A defect in wound closure in vitro indicates that SPARC regulates cell migration. We conclude that SPARC plays a role in wound repair by promoting fibroblast migration and thus granulation tissue formation. PMID:11532190
Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae
2012-01-01
Background Mammals are not able to restore lost appendages, while many amphibians are. One important question about epimorphic regeneration is related to the origin of the new tissues and whether they come from mature cells via dedifferentiation and/or from stem cells. Several studies in urodele amphibians (salamanders) indicate that, after limb or tail amputation, the multinucleated muscle fibres do dedifferentiate by fragmentation and proliferation, thereby contributing to the regenerate. In Xenopus laevis tadpoles, however, it was shown that muscle fibres do not contribute directly to the tail regenerate. We set out to study whether dedifferentiation was present during muscle regeneration of the tadpole limb and zebrafish larval tail, mainly by cell tracing and histological observations. Results Cell tracing and histological observations indicate that zebrafish tail muscle do not dedifferentiate during regeneration. Technical limitations did not allow us to trace tadpole limb cells, nevertheless we observed no signs of dedifferentiation histologically. However, ultrastructural and gene expression analysis of regenerating muscle in tadpole tail revealed an unexpected dedifferentiation phenotype. Further histological studies showed that dedifferentiating tail fibres did not enter the cell cycle and in vivo cell tracing revealed no evidences of muscle fibre fragmentation. In addition, our results indicate that this incomplete dedifferentiation was initiated by the retraction of muscle fibres. Conclusions Our results show that complete skeletal muscle dedifferentiation is less common than expected in lower vertebrates. In addition, the discovery of incomplete dedifferentiation in muscle fibres of the tadpole tail stresses the importance of coupling histological studies with in vivo cell tracing experiments to better understand the regenerative mechanisms. PMID:22369050
Lee, Hyun Jung; Lee, Young Jai; Ahn, Eun Hee; Kim, Hyeon Chul; Jung, Sang Hee; Chang, Sung Woon
2017-01-01
Objective To identify factors associated with massive postpartum bleeding in pregnancies complicated by incomplete placenta previa located on the posterior uterine wall. Methods A retrospective case-control study was performed. We identified 210 healthy singleton pregnancies with incomplete placenta previa located on the posterior uterine wall, who underwent elective or emergency cesarean section after 24 weeks of gestation between January 2006 and April 2016. The cases with intraoperative blood loss (≥2,000 mL) or transfusion of packed red blood cells (≥4) or uterine artery embolization or hysterectomy were defined as massive bleeding. Results Twenty-three women experienced postpartum profuse bleeding (11.0%). After multivariable analysis, 4 variables were associated with massive postpartum hemorrhage (PPH): experience of 2 or more prior uterine curettage (adjusted odds ratio [aOR], 4.47; 95% confidence interval [CI], 1.29 to 15.48; P=0.018), short cervical length before delivery (<2.0 cm) (aOR, 7.13; 95% CI, 1.01 to 50.25; P=0.049), fetal non-cephalic presentation (aOR, 12.48; 95% CI, 1.29 to 121.24; P=0.030), and uteroplacental hypervascularity (aOR, 6.23; 95% CI, 2.30 to 8.83; P=0.001). Conclusion This is the first study of cases with incomplete placenta previa located on the posterior uterine wall, which were complicated by massive PPH. Our findings might be helpful to guide obstetric management and provide useful information for prediction of massive PPH in pregnancies with incomplete placenta previa located on the posterior uterine wall. PMID:29184859
Lee, Hyun Jung; Lee, Young Jai; Ahn, Eun Hee; Kim, Hyeon Chul; Jung, Sang Hee; Chang, Sung Woon; Lee, Ji Yeon
2017-11-01
To identify factors associated with massive postpartum bleeding in pregnancies complicated by incomplete placenta previa located on the posterior uterine wall. A retrospective case-control study was performed. We identified 210 healthy singleton pregnancies with incomplete placenta previa located on the posterior uterine wall, who underwent elective or emergency cesarean section after 24 weeks of gestation between January 2006 and April 2016. The cases with intraoperative blood loss (≥2,000 mL) or transfusion of packed red blood cells (≥4) or uterine artery embolization or hysterectomy were defined as massive bleeding. Twenty-three women experienced postpartum profuse bleeding (11.0%). After multivariable analysis, 4 variables were associated with massive postpartum hemorrhage (PPH): experience of 2 or more prior uterine curettage (adjusted odds ratio [aOR], 4.47; 95% confidence interval [CI], 1.29 to 15.48; P =0.018), short cervical length before delivery (<2.0 cm) (aOR, 7.13; 95% CI, 1.01 to 50.25; P =0.049), fetal non-cephalic presentation (aOR, 12.48; 95% CI, 1.29 to 121.24; P =0.030), and uteroplacental hypervascularity (aOR, 6.23; 95% CI, 2.30 to 8.83; P =0.001). This is the first study of cases with incomplete placenta previa located on the posterior uterine wall, which were complicated by massive PPH. Our findings might be helpful to guide obstetric management and provide useful information for prediction of massive PPH in pregnancies with incomplete placenta previa located on the posterior uterine wall.
Tamburini, Beth A; Phang, Tzu L; Fosmire, Susan P; Scott, Milcah C; Trapp, Susan C; Duckett, Megan M; Robinson, Sally R; Slansky, Jill E; Sharkey, Leslie C; Cutter, Gary R; Wojcieszyn, John W; Bellgrau, Donald; Gemmill, Robert M; Hunter, Lawrence E; Modiano, Jaime F
2010-11-09
The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma). The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells which give rise to hemangiosarcoma modulate their microenvironment to promote tumor growth and survival. We propose that the frequent occurrence of canine hemangiosarcoma in defined dog breeds, as well as its similarity to homologous tumors in humans, offers unique models to solve the dilemma of stem cell plasticity and whether angiogenic endothelial cells and hematopoietic cells originate from a single cell or from distinct progenitor cells.
2010-01-01
Background The etiology of hemangiosarcoma remains incompletely understood. Its common occurrence in dogs suggests predisposing factors favor its development in this species. These factors could represent a constellation of heritable characteristics that promote transformation events and/or facilitate the establishment of a microenvironment that is conducive for survival of malignant blood vessel-forming cells. The hypothesis for this study was that characteristic molecular features distinguish hemangiosarcoma from non-malignant endothelial cells, and that such features are informative for the etiology of this disease. Methods We first investigated mutations of VHL and Ras family genes that might drive hemangiosarcoma by sequencing tumor DNA and mRNA (cDNA). Protein expression was examined using immunostaining. Next, we evaluated genome-wide gene expression profiling using the Affymetrix Canine 2.0 platform as a global approach to test the hypothesis. Data were evaluated using routine bioinformatics and validation was done using quantitative real time RT-PCR. Results Each of 10 tumor and four non-tumor samples analyzed had wild type sequences for these genes. At the genome wide level, hemangiosarcoma cells clustered separately from non-malignant endothelial cells based on a robust signature that included genes involved in inflammation, angiogenesis, adhesion, invasion, metabolism, cell cycle, signaling, and patterning. This signature did not simply reflect a cancer-associated angiogenic phenotype, as it also distinguished hemangiosarcoma from non-endothelial, moderately to highly angiogenic bone marrow-derived tumors (lymphoma, leukemia, osteosarcoma). Conclusions The data show that inflammation and angiogenesis are important processes in the pathogenesis of vascular tumors, but a definitive ontogeny of the cells that give rise to these tumors remains to be established. The data do not yet distinguish whether functional or ontogenetic plasticity creates this phenotype, although they suggest that cells which give rise to hemangiosarcoma modulate their microenvironment to promote tumor growth and survival. We propose that the frequent occurrence of canine hemangiosarcoma in defined dog breeds, as well as its similarity to homologous tumors in humans, offers unique models to solve the dilemma of stem cell plasticity and whether angiogenic endothelial cells and hematopoietic cells originate from a single cell or from distinct progenitor cells. PMID:21062482
Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes*
Karaivanov, Alexander; Townsend, Robert M.
2014-01-01
We formulate and solve a range of dynamic models of constrained credit/insurance that allow for moral hazard and limited commitment. We compare them to full insurance and exogenously incomplete financial regimes (autarky, saving only, borrowing and lending in a single asset). We develop computational methods based on mechanism design, linear programming, and maximum likelihood to estimate, compare, and statistically test these alternative dynamic models with financial/information constraints. Our methods can use both cross-sectional and panel data and allow for measurement error and unobserved heterogeneity. We estimate the models using data on Thai households running small businesses from two separate samples. We find that in the rural sample, the exogenously incomplete saving only and borrowing regimes provide the best fit using data on consumption, business assets, investment, and income. Family and other networks help consumption smoothing there, as in a moral hazard constrained regime. In contrast, in urban areas, we find mechanism design financial/information regimes that are decidedly less constrained, with the moral hazard model fitting best combined business and consumption data. We perform numerous robustness checks in both the Thai data and in Monte Carlo simulations and compare our maximum likelihood criterion with results from other metrics and data not used in the estimation. A prototypical counterfactual policy evaluation exercise using the estimation results is also featured. PMID:25246710
Emerging environmental technologies and environmental technology policy
NASA Astrophysics Data System (ADS)
Clarke, Leon Edward
This dissertation explores the role and design of environmental technology policy when environmental innovation is embodied in emerging environmental technologies such as photovoltaic cells or fuel cells. The dissertation consists of three individual studies, all of which use a simplified, general model industry between an emerging environmental technology and an entrenched, more-polluting technology. It clarifies the situations in which environmental technology policy can achieve high welfare and those in which it cannot; and it separates the possible situations an emerging environmental technology might face into four scenarios, each with its own technology policy recommendations. The second study attempts to clarify which of two factors is having a larger limiting effect on private investment in photovoltaics: the failure to internalize the environmental costs of fossil fuel electricity generation or a broad set of innovation market failures that apply to innovation irrespective of environmental concerns. The study indicates that innovation market failures are probably having a significantly larger impact than incomplete internalization. The third study explores the effectiveness of adoption subsidies at encouraging private-sector innovation. The conclusion is that adoption subsidies probably have only a limited effect on long-term, private-sector research. Two important general conclusions of the dissertation are (1) that optimal technology policy should begin with technology-push measures and end with demand-pull measures; and (2) that the technological response to internalization instruments, such as emissions taxes, may be highly nonlinear.
Effects of Microwave Radiation on Oil Recovery
NASA Astrophysics Data System (ADS)
Esmaeili, Abdollah
2011-12-01
A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.
Cell separation using tilted-angle standing surface acoustic waves
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-01-01
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150
Cell separation using tilted-angle standing surface acoustic waves.
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-09-09
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.
Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il
2011-03-21
Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korzeniowski, S.; Reinfuss, M.; Skolyszewski, J.
1985-03-01
The retrospective analysis of 57 patients with cancer of the maxillary antrum irradiated after incomplete surgery was performed is described. The majority of patients had very advanced disease (54% T4 tumors). In 18 patients partial resection of maxillary antrum was performed: 39 patients underwent total maxillectomy. In 35 patients macroscopic residual tumor (MRT) was present after surgery. All patients were irradiated postoperatively with /sup 60/Co teletherapy and received a dose of 60 Gy in 20-30 fractions over 4-6 weeks. Five year symptom-free survival in the whole group was 35%. An analysis of pattern of relapses indicates that histology should bemore » regarded as an important factor of management. In keratinizing squamous cell cancer, local control remains the main problem. In patients with nonkeratinizing squamous cell cancer, both local and regional control is important and elective irradiation of neck nodes may be of value. In patients with undifferentiated cancer, distant metastases appear to have the greatest impact on survival.« less
Duinkerken, Charlotte W; Lohuis, Peter J F M; Crijns, Marianne B; Navran, Arash; Haas, Rick L M; Hamming-Vrieze, Olga; Klop, W Martin C; van den Brekel, Michiel W M; Al-Mamgani, Abrahim
Surgery is the golden standard for treating basal cell carcinomas. In case of positive tumor margins or recurrent disease, postoperative adjuvant or salvaging therapy is suggested to achieve good local control. To retrospectively report on local control and toxicity of postoperative radiotherapy by means of orthovoltage X-rays for residual or recurrent basal cell carcinoma after surgery in the head and neck area. Sixty-six surgically resected residual or recurrent basal cell carcinomas of the head and neck region were irradiated postoperatively by means of orthovoltage X-rays at the Netherlands Cancer Institute between January 2000 and February 2015. After a median follow-up duration of 30.5 months, only 5 recurrences were reported. The 5-year local control rates at 1, 3, and 5 years were 100%, 87%, and 87%, respectively. The 5-year local control rate was 92% for immediate postoperative radiotherapy of incompletely resected basal cell carcinomas, 90% for recurrences after 1 previously performed excision, and 71% for multiple recurrences, namely, a history of more than 1 excision ( P = .437). Acute toxicity healed spontaneously within 3 months. Late toxicities were mild. Radiotherapy by means of orthovoltage X-ray is an excellent alternative for re-excision in case of incompletely resected or recurrent basal cell carcinomas that are at risk of serious functional and cosmetic impairments after re-excision, with a 5-year local control rate of 87% and a low toxicity profile.
Borsutzky, Stefan; Fiorelli, Valeria; Ebensen, Thomas; Tripiciano, Antonella; Rharbaoui, Faiza; Scoglio, Arianna; Link, Claudia; Nappi, Filomena; Morr, Michael; Buttó, Stefano; Cafaro, Aurelio; Mühlradt, Peter F; Ensoli, Barbara; Guzmán, Carlos A
2003-06-01
A major requirement for HIV/AIDS research is the development of a mucosal vaccine that stimulates humoral and cell-mediated immune responses at systemic and mucosal levels, thereby blocking virus replication at the entry port. Thus, a vaccine prototype based on biologically active HIV-1 Tat protein as antigen and the synthetic lipopeptide, macrophage-activating lipopeptide-2 (MALP-2), asa mucosal adjuvant was developed. Intranasal administration to mice stimulated systemic and mucosal anti-Tat antibody responses, and Tat-specific T cell responses, that were more efficient than those observed after i.p. immunization with Tat plus incomplete Freund's adjuvant. Major linear B cell epitopes mapped within aa 1-20 and 46-60, whereas T cell epitopes were identified within aa 36-50 and 56-70. These epitopes have also been described in vaccinated primates and in HIV-1-infected individuals with better prognosis. Analysis of the anti-Tat IgG isotypes in serum, and the cytokine profile of spleen cells indicated that a dominant Th1 helper response was stimulated by Tat plus MALP-2, as opposed to the Th2 response observed with Tat plus incomplete Freund's adjuvant. Tat-specific IFN-gamma-producing cells were significantly increased only in response to Tat plus MALP-2. These data suggest that Malp-2 may represent an optimal mucosal adjuvant for candidate HIV vaccines based on Tat alone or in combination with other HIV antigens.
Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells
Osawa, T; Davies, D; Hartley, J A
2011-01-01
DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285
NASA Astrophysics Data System (ADS)
Kim, Youngho; Hong, Su; Lee, Sang Ho; Lee, Kangsun; Yun, Seok; Kang, Yuri; Paek, Kyeong-Kap; Ju, Byeong-Kwon; Kim, Byungkyu
2007-07-01
To reduce the problem of cell loss due to adhesion, one of the basic phenomena in microchannel, we proposed the droplet-based magnetically activated cell separator (DMACS). Based on the platform of the DMACS—which consists of permanent magnets, a coverslip with a circle-shaped boundary, and an injection tube—we could collect magnetically (CD45)-labeled (positive) cells with high purity and minimize cell loss due to adhesion. To compare separation efficiency between the MACS and the DMACS, the total number of cells before and after separation with both the separators was counted by flow cytometry. We could find that the number (3241/59940) of cells lost in the DMACS is much less than that (22360/59940) in the MACS while the efficiency of cell separation in the DMACS (96.07%) is almost the same as that in the MACS (96.72%). Practically, with fluorescent images, it was visually confirmed that the statistical data are reliable. From the viability test by using Hoechst 33 342, it was also demonstrated that there was no cell damage on a gas-liquid interface. Conclusively, DMACS will be a powerful tool to separate rare cells and applicable as a separator, key component of lab-on-a-chip.
Merrill, Matthew D.; Covault, Jacob A.; Craddock, William H.; Slucher, Ernie R.; Warwick, Peter D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Cahan, Steven M.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2012-01-01
The 2007 Energy Independence and Security Act (Public Law 110-140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used for the national CO2 assessment is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rock within the Hanna, Laramie, and Shirley Basins of Wyoming. It focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU, such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included herein will be employed, as specified in the methodology, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data in a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.
Separation of cells from the rat anterior pituitary gland
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.; Hatfield, J. Michael
1983-01-01
Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.
Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji
2018-06-09
Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis.
Alazzam, Anas; Mathew, Bobby; Alhammadi, Falah
2017-03-01
We describe the design, microfabrication, and testing of a microfluidic device for the separation of cancer cells based on dielectrophoresis. Cancer cells, specifically green fluorescent protein-labeled MDA-MB-231, are successfully separated from a heterogeneous mixture of the same and normal blood cells. MDA-MB-231 cancer cells are separated with an accuracy that enables precise detection and counting of circulating tumor cells present among normal blood cells. The separation is performed using a set of planar interdigitated transducer electrodes that are deposited on the surface of a glass wafer and slightly protrude into the separation microchannel at one side. The device includes two parts, namely, a glass wafer and polydimethylsiloxane element. The device is fabricated using standard microfabrication techniques. All experiments are conducted with low conductivity sucrose-dextrose isotonic medium. The variation in response between MDA-MB-231 cancer cells and normal cells to a certain band of alternating-current frequencies is used for continuous separation of cells. The fabrication of the microfluidic device, preparation of cells and medium, and flow conditions are detailed. The proposed microdevice can be used to detect and separate malignant cells from heterogeneous mixture of cells for the purpose of early screening for cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches
Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.
2016-01-01
The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors. PMID:26876789
Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches
NASA Astrophysics Data System (ADS)
Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.
2016-02-01
The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors.
Suto, J; Wakayama, T; Imamura, K; Goto, S; Fukuta, K
1995-08-01
The semidominant gene Dh (Dominant hemimelia) induces skeletal and visceral abnormalities of various degrees and failure of the spleen in mice. The homozygous individual (Dh/Dh) seems to be lethal. The present experiment was designed to investigate the ability Dh cells to form a spleen and the genesis of the hind limb malformations by Dh/Dh and Dh/+ cells in chimeric mice. The Dh/Dh and Dh/+ embryos were produced in the F2 progeny of a cross between inbred strains of Dh/+ and DDD mice. They were aggregated with C3H/He or C57BL/6 embryos to make chimeras. Identification of Dh/Dh or Dh/+ embryos was carried out by Pep-3, and chimerism was analyzed by Gpi-1. Of 25 chimeras carrying the Dh gene, four mice formed a small spleen, two mice had a vestigial spleen, and the others no spleen. The tissues of the incompletely developed spleens were normal histologically and Dh cells were involved in the tissues of the spleen. In the chimeric mice, hindlimb malformation by the Dh gene was reduced in severity and the lethality of the homozygote (Dh/Dh) was rescued.
Histology of 8 atypical femoral fractures: remodeling but no healing.
Schilcher, Jörg; Sandberg, Olof; Isaksson, Hanna; Aspenberg, Per
2014-06-01
The pathophysiology behind bisphosphonate-associated atypical femoral fractures remains unclear. Histological findings at the fracture site itself may provide clues. Between 2008 and 2013, we collected bone biopsies including the fracture line from 4 complete and 4 incomplete atypical femoral fractures. 7 female patients reported continuous bisphosphonate use for 10 years on average. 1 patient was a man who was not using bisphosphonates. Dual-energy X-ray absorptiometry of the hip and spine showed no osteoporosis in 6 cases. The bone biopsies were evaluated by micro-computed tomography, infrared spectroscopy, and qualitative histology. Incomplete fractures involved the whole cortical thickness and showed a continuous gap with a mean width of 180 µm. The gap contained amorphous material and was devoid of living cells. In contrast, the adjacent bone contained living cells, including active osteoclasts. The fracture surfaces sometimes consisted of woven bone, which may have formed in localized defects caused by surface fragmentation or resorption. Atypical femoral fractures show signs of attempted healing at the fracture site. The narrow width of the fracture gap and its necrotic contents are compatible with the idea that micromotion prevents healing because it leads to strains within the fracture gap that preclude cell survival.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J; Qi, H; Wu, S
Purpose: In transmitted X-ray tomography imaging, projections are sometimes incomplete due to a variety of reasons, such as geometry inaccuracy, defective detector cells, etc. To address this issue, we have derived a direct consistency condition based on John’s Equation, and proposed a method to effectively restore incomplete projections based on this consistency condition. Methods: Through parameter substitutions, we have derived a direct consistency condition equation from John’s equation, in which the left side is only projection derivative of view and the right side is projection derivative of other geometrical parameters. Based on this consistency condition, a projection restoration method ismore » proposed, which includes five steps: 1) Forward projecting reconstructed image and using linear interpolation to estimate the incomplete projections as the initial result; 2) Performing Fourier transform on the projections; 3) Restoring the incomplete frequency data using the consistency condition equation; 4) Performing inverse Fourier transform; 5) Repeat step 2)∼4) until our criteria is met to terminate the iteration. Results: A beam-blocking-based scatter correction case and a bad-pixel correction case were used to demonstrate the efficacy and robustness of our restoration method. The mean absolute error (MAE), signal noise ratio (SNR) and mean square error (MSE) were employed as our evaluation metrics of the reconstructed images. For the scatter correction case, the MAE is reduced from 63.3% to 71.7% with 4 iterations. Compared with the existing Patch’s method, the MAE of our method is further reduced by 8.72%. For the bad-pixel case, the SNR of the reconstructed image by our method is increased from 13.49% to 21.48%, with the MSE being decreased by 45.95%, compared with linear interpolation method. Conclusion: Our studies have demonstrated that our restoration method based on the new consistency condition could effectively restore the incomplete projections, especially for their high frequency component.« less
Functional wettability in carbonate reservoirs
Brady, Patrick V.; Thyne, Geoffrey
2016-10-11
Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less
The leading cause of death from cancer is not a primary tumor but is the metastases, or invasion of tumor cells into other locations in the body, that result from it. A complex and incompletely understood process, metastatic tumor formation is thought to require several steps in which tumor cells invade the tissue surrounding the primary tumor, enter local blood vessels, navigate the circulation, exit the vasculature, and colonize a new site. Tumor cells do not, however, operate independently, and the role that the immune system plays in this metastatic process is beginning to be appreciated.
Alpert, Michael D.; Heyer, Lisa N.; Williams, David E. J.; Harvey, Jackson D.; Greenough, Thomas; Allhorn, Maria
2012-01-01
The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4+ T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies—frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays. PMID:22933282
Engsig, Frederik N; Zangerle, Robert; Katsarou, Olga; Dabis, Francois; Reiss, Peter; Gill, John; Porter, Kholoud; Sabin, Caroline; Riordan, Andrew; Fätkenheuer, Gerd; Gutiérrez, Félix; Raffi, Francois; Kirk, Ole; Mary-Krause, Murielle; Stephan, Christoph; de Olalla, Patricia Garcia; Guest, Jodie; Samji, Hasina; Castagna, Antonella; d'Arminio Monforte, Antonella; Skaletz-Rorowski, Adriane; Ramos, Jose; Lapadula, Giuseppe; Mussini, Cristina; Force, Lluís; Meyer, Laurence; Lampe, Fiona; Boufassa, Faroudy; Bucher, Heiner C; De Wit, Stéphane; Burkholder, Greer A; Teira, Ramon; Justice, Amy C; Sterling, Tim R; M Crane, Heidi; Gerstoft, Jan; Grarup, Jesper; May, Margaret; Chêne, Geneviève; Ingle, Suzanne M; Sterne, Jonathan; Obel, Niels
2014-05-01
Some human immunodeficiency virus (HIV)-infected individuals initiating combination antiretroviral therapy (cART) with low CD4 counts achieve viral suppression but not CD4 cell recovery. We aimed to identify (1) risk factors for failure to achieve CD4 count >200 cells/µL after 3 years of sustained viral suppression and (2) the association of the achieved CD4 count with subsequent mortality. We included treated HIV-infected adults from 2 large international HIV cohorts, who had viral suppression (≤500 HIV type 1 RNA copies/mL) for >3 years with CD4 count ≤200 cells/µL at start of the suppressed period. Logistic regression was used to identify risk factors for incomplete CD4 recovery (≤200 cells/µL) and Cox regression to identify associations with mortality. Of 5550 eligible individuals, 835 (15%) did not reach a CD4 count >200 cells/µL after 3 years of suppression. Increasing age, lower initial CD4 count, male heterosexual and injection drug use transmission, cART initiation after 1998, and longer time from initiation of cART to start of the virally suppressed period were risk factors for not achieving a CD4 count >200 cells/µL. Individuals with CD4 ≤200 cells/µL after 3 years of viral suppression had substantially increased mortality (adjusted hazard ratio, 2.60; 95% confidence interval, 1.86-3.61) compared with those who achieved CD4 count >200 cells/µL. The increased mortality was seen across different patient groups and for all causes of death. Virally suppressed HIV-positive individuals on cART who do not achieve a CD4 count >200 cells/µL have substantially increased long-term mortality.
The structure of the perivascular compartment in the old canine brain: a case study.
Criswell, Theodore P; Sharp, Matthew MacGregor; Dobson, Howard; Finucane, Ciara; Weller, Roy O; Verma, Ajay; Carare, Roxana O
2017-11-15
Dilatation of periarteriolar spaces in MRI of the ageing human brains occurs in white matter (WM), basal ganglia and midbrain but not in cerebral cortex. Perivenous collagenous occurs in periventricular but not in subcortical WM.Here we test the hypotheses that (a) the capacity for dilatation of periarteriolar spaces correlates with the anatomical distribution of leptomeningeal cells coating intracerebral arteries and (b) the regional development of perivenous collagenous in the WM correlates with the population of intramural cells in the walls of veins.The anatomical distribution of leptomeningeal and intramural cells related to cerebral blood vessels is best documented by electron microscopy, requiring perfusion-fixed tissue not available in human material. We therefore analysed perfusion-fixed brain from a 12-year-old Beagle dog as the canine brain represents the anatomical arrangement in the human brain. Results showed regional variation in the arrangement of leptomeningeal cells around blood vessels. Arterioles are enveloped by one complete layer of leptomeninges often with a second incomplete layer in the WM. Venules showed incomplete layers of leptomeningeal cells. Intramural cell expression was higher in the post-capillary venules of the subcortical WM when compared with periventricular WM, suggesting that periventricular collagenosis around venules may be due to a lower resistance in the venular walls. It appears that the regional variation in the capacity for dilatation of arteriolar perivascular spaces in the white WM may be related to the number of perivascular leptomeningeal cells surrounding vessels in different areas of the brain. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis
Perlin, Julie R.; Robertson, Anne L.
2017-01-01
Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies. PMID:28830909
Nabatanzi, Rose; Cose, Stephen; Joloba, Moses; Jones, Sarah Rowland; Nakanjako, Damalie
2018-03-15
HIV infection causes upregulation of markers of inflammation, immune activation and apoptosis of host adaptive, and innate immune cells particularly monocytes, natural killer (NK) and innate lymphoid cells (ILCs). Although antiretroviral therapy (ART) restores CD4 T-cell counts, the persistent aberrant activation of monocytes, NK and ILCs observed likely contributes to the incomplete recovery of T-cell effector functions. A better understanding of the effects of HIV infection and ART on the phenotype and function of circulating monocytes, NK, and ILCs is required to guide development of novel therapeutic interventions to optimize immune recovery.
Tada, Shigeru
2015-01-01
The analysis of cell separation has many important biological and medical applications. Dielectrophoresis (DEP) is one of the most effective and widely used techniques for separating and identifying biological species. In the present study, a DEP flow channel, a device that exploits the differences in the dielectric properties of cells in cell separation, was numerically simulated and its cell-separation performance examined. The samples of cells used in the simulation were modeled as human leukocyte (B cell) live and dead cells. The cell-separation analysis was carried out for a flow channel equipped with a planar electrode on the channel's top face and a pair of interdigitated counter electrodes on the bottom. This yielded a three-dimensional (3D) nonuniform AC electric field in the entire space of the flow channel. To investigate the optimal separation conditions for mixtures of live and dead cells, the strength of the applied electric field was varied. With appropriately selected conditions, the device was predicted to be very effective at separating dead cells from live cells. The major advantage of the proposed method is that a large volume of sample can be processed rapidly because of a large spacing of the channel height.
[Features of cytotrophoblast invasion in complete placenta previa and increta].
Milovanov, A P; Bushtarev, A V; Fokina, T V
to investigate the characteristics of cytotrophoblast invasion in complete placenta previa and increta. Three groups of placentas and amputated uteri were examined. These were: 1) 10 placentas at 20-22 weeks' gestation after drug-induced abortion; 2) 4 uteri with typical placentation at 34-36 weeks and wall ruptures; 3) 12 uteri with ultrasound-confirmed complete placenta previa and subsequent hysterectomy (at 34-36 weeks.) due to massive bleeding. In all cases, the sections were stained with hematoxylin and eosin, azan by the Mallory's method; immunovisualization of invasive cells with the marker cytokeratin 8 was also used. In Groups 2 and 3, the uterine distribution density of invasive cells was compared in a standard slice area (×200) separately, within the endometrium and myometrium. Complete placenta previa was found to have the following characteristics: 1) all the uteri exhibited focal or diffuse friable, or thick scars after cesarean section; 2) multiple active anchor villi with villous cytotrophoblast layers, which were characteristic of Group 1 placentas and absent in the uteri women of Group 2; 3) bays diagnosed in the basal endometrium with ingrown villi (placenta increta); 4) a morphometrically significant increase in the distribution density of interstitial cytotrophoblast in the endometrium and only a similar trend in the myometrium. Invasive cells did not penetrate into the area of scars. Failure of the second wave of cytotrophoblast invasion was confirmed by incomplete gestational restructuring and partial obliteration of the myometrial radial arteries. Real risks for severe clinical forms of abnormal placentation declare more stringent indications for surgical delivery.
Endo, Kei; Hayashi, Karin; Saito, Hirohide
2016-02-23
The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperduto, Paul W., E-mail: psperduto@mropa.co; Chao, Samuel T.; Sneed, Penny K.
2010-07-01
Purpose: Controversy endures regarding the optimal treatment of patients with brain metastases (BMs). Debate persists, despite many randomized trials, perhaps because BM patients are a heterogeneous population. The purpose of the present study was to identify significant diagnosis-specific prognostic factors and indexes (Diagnosis-Specific Graded Prognostic Assessment [DS-GPA]). Methods and Materials: A retrospective database of 5,067 patients treated for BMs between 1985 and 2007 was generated from 11 institutions. After exclusion of the patients with recurrent BMs or incomplete data, 4,259 patients with newly diagnosed BMs remained eligible for analysis. Univariate and multivariate analyses of the prognostic factors and outcomes bymore » primary site and treatment were performed. The significant prognostic factors were determined and used to define the DS-GPA prognostic indexes. The DS-GPA scores were calculated and correlated with the outcomes, stratified by diagnosis and treatment. Results: The significant prognostic factors varied by diagnosis. For non-small-cell lung cancer and small-cell lung cancer, the significant prognostic factors were Karnofsky performance status, age, presence of extracranial metastases, and number of BMs, confirming the original GPA for these diagnoses. For melanoma and renal cell cancer, the significant prognostic factors were Karnofsky performance status and the number of BMs. For breast and gastrointestinal cancer, the only significant prognostic factor was the Karnofsky performance status. Two new DS-GPA indexes were thus designed for breast/gastrointestinal cancer and melanoma/renal cell carcinoma. The median survival by GPA score, diagnosis, and treatment were determined. Conclusion: The prognostic factors for BM patients varied by diagnosis. The original GPA was confirmed for non-small-cell lung cancer and small-cell lung cancer. New DS-GPA indexes were determined for other histologic types and correlated with the outcome, and statistical separation between the groups was confirmed. These data should be considered in the design of future randomized trials and in clinical decision-making.« less
Use of Historical Radar Rainfall Estimates to Develop Design Storms in Los Angeles.
NASA Astrophysics Data System (ADS)
Curtis, D. C.; Humphrey, J.; Moffitt, J.
2007-12-01
A database of 15-minute historical gage adjusted radar-rainfall estimates was used to evaluate the geometric properties of storms in the City of Los Angeles, CA. The database includes selected months containing significant rainfall during the period 1996-2007. For each time step, areas of contiguous rainfall were identified as individual storm cells. An idealized ellipse was fit to each storm cell and the properties of the ellipse (e.g., size, shape, orientation, velocity and other parameters) were recorded. To accurately account for the range of storm cell sizes, capture a large number of storm cells in a climatologically similar area, assess the variability of storm movement, and minimize the impact of edge effects (i.e., incomplete coverage of cells entering and leaving), a study area substantially larger than the City of Los Angeles was used. The study area extends from city center to 30 miles north to the crest of San Gabriel Mountains, 45 miles east to Ontario, 60 miles south to Santa Catalina Island, and 70 miles west to Oxnard, an area of about10,000 square miles. Radar data for this area over 30 months in the study yields many thousands of storm cells for analysis. Storms were separated into classes by origin, direction and speed of movement. Preliminary investigations considers three types: Arctic origin (west-northwest), Pacific origin (southwest) and Tropical origin (south or stationary). Radar data (for 1996-2007) and upper air maps (1948-2006) are used to identify the direction and speed of significant precipitation events. Typical duration and temporal patterns of Los Angeles historical storms were described by season and storm type. Time of maximum intensity loading variation were determined for a selection of historic storms Depth-Areal Reduction Factors (DARF) for cloudbursts were developedfrom the radar data. These data curves are fit to equations showing the relationships between DARF, area and central intensity. Separate DARF curves are developed for 6X (6 events per year), 4X, 3X, 2X, 1, 2, 5 and 10 year recurrence, and durations from 5 minutes to 7-days. A comparison is made between DARF derived in these analyses with NOAA Atlas 12 DARF, the USACE Sierra Madre Storm and other DARF developed for the interior Southwest. Orographic increases in DDF are related to the Los Angeles County Flood Control District Hydrology Manual 24-hr 50-yr Precipitation maps, elevation from USGS topographic maps and Mean Annual Precipitation maps.
Persistence of Yellow Fever vaccine-induced antibodies after cord blood stem cell transplant.
Avelino-Silva, Vivian Iida; Freire, Marcos da Silva; Rocha, Vanderson; Rodrigues, Celso Arrais; Novis, Yana Sarkis; Sabino, Ester C; Kallas, Esper Georges
2016-04-02
We report the case of a cord blood haematopoietic stem cell transplant recipient who was vaccinated for Yellow Fever (YF) 7 days before initiating chemotherapy and had persistent YF antibodies more than 3 years after vaccination. Since the stem cell donor was never exposed to wild YF or to the YF vaccine, and our patient was not exposed to YF or revaccinated, this finding strongly suggests the persistence of recipient immunity. We briefly discuss potential consequences of incomplete elimination of recipient's leukocytes following existing haematopoietic cancer treatments.
Electrophoretic cell separation using microspheres. [purification of lymphocytes
NASA Technical Reports Server (NTRS)
Smolka, A.; Sachs, G.
1980-01-01
Methods of cell separation based on the electrokinetic properties of the cell membrane offer a degree of discrimination among cell populations which is not available with methods based on cell size or density alone. Studies aimed at extending red cell separations using microspheres to purification of lymphocytes.
NASA Astrophysics Data System (ADS)
El-Sayed, Mayyada; Chase, Howard
2009-05-01
This paper describes the cation-exchange adsorption of the two major whey proteins, alpha-lactalbumin (ALA) and beta-lactoglobulin (BLG) with the purpose of establishing a process for isolating them from cow's milk whey. The single- and two-component adsorption of 1.5 mg/ml ALA and 3 mg/ml BLG to the cation-exchanger SP Sepharose FF at 20° C using 0.1 M acetate buffer of pH 3.7 was studied. Langmuir isotherm parameters were determined for the pure proteins. In two-component systems, BLG breakthrough curve exhibited an overshoot phenomenon that gave evidence for the presence of a competitive adsorption between the two proteins. Complete separation occurred and it was possible to obtain each of the two proteins in a pure form. The process was then applied to a whey concentrate mixture where incomplete separation took place. However, BLG was produced with 95% purity and a recovery of 80%, while ALA showed an 84% recovery with low purity.
Evaluation of Inorganic/Organic Separators
NASA Technical Reports Server (NTRS)
Donnel, C. P., III
1976-01-01
Thirty-six (36) experimental 40AH sealed silver-zinc cells were constructed during phase I of this two (2) phase program. These cells were divided into six (6) groups of six (6) cells each. Each group of six (6) cells was evenly divided into two batches of three (3) cells each. Groups 1 through 4 each featured a different inorganic filler material in the slurry used to coat the separator substrate. Groups 5 and 6 featured an alternate method of separator bag construction. With the exception of the various separator materials, the parts and processes used to produce these thirty-six (36) cells were the same as those used to make the HR40-7 cell. The two (2) batches of cells in each cell group differed only in the lots of solutions and other separator slurry components used. Each cell was given two formation charge/discharge cycles prior to being shipped to NASA Lewis Research Center. Phase II of the program consisted of constructing another thirty-six (36) 40AH experimental cells in six (6) groups of six (6) cells each. Each group was distinguished by the type of precoated separator material used to fabricate separator bags. A new method of separator bag construction was used in this phase of the program. These cells were given two (2) formation cycles and shipped to NASA Lewis Research Center.
Lee, Myung Gwon; Shin, Joong Ho; Bae, Chae Yun; Choi, Sungyoung; Park, Je-Kyun
2013-07-02
We report a contraction-expansion array (CEA) microchannel device that performs label-free high-throughput separation of cancer cells from whole blood at low Reynolds number (Re). The CEA microfluidic device utilizes hydrodynamic field effect for cancer cell separation, two kinds of inertial effects: (1) inertial lift force and (2) Dean flow, which results in label-free size-based separation with high throughput. To avoid cell damages potentially caused by high shear stress in conventional inertial separation techniques, the CEA microfluidic device isolates the cells with low operational Re, maintaining high-throughput separation, using nondiluted whole blood samples (hematocrit ~45%). We characterized inertial particle migration and investigated the migration of blood cells and various cancer cells (MCF-7, SK-BR-3, and HCC70) in the CEA microchannel. The separation of cancer cells from whole blood was demonstrated with a cancer cell recovery rate of 99.1%, a blood cell rejection ratio of 88.9%, and a throughput of 1.1 × 10(8) cells/min. In addition, the blood cell rejection ratio was further improved to 97.3% by a two-step filtration process with two devices connected in series.
Further analyses of human kidney cell populations separated on the Space Shuttle
NASA Technical Reports Server (NTRS)
Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.
1992-01-01
Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.
Quality testing of an innovative cascade separation system for multiple cell separation
NASA Astrophysics Data System (ADS)
Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila
2012-03-01
Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.
Fresenius AS.TEC204 blood cell separator.
Sugai, Mikiya
2003-02-01
Fresenius AS.TEC204 is a third-generation blood cell separator that incorporates the continuous centrifugal separation method and automatic control of the cell separation process. Continuous centrifugation separates cell components according to their specific gravity, and different cell components are either harvested or eliminated as needed. The interface between the red blood cell and plasma is optically detected, and the Interface Control (IFC) cooperates with different pumps, monitors and detectors to harvest required components automatically. The system is composed of three major sections; the Front Panel Unit; the Pump Unit, and the Centrifuge Unit. This unit can be used for a wide variety of clinical applications including collection of platelets, peripheral blood stem cells, bone marrow stem cells, granulocytes, mononuclear cells, and exchange of plasma or red cells, and for plasma treatment.
Zheng, Hui; Zhang, Han; Liu, Feng; Qi, Yuanyuan; Jiang, Hong
2014-01-01
Mice immunized with neuroantigens in incomplete Freund's adjuvant (IFA) are resistant to subsequent induction of experimental autoimmune encephalomyelitis (EAE). The mechanisms involved in this protection are complex. Studies on relevant CD4(+) or CD8(+) T cells, including effective and regulatory T cells, have been performed by others. In this work, the effects of CD4(-)-, CD8(-)- splenocytes on protection from EAE in C57BL/6 mice which were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG)35-55 in IFA were evaluated. We observed that MOG-reactive CD4(+) T cells failed to be activated and proliferate when CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice were regarded as antigen-presenting cells (APC). It was shown that these APC expressed lower levels of major histocompatibility complex class II (MHC-II), CD80, and CD86 than naïve cells. In addition, CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice showed significantly higher levels of IL-10 mRNA expression. When the immunized-mice were induced to develop EAE, these cells secreted significantly higher levels of IL-10 and produced lower levels of IL-6, leading to decreased secretion of IL-17 and IFN-γ from MOG-specific CD4(+) T cells. The transfer of CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice was able to ameliorate the subsequent induction of EAE in recipient mice. Thus, MOG/IFA immunization can modulate CD4(-)-, CD8(-)- splenocytes by reducing the expression of antigen-presenting molecules and altering the levels of secreted cytokines. Our study reveals an additional mechanism involved in the protective effects of MOG/IFA pre-immunization in an EAE model. Copyright © 2013 Elsevier B.V. All rights reserved.
Enhancing Centrifugal Separation With Electrophoresis
NASA Technical Reports Server (NTRS)
Herrmann, F. T.
1986-01-01
Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.
Phillips, Christine L; Davies, Stella M; McMasters, Richard; Absalon, Michael; O'Brien, Maureen; Mo, Jun; Broun, Randall; Moscow, Jeffrey A; Smolarek, Teresa; Garzon, Ramiro; Blum, William; Schwind, Sebastian; Marcucci, Guido; Perentesis, John P
2013-05-01
Low-dose decitabine has encouraging activity and tolerability in adults with acute myeloid leukaemia (AML), but paediatric experience is lacking. We report our retrospective experience with decitabine in eight children and young adults (median age 4 years) with refractory/relapsed AML, who had failed multiple regimens or were not candidates for standard retrieval regimens due to prior toxicities. Three of eight patients (38%) had complete response (CR; 1 each of CR, CR with incomplete platelet recovery and CR with incomplete count recovery). Best responses were observed after a median of 2.5 cycles (range 1-4 cycles). Four patients received subsequent allogeneic stem cell transplant, and two remain in long-term CR. © 2013 Blackwell Publishing Ltd.
High speed flow cytometric separation of viable cells
Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.
1995-11-14
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
High speed flow cytometric separation of viable cells
Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie
1995-01-01
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.
Han, Ki-Ho; Frazier, A Bruno
2006-02-01
This paper presents the characterization of continuous single-stage and three-stage cascade paramagnetic capture (PMC) mode magnetophoretic microseparators for high efficiency separation of red and white blood cells from diluted whole blood based on their native magnetic properties. The separation mechanism for both PMC microseparators is based on a high gradient magnetic separation (HGMS) method. This approach enables separation of blood cells without the use of additives such as magnetic beads. Experimental results for the single-stage PMC microseparator show that 91.1% of red blood cells were continuously separated from the sample at a volumetric flow rate of 5 microl h-1. In addition, the three-stage cascade PMC microseparator continuously separated 93.5% of red blood cells and 97.4% of white blood cells from whole blood at a volumetric flow rate of 5 microl h-1.
Deterministic Migration-Based Separation of White Blood Cells.
Kim, Byeongyeon; Choi, Young Joon; Seo, Hyekyung; Shin, Eui-Cheol; Choi, Sungyoung
2016-10-01
Functional and phenotypic analyses of peripheral white blood cells provide useful clinical information. However, separation of white blood cells from peripheral blood requires a time-consuming, inconvenient process and thus analyses of separated white blood cells are limited in clinical settings. To overcome this limitation, a microfluidic separation platform is developed to enable deterministic migration of white blood cells, directing the cells into designated positions according to a ridge pattern. The platform uses slant ridge structures on the channel top to induce the deterministic migration, which allows efficient and high-throughput separation of white blood cells from unprocessed whole blood. The extent of the deterministic migration under various rheological conditions is explored, enabling highly efficient migration of white blood cells in whole blood and achieving high-throughput separation of the cells (processing 1 mL of whole blood less than 7 min). In the separated cell population, the composition of lymphocyte subpopulations is well preserved, and T cells secrete cytokines without any functional impairment. On the basis of the results, this microfluidic platform is a promising tool for the rapid enrichment of white blood cells, and it is useful for functional and phenotypic analyses of peripheral white blood cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Didar, Tohid Fatanat; Bowey, Kristen; Almazan, Guillermina; Tabrizian, Maryam
2014-02-01
Given that current cell isolation techniques are expensive, time consuming, yield low isolation purities, and/or alter target cell properties, a versatile, cost effective, and easy-to-operate microchip with the capability to simultaneously separate, capture, pattern, and culture rare and primary cells in vitro is developed. The platform is based on target cell adhesion onto the micro-fabricated interfaces produced by microcontact printing of cell-specific antibodies. Results show over 95% separation efficiency in less than 10 min for the separation of oligodendrocyte progenitor cells (OPCs) and cardiomyocytes from rat brain and heart mixtures, respectively. Target cell attachment and single cell spreading can be precisely controlled on the basis of the designed patterns. Both cell types can maintain their biofunctionality. Indeed, isolated OPCs can proliferate and differentiate into mature oligodendrocytes, while isolated cardiomyocytes retain their contractile properties on the separation platform. Successful separation of two dissimilar cell types present in varying concentrations in their respective cell mixtures and the demonstration of their integrity after separation open new avenues for time and cost-effective sorting of various cell types using the developed miniaturized platform. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Molten carbonate fuel cell separator
Nickols, Richard C.
1986-09-02
In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.
Molten carbonate fuel cell separator
Nickols, R.C.
1984-10-17
In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.
Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão‐Pires, Inês; van der Velden, Jolanda
2017-01-01
Key points This paper describes a novel model that allows exploration of matrix‐induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function.Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca2+ handling and myofilament function.Cell shortening and Ca2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix.Matrix stiffness‐impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness.Matrix stiffness‐induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Abstract Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte–matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix‐induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca2+ handling but does not alter myofilament‐generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness‐induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness‐induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte–matrix interactions. PMID:28485491
Kassaye, Seble; Johnston, Elizabeth; McColgan, Bryan; Kantor, Rami; Zijenah, Lynn; Katzenstein, David
2009-01-01
In resource-constrained settings, antiretroviral treatment (ART) is often continued based on clinical and CD4 responses, without virologic monitoring. ART with incomplete viral suppression was assessed in 27 subjects with subtype C HIV-1 by measuring plasma HIV-1 RNA, drug resistance, viral tropism, and evolution in polymerase (pol) and envelope (env) genes. The association between these viral parameters and CD4 cell change over time was analyzed using linear regression models. Increased area under the curve of HIV-1 RNA replication was a predictor of lower CD4 cell gains (p <0.007), while less drug resistance measured as a genotypic susceptibility score (GSS) (p=0.065), and lower rates of evolution in pol and env genes (p= 0.08 and 0.097, respectively) measured as genetic distance were modestly associated with increasing CD4 cell counts. Evolution of pol and env were correlated (R2 = 0.48, p=0.005), however, greater evolution was identified in env vs. pol (p <0.05). CXCR4-usage (X4) was detected in 14/27 (52%) but no differences in CD4 cell change or plasma viremia were associated with X4-usage. Among subtype C HIV-1 infected patients in Zimbabwe receiving incompletely suppressive ART, higher virus replication and lower CD4 cell gains were associated with drug resistance and evolution of polymerase and envelope. PMID:19295330
Separation of CHO cells using hydrocyclones.
Pinto, Rodrigo C V; Medronho, Ricardo A; Castilho, Leda R
2008-01-01
Hydrocyclones are simple and robust separation devices with no moving parts. In the past few years, their use in animal cell separation has been proposed. In this work, the use of different hydrocyclone configurations for Chinese hamster ovary (CHO) cell separation was investigated following an experimental design. It was shown that cell separation efficiencies for cultures of the wild-type CHO.K1 cell line and of a recombinant CHO cell line producing granulocyte-macrophage colony stimulating factor (GM-CSF) were kept above 97%. Low viability losses were observed, as measured by trypan blue exclusion and by determination of intracellular lactate dehydrogenase (LDH) released to the culture medium. Mathematical models were proposed to predict the flow rate, flow ratio and separation efficiency as a function of hydrocyclone geometry and pressure drop. When cells were monitored for any induction of apoptosis upon passage through the hydrocyclones, no increase in apoptotic cell concentration was observed within 48 h of hydrocycloning. Thus, based on the high separation efficiencies, the robustness of the equipment, and the absence of apoptosis induction, hydrocyclones seem to be specially suited for use as cell retention devices in long-term perfusion runs.
Cell separator for use in bipolar-stack energy storage devices
Mayer, Steven T.; Feikert, John H.; Kachmitter, James L.; Pekala, Richard W.
1995-01-01
An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.
Separation and sorting of cells in microsystems using physical principles
NASA Astrophysics Data System (ADS)
Lee, Gi-Hun; Kim, Sung-Hwan; Ahn, Kihoon; Lee, Sang-Hoon; Park, Joong Yull
2016-01-01
In the last decade, microfabrication techniques have been combined with microfluidics and applied to cell biology. Utilizing such new techniques, various cell studies have been performed for the research of stem cells, immune cells, cancer, neurons, etc. Among the various biological applications of microtechnology-based platforms, cell separation technology has been highly regarded in biological and clinical fields for sorting different types of cells, finding circulating tumor cells (CTCs), and blood cell separation, amongst other things. Many cell separation methods have been created using various physical principles. Representatively, these include hydrodynamic, acoustic, dielectrophoretic, magnetic, optical, and filtering methods. In this review, each of these methods will be introduced, and their physical principles and sample applications described. Each physical principle has its own advantages and disadvantages. The engineers who design the systems and the biologists who use them should understand the pros and cons of each method or principle, to broaden the use of microsystems for cell separation. Continuous development of microsystems for cell separation will lead to new opportunities for diagnosing CTCs and cancer metastasis, as well as other elements in the bloodstream.
Deformability and size-based cancer cell separation using an integrated microfluidic device.
Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi
2015-11-07
Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications.
Design and simulation of a microfluidic device for acoustic cell separation.
Shamloo, Amir; Boodaghi, Miad
2018-03-01
Experimental acoustic cell separation methods have been widely used to perform separation for different types of blood cells. However, numerical simulation of acoustic cell separation has not gained enough attention and needs further investigation since by using numerical methods, it is possible to optimize different parameters involved in the design of an acoustic device and calculate particle trajectories in a simple and low cost manner before spending time and effort for fabricating these devices. In this study, we present a comprehensive finite element-based simulation of acoustic separation of platelets, red blood cells and white blood cells, using standing surface acoustic waves (SSAWs). A microfluidic channel with three inlets, including the middle inlet for sheath flow and two symmetrical tilted angle inlets for the cells were used to drive the cells through the channel. Two interdigital transducers were also considered in this device and by implementing an alternating voltage to the transducers, an acoustic field was created which can exert the acoustic radiation force to the cells. Since this force is dependent to the size of the cells, the cells are pushed towards the midline of the channel with different path lines. Particle trajectories for different cells were obtained and compared with a theoretical equation. Two types of separations were observed as a result of varying the amplitude of the acoustic field. In the first mode of separation, white blood cells were sorted out through the middle outlet and in the second mode of separation, platelets were sorted out through the side outlets. Depending on the clinical needs and by using the studied microfluidic device, each of these modes can be applied to separate the desired cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Inflammation and hypoxia in the kidney: friends or foes?
Haase, Volker H
2015-08-01
Hypoxic injury is commonly associated with inflammatory-cell infiltration, and inflammation frequently leads to the activation of cellular hypoxia response pathways. The molecular mechanisms underlying this cross-talk during kidney injury are incompletely understood. Yamaguchi and colleagues identify CCAAT/enhancer-binding protein δ as a cytokine- and hypoxia-regulated transcription factor that fine-tunes hypoxia-inducible factor-1 signaling in renal epithelial cells and thus provide a novel molecular link between hypoxia and inflammation in kidney injury.
2007-03-01
RTb motif mutants hTERT Senescence Apoptosis Long lag period [20,25] Ribozymes Hairpin hTR, hTERT Apoptosis Incomplete knockdown of target [26...O-(2-Methoxyethyl) oligomers. b Reverse transcriptase motif.the growth and viability of cancer cells (Table 1). Ribozymes and short-interfering RNA...recent studies indicate that complete knockdown is not essential for efficient and rapid apoptosis in reference to siRNA against hTR and ribozymes
Protein Phosphatase 1ß Limits Ring Canal Constriction during Drosophila Germline Cyst Formation
Yamamoto, Shinya; Bayat, Vafa; Bellen, Hugo J.; Tan, Change
2013-01-01
Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well. PMID:23936219
Cell partition in two phase polymer systems
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1979-01-01
Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.
Unique sail-like structure of cor triatriatum dexter in three-dimensional echocardiogram.
Low, Ting Ting; Uy, Celia Catherine C; Wong, Raymond Ching Chiew
2014-08-01
Cor triatriatum dexter (CTD) is an extremely rare congenital condition arising from the persistence of the right valve of the sinus venosus. It divides the right atrium (RA) into 2 separate chambers. We report a case of a 50-year-old man who had an incidental finding of CTD on transesophageal echocardiogram. An incomplete membrane of the RA was seen, and three-dimensional echocardiogram delineated the structure clearly as a triangular sail-like structure with multiple orifices and a fenestration. © 2013, Wiley Periodicals, Inc.
Epigenetic control of CD8+ T cell differentiation.
Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P
2018-05-01
Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.
NASA Technical Reports Server (NTRS)
Todd, P. W.
1985-01-01
The objectives of the red blood cell experiments were to provide a visual check on the electrophoretic process and especially electroosmotic flow in space as well as to provide test separations of non-degradable standard particles for comparison with the separations of the three viable cell types studied on the Apollo-Soyuz Test Project. Determination of the maximum concentrations of cells that can be separated in column electrophore was a significant goal. Two of the eight columns were available for red cell experiments, so two concentrations of human and rabbit RBC mixtures were used. The objectives of another experiment were to evaluate the reproducibility of microgravity electrophoretic separation of living kidney cells, to separate cells with highly viability despite two freeze-thaw cycles, and to optimize the physical conditions of cell separation. Owing to the uncertain heterogeneity of the starting material, the experimental design does not assess resolution in microgravity, but improved separability was sought in comparison to density-gradient electrophoresis or continuous-flow electrophoresis. Efforts were made to increase cell yield and cell viability and to assess reproducibility directly.
Rodenacker, Klaas; Hautmann, Christopher; Görtz-Dorten, Anja; Döpfner, Manfred
2016-01-01
Various studies have demonstrated that bifactor models yield better solutions than models with correlated factors. However, the kind of bifactor model that is most appropriate is yet to be examined. The current study is the first to test bifactor models across the full age range (11-18 years) of adolescents using self-reports, and the first to test bifactor models with German subjects and German questionnaires. The study sample included children and adolescents aged between 6 and 18 years recruited from a German clinical sample (n = 1,081) and a German community sample (n = 642). To examine the factorial validity, we compared unidimensional, correlated factors and higher-order and bifactor models and further tested a modified incomplete bifactor model for measurement invariance. Bifactor models displayed superior model fit statistics compared to correlated factor models or second-order models. However, a more parsimonious incomplete bifactor model with only 2 specific factors (inattention and impulsivity) showed a good model fit and a better factor structure than the other bifactor models. Scalar measurement invariance was given in most group comparisons. An incomplete bifactor model would suggest that the specific inattention and impulsivity factors represent entities separable from the general attention-deficit/hyperactivity disorder construct and might, therefore, give way to a new approach to subtyping of children beyond and above attention-deficit/hyperactivity disorder. © 2016 S. Karger AG, Basel.
Reliability of TMS metrics in patients with chronic incomplete spinal cord injury.
Potter-Baker, K A; Janini, D P; Frost, F S; Chabra, P; Varnerin, N; Cunningham, D A; Sankarasubramanian, V; Plow, E B
2016-11-01
Test-retest reliability analysis in individuals with chronic incomplete spinal cord injury (iSCI). The purpose of this study was to examine the reliability of neurophysiological metrics acquired with transcranial magnetic stimulation (TMS) in individuals with chronic incomplete tetraplegia. Cleveland Clinic Foundation, Cleveland, Ohio, USA. TMS metrics of corticospinal excitability, output, inhibition and motor map distribution were collected in muscles with a higher MRC grade and muscles with a lower MRC grade on the more affected side of the body. Metrics denoting upper limb function were also collected. All metrics were collected at two sessions separated by a minimum of two weeks. Reliability between sessions was determined using Spearman's correlation coefficients and concordance correlation coefficients (CCCs). We found that TMS metrics that were acquired in higher MRC grade muscles were approximately two times more reliable than those collected in lower MRC grade muscles. TMS metrics of motor map output, however, demonstrated poor reliability regardless of muscle choice (P=0.34; CCC=0.51). Correlation analysis indicated that patients with more baseline impairment and/or those in a more chronic phase of iSCI demonstrated greater variability of metrics. In iSCI, reliability of TMS metrics varies depending on the muscle grade of the tested muscle. Variability is also influenced by factors such as baseline motor function and time post SCI. Future studies that use TMS metrics in longitudinal study designs to understand functional recovery should be cautious as choice of muscle and clinical characteristics can influence reliability.
Atmospheres of partially differentiated super-Earth exoplanets
NASA Astrophysics Data System (ADS)
Schaefer, Laura; Sasselov, Dimitar
2015-11-01
Terrestrial exoplanets have been discovered in a range of sizes, densities and orbital locations that defy our expectations based upon the Solar System. Planets discovered to date with radii less than ~1.5-1.6 Earth radii all seem to fall on an iso-density curve with the Earth [1]. However, mass and radius determinations, which depend on the known properties of the host star, are not accurate enough to distinguish between a fully differentiated three-layer planet (core, mantle, ocean/atmosphere) and an incompletely differentiated planet [2]. Full differentiation of a planet will depend upon the conditions at the time of accretion, including the abundance of short-lived radioisotopes, which will vary from system to system, as well as the number of giant impacts the planet experiences. Furthermore, separation of metal and silicates at the much larger pressures found inside super-Earths will depend on how the chemistry of these materials change at high pressures. There are therefore hints emerging that not all super-Earths will be fully differentiated. Incomplete differentiation will result in a more reduced mantle oxidation state and may have implications for the composition of an outgassed atmosphere. Here we will present the first results from a chemical equilibrium model of the composition of such an outgassed atmosphere and discuss the possibility of distinguishing between fully and incompletely differentiated planets through atmospheric observations.[1] Rogers, L. 2015. ApJ, 801, 41. [2] Zeng, L. & Sasselov, D. 2013. PASP, 125, 227.
Lester, Robert M; Gorgey, Ashraf S
2018-01-01
To determine whether an individual with C4 incomplete spinal cord injury (SCI) with limited hand functions can effectively operate a powered exoskeleton (Ekso) to improve parameters of physical activity as determined by swing-time, up-time, walk-time, and total number of steps. A 21-year-old male with incomplete chronic (>1 year postinjury) SCI C4, participated in a clinical exoskeleton program to determine the feasibility of standing up and walking with limited hand functions. The participant was invited to attend 3 sessions including fitting, familiarization and gait training separated by one week intervals. Walk-time, up-time and total number of steps were measured during each training session. A complete body composition assessment using dual-energy X-ray absorptiometry (DXA) of the spine, knees and hips was conducted before training.Using a platform walker and cuffing both hands, the participant managed to stand up and ambulate successfully using exoskeleton. Over the course of 2 weeks, maximum walk-time increased from 7 to 17 min and number of steps increased from 83 to 589 steps. The total up-time increased from 19 to 31 min. Exoskeleton training may be a safe and feasible approach for persons with higher levels of SCI after effectively providing a supportive assistive device for weight shifting. The current case study demonstrates the use of a powered exoskeleton for an individual with high level tetraplegia (C4 and above) and limited hand functions.
Kawamura, Ryuzo; Miyazaki, Minami; Shimizu, Keita; Matsumoto, Yuta; Silberberg, Yaron R; Sathuluri, Ramachandra Rao; Iijima, Masumi; Kuroda, Shun'ichi; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi
2017-11-08
Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.
Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment
Plouffe, Brian D.; Murthy, Shashi K.; Lewis, Laura H.
2014-01-01
Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell separation systems. PMID:25471081
Burns, David; Blau, Helen M
2014-07-01
Nuclear reprogramming was first shown to be possible by Sir John Gurdon over a half century ago. The process has been revolutionized by the production of induced pluripotent cells by overexpression of the four transcription factors discovered by Shinya Yamanaka, which now enables mammalian applications. Yet, reprogramming by a few transcription factors remains incomplete and inefficient, whether to pluripotent or differentiated cells. We propose that a better understanding of mechanistic insights based on developmental principles gained from heterokaryon studies may inform the process of directing cell fate, fundamentally and clinically. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*
Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren
2014-01-01
Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773
A rare case of monozygotic iniodymic diprosopiasis in a German Holstein calf.
Weber, Jim; Behn, Holger; Freick, Markus
2017-06-01
Craniofacial duplication abnormity is a rare phenomenon in buiatric practice. This report attends to a male German Holstein calf which could be classified as a diprosopic iniodymus. A fetus exhibiting a doubled face was delivered after fetotomy. To our knowledge, this is the first description of diprosopiasis with two cranial cavities as well as two separate encephala in a calf showing the potential extent of duplication. Throughout this work also the question is answered of whether this malformation in a bovine species arose from one embryo or rather, there is a dizygotic background by genotyping of tissue samples from both parts of the diprosopus. Regarding etiology, not only hereditary dispositions including among others a failed function of the signaling molecule Sonic hedgehog mediating regulation of craniofacial morphogenesis, but also incompletely separated monozygotic twins are discussed.
Antfolk, Maria; Laurell, Thomas
2017-05-01
Rare cells in blood, such as circulating tumor cells or fetal cells in the maternal circulation, posses a great prognostic or diagnostic value, or for the development of personalized medicine, where the study of rare cells could provide information to more specifically targeted treatments. When conventional cell separation methods, such as flow cytometry or magnetic activated cell sorting, have fallen short other methods are desperately sought for. Microfluidics have been extensively used towards isolating and processing rare cells as it offers possibilities not present in the conventional systems. Furthermore, microfluidic methods offer new possibilities for cell separation as they often rely on non-traditional biomarkers and intrinsic cell properties. This offers the possibility to isolate cell populations that would otherwise not be targeted using conventional methods. Here, we provide an extensive review of the latest advances in continuous flow microfluidic rare cell separation and processing with each cell's specific characteristics and separation challenges as a point of view. Copyright © 2017 Elsevier B.V. All rights reserved.
Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P
2017-05-02
Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.
Separator development and testing of nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, O. D.; Manzo, M. A.
1984-01-01
The components, design, and operating characteristics of Ni-H2 cells batteries were improved. A separator development program was designed to develop a separator that is resistant to penetration by oxygen and loose active material from then nickel electrode, while retraining the required chemical and thermal stability, reservoir capability, and high ionic conductivity. The performance of the separators in terms of cell operating voltage was to at least match that of state-of-the-art separators while eliminating the separator problems. The separators were submitted to initial screening tests and those which successfully completed the tests were built into Ni-H2 cells for short term testing. The separators with the best performance are tested for long term performance and life.
Method for forming a cell separator for use in bipolar-stack energy storage devices
Mayer, Steven T.; Feikert, John H.; Kaschmitter, James L.; Pekala, Richard W.
1994-01-01
An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack.
Cell separator for use in bipolar-stack energy storage devices
Mayer, S.T.; Feikert, J.H.; Kachmitter, J.L.; Pekala, R.W.
1995-02-28
An improved multi-cell electrochemical energy storage device is described, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.
Method for forming a cell separator for use in bipolar-stack energy storage devices
Mayer, S.T.; Feikert, J.H.; Kaschmitter, J.L.; Pekala, R.W.
1994-08-09
An improved multi-cell electrochemical energy storage device, such as a battery, fuel cell, or double layer capacitor using a cell separator which allows cells to be stacked and interconnected with low electrical resistance and high reliability while maximizing packaging efficiency. By adding repeating cells, higher voltages can be obtained. The cell separator is formed by applying an organic adhesive on opposing surfaces of adjacent carbon electrodes or surfaces of aerogel electrodes of a pair of adjacent cells prior to or after pyrolysis thereof to form carbon aerogel electrodes. The cell separator is electronically conductive, but ionically isolating, preventing an electrolytic conduction path between adjacent cells in the stack. 2 figs.
Didar, Tohid Fatanat; Li, Kebin; Veres, Teodor; Tabrizian, Maryam
2013-07-01
Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rapid cell separation with minimal manipulation for autologous cell therapies
NASA Astrophysics Data System (ADS)
Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.
2017-02-01
The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.
Rallón, Norma; Sempere-Ortells, José M; Soriano, Vincent; Benito, José M
2013-11-01
It is unclear to what extent T cell reconstitution may be possible in HIV-1-infected individuals on continuous successful highly active antiretroviral therapy (HAART). Herein, we analysed distinct phenotypic markers of immune recovery in patients with undetectable viraemia for 8 years, taking as reference untreated patients and healthy controls. Seventy-two subjects were examined: 28 HIV-1+ patients on successful long-term HAART, 24 HIV-1+ untreated viraemic patients and 20 age-matched healthy controls. Analysis of naive and memory CD4 and CD8 T cells was combined with measurements of activation status (expression of CD38) and with thymic function (expression of CD31). Statistical significance was determined by non-parametric tests. After long-term HAART, the majority of parameters were normalized compared with age-matched control values, including T cell activation and thymic function. However, absolute counts of naive and central memory CD4 T cells remained below normal levels. The only parameters significantly associated with CD4 counts at the end of follow-up were the pre-HAART CD4 count ( β ± SD = 0.54 ± 0.16, P = 0.003) and the level of CD4 central memory cells at the end of follow-up (β ± SD = 1.18 ± 0.23, P < 0.0001). Only patients starting HAART with CD4 counts >350 cells/mm(3) reached a complete normalization of CD4 counts. Even after long-term successful HAART, complete CD4 restoration may be attainable only in patients starting therapy with moderately high CD4 counts, prompting early initiation of antiretroviral therapy. Incomplete CD4 restoration may be associated with a defective restoration of central memory CD4 T cells, a cell subset with a pivotal role in T cell homeostasis.
Classification and data acquisition with incomplete data
NASA Astrophysics Data System (ADS)
Williams, David P.
In remote-sensing applications, incomplete data can result when only a subset of sensors (e.g., radar, infrared, acoustic) are deployed at certain regions. The limitations of single sensor systems have spurred interest in employing multiple sensor modalities simultaneously. For example, in land mine detection tasks, different sensor modalities are better-suited to capture different aspects of the underlying physics of the mines. Synthetic aperture radar sensors may be better at detecting surface mines, while infrared sensors may be better at detecting buried mines. By employing multiple sensor modalities to address the detection task, the strengths of the disparate sensors can be exploited in a synergistic manner to improve performance beyond that which would be achievable with either single sensor alone. When multi-sensor approaches are employed, however, incomplete data can be manifested. If each sensor is located on a separate platform ( e.g., aircraft), each sensor may interrogate---and hence collect data over---only partially overlapping areas of land. As a result, some data points may be characterized by data (i.e., features) from only a subset of the possible sensors employed in the task. Equivalently, this scenario implies that some data points will be missing features. Increasing focus in the future on using---and fusing data from---multiple sensors will make such incomplete-data problems commonplace. In many applications involving incomplete data, it is possible to acquire the missing data at a cost. In multi-sensor remote-sensing applications, data is acquired by deploying sensors to data points. Acquiring data is usually an expensive, time-consuming task, a fact that necessitates an intelligent data acquisition process. Incomplete data is not limited to remote-sensing applications, but rather, can arise in virtually any data set. In this dissertation, we address the general problem of classification when faced with incomplete data. We also address the closely related problem of active data acquisition, which develops a strategy to acquire missing features and labels that will most benefit the classification task. We first address the general problem of classification with incomplete data, maintaining the view that all data (i.e., information) is valuable. We employ a logistic regression framework within which we formulate a supervised classification algorithm for incomplete data. This principled, yet flexible, framework permits several interesting extensions that allow all available data to be utilized. One extension incorporates labeling error, which permits the usage of potentially imperfectly labeled data in learning a classifier. A second major extension converts the proposed algorithm to a semi-supervised approach by utilizing unlabeled data via graph-based regularization. Finally, the classification algorithm is extended to the case in which (image) data---from which features are extracted---are available from multiple resolutions. Taken together, this family of incomplete-data classification algorithms exploits all available data in a principled manner by avoiding explicit imputation. Instead, missing data is integrated out analytically with the aid of an estimated conditional density function (conditioned on the observed features). This feat is accomplished by invoking only mild assumptions. We also address the problem of active data acquisition by determining which missing data should be acquired to most improve performance. Specifically, we examine this data acquisition task when the data to be acquired can be either labels or features. The proposed approach is based on a criterion that accounts for the expected benefit of the acquisition. This approach, which is applicable for any general missing data problem, exploits the incomplete-data classification framework introduced in the first part of this dissertation. This data acquisition approach allows for the acquisition of both labels and features. Moreover, several types of feature acquisition are permitted, including the acquisition of individual or multiple features for individual or multiple data points, which may be either labeled or unlabeled. Furthermore, if different types of data acquisition are feasible for a given application, the algorithm will automatically determine the most beneficial type of data to acquire. Experimental results on both benchmark machine learning data sets and real (i.e., measured) remote-sensing data demonstrate the advantages of the proposed incomplete-data classification and active data acquisition algorithms.
Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael
2011-11-10
Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.
Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua
2018-03-20
Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.
Is Myanmar jadeitite of Jurassic age? A result from incompletely recrystallized inherited zircon
NASA Astrophysics Data System (ADS)
Yui, Tzen-Fu; Fukoyama, Mayuko; Iizuka, Yoshiyuki; Wu, Chao-Ming; Wu, Tsai-Way; Liou, J. G.; Grove, Marty
2013-02-01
Zircons from two Myanmar jadeitite samples were separated for texture, mineral inclusion, U-Pb dating and trace element composition analyses. Three types of zircons, with respect to U-Pb isotope system, were recognized. Type I zircons are inherited ones, yielding an igneous protolith age of 160 ± 1 Ma; Type II zircons are metasomatic/hydrothermal ones, giving a (minimum) jadeitite formation age of 77 ± 3 Ma; and Type III zircons are incompletely recrystallized ones, with non-coherent and geologically meaningless ages from 153 to 105 Ma. These Myanmar jadeitites would therefore have formed through whole-sale metasomatic replacement processes. Compared with Type I zircons, Type II zircons show typical metasomatic/hydrothermal geochemical signatures, with low Th/U ratio (< 0.1), small Ce anomaly (Ce/Ce* = < 5) and low ΣREE content (40-115 ppm). Type III zircons, however, commonly have the above geochemical signatures straddle in between Type I and Type II zircons. It is shown that the resetting rates of various trace element compositions and U-Pb isotope system of inherited zircons are not coupled "in phase" in response to zircon recrystallization during jadeitite formation. The observed abnormally low Th/U ratio and small Ce anomaly of some Type I zircons, as well as the lack of negative Eu anomaly of all Type I zircons, should be suspected to be of secondary origin. In extreme cases, incompletely recrystallized zircons may show typical metasomatic/hydrothermal geochemical signatures, but leave U-Pb isotope system partially reset or even largely unchanged. Such zircons easily lead to incorrect age interpretation, and hence erroneous geological implication. The Myanmar jadeitites, based on the present study, might have formed during the Late Cretaceous subduction before the beginning of India-Asia continental collision at Paleocene. Previously proposed Late Jurassic ages for Myanmar jadeitites are suggested as results rooted on data retrieved from incompletely recrystallized inherited zircons.
Essays on incomplete contracts in regulatory activities
NASA Astrophysics Data System (ADS)
Saavedra, Eduardo Humberto
This dissertation consists of three essays. The first essay, The Hold-Up Problem in Public Infrastructure Franchising, characterizes the equilibria of the investment decisions in public infrastructure franchising under incomplete contracting and ex-post renegotiation. The parties (government and a firm) are unable to credibly commit to the contracted investment plan, so that a second step investment is renegotiated by the parties at the revision stage. As expected, the possibility of renegotiation affects initial non-verifiable investments. The main conclusion of this essay is that not only underinvestment but also overinvestment in infrastructure may arise in equilibrium, compared to the complete contracting case. The second essay, Alternative Institutional Arrangements in Network Utilities: An Incomplete Contracting Approach, presents a theoretical assessment of the efficiency implications of privatizing natural monopolies which are vertically related to potential competitive firms. Based on the incomplete contracts and asymmetric information paradigm. I develop a model that analyzes the relative advantages of different institutional arrangements---alternative ownership and market structures in the industry--- in terms of their allocative and productive efficiencies. The main policy conclusion of this essay is that both ownership and the existence of conglomerates in network industries matter. Among other conclusions, this essay provides an economic rationale for a mixed economy in which the network is public and vertical separation of the industry when the natural monopoly is under private ownership. The last essay, Opportunistic Behavior and Legal Disputes in the Chilean Electricity Sector, analyzes post-contractual disputes in this newly privatized industry. It discusses the presumption that opportunistic behavior and disputes arise due to inadequate market design, ambiguous regulation, and institutional weaknesses. This chapter also assesses the presumption that a large number of legal disputes are inhibited by the nonexistence of institutions able to verify and enforce contracts. An in-depth analysis of six cases of open conflict provides support for such a presumption and highlights the crucial role of an adequate market design.
Thinner, More-Efficient Oxygen-Separation Cells
NASA Technical Reports Server (NTRS)
Clark, Douglas J.; Galica, Leo M.; Losey, Robert W.
1992-01-01
Better gas-distribution plates fabricated more easily. Oxygen-separation cell redesigned to make it more efficient, smaller, lighter, and easier to manufacture. Potential applications include use as gas separators, filters, and fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, M.N.; Masri, K.A.; Dell, A.
1990-10-01
Congenital dyserythropoietic anemia type II, or hereditary erythroblastic multinuclearity with a positive acidified-serum-lysis test (HEMPAS), is a genetic anemia in humans inherited by an autosomally recessive mode. The enzyme defect in most HEMPAS patients has previously been proposed as a lowered activity of N-acetylglucosaminyltransferase II, resulting in a lack of polylactosamine on proteins and leading to the accumulation of polylactosaminyl lipids. A recent HEMPAS case, G.C., has now been analyzed by cell-surface labeling, fast-atom-bombardment mass spectrometry of glycopeptides, and activity assay of glycosylation enzymes. Significantly decreased glycosylation of polylactosaminoglycan proteins and incompletely processed asparagine-linked oligosaccharides were detected in the erythrocytemore » membranes of G.C. These results suggest that G.C. cells contain a mutation in {alpha}-ManII-encoding gene that results in inefficient expression of {alpha}-ManII mRNA, either through reduced transcription or message instability. This report demonstrates that HEMPAS is caused by a defective gene encoding an enzyme necessary for the synthesis of asparagine-linked oligosaccharides.« less
Phenomena Simulation for Heavy Doping and Surface Recombination Velocity
NASA Technical Reports Server (NTRS)
Lindholm, F. A.
1985-01-01
The theoretical models now available that characterize heavily doped (highly conducting) regions in silicon are survyed. Analytical and numerical approaches that determine the influence of such regions on the conversion efficiency of solar cells are examined. Although dilutely doped silicon is well characterized except for some disagreement about optical absorption coefficients, what exists now for heavily doped silicon and its interplay with adjoining regions is an incomplete theory in which not all contributers to transport, recombination, generation, and trapping are defined. Further, the parameters relating to these mechanisms and their values as determined by experiment are subject to various interpretations. The characterization of heavily doped silicon is treated not as a theory but rather as an imperfectly articulated and incompletely formalized body of experience. This view is intended to help point the way toward the attainment of a more complete of heavily doped silicon and thereby toward more informed designs of solar cells. Because computer programs constitute tools both for design and for estimating performance limits, the review includes some remarks pertinent to existing and developing programs.
Alcorn, S.; Murray, A.L.; Pascho, R.J.; Varney, J.
2005-01-01
The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37??C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81 % (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57-and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection. ?? Inter-Research 2005.
Computational fluid dynamics evaluation of incomplete stent apposition in a tapered artery
NASA Astrophysics Data System (ADS)
Poon, Eric; Thondapu, Vikas; Ooi, Andrew; Hayat, Umair; Barlis, Peter; Moore, Stephen
2015-11-01
Coronary stents are deployed to prop open blocked arteries and restore normal blood flow, however in-stent restenosis (ISR) and stent thrombosis (ST) remain possibly catastrophic complications. Computational fluid dynamics (CFD) analyses can elucidate the pathological impact of alterations in coronary hemodynamics and correlate wall shear stress (WSS) with atherosclerotic processes. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA) where stent struts are not in contact with the vessel wall. By employing state-of-the-art computer-aided design (CAD) software, generic open-cell and closed-cell coronary stent designs were virtually deployed in an idealised tapered coronary artery. Pulsatile blood flow (80 mL/min at 75 beats/min) was carried out numerically on these CAD models using a finite volume solver. CFD results reveal significant fluctuations in proximal WSS and large recirculation regions in the setting of proximal ISA, resulting in regions of high wall shear stress gradient (WSSG) that have been previously linked to poor endothelial cell coverage and vascular injury. The clinical significance of these proximal high WSSG regions will be correlated with findings from high-resolution in-vivo imaging. Supported by the Australian Research Council (LP120100233) and Victorian Life Sciences Computation Initiative (VR0210).
Sabra, Georges; Vermette, Patrick
2013-02-01
The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS-1) and human umbilical vein endothelial cells (HUVEC) co-cultured in fibrin over INS-1 cell insulin secretion. For this purpose, a three-dimensional (3D) cell culture chamber was designed, built using micro-fabrication techniques and validated. The co-culture was successfully carried out and the effect on INS-1 cell insulin secretion was investigated. After 48 and 72 h, INS-1 cells co-cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS-1 cells cultured alone or co-cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Copyright © 2012 Wiley Periodicals, Inc.
Kim, Kitai; Zhao, Rui; Doi, Akiko; Ng, Kitwa; Unternaehrer, Juli; Cahan, Patrick; Hongguang, Huo; Loh, Yuin-Han; Aryee, Martin J.; Lensch, M. William; Li, Hu; Collins, James J.; Feinberg, Andrew P.; Daley, George Q.
2012-01-01
We compared bona-fide human induced pluripotent stem cells (iPSC) derived from umbilical cord blood (CB) and neonatal keratinocytes (K). As a consequence of both incomplete erasure of tissue-specific methylation and aberrant de novo methylation, CB-iPSC and K-iPSC are distinct in genome-wide DNA methylation profiles and differentiation potential. Extended passage of some iPSC clones in culture didn't improve their epigenetic resemblance to ESC, implying that some human iPSC retain a residual “epigenetic memory” of their tissue of origin. PMID:22119740
Label-free density difference amplification-based cell sorting.
Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P
2014-11-01
The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.
An, Jaemin; Lee, Jangwon; Lee, Sang Ho; Park, Jungyul; Kim, Byungkyu
2009-06-01
In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 V(pp). Finally, under the applied voltage of 48 MHz-8 V(pp) and a flow rate of 290 microm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively. Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous cells in clinical applications.
The evaluation of layered separators for nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Gahn, Randall F.
1991-01-01
The concept of using layered separators to achieve the required electrolyte retention and bubble pressure fo nickel-hydrogen cells was evaluated in a boilerplate cell test. Zircar cloth, polyethylene paper and polypropylene felt were combined with a layer of radiation-grafted polyethylene film to achieve the required properties. Three cells of each layered separator were built and tested by characterization cycling and by low earth orbit cycling for 5000 cycles at 80 percent DOD. Three cells containing asbestos separators were used as the reference.
Cell separation: Terminology and practical considerations
Tomlinson, Sophie; Yang, Xuebin B; Kirkham, Jennifer
2013-01-01
Cell separation is a powerful tool in biological research. Increasing usage, particularly within the tissue engineering and regenerative medicine communities, means that researchers from a diverse range of backgrounds are utilising cell separation technologies. This review aims to offer potential solutions to cell sorting problems and to clarify common ambiguities in terminology and experimental design. The frequently used cell separation terms of ‘purity’, ‘recovery’ and ‘viability’ are discussed, and attempts are made to reach a consensus view of their sometimes ambiguous meanings. The importance of appropriate experimental design is considered, with aspects such as marker expression, tissue isolation and original cell population analysis discussed. Finally, specific technical issues such as cell clustering, dead cell removal and non-specific antibody binding are considered and potential solutions offered. The solutions offered may provide a starting point to improve the quality of cell separations achieved by both the novice and experienced researcher alike. PMID:23440031
Couldrey, Christine; Wells, David N
2013-01-01
Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a differentiated somatic cell is reset to a state resembling totipotency, the efficiency of SCNT is likely to remain low.
Couldrey, Christine; Wells, David N.
2013-01-01
Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic signature of a differentiated somatic cell is reset to a state resembling totipotency, the efficiency of SCNT is likely to remain low. PMID:23383311
Integrated fuel cell stack shunt current prevention arrangement
Roche, Robert P.; Nowak, Michael P.
1992-01-01
A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.
Quantitative Magnetic Separation of Particles and Cells using Gradient Magnetic Ratcheting
Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino
2016-01-01
Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting (MACS), are robust but perform coarse, qualitative separations based on surface antigen expression. We report a quantitative magnetic separation technology using high-force magnetic ratcheting over arrays of magnetically soft micro-pillars with gradient spacing, and use the system to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micro-pillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic-field. Particles with higher IOC separate and equilibrate along the miro-pillar array at larger pitches. We develop a semi-analytical model that predicts behavior for particles and cells. Using the system, LNCaP cells were separated based on the bound quantity of 1μm anti-EpCAM particles as a metric for expression. The ratcheting cytometry system was able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof of concept, EpCAM-labeled cells from patient blood were isolated with 74% purity, demonstrating potential towards a quantitative magnetic separation instrument. PMID:26890496
Large silver-cadmium technology program
NASA Technical Reports Server (NTRS)
Charlip, S.; Lerner, S.
1971-01-01
The effects of varying cell design on operation factors on the electrochemical performance of sealed, silver-cadmium cells were determined. A factorial experiment was conducted for all test cells constructed with organic separators. Three operating factors were evaluated: temperature, depth of discharge, and charge rate. The six construction factors considered were separator, absorber, electrolyte quantity, cadmium electrode type, cadmium-to-silver ratio, and auxiliary electrode. Test cells of 4 ampere-hour capacity were fabricated and cycled. The best performing cells, on a 94 minute orbit, at 40% depth of discharge, were those containing silver-treated fibrous sausage casings as the separator, and Teflon-ated, pressed cadmium electrodes. Cycling data of cells with inorganic separators (Astroset) are given. Best performance was shown by cells with nonwoven nylon absorbers. Rigid inorganic separators provided the best barrier to silver migration.
Fu, Peiliang; Zhang, Lei; Wu, Haishan; Cong, Ruijun; Chen, Song; Ding, Zheru; Hu, Kaimen
2013-03-01
To investigate the feasibility of rabbit synovial-derived mesenchymal stem cells (SMSCs) differentiating into fibrocartilage cells by the recombinant adenovirus vector mediated by bone morphogenetic protein 2/7 (BMP-2/7) genes in vitro. SMSCs were isolated and purified from 3-month-old New Zealand white rabbits [male or female, weighing (2.1 +/- 0.3) kg]; the morphology was observed; the cells were identified with immunocytological fluorescent staining, flow cytometry, and cell cycles. The adipogenic, osteogenic, and chondrogenic differentiations were detected. The recombinant plasmid of pAdTrack-BMP-2-internal ribosome entry site (IRES)-BMP-7 was constructed and then was used to infect SMSCs. The cell DNA content and the oncogenicity were tested to determine the safety. Then infected SMSCs were cultured in incomplete chondrogenic medium in vitro. Chondrogenic differentiation of infected SMSCs was detected by RT-PCR, immunofluorescent staining, and toluidine blue staining. SMSCs expressed surface markers of stem cells, and had multi-directional potential. The transfection efficiency of SMSCs infected by recombinant plasmid of pAdTrack-BMP-2-IRES-BMP-7 was about 70%. The safety results showed that infected SMSCs had normal double time, normal chromosome number, and normal DNA content and had no oncogenicity. At 21 days after cultured in incomplete chondrocyte medium, RT-PCR results showed SMSCs had increased expressions of collegan type I and collegan type II, particularly collegan type II; the expressions of RhoA and Sox-9 increased obviously. Immunofluorescent staining and toluidine blue staining showed differentiation of SMSCs into fibrocartilage cells. It is safe to use pAdTrack-BMP-2-IRES-BMP-7 for infecting SMSCs. SMSCs infected by pAdTrack-BMP-2-IRES-BMP-7 can differentiate into fibrocartilage cells spontaneously in vitro.
Improved Separators For Rechargeable Lithium Cells
NASA Technical Reports Server (NTRS)
Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald
1994-01-01
Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.
NASA Technical Reports Server (NTRS)
Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul
2010-01-01
The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.
Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.
Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino
2016-04-13
Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of ozone and peroxone on algal separation via dispersed air flotation.
Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C
2013-05-01
Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Predictors of seizure freedom after incomplete resection in children.
Perry, M S; Dunoyer, C; Dean, P; Bhatia, S; Bavariya, A; Ragheb, J; Miller, I; Resnick, T; Jayakar, P; Duchowny, M
2010-10-19
Incomplete resection of the epileptogenic zone (EZ) is the most important predictor of poor outcome after resective surgery for intractable epilepsy. We analyzed the contribution of preoperative and perioperative variables including MRI and EEG data as predictors of seizure-free (SF) outcome after incomplete resection. We retrospectively reviewed patients <18 years of age with incomplete resection for epilepsy with 2 years of follow-up. Fourteen preoperative and perioperative variables were compared in SF and non-SF (NSF) patients. We compared lesional patients, categorized by reason for incompleteness, to lesional patients with complete resection. We analyzed for effect of complete EEG resection on SF outcome in patients with incompletely resected MRI lesions and vice versa. Eighty-three patients with incomplete resection were included with 41% becoming SF. Forty-eight lesional patients with complete resection were included. Thirty-eight percent (57/151) of patients with incomplete resection and 34% (47/138) with complete resection were excluded secondary to lack of follow-up or incomplete records. Contiguous MRI lesions were predictive of seizure freedom after incomplete resection. Fifty-seven percent of patients incomplete by MRI alone, 52% incomplete by EEG alone, and 24% incomplete by both became SF compared to 77% of patients with complete resection (p = 0.0005). Complete resection of the MRI- and EEG-defined EZ is the best predictor of seizure freedom, though patients incomplete by EEG or MRI alone have better outcome compared to patients incomplete by both. More than one-third of patients with incomplete resection become SF, with contiguous MRI lesions a predictor of SF outcome.
Fuel cell system with separating structure bonded to electrolyte
Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel
2010-09-28
A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.
Perspectives on Social Network Analysis for Observational Scientific Data
NASA Astrophysics Data System (ADS)
Singh, Lisa; Bienenstock, Elisa Jayne; Mann, Janet
This chapter is a conceptual look at data quality issues that arise during scientific observations and their impact on social network analysis. We provide examples of the many types of incompleteness, bias and uncertainty that impact the quality of social network data. Our approach is to leverage the insights and experience of observational behavioral scientists familiar with the challenges of making inference when data are not complete, and suggest avenues for extending these to relational data questions. The focus of our discussion is on network data collection using observational methods because they contain high dimensionality, incomplete data, varying degrees of observational certainty, and potential observer bias. However, the problems and recommendations identified here exist in many other domains, including online social networks, cell phone networks, covert networks, and disease transmission networks.
Stripe-patterned thermo-responsive cell culture dish for cell separation without cell labeling.
Kumashiro, Yoshikazu; Ishihara, Jun; Umemoto, Terumasa; Itoga, Kazuyoshi; Kobayashi, Jun; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo
2015-02-11
A stripe-patterned thermo-responsive surface is prepared to enable cell separation without labeling. The thermo-responsive surface containing a 3 μm striped pattern exhibits various cell adhesion and detachment properties. A mixture of three cell types is separated on the patterned surface based on their distinct cell-adhesion properties, and the composition of the cells is analyzed by flow cytometry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large scale spontaneous synchronization of cell cycles in amoebae
NASA Astrophysics Data System (ADS)
Segota, Igor; Boulet, Laurent; Franck, Carl
2014-03-01
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.
Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies
NASA Astrophysics Data System (ADS)
Segota, Igor; Boulet, Laurent; Franck, David; Franck, Carl
2014-06-01
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state.
Tada, Shigeru; Hayashi, Masako; Eguchi, Masanori; Tsukamoto, Akira
2017-11-01
We propose a novel, high-performance dielectrophoretic (DEP) cell-separation flow chamber with a parallel-plate channel geometry. The flow chamber, consisting of a planar electrode on the top and an interdigitated-pair electrode array at the bottom, was developed to facilitate the separation of cells by creating a nonuniform AC electric field throughout the volume of the flow chamber. The operation and performance of the device were evaluated using live and dead human epithermal breast (MCF10A) cells. The separation dynamics of the cell suspension in the flow chamber was also investigated by numerically simulating the trajectories of individual cells. A theoretical model to describe the dynamic cell behavior under the action of DEP, including dipole-dipole interparticle, viscous, and gravitational forces, was developed. The results demonstrated that the live cells traveling through the flow chamber congregated into sites where the electric field gradient was minimal, in the middle of the flow stream slightly above the centerlines of the grounded electrodes at the bottom. Meanwhile, the dead cells were trapped on the edges of the high-voltage electrodes at the bottom. Cells were thus successfully separated with a remarkably high separation ratio (∼98%) at the appropriately tuned field frequency and applied voltage. The numerically predicted behavior and spatial distribution of the cells during separation also showed good agreement with those observed experimentally.
NASA Technical Reports Server (NTRS)
Todd, Paul; Plank, Lindsay D.; Kunze, M. Elaine; Lewis, Marian L.; Morrison, Dennis R.
1986-01-01
The use of free-fluid electrophoresis methods to separate tissue cells having a specific function is discussed. It is shown that cells suspended by trypsinization from cultures of human embryonic kidney are electrophoretically heterogeneous and tolerate a wide range of electrophoresis buffers and conditions without significant attenuation of function. Moreover, these cells do not separate electrophoretically on the basis of size or cell position alone and can be separated according to their ability to give rise to progeny that produce specific plasminogen activators.
Separation of cells from the rat anterior pituitary gland
NASA Technical Reports Server (NTRS)
Hymer, W. C.; Hatfield, J. Michael
1984-01-01
Data concerned with analyzing the cellular organization of the rat anterior pituitary gland are examined. The preparation of the cell suspensions and the methods used to separate pituitary cell types are described. Particular emphasis is given to velocity sedimentation at unit gravity, density gradient centrifugation, affinity methods, fluorescence activated cell sorting, and density gradient and continuous-flow electrophoresis. The difficulties encountered when attempting to compare data from different pituitary cell separation studies are discussed, and results from various experiments are presented. The functional capabilities of the separated cell populations can be tested in various culture systems.
Optimization of yield in magnetic cell separations using nickel nanowires of different lengths.
Hultgren, Anne; Tanase, Monica; Felton, Edward J; Bhadriraju, Kiran; Salem, Aliasger K; Chen, Christopher S; Reich, Daniel H
2005-01-01
Ferromagnetic nanowires are shown to perform both high yield and high purity single-step cell separations on cultures of NIH-3T3 mouse fibroblast cells. The nanowires are made by electrochemical deposition in nanoporous templates, permitting detailed control of their chemical and physical properties. When added to fibroblast cell cultures, the nanowires are internalized by the cells via the integrin-mediated adhesion pathway. The effectiveness of magnetic cell separations using Ni nanowires 350 nm in diameter and 5-35 micrometers long in field gradients of 40 T/m was compared to commercially available superparamagnetic beads. The percent yield of the separated populations is found to be optimized when the length of the nanowire is matched to the diameter of the cells in the culture. Magnetic cell separations performed under these conditions achieve 80% purity and 85% yield, a 4-fold increase over the beads. This effect is shown to be robust when the diameter of the cell is changed within the same cell line using mitomycin-C.
Free flow electrophoresis in space shuttle program (biotex)
NASA Astrophysics Data System (ADS)
Hannig, Kurt; Bauer, Johann
In the space shuttle program free flow electrophoresis will be applied for separation of proteins, biopolymers and cells. Proteins are to be separated according to the ``Feldsprung-Gradienten'' procedure by Prof. H. Wagner, University of Saarbruecken, biopolymers are to be separated by the isotachophoresis technique by Prof. Schmitz, University of Muenster and we intend to separate cells in order to increase the efficiency of recovery of hybrid cells after electrofusion performed under microgravity in collaboration with Prof. U. Zimmermann, University of Wuerzburg. There are supposed two ways for reaching this goal: Enrichment of cells before electrofusion may enhance the probability that the cells of interest are immortalized. Separation of cells after electrofusion may help to clone the hybrid cells of interest. Under microgravity, the combination of improved electrophoresis with higher electrofusion rates may provide new possibilities for immortalization of cells. This may be a new way to obtain cellular products, which are physiologically glycosylated.
Characterization, cloning and immunolocalization of a coronin homologue in Trichomonas vaginalis.
Bricheux, G; Coffe, G; Bayle, D; Brugerolle, G
2000-06-01
On adhesion to host cells the flagellate Trichomonas vaginalis switches to an amoeboid form rich in actin microfilaments. We have undertaken the identification of actin-associated proteins that regulate actin dynamics. A monoclonal antibody 4C12 raised against a cytoskeletal fraction of T. vaginalis labeled a protein doublet at circa 50 kDa. These two bands were recognized by the antibody against Dictyostelium discoideum coronin. During cell extraction and actin polymerization, T. vaginalis coronin cosedimented with F-actin. By two-dimensional gel electrophoresis, the protein doublet was separated into two sets of isoforms covering two Ip zones around 6 and 7. By screening a T. vaginalis library with 4C12, two clones Cor 1 and Cor 2 were isolated. This gene duplicity is a particularity among unicellular organisms examined. The complete sequence of the gene Cor 1 encodes a 435-residue protein with a calculated molecular mass of 48 kDa and Ip of 5.58. The incomplete sequence Cor 2 was very similar but with a more basic calculated Ip than Cor 1 on the same region. T. vaginalis coronin had 50% similarity with the coronin family, possessing the five WD-repeats and a leucine zipper in its C-terminal part. Double immunofluorescence labeling showed that coronin mainly colocalized with actin at the periphery of the adherent amoeboid cells. However, coronin labeling displayed patches within a reticular array. Immunogold electron microscopy confirmed the coronin labeling in the actin-rich microfilamentous fringe beneath the plasma membrane, with accumulation in phagocytic zones and pseudopodial extensions. In T. vaginalis, one of the first emerging lineage of eukaryotes, coronin seems to play an important role in actin dynamics and may be a downstream target of a signaling mechanism for the cytoskeleton reorganization.
Bai, Yan; Tan, Xungang; Zhang, Haifeng; Liu, Chengdong; Zhao, Beibei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng
2014-01-01
The receptor-tyrosine kinase Ror2 acts as an alternative receptor or co-receptor for Wnt5a and mediates Wnt5a-induced convergent extension movements during embryogenesis in mice and Xenopus as well as the polarity and migration of several cell types during development. However, little is known about whether Ror2 function is conserved in other vertebrates or is involved in other non-canonical Wnt ligands in vivo. In this study we demonstrated that overexpression of dominant-negative ror2 (ror2-TM) mRNA in zebrafish embryos resulted in convergence and extension defects and incompletely separated eyes, which is consistent with observations from slb/wnt11 mutants or wnt11 knockdown morphants. Moreover, the co-injection of ror2-TM mRNA and a wnt11 morpholino or the coexpression of ror2 and wnt11 in zebrafish embryos synergetically induced more severe convergence and extension defects. Transplantation studies further demonstrated that the Ror2 receptor responded to the Wnt11 ligand and regulated cell migration and cell morphology during gastrulation. DnRor2 inhibited the action of Wnt11, which was revealed by a decreased percentage of Wnt11-induced convergence and extension defects. Ror2 physically interacts with Wnt11. The intracellular Tyr-647 and Ser-863 sites of Ror2 are essential for mediating the action of Wnt11. Dishevelled and RhoA act downstream of Wnt11-Ror2 to regulate convergence and extension movements. Overall, our data suggest an important role of Ror2 in mediating Wnt11 signaling and in regulating convergence and extension movements in zebrafish. PMID:24928507
NASA Astrophysics Data System (ADS)
Zenkevich, I. G.; Pavlovskii, A. A.
2016-10-01
It is shown that the gas chromatographic separation of enantiomers on columns with achiral nonpolar stationary phases is principally possible as a result of the dynamic modification of stationary phases by sorbates under analysis. It is found that a number of key characteristic features is intrinsic to such separation: it can be only partial, it does not occur for all chromatographic columns, and it is observed only for some compounds and only within narrow ranges of quantities of sorbates that are close to the limits of mass overload of chromatographic systems. These characteristic features are illustrated by the examples of separating (1 R,5 R)-(+)- and (1 S,5 S)-(-)-α-pinenes on a WCOT column with an RTX-5 phase. The main characteristic feature of the separation of enantiomers as a result of the dynamic modification of stationary phases is the nonconformity of peaks in chromatograms with two individual enantiomers, compared to other ways and means for their separation; the first eluting peak belongs to the enantiomer that predominates in a mixture irrespective of its configuration, while the second peak corresponds to the racemic mixture of enantiomers; i.e., the ratio of peak areas in chromatograms does not correspond to the actual ratio of enantiomers in samples under analysis and is strongly distorted as a result of their incomplete separation. It is concluded that the separation of racemic mixtures in achiral systems is fundamentally impossible under any conditions, and this is one of the key criteria of the validity of the considered concept as a whole.
Xu, Chun-Xiu; Yin, Xue-Feng
2011-02-04
A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.
Krishnarajah, Girishanthy; Duh, Mei Sheng; Korves, Caroline; Demissie, Kitaw
2016-01-01
Background This study (NCT01682005) aims to assess clinical and cost impacts of complete and incomplete rotavirus (RV) vaccination. Methods Beneficiaries who continuously received medical and pharmacy benefits since birth were identified separately in Truven Commercial Claims and Encounters (2000–2011) and Truven Medicaid Claims (2002–2010) and observed until the first of end of insurance eligibility or five years. Infants with ≥1 RV vaccine within the vaccination window (6 weeks-8 months) were divided into completely and incompletely vaccinated cohorts. Historically unvaccinated (before 2007) and contemporarily unvaccinated (2007 and after) cohorts included children without RV vaccine. Claims with International Classification of Disease 9th edition (ICD-9) codes for diarrhea and RV were identified. First RV episode incidence, RV-related and diarrhea-related healthcare resource utilization after 8 months old were calculated and compared across groups. Poisson regressions were used to generate incidence rates with 95% confidence intervals (CIs). Mean total, inpatient, outpatient and emergency room costs for first RV and diarrhea episodes were calculated; bootstrapping was used to construct 95% CIs to evaluate cost differences. Results 1,069,485 Commercial and 515,557 Medicaid patients met inclusion criteria. Among commercially insured, RV incidence per 10,000 person-years was 3.3 (95% CI 2.8–3.9) for completely, 4.0 (95% CI 3.3–5.0) for incompletely vaccinated, and 20.9 (95% CI 19.5–22.4) for contemporarily and 40.3 (95% CI 38.6–42.1) for historically unvaccinated. Rates in Medicaid were 7.5 (95% CI 4.8–11.8) for completely, 9.0 (95% CI 6.5–12.3) for incompletely vaccinated, and 14.6 (95% CI 12.8–16.7) for contemporarily and 52.0 (95% CI 50.2–53.8) for historically unvaccinated. Mean cost for first RV episode per cohort member was $15.33 (95% CI $12.99-$18.03) and $4.26 ($95% CI $2.34-$6.35) lower for completely vaccinated versus contemporarily unvaccinated in Commercial and Medicaid, respectively. Conclusions RV vaccination results in significant reduction in RV infection. There is evidence of indirect benefit to unvaccinated individuals. PMID:26751375
Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats
NASA Technical Reports Server (NTRS)
Maklad, A.; Fritzsch, B.
1999-01-01
The endorgan-specific distribution of vestibular ganglion cells was studied in neonatal and postnatal rats and mice using indocarbocyanine dye (DiI) and dextran amines for retrograde and anterograde labeling. Retrograde DiI tracing from the anterior vertical canal labeled neurons scattered throughout the whole superior vestibular ganglion, with denser labeling at the dorsal and central regions. Horizontal canal neurons were scattered along the dorsoventral axis with more clustering toward the dorsal and ventral poles of this axis. Utricular ganglion cells occupied predominantly the central region of the superior vestibular ganglion. This utricular population overlapped with both the anterior vertical and horizontal canals' ganglion cells. Posterior vertical canal neurons were clustered in the posterior part of the inferior vestibular ganglion. The saccular neurons were distributed in the two parts of the vestibular ganglion, the superior and inferior ganglia. Within the inferior ganglion, the saccular neurons were clustered in the anterior part. In the superior ganglion, the saccular neurons were widely scattered throughout the whole ganglion with more numerous neurons at the posterior half. Small and large neurons were labeled from all endorgans. Examination of the fiber trajectory within the superior division of the vestibular nerve showed no clear lamination of the fibers innervating the different endorgans. These results demonstrate an overlapping pattern between the different populations within the superior ganglion, while in the inferior ganglion, the posterior canal and saccular neurons show tighter clustering but incomplete segregation. This distribution implies that the ganglion cells are assigned for their target during development in a stochastic rather than topographical fashion.
Separation technologies for stem cell bioprocessing.
Diogo, Maria Margarida; da Silva, Cláudia Lobato; Cabral, Joaquim M S
2012-11-01
Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell-derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato-oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost-effective. Important examples are the need for high-resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity-based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical-based methods requiring no cell labeling and integrated with microscale technologies. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawes, M.C.
1995-03-01
The objective of this research was to develop a model system to study border cell separation in transgenic pea roots. In addition, the hypothesis that genes encoding pectolytic enzymes in the root cap play a role in the programmed separation of root border cells from the root tip was tested. The following objectives have been accomplished: (1) the use of transgenic hairy roots to study border cell separation has been optimized for Pisum sativum; (2) a cDNA encoding a root cap pectinmethylesterase (PME) has been cloned; (3) PME and polygalacturonase activities in cell walls of the root cap have beenmore » characterized and shown to be correlated with border cell separation. A fusion gene encoding pectate lyase has also been transformed into pea hairy root cells.« less
Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.
Caplan, Z; Melilli, C; Barbano, D M
2013-04-01
The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Stacking Oxygen-Separation Cells
NASA Technical Reports Server (NTRS)
Schroeder, James E.
1991-01-01
Simplified configuration and procedure developed for assembly of stacks of solid-electrolyte cells separating oxygen from air electrochemically. Reduces number of components and thus reduces probability of such failures as gas leaks, breakdown of sensitive parts, and electrical open or short circuits. Previous, more complicated version of cell described in "Improved Zirconia Oxygen-Separation Cell" (NPO-16161).
Antibody enhancement of free-flow electrophoresis
NASA Technical Reports Server (NTRS)
Cohly, H. H. P.; Morrison, Dennis R.; Atassi, M. Zouhair
1988-01-01
Specific T cell clones and antibodies (ABs) were developed to study the efficiency of purifying closely associated T cells using Continuous Flow Electrophoresis System. Enhanced separation is accomplished by tagging cells first with ABs directed against the antigenic determinants on the cell surface and then with ABs against the Fc portion of the first AB. This second AB protrudes sufficiently beyond the cell membrane and glycocalyx to become the major overall cell surface potential determinant and thus causes a reduction of electrophoretic mobility. This project was divided into three phases. Phase one included development of specific T cell clones and separation of these specific clones. Phase two extends these principles to the separation of T cells from spleen cells and immunized lymph node cells. Phase three applies this double antibody technique to the separation of T cytotoxic cells from bone marrow.
NASA Technical Reports Server (NTRS)
Wolgemuth, D. J.; Gizang-Ginsberg, E.; Engelmyer, E.; Gavin, B. J.; Ponzetto, C.
1985-01-01
The use of a self-contained unit-gravity cell separation apparatus for separation of populations of mouse testicular cells is described. The apparatus, a Celsep (TM), maximizes the unit area over which sedimentation occurs, reduces the amount of separation medium employed, and is quite reproducible. Cells thus isolated have been good sources for isolation of DNA, and notably, high molecular weight RNA.
Sun, Li; Yang, Dong-lei; Kong, Yu; Chen, Ying; Li, Xiao-Zun; Zeng, Long-Jun; Li, Qun; Wang, Er-Tao; He, Zu-Hua
2014-02-01
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss-of-function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild-type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1-overexpressing (GIF1-OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild-type plants. More importantly, higher levels of callose were deposited in GIF1-OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1-OE plants when compared with the wild-type plants. We also found that defence-related genes were constitutively activated in the GIF1-OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence. © 2013 BSPP AND JOHN WILEY & SONS LTD.
Cerebral vasculopathy in children with sickle cell anemia.
Fasano, Ross M; Meier, Emily R; Hulbert, Monica L
2015-01-01
Sickle cell anemia (SCA)-associated cerebral vasculopathy and moyamoya is a unique entity reflecting the abnormal interactions between sickled red blood cells (RBCs) and the cerebral arterial endothelium. Endothelial injury, coagulation activation, and the inflammatory response generated by sickled RBCs are implicated in the development of cerebral vasculopathy, but the pathophysiology remains incompletely understood. SCA-specific screening and treatment guidelines have successfully reduced the incidence of overt strokes in this high-risk population. However, despite aggressive hematological management, many children with cerebral vasculopathy due to SCA have progressive vasculopathy and recurrent strokes; therefore, more effective therapies, such as revascularization surgery and curative hematopoietic stem cell transplant, are urgently needed. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The content of water, free amino acids, amino acid metabolites, crude protein, the carotene pigments ß-carotene and lycopene, and 9 characterized and 2 incompletely characterized individual phenolic (flavonoid) compounds of 12 greenhouse-grown cherry tomato varieties of various colors (green, yellow...
P. J. Weimer; R. G. Koegel; Linda F. Lorenz; Charles R. Frihart; William R. Kenealy
2005-01-01
Fermentation residues (consisting of incompletely fermented fiber, adherent bacterial cells, and a glycocalyx material that enhanced bacterial adherence) were obtained by growing the anaerobic cellulolytic bacteria Ruminococcus albus 7 or Clostridium thermocellum ATCC 27405 on a fibrous fraction derived from lucerne (Medicago sativa L.). The dried residue was able to...
Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki
2014-05-07
Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process.
NASA Astrophysics Data System (ADS)
Andrews, Stephen K.; Kelvin, Lee S.; Driver, Simon P.; Robotham, Aaron S. G.
2014-01-01
The 2MASS, UKIDSS-LAS, and VISTA VIKING surveys have all now observed the GAMA 9hr region in the Ks band. Here we compare the detection rates, photometry, basic size measurements, and single-component GALFIT structural measurements for a sample of 37 591 galaxies. We explore the sensitivity limits where the data agree for a variety of issues including: detection, star-galaxy separation, photometric measurements, size and ellipticity measurements, and Sérsic measurements. We find that 2MASS fails to detect at least 20% of the galaxy population within all magnitude bins, however for those that are detected we find photometry is robust (± 0.2 mag) to 14.7 AB mag and star-galaxy separation to 14.8 AB mag. For UKIDSS-LAS we find incompleteness starts to enter at a flux limit of 18.9 AB mag, star-galaxy separation is robust to 16.3 AB mag, and structural measurements are robust to 17.7 AB mag. VISTA VIKING data are complete to approximately 20.0 AB mag and structural measurements appear robust to 18.8 AB mag.
Sanchez-Antequera, Yolanda; Mykhaylyk, Olga; van Til, Niek P; Cengizeroglu, Arzu; de Jong, J Henk; Huston, Marshall W; Anton, Martina; Johnston, Ian C D; Pojda, Zygmunt; Wagemaker, Gerard; Plank, Christian
2011-04-21
Research applications and cell therapies involving genetically modified cells require reliable, standardized, and cost-effective methods for cell manipulation. We report a novel nanomagnetic method for integrated cell separation and gene delivery. Gene vectors associated with magnetic nanoparticles are used to transfect/transduce target cells while being passaged and separated through a high gradient magnetic field cell separation column. The integrated method yields excellent target cell purity and recovery. Nonviral and lentiviral magselectofection is efficient and highly specific for the target cell population as demonstrated with a K562/Jurkat T-cell mixture. Both mouse and human enriched hematopoietic stem cell pools were effectively transduced by lentiviral magselectofection, which did not affect the hematopoietic progenitor cell number determined by in vitro colony assays. Highly effective reconstitution of T and B lymphocytes was achieved by magselectofected murine wild-type lineage-negative Sca-1(+) cells transplanted into Il2rg(-/-) mice, stably expressing GFP in erythroid, myeloid, T-, and B-cell lineages. Furthermore, nonviral, lentiviral, and adenoviral magselectofection yielded high transfection/transduction efficiency in human umbilical cord mesenchymal stem cells and was fully compatible with their differentiation potential. Upscaling to a clinically approved automated cell separation device was feasible. Hence, once optimized, validated, and approved, the method may greatly facilitate the generation of genetically engineered cells for cell therapies.
NASA Technical Reports Server (NTRS)
Harkness, J. D.
1975-01-01
Several groups of nickel cadmium cells were tested for the durability of their separator materials. The cells were rated at 6.0 ampere-hours, and contained double ceramic seals. Two cells in each group were fitted with pressure gauge assemblies. Results are presented for various brands of separator materials.
Method for separating biological cells. [suspended in aqueous polymer systems
NASA Technical Reports Server (NTRS)
Brooks, D. E. (Inventor)
1980-01-01
A method for separating biological cells by suspending a mixed cell population in a two-phase polymer system is described. The polymer system consists of droplet phases with different surface potentials for which the cell populations exhibit different affinities. The system is subjected to an electrostatic field of sufficient intensity to cause migration of the droplets with an attendant separation of cells.
Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C
2014-08-05
The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.
Ridefelt, Peter; Hilsted, Linda; Juul, Anders; Hellberg, Dan; Rustad, Pål
2018-05-28
Reference intervals are crucial tools aiding clinicians when making medical decisions. However, for children such values often are lacking or incomplete. The present study combines data from separate pediatric reference interval studies of Denmark and Sweden in order to increase sample size and to include also pre-school children who were lacking in the Danish study. Results from two separate studies including 1988 healthy children and adolescents aged 6 months to 18 years of age were merged and recalculated. Eighteen general clinical chemistry components were measured on Abbott and Roche platforms. To facilitate commutability, the NFKK Reference Serum X was used. Age- and gender-specific pediatric reference intervals were defined by calculating 2.5 and 97.5 percentiles. The data generated are primarily applicable to a Nordic population, but could be used by any laboratory if validated for the local patient population.
Akram, Pakeeza; Liao, Li
2017-12-06
Identification of common genes associated with comorbid diseases can be critical in understanding their pathobiological mechanism. This work presents a novel method to predict missing common genes associated with a disease pair. Searching for missing common genes is formulated as an optimization problem to minimize network based module separation from two subgraphs produced by mapping genes associated with disease onto the interactome. Using cross validation on more than 600 disease pairs, our method achieves significantly higher average receiver operating characteristic ROC Score of 0.95 compared to a baseline ROC score 0.60 using randomized data. Missing common genes prediction is aimed to complete gene set associated with comorbid disease for better understanding of biological intervention. It will also be useful for gene targeted therapeutics related to comorbid diseases. This method can be further considered for prediction of missing edges to complete the subgraph associated with disease pair.
Batrouni, G. G.; Rousseau, V. G.; Scalettar, R. T.; ...
2014-11-17
Here, we study the phase diagram of the one-dimensional bosonic Hubbard model with contact (U) and near neighbor (V ) interactions focusing on the gapped Haldane insulating (HI) phase which is characterized by an exotic nonlocal order parameter. The parameter regime (U, V and μ) where this phase exists and how it competes with other phases such as the supersolid (SS) phase, is incompletely understood. We use the Stochastic Green Function quantum Monte Carlo algorithm as well as the density matrix renormalization group to map out the phase diagram. The HI exists only at = 1, the SS phase existsmore » for a very wide range of parameters (including commensurate fillings) and displays power law decay in the one body Green function were our main conclusions. Additionally, we show that at fixed integer density, the system exhibits phase separation in the (U, V ) plane.« less
Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Britton, D. L.
1983-01-01
Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1979-01-01
Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.
Kowalewicz-Kulbat, M; Ograczyk, E; Krawczyk, K; Rudnicka, W; Fol, M
2016-12-01
Dendritic cells (DCs) are increasingly being used for multiple applications and are useful tools for many immunotherapeutic strategies. The understanding of the possible impact of the DCs-generation methods on the biological capacities of these cells is therefore essential. Although the immunomagnetic separation is regarded as a fast and accurate method yielding cells with the high purity and efficiency, still little is known about its impact on the properties of the generated DCs. The aim of this study was to compare the morphology of the monocyte derived dendritic cells (MoDCs), generated from monocytes selected with anti-CD14 mAbs (positive separation) and treated with anti-CD3, -CD7, -CD16, -CD19, -CD56, -CD123, glycophorin A (negative separation), using laser scanning microscopy. We found that the type of the immunomagnetic separation method used strongly influences the shape and cell dimension of the MoDCs. We observed that the height of both immature and LPS-matured DCs generated from monocytes isolated by negative separation was significantly higher compared to the cells obtained by positive separation. Copyright © 2016 Elsevier B.V. All rights reserved.
Two-dimensional numerical modeling for separation of deformable cells using dielectrophoresis.
Ye, Ting; Li, Hua; Lam, K Y
2015-02-01
In this paper, we numerically explore the possibility of separating two groups of deformable cells, by a very small dielectrophoretic (DEP) microchip with the characteristic length of several cell diameters. A 2D two-fluid model is developed to describe the separation process, where three types of forces are considered, the aggregation force for cell-cell interaction, the deformation force for cell deformation, and the DEP force for cell dielectrophoresis. As a model validation, we calculate the levitation height of a cell subject to DEP force, and compare it with the experimental data. After that, we simulate the separation of two groups of cells with different dielectric properties at high and low frequencies, respectively. The simulation results show that the deformable cells can be separated successfully by a very small DEP microchip, according to not only their different permittivities at the high frequency, but also their different conductivities at the low frequency. In addition, both two groups of cells have a shape deformation from an original shape to a lopsided slipper shape during the separation process. It is found that the cell motion is mainly determined by the DEP force arising from the electric field, causing the cells to deviate from the centerline of microchannel. However, the cell deformation is mainly determined by the deformation force arising from the fluid flow, causing the deviated cells to undergo an asymmetric motion with the deformation of slipper shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magnetosphere imager science definition team: Executive summary
NASA Technical Reports Server (NTRS)
Armstrong, T. P.; Gallagher, D. L.; Johnson, C. L.
1995-01-01
For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in many different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data and help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report summarizes the scientific rationale for such a magnetospheric imaging mission and outlines a mission concept for its implementation.
Superconductivity achieved at over liquid nitrogen temperature by (mixed rare earths)-Ba-Cu oxides
NASA Astrophysics Data System (ADS)
Kishio, Kohji; Kuwahara, Kazuyuki; Kitazawa, Koichi; Fueki, Kazuo; Nakamura, Osamu
1987-05-01
Superconducting oxides were fabricated by reaction of powders of BaCO3, CuO and mixed rare earth (RE) carbonates at compositions expressed as (RE)1Ba2Cu3O(9-y). Two types of incompletely separated raw materials of mixed rare earths, namely, heavy rare earths (HRE) and medium rare earths (MRE), were examined. The zero-resistivity critical temperatures were observed at 92.5 K for the (HRE)-Ba-Cu-O and 85.0 K for the (MRE)-Ba-Cu-O systems, respectively, both of which were well above the boiling point of liquid nitrogen.
[A new HPLC procedure for cyclamate in food with pre-chromatographic derivatization].
Schwedt, G; Hauck, M
1988-08-01
A high-pressure liquid chromatography (HPLC) procedure for the detection of cyclamate in liquid and solid samples is presented, which depends on oxidation and the reaction of cyclohexylamine with o-phthaldialdehyde to form a condensation product. The results of the HPLC analysis, using an RP-C 18 separation system with UV detection at 242 nm are reported. Contents, from 2 to 400 mg/l, can be detected in less than 2 h (HPLC analysis within 20 min) with relative standard deviations of 4%. Only for cucumber infusions were incomplete recoveries of 68% obtained.
Magnetosphere imager science definition team interim report
NASA Technical Reports Server (NTRS)
Armstrong, T. P.; Johnson, C. L.
1995-01-01
For three decades, magnetospheric field and plasma measurements have been made by diverse instruments flown on spacecraft in may different orbits, widely separated in space and time, and under various solar and magnetospheric conditions. Scientists have used this information to piece together an intricate, yet incomplete view of the magnetosphere. A simultaneous global view, using various light wavelengths and energetic neutral atoms, could reveal exciting new data nd help explain complex magnetospheric processes, thus providing a clear picture of this region of space. This report documents the scientific rational for such a magnetospheric imaging mission and provides a mission concept for its implementation.
A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation.
Kovács, I; Julesz, B
1993-08-15
Detection of fragmented closed contours against a cluttered background occurs much beyond the local coherence distance (maximal separation between segments) of nonclosed contours. This implies that the extent of interaction between locally connected detectors is boosted according to the global stimulus structure. We further show that detection of a target probe is facilitated when the probe is positioned inside a closed circle. To explain the striking contour segregation ability found here, and performance enhancement inside closed boundaries, we propose the existence of a synergetic process in early vision.
Assessment of chemically separated carbon nanotubes for nanoelectronics.
Zhang, Li; Zaric, Sasa; Tu, Xiaomin; Wang, Xinran; Zhao, Wei; Dai, Hongjie
2008-02-27
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.
Wall effects in continuous microfluidic magneto-affinity cell separation.
Wu, Liqun; Zhang, Yong; Palaniapan, Moorthi; Roy, Partha
2010-05-01
Continuous microfluidic magneto-affinity cell separator combines unique microscale flow phenomenon with advantageous nanobead properties, to isolate cells with high specificity. Owing to the comparable size of the cell-bead complexes and the microchannels, the walls of the microchannel exert a strong influence on the separation of cells by this method. We present a theoretical and experimental study that provides a quantitative description of hydrodynamic wall interactions and wall rolling velocity of cells. A transient convection model describes the transport of cells in two-phase microfluidic flow under the influence of an external magnetic field. Transport of cells along the microchannel walls is also considered via an additional equation. Results show the variation of cell flux in the fluid phases and the wall as a function of a dimensionless parameter arising in the equations. Our results suggest that conditions may be optimized to maximize cell separation while minimizing contact with the wall surfaces. Experimentally measured cell rolling velocities on the wall indicate the presence of other near-wall forces in addition to fluid shear forces. Separation of a human colon carcinoma cell line from a mixture of red blood cells, with folic acid conjugated 1 microm and 200 nm beads, is reported.
Impact of surgical margins on survival of 37 dogs with massive hepatocellular carcinoma.
Matsuyama, A; Takagi, S; Hosoya, K; Kagawa, Y; Nakamura, K; Deguchi, T; Takiguchi, M
2017-09-01
To compare the survival of dogs with completely resected massive hepatocellular carcinoma (HCC) with that of dogs in which HCC were incompletely excised. A retrospective cohort study was conducted. Dogs that underwent surgical excision of massive HCC between November 2006 and April 2015 were included. Dogs that died in the perioperative period or were lost to follow-up within 2 months after surgery were excluded. Data were collected from the medical records and a single pathologist examined all available histology slides to confirm the diagnosis of HCC. Surgical margins were defined as complete if no neoplastic cells were seen at the edge of excised tissues, based on original histopathology reports. Progression-free survival (PFS) and overall survival (OS) were compared between dogs with complete surgical margins (CM) and those with incomplete margins (IM) using a log-rank test. Of the 37 dogs included in the study, 25 were allocated to the CM group and 12 to the IM group. Progressive local disease developed after surgery in three dogs in the CM group and seven dogs in the IM group. Three dogs in the CM group and five dogs in the IM group died due to tumour progression. Median PFS was longer for dogs in the CM group (1,000 (95% CI=562-1,438) days) compared to dogs in the IM group (521 (95% CI=243-799) days; p=0.007). OS was also longer for dogs in the CM group (>1,836 days) compared to those in the IM group (median 765 (95% CI=474-1,056) days; p=0.02). Compared with complete resection, incomplete resection decreased PFS and OS in dogs with massive HCC. Dogs with incompletely excised HCC should be closely monitored for local recurrence, although median OS was >2 years following incomplete excision. Further prospective studies are warranted to confirm these findings.
Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek
2016-06-01
The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.
Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment
NASA Astrophysics Data System (ADS)
Grübl, Daniel; Bessler, Wolfgang G.
2015-11-01
Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).
SERCA directs cell migration and branching across species and germ layers
Lansdale, Nick; Navarro, Sonia; Truong, Thai V.; Bower, Dan J.; Featherstone, Neil C.; Connell, Marilyn G.; Al Alam, Denise; Frey, Mark R.; Trinh, Le A.; Fernandez, G. Esteban; Warburton, David; Fraser, Scott E.; Bennett, Daimark; Jesudason, Edwin C.
2017-01-01
ABSTRACT Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding. PMID:28821490
Chen, Ming; Lin, Yong-Qing; Xie, Shuang-Lun; Wu, Hong-Fu; Wang, Jing-Feng
2011-04-01
Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.
Liang, Wenfeng; Zhao, Yuliang; Liu, Lianqing; Wang, Yuechao; Dong, Zaili; Li, Wen Jung; Lee, Gwo-Bin; Xiao, Xiubin; Zhang, Weijing
2014-01-01
Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP) force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell) sample from red blood cells (RBCs) with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK) chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for efficient and effective purification of Raji cells from RBCs.
Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis.
Zhou, Hao; White, Lee R; Tilton, Robert D
2005-05-01
Colloidal particles and biological cells are patterned and separated laterally adjacent to a micropatterned electrode array by applying AC electric fields that are principally oriented normally to the electrode array. This is demonstrated for yeast cells, red blood cells, and colloidal polystyrene particles of different sizes and zeta-potentials. The separation mechanism is observed experimentally to depend on the applied field frequency and voltage. At high frequencies, particles position themselves in a manner that is consistent with dielectrophoresis, while at low frequencies, the positioning is explained in terms of a strong coupling between gravity, the vertical component of the dielectrophoretic force, and the Stokes drag on particles induced by AC electroosmotic flow. Compared to high frequency dielectrophoretic separations, the low frequency separations are faster and require lower applied voltages. Furthermore, the AC electroosmosis coupling with dielectrophoresis may enable cell separations that are not feasible based on dielectrophoresis alone.
EGF Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival
Mardin, Balca R.; Isokane, Mayumi; Cosenza, Marco R.; Krämer, Alwin; Ellenberg, Jan; Fry, Andrew M.; Schiebel, Elmar
2014-01-01
Summary Timely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation. Premature separation of centrosomes decreases the requirement for the major mitotic kinesin Eg5 for spindle assembly, accelerates mitosis and decreases the rate of chromosome missegregation. Importantly, EGF stimulation impacts upon centrosome separation and mitotic progression to different degrees in different cell lines. Cells with high EGFR levels fail to arrest in mitosis upon Eg5 inhibition. This has important implications for cancer therapy since cells with high centrosomal response to EGF are more susceptible to combinatorial inhibition of EGFR and Eg5. PMID:23643362
Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Britton, D. L.
1983-01-01
Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571
Neuroblastoma: treatment outcome after incomplete resection of primary tumors.
Moon, Suk-Bae; Park, Kwi-Won; Jung, Sung-Eun; Youn, Woong-Jae
2009-09-01
For International Neuroblastoma Staging System (INSS) stages III or IV neuroblastoma (intermediate or high risk), complete excision of the primary tumor is not always feasible. Most current studies on the treatment outcome of these patients have reported on the complete excision status. The aim of this study is to review the treatment outcome after the incomplete resection. The medical records of 37 patients that underwent incomplete resection between January 1986 and December 2005 were reviewed retrospectively. Incomplete resection was assessed by review of the operative notes and postoperative computerized tomography. Age, gender, tumor location, INSS stage, N-myc gene copy number, pre- and postoperative therapy, and treatment outcome were reviewed. The treatment outcome was evaluated according to the postoperative treatment protocol in the high-risk group. Intermediate-risk patients were treated with conventional chemotherapy, isotretinoin (ITT) and interleukin-2 (IL-2). High-risk patients were treated with peripheral blood stem cell transplantation (PBSCT), ITT, and IL-2 (N = 11). Before the introduction of PBSCT, the high-risk patients were also treated with the conventional chemotherapy (N = 19). Intermediate-risk patients (N = 5) currently have no evidence of disease (NED). For the high-risk patients (N = 32), 19 patients were treated with chemotherapy alone; 15 patients died of their disease while four patients currently have an NED status. Eight of 11 patients that underwent PBSCT are currently alive. For intermediate risk, conventional chemotherapy appears to be acceptable treatment. However, for high-risk patients, every effort should be made to control residual disease including the use of myeloablative chemotherapy, differentiating agents and immune-modulating agents.
Functional recovery in the avian ear after hair cell regeneration.
Smolders, J W
1999-01-01
Trauma to the inner ear in birds, due to acoustic overstimulation or ototoxic aminoglycosides, can lead to hair cell loss which is followed by regeneration of new hair cells. These processes are paralleled by hearing loss followed by significant functional recovery. After acoustic trauma, functional recovery is rapid and nearly complete. The early and major part of functional recovery after sound trauma occurs before regenerated hair cells become functional. Even very intense sound trauma causes loss of only a proportion of the hair cell population, mainly so-called short hair cells residing on the abneural mobile part of the avian basilar membrane. Uncoupling of the tectorial membrane from the hair cells during sound overexposure may serve as a protection mechanism. The rapid functional recovery after sound trauma appears not to be associated with regeneration of the lost hair cells, but with repair processes involving the surviving hair cells. Small residual functional deficits after recovery are most likely associated with the missing upper fibrous layer of the tectorial membrane which fails to regenerate after sound trauma. After aminoglycoside trauma, functional recovery is slower and parallels the structural regeneration more closely. Aminoglycosides cause damage to both types of hair cells, starting at the basal (high frequency) part of the basilar papilla. However, functional hearing loss and recovery also occur at lower frequencies, associated with areas of the papilla where hair cells survive. Functional recovery in these low frequency areas is complete, whereas functional recovery in high frequency areas with complete hair cell loss is incomplete, despite regeneration of the hair cells. Permanent residual functional deficits remain. This indicates that in low frequency regions functional recovery after aminoglycosides involves repair of nonlethal injury to hair cells and/or hair cell-neural synapses. In the high frequency regions functional recovery involves regenerated hair cells. The permanent functional deficits after the regeneration process in these areas are most likely associated with functional deficits in the regenerated hair cells or shortcomings in the synaptic reconnections of nerve fibers with the regenerated hair cells. In conclusion, the avian inner ear appears to be much more resistant to trauma than the mammalian ear and possesses a considerable capacity for functional recovery based on repair processes along with its capacity to regenerate hair cells. The functional recovery in areas with regenerated hair cells is considerable but incomplete.
Water outlet control mechanism for fuel cell system operation in variable gravity environments
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)
2007-01-01
A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.
New separators for nickel-zinc batteries
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1976-01-01
Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.
Persistence of radiation-induced chromosome aberrations in a long-term cell culture.
Duran, Assumpta; Barquinero, Joan Francesc; Caballín, María Rosa; Ribas, Montserrat; Barrios, Leonardo
2009-04-01
The aim of the present study was to evaluate the persistence of chromosome aberrations induced by X rays. FISH painting and mFISH techniques were applied to long-term cultures of irradiated cells. With painting, at 2 Gy the frequency of apparently simple translocations remained almost invariable during all the culture, whereas at 4 Gy a rapid decline was observed between the first and the second samples, followed by a slight decrease until the end of the culture. Apparently simple dicentrics and complex aberrations disappeared after the first sample at 2 and 4 Gy. By mFISH, at 2 Gy the frequency of complete plus one-way translocations remained invariable between the first and last sample, but at 4 Gy a 60% decline was observed. True incomplete simple translocations disappeared at 2 and 4 Gy, indicating that incompleteness could be a factor to consider when the persistence of translocations is analyzed. The analysis by mFISH showed that the frequency of complex aberrations and their complexity increased with dose and tended to disappear in the last sample. Our results indicate that the influence of dose on the decrease in the frequency of simple translocations with time postirradiation cannot be fully explained by the disappearance of true incomplete translocations and complex aberrations. The chromosome involvement was random for radiation-induced exchange aberrations and non-random for total aberrations. Chromosome 7 showed the highest deviations from expected, being less and more involved than expected in the first and last samples, respectively. Some preferential chromosome-chromosome associations were observed, including a coincidence with a cluster from radiogenic chromosome aberrations described in other studies.
Finster, K; Thomsen, T R; Ramsing, N B
2001-11-01
The physiology and phylogeny of a novel sulfate-reducing bacterium, isolated from surface-sterilized roots of the marine macrophyte Zostera marina, are presented. The strain, designated P1T, was enriched and isolated in defined oxygen-free, bicarbonate-buffered, iron-reduced seawater medium with propionate as sole carbon source and electron donor and sulfate as electron acceptor. Strain P1T had a rod-shaped, slightly curved cell morphology and was motile by means of a single polar flagellum. Cells generally aggregated in clumps throughout the growth phase. High CaCl2 (10 mM) and MgCl2 (50 mM) concentrations were required for optimum growth. In addition to propionate, strain P1T utilized fumarate, succinate, pyruvate, ethanol, butanol and alanine. Oxidation of propionate was incomplete and acetate was formed in stoichiometric amounts. Strain P1T thus resembles members of the sulfate-reducing genera Desulfobulbus and Desulforhopalus, which both oxidize propionate incompletely and form acetate in addition to CO2. However, sequence analysis of the small-subunit rDNA and the dissimilatory sulfite reductase gene revealed that strain P1T was unrelated to the incomplete oxidizers Desulfobulbus and Desulforhopalus and that it constitutes a novel lineage affiliated with the genera Desulfococcus, Desulfosarcina, Desulfonema and 'Desulfobotulus'. Members of this branch, with the exception of 'Desulfobotulus sapovorans', oxidize a variety of substrates completely to CO2. Strain P1T (= DSM 12642T = ATCC 700811T) is therefore proposed as Desulfomusa hansenii gen. nov., sp. nov. Strain p1T thus illustrates the difficulty of extrapolating rRNA similarities to physiology and/or ecological function.
Togami, Kohei; Yamaguchi, Kotaro; Chono, Sumio; Tada, Hitoshi
2017-07-01
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease, which is accompanied by changes in lung structure. With regard to treatment, aerosolized drugs administered intrapulmonarily are rapidly distributed into the plasma and do not remain in the lungs due to damage to the alveolar epithelium that occurs from pulmonary fibrosis. In this study, we sought to develop an in vitro model of respiratory epithelial cells in IPF for the evaluation of the intrapulmonary distribution of aerosolized drugs. We investigated transforming growth factor (TGF)-β 1 -induced epithelial-mesenchymal transition (EMT) and permeability alteration in A549, NCI-H441, and Calu-3 cell monolayers. After TGF-β 1 treatment of A549, NCI-H441, and Calu-3 cells, EMT markers including E-cadherin and vimentin and tight junction proteins including claudins-1, -3, and -5 were stained using immunofluorescence methods and detected using immunoblotting methods. Transport experiments were performed using TGF-β 1 -treated cell monolayers and fluorescein isothiocyanate dextrans (FD; 4.4, 10, and 70kDa). In addition, TGF-β 1 -induced apoptosis and necrosis were evaluated by flow cytometry using Annexin V and ethidium homodimer III, respectively. In NCI-H441 cells, incomplete EMT, destruction of claudins-1 and -3, and enhancement of FD permeability were caused by TGF-β 1 treatment. In A549 cells, complete EMT occurred but was not adequate for transport experiments because of low transepithelial electrical resistance. Whereas in Calu-3 cells, no changes were observed. TGF-β 1 -induced apoptosis and necrosis were not observed in any of the cell lines. Incomplete EMT and permeability enhancement were observed in the alveolar epithelium of IPF. Therefore, our results indicate that TGF-β 1 -treated NCI-H441 cell monolayers may serve as a useful in vitro model of respiratory epithelial cells for IPF. Copyright © 2017 Elsevier Inc. All rights reserved.
Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro
2005-01-01
The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.
Microfluidic immunomagnetic cell separation from whole blood.
Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel
2016-02-01
Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Jianxin; Moore, Lee; Xue, Wei; Kim, James; Zborowski, Maciej; Chalmers, Jeffrey J
2018-05-01
Magnetic separation of cells has been, and continues to be, widely used in a variety of applications, ranging from healthcare diagnostics to detection of food contamination. Typically, these technologies require cells labeled with antibody magnetic particle conjugate and a high magnetic energy gradient created in the flow containing the labeled cells (i.e., a column packed with magnetically inducible material), or dense packing of magnetic particles next to the flow cell. Such designs, while creating high magnetic energy gradients, are not amenable to easy, highly detailed, mathematic characterization. Our laboratories have been characterizing and developing analysis and separation technology that can be used on intrinsically magnetic cells or spores which are typically orders of magnitude weaker than typically immunomagnetically labeled cells. One such separation system is magnetic deposition microscopy (MDM) which not only separates cells, but deposits them in specific locations on slides for further microscopic analysis. In this study, the MDM system has been further characterized, using finite element and computational fluid mechanics software, and separation performance predicted, using a model which combines: 1) the distribution of the intrinsic magnetophoretic mobility of the cells (spores); 2) the fluid flow within the separation device; and 3) accurate maps of the values of the magnetic field (max 2.27 T), and magnetic energy gradient (max of 4.41 T 2 /mm) within the system. Guided by this model, experimental studies indicated that greater than 95% of the intrinsically magnetic Bacillus spores can be separated with the MDM system. Further, this model allows analysis of cell trajectories which can assist in the design of higher throughput systems. © 2018 Wiley Periodicals, Inc.
Electrically Conductive Porous Membrane
NASA Technical Reports Server (NTRS)
Burke, Kenneth Alan (Inventor)
2014-01-01
The present invention relates to an electrically conductive membrane that can be configured to be used in fuel cell systems to act as a hydrophilic water separator internal to the fuel cell, or as a water separator used with water vapor fed electrolysis cells, or as a water separator used with water vapor fed electrolysis cells, or as a capillary structure in a thin head pipe evaporator, or as a hydrophobic gas diffusion layer covering the fuel cell electrode surface in a fuel cell.
Development of high efficiency (14 percent) solar cell array module
NASA Technical Reports Server (NTRS)
Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.
1980-01-01
Most effort was concentrated on development of procedures to provide large area (3 in. diameter) high efficiency (16.5 percent AM1, 28 C) P+NN+ solar cells. Intensive tests with 3 in. slices gave consistently lower efficiency (13.5 percent). The problems were identified as incomplete formation of and optimum back surface field (BSF), and interaction of the BSF process and the shallow P+ junction. The problem was shown not to be caused by reduced quality of silicon near the edges of the larger slices.
2014-10-01
group, Pig 22227, was due to a gastrointestinal bleed , related to either infectious gastroenteritis/colitis or stress ulcer formation. The third... upper extremity transplantation. Delays in progress and incomplete groups will be discussed in detail in Section 5 – Changes/Problems. Table 1...Implemented successfully first clinical protocol for upper extremity transplantation using donor bone marrow cell therapies and tacrolimus
Continuous high throughput molecular adhesion based cell sorting using ridged microchannels
NASA Astrophysics Data System (ADS)
Tasadduq, Bushra; Wang, Gonghao; Alexeev, Alexander; Sarioglu, Ali Fatih; Sulchek, Todd
2016-11-01
Cell molecular interactions govern important physiological processes such as stem cell homing, inflammation and cancer metastasis. But due to a lack of effective separation technologies selective to these interactions it is challenging to specifically sort cells. Other label free separation techniques based on size, stiffness and shape do not provide enough specificity to cell type, and correlation to clinical condition. We propose a novel microfluidic device capable of high throughput molecule dependent separation of cells by flowing them through a microchannel decorated with molecule specific coated ridges. The unique aspect of this sorting design is the use of optimized gap size which is small enough to lightly squeeze the cells while flowing under the ridged part of the channel to increase the surface area for interaction between the ligand on cell surface and coated receptor molecule but large enough so that biomechanical markers, stiffness and viscoelasticity, do not dominate the cell separation mechanism. We are able to separate Jurkat cells based on its expression of PSGL-1ligand using ridged channel coated with P selectin at a flow rate of 0.045ml/min and achieve 2-fold and 5-fold enrichment of PSGL-1 positive and negative Jurkat cells respectively.
Matriculation Research Report: Incomplete Grades; Data & Analysis.
ERIC Educational Resources Information Center
Gerda, Joe
The policy on incomplete grades at California's College of the Canyons states that incompletes may only be given under circumstances beyond students' control and that students must make arrangements with faculty prior to the end of the semester to clear the incomplete. Failure to complete an incomplete may result in an "F" grade. While…
Electrophoretic cell separation by means of immunomicrospheres
NASA Technical Reports Server (NTRS)
Rembaum, A.; Smolka, A. J. K.
1980-01-01
The electrophoretic mobility of fixed human red blood cells immunologically labeled with polymeric (4-vinyl)pyridine or polyglutaraldehyde microspheres was altered to a considerable extent. This observation was utilized in the preparative scale electrophoretic separation of human and turkey fixed red blood cells, whose mobilities under normal physiological conditions do not differ sufficiently to allow their separation by continuous flow electrophoresis. It is suggested that resolution in the electrophoretic separation of cell subpopulations, currently limited by finite and often overlapping mobility distributions, may be significantly enhanced by immuno-specific labeling of target populations using microspheres.
Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.
Yaremko, M L; Kelemen, P R; Kutza, C; Barker, D; Westbrook, C A
1996-01-01
Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible.
Material review of Li ion battery separators
NASA Astrophysics Data System (ADS)
Weber, Christoph J.; Geiger, Sigrid; Falusi, Sandra; Roth, Michael
2014-06-01
Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m2 mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.
Ion transport restriction in mechanically strained separator membranes
NASA Astrophysics Data System (ADS)
Cannarella, John; Arnold, Craig B.
2013-03-01
We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.
Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics.
Kooreman, Nigel G; de Almeida, Patricia E; Stack, Jonathan P; Nelakanti, Raman V; Diecke, Sebastian; Shao, Ning-Yi; Swijnenburg, Rutger-Jan; Sanchez-Freire, Veronica; Matsa, Elena; Liu, Chun; Connolly, Andrew J; Hamming, Jaap F; Quax, Paul H A; Brehm, Michael A; Greiner, Dale L; Shultz, Leonard D; Wu, Joseph C
2017-08-22
There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Yang, Yin; Wu, Songfang; Wang, Yu; Pan, Shuang; Lan, Bei; Liu, Yaohui; Zhang, Liming; Leng, Qianli; Chen, Da; Zhang, Cuizhu; He, Bin; Cao, Youjia
2015-01-01
Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance. PMID:25907557
Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. | Office of Cancer Genomics
In prostate cancer, the development of castration resistance is pivotal in progression to aggressive disease. However, understanding of the pathways involved remains incomplete. In this study, we performed a high-throughput genetic screen to identify kinases that enable tumor formation by androgen-dependent prostate epithelial (LHSR-AR) cells under androgen-deprived conditions.
USDA-ARS?s Scientific Manuscript database
While breast milk has unique health advantages for infants, the mechanisms by which it regulates the physiology of newborns are incompletely understood. miRNAs have been described as functioning transcellularly, and have been previously isolated in cell-free and exosomal form from bodily liquids (se...
Complete Genome Sequences of Two Geographically Distinct Legionella micdadei Clinical Isolates
Jose, Bethany R.; Perry, Jasper; Smeele, Zoe; Aitken, Jack; Gardner, Paul P.
2017-01-01
ABSTRACT Legionella is a highly diverse genus of intracellular bacterial pathogens that cause Legionnaire’s disease (LD), an often severe form of pneumonia. Two L. micdadei sp. clinical isolates, obtained from patients hospitalized with LD from geographically distinct areas, were sequenced using PacBio SMRT cell technology, identifying incomplete phage regions, which may impact virulence. PMID:28572318
Induction of chromosome aberrations in human cells by charged particles
NASA Technical Reports Server (NTRS)
Wu, H.; Durante, M.; George, K.; Yang, T. C.
1997-01-01
Chromosome aberrations induced by high-energy charged particles in normal human lymphocytes and human fibroblasts have been investigated. The charged particles included 250 MeV/nucleon protons, 290 MeV/nucleon carbon ions and 1 GeV/nucleon iron ions. The energies of the charged particles were higher than in most of the studies reported in the literature. Lymphocytes were stimulated to grow immediately after irradiation, while fibroblasts were incubated at 37 degrees C for 24 h for repair. Chromosomes were collected at the first mitosis after irradiation and chromosome aberrations were scored using the fluorescence in situ hybridization (FISH) technique with a whole-chromosome 4 probe. Chromosome aberrations were classified as reciprocal exchanges, incomplete exchanges, deletions and complex exchanges. The relative biological effectiveness (RBE) for each type of aberration was calculated by dividing a dose of 4 Gy by the dose of the charged particles producing the same effect as 4 Gy of gamma rays. Results of this study showed that complex aberrations have the highest RBE for radiation of high linear energy transfer (LET) for human lymphocytes, but for fibroblasts, the greatest effect was for incomplete exchanges. For both lymphocytes and fibroblasts, iron ions induced a similar fraction of aberrant cells.
Characterization and Separation of Cancer Cells with a Wicking Fiber Device.
Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L
2017-12-01
Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.
Separation of human bone marrow by counterflow centrifugation monitored by DNA-flowcytometry.
de Witte, T; Plas, A; Koekman, E; Blankenborg, G; Salden, M; Wessels, J; Haanen, C
1984-10-01
Human bone marrow was fractionated by counterflow centrifugation into 16 fractions with increasing cell size. Three distinct subpopulations could be recognized: small lymphocytic cells, medium-sized nucleated erythroid cells and large myeloid elements. DNA-flowcytometry and 3H-thymidine uptake showed that within the erythroid and myeloid cell populations counterflow centrifugation separates each population according to the cell cycle phase. Hypotonic treatment of bone marrow for removal of the erythroid nucleated cells resulted in a complete abrogation of the proliferating erythroid cell population. Counterflow centrifugation also separates the small non-proliferating myeloid and erythroid committed stem cells from the larger proliferating stem cells. It appeared feasible to separate the small lymphocytic cells from the majority of BFU-E and CFU-GM, due to the larger size of the proliferating normoblasts and the committed progenitor cells. Elimination of the mature lymphocytes from the haematopoietic stem cells by counterflow centrifugation may offer an alternative approach to the prevention of graft versus host disease (GvHD).
An innovative cascade system for simultaneous separation of multiple cell types.
Pierzchalski, Arkadiusz; Mittag, Anja; Bocsi, Jozsef; Tarnok, Attila
2013-01-01
Isolation of different cell types from one sample by fluorescence activated cell sorting is standard but expensive and time consuming. Magnetic separation is more cost effective and faster by but requires substantial effort. An innovative pluriBead-cascade cell isolation system (pluriSelect GmbH, Leipzig, Germany) simultaneously separates two or more different cell types. It is based on antibody-mediated binding of cells to beads of different size and their isolation with sieves of different mesh-size. For the first time, we validated the pluriSelect system for simultaneous separation of CD4+- and CD8+-cells from human EDTA-blood samples. Results were compared with those obtained by magnetic activated cell sorting (MACS; two steps -first isolation of CD4+, then restaining of the residual cell suspension with anti-human CD8+ MACS antibody followed by the second isolation). pluriSelect separation was done in whole blood, MACS separation on density gradient isolated mononuclear cells. Isolated and residual cells were immunophenotyped by 7-color 9-marker panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLA-DR) using flow cytometry. Cell count, purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (MACS (median[range]: 92.4% [91.5-94.9] vs. pluriSelect 95% [94.9-96.8])) of CD4+ cells, however CD8+ isolation showed lower purity by MACS (74.8% [67.6-77.9], pluriSelect 89.9% [89.0-95.7]). Yield was not significantly different for CD4 (MACS 58.5% [54.1-67.5], pluriSelect 67.9% [56.8-69.8]) and for CD8 (MACS 57.2% [41.3-72.0], pluriSelect 67.2% [60.0-78.5]). Viability was slightly higher with MACS for CD4+ (98.4% [97.8-99.0], pluriSelect 94.1% [92.1-95.2]) and for CD8+-cells (98.8% [98.3-99.1], pluriSelect 86.7% [84.2-89.9]). pluriSelect separation was substantially faster than MACS (1h vs. 2.5h) and no pre-enrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two and more cell subpopulation directly from whole blood and provides a simple alternative to magnetic separation.
Brandenbusch, Christoph; Glonke, Sebastian; Collins, Jonathan; Hoffrogge, Raimund; Grunwald, Klaudia; Bühler, Bruno; Schmid, Andreas; Sadowski, Gabriele
2015-11-01
The formation of stable emulsions in biphasic biotransformations catalyzed by microbial cells turned out to be a major hurdle for industrial implementation. Recently, a cost-effective and efficient downstream processing approach, using supercritical carbon dioxide (scCO2 ) for both irreversible emulsion destabilization (enabling complete phase separation within minutes of emulsion treatment) and product purification via extraction has been proposed by Brandenbusch et al. (2010). One of the key factors for a further development and scale-up of the approach is the understanding of the mechanism underlying scCO2 -assisted phase separation. A systematic approach was applied within this work to investigate the various factors influencing phase separation during scCO2 treatment (that is pressure, exposure of the cells to CO2 , and changes of cell surface properties). It was shown that cell toxification and cell disrupture are not responsible for emulsion destabilization. Proteins from the aqueous phase partially adsorb to cells present at the aqueous-organic interface, causing hydrophobic cell surface characteristics, and thus contribute to emulsion stabilization. By investigating the change in cell-surface hydrophobicity of these cells during CO2 treatment, it was found that a combination of catastrophic phase inversion and desorption of proteins from the cell surface is responsible for irreversible scCO2 mediated phase separation. These findings are essential for the definition of process windows for scCO2 -assisted phase separation in biphasic whole-cell biocatalysis. © 2015 Wiley Periodicals, Inc.
Separation of cancer cells from a red blood cell suspension using inertial force.
Tanaka, Tatsuya; Ishikawa, Takuji; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Ueno, Hironori; Matsuki, Noriaki; Yamaguchi, Takami
2012-11-07
The circulating tumor cell (CTC) test has recently become popular for evaluating prognosis and treatment efficacy in cancer patients. The accuracy of the test is strongly dependent on the precision of the cancer cell separation. In this study, we developed a multistage microfluidic device to separate cancer cells from a red blood cell (RBC) suspension using inertial migration forces. The device was able to effectively remove RBCs up to the 1% hematocrit (Hct) condition with a throughput of 565 μL min(-1). The collection efficiency of cancer cells from a RBC suspension was about 85%, and the enrichment of cancer cells was about 120-fold. Further improvements can be easily achieved by parallelizing the device. These results illustrate that the separation of cancer cells from RBCs is possible using only inertial migration forces, thus paving the way for the development of a novel microfluidic device for future CTC tests.
Chichagova, Valeria; Sanchez-Vera, Irene; Armstrong, Lyle; Steel, David; Lako, Majlinda
2016-01-01
Human induced pluripotent stem cells (hiPSCs) provide a platform for studying human disease in vitro, increase our understanding of human embryonic development, and provide clinically relevant cell types for transplantation, drug testing, and toxicology studies. Since their discovery, numerous advances have been made in order to eliminate issues such as vector integration into the host genome, low reprogramming efficiency, incomplete reprogramming and acquisition of genomic instabilities. One of the ways to achieve integration-free reprogramming is by using RNA-based Sendai virus. Here we describe a method to generate hiPSCs with Sendai virus in both feeder-free and feeder-dependent culture systems. Additionally, we illustrate methods by which to validate pluripotency of the resulting stem cell population.
Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G
2016-03-01
Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.
On effective and optical resolutions of diffraction data sets.
Urzhumtseva, Ludmila; Klaholz, Bruno; Urzhumtsev, Alexandre
2013-10-01
In macromolecular X-ray crystallography, diffraction data sets are traditionally characterized by the highest resolution dhigh of the reflections that they contain. This measure is sensitive to individual reflections and does not refer to the eventual data incompleteness and anisotropy; it therefore does not describe the data well. A physically relevant and robust measure that provides a universal way to define the `actual' effective resolution deff of a data set is introduced. This measure is based on the accurate calculation of the minimum distance between two immobile point scatterers resolved as separate peaks in the Fourier map calculated with a given set of reflections. This measure is applicable to any data set, whether complete or incomplete. It also allows characterizion of the anisotropy of diffraction data sets in which deff strongly depends on the direction. Describing mathematical objects, the effective resolution deff characterizes the `geometry' of the set of measured reflections and is irrelevant to the diffraction intensities. At the same time, the diffraction intensities reflect the composition of the structure from physical entities: the atoms. The minimum distance for the atoms typical of a given structure is a measure that is different from and complementary to deff; it is also a characteristic that is complementary to conventional measures of the data-set quality. Following the previously introduced terms, this value is called the optical resolution, dopt. The optical resolution as defined here describes the separation of the atomic images in the `ideal' crystallographic Fourier map that would be calculated if the exact phases were known. The effective and optical resolution, as formally introduced in this work, are of general interest, giving a common `ruler' for all kinds of crystallographic diffraction data sets.
Value of amino-terminal pro B-natriuretic peptide in diagnosing Kawasaki disease.
McNeal-Davidson, Ariane; Fournier, Anne; Spigelblatt, Linda; Saint-Cyr, Claire; Mir, Thomas S; Nir, Amiram; Dallaire, Frédéric; Cousineau, Jocelyne; Delvin, Edgard; Dahdah, Nagib
2012-10-01
The aim of the present study was to investigate the diagnostic value of the N-terminal B-type natriuretic peptide (NT-proBNP) in acute Kawasaki disease (KD) given that the clinical criteria and the current basic laboratory tests lack the necessary specificity for accurate diagnosis. Basic biological tests and serum NT-proBNP levels obtained from acute KD patients were compared to that of febrile controls. NT-proBNP was considered abnormal based on the following definitions: above a cut-off determined on receiver operator characteristic (ROC) analysis, above the upper limit for age, or above 2 SD calculated from healthy children. Analyses were also performed for KD cases with complete or incomplete criteria combined and separately. There were 81 patients and 49 controls aged 3.60 ± 2.77 versus 4.25 ± 3.88 years (P= 0.69). ROC analysis yielded significant area under the curve for NT-proBNP. The sensitivity, specificity, positive and negative predictive values were 70.4-88.9%, 69.4-91.8%, 82.8-93.4%, and 65.2-79.1%. The odds ratios based on NT-proBNP definitions varied between 18.13 (95% confidence interval [CI]: 7.21-45.57), 20.82 (95%CI: 8.18-53.0), and 26.71 (95%CI: 8.64-82.57; P < 0.001). Results were reproducible for cases with complete or incomplete criteria separately. NT-proBNP is a reliable marker for the diagnosis of KD. Prospective clinical studies with emphasis on NT-proBNP in a diagnostic algorithm are needed. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.
Inorganic separator technology program
NASA Technical Reports Server (NTRS)
Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.
1973-01-01
Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.
Structure and Interactions of the Human Programmed Cell Death 1 Receptor*
Cheng, Xiaoxiao; Veverka, Vaclav; Radhakrishnan, Anand; Waters, Lorna C.; Muskett, Frederick W.; Morgan, Sara H.; Huo, Jiandong; Yu, Chao; Evans, Edward J.; Leslie, Alasdair J.; Griffiths, Meryn; Stubberfield, Colin; Griffin, Robert; Henry, Alistair J.; Jansson, Andreas; Ladbury, John E.; Ikemizu, Shinji; Carr, Mark D.; Davis, Simon J.
2013-01-01
PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC′ sheet, which is flexible and completely lacks a C″ strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC′ sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1·ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3–4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors. PMID:23417675
NASA Technical Reports Server (NTRS)
Honda, Shuji; Nelson, Gregory; Schubert, Wayne
1993-01-01
Intestinal cells when subjected to oxidative stress or radiation exhibit abnormal nuclear divisions observed as: 1) supernumerary cell divisions in anterior intestinal cells or 2) incomplete nuclear division and the persistence of anaphase bridges between daughter nuclei. Two oxygen sensitive mutants, mev-1 and rad-8 were observed to exhibit spontaneous supernumerary nuclear divisions at low frequency. N2 can be induced to undergo these divisions by treatment with the superoxide dismutase (SOD) inhibitor diethyl dithicarbamate or with the free radical generator methyl viologen. By contrast, the free radical generator bleomycin produces anaphase bridges in N2 intestinal nuclei at high frequency. Intestinal anaphase bridges can be induced by ionizing radiation and their formation is dependent on dose and radiation type.
Carlson, Steven Allen; Anakor, Ifenna Kingsley; Farrell, Greg Robert
2015-06-30
The present invention pertains to electrochemical cells which comprise (a) an anode; (b) a cathode; (c) a solid porous separator, such as a polyolefin, xerogel, or inorganic oxide separator; and (d) a nonaqueous electrolyte, wherein the separator comprises a porous membrane having a microporous coating comprising polymer particles which have not coalesced to form a continuous film. This microporous coating on the separator acts as a safety shutdown layer that rapidly increases the internal resistivity and shuts the cell down upon heating to an elevated temperature, such as 110.degree. C. Also provided are methods for increasing the safety of an electrochemical cell by utilizing such separators with a safety shutdown layer.
1988-01-01
The vacuolar apical compartment (VAC) is an organelle found in Madin- Darby canine kidney (MDCK) cells with incomplete intercellular contacts by incubation in 5 microM Ca++ and in cells without contacts (single cells in subconfluent culture); characteristically, it displays apical biochemical markers and microvilli and excludes basolateral markers (Vega-Salas, D. E., P. J. I. Salas, and E. Rodriguez-Boulan. 1987. J. Cell Biol. 104:1249-1259). The apical surface of cells kept under these culture conditions is immature, with reduced numbers of microvilli and decreased levels of an apical biochemical marker (184 kD), which is, however, still highly polarized (Vega-Salas, D. E., P. J. I. Salas, D. Gundersen, and E. Rodriguez-Boulan. 1987. J. Cell Biol. 104:905-916). We describe here the morphological stages of VAC exocytosis which ultimately lead to the establishment of a differentiated apical domain. Addition of 1.8 mM Ca++ to monolayers developed in 5 microM Ca++ causes the rapid (20-40 min) fusion of VACs with the plasma membrane and their accessibility to external antibodies, as demonstrated by immunofluorescence, immunoperoxidase EM, and RIA with antibodies against the 184-kD apical plasma membrane marker. Exocytosis occurs towards areas of cell-cell contact in the developing lateral surface where they form intercellular pockets; fusion images are always observed immediately adjacent to the incomplete junctional bands detected by the ZO-1 antibody (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766). Blocks of newly incorporated VAC microvilli and 184-kD protein progressively move from intercellular ("primitive" lateral) spaces towards the microvilli-poor free cell surface. The definitive lateral domain is sealed behind these blocks by the growing tight junctional fence. These results demonstrate a fundamental role of cell-cell contact-mediated VAC exocytosis in the establishment of epithelial surface polarity. Because isolated stages (intercellular pockets) of the stereotyped sequence of events triggered by the establishment of intercellular contacts in MDCK cells have been reported during normal differentiation of intestine epithelium (Colony, P. C., and M. R. Neutra. 1983. Dev. Biol. 97:349-363), we speculate that the mechanism we describe here plays an important role in the establishment of epithelial cell polarity in vivo. PMID:3053735
Neoplastic cell transformation by high-LET radiation - Molecular mechanisms
NASA Technical Reports Server (NTRS)
Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong
1989-01-01
Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.
O'Connell, Ryan M; Chaudhuri, Aadel A; Rao, Dinesh S; Gibson, William S J; Balazs, Alejandro B; Baltimore, David
2010-08-10
The production of blood cells depends on a rare hematopoietic stem-cell (HSC) population, but the molecular mechanisms underlying HSC biology remain incompletely understood. Here, we identify a subset of microRNAs (miRNAs) that is enriched in HSCs compared with other bone-marrow cells. An in vivo gain-of-function screen found that three of these miRNAs conferred a competitive advantage to engrafting hematopoietic cells, whereas other HSC miRNAs attenuated production of blood cells. Overexpression of the most advantageous miRNA, miR-125b, caused a dose-dependent myeloproliferative disorder that progressed to a lethal myeloid leukemia in mice and also enhanced hematopoietic engraftment in human immune system mice. Our study identifies an evolutionarily conserved subset of miRNAs that is expressed in HSCs and functions to modulate hematopoietic output.
Evaluation of Production Version of the NASA Improved Inorganic-Organic Separator
NASA Technical Reports Server (NTRS)
Sheibley, D.
1983-01-01
The technology of an inorganic-organic (I/O) separator, which demonstrated improved flexibility, reduced cost, production feasibility and improved cycle life was developed. Substrates to replace asbestos and waterbased separator coatings to replace the solvent based coatings were investigated. An improved fuel cell grade asbestos sheet was developed and a large scale production capability for the solvent based I/O separator was demonstrated. A cellulose based substrate and a nonwoven polypropylene fiber substrate were evaluated as replacements for the asbestos. Both the cellulose and polypropylene substrates were coated with solvent based and water based coatings to produce a modified I/O separator. The solvent based coatings were modified to produce aqueous separator coatings with acceptable separator properties. A single ply fuel cell grade asbestos with a binder (BTA) was produced. It has shown to be an acceptable substrate for the solvent and water based separator coatings, an acceptable absorber for alkaline cells, and an acceptable matrix for alkaline fuel cells. The original solvent based separator (K19W1), using asbestos as a substrate, was prepared.
Beatty, Alexander; Morton, Diane G.; Kemphues, Kenneth
2013-01-01
In the one-cell C. elegans embryo, polarity is maintained by mutual antagonism between the anterior cortical proteins PAR-3, PKC-3, PAR-6 and CDC-42, and the posterior cortical proteins PAR-2 and LGL-1 on the posterior cortex. The mechanisms by which these proteins interact to maintain polarity are incompletely understood. In this study, we investigate the interplay among PAR-2, LGL-1, myosin, the anterior PAR proteins and CDC-42. We find that PAR-2 and LGL-1 affect cortical myosin accumulation by different mechanisms. LGL-1 does not directly antagonize the accumulation of cortical myosin and instead plays a role in regulating PAR-6 levels. By contrast, PAR-2 likely has separate roles in regulating cortical myosin accumulation and preventing the expansion of the anterior cortical domain. We also provide evidence that asymmetry of active CDC-42 can be maintained independently of LGL-1 and PAR-2 by a redundant pathway that includes the CDC-42 GAP CHIN-1. Finally, we show that, in addition to its primary role in regulating the size of the anterior cortical domain via its binding to PAR-6, CDC-42 has a secondary role in regulating cortical myosin that is not dependent on PAR-6. PMID:23536568
Hofmann, K H; Babel, W
1980-01-01
Cell-free extracts of the obligate methanol-utilizing bacterium Pseudomonas W6 catalyze the oxydation of isocitrate to alpha-ketoglutarate in the presence of NAD+ and NADP+. After electro-focusing of the crude extract of Pseudomonas W6 actually two distinct bands each of NAD+-linked isocitrate dehydrogenase (NAD+-IDH) and of NADP+-linked isocitrate dehydrogenase (NADP+-IDH) could be observed. The NAD+-IDH was completely separated from the NADP+-IDH by employing DEAE ion exchange chromatography and further purified by affinity chromatography using Cibacron blue F 3G-A. The NAD+-IDH was inhibited by a high energy charge, whereas the NADP+-IDH was found to be independent of energy charge. Consequently the NAD+-IDH showed the control behaviour of an enzyme of an energy-generating sequence which, however, equally fulfils a catabolic and an anabolic function. With respect to the inhibition by reduced pyridine nucleotides and alpha-ketoglutarate differences between NAD+-IDH and NADP+-IDH were also found. Only the NADP+-linked enzyme exhibited a feedback inhibition by its reaction products alpha-ketoglutarate and NADPH. This control behaviour gives evidence for the biosynthetic function of the NADP+-IDH. These results confer an amphibolic character to the sequence from citrate to alpha-ketoglutarate in the incomplete citric-acid cycle of Pseudomonas W6.
Beatty, Alexander; Morton, Diane G; Kemphues, Kenneth
2013-05-01
In the one-cell C. elegans embryo, polarity is maintained by mutual antagonism between the anterior cortical proteins PAR-3, PKC-3, PAR-6 and CDC-42, and the posterior cortical proteins PAR-2 and LGL-1 on the posterior cortex. The mechanisms by which these proteins interact to maintain polarity are incompletely understood. In this study, we investigate the interplay among PAR-2, LGL-1, myosin, the anterior PAR proteins and CDC-42. We find that PAR-2 and LGL-1 affect cortical myosin accumulation by different mechanisms. LGL-1 does not directly antagonize the accumulation of cortical myosin and instead plays a role in regulating PAR-6 levels. By contrast, PAR-2 likely has separate roles in regulating cortical myosin accumulation and preventing the expansion of the anterior cortical domain. We also provide evidence that asymmetry of active CDC-42 can be maintained independently of LGL-1 and PAR-2 by a redundant pathway that includes the CDC-42 GAP CHIN-1. Finally, we show that, in addition to its primary role in regulating the size of the anterior cortical domain via its binding to PAR-6, CDC-42 has a secondary role in regulating cortical myosin that is not dependent on PAR-6.
Unraveling the Pore-Forming Steps of Pneumolysin from Streptococcus pneumoniae.
van Pee, Katharina; Mulvihill, Estefania; Müller, Daniel J; Yildiz, Özkan
2016-12-14
Pneumolysin (PLY) is the main virulence factor of Streptococcus pneumoniae that causes pneumonia, meningitis, and invasive pneumococcal infection. PLY is produced as monomers, which bind to cholesterol-containing membranes, where they oligomerize into large pores. To investigate the pore-forming mechanism, we determined the crystal structure of PLY at 2.4 Å and used it to design mutants on the surface of monomers. Electron microscopy of liposomes incubated with PLY mutants revealed that several mutations interfered with ring formation. Mutants that formed incomplete rings or linear arrays had strongly reduced hemolytic activity. By high-resolution time-lapse atomic force microscopy of wild-type PLY, we observed two different ring-shaped complexes. Most of the complexes protruded ∼8 nm above the membrane surface, while a smaller number protruded ∼11 nm or more. The lower complexes were identified as pores or prepores by the presence or absence of a lipid bilayer in their center. The taller complexes were side-by-side assemblies of monomers of soluble PLY that represent an early form of the prepore. Our observations suggest a four-step mechanism of membrane attachment and pore formation by PLY, which is discussed in the context of recent structural models. The functional separation of these steps is necessary for the understanding how cholesterol-dependent cytolysins form pores and lyse cells.
van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda
2017-07-15
This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte function could not be explained by adaptation in the microtubules. Additionally, cardiomyocytes isolated from stiff hearts of the obese ZSF1 rat model of heart failure with preserved ejection fraction show more pronounced reduction in unloaded shortening in response to matrix stiffening. Taken together, we introduce a method that allows evaluation of the influence of ECM properties on cardiomyocyte function separate from the passive inhibitory component of a stiff matrix. As such, it adds an important and physiologically relevant tool to investigate the functional consequences of cardiomyocyte-matrix interactions. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis.
Li, Ping; Shao, Yize; Jin, Hui; Yu, Hong-Guo
2015-04-27
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. © 2015 Li et al.
Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis
Li, Ping; Shao, Yize; Jin, Hui
2015-01-01
Yeast centrosomes (called spindle pole bodies [SPBs]) remain cohesive for hours during meiotic G2 when recombination takes place. In contrast, SPBs separate within minutes after duplication in vegetative cells. We report here that Ndj1, a previously known meiosis-specific telomere-associated protein, is required for protecting SPB cohesion. Ndj1 localizes to the SPB but dissociates from it ∼16 min before SPB separation. Without Ndj1, meiotic SPBs lost cohesion prematurely, whereas overproduction of Ndj1 delayed SPB separation. When produced ectopically in vegetative cells, Ndj1 caused SPB separation defects and cell lethality. Localization of Ndj1 to the SPB depended on the SUN domain protein Mps3, and removal of the N terminus of Mps3 allowed SPB separation and suppressed the lethality of NDJ1-expressing vegetative cells. Finally, we show that Ndj1 forms oligomeric complexes with Mps3, and that the Polo-like kinase Cdc5 regulates Ndj1 protein stability and SPB separation. These findings reveal the underlying mechanism that coordinates yeast centrosome dynamics with meiotic telomere movement and cell cycle progression. PMID:25897084
Cushing, Kevin; Undvall, Eva; Ceder, Yvonne; Lilja, Hans; Laurell, Thomas
2018-02-13
Cancer cells display acoustic properties enabling acoustophoretic separation from white blood cells (WBCs) with 2-3 log suppression of the WBC background. However, a subset of WBCs has overlapping acoustic properties with cancer cells, which is why label-free acoustophoretic cancer cell isolation needs additional purification prior to analysis. This paper reports for the first time a proof of concept for continuous flow acoustophoretic negative selection of WBCs from cancer cells using negative acoustic contrast elastomeric particles (EPs) activated with CD45-antibodies that specifically bind to WBCs. The EP/WBC complexes align at the acoustic pressure anti-nodes along the channel walls while unbound cancer cells focus to the pressure node in the channel center, enabling continuous flow based depletion of WBC background in a cancer cell product. The method does not provide a single process solution for the CTC separation challenge, but provides an elegant part to a multi-step process by further reducing the WBC background in cancer cell separation products derived from an initial step of label-free acoustophoresis. We report the recorded performance of the negative selection immuno-acoustophoretic WBC depletion and cancer cell recovery. To eliminate the negative impact of the separation due to the known problems of aggregation of negative acoustic contrast particles along the sidewalls of the acoustophoresis channel and to enable continuous separation of EP/WBC complexes from cancer cells, a new acoustic actuation method has been implemented where the ultrasound frequency is scanned (1.991MHz ± 100 kHz, scan rate 200 kHz ms -1 ). Using this frequency scanning strategy EP/WBC complexes were acoustophoretically separated from mixtures of WBCs spiked with breast and prostate cancer cells (DU145 and MCF-7). An 86-fold (MCF-7) and 52-fold (DU145) reduction of WBCs in the cancer cell fractions were recorded with separation efficiencies of 98.6% (MCF-7) and 99.7% (DU145) and cancer cell recoveries of 89.8% (MCF-7) and 85.0% (DU145). Copyright © 2017 Elsevier B.V. All rights reserved.
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang
2015-01-01
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang
2015-02-24
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.
Galvanic high energy cells with molten salt electrolytes
NASA Astrophysics Data System (ADS)
Borger, W.; Kappus, W.; Kunze, D.; Laig-Hoerstebrock, H.; Panesar, H.; Sterr, G.
1981-02-01
Engineering scale LiAl/LiCl Kcl/FeS electrochemical storage cells were developed for electric vehicle propulsion and peak current compensation. More than 300 deep cycles and 50 Whr/kg in 100 Ahr cells and up to 100 deep cycles and more than 80 Whr/kg in 200 Ahr cells were demonstrated. Separator development for LiAl/FeS cells was focused on ceramic powders. The aluminum nitride powder separator is promising for LiAl/FeS cells. The further development of these cells includes the enhancement of energy density and lifetime as well as ceramic powder separators.
Electrochemical cell and separator plate thereof
Baker, Bernard S.; Dharia, Dilip J.
1979-10-02
A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.
Electrolytic cell. [For separating anolyte and catholyte
Bullock, J.S.; Hale, B.D.
1984-09-14
An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end being located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.
Polyethylene/Potassium Titanate Separators For Ni/H2 Cells
NASA Technical Reports Server (NTRS)
Scott, William E.
1995-01-01
Experimental separators fabricated on paper-making machine. Two-layer, paperlike composite of polyethylene fibers and potassium titanate pigment shows promise for replacing asbestos as separator material in nickel/hydrogen electrochemical cells.
The effects of RPM and recycle on separation efficiency in a clinical blood cell centrifuge.
Drumheller, P D; Van Wie, B J; Petersen, J N; Oxford, R J; Schneider, G W
1987-11-01
A COBE blood cell centrifuge, model 2997 with a single stage channel, was modified to allow computer controlled sampling, and to allow recycle of red blood cells (RBCs) and plasma streams using bovine whole blood. The effects of recycle of the packed RBC and plasma product streams, and of the centrifuge RPM on platelet and white blood cell (WBC) separation efficiencies were quantified using a central composite factorial experimental design. These data were then fit using second order models. Both the model for the WBC separation efficiency and the model for the platelet separation efficiency predict that RPM has the greatest effect on separation efficiency and that RBC and plasma recycle have detrimental effects at moderate to low RPM, but have negligible impact on separation efficiency at high RPM.
Rare Cell Separation and Analysis by Magnetic Sorting
Zborowski, Maciej; Chalmers, Jeffrey J.
2011-01-01
Summary The separation and or isolation of rare cells using magnetic forces is commonly used and growing in use ranging from simple sample prep for further studies to a FDA approved, clinical diagnostic test. This grown is the result of both the demand to obtain homogeneous rare cells for molecular analysis and the dramatic increases in the power of permanent magnets that even allow the separation of some unlabeled cells based on intrinsic magnetic moments, such as malaria parasite-infected red blood cells. PMID:21812408
Song, Eyun; Jeon, Min Ji; Oh, Hye-Seon; Han, Minkyu; Lee, Yu-Mi; Kim, Tae Yong; Chung, Ki-Wook; Kim, Won Bae; Shong, Young-Kee; Song, Dong Eun; Kim, Won Gu
2018-06-06
Evidence for unfavorable outcomes of each type of aggressive variant papillary thyroid carcinoma (AV-PTC) is not clear because most previous studies are focused on tall cell variant (TCV) and did not control for other major confounding factors contributing to clinical outcomes. Retrospective cohort study. This study included 763 patients with classical PTC (cPTC) and 144 with AV-PTC, including TCV, columnar cell variant (CCV), and hobnail variants. Disease-free survival (DFS) and dynamic risk stratification (DRS) were compared after two-to-one propensity score matching by age, sex, tumor size, lymph node metastasis, and extrathyroidal extension. The AV-PTC group had significantly lower DFS rates than its matched cPTC group (HR=2.16, 95% CI 1.12-4.16, p=0.018). When TCV and CCV were evaluated separately, there was no significant differences in DFS and DRS between patients with TCV (n=121) and matched cPTC. However, CCV group (n=18) had significantly poorer DFS than matched cPTC group (HR=12.19, 95% CI 2.11-70.33, p=0.005). In DRS, there were significantly more patients with structural incomplete responses in CCV group compared by matched cPTC group (p=0.047). CCV was an independent risk factor for structural persistent/recurrent disease in multivariate analysis (HR, 4.28; 95% CI, 1.66-11.00, p=0.001). When other clinicopathological factors were similar, patients with TCV did not exhibit unfavorable clinical outcome whereas those with CCV had significantly poorer clinical outcome. Individualized therapeutic approach might be necessary for each type of AV-PTCs.
Genome-Wide Profiling of RNA–Protein Interactions Using CLIP-Seq
Stork, Cheryl; Zheng, Sika
2017-01-01
UV crosslinking immunoprecipitation (CLIP) is an increasingly popular technique to study protein–RNA interactions in tissues and cells. Whole cells or tissues are ultraviolet irradiated to generate a covalent bond between RNA and proteins that are in close contact. After partial RNase digestion, antibodies specific to an RNA binding protein (RBP) or a protein–epitope tag is then used to immunoprecipitate the protein–RNA complexes. After stringent washing and gel separation the RBP–RNA complex is excised. The RBP is protease digested to allow purification of the bound RNA. Reverse transcription of the RNA followed by high-throughput sequencing of the cDNA library is now often used to identify protein bound RNA on a genome-wide scale. UV irradiation can result in cDNA truncations and/or mutations at the crosslink sites, which complicates the alignment of the sequencing library to the reference genome and the identification of the crosslinking sites. Meanwhile, one or more amino acids of a crosslinked RBP can remain attached to its bound RNA due to incomplete digestion of the protein. As a result, reverse transcriptase may not read through the crosslink sites, and produce cDNA ending at the crosslinked nucleotide. This is harnessed by one variant of CLIP methods to identify crosslinking sites at a nucleotide resolution. This method, individual nucleotide resolution CLIP (iCLIP) circularizes cDNA to capture the truncated cDNA and also increases the efficiency of ligating sequencing adapters to the library. Here, we describe the detailed procedure of iCLIP. PMID:26965263
2017-01-01
Abstract Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others. PMID:29085896
Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N
2017-01-01
Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.
Lenz, Jonathan D; Stohl, Elizabeth A; Robertson, Rosanna M; Hackett, Kathleen T; Fisher, Kathryn; Xiong, Kalia; Lee, Mijoon; Hesek, Dusan; Mobashery, Shahriar; Seifert, H Steven; Davies, Christopher; Dillard, Joseph P
2016-05-13
The human-restricted pathogen Neisseria gonorrhoeae encodes a single N-acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA, AmiB, and AmiC). Deletion of amiC from N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment release, but little else is known about how AmiC functions in gonococci. Here, we demonstrated that gonococcal AmiC can act on macromolecular PG to liberate cross-linked and non-cross-linked peptides indicative of amidase activity, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG fragment as substrate (GlcNAc-MurNAc(pentapeptide)-GlcNAc-MurNAc(pentapeptide)). An investigation of two residues in the active site of AmiC revealed that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonococci during growth. In contrast, Gln-316 has an autoinhibitory role, and its mutation to lysine resulted in an AmiC with increased enzymatic activity on macromolecular PG and on the synthetic PG derivative. Curiously, the same Q316K mutation that increased AmiC activity also resulted in cell separation and PG fragment release defects, indicating that activation state is not the only factor determining normal AmiC activity. In addition to displaying high basal activity on PG, gonococcal AmiC can utilize metal ions other than the zinc cofactor typically used by cell separation amidases, potentially protecting its ability to function in zinc-limiting environments. Thus gonococcal AmiC has distinct differences from related enzymes, and these studies revealed parameters for how AmiC functions in cell separation and PG fragment release. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
The rotating spectrometer: Biotechnology for cell separations
NASA Technical Reports Server (NTRS)
Noever, David A.
1991-01-01
An instrument for biochemical studies, called the rotating spectrometer, separates previously inseparable cell cultures. The rotating spectrometer is intended for use in pharmacological studies which require fractional splitting of heterogeneous cell cultures based on cell morphology and swimming behavior. As a method to separate and concentrate cells in free solution, the rotating method requires active organism participation and can effectively split the large class of organisms known to form spontaneous patterns. Examples include the biochemical star, an organism called Tetrahymena pyriformis. Following focusing in a rotating frame, the separation is accomplished using different radial dependencies of concentrated algal and protozoan species. The focusing itself appears as concentric rings and arises from the coupling between swimming direction and Coriolis forces. A dense cut is taken at varying radii, and extraction is replenished at an inlet. Unlike standard separation and concentrating techniques such as filtration or centrifugation, the instrument is able to separate motile from immotile fractions. For a single pass, typical split efficiencies can reach 200 to 300 percent compared to the inlet concentration.
The rotating spectrometer: New biotechnology for cell separations
NASA Technical Reports Server (NTRS)
Noever, David A.; Matsos, Helen C.
1990-01-01
An instrument for biochemical studies, called the rotating spectrometer, separates previously inseparable cell cultures. The rotating spectrometer is intended for use in pharmacological studies which require fractional splitting of heterogeneous cell cultures based on cell morphology and swimming behavior. As a method to separate and concentrate cells in free solution, the rotating method requires active organism participation and can effectively split the large class of organisms known to form spontaneous patterns. Examples include the biochemical star, an organism called Tetrahymena pyriformis. Following focusing in a rotated frame, the separation is accomplished using different radial dependencies of concentrated algal and protozoan species. The focusing itself appears as concentric rings and arises from the coupling between swimming direction and Coriolis forces. A dense cut is taken at varying radii and extraction is replenished at an inlet. Unlike standard separation and concentrating techniques such as filtration or centrifugation, the instrument is able to separate motile from immotile fractions. For a single pass, typical split efficiencies can reach 200 to 300 percent compared to the inlet concentration.
Improved, low cost inorganic-organic separators for rechargeable silver-zinc batteries
NASA Technical Reports Server (NTRS)
Sheibley, D. W.
1979-01-01
Several flexible, low-cost inorganic-organic separators with performance characteristics and cycle life equal to, or better than, the Lewis Research Center Astropower separator were developed. These new separators can be made on continuous-production equipment at about one-fourth the cost of the Astropower separator produced the same way. In test cells, these new separators demonstrate cycle life improvement, acceptable operating characteristics, and uniform current density. The various separator formulas, test cell construction, and data analysis are described.
Rello-Varona, Santiago; Herrero-Martín, David; López-Alemany, Roser; Muñoz-Pinedo, Cristina; Tirado, Oscar M
2015-03-15
During the last decades, the knowledge of cell death mechanisms involved in anticancer therapy has grown exponentially. However, in many studies, cell death is still described in an incomplete manner. The frequent use of indirect proliferation assays, unspecific probes, or bulk analyses leads too often to misunderstandings regarding cell death events. There is a trend to focus on molecular or genetic regulations of cell demise without a proper characterization of the phenotype that is the object of this study. Sometimes, cancer researchers can feel overwhelmed or confused when faced with such a corpus of detailed insights, nomenclature rules, and debates about the accuracy of a particular probe or assay. On the basis of the information available, we propose a simple guide to distinguish forms of cell death in experimental settings using cancer cell lines. ©2015 American Association for Cancer Research.
Calì, Bianca; Ceolin, Stefano; Ceriani, Federico; Bortolozzi, Mario; Agnellini, Andrielly H R; Zorzi, Veronica; Predonzani, Andrea; Bronte, Vincenzo; Molon, Barbara; Mammano, Fabio
2015-04-30
Ionizing and nonionizing radiation affect not only directly targeted cells but also surrounding "bystander" cells. The underlying mechanisms and therapeutic role of bystander responses remain incompletely defined. Here we show that photosentizer activation in a single cell triggers apoptosis in bystander cancer cells, which are electrically coupled by gap junction channels and support the propagation of a Ca2+ wave initiated in the irradiated cell. The latter also acts as source of nitric oxide (NO) that diffuses to bystander cells, in which NO levels are further increased by a mechanism compatible with Ca(2+)-dependent enzymatic production. We detected similar signals in tumors grown in dorsal skinfold chambers applied to live mice. Pharmacological blockade of connexin channels significantly reduced the extent of apoptosis in bystander cells, consistent with a critical role played by intercellular communication, Ca2+ and NO in the bystander effects triggered by photodynamic therapy.
Fabrication and test of inorganic/organic separators. [for silver zinc batteries
NASA Technical Reports Server (NTRS)
Smatko, J. S.
1974-01-01
Completion of testing and failure analysis of MDC 40 Ahr silver zinc cells containing largely inorganic separators was accomplished. The results showed that the wet stand and cycle life objectives of the silver zinc cell development program were accomplished. Building, testing and failure analysis of two plate cells employing three optimum separators selected on the basis of extensive screening tests, was performed. The best separator material as a result of these tests was doped calcium zirconate.
Hanumanth Rao, Narasinga Rao; Yap, Russell; Whittaker, Michael; Stuetz, Richard M; Jefferson, Bruce; Peirson, William L; Granville, Anthony M; Henderson, Rita K
2018-03-01
Algae and cyanobacteria frequently require separation from liquid media in both water treatment and algae culturing for biotechnology applications. The effectiveness of cell separation using a novel dissolved air flotation process that incorporates positively charged bubbles (PosiDAF) has recently been of interest but has been shown to be dependent on the algae or cyanobacteria species tested. Previously, it was hypothesised that algal organic matter (AOM) could be impacting the separation efficiency. Hence, this study investigates the influence of AOM on cell separation using PosiDAF, in which bubbles are modified using a commercially available cationic polyelectrolyte poly(N, N-diallyl-N,N-dimethylammonium chloride) (PDADMAC). The separation of Chlorella vulgaris CS-42/7, Mychonastes homosphaera CS-556/01 and two strains of Microcystis aeruginosa (CS-564/01 and CS-555/1), all of which have similar cell morphology but different AOM character, was investigated. By testing the cell separation in the presence and absence of AOM, it was determined that AOM enhanced cell separation for all the strains but to different extents depending on the quantity and composition of carbohydrates and proteins in the AOM. By extracting AOM from the strain for which optimal separation was observed and adding it to the others, cell separation improved from <55% to >90%. This was attributed to elevated levels of acidic carbohydrates as well as glycoprotein-carbohydrate conjugations, which in turn were related to the nature and quantity of proteins and carbohydrates present in the AOM. Therefore, it was concluded that process optimisation requires an in-depth understanding of the AOM and its components. If culturing algae for biotechnology applications, this indicates that strain selection is not only important with respect to high value product content, but also for cell separation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tashiro, Katsuhisa; Hirata, Nobue; Okada, Atsumasa; Yamaguchi, Tomoko; Takayama, Kazuo; Mizuguchi, Hiroyuki
2015-01-01
In developing embryos or in vitro differentiation cultures using pluripotent stem cells (PSCs), such as embryonic stem cells and induced pluripotent stem cells, fetal liver kinase 1 (Flk1)-expressing mesodermal cells are thought to be a heterogeneous population that includes hematopoietic progenitors, endothelial progenitors, and cardiac progenitors. However, information on cell surface markers for separating these progenitors in Flk1+ cells is currently limited. In the present study, we show that distinct types of progenitor cells in Flk1+ cells could be separated according to the expression of coxsackievirus and adenovirus receptor (CAR, also known as CXADR), a tight junction component molecule. We found that mouse and human PSC- and mouse embryo-derived Flk1+ cells could be subdivided into Flk1+CAR+ cells and Flk1+CAR− cells. The progenitor cells with cardiac potential were almost entirely restricted to Flk1+CAR+ cells, and Flk1+CAR− cells efficiently differentiated into hematopoietic cells. Endothelial differentiation potential was observed in both populations. Furthermore, from the expression of CAR, Flk1, and platelet-derived growth factor receptor-α (PDGFRα), Flk1+ cells could be separated into three populations (Flk1+PDGFRα−CAR− cells, Flk1+PDGFRα−CAR+ cells, and Flk1+PDGFRα+CAR+ cells). Flk1+PDGFRα+ cells and Flk1+PDGFRα− cells have been reported as cardiac and hematopoietic progenitor cells, respectively. We identified a novel population (Flk1+PDGFRα−CAR+ cells) with the potential to differentiate into not only hematopoietic cells and endothelial cells but also cardiomyocytes. Our findings indicate that CAR would be a novel and prominent marker for separating PSC- and embryo-derived Flk1+ mesodermal cells with distinct differentiation potentials. PMID:25762001
Raijmakers, R; de Witte, T; Koekman, E; Wessels, J; Haanen, C
1986-01-01
Isopycnic density floatation centrifugation has been proven to be a suitable technique to enrich bone marrow aspirates for clonogenic cells on a small scale. We have tested a Haemonetics semicontinuous blood cell separator in order to process large volumes of bone marrow with minimal bone marrow manipulation. The efficacy of isopycnic density floatation was tested in a one and a two-step procedure. Both procedures showed a recovery of about 20% of the nucleated cells and 1-2% of the erythrocytes. The enrichment of clonogenic cells in the one-step procedure appeared superior to the two-step enrichment, first separating buffy coat cells. The recovery of clonogenic cells was 70 and 50%, respectively. Repopulation capacity of the low-density cell fraction containing the clonogenic cells was excellent after autologous reinfusion (6 cases) and allogeneic bone marrow transplantation (3 cases). Fast enrichment of large volumes of bone marrow aspirates with low-density cells containing the clonogenic cells by isopycnic density floatation centrifugation can be done safely using a Haemonetics blood cell separator.
Label-free ferrohydrodynamic cell separation of circulating tumor cells.
Zhao, Wujun; Cheng, Rui; Jenkins, Brittany D; Zhu, Taotao; Okonkwo, Nneoma E; Jones, Courtney E; Davis, Melissa B; Kavuri, Sravan K; Hao, Zhonglin; Schroeder, Carsten; Mao, Leidong
2017-09-12
Circulating tumor cells (CTCs) have significant implications in both basic cancer research and clinical applications. To address the limited availability of viable CTCs for fundamental and clinical investigations, effective separation of extremely rare CTCs from blood is critical. Ferrohydrodynamic cell separation (FCS), a label-free method that conducted cell sorting based on cell size difference in biocompatible ferrofluids, has thus far not been able to enrich low-concentration CTCs from cancer patients' blood because of technical challenges associated with processing clinical samples. In this study, we demonstrated the development of a laminar-flow microfluidic FCS device that was capable of enriching rare CTCs from patients' blood in a biocompatible manner with a high throughput (6 mL h -1 ) and a high rate of recovery (92.9%). Systematic optimization of the FCS devices through a validated analytical model was performed to determine optimal magnetic field and its gradient, ferrofluid properties, and cell throughput that could process clinically relevant amount of blood. We first validated the capability of the FCS devices by successfully separating low-concentration (∼100 cells per mL) cancer cells using six cultured cell lines from undiluted white blood cells (WBCs), with an average 92.9% cancer cell recovery rate and an average 11.7% purity of separated cancer cells, at a throughput of 6 mL per hour. Specifically, at ∼100 cancer cells per mL spike ratio, the recovery rates of cancer cells were 92.3 ± 3.6% (H1299 lung cancer), 88.3 ± 5.5% (A549 lung cancer), 93.7 ± 5.5% (H3122 lung cancer), 95.3 ± 6.0% (PC-3 prostate cancer), 94.7 ± 4.0% (MCF-7 breast cancer), and 93.0 ± 5.3% (HCC1806 breast cancer), and the corresponding purities of separated cancer cells were 11.1 ± 1.2% (H1299 lung cancer), 10.1 ± 1.7% (A549 lung cancer), 12.1 ± 2.1% (H3122 lung cancer), 12.8 ± 1.6% (PC-3 prostate cancer), 11.9 ± 1.8% (MCF-7 breast cancer), and 12.2 ± 1.6% (HCC1806 breast cancer). Biocompatibility study on H1299 cell line and HCC1806 cell line showed that separated cancer cells had excellent short-term viability, normal proliferation and unaffected key biomarker expressions. We then demonstrated the enrichment of CTCs in blood samples obtained from two patients with newly diagnosed advanced non-small cell lung cancer (NSCLC). While still at its early stage of development, FCS could become a complementary tool for CTC separation for its high recovery rate and excellent biocompatibility, as well as its potential for further optimization and integration with other separation methods.
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-01-01
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472
Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas
2017-04-20
The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.
Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.
Yaremko, M. L.; Kelemen, P. R.; Kutza, C.; Barker, D.; Westbrook, C. A.
1996-01-01
Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible. Images Figure 1 Figure 2 Figure 3 PMID:8546231
Cele, Sandile; Ferreira, Isabella Markham; Young, Andrew C; Karim, Farina; Madansein, Rajhmun; Dullabh, Kaylesh J; Chen, Chih-Yuan; Buckels, Noel J; Ganga, Yashica; Khan, Khadija; Boulle, Mikael; Lustig, Gila; Neher, Richard A
2018-01-01
HIV has been reported to be cytotoxic in vitro and in lymph node infection models. Using a computational approach, we found that partial inhibition of transmissions of multiple virions per cell could lead to increased numbers of live infected cells. If the number of viral DNA copies remains above one after inhibition, then eliminating the surplus viral copies reduces cell death. Using a cell line, we observed increased numbers of live infected cells when infection was partially inhibited with the antiretroviral efavirenz or neutralizing antibody. We then used efavirenz at concentrations reported in lymph nodes to inhibit lymph node infection by partially resistant HIV mutants. We observed more live infected lymph node cells, but with fewer HIV DNA copies per cell, relative to no drug. Hence, counterintuitively, limited attenuation of HIV transmission per cell may increase live infected cell numbers in environments where the force of infection is high. PMID:29555018
Messal, Hendrik A.; Andersson, Agneta B.; Ruiz, E. Josue; Gerling, Marco; Douagi, Iyadh; Spencer-Dene, Bradley; Musch, Alexandra; Mitter, Richard; Bhaw, Leena; Stone, Richard; Bornhorst, Dorothee; Sesay, Abdul K.; Jonkers, Jos; Stamp, Gordon; Malanchi, Ilaria; Toftgård, Rune; Behrens, Axel
2018-01-01
The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or upon stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumourigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance. PMID:27798604
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Tali, Suhail A.; Parashari, Siddharth; Ali, Asif; Dubey, Rakesh; Ansari, M. Afzal; Kumar, R.; Muralithar, S.; Singh, R. P.
2018-06-01
Excitation functions for the 11 evaporation residues populated through complete and/or incomplete fusion in 16O+124Sn system at low projectile energies ≈3 -7 MeV /nucleon have been measured. Recoil catcher activation technique followed by offline γ -ray spectrometry has been employed. Some of the evaporation residues are found to have contributions from precursor decays. The precursor contributions have been separated out from the measured cumulative cross-sections of evaporation residues. Independent cross-sections are compared with statistical model code PACE-4 predictions. The evaporation residues produced through x n and pxn channels are found to be well reproduced with the PACE-4 predictions after subtraction of precursor decay contributions. A substantial enhancement in the measured excitation functions over their theoretical predictions for the evaporation residues produced in α -emitting channels has been observed, which is attributed to the presence of incomplete fusion of projectile with target at these low energies. The present study shows that the incomplete fusion and the break-up probability of the incident 16O into α clusters (i.e., break-up of 16O into 12C+α and/or 8Be+8Be ) increases with projectile energy. The present data suggests that the deformation of target is highlighting the important role to affect the ICF reactions independently with different projectiles. The comparison of the present study with literature data also shows that the ICF probability depends on various entrance channel parameters, namely, projectile energy, entrance channel mass-asymmetry, α -Q value, Coulomb factor (ZPZT) , deformation parameter (β2), and their combinations. Moreover, the combined parameters ZPZT.β2 and μECAS.β2 are not found suitable to explain whole ICF characteristics, particularly for spherical and slightly deformed targets. On the other hand, the combined parameter ZPZT.μECAS has been found to explain more precisely the ICF dynamics as compared to other single and combined entrance channel parameters.
Radiation induces premature chromatid separation via the miR-142-3p/Bod1 pathway in carcinoma cells.
Pan, Dong; Du, Yarong; Ren, Zhenxin; Chen, Yaxiong; Li, Xiaoman; Wang, Jufang; Hu, Burong
2016-09-13
Radiation-induced genomic instability plays a vital role in carcinogenesis. Bod1 is required for proper chromosome biorientation, and Bod1 depletion increases premature chromatid separation. MiR-142-3p influences cell cycle progression and inhibits proliferation and invasion in cervical carcinoma cells. We found that radiation induced premature chromatid separation and altered miR-142-3p and Bod1 expression in 786-O and A549 cells. Overexpression of miR-142-3p increased premature chromatid separation and G2/M cell cycle arrest in 786-O cells by suppressing Bod1 expression. We also found that either overexpression of miR-142-3p or knockdown of Bod1 sensitized 786-O and A549 cells to X-ray radiation. Overexpression of Bod1 inhibited radiation- and miR-142-3p-induced premature chromatid separation and increased resistance to radiation in 786-O and A549 cells. Taken together, these results suggest that radiation alters miR-142-3p and Bod1 expression in carcinoma cells, and thus contributes to early stages of radiation-induced genomic instability. Combining ionizing radiation with epigenetic regulation may help improve cancer therapies.
Li, Peng; Gao, Yan; Pappas, Dimitri
2012-10-02
The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.
Kim, Minji; Suh, Jaehong; Romano, Donna; Truong, Mimy H; Mullin, Kristina; Hooli, Basavaraj; Norton, David; Tesco, Giuseppina; Elliott, Kathy; Wagner, Steven L; Moir, Robert D; Becker, K David; Tanzi, Rudolph E
2009-10-15
ADAM10, a member of a disintegrin and metalloprotease family, is an alpha-secretase capable of anti-amyloidogenic proteolysis of the amyloid precursor protein. Here, we present evidence for genetic association of ADAM10 with Alzheimer's disease (AD) as well as two rare potentially disease-associated non-synonymous mutations, Q170H and R181G, in the ADAM10 prodomain. These mutations were found in 11 of 16 affected individuals (average onset age 69.5 years) from seven late-onset AD families. Each mutation was also found in one unaffected subject implying incomplete penetrance. Functionally, both mutations significantly attenuated alpha-secretase activity of ADAM10 (>70% decrease), and elevated Abeta levels (1.5-3.5-fold) in cell-based studies. In summary, we provide the first evidence of ADAM10 as a candidate AD susceptibility gene, and report two potentially pathogenic mutations with incomplete penetrance for late-onset familial AD.
Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes
Gomez, M.C.; Jenkins, J.A.; Giraldo, A.; Harris, R.F.; King, A.; Dresser, B.L.; Pope, C.E.
2003-01-01
The African wild cat is one of the smallest wild cats and its future is threatened by hybridization with domestic cats. Nuclear transfer, a valuable tool for retaining genetic variability, offers the possibility of species continuation rather than extinction. The aim of this study was to investigate the ability of somatic cell nuclei of the African wild cat (AWC) to dedifferentiate within domestic cat (DSH) cytoplasts and to support early development after nuclear transplantation. In experiment 1, distributions of AWC and DSH fibroblasts in each cell-cycle phase were assessed by flow cytometry using cells cultured to confluency and disaggregated with pronase, trypsin, or mechanical separation. Trypsin (89.0%) and pronase (93.0%) yielded higher proportions of AWC nuclei in the G0/G1 phase than mechanical separation (82.0%). In contrast, mechanical separation yielded higher percentages of DSH nuclei in the G0/G1 phase (86.6%) than pronase (79.7%) or trypsin (74.2%) treatments. In both species, pronase induced less DNA damage than trypsin. In experiment 2, the effects of serum starvation, culture to confluency, and exposure to roscovitine on the distribution of AWC and DSH fibroblasts in various phases of the cell cycle were determined. Flow cytometry analyses revealed that the dynamics of the cell cycle varied as culture conditions were modified. Specifically, a higher percentage of AWC and DSH nuclei were in the G0/G1 phase after cells were serum starved (83% vs. 96%) than were present in cycling cells (50% vs. 64%), after contact inhibition (61% vs. 88%), or after roscovitine (56% vs. 84%) treatment, respectively. In experiment 3, we evaluated the effects of cell synchronization and oocyte maturation (in vivo vs. in vitro) on the reconstruction and development of AWC-DSH- and DSH-DSH-cloned embryos. The method of cell synchronization did not affect the fusion and cleavage rate because only a slightly higher percentage of fused couplets cleaved when donor nuclei were synchronized by serum starvation (83.0%) than after roscovitine (80.0%) or contact-inhibition (80.0%). The fusion efficiency of in vivo and in vitro matured oocytes used as recipient cytoplasts of AWC donor nuclei (86.6% vs. 85.2%) was similar to the rates obtained with DSH donor nuclei, 83.7% vs. 73.0%, respectively. The only significant effect of source of donor nucleus (AWC vs. DSH) was on the rate of blastocyst formation in vitro. A higher percentage of the embryos derived from AWC nuclei developed to the blastocyst stage than did embryos produced from DSH nuclei, 24.2% vs. 3.3%, respectively (P < 0.05). In experiment 4, the effect of calcium in the fusion medium on induction of oocyte activation and development of AWC-DSH-cloned embryos was determined. The presence of calcium in the fusion medium induced a high incidence of cleavage of DSH oocytes (54.3%), while oocyte cleavage frequency was much lower in the absence of calcium (16.6%). The presence or absence of calcium in the fusion medium did not affect the fusion, cleavage, and blastocyst development of AWC-DSH-cloned embryos. In experiment 5, AWC-DSH-cloned embryos were transferred to the uteri of 11 synchronized domestic cat recipients on Day 6 or 7 after oocyte aspiration. Recipients were assessed by ultrasonography on Day 21 postovulation, but no pregnancies were observed. In the present study, after NT, AWC donor nuclei were able to dedifferentiate in DSH cytoplasts and support high rates of blastocyst development in vitro. Incomplete reprogramming of the differentiated nucleus may be a major constraint to the in vivo developmental potential of the embryos.
Fassett, Hunter J.; Turco, Claudia V.; El-Sayes, Jenin; Lulic, Tea; Baker, Steve; Richardson, Brian; Nelson, Aimee J.
2017-01-01
Intermittent theta burst stimulation (iTBS) is intended primarily to alter corticospinal excitability, creating an attractive opportunity to alter neural output following incomplete spinal cord injury (SCI). This study is the first to assess the effects of iTBS in SCI. Eight individuals with chronic incomplete SCI were studied. Sham or real iTBS was delivered (to each participant) over primary motor and somatosensory cortices in separate sessions. Motor-evoked potential (MEP) recruitment curves were obtained from the flexor carpi radialis muscle before and after iTBS. Results indicate similar responses for iTBS to both motor and somatosensory cortex and reduced MEPs in 56.25% and increased MEPs in 25% of instances. Sham stimulation exceeded real iTBS effects in the remaining 18.25%. It is our opinion that observing short-term neuroplasticity in corticospinal output in chronic SCI is an important advance and should be tested in future studies as an opportunity to improve function in this population. We emphasize the need to re-consider the importance of the direction of MEP change following a single session of iTBS since the relationship between MEP direction and motor function is unknown and multiple sessions of iTBS may yield very different directional results. Furthermore, we highlight the importance of including sham control in the experimental design. The fundamental point from this pilot research is that a single session of iTBS is often capable of creating short-term change in SCI. Future sham-controlled randomized trials may consider repeat iTBS sessions to promote long-term changes in corticospinal excitability. PMID:28824536
Fassett, Hunter J; Turco, Claudia V; El-Sayes, Jenin; Lulic, Tea; Baker, Steve; Richardson, Brian; Nelson, Aimee J
2017-01-01
Intermittent theta burst stimulation (iTBS) is intended primarily to alter corticospinal excitability, creating an attractive opportunity to alter neural output following incomplete spinal cord injury (SCI). This study is the first to assess the effects of iTBS in SCI. Eight individuals with chronic incomplete SCI were studied. Sham or real iTBS was delivered (to each participant) over primary motor and somatosensory cortices in separate sessions. Motor-evoked potential (MEP) recruitment curves were obtained from the flexor carpi radialis muscle before and after iTBS. Results indicate similar responses for iTBS to both motor and somatosensory cortex and reduced MEPs in 56.25% and increased MEPs in 25% of instances. Sham stimulation exceeded real iTBS effects in the remaining 18.25%. It is our opinion that observing short-term neuroplasticity in corticospinal output in chronic SCI is an important advance and should be tested in future studies as an opportunity to improve function in this population. We emphasize the need to re-consider the importance of the direction of MEP change following a single session of iTBS since the relationship between MEP direction and motor function is unknown and multiple sessions of iTBS may yield very different directional results. Furthermore, we highlight the importance of including sham control in the experimental design. The fundamental point from this pilot research is that a single session of iTBS is often capable of creating short-term change in SCI. Future sham-controlled randomized trials may consider repeat iTBS sessions to promote long-term changes in corticospinal excitability.
Prospective assessment of interobserver agreement for defecography in fecal incontinence.
Dobben, Annette C; Wiersma, Tjeerd G; Janssen, Lucas W M; de Vos, Rien; Terra, Maaike P; Baeten, Cor G; Stoker, Jaap
2005-11-01
The primary aim of our study was to determine the interobserver agreement of defecography in diagnosing enterocele, anterior rectocele, intussusception, and anismus in fecal-incontinent patients. The subsidiary aim was to evaluate the influence of level of experience on interpreting defecography. Defecography was performed in 105 consecutive fecal-incontinent patients. Observers were classified by level of experience and their findings were compared with the findings of an expert radiologist. The quality of the expert radiologist's findings was evaluated by an intraobserver agreement procedure. Intraobserver agreement was good to very good except for anismus: incomplete evacuation after 30 sec (kappa, 0.55) and puborectalis impression (kappa, 0.54). Interobserver agreement for enterocele and rectocele was good (kappa, 0.66 for both) and for intussusception, fair (kappa, 0.29). Interobserver agreement for anismus: incomplete evacuation after 30 sec was moderate (kappa, 0.47), and for anismus: puborectalis impression was fair (kappa, 0.24). Agreement in grading of enterocele and rectocele was good (kappa, 0.64 and 0.72, respectively) and for intussusception, fair (kappa, 0.39). Agreement separated by experience level was very good for rectocele (kappa, 0.83) and grading of rectoceles (kappa, 0.83) and moderate for intussusception (kappa, 0.44) at the most experienced level. For enterocele and grading, experience level did not influence the reproducibility. Reproducibility for enterocele, anterior rectocele, and severity grading is good, but for intussusception is fair to moderate. For anismus, the diagnosis of incomplete evacuation after 30 sec is more reproducible than puborectalis impression. The level of experience seems to play a role in diagnosing anterior rectocele and its grading and in diagnosing intussusception.
Seismic sample areas defined from incomplete catalogues: an application to the Italian territory
NASA Astrophysics Data System (ADS)
Mulargia, F.; Tinti, S.
1985-11-01
The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define "seismic sample area" the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000-1980. The eastern Alps region stands out as the best "sample area", with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research.
Gajic-Veljanoski, Olga; Cheung, Angela M; Bayoumi, Ahmed M; Tomlinson, George
2016-05-30
Bivariate random-effects meta-analysis (BVMA) is a method of data synthesis that accounts for treatment effects measured on two outcomes. BVMA gives more precise estimates of the population mean and predicted values than two univariate random-effects meta-analyses (UVMAs). BVMA also addresses bias from incomplete reporting of outcomes. A few tutorials have covered technical details of BVMA of categorical or continuous outcomes. Limited guidance is available on how to analyze datasets that include trials with mixed continuous-binary outcomes where treatment effects on one outcome or the other are not reported. Given the advantages of Bayesian BVMA for handling missing outcomes, we present a tutorial for Bayesian BVMA of incompletely reported treatment effects on mixed bivariate outcomes. This step-by-step approach can serve as a model for our intended audience, the methodologist familiar with Bayesian meta-analysis, looking for practical advice on fitting bivariate models. To facilitate application of the proposed methods, we include our WinBUGS code. As an example, we use aggregate-level data from published trials to demonstrate the estimation of the effects of vitamin K and bisphosphonates on two correlated bone outcomes, fracture, and bone mineral density. We present datasets where reporting of the pairs of treatment effects on both outcomes was 'partially' complete (i.e., pairs completely reported in some trials), and we outline steps for modeling the incompletely reported data. To assess what is gained from the additional work required by BVMA, we compare the resulting estimates to those from separate UVMAs. We discuss methodological findings and make four recommendations. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Hornby, T George; Kinnaird, Catherine R; Holleran, Carey L; Rafferty, Miriam R; Rodriguez, Kelly S; Cain, Julie B
2012-10-01
Robotic-assisted locomotor training has demonstrated some efficacy in individuals with neurological injury and is slowly gaining clinical acceptance. Both exoskeletal devices, which control individual joint movements, and elliptical devices, which control endpoint trajectories, have been utilized with specific patient populations and are available commercially. No studies have directly compared training efficacy or patient performance during stepping between devices. The purpose of this study was to evaluate kinematic, electromyographic (EMG), and metabolic responses during elliptical- and exoskeletal-assisted stepping in individuals with incomplete spinal cord injury (SCI) compared with therapist-assisted stepping. Design A prospective, cross-sectional, repeated-measures design was used. Participants with incomplete SCI (n=11) performed 3 separate bouts of exoskeletal-, elliptical-, or therapist-assisted stepping. Unilateral hip and knee sagittal-plane kinematics, lower-limb EMG recordings, and oxygen consumption were compared across stepping conditions and with control participants (n=10) during treadmill stepping. Exoskeletal stepping kinematics closely approximated normal gait patterns, whereas significantly greater hip and knee flexion postures were observed during elliptical-assisted stepping. Measures of kinematic variability indicated consistent patterns in control participants and during exoskeletal-assisted stepping, whereas therapist- and elliptical-assisted stepping kinematics were more variable. Despite specific differences, EMG patterns generally were similar across stepping conditions in the participants with SCI. In contrast, oxygen consumption was consistently greater during therapist-assisted stepping. Limitations Limitations included a small sample size, lack of ability to evaluate kinetics during stepping, unilateral EMG recordings, and sagittal-plane kinematics. Despite specific differences in kinematics and EMG activity, metabolic activity was similar during stepping in each robotic device. Understanding potential differences and similarities in stepping performance with robotic assistance may be important in delivery of repeated locomotor training using robotic or therapist assistance and for consumers of robotic devices.
Tamura, Masato; Sugiura, Shinji; Takagi, Toshiyuki; Satoh, Taku; Sumaru, Kimio; Kanamori, Toshiyuki; Okada, Tomoko; Matsui, Hirofumi
2017-01-01
Understanding tumor heterogeneity is an urgent and unmet need in cancer research. In this study, we used a morphology-based optical cell separation process to classify a heterogeneous cancer cell population into characteristic subpopulations. To classify the cell subpopulations, we assessed their morphology in hydrogel, a three-dimensional culture environment that induces morphological changes according to the characteristics of the cells (i.e., growth, migration, and invasion). We encapsulated the murine breast cancer cell line 4T1E, as a heterogeneous population that includes highly metastatic cells, in click-crosslinkable and photodegradable gelatin hydrogels, which we developed previously. We observed morphological changes within 3 days of encapsulating the cells in the hydrogel. We separated the 4T1E cell population into colony- and granular-type cells by optical separation, in which local UV-induced degradation of the photodegradable hydrogel around the target cells enabled us to collect those cells. The obtained colony- and granular-type cells were evaluated in vitro by using a spheroid assay and in vivo by means of a tumor growth and metastasis assay. The spheroid assay showed that the colony-type cells formed compact spheroids in 2 days, whereas the granular-type cells did not form spheroids. The tumor growth assay in mice revealed that the granular-type cells exhibited lower tumor growth and a different metastasis behavior compared with the colony-type cells. These results suggest that morphology-based optical cell separation is a useful technique to classify a heterogeneous cancer cell population according to its cellular characteristics.
Thomas, Cory; Lu, Xinyu; Todd, Andrew; Raval, Yash; Tzeng, Tzuen-Rong; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun
2017-01-01
The separation of particles and cells in a uniform mixture has been extensively studied as a necessity in many chemical and biomedical engineering and research fields. This work demonstrates a continuous charge-based separation of fluorescent and plain spherical polystyrene particles with comparable sizes in a ψ-shaped microchannel via the wall-induced electrical lift. The effects of both the direct current electric field in the main-branch and the electric field ratio in between the inlet branches for sheath fluid and particle mixture are investigated on this electrokinetic particle separation. A Lagrangian tracking method based theoretical model is also developed to understand the particle transport in the microchannel and simulate the parametric effects on particle separation. Moreover, the demonstrated charge-based separation is applied to a mixture of yeast cells and polystyrene particles with similar sizes. Good separation efficiency and purity are achieved for both the cells and the particles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bipolar battery with array of sealed cells
Kaun, Thomas D.; Smaga, John A.
1987-01-01
A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.
Lobar holoprosencephaly in a Miniature Schnauzer with hypodipsic hypernatremia.
Sullivan, Stacey A; Harmon, Barry G; Purinton, P Thomas; Greene, Craig E; Glerum, Leigh E
2003-12-15
A 9-month-old male Miniature Schnauzer was examined because of a lifelong history of behavioral abnormalities, including hypodipsia. Diagnostic evaluation revealed marked hypernatremia and a single forebrain ventricle. The behavioral abnormalities did not resolve with correction of the hypernatremia, and the dog was euthanatized. At necropsy, midline forebrain structures were absent or reduced in size, and normally paired forebrain structures were incompletely separated. Findings were diagnostic for holoprosencephaly, a potentially genetic disorder and the likely cause of the hypodipsia. Similar evaluation of affected Miniature Schnauzer dogs may reveal whether holoprosencephaly routinely underlies the thirst deficiency that may be seen in dogs of this breed.
Physical basis of destruction of concrete and other building materials
NASA Astrophysics Data System (ADS)
Suleymanova, L. A.; Pogorelova, I. A.; Kirilenko, S. V.; Suleymanov, K. A.
2018-03-01
In the article the scientifically-grounded views of authors on the physical essence of destruction process of concrete and other materials are stated; it is shown that the mechanism of destruction of materials is similar in its essence during the mechanical, thermal, physical-chemical and combined influences, and that in its basis Newton's third law lays. In all cases destruction consists in decompaction of structures, loosening of the internal bonds in materials, in the further integrity damage and their division into separate loosely-bound (full destruction) and unbound with each other (incomplete destruction) elements, which depends on the kind of external influence and perfection of materials structure.
Congenital esophageal stenosis: a rare case of dysphagia
Serrao, Eva; Santos, Alexandra; Gaivao, Ana; Tavares, Ana; Ferreira, Sergio
2010-01-01
Congenital esophageal stenosis (CES) is a rare anomaly, resulting from incomplete separation of the respiratory tract from the primitive foregut at the 25th day of life. First clinical signs are abnormalities of the swallowing mechanism caused by the intrinsic narrowing of the esophagus. Diagnosis is usually delayed, requiring an accurate history and high level of suspicion, alongside with an esophagogram. Definite diagnosis is only confirmed by histological examination. Treatment usually involves surgery, depending on the severity, location and type of stenosis. We report the case of an 18 months old toddler diagnosed with CES. The characteristic radiographic and CT features are presented as well as the histology. PMID:22470735
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
NASA Astrophysics Data System (ADS)
Srivastava, H. M.; Saxena, R. K.; Parmar, R. K.
2018-01-01
Our present investigation is inspired by the recent interesting extensions (by Srivastava et al. [35]) of a pair of the Mellin-Barnes type contour integral representations of their incomplete generalized hypergeometric functions p γ q and p Γ q by means of the incomplete gamma functions γ( s, x) and Γ( s, x). Here, in this sequel, we introduce a family of the relatively more general incomplete H-functions γ p,q m,n ( z) and Γ p,q m,n ( z) as well as their such special cases as the incomplete Fox-Wright generalized hypergeometric functions p Ψ q (γ) [ z] and p Ψ q (Γ) [ z]. The main object of this paper is to study and investigate several interesting properties of these incomplete H-functions, including (for example) decomposition and reduction formulas, derivative formulas, various integral transforms, computational representations, and so on. We apply some substantially general Riemann-Liouville and Weyl type fractional integral operators to each of these incomplete H-functions. We indicate the easilyderivable extensions of the results presented here that hold for the corresponding incomplete \\overline H -functions as well. Potential applications of many of these incomplete special functions involving (for example) probability theory are also indicated.
Pathological implications of cell cycle re-entry in Alzheimer disease.
Bonda, David J; Lee, Hyun-pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon
2010-06-29
The complex neurodegeneration underlying Alzheimer disease (AD), although incompletely understood, is characterised by an aberrant re-entry into the cell cycle in neurons. Pathological evidence, in the form of cell cycle markers and regulatory proteins, suggests that cell cycle re-entry is an early event in AD, which precedes the formation of amyloid-beta plaques and neurofibrillary tangles (NFTs). Although the exact mechanisms that induce and mediate these cell cycle events in AD are not clear, significant advances have been made in further understanding the pathological role of cell cycle re-entry in AD. Importantly, recent studies indicate that cell cycle re-entry is not a consequence, but rather a cause, of neurodegeneration, suggesting that targeting of cell cycle re-entry may provide an opportunity for therapeutic intervention. Moreover, multiple inducers of cell cycle re-entry and their interactions in AD have been proposed. Here, we review the most recent advances in understanding the pathological implications of cell cycle re-entry in AD.
Piracetam for reducing the incidence of painful sickle cell disease crises.
Al Hajeri, A A; Fedorowicz, Z; Omran, A; Tadmouri, G O
2007-04-18
Sickle cell disease is one of the most common genetic disorders. Sickle cell crises in which irregular and dehydrated cells contribute to blocking of blood vessels are characterised by episodes of pain. Treatment is mainly supportive and symptomatic. In vitro studies with piracetam indicate that it has the potential for inhibition and a reversal of the process of sickling of erythrocytes. To assess the effectiveness of piracetam for reducing the incidence of painful sickle cell disease crises. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register which comprises of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Date of the last search of the Group's Haemoglobinopathies Trials Register: February 2007. Randomised controlled trials comparing orally administered piracetam to placebo or standard care in people, of all ages and both sexes, with sickle cell disease. Two authors independently assessed trial quality and extracted data. Trial authors were contacted for additional information. Adverse effects data were collected from the trials. Three trials involving 169 participants were included in the review. A limited amount of data addressing some of the primary and some of the secondary outcomes were provided, but data were incomplete and based on unvalidated assumptions used in the evaluation of outcomes. One trial reported a reduction in the number of pain crises and their severity with active intervention than placebo but presented no data to confirm these results. A second trial presented a monthly global pain score based on the number of sickle cell crises and severity of pain but included no separate data for these primary outcomes. Although there was no significant difference between the piracetam and placebo periods for the number of days of hospitalisation (P = 0.87) in one trial, inconsistencies in the criteria necessary for hospitalisation during sickle crises did not permit accurate conclusions to be drawn. Two of the trials reported participant satisfaction with piracetam but provided no details as to how this satisfaction had been assessed. There were no reports of toxicity or adverse effects with piracetam other than one participant who experienced dizziness. The small number of included trials and their poor methodological quality provided insufficient reliable evidence to support the routine use of this medication for preventing the incidence of painful sickle cell disease crises.
Affinity adsorption of cells to surfaces and strategies for cell detachment.
Hubble, John
2007-01-01
The use of bio-specific interactions for the separation and recovery of bio-molecules is now widely established and in many cases the technique has successfully crossed the divide between bench and process scale operation. Although the major specificity advantage of affinity-based separations also applies to systems intended for cell fractionation, developments in this area have been slower. Many of the problems encountered result from attempts to take techniques developed for molecular systems and, with only minor modification to the conditions used, apply them for the separation of cells. This approach tends to ignore or at least trivialise the problems, which arise from the heterogeneous nature of a cell suspension and the multivalent nature of the cell/surface interaction. To develop viable separation processes on a larger scale, effective contacting strategies are required in separators that also allow detachment or recovery protocols that overcome the enhanced binding strength generated by multivalent interactions. The effects of interaction valency on interaction strength needs to be assessed and approaches developed to allow effective detachment and recovery of adsorbed cells without compromising cell viability. This article considers the influence of operating conditions on cell attachment and the extent to which multivalent interactions determine the strength of cell binding and subsequent detachment.
Electrochemical Cell with Improved Water or Gas Management
NASA Technical Reports Server (NTRS)
LaGrange, Jay W. (Inventor); Smith, William F. (Inventor); McElroy, James F. (Inventor)
2015-01-01
An electrochemical cell having a water/gas porous separator prepared from a polymeric material and one or more conductive cell components that pass through, or are located in close proximity to, the water/gas porous separator, is provided. The inventive cell provides a high level of in-cell electrical conductivity.
Ultracapacitor having residual water removed under vacuum
Wei, Chang; Jerabek, Elihu Calvin; Day, James
2002-10-15
A multilayer cell is provided that comprises two solid, nonporous current collectors, two porous electrodes separating the current collectors, a porous separator between the electrodes and an electrolyte occupying pores in the electrodes and separator. The mutilayer cell is electrolyzed to disassociate water within the cell to oxygen gas and hydrogen gas. A vacuum is applied to the cell substantially at the same time as the electrolyzing step, to remove the oxygen gas and hydrogen gas. The cell is then sealed to form a ultracapacitor substantially free from water.
1982-11-12
COMWITTED STEM CELLS IN HUMANS AND CANINES AND THEIR PHYSICAL SEPARATION FROM LYMPHOCYTES AND PLURIPOTENT STEM CELLS Name of Candidate: Thomas J...Passage of Specific Committed Stem CeUs in Human and Canine and Their Physical Separation From Lymphocytes and Pluripotent Stem Cells Thomas Jose...principle of counterflow centrifugation elutriation (CCE) for the broader enunciation of this theory in the canine and to postulate a similar theory
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1990-01-01
Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.
NASA Technical Reports Server (NTRS)
Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.
2000-01-01
BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.
Separator material for electrochemical cells
Cieslak, Wendy R.; Storz, Leonard J.
1991-01-01
An electrochemical cell characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.
Jensen, Bjarke; Nyengaard, Jens R; Pedersen, Michael; Wang, Tobias
2010-12-01
The hearts of all snakes and lizards consist of two atria and a single incompletely divided ventricle. In general, the squamate ventricle is subdivided into three chambers: cavum arteriosum (left), cavum venosum (medial) and cavum pulmonale (right). Although a similar division also applies to the heart of pythons, this family of snakes is unique amongst snakes in having intracardiac pressure separation. Here we provide a detailed anatomical description of the cardiac structures that confer this functional division. We measured the masses and volumes of the ventricular chambers, and we describe the gross morphology based on dissections of the heart from 13 ball pythons (Python regius) and one Burmese python (P. molurus). The cavum venosum is much reduced in pythons and constitutes approximately 10% of the cavum arteriosum. We suggest that shunts will always be less than 20%, while other studies conclude up to 50%. The high-pressure cavum arteriosum accounted for approximately 75% of the total ventricular mass, and was twice as dense as the low-pressure cavum pulmonale. The reptile ventricle has a core of spongious myocardium, but the three ventricular septa that separate the pulmonary and systemic chambers--the muscular ridge, the bulbuslamelle and the vertical septum--all had layers of compact myocardium. Pythons, however, have unique pads of connective tissue on the site of pressure separation. Because the hearts of varanid lizards, which also are endowed with pressure separation, share many of these morphological specializations, we propose that intraventricular compact myocardium is an indicator of high-pressure systems and possibly pressure separation.
Painting Analysis of Chromosome Aberrations Induced by Energetic Heavy Ions in Human Cells
NASA Technical Reports Server (NTRS)
Wu, Honglu
2006-01-01
FISH, mFISH, mBAND, telomere and centromere probes have been used to study chromosome aberrations induced in human cells exposed to low-and high-LET radiation in vitro. High-LET induced damages are mostly a single track effect. Unrejoined chromosome breaks (incomplete exchanges) and complex type aberrations were higher for high-LET. Biosignatures may depend on the method the samples are collected. Recent mBAND analysis has revealed more information about the nature of intra-chromosome exchanges. Whether space flight/microgravity affects radiation-induced chromosome aberration frequencies is still an open question.
Acoustofluidic bacteria separation
NASA Astrophysics Data System (ADS)
Li, Sixing; Ma, Fen; Bachman, Hunter; Cameron, Craig E.; Zeng, Xiangqun; Huang, Tony Jun
2017-01-01
Bacterial separation from human blood samples can help with the identification of pathogenic bacteria for sepsis diagnosis. In this work, we report an acoustofluidic device for label-free bacterial separation from human blood samples. In particular, we exploit the acoustic radiation force generated from a tilted-angle standing surface acoustic wave (taSSAW) field to separate Escherichia coli from human blood cells based on their size difference. Flow cytometry analysis of the E. coli separated from red blood cells shows a purity of more than 96%. Moreover, the label-free electrochemical detection of the separated E. coli displays reduced non-specific signals due to the removal of blood cells. Our acoustofluidic bacterial separation platform has advantages such as label-free separation, high biocompatibility, flexibility, low cost, miniaturization, automation, and ease of in-line integration. The platform can be incorporated with an on-chip sensor to realize a point-of-care sepsis diagnostic device.
Ballesteros-Tato, André; Randall, Troy D; Lund, Frances E; Spolski, Rosanne; Leonard, Warren J; León, Beatriz
2016-02-16
Exposure to environmental antigens, such as house dust mite (HDM), often leads to T helper 2 (Th2) cell-driven allergic responses. However, the mechanisms underlying the development of these responses are incompletely understood. We found that the initial exposure to HDM did not lead to Th2 cell development but instead promoted the formation of interleukin-4 (IL-4)-committed T follicular helper (Tfh) cells. Following challenge exposure to HDM, Tfh cells differentiated into IL-4 and IL-13 double-producing Th2 cells that accumulated in the lung and recruited eosinophils. B cells were required to expand IL-4-committed Tfh cells during the sensitization phase, but did not directly contribute to disease. Impairment of Tfh cell responses during the sensitization phase or Tfh cell depletion prevented Th2 cell-mediated responses following challenge. Thus, our data demonstrate that Tfh cells are precursors of HDM-specific Th2 cells and reveal an unexpected role of B cells and Tfh cells in the pathogenesis of allergic asthma. Copyright © 2016 Elsevier Inc. All rights reserved.
Failsafe modes in incomplete minority game
NASA Astrophysics Data System (ADS)
Yao, Xiaobo; Wan, Shaolong; Chen, Wen
2009-09-01
We make a failsafe extension to the incomplete minority game model, give a brief analysis on how incompleteness will effect system efficiency. Simulations that limited incompleteness in strategies can improve the system efficiency. Among three failsafe modes, the “Back-to-Best” mode brings most significant improvement and keeps the system efficiency in a long range of incompleteness. A simple analytic formula has a trend which matches simulation results. The IMMG model is used to study the effect of distribution, and we find that there is one junction point in each series of curves, at which system efficiency is not influenced by the distribution of incompleteness. When pIbar > the concentration of incompleteness weakens the effect. On the other side of , concentration will be helpful. When pI is close to zero agents using incomplete strategies have on average better profits than those using standard strategies, and the “Back-to-Best” agents have a wider range of pI to win.
Cell separation technique in dilectrophoretic chip with bulk electrode
NASA Astrophysics Data System (ADS)
Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming
2006-01-01
This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.
Mahajan, Kalpesh D; Nabar, Gauri M; Xue, Wei; Anghelina, Mirela; Moldovan, Nicanor I; Chalmers, Jeffrey J; Winter, Jessica O
2017-09-01
Immunomagnetic separation is used to isolate circulating endothelial cells (ECs) and endothelial progenitor cells (EPCs) for diagnostics and tissue engineering. However, potentially detrimental changes in cell properties have been observed post-separation. Here, the effect of mechanical force, which is naturally applied during immunomagnetic separation, on proliferation of human umbilical vein endothelial cells (HUVEC), kinase insert domain-positive receptor (KDR) cells, and peripheral blood mononuclear cells (PBMCs). Cells are exposed to CD31 or Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) targeted MACSi beads at varying bead to cell ratios and compared to free antibody and unconjugated beads. A vertical magnetic gradient is applied to static 2D cultures, and a magnetic cell sorter is used to analyze cells in dynamic flow. No significant difference in EC proliferation is observed for controls or VEGFR2-targeting beads, whereas CD31-conjugated beads increase proliferation in a dose dependent manner in static 2-D cultures. This effect occurs in the absence of magnetic field, but is more pronounced with magnetic force. After flow sorting, similar increases in proliferation are seen for CD31 targeting beads. Thus, the effects of targeting antibody and magnetic force applied should be considered when designing immunomagnetic separation protocols for ECs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peptide-Induced Antiviral Protection by Cytotoxic T Cells
NASA Astrophysics Data System (ADS)
Schulz, Manfred; Zinkernagel, Rolf M.; Hengartner, Hans
1991-02-01
A specific antiviral cytotoxic immune response in vivo could be induced by the subcutaneous injection of the T-cell epitope of the lymphocytic choriomeningitis virus (LCMV) nucleoprotein as an unmodified free synthetic peptide (Arg-Pro-Gln-Ala-Ser-Gly-Val-Tyr-Met-Gly-Asn-Leu-Thr-Ala-Gln) emulsified in incomplete Freund's adjuvant. This immunization rendered mice into a LCMV-specific protective state as shown by the inhibition of LCMV replication in spleens of such mice. The protection level of these mice correlated with the ability to respond to the peptide challenge by CD8^+ virus-specific cytotoxic T cells. This is a direct demonstration that peptide vaccines can be antivirally protective in vivo, thus encouraging further search for appropriate mixtures of stable peptides that may be used as T-cell vaccines.
The immunological synapse: the gateway to the HIV reservoir
Kulpa, Deanna A; Brehm, Jessica H; Fromentin, Rémi; Cooper, Anthony; Cooper, Colleen; Ahlers, Jeffrey; Chomont, Nicolas; Sékaly, Rafick-Pierre
2013-01-01
A major challenge in the development of a cure for human immunodeficiency virus (HIV) has been the incomplete understanding of the basic mechanisms underlying HIV persistence during antiretroviral therapy. It is now realized that the establishment of a latently infected reservoir refractory to immune system recognition has thus far hindered eradication efforts. Recent investigation into the innate immune response has shed light on signaling pathways downstream of the immunological synapse critical for T-cell activation and establishment of T-cell memory. This has led to the understanding that the cell-to-cell contacts observed in an immunological synapse that involve the CD4+ T cell and antigen-presenting cell or T-cell–T-cell interactions enhance efficient viral spread and facilitate the induction and maintenance of latency in HIV-infected memory T cells. This review focuses on recent work characterizing the immunological synapse and the signaling pathways involved in T-cell activation and gene regulation in the context of HIV persistence. PMID:23772628
Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.
Casey, Alison E; Sinha, Ankit; Singhania, Rajat; Livingstone, Julie; Waterhouse, Paul; Tharmapalan, Pirashaanthy; Cruickshank, Jennifer; Shehata, Mona; Drysdale, Erik; Fang, Hui; Kim, Hyeyeon; Isserlin, Ruth; Bailey, Swneke; Medina, Tiago; Deblois, Genevieve; Shiah, Yu-Jia; Barsyte-Lovejoy, Dalia; Hofer, Stefan; Bader, Gary; Lupien, Mathieu; Arrowsmith, Cheryl; Knapp, Stefan; De Carvalho, Daniel; Berman, Hal; Boutros, Paul C; Kislinger, Thomas; Khokha, Rama
2018-06-19
The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology. © 2018 Casey et al.
Nelson, Ryan W.; Beisang, Daniel; Tubo, Noah J.; Dileepan, Thamotharampillai; Wiesner, Darin L.; Nielsen, Kirsten; Wüthrich, Marcel; Klein, Bruce S.; Kotov, Dmitri I.; Spanier, Justin A.; Fife, Brian T.; Moon, James J.; Jenkins, Marc K.
2014-01-01
SUMMARY T cell receptor (TCR) cross-reactivity between major histocompatibility complex II (MHCII)-binding self and foreign peptides could influence the naïve CD4+ T cell repertoire and autoimmunity. We found that nonamer peptides that bind to the same MHCII molecule only need to share five amino acids to cross-react on the same TCR. This property was biologically relevant since systemic expression of a self peptide reduced the size of a naïve cell population specific for a related foreign peptide by deletion of cells with cross-reactive TCRs. Reciprocally, an incompletely deleted naïve T cell population specific for a tissue-restricted self peptide could be triggered by related microbial peptides to cause autoimmunity. Thus, TCR cross-reactivity between similar self and foreign peptides can reduce the size of certain foreign peptide-specific T cell populations, and may allow T cell populations specific for tissue-restricted self peptides to cause autoimmunity after infection. PMID:25601203
Regulating mechanical tension at compartment boundaries in Drosophila.
Michel, Marcus; Dahmann, Christian
2016-10-01
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.
Wernet, Mathias F.; Klovstad, Martha; Clandinin, Thomas R.
2014-01-01
Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes (‘replicons’) from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated ‘in trans’, through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to ‘superinfection exclusion’ between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development. PMID:25386852
Nickel-hydrogen battery with oxygen and electrolyte management features
Sindorf, John F.
1991-10-22
A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.
Microfluidics separation reveals the stem-cell-like deformability of tumor-initiating cells.
Zhang, Weijia; Kai, Kazuharu; Choi, Dong Soon; Iwamoto, Takayuki; Nguyen, Yen H; Wong, Helen; Landis, Melissa D; Ueno, Naoto T; Chang, Jenny; Qin, Lidong
2012-11-13
Here we report a microfluidics method to enrich physically deformable cells by mechanical manipulation through artificial microbarriers. Driven by hydrodynamic forces, flexible cells or cells with high metastatic propensity change shape to pass through the microbarriers and exit the separation device, whereas stiff cells remain trapped. We demonstrate the separation of (i) a mixture of two breast cancer cell types (MDA-MB-436 and MCF-7) with distinct deformabilities and metastatic potentials, and (ii) a heterogeneous breast cancer cell line (SUM149), into enriched flexible and stiff subpopulations. We show that the flexible phenotype is associated with overexpression of multiple genes involved in cancer cell motility and metastasis, and greater mammosphere formation efficiency. Our observations support the relationship between tumor-initiating capacity and cell deformability, and demonstrate that tumor-initiating cells are less differentiated in terms of cell biomechanics.
Developmental fate and lineage commitment of singled mouse blastomeres.
Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor
2012-10-01
The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.
Shen, Shaofei; Ma, Chao; Zhao, Lei; Wang, Yaolei; Wang, Jian-Chun; Xu, Juan; Li, Tianbao; Pang, Long; Wang, Jinyi
2014-07-21
The presence and quantity of rare cells in the bloodstream of cancer patients provide a potentially accessible source for the early detection of invasive cancer and for monitoring the treatment of advanced diseases. The separation of rare cells from peripheral blood, as a "virtual and real-time liquid biopsy", is expected to replace conventional tissue biopsies of metastatic tumors for therapy guidance. However, technical obstacles, similar to looking for a needle in a haystack, have hindered the broad clinical utility of this method. In this study, we developed a multistage microfluidic device for continuous label-free separation and enrichment of rare cells from blood samples based on cell size and deformability. We successfully separated tumor cells (MCF-7 and HeLa cells) and leukemic (K562) cells spiked in diluted whole blood using a unique complementary combination of inertial microfluidics and steric hindrance in a microfluidic system. The processing parameters of the inertial focusing and steric hindrance regions were optimized to achieve high-throughput and high-efficiency separation, significant advantages compared with existing rare cell isolation technologies. The results from experiments with rare cells spiked in 1% hematocrit blood indicated >90% cell recovery at a throughput of 2.24 × 10(7) cells min(-1). The enrichment of rare cells was >2.02 × 10(5)-fold. Thus, this microfluidic system driven by purely hydrodynamic forces has practical potential to be applied either alone or as a sample preparation platform for fundamental studies and clinical applications.
Cell Cycle Regulation of Stem Cells by MicroRNAs.
Mens, Michelle M J; Ghanbari, Mohsen
2018-06-01
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
Separator material for electrochemical cells
Cieslak, W.R.; Storz, L.J.
1991-03-26
An electrochemical cell is characterized as utilizing an aramid fiber as a separator material. The aramid fibers are especially suited for lithium/thionyl chloride battery systems. The battery separator made of aramid fibers possesses superior mechanical strength, chemical resistance, and is flame retardant.
Irwin, Patricia Chapman; Feist, Thomas Paul
2001-10-16
An ultracapacitor comprises at least one cell comprising two solid, nonporous current collectors, two porous electrodes separating the current collectors, a porous separator between the electrodes and an electrolyte occupying pores in the electrodes and separator. The cell is sealed with a reclosable hermetic closure.
NASA Astrophysics Data System (ADS)
Wang, Qiu-Yue; Huang, Wei; Jiang, Xing-Lin; Kang, Yan-Jun
2018-01-01
In this work, an efficient method based on biotin-labeled aptamer and streptavidin-conjugated fluorescence-magnetic silica nanoprobes (FITC@Fe3O4@SiNPs-SA) has been established for human breast carcinoma MCF-7 cells synchronous labeling and separation. Carboxyl-modified fluorescence-magnetic silica nanoparticles (FITC@Fe3O4@SiNPs-COOH) were first synthesized using the Stöber method. Streptavidin (SA) was then conjugated to the surface of FITC@Fe3O4@SiNPs-COOH. The MCF-7 cell suspension was incubated with biotin-labeled MUC-1 aptamer. After centrifugation and washing, the cells were then treated with FITC@Fe3O4@SiNPs-SA. Afterwards, the mixtures were separated by a magnet. The cell-probe conjugates were then imaged using fluorescent microscopy. The results show that the MUC-1 aptamer could recognize and bind to the targeted cells with high affinity and specificity, indicating the prepared FITC@Fe3O4@SiNPs-SA with great photostability and superparamagnetism could be applied effectively in labeling and separation for MCF-7 cell in suspension synchronously. In addition, the feasibility of MCF-7 cells detection in peripheral blood was assessed. The results indicate that the method above is also applicable for cancer cells synchronous labeling and separation in complex biological system.
Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.
Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit
2016-03-30
Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.
Akatov, V S; Lavrovskaia, V P
1991-01-01
Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.
Elderly dendritic cells respond to LPS/IFN-γ and CD40L stimulation despite incomplete maturation
Musk, Arthur W.; Alvarez, John; Mamotte, Cyril D. S.; Jackaman, Connie; Nowak, Anna K.; Nelson, Delia J.
2018-01-01
There is evidence that dendritic cells (DCs) undergo age-related changes that modulate their function with their key role being priming antigen-specific effector T cells. This occurs once DCs develop into antigen-presenting cells in response to stimuli/danger signals. However, the effects of aging on DC responses to bacterial lipopolysaccharide (LPS), the pro-inflammatory cytokine interferon (IFN)-γ and CD40 ligand (CD40L) have not yet been systematically evaluated. We examined responses of blood myeloid (m)DC1s, mDC2s, plasmacytoid (p)DCs, and monocyte-derived DCs (MoDCs) from young (21–40 years) and elderly (60–84 years) healthy human volunteers to LPS/IFN-γ or CD40L stimulation. All elderly DC subsets demonstrated comparable up-regulation of co-stimulatory molecules (CD40, CD80 and/or CD86), intracellular pro-inflammatory cytokine levels (IFN-γ, tumour necrosis factor (TNF)-α, IL-6 and/or IL-12), and/or secreted cytokine levels (IFN-α, IFN-γ, TNF-α, and IL-12) to their younger counterparts. Furthermore, elderly-derived LPS/IFN-γ or CD40L-activated MoDCs induced similar or increased levels of CD8+ and CD4+ T cell proliferation, and similar T cell functional phenotypes, to their younger counterparts. However, elderly LPS/IFN-γ-activated MoDCs were unreliable in their ability to up-regulate chemokine (IL-8 and monocyte chemoattractant protein (MCP)-1) and IL-6 secretion, implying an inability to dependably induce an inflammatory response. A key age-related difference was that, unlike young-derived MoDCs that completely lost their ability to process antigen, elderly-derived MoDCs maintained their antigen processing ability after LPS/IFN-γ maturation, measured using the DQ-ovalbumin assay; this response implies incomplete maturation that may enable elderly DCs to continuously present antigen. These differences may impact on the efficacy of anti-pathogen and anti-tumour immune responses in the elderly. PMID:29652910
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, K; Li, B; Jacobs, M
Purpose: To treat squamous cell and basal cell carcinoma of the skin with the Freiburg flap applicator using a high dose rate modality of an Elekta Flexitron or MicroSelectron for radiation delivery by compensating the dose deviation resulting from the incomplete scatter environment. Methods: Patients were selected to have lesions greater than or equal to 2cm. A mask might be needed depending on special locations. The lesions on the eyelid and face presented in this research were, however, treated without a mask. Cutting the flap into a shape conformal to the target and attaching it to the mask were usedmore » in order to make the treatment reproducible. Patients were scanned with a Philips Big Bore Brilliant CT. A 1cm margin was added to the lesion. An Elekta Oncentra Brachy treatment planning system ver. 4.3 was used for treatment planning. 40 Gy in 10 or 8 fractions was prescribed to the 1cm depth. The Freiburg flap was aligned and verified by CT scanning prior to treatment. Results: Three patients with squamous cell and basal cell carcinoma of the skin were treated with the Freiburg flap applicator. Lesion sizes ranged from 2cm to 6 cm in a maximum dimension. With treatment planning, we made a dose correction for compensating the dose deviation resulting from the incomplete scatter environment of the flap applicators exposed to air. The flap was also covered by a 4cm bolus in order to obtain more back scattered radiation during treatment. Six month follow up showed a very good cosmetic result. Conclusion: The Freiburg flap brachytherapy offers a non-invasive skin cancer treatment with a high skin dose delivered to the tumor while a low dose sparing the surrounding health tissue. It is a promising alternative to skin cancer surgery or external beam radiation therapy.« less
Electrochemical cell with powdered electrically insulative material as a separator
Mathers, James P.; Olszanski, Theodore W.; Boquist, Carl W.
1978-01-01
A secondary electrochemical cell includes electrodes separated by a layer of electrically insulative powder. The powder includes refractory materials selected from the oxides and nitrides of metals and metaloids. The powdered refractory material, blended with electrolyte particles, can be compacted in layers with electrode materials to form an integral electrode structure or separately assembled into the cell. The assembled cell is heated to operating temperature leaving porous layers of electrically insulative, refractory particles, containing molten electrolyte between the electrodes.
Development of Bio-Oil Commodity Fuel as a Refinery Feedstock from High Impact Algae Biomass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, James; Mani, Sudhagar; Das, K. C.
A two-stage hydrothermal liquefaction (HTL) process was developed to 1) reduce nitrogen levels in algal oil, 2) generate a nitrogen rich stream with limited inhibitors for recycle and algae cultivation, and 3) improve downstream catalytic hydrodenitrogenation and hydrodeoxygenation of the algal oil to refinery intermediates. In the first stage, low temperature HTL was conducted at 125, 175, and 225°C at holding times ranging from 1 to 30 min (time at reaction temperature). A consortium of three algal strains, namely Chlorella sorokiniana, Chlorella minutissima, and Scenedesmus bijuga were used to grow and harvest biomass in a raceway system – this consortiummore » is called the UGA Raceway strain throughout the report. Subsequent analysis of the final harvested product indicated that only two strains predominated in the final harvest - Chlorella sorokiniana and Scenedesmus bijuga. Two additional strains representing a high protein (Spirulina platensis) and high lipid algae (Nannochloropsis) strains were also used in this study. These strains were purchased from suppliers. S. platensis biomass was provided by Earthrise Nutritionals LLC (Calipatria, CA) in dry powder form with defined properties, and was stored in airtight packages at 4°C prior to use. A Nannochloropsis paste from Reed Mariculture was purchased and used in the two-stage HTL/HDO experiments. The solids and liquids from this low temperature HTL pretreatment step were separated and analyzed, leading to the following conclusions. Overall, these results indicate that low temperature HTL (200-250°C) at short residence times (5-15 min) can be used to lyse algae cells and remove/separate protein and nitrogen before subsequent higher temperature HTL (for lipid and other polymer hydrolysis) and HDO. The significant reduction in nitrogen when coupled with low protein/high lipid algae cultivation methods at scale could significantly improve downstream catalytic HDO results. However, significant barriers and knowledge gaps exist that must be overcome and understood. The ability of the separated protein/nitrogen rich aqueous stream to support algae cultivation needs to be verified (and the kinetics of growth measured). The kinetics of algae hydrothermal liquefaction on a mechanistic basis needs to be measured and understood. A better understanding of Maillard reactions during algae HTL is needed. And the impact of Maillard reaction products and incompletely hydrolyzed cell wall components on catalyst deactivation during HDO needs to be understood. Finally, an inexpensive HDO process and associated catalyst capable of converting the algal oil to hydrocarbons needs to be developed.« less
DIELECTROPHORESIS-BASED MICROFLUIDIC SEPARATION AND DETECTION SYSTEMS
Yang, Jun; Vykoukal, Jody; Noshari, Jamileh; Becker, Frederick; Gascoyne, Peter; Krulevitch, Peter; Fuller, Chris; Ackler, Harold; Hamilton, Julie; Boser, Bernhard; Eldredge, Adam; Hitchens, Duncan; Andrews, Craig
2009-01-01
Diagnosis and treatment of human diseases frequently requires isolation and detection of certain cell types from a complex mixture. Compared with traditional separation and detection techniques, microfluidic approaches promise to yield easy-to-use diagnostic instruments tolerant of a wide range of operating environments and capable of accomplishing automated analyses. These approaches will enable diagnostic advances to be disseminated from sophisticated clinical laboratories to the point-of-care. Applications will include the separation and differential analysis of blood cell subpopulations for host-based detection of blood cell changes caused by disease, infection, or exposure to toxins, and the separation and analysis of surface-sensitized, custom dielectric beads for chemical, biological, and biomolecular targets. Here we report a new particle separation and analysis microsystem that uses dielectrophoretic field-flow fractionation (DEP-FFF). The system consists of a microfluidic chip with integrated sample injector, a DEP-FFF separator, and an AC impedance sensor. We show the design of a miniaturized impedance sensor integrated circuit (IC) with improved sensitivity, a new packaging approach for micro-flumes that features a slide-together compression package and novel microfluidic interconnects, and the design, control, integration and packaging of a fieldable prototype. Illustrative applications will be shown, including the separation of different sized beads and different cell types, blood cell differential analysis, and impedance sensing results for beads, spores and cells. PMID:22025905
Size and DNA distributions of electrophoretically separated cultured human kidney cells
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Plank, L. D.; Todd, P. W.
1985-01-01
Electrophoretic purification of purifying cultured cells according to function presumes that the size of cycle phase of a cell is not an overriding determinant of its electrophoretic velocity in an electrophoretic separator. The size distributions and DNA distributions of fractions of cells purified by density gradient electrophoresis were determined. No systematic dependence of electrophoretic migration upward in a density gradient column upon either size or DNA content were found. It was found that human leukemia cell populations, which are more uniform function and found in all phases of the cell cycle during exponential growth, separated on a vertical sensity gradient electrophoresis column according to their size, which is shown to be strictly cell cycle dependent.
Period of vibration of axially vibrating truly nonlinear rod
NASA Astrophysics Data System (ADS)
Cveticanin, L.
2016-07-01
In this paper the axial vibration of a muscle whose fibers are parallel to the direction of muscle compression is investigated. The model is a clamped-free rod with a strongly nonlinear elastic property. Axial vibration is described by a nonlinear partial differential equation. A solution of the equation is constructed for special initial conditions by using the method of separation of variables. The partial differential equation is separated into two uncoupled strongly nonlinear second order differential equations. Both equations, with displacement function and with time function are exactly determined. Exact solutions are given in the form of inverse incomplete and inverse complete Beta function. Using boundary and initial conditions, the frequency of vibration is obtained. It has to be mentioned that the determined frequency represents the exact analytic description for the axially vibrating truly nonlinear clamped-free rod. The procedure suggested in this paper is applied for calculation of the frequency of the longissimus dorsi muscle of a cow. The influence of elasticity order and elasticity coefficient on the frequency property is tested.
49 CFR 568.4 - Requirements for incomplete vehicle manufacturers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... manufacturing operation on the incomplete vehicle. (3) Identification of the incomplete vehicle(s) to which the document applies. The identification shall be by vehicle identification number (VIN) or groups of VINs to... 49 Transportation 6 2014-10-01 2014-10-01 false Requirements for incomplete vehicle manufacturers...
49 CFR 568.4 - Requirements for incomplete vehicle manufacturers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... manufacturing operation on the incomplete vehicle. (3) Identification of the incomplete vehicle(s) to which the document applies. The identification shall be by vehicle identification number (VIN) or groups of VINs to... 49 Transportation 6 2011-10-01 2011-10-01 false Requirements for incomplete vehicle manufacturers...
49 CFR 568.4 - Requirements for incomplete vehicle manufacturers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... manufacturing operation on the incomplete vehicle. (3) Identification of the incomplete vehicle(s) to which the document applies. The identification shall be by vehicle identification number (VIN) or groups of VINs to... 49 Transportation 6 2010-10-01 2010-10-01 false Requirements for incomplete vehicle manufacturers...
49 CFR 529.4 - Requirements for incomplete automobile manufacturers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 6 2012-10-01 2012-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...
49 CFR 529.4 - Requirements for incomplete automobile manufacturers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...
49 CFR 529.4 - Requirements for incomplete automobile manufacturers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 6 2014-10-01 2014-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...
49 CFR 529.4 - Requirements for incomplete automobile manufacturers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 6 2013-10-01 2013-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...
49 CFR 529.4 - Requirements for incomplete automobile manufacturers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 6 2011-10-01 2011-10-01 false Requirements for incomplete automobile... AUTOMOBILES § 529.4 Requirements for incomplete automobile manufacturers. (a) Except as provided in paragraph (c) of this section, §§ 529.5 and 529.6, each incomplete automobile manufacturer is considered, with...
High-rate/high-temperature capability of a single-layer zicar-separator nickel-hydrogen cell
NASA Technical Reports Server (NTRS)
Wheeler, James R.
1995-01-01
A 50 Ampere-hour nickel-hydrogen cell with a single-layer Zircar separator stack design was fully charged and then discharged at a 2C current rate to an end voltage of 1 volt. This extreme test resulted in high temperatures which were recorded at three locations on the cell, i.e., the cell wall, the boss (barrel of the compression seal), and a terminal. The results provide new information about the high-temperature and high-discharge-rate capabilities of nickel-hydrogen cells. This information also adds to the growing data base for single-layer zirconium-oxide-cloth (Zircar) separator cell designs.
HUANG, YING; YANG, JUN; WANG, XIAO-BO; BECKER, FREDERICK F.; GASCOYNE, PETER R.C.
2009-01-01
Dielectrophoretic field-flow-fractionation (DEP-FFF) was used to purge human breast cancer MDA-435 cells from hematopoietic CD34+ stem cells. An array of interdigitated microelectrodes lining the bottom surface of a thin chamber was used to generate dielectrophoretic forces that levitated the cell mixture in a fluid flow profile. CD34+ stem cells were levitated higher, were carried faster by the fluid flow, and exited the separation chamber earlier than the cancer cells. Using on-line flow cytometry, efficient separation of the cell mixture was observed in less than 12 min, and CD34+ stem cell fractions with a purity >99.2% were obtained. The method of DEP-FFF is potentially applicable to many biomedical cell separation problems, including microfluidic-scale diagnosis and preparative-scale purification of cell subpopulations. PMID:10791899
Electrophoretic separation of cells and particles from rat pituitary and rat spleen
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.
1993-01-01
There are 3 parts to the IML-2 TX-101 experiment. Part 1 is a pituitary cell culture experiment. Part 2 is a pituitary cell separation experiment using the Japanese free flow electrophoresis unit (FFEU). Part 3 is a pituitary secretory granule separation experiment using the FFEU. The objectives of this three part experiment are: (1) to determine the kinetics of production of biologically active growth hormone (GH) and prolactin (PRL) in rat pituitary GH and PRL cells in microgravity (micro-g); (2) to investigate three mechanisms by which a micro-g-induced lesion in hormone production may occur; and (3) to determine the quality of separations of pituitary cells and organelles by continuous flow electrophoresis (CFE) in micro-g under conditions where buoyancy-induced convection is eliminated.